

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400,
Burlington, MA 01803, USA

This book is printed on acid-free paper.

Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of
a claim, the product names appear in initial capital or all capital letters. All trademarks that
appear or are otherwise referred to in this work belong to their respective owners. Morgan
Kaufmann Publishers does not have any relationship or affiliation with such trademark owners
nor do such trademark owners confirm, endorse or approve the contents of this work. Readers,
however, should contact the appropriate companies for more information regarding trade-
marks and any related registrations.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—
without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@
elsevier.com. You may also complete your request online via the Elsevier homepage (http://
elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then
“Obtaining Permissions.”

Suggestions, comments, and corrections: Please send correspondence by e-mail to
Saltzer@mit.edu and kaashoek@mit.edu

Library of Congress Cataloging-in-Publication Data
Application Submitted

ISBN: 978-0-12-374957-4

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.elsevierdirect.com

Printed in the United States of America
09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Typeset by: diacriTech, Chennai, India

http://www.elsevier.com
http://www.elsevier.com
http://elsevier.com
http://elsevier.com
http://www.mkp.com
http://www.elsevierdirect.com

To Marlys and Mathilda

xv

Part I
ChaPter 1 Systems
 Sidebar 1.1: Stopping a Supertanker ��� 6
 Sidebar 1.2: Why Airplanes can’t Fly ��� 6
 Sidebar 1.3: Terminology: Words Used to Describe System

Composition �� 9
 Sidebar 1.4: The Cast of Characters and Organizations� ������������������������ 14
 Sidebar 1.5: How Modularity Reshaped the Computer Industry ���������� 21
 Sidebar 1.6: Why Computer Technology has Improved

 Exponentially with Time �� 32

ChaPter 2 elements of Computer System Organization
 Sidebar 2.1: Terminology: Durability, Stability, and Persistence ������������� 46
 Sidebar 2.2: How Magnetic Disks Work ��� 49
 Sidebar 2.3: Representation: Pseudocode and Messages ����������������������� 54
 Sidebar 2.4: What is an Operating System? ��� 79
 Sidebar 2.5: Human Engineering and the Principle of

Least Astonishment �� 85

ChaPter 3 the Design of Naming Schemes
 Sidebar 3.1: Generating a Unique Name from a Timestamp ���������������� 125
 Sidebar 3.2: Hypertext Links in the Shakespeare Electronic

Archive ��� 129

ChaPter 4 enforcing Modularity with Clients and Services
 Sidebar 4.1: Enforcing Modularity with a High-Level Languages ��������� 154
 Sidebar 4.2: Representation: Timing Diagrams ������������������������������������ 156
 Sidebar 4.3: Representation: Big-Endian or Little-Endian?�������������������� 158
 Sidebar 4.4: The X Window System ��� 162
 Sidebar 4.5: Peer-to-peer: Computing without Trusted

Intermediaries �� 164

ChaPter 5 enforcing Modularity with Virtualization
 Sidebar 5.1: rsm, Test-and-Set and Avoiding Locks �������������������������������� 224
 Sidebar 5.2: Constructing a Before-or-After Action without

Special Instructions ��� 226
 Sidebar 5.3: Bootstrapping an Operating System �������������������������������� 239
 Sidebar 5.4: Process, Thread, and Address Space ��������������������������������� 249
 Sidebar 5.5: Position-Independent Programs ��������������������������������������� 251

List of Sidebars

xvi List of Sidebars

 Sidebar 5.6: Interrupts, Exceptions, Faults, Traps, and Signals� ������������� 259
 Sidebar 5.7: Avoiding the Lost Notification Problem with

Semaphores ��� 277

ChaPter 6 Performance
 Sidebar 6.1: Design Hint: When in Doubt Use Brute Force ����������������� 301
 Sidebar 6.2: Design Hint: Optimize for the Common Case ����������������� 307
 Sidebar 6.3: Design Hint: Instead of Reducing Latency, Hide It ����������� 310
 Sidebar 6.4: RAM Latency �� 323
 Sidebar 6.5: Design Hint: Separate Mechanism from Policy ���������������� 330
 Sidebar 6.6: OPT is a Stack Algorithm and Optimal ����������������������������� 343
 Sidebar 6.7: Receive Livelock �� 350
 Sidebar 6.8: Priority Inversion ��� 358

Part II [ON-LINe]
ChaPter 7 the Network as a System and a System Component
 Sidebar 7.1: Error Detection, Checksums, and Witnesses
 Sidebar 7.2: The Internet
 Sidebar 7.3: Framing Phase-Encoded Bits
 Sidebar 7.4: Shannon’s Capacity Theorem
 Sidebar 7.5: Other End-to-End Transport Protocol Interfaces
 Sidebar 7.6: Exponentially Weighted Moving Averages
 Sidebar 7.7: What does an Acknowledgment Really Mean?
 Sidebar 7.8: The Tragedy of the Commons
 Sidebar 7.9: Retrofitting TCP
 Sidebar 7.10: The Invisible Hand

ChaPter 8 Fault tolerance: reliable Systems from Unreliable Components
 Sidebar 8.1: Reliability Functions
 Sidebar 8.2: Risks of Manipulating MTTFs
 Sidebar 8.3: Are Disk System Checksums a Wasted Effort?
 Sidebar 8.4: Detecting Failures with Heartbeats�

ChaPter 9 atomicity: all-or-nothing and Before-or-after
 Sidebar 9.1: Actions and Transactions
 Sidebar 9.2: Events that Might Lead to Invoking an

Exception Handler
 Sidebar 9.3: Cascaded Aborts
 Sidebar 9.4: The Many Uses of Logs

ChaPter 10 Consistency

xviiList of Sidebars

ChaPter 11 Information Security
 Sidebar 11.1: Privacy
 Sidebar 11.2: Should Designs and Vulnerabilities be Public?
 Sidebar 11.3: Malware: Viruses, Worms, Trojan Horses, Logic

Bombs, Bots, Drive-by Downloads, etc�
 Sidebar 11.4: Why are Buffer Overrun Bugs so Common?
 Sidebar 11.5: Authenticating Personal Devices: the

Resurrecting Duckling Policy
 Sidebar 11.6: The Kerberos Authentication System
 Sidebar 11.7: Economics of Computer Security
 Sidebar 11.8: Secure Hash Algorithm (SHA)

xix

To the best of our knowledge this textbook is unique in its scope and approach. It
 provides a broad and in-depth introduction to the main principles and abstractions for
engineering computer systems, be it an operating system, a client/service application,
a database system, a secure Web site, or a fault-tolerant disk cluster. These principles
and abstractions are timeless and are of value to any student or professional reader,
whether or not specializing in computer systems. The principles and abstractions
derive from insights that have proven to work over generations of computer systems,
the authors’ own experience with building computer systems, and teaching about
them for several decades.

The book teaches a broad set of principles and abstractions, yet it explores
them in depth. It captures the core of a concept using pseudocode so that readers
can test their understanding of a concrete instance of the concept. Using pseudo-
code, the book carefully documents the essence of client/service computing,
remote procedure calls, files, threads, address spaces, best-effort networks, atomic-
ity, authenticated messages, and so on. This approach continues in the problem sets,
where readers can explore the design of a wide range of systems by studying their
pseudocode.

This printed textbook is Part I of a two-part publication, containing just the
first six chapters. Part II, consisting of Chapters 7–11 and additional supporting
materials, is posted on-line as an open educational resource. For details of how and
where to find Part II on-line, see “Where to find Part II and other on-line materials”
on page xxix.

Why this textbook?
Many fundamental ideas concerning computer systems, such as design principles,
modularity, naming, abstraction, concurrency, communications, fault tolerance, and
atomicity, are common to several of the upper-division electives of the Computer
Science and Engineering (CSE) curriculum. A typical CSE curriculum starts with two
beginning courses, one on programming and one on hardware. It then branches out,
with one of the main branches consisting of systems-oriented electives that carry
labels such as

Preface

Operating systems ■

Networks ■

Database systems ■

Distributed systems ■

Programming languages ■

Software engineering ■

Security ■

Fault tolerance ■

Concurrency ■

Architecture ■

The primary problem with this list is that it has grown over the last three decades,
and most students interested in systems do not have the time to take all or even

xx

 several of those courses. The typical response is for the CSE curriculum to require
either “choose three” or “take Operating Systems plus two more”. The result is that
most students end up with no background at all in the remaining topics. In addition,
none of the electives can assume that any of the other electives have preceded it,
so common material ends up being repeated several times. Finally, students who are
not planning to specialize in systems but want to have some background have little
choice but to go into depth in one or two specialized areas.

This book cuts across all of these courses, identifying common mechanisms and
design principles, and explaining in depth a carefully chosen set of cross-cutting
ideas. This approach provides an opportunity to teach a core undergraduate course
that is accessible to all Computer Science and Engineering students, whether or
not they intend to specialize in systems. On the one hand, students who will just
be users of systems will take away a solid grounding, while on the other hand
those who plan to plan to make a career out of designing systems can learn more
advanced material more effectively through electives that have the same names as
in the list above but with more depth and less duplication. Both groups will acquire
a broad base of what the authors hope are timeless concepts rather than current
and possibly short-lived techniques. We have found this course structure to be effec-
tive at M.I.T.

The book achieves its extensive range of coverage without sacrificing intellectual
depth by focusing on underlying and timeless concepts that will serve the student
over an entire professional career, rather than providing detailed expositions of the
mechanics of operation of current systems that will soon become obsolete. A per-
vading philosophy of the book is that pedagogy takes precedence over job train-
ing. For example, the text does not teach a particular operating system or rely on
a single computer architecture. Instead it introduces models that exhibit the main
ideas found in contemporary systems, but in forms less cluttered with evolutionary
vestiges. The pedagogical model is that for someone who understands the concepts,
the detailed mechanics of operation of any particular system can easily and quickly
be acquired from other books or from the documentation of the system itself. At the
same time, the text makes concepts concrete using pseudocode fragments, so that
students have something specific to examine and to test their understanding of the
concepts.

For Whom is this book intended?
The authors intend the book for students and professionals who will

Design computer systems. ■

Supervise the design of computer systems. ■

Engineer applications of computer systems to information management. ■

Direct the integration of computer systems within an organization. ■

Evaluate performance of computer systems. ■

Preface

xxi

Keep computer systems technologically up to date. ■

Go on to study individual topics such as networks, security, or transaction ■

 management in greater depth.
Work in other areas of computer science and engineering, but would like to ■

have a basic understanding of the main ideas about computer systems.

Level: This book provides an introduction to computer systems. It does not attempt
to explore every issue or get to the bottom of those issues it does explore. Instead, its
goal is for the reader to acquire insight into the complexities of the systems he or she
will be depending on for the remainder of a career as well as the concepts needed
to interact with system designers. It provides a solid foundation about the mecha-
nisms that underlie operating systems, database systems, data networks, computer
security, distributed systems, fault tolerant computing, and concurrency. By the end
of the book, the reader should in principle be able to follow the detailed engineering
of many aspects of computer systems, be prepared to read and understand current
professional literature about systems, and know what questions to ask and where to
find the answers.

The book can be used in several ways. It can be the basis for a one-semester,
two-quarter, or three-quarter series on computer systems. Or one or two selected
chapters can be an introduction of a traditional undergraduate elective or a graduate
course in operating systems, networks, database systems, distributed systems, security,
fault tolerance, or concurrency. Used in this way, a single book can serve a student
several times. Another possibility is that the text can be the basis for a graduate course
in systems in which students review those areas they learned as undergraduates and
fill in the areas they missed.

Prerequisites: The book carefully limits its prerequisites. When used as a textbook, it
is intended for juniors and seniors who have taken introductory courses on soft-
ware design and on computer hardware organization, but it does not require any
more advanced computer science or engineering background. It defines new terms
as it goes, and it avoids jargon, but nevertheless it also assumes that the reader has
acquired some practical experience with computer systems from a summer job or
two or from laboratory work in the prerequisite courses. It does not require that the
reader be fluent in any particular computer language, but rather be able to transfer
general knowledge about computer programming languages to the varied and some-
times ad hoc programming language used in pseudocode examples.

Other Readers: Professionals should also find this book useful. It provides a modern
and forward-looking perspective on computer system design, based on enforcing
modularity. This perspective recognizes that over the last decade or two, the primary
design challenge has become that of keeping complexity under control rather than
fighting resource constraints. In addition, professionals who in college took only a
subset of the classes in computer systems or an operating systems class that focused
on resource management will find that this text refreshes them with a modern and
broader perspective.

Preface

xxii

hoW to Use this book
Exercises and Problem Sets: Each chapter of the textbook ends with a few short-answer
exercises intended to test understanding of some of the concepts in that chapter. At
the end of the book is a much longer collection of problem sets that challenge the
reader to apply the concepts to new and different problems similar to those that
might be encountered in the real world. In most cases, the problem sets require con-
cepts from several chapters. Each problem set identifies the chapter or chapters on
which it is focused, but later problem sets typically draw concepts from all earlier
chapters. Answers to the exercises and solutions for the problem sets are available
from the publisher in a separate book for instructors.

The exercises and problem sets can be used in several ways:

 ■ As tools for learning. In this mode, the answers and solutions are available to the
student, who is encouraged to work the exercises and problem sets and come
up with answers and solutions on his or her own. By comparing those answers
and solutions with the expected ones, the student receives immediate feedback
that can correct misconceptions and can raise questions about ambiguities or
misunderstandings. One technique to encourage study of the exercises and solu-
tions is to announce that questions identical to or based on one or more of the
problem sets will appear on a forthcoming examination.

 ■ As homework or examination material. In this mode, exercises and problem
sets are assigned as homework, and the student hands in answers that are evalu-
ated and handed back together with copies of the answers and solutions.

 ■ As the source of ideas for new exercises and problem sets.

Case Studies and Readings: To complement the text, the reader should supplement it with
readings from the professional technical literature and with case studies. Following the
last chapter is a selected bibliography of books and papers that offer wisdom, system
design principles, and case studies surrounding the study of systems. By varying the
pace of introduction and the number and intellectual depth of the readings, the text
can be the basis for a one-term undergraduate core course, a two-term or three-quarter
undergraduate sequence, or a graduate-level introduction to computer systems.

Projects: Our experience is that for a course that touches many aspects of computer
systems, a combination of several lightweight hands-on assignments (for example,
experimentally determine the size of the caches of a personal computer or trace
asymmetrical routes through the Internet), plus one or two larger paper projects that
involve having a small team do a high-level system design (for example, in a 10-page
report design a reliable digital storage system for the Library of Congress), make an
excellent adjunct to the text. On the other hand, substantial programming projects that
require learning the insides of a particular system take so much homework time that
when combined with a broad concepts course they create an overload. Courses with
programming projects do work well in follow-on specialized electives, for example,

Preface

xxiiiPreface

on operating systems, networks, databases, or distributed systems. For this reason, at
M.I.T. we assign programming projects in several advanced electives but not in the
systems course that is based on this textbook.

Support: Several on-line resources provide support for this textbook. The first of these
resources is a set of course syllabi, reading lists, problem sets, videotaped lectures,
quizzes, and quiz solutions. A second resource is a Web site of the publisher that is
devoted to collecting resources and links of interest to students, professional read-
ers, and instructors. A third resource is a mostly open Web site for communication
between instructors of M.I.T. course 6.033, which uses this text, and their current stu-
dents. It contains announcements, readings, and problem assignments for the current
or most recent teaching term. In addition to current class communications, this Web
site also holds an archive going back to 1995 that includes

Design project assignments ■

Hands-on assignments ■

Examinations and solutions (These overlap the exercises and problem sets of ■

the textbook but they also include exam questions and answers about the out-
side readings.)
Lecture and recitation schedules ■

Reading assignments and essay questions about the readings ■

Instructions for finding all of these on-line resources are in the section “Where to find
Part II and other on-line materials”.

hoW the book is organized
Because not every instructor may want to use every chapter of the textbook, it is pre-
sented in what, at least at the time of publication, may be viewed as a somewhat novel
way: The first six chapters, which the authors consider to be the core materials for
almost any course about computer systems, appear in this printed book. The remain-
ing five chapters are available on-line from the authors and M.I.T. under a Creative
Commons license that permits free, unlimited non-commercial use and remixing. The
on-line chapters are also available on the Web site of the publisher of this textbook.
There are many forward cross-references from the core chapters to the later chapters.
Those cross-references are identified as in this example: “This topic is explored in
more detail in Section 7.4.1 [on-line]”.

Themes: Three themes run through this textbook. First, as suggested by its title, the text
emphasizes the importance of systematic design principles. As each design principle
is encountered for the first time, it appears in display form with a label and a mne-
monic catchphrase. When that design principle is encountered again, it is identified
by its name and highlighted with a distinctive print format as a reminder of its wide
applicability. The design principles are also summarized on the inside front cover of
this book. A second theme is that the text is network-centered, introducing commu-
nication and networks in the beginning chapters and building on that base in the

xxiv Preface

 succeeding chapters. A third theme is that it is security-centered, introducing enforced
modularity in early chapters and adding successively more stringent enforcement
methods in succeeding chapters. The security chapter ends the book, not because it
is an afterthought, but because it is the logical culmination of a development based
on enforced modularity. Traditional texts and courses teach about threads and virtual
memory primarily as a resource allocation problem. This text approaches those topics
primarily as ways of providing and enforcing modularity, while at the same time taking
advantage of multiple processors and large address spaces.

Terminology and examples: The text identifies and develops concepts and design
 principles that are common to several specialty fields: software engineering, program-
ming languages, operating systems, distributed systems, networking, database systems,
and machine architecture. Experienced computer professionals are likely to find that
at least some parts of this text use examples, ways of thinking, and terminology that
seem unusual, even foreign to their traditional ways of explaining their favorite topics.
But workers from these different specialties will compile different lists of what seems
foreign. The reason is that, historically, workers within these specialties have identi-
fied what turn out to be identical underlying concepts and design principles, but they
have used different language, different perspectives, different examples, and different
terminology to explain them.

This text chooses, for each concept, what the authors believe is the most pedagogi-
cally effective explanation and examples, adopting widely used terminology wherever
possible. In cases where different specialty areas use conflicting terms, glossaries and
sidebars provide bridges and discuss terminology collisions. The result is a novel, but
in our experience effective, way of teaching new generations of Computer Science and
Engineering students what is fundamental about computer system design. With this start-
ing point, when the student reads an advanced book or paper or takes an advanced elec-
tive course, he or she should be able to immediately recognize familiar concepts cloaked
in the terminology of the specialty. A scientist would explain this approach by saying “The
physics is independent of the units of measurement.” A similar principle applies to the
engineering of computer systems: “The concepts are independent of the terminology”.

Citations: The text does not use citations as a scholarly method of identifying the origi-
nators of each concept or idea; if it did, the book would be twice as thick. Instead the
citations that do appear are pointers to related materials that the authors think are
worth knowing about. There is one exception: certain sections are devoted to war sto-
ries, which may have been distorted by generations of retelling. These stories include
citations intended to identify the known sources of each story, so that the reader has
a way to assess their validity.

Chapter Content
Relation to ACM/IEEE recommendations: The ACM/IEEE Computer Science and Engi-
neering recommendations of 2001 and 2004 describe two layers. The first layer is a set
of modules that constitute an appropriate CSE education. The second layer consists of

xxvPreface

several suggested packagings of those modules into term-sized courses. This book may
be best viewed as a distinct, modern packaging of the modules, somewhat resembling
the ACM/IEEE Computer Science 2001 recommendation CS226c, Operating Systems
and Networking (compressed), but with the additional scope of naming, fault toler-
ance, atomicity, and both system and network security. It also somewhat resembles
the ACM/IEEE Computer engineering 2004 recommendation CPED203, Operating
Systems and Net-Centric computing, with the additional scope of naming, fault toler-
ance, atomicity, and cryptographic protocols.

Chapter 1: Systems. This chapter lays out the general philosophy of the authors on
ways to think about systems, with examples illustrating how computer systems are
similar to, and different from, other engineering systems. It also introduces three
main ideas: (1) the importance of systematic design principles, (2) the role of mod-
ularity in controlling complexity of large systems, and (3) methods of enforcing
modularity.

Chapter 2: Elements of Computer System Organization. This chapter introduces three
key methods of achieving and taking advantage of modularity in computer systems:
abstraction, naming, and layers. The discussion of abstraction lightly reviews computer
architecture from a systems perspective, creating a platform on which the rest of the
book builds, but without simple repetition of material that readers probably already
know. The naming model is fundamental to how computer systems are modularized,
yet it is a subject usually left to advanced texts on programming language design. The
chapter ends with a case study of the way in which naming, layering, and abstrac-
tion are applied in the unix file system. Because the case study develops as a series of
pseudocode fragments, it provides both a concrete example of the concepts of the
chapter and a basis for reference in later chapters.

Chapter 3: Design of Naming Schemes. This chapter continues the discussion of naming
in system design by introducing pragmatic engineering considerations and reinforc-
ing the role that names play in organizing a system as a collection of modules. The
chapter ends with a case study and a collection of war stories. The case study uses
the Uniform Resource Locator (URL) of the World Wide Web to show an example of
nearly every naming scheme design consideration. The war stories are examples of
failures of real-world naming systems, illustrating what goes wrong when a designer
ignores or is unaware of design considerations.

Chapter 4: Enforcing Modularity with Clients and Services. The first three chapters
developed the importance of modularity in system design. This chapter begins the
theme of enforcing that modularity by introducing the client/service model, which
is a powerful and widely used method of allowing modules to interact without
interfering with one another. This chapter also begins the network-centric perspec-
tive that pervades the rest of the book. At this point, we view the network only as
an abstract communication system that provides a strong boundary between client
and service. Two case studies again help nail down the concepts. The first is of the
Internet Domain Name System (DNS), which provides a concrete illustration of the
concepts of both Chapters 3 and 4. The second case study, that of the Sun Network

xxvi Preface

File System (NFS), builds on the case study of the unix file system in Chapter 2 and
illustrates the impact of remote service on the semantics of application program-
ming interfaces.

Chapter 5: Enforcing Modularity with Virtualization. This chapter switches attention to
enforcing modularity within a computer by introducing virtual memory and virtual
processors, commonly called threads. For both memory and threads, the discussion
begins with an environment that has unlimited resources. The virtual memory discus-
sion starts with an assumption of many threads operating in an unlimited address
space and then adds mechanisms to prevent threads from unintentionally interfering
with one another’s data—addressing domains and the user/kernel mode distinction.
Finally, the text examines limited address spaces, which require introducing virtual
addresses and address translation, along with the inter-address-space communication
problems that they create.

Similarly, the discussion of threads starts with the assumption that there are as
many processors as threads, and concentrates on coordinating their concurrent activi-
ties. It then moves to the case where a limited number of real processors are available,
so thread management is also required. The discussion of thread coordination uses
eventcounts and sequencers, a set of mechanisms that are not often seen in practice
but that fit the examples in a natural way. Traditionally, thread coordination is among
the hardest concepts for the first-time reader to absorb. Problem sets then invite
readers to test their understanding of the principles with semaphores and condition
variables.

The chapter explains the concepts of virtual memory and threads both in words
and in pseudocode that help clarify how the abstract ideas actually work, using famil-
iar real-world problems. In addition, the discussion of thread coordination is viewed as
the first step in understanding atomicity, which is the subject of Chapter 9 [on-line].

The chapter ends with a case study and an application. The case study explores
how enforced modularity has evolved over the years in the Intel x86 processor family.
The application is the use of virtualization to create virtual machines. The overall per-
spective of this chapter is to focus on enforcing modularity rather than on resource
management, taking maximum advantage of contemporary hardware technology, in
which processor chips are multicore, address spaces are 64 bits wide, and the amount
of directly addressable memory is measured in gigabytes.

Chapter 6: Performance. This chapter focuses on intrinsic performance bottlenecks
that are found in common across many kinds of computer systems, including oper-
ating systems, databases, networks, and large applications. It explores two of the
traditional topics of operating systems books—resource scheduling and multilevel
 memory management—but in a context that emphasizes the importance of maintain-
ing perspective on performance optimization in a world where each decade brings
a thousand-fold improvement in some underlying hardware capabilities while barely
affecting other performance metrics. As an indication of this different perspec-
tive, scheduling is illustrated with a disk arm scheduling problem rather than the
usual time-sharing processor scheduler.

xxviiPreface

Chapters 7 through 11 are on-line, in Part II of the book. Their contents are described in
the section titled “About Part II” on page 369, and information on how to locate them
can be found in “Where to find Part II and other on-line materials”.

Suggestions for Further Reading. A selected reading list includes commentary on why
each selection is worth reading. The selection emphasis is on books and papers that
provide insight rather than materials that provide details.

Problem Sets. The authors use examinations not just as a method of assessment, but
also as a method of teaching. Therefore, some of the exercises at the end of each
chapter and the problem sets at the end of the book (all of which are derived from
examinations administered over the years while teaching the material of this text-
book) go well beyond simple practice with the concepts. In working the problems
out, the student explores alternative designs, learns about variations of techniques
seen in the textbook, and becomes familiar with interesting, sometimes exotic, ideas
and methods that have been proposed for or used in real system designs. The prob-
lem sets generally have significant setup, and they ask questions that require applying
concepts creatively, with the goal of understanding the trade-offs that arise in using
these methods.

Glossary. As mentioned earlier, the literature of computer systems derives from several
different specialties that have each developed their own dictionaries of system-related
concepts. This textbook adopts a uniform terminology throughout, and the Glossary
offers definitions of each significant term of art, indicates which chapter introduces
the term, and in many cases explains different terms used by different workers in dif-
ferent specialties. For completeness and for easy reference, the Glossary in this book
includes terms introduced in Part II.

Index of Concepts. The index tells where to find the defining discussion of every con-
cept. In addition, it lists every application of each of the design principles. (For com-
pleteness, it includes concepts that are introduced in Part II, listing just the chapter
number.)

xxix

1. Professors Saltzer and Kaashoek and MIT OpenCourseWare* provide, free of
charge, on-line versions of Chapters 7 through 11, additional problem sets, a
copy of the glossary, and a comprehensive index in the form of one Portable
Document Format (PDF) file per chapter or section and also a single PDF file
containing the entire set. Those materials can be found at

 http://ocw.mit.edu/Saltzer-Kaashoek

2. The publisher of this printed book also maintains a set of on-line resources at

 www.ElsevierDirect.com/9780123749574

 Click on the link “Companion Materials” where you will find Part II of the book
as well as other resources, including figures from the text in several formats.
Additional materials for instructors (registration required) can be found by
clicking the “Manual” link.

3. Teaching and support materials can be found at

 http://ocw.mit.edu/6-033

4. The Web site for the current MIT class that uses this textbook, including the
archives of older teaching materials, is at

 http://mit.edu/6.033

 (Some copyrighted or privacy-sensitive materials on that Web site are restricted
to current MIT students.)

*The M.I.T. OpenCourseWare initiative places on-line, for non-commercial free access, teaching
materials from many M.I.T. courses, and thus is helping set a standard for curricula in science and
engineering. In addition to Chapters 7 through 11, OpenCourseWare publishes on-line materials
for the M.I.T. course that uses these materials, 6.033. Thus, an instructor interested in making use
of the textbook can find in one place course syllabi, reading lists, problem sets, videotaped lectures,
quizzes, and solutions.

Where to find Part II and other On-line
Materials

http://ocw.mit.edu/Saltzer-Kaashoek
http://www.ElsevierDirect.com/9780123749574
http://ocw.mit.edu/6-033
http://mit.edu/6.033

xxxi

This textbook began as a set of notes for the advanced undergraduate course
Engineering of Computer Systems (6.033, originally 6.233), offered by the Department
of Electrical Engineering and Computer Science of the Massachusetts Institute of
Technology starting in 1968. The text has benefited from four decades of comments
and suggestions by many faculty members, visitors, recitation instructors, teaching
assistants, and students. Over 5,000 students have used (and suffered through) draft
versions, and observations of their learning experiences (as well as frequent confusion
caused by the text) have informed the writing. We are grateful for those many contri-
butions. In addition, certain aspects deserve specific acknowledgment.

1. Naming (Section 2.2 and Chapter 3)
The concept and organization of the materials on naming grew out of extensive
 discussions with Michael D. Schroeder. The naming model (and part of our develop-
ment) follows closely the one developed by D. Austin Henderson in his Ph.D. thesis.
Stephen A. Ward suggested some useful generalizations of the naming model, and
Roger Needham suggested several concepts in response to an earlier version of
this material. That earlier version, including in-depth examples of the naming model
applied to addressing architectures and file systems, and an historical bibliography,
was published as Chapter 3 in Rudolf Bayer et al., editors, Operating Systems: An
Advanced Course, Lecture Notes in Computer Science 60, pages 99–208. Springer-
Verlag, 1978, reprinted 1984. Additional ideas have been contributed by many others,
including Ion Stoica, Karen Sollins, Daniel Jackson, Butler Lampson, David Karger, and
Hari Balakrishnan.

2. Enforced Modularity and Virtualization (Chapters 4 and 5)
Chapter 4 was heavily influenced by lectures on the same topic by David L. Tennenhouse.
Both chapters have been improved by substantial feedback from Hari Balakrishnan,
Russ Cox, Michael Ernst, Eddie Kohler, Chris Laas, Barbara H. Liskov, Nancy Lynch,
Samuel Madden, Robert T. Morris, Max Poletto, Martin Rinard, Susan Ruff, Gerald Jay
Sussman, Julie Sussman, and Michael Walfish.

3. Networks (Chapter 7 [on-line])
Conversations with David D. Clark and David L. Tennenhouse were instrumental in
laying out the organization of this chapter, and lectures by Clark were the basis for
part of the presentation. Robert H. Halstead Jr. wrote an early draft set of notes about
networking, and some of his ideas have also been borrowed. Hari Balakrishnan pro-
vided many suggestions and corrections and helped sort out muddled explanations,
and Julie Sussman and Susan Ruff pointed out many opportunities to improve the
presentation. The material on congestion control was developed with the help of

Acknowledgments

xxxii Acknowledgments

extensive discussions with Hari Balakrishnan and Robert T. Morris, and is based in
part on ideas from Raj Jain.

4. Fault Tolerance (Chapter 8 [on-line])
Most of the concepts and examples in this chapter were originally articulated by
Claude Shannon, Edward F. Moore, David Huffman, Edward J. McCluskey, Butler W.
Lampson, Daniel P. Siewiorek, and Jim N. Gray.

5. Transactions and Consistency (Chapters 9 [on-line] and 10 [on-line])
The material of the transactions and consistency chapters has been developed over
the course of four decades with aid and ideas from many sources. The concept of
version histories is due to Jack Dennis, and the particular form of all-or-nothing and
before-or-after atomicity with version histories developed here is due to David P. Reed.
Jim N. Gray not only came up with many of the ideas described in these two chapters,
he also provided extensive comments. (That doesn’t imply endorsement—he dis-
agreed strongly about the importance of some of the ideas!) Other helpful comments
and suggestions were made by Hari Balakrishnan, Andrew Herbert, Butler W. Lampson,
Barbara H. Liskov, Samuel R. Madden, Larry Rudolph, Gerald Jay Sussman, and Julie
Sussman.

6. Computer Security (Chapter 11 [on-line])
Sections 11.1 and 11.6 draw heavily from the paper “The protection of information in
computer systems” by Jerome H. Saltzer and Michael D. Schroeder, Proceedings of the
IEEE 63, 9 (September, 1975), pages 1278–1308. Ronald Rivest, David Mazières, and
Robert T. Morris made significant contributions to material presented throughout the
chapter. Brad Chen, Michael Ernst, Kevin Fu, Charles Leiserson, Susan Ruff, and Seth
Teller made numerous suggestions for improving the text.

7. Suggested Outside Readings
Ideas for suggested readings have come from many sources. Particular thanks must
go to Michael D. Schroeder, who uncovered several of the classic systems papers in
places outside computer science where nobody else would have thought to look;
Edward D. Lazowska, who provided an extensive reading list used at the University of
Washington; and Butler W. Lampson, who provided a thoughtful review of the list.

8. The Exercises and Problem Sets
The exercises at the end of each chapter and the problem sets at the end of the book
have been collected, suggested, tried, debugged, and revised by many different faculty
members, instructors, teaching assistants, and undergraduate students over a period
of 40 years in the process of constructing quizzes and examinations while teaching
the material of the text.

xxxiiiAcknowledgments

Certain of the longer exercises and most of the problem sets, which are based on
lead-in stories and include several related questions, represent a substantial effort by a
single individual. For those problem sets not developed by one of the authors, a credit
line appears in a footnote on the first page of the problem set.

Following each problem or problem set is an identifier of the form “1978–3–14”.
This identifier reports the year, examination number, and problem number of the
examination in which some version of that problem first appeared.

Jerome H. Saltzer
M. Frans Kaashoek

2009

1

CHAPTER

1Systems

Overview ��2
1.1 Systems and Complexity .. 3

1.1.1 Common Problems of Systems in Many Fields ...3
1.1.2 Systems, Components, Interfaces, and Environments8
1.1.3 Complexity ..10

1�2 Sources of Complexity ���13
1.2.1 Cascading and Interacting Requirements ..13
1.2.2 Maintaining High Utilization ..17

1�3 Coping with Complexity I ���19
1.3.1 Modularity ...19
1.3.2 Abstraction ..20
1.3.3 Layering ..24
1.3.4 Hierarchy ..25
1.3.5 Putting it Back Together: Names make Connections26

1�4 Computer Systems are the Same but Different ���27
1.4.1 Computer Systems have no Nearby Bounds on Composition28
1.4.2 d(technology)/dt is Unprecedented ...31

1�5 Coping With Complexity II ���35
1.5.1 Why Modularity, Abstraction, Layering, and Hierarchy aren’t Enough36
1.5.2 Iteration ..36
1.5.3 Keep it Simple ...39

What The Rest of this Book is About ���40

Exercises ���41

CHAPTER CONTENTS

Principles of Computer System Design: An Introduction
Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. All rights of reproduction in any form reserved.
DOI: 10.1016/B978-0-12-374957-4.00009-8

2 CHAPTER 1 Systems

Overview
This book is about computer systems, and this chapter introduces some of the
 vocabulary and concepts used in designing computer systems. It also introduces “sys-
tems perspective”, a way of thinking about systems that is global and encompassing
rather than focused on particular issues. A full appreciation of this way of thinking
can’t really be captured in a short summary, so this chapter is actually just a preview
of ideas that will be developed in depth in succeeding chapters.

The usual course of study of computer science and engineering begins with lin-
guistic constructs for describing computations (software) and physical constructs for
realizing computations (hardware). It then branches, focusing, for example, on the
theory of computation, artificial intelligence, or the design of systems, which itself is
usually divided into specialities: operating systems, transaction and database systems,
computer architecture, software engineering, compilers, computer networks, security,
and reliability. Rather than immediately tackling one of those specialties, we assume
that the reader has completed the introductory courses on software and hardware,
and we begin a broad study of computer systems that supports the entire range of
systems specialties.

Many interesting applications of computers require

fault tolerance ■

coordination of concurrent activities ■

geographically separated but linked data ■

vast quantities of stored information ■

protection from mistakes and intentional attacks ■

interactions with many people ■

To develop applications that have these requirements, the designer must look beyond
the software and hardware and view the computer system as a whole. In doing so,
the designer encounters many new problems—so many that the limit on the scope of
computer systems generally arises neither from laws of physics nor from theoretical
impossibility, but rather from limitations of human understanding.

Some of these same problems have counterparts, or at least analogs, in other systems
that have, at most, only incidental involvement of computers. The study of systems is
one place where computer engineering can take advantage of knowledge from other
engineering areas: civil engineering (bridges and skyscrapers), urban planning (the

Much wisdom about systems that has accumulated over the centuries is passed along
in the form of folklore, maxims, aphorisms and quotations. Some of that wisdom is
 captured in the boxes at the bottom of these pages.

Everything should be made as simple as possible, but no simpler.

— commonly attributed to Albert Einstein; it is actually a paraphrase of a comment
he made in a 1933 lecture at Oxford�

31�1 Systems and Complexity

design of cities), mechanical engineering (automobiles and air conditioning), aviation
and space flight, electrical engineering, and even ecology and political science. We
start by looking at some of those common problems. Then we will examine two
ways in which computer systems pose problems that are quite different. Don’t worry
if some of the examples are of things you have never encountered or are only dimly
aware of. The sole purpose of the examples is to illustrate the range of considerations
and similarities across different kinds of systems.

As we proceed in this chapter and throughout the book, we shall point out a series
of system design principles, which are rules of thumb that usually apply to a diverse
range of situations. Design principles are not immutable laws, but rather guidelines
that capture wisdom and experience and that can help a designer avoid making mis-
takes. The astute reader will quickly realize that sometimes a tension, even to the point
of contradiction, exists between different design principles. Nevertheless, if a designer
finds that he or she is violating a design principle, it is a good idea to review the situ-
ation carefully.

At the first encounter of a design principle, the text displays it prominently. Here
is an example, found on page 16.

Avoid excessive generality

If it’s good for everything, it’s good for nothing.

Each design principle thus has a formal title (“Avoid excessive generality”) and a brief
informal description (“If it’s good for . . .”), which are intended to help recall the prin-
ciple. Most design principles will show up several times, in different contexts, which
is one reason why they are useful. The text highlights later encounters of a principle
such as: avoid excessive generality. A list of all of the design principles in the book can
be found on the inside front cover and also in the index, under “Design principles”.

The remaining sections of this chapter discuss common problems of systems, the
sources of those problems, and techniques for coping with them.

1.1 SyStemS And COmplexity
1.1.1 Common problems of Systems in many fields

The problems one encounters in these many kinds of systems can usefully be divided
into four categories: emergent properties, propagation of effects, incommensurate
scaling, and trade-offs.

Seek simplicity and distrust it.

— Alfred north whitehead, The Concept of Nature (1920)

4 CHAPTER 1 Systems

1.1.1.1 Emergent properties
Emergent properties are properties that are not evident in the individual components of a
system, but show up when combining those components, so they might also be called sur-
prises. Emergent properties abound in most systems, although there can always be a (fruit-
less) argument about whether or not careful enough prior analysis of the components
might have allowed prediction of the surprise. It is wise to avoid this argument and instead
focus on an unalterable fact of life: some things turn up only when a system is built.

Some examples of emergent properties are well known. The behavior of a committee
or a jury often surprises outside observers. The group develops a way of thinking that
could not have been predicted from knowledge about the individuals. (The concept of—
and the label for—emergent properties originated in sociology.) When the Millennium
Bridge for pedestrians over the River Thames in London opened, its designers had to close
it after only a few days. They were surprised to discover that pedestrians synchronize
their footsteps when the bridge sways, causing it to sway even more. Interconnection of
several electric power companies to allow load sharing helps reduce the frequency of
power failures, but when a failure finally occurs it may take down the entire intercon-
nected structure. The political surprise is that the number of customers affected may be
large enough to attract the unwanted attention of government regulators.

1.1.1.2 propagation of Effects
The electric power inter-tie also illustrates the second category of system problems—
propagation of effects—when a tree falling on a power line in Oregon leads to the
lights going out in New Mexico, 1000 miles away. What looks at first to be a small dis-
ruption or a local change can have effects that reach from one end of a system to the
other. An important requirement in most system designs is to limit the impact of fail-
ures. As another example of propagation of effects, consider an automobile designer’s
decision to change the tire size on a production model car from 13 to 15 inches. The
 reason for making the change might have been to improve the ride. On further analy-
sis, this change leads to many other changes: redesigning the wheel wells, enlarging
the spare tire space, rearranging the trunk that holds the spare tire, and moving the
back seat forward slightly to accommodate the trunk redesign. The seat change makes
knee room in the back seat too small, so the backs of the seats must be made thinner,
which in turn reduces the comfort that was the original reason for changing the tire
size, and it may also reduce safety in a collision. The extra weight of the trunk and rear
seat design means that stiffer rear springs are now needed. The rear axle ratio must
be modified to keep the force delivered to the road by the wheels correct, and the
speedometer gearing must be changed to agree with the new tire size and axle ratio.

Those effects are the obvious ones. In complicated systems, as the analysis con-
tinues, more distant and subtle effects normally appear. As a typical example, the

Our life is frittered away by detail . . . simplicity, simplicity, simplicity!

— Henry david thoreau, Walden; or, Life in the Woods (1854)

51�1 Systems and Complexity

 automobile manufacturer may find that the statewide purchasing office for Texas does
not currently have a certified supplier for replacement tires of the larger size. Thus
there will probably be no sales of cars to the Texas government for two years, which
is the length of time it takes to add a supplier onto the certified list. Folk wisdom char-
acterizes propagation of effects as: “There are no small changes in a large system”.

1.1.1.3 Incommensurate Scaling
The third characteristic problem encountered in the study of systems is incommen-
surate scaling: as a system increases in size or speed, not all parts of it follow the same
scaling rules, so things stop working. The mathematical description of this problem is
that different parts of the system exhibit different orders of growth. Some examples:

Galileo observed that “nature cannot produce a . . . giant ten times taller than an or- ■

dinary man unless by . . . greatly altering the proportions of his limbs and especially
of his bones, which would have to be considerably enlarged over the ordinary”
[Discourses and Mathematical Demonstrations on Two New Sciences, second
day, Leiden, 1638]. In a classic 1928 paper, “On being the right size” [see Suggestions
for Further Reading 1.4.1], J. B. S. Haldane uses the example of a mouse, which, if
scaled up to the size of an elephant, would collapse of its own weight. For both
 examples, the reason is that weight grows with volume, which is proportional to
the cube of linear size, but bone strength, which depends primarily on cross-sec-
tional area, grows only with the square of linear size. Thus a real elephant requires
a skeletal arrangement that is quite different from that of a scaled-up mouse.

The Egyptian architect Sneferu tried to build larger and larger pyramids. Unfor- ■

tunately, the facing fell off the pyramid at Meidum, and the ceiling of the burial
chamber of the pyramid at Dashur cracked. He later figured out that he could
 escalate a pyramid to the size of the pyramids at Giza by lowering the ratio of the
pyramid’s height to its width. The reason this solution worked has apparently
never been completely analyzed, but it seems likely that incommensurate scal-
ing was involved—the weight of a pyramid increases with the cube of its linear
size, while the strength of the rock used to create the ceiling of a burial chamber
increases only with the area of its cross-section, which grows with the square.

The captain of a modern oil supertanker finds that the ship is so massive that ■

when underway at full speed it takes 12 miles to bring it to a straight line stop—
but 12 miles is beyond the horizon as viewed from the ship’s bridge (see Sidebar
1.1 for the details).

The height of a skyscraper is limited by the area of lower floors that must be ■

devoted to providing access to the floors above. The amount of access area

By undue profundity we perplex and enfeeble thought.

— edgar Allan poe, “the murders in the rue morgue” (1841)

6 CHAPTER 1 Systems

 required (for example, for elevators and stairs) is proportional to the number of
people who have offices on higher floors. That number is in turn proportional
to the number of higher floors multiplied by the usable area of each floor. If all
floors have the same area, and the number of floors increases, at some point the
bottom floor will be completely used up providing access to higher floors, so
the bottom floor provides no added value (apart from being able to brag about
the building’s height). In practice, the economics of office real estate dictate that
no more than 25% of the lowest floor be devoted to access.

Incommensurate scaling shows up in most systems. It is usually the factor that limits
the size or speed range that a single system design can handle. On the other hand, one must
be cautious with scaling arguments. They were used at the beginning of the twentieth cen-
tury to support the claim that it was a waste of time to build airplanes (see Sidebar 1.2).

1.1.1.4 Trade-offs
The fourth problem of system design is that many constraints present themselves as
trade-offs. The general model of a trade-off begins with the observation that there is a
limited amount of some form of goodness in the universe, and the design challenge is
first to maximize that goodness, second to avoid wasting it, and third to allocate it to the
places where it will help the most. One common form of trade-off is sometimes called
the waterbed effect: pushing down on a problem at one point causes another problem
to pop up somewhere else. For example, one can typically push a hardware circuit to
run at a higher clock rate, but that change increases both power consumption and the
risk of timing errors. It may be possible to reduce the risk of timing errors by making the
circuit physically smaller, but then less area will be available to dissipate the heat caused

Sidebar 1.1 Stopping a Supertanker A little geometry reveals that the distance to
the visual horizon is proportional to the square root of the height of the bridge. That
height (presumably) grows with the first power of the supertanker’s linear dimension.
The energy required to stop or turn a supertanker is proportional to its mass, which
grows with the third power of its linear dimensions. The time required to deliver the
stopping or turning energy is less clear, but pushing on the rudder and reversing the
propellers are the only tools available, and both of those have surface area that grows
with the square of the linear dimension.

Here is the bottom line: if we double the tanker’s linear dimensions, the momentum goes
up by a factor of 8, and the ability to deliver stopping or turning energy goes up by only
a factor of 4, so we need to see twice as far ahead. Unfortunately, the horizon will be only
1.414 times as far away. Inevitably, there is some size for which visual navigation must fail.

KISS: Keep It Simple, Stupid.

— traditional management folklore; source lost in the mists of time

71�1 Systems and Complexity

by the increased power consumption. Another common form of trade-off appears in
binary classification, which arises, for example, in the design of smoke detectors, spam
(unwanted commercial e-mail message) filters, database queries, and authentication
devices. The general model of binary classification is that we wish to classify a set of
things into two categories based on the presence or absence of some property, but
we lack a direct measure of that property. We therefore instead identify and use some
indirect measure, known as a proxy. Occasionally, this scheme misclassifies something.
By adjusting parameters of the proxy, the designer may be able to reduce one class of
mistakes (in the case of a smoke detector, unnoticed fires; for a spam filter, legitimate
messages marked as spam), but only at the cost of increasing some other class of mis-
takes (for the smoke detector, false alarms; for the spam filter, spam marked as legitimate
messages). Appendix A explores the binary classification trade-off in more detail. Much
of a system designer’s intellectual effort goes into evaluating various kinds of trade-offs.

Emergent properties, propagation of effects, incommensurate scaling, and trade-
offs are issues that the designer must deal with in every system. The question is how
to build useful computer systems in the face of such problems. Ideally, we would
like to describe a constructive theory, one that allows the designer systematically
to synthesize a system from its specifications and to make necessary trade-offs with
precision, just as there are constructive theories in such fields as communications
systems, linear control systems, and (to a certain extent) the design of bridges and
skyscrapers. Unfortunately, in the case of computer systems, we find that we were
apparently born too soon. Although our early arrival on the scene offers the challenge
to develop the missing theory, the problem is quickly apparent—we work almost
entirely by analyzing ad hoc examples rather than by synthesizing.

Sidebar 1.2 Why airplanes can’t fly The weight of an airplane grows with the
third power of its linear dimension, but the lift, which is proportional to surface area,
can grow only with the second power. Even if a small plane can be built, a larger one
will never get off the ground.

This line of reasoning was used around 1900 by both physicists and engineers to argue
that it was a waste of time to build heavier-than-air machines. Alexander Graham Bell
proved that this argument wasn’t the whole story by flying box kites in Maine in the
summer of 1902. In his experiments he attached two box kites side by side, a configu-
ration that doubled the lifting surface area, but also allowed removal of the redundant
material and supports where the two kites touched. Thus, the lift-to-weight ratio ac-
tually improved as the scale increased. Bell published his results in “The tetrahedral
principle in kite structure” [see Suggestions for Further Reading 1.4.2].

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it.

— Alan J. perlis, “epigrams in programming” (1982)

8 CHAPTER 1 Systems

So, in place of a well-organized theory, we use case studies. For each subtopic
in this book, we shall begin by identifying requirements with the apparent intent
of deriving the system structure from the requirements. Then, almost immediately
we switch to case studies and work backwards to see how real, in-the-field systems
meet the requirements that we have set. Along the way we point out where sys-
tematic approaches to synthesizing a system from its requirements are beginning to
emerge, and we introduce representations, abstractions, and design principles that
have proven useful in describing and building systems. The intended result of this
study is insight into how designers create real systems.

1.1.2 Systems, Components, interfaces, and environments

Webster’s Third New International Dictionary, Unabridged, defines a system as “a com-
plex unity formed of many often diverse parts subject to a common plan or serving a
common purpose.” Although this definition will do for casual use of the word, engineers
usually prefer something a bit more concrete. We identify the “many often diverse parts”
by naming them components. We identify the “unity” and “common plan” with the inter-
connections of the components, and we perceive the “common purpose” of a system to
be to exhibit a certain behavior across its interface to an environment. Thus we formu-
late our technical definition: a system is a set of interconnected components that
has an expected behavior observed at the interface with its environment.

The underlying idea of the concept of system is to divide all the things in the
world into two groups: those under discussion and those not under discussion. Those
things under discussion are part of the system—those that are not are part of the
environment. For example, we might define the solar system as consisting of the sun,
planets, asteroids, and comets. The environment of the solar system is the rest of the
universe. (Indeed, the word “universe” is a synonym for environment.)

There are always interactions between a system and its environment; these inter-
actions are the interface between the system and the environment. The interface
between the solar system and the rest of the universe includes gravitational attraction
for the nearest stars and the exchange of electromagnetic radiation. The primary
interfaces of a personal computer typically include things such as a display, keyboard,
speaker, network connection, and power cord, but there are also less obvious inter-
faces such as the atmospheric pressure, ambient temperature and humidity, and the
electromagnetic noise environment.

One studies a system to predict its overall behavior, based on information about
its components, their interconnections, and their individual behaviors. Identifying the
components, however, depends on one’s point of view, which has two aspects, pur-
pose and granularity. One may, with different purposes in mind, look at a system quite

And simplicity is the unavoidable price we must pay for reliability.

— Charles Anthony richard Hoare, “data reliability” (1975)

91�1 Systems and Complexity

differently. One may also choose any of several different granularities. These choices
affect one’s identification of the components of the system in important ways.

To see how point of view can depend on purpose, consider two points of view of a
jet aircraft as a system. The first looks at the aircraft as a flying object, in which the com-
ponents of the system include the body, wings, control surfaces, and engines. The envi-
ronment is the atmosphere and the earth, with interfaces consisting of gravity, engine
thrust, and air drag. A second point of view looks at the aircraft as a passenger-handling
system. Now, the components include seats, flight attendants, the air conditioning sys-
tem, and the galley. The environment is the set of passengers, and the interfaces are the
softness of the seats, the meals, and the air flowing from the air conditioning system.

In the first point of view, the aircraft as a flying object, the seats, flight attendants,
and galley were present, but the designer considers them primarily as contributors of
weight. Conversely, in the second point of view, as a passenger-handling system, the
designer considers the engine as a source of noise and perhaps also exhaust fumes, and
probably ignores the control surfaces on the wings. Thus, depending on point of view,
we may choose to ignore or consolidate certain system components or interfaces.

The ability to choose granularity means that a component in one context may be
an entire system in another. From an aircraft designer’s point of view, a jet engine is
a component that contributes weight, thrust, and perhaps drag. On the other hand,
the manufacturer of the engine views it as a system in its own right, with many
 components—turbines, hydraulic pumps, bearings, afterburners, all of which interact
in diverse ways to produce thrust—one interface with the environment of the engine.
The airplane wing that supports the engine is a component of the aircraft system, but
it is part of the environment of the engine system.

When a system in one context is a component in another, it is usually called a sub-
system (but see Sidebar 1.3). The composition of systems from subsystems or decom-
position of systems into subsystems can be carried on to as many levels as is useful.

In summary, then, to analyze a system one must establish a point of view to
determine which things to consider as components, what the granularity of those

Sidebar 1.3 Terminology: Words used to describe System composition Since
systems can contain component subsystems that are themselves systems from a differ-
ent point of view, decomposition of systems is recursive. To avoid recursion in their
writing, authors and designers have come up with a long list of synonyms, all trying to
capture this same concept: systems, subsystems, components, elements, constituents,
objects, modules, submodules, assemblies, subassemblies, and so on.

Pluralitas non est ponenda sine neccesitate. (Plurality should not be assumed without
necessity.)

— william of Ockham (14th century. popularly known as “Occam’s razor,” though the
idea itself is said to appear in writings of greater antiquity.)

10 CHAPTER 1 Systems

 components should be, where the boundary of the system lies, and which interfaces
between the system and its environment are of interest.

As we use the term, a computer system or an information system is a system intended
to store, process, or communicate information under automatic control. Further, we are
interested in systems that are predominantly digital. Here are some examples:

a personal computer ■

the onboard engine controller of an automobile ■

the telephone system ■

the Internet ■

an airline ticket reservation system ■

the space shuttle ground control system ■

a World Wide Web site ■

At the same time we will sometimes find it useful to look at examples of nondigital
and nonautomated information handling systems, such as the post office or library, for
ideas and guidance.

1.1.3 Complexity

Webster’s definition of “system” used the word “complex”. Looking up that term, we
find that complex means “difficult to understand”. Lack of systematic understanding
is the underlying feature of complexity. It follows that complexity is both a subjective
and a relative concept. That is, one can argue that one system is more complex than
another, but even though one can count up various things that seem to contribute to
complexity, there is no unified measure. Even the argument that one system is more
complex than another can be difficult to make compelling—again because of the lack
of a unified measure. In place of such a measure, we can borrow a technique from
medicine: describe a set of signs of complexity that can help confirm a diagnosis. As
a corollary, we abandon hope of producing a definitive description of complexity. We
must instead look for its signs, and if enough appear, argue that complexity is present.
To that end, here are five signs of complexity:

1. Large number of components. Sheer size certainly affects our view of
whether or not a system rates the description “complex”.

2. Large number of interconnections. Even a few components may be intercon-
nected in an unmanageably large number of ways. For example, the Sun and the
known planets comprise only a few components, but every one has gravitational

Il semble que la perfection soit atteinte non quand il n’y a plus rien à ajouter, mais quand
il n’y a plus rien à retrancher. (It is as if perfection be attained not when there is nothing
more to add, but when there is nothing more to take away.)

— Antoine de Saint-exupéry, Terre des Hommes (1939)

111�1 Systems and Complexity

attraction for every other, which leads to a set of equations that are unsolvable (in
closed form) with present mathematical techniques. Worse, a small disturbance
can, after a while, lead to dramatically different orbits. Because of this sensitivity
to disturbance, the solar system is technically chaotic. Although there is no formal
definition of chaos for computer systems, that term is often informally applied.

3. Many irregularities. By themselves, a large number of components and inter-
connections may still represent a simple system, if the components are repeti-
tive and the interconnections are regular. However, a lack of regularity, as shown
by the number of exceptions or by non-repetitive interconnection arrange-
ments, strongly suggests complexity. Put another way, exceptions complicate
understanding.

4. a long description. Looking at the best available description of the system
one finds that it consists of a long laundry list of properties rather than a short,
systematic specification that explains every aspect. Theoreticians formalize this
idea by measuring what they call the “Kolmogorov complexity” of a computa-
tional object as the length of its shortest specification. To a certain extent, this
sign may be merely a reflection of the previous three, although it emphasizes
an important aspect of complexity: it is relative to understanding. On the other
hand, lack of a methodical description may also indicate that the system is con-
structed of ill-fitting components, is poorly organized, or may have unpredict-
able behavior, any of which add complexity to both design and use.

5. a team of designers, implementers, or maintainers. Several people are
required to understand, construct, or maintain the system. A fundamental issue
in any system is whether or not it is simple enough for a single person to under-
stand all of it. If not, it is a complex system because its description, construction,
or maintenance will require not just technical expertise but also coordination
and communication across a team.

Again, an example can illustrate: contrast a small-town library with a large univer-
sity library. There is obviously a difference in scale: the university has more books, so
the first sign is present. The second sign is more subtle: where the small library may
have a catalog to guide the user, the university library may have not only a catalog,

’Tis the gift to be simple, ’tis the gift to be free,
’Tis the gift to come down where we ought to be;
And when we find ourselves in the place just right,
’Twill be in the valley of love and delight.
When true simplicity is gained
To bow and to bend we shan’t be ashamed;
To turn, turn will be our delight,
Till by turning, turning we come round right.

— Simple Gifts, traditional Shaker hymn

12 CHAPTER 1 Systems

but also finding aids, readers’ guides, abstracting services, journal indexes, and so on.
Although these elaborations make the large library more useful (at least to the expe-
rienced user), they also complicate the task of adding a new item to the library: some-
one must add many interconnections (in this case, cross-references) so that the new
item can be found in all the intended ways. The third sign, a large number of excep-
tions, is also apparent. Where the small library has only a few classifications (fiction,
biography, nonfiction, and magazines) and a few exceptions (oversized books are kept
over the newspaper rack), the university library is plagued with exceptions. Some
books are oversized, others come on microfilm or on digital media, some books are
rare or valuable and must be protected, the books that explain how to build a hydro-
gen bomb can be loaned only to certain patrons, some defy cataloging in any standard
classification system. As for the fourth sign, any user of a large university library will
confirm that there are no methodical rules for locating a piece of information and that
library usage is an art, not a science.

Finally, the fifth sign of complexity, a staff of more than one person, is evident in
the university library. Where many small towns do in fact have just one librarian—
typically an energetic person who knows each book because at one time or another
he or she has had occasion to touch it—the university library has not only many per-
sonnel, but even specialists who are familiar with only one facet of library operations,
such as the microform collection.

The university library exhibits all five signs of complexity, but unanimity is not
essential. On the other hand, the presence of only one or two of the signs may not
make a compelling case for complexity. Systems considered in thermodynamics con-
tain an unthinkably large number of components (elementary particles) and interac-
tions, yet from the right point of view they do not qualify as complex because there
is a simple, methodical description of their behavior. It is exactly when we lack such
a simple, methodical description that we have complexity.

One objection to conceiving complexity as being based on the five signs is that
all systems are indefinitely, perhaps infinitely, complex because the deeper one digs
the more signs of complexity turn up. Thus, even the simplest digital computer is
made of gates, which are made with transistors, which are made of silicon, which
is composed of protons, neutrons, and electrons, which are composed of quarks,
which some physicists suggest are describable as vibrating strings, and so on. We
shall address this objection in a moment by limiting the depth of digging, a technique
known as abstraction. The complexity that we are interested in and worried about is
the complexity that remains despite the use of abstraction.

Whatever man builds . . . all of man’s . . . efforts . . . invariably culminate in . . . a thing
whose sole and guiding principle is . . . simplicity . . . perfection of invention touches hands
with absence of invention, as if . . . [there] were a line that had not been invented but . . .
[was] in the beginning . . . hidden by nature and in the end . . . found by the engineer.

— Antoine de Saint-exupéry, Terre des Hommes (1939)

131�2 Sources of Complexity

1.2 SOurCeS Of COmplexity
There are many sources of complexity, but two merit special mention. The first is in
the number of requirements that the designer expects a system to meet. The second
is one particular requirement: maintaining high utilization.

1.2.1 Cascading and interacting requirements

A primary source of complexity is just the list of requirements for a system. Each
requirement, viewed by itself, may seem straightforward. Any particular requirement
may even appear to add only easily tolerable complexity to an existing list of require-
ments. The problem is that the accumulation of many requirements adds not only
their individual complexities but also complexities from their interactions. This inter-
action complexity arises from pressure for generality and exceptions that add compli-
cations, and it is made worse by change in individual requirements over time.

Most users of a personal computer have by now encountered some version of the
following scenario: The vendor announces a new release of the program you use to
manage your checkbook, and the new release has some feature that seems important
or useful (e.g., it handles the latest on-line banking systems), so you order the program.
Upon trying to install it, you discover that this new release requires a newer version
of some shared library package. You track down that newer version and install it, only
to find that the library package requires a newer version of the operating system,
which you had not previously had any reason to install. Biting the bullet, you install
the latest release of the operating system, and now the checkbook program works,
but your add-on hard disk begins to act flaky. On investigation it turns out that the disk
vendor’s proprietary software is incompatible with the new operating system release.
Unfortunately, the disk vendor is still debugging an update for the disk software, and
the best thing available is a beta test version that will expire at the end of the month.

The underlying cause of this scenario is that the personal computer has been
designed to meet many requirements: a well-organized file system, expandability of
storage, ability to attach a variety of I/O devices, connection to a network, protection
from malevolent persons elsewhere in the network, usability, reliability, low cost—the
list goes on and on. Each of these requirements adds complexity of its own, and the
interactions among them add still more complexity.

Similarly, the telephone system has, over the years, acquired a large number of
line customizing features—call waiting, call return, call forwarding, originating and
terminating call blocking, reverse billing, caller ID, caller ID blocking, anonymous call

When in doubt, make it stout, and of things you know about.
When in doubt, leave it out.

— folklore sayings from the automobile industry

14 CHAPTER 1 Systems

rejection, do not disturb, vacation protection—again, the list goes on and on. These
features interact in so many ways that there is a whole field of study of “feature inter-
action” in telephone systems. The study begins with debates over what should hap-
pen. For example, so-called 900 numbers have the feature called reverse billing—the
called party can place a charge on the caller’s bill. Alice (Alice is the first character
we have encountered in our cast of characters, described in Sidebar 1.4) has a feature
that blocks outgoing calls to reverse billing numbers. Alice calls Bob, whose phone is
forwarded to a 900 number. Should the call go through, and if so, which party should
pay for it, Bob or Alice? There are three interacting features, and at least four different
possibilities: block the call, allow the call and charge it to Bob, ring Bob’s phone, or
add yet another feature that (for a monthly fee) lets Bob choose the outcome.

The examples suggest that there is an underlying principle at work. We call it the:

principle of escalating complexity

Adding a requirement increases complexity out of proportion.

The principle is subjective because complexity itself is subjective—its magnitude is
in the mind of the beholder. Figure 1.1 provides a graphical interpretation of the

Sidebar 1.4 The cast of characters and Organizations In concrete examples
 throughout this book, the reader will encounter a standard cast of characters named
Alice, Bob, Charles, Dawn, Ella, and Felipe. Alice is usually the sender of a message,
and Bob is its recipient. Charles is sometimes a mutual acquaintance of Alice and Bob.
The others play various supporting roles, depending on the example. When we come
to security, an adversarial character named Lucifer will appear. Lucifer’s role is to crack
the security measures and perhaps interfere with the presumably useful work of the
other characters.

The book also introduces a few fictional organizations. There are two universities:
Pedantic University, on the Internet at Pedantic.edu, and The Institute of Scholarly
Studies, at Scholarly.edu. There are also four mythical commercial organizations on
the Internet at TrustUs.com, ShopWithUs.com, Awesome.net, and Awful.net.

M.I.T. Professor Ronald Rivest introduced Alice and Bob to the literature of computer
science in Suggestions for Further Reading 11.5.1. Any other resemblance to persons
living or dead or organizations real or imaginary is purely coincidental.

Perfection must be reached by degrees; she requires the slow hand of time.

— attributed to françois-marie Arouet (voltaire)

151�2 Sources of Complexity

principle. Perhaps the most important
thing to recognize in studying this figure
is that the complexity barrier is soft: as
you add features and requirements, you
don’t hit a solid roadblock to warn you
to stop adding. It just gets worse.

As the number of requirements
grows, so can the number of exceptions
and thus the complications. It is the
incredible number of special cases in the
United States tax code that makes filling
out an income tax return a complex job.
The impact of any one exception may be
minor, but the cumulative impact of many
interacting exceptions can make a system
so complex that no one can understand
it. Complications also can arise from out-
side requirements such as insistence that
a certain component must come from a

particular supplier. That component may be less durable, heavier, or not as available
as one from another supplier. Those properties may not prevent its use, but they add
complexity to other parts of the system that have to be designed to compensate.

Meeting many requirements with a single design is sometimes expressed as a need
for generality. Generality may be loosely defined as “applying to a variety of circum-
stances.” Unfortunately, generality contributes to complexity, so it comes with a trade-
off, and the designer must use good judgment to decide how much of the generality
is actually wanted. As an extreme example, an automobile with four independent
steering wheels, each controlling one tire, offers some kind of ultimate in general-
ity, almost all of which is unwanted. Here, both the aspect of unwantedness and the
resulting complexity of guidance of the auto are obvious enough, but in many cases
both of these aspects are more difficult to assess: How much does a proposed form of
generality complicate the system, and to what extent is that generality really useful?
Unwanted generality also contributes to complexity indirectly: users of a system with
excessive generality will adopt styles of usage that simplify and suppress generality
that they do not need. Different users may adopt different styles and then discover
that they cannot easily exchange ideas with one another. Anyone who tries to use a
personal computer customized by someone else will notice this problem.

Periodically, someone tries to design a vehicle that one can drive on the highway,
fly, and use as a boat, but the result of such a general design does not seem to work

The best is the enemy of the good.

— françois-marie Arouet (voltaire), Dictionnaire philosophique (1764)

S
ub

je
ct

iv
e

co
m

pl
ex

ity

Number of requirements

figure 1.1

The principle of escalating complexity.

16 CHAPTER 1 Systems

well in any of the intended modes of transport. To help counter excessive generality,
experience suggests another design principle:*

Avoid excessive generality

If it is good for everything, it is good for nothing.

There is a tension between exceptions and generality. Part of the art of designing a
subsystem is to make its features general enough to minimize the number of excep-
tions that must be handled as special cases. This area is one where the judgment of
the system designer is most evident.

Counteracting the effects of incommensurate scaling can be an additional source of
complexity. Haldane, in his essay “On being the right size”, points out that small organ-
isms such as insects absorb enough oxygen to survive through their skins, but larger
organisms, which require an amount of oxygen proportional to the cube of their linear
size, don’t have enough surface area. To compensate for this incommensurate scaling,
they add complexity in the form of lungs and blood vessels to absorb and deliver
oxygen throughout their bodies. In the case of computers, the programmer of a 4-bit
microprocessor to control a toaster can in a few days successfully write the needed
code entirely with binary numbers, while the programmer of a video game with a 64-bit
processor and 40 gigabytes of supporting data requires an extensive array of tools—
compilers, image or video editors, special effects generators, and the like, as well as
an operating system, to be able to get the job done within a lifetime. Incommensurate
scaling has required employment of a far more complex set of tools.

Finally, a major source of complexity is that requirements change. System designs
that are successful usually remain in use for a long time, during which the environment
of the system changes. Improvements in hardware technology may lead the system main-
tainers to want to upgrade to faster, cheaper, or more reliable equipment. Meanwhile,
knowledge of how to maintain the older equipment (and the supply of spare parts) may
be disappearing. As users accumulate experience with the system, it becomes clearer
that some additional requirements should have been part of the design and that some
of the original requirements were less important than originally thought. Often a system
will expand in scale, sometimes far beyond the vision of its original designers.

In each of these cases, the ground rules and assumptions that the original design-
ers used to develop the system begin to lose their relevance. The system designers

*Computer industry consultant (and erstwhile instructor of the course for which this textbook
was written) Michael Hammer suggested the informal version of this design principle.

A complex system that works is invariably found to have evolved from a simple system
that works.

— John gall, Systemantics (1975)

171�2 Sources of Complexity

may have foreseen some environmental changes, but there were other changes they
probably did not anticipate. As changes to meet unforeseen requirements occur,
they usually add complexity. Because it can be difficult to change the architecture
of a deployed system (Section 1.3 explains why), there is a powerful incentive to
make changes within the existing architecture, whether or not that is the best thing
to do. Propagation of effects can amplify the problems caused by change because
more distant effects of a change may not be noticed until someone invokes some
rarely used feature. When those distant effects finally do surface, the maintainer
may again find it easiest to deal with them locally, perhaps by adding exceptions.
Incommensurate scaling effects begin to dominate behavior when a later main-
tainer scales a system up in size or replaces the underpinnings with faster hard-
ware. Again, the first response to these effects is usually to make local changes
(sometimes called patches) to counteract them rather than to make fundamental
changes in design that would require changing several modules or changing inter-
faces between modules.

A closely related problem is that as systems grow in complexity with the passage
of time, even the simplest change, such as to repair a bug, has an increasing risk of
introducing another bug because complexity tends to obscure the full impact of the
repair. A common phenomenon in older systems is that the number of bugs intro-
duced by a bug fix release may exceed the number of bugs fixed by that release.*

The bottom line is that as systems age, they tend to accumulate changes that make
them more complex. The lifetime of a system is usually limited by the complexity that
accumulates as it evolves farther and farther from its original design.

1.2.2 maintaining High utilization

One requirement by itself is frequently a specific source of complexity. It starts with
a desire for high performance or high efficiency. Whenever a scarce resource is
involved, an effort arises to keep its utilization high.

Consider, for example, a single-track railroad line running through a long, narrow
canyon.† To improve the utilization of the single track, and push more traffic through,
one might allow trains to run both ways at the same time by installing a switch and a
short side track in a wide spot about halfway through the canyon. Then, if one is care-
ful in scheduling, trains going in opposite directions will meet at the side track, where

*This phenomenon was documented by Laszlo A. Belady and Meir M. Lehman in “A model of large
program development”, IBM Systems Journal 15, 3 (1976), pages 225–252.
†Michael D. Schroeder suggested this example of a railroad line in a canyon.

Een schip op’t droogh gezeylt, dat is een seeker baken. (A ship, sailed on to dry land, that is
a certain beacon. Learn from the mistakes of others.)

— Jacob Cats, Mirror on Old and New Times (1632), based on a dutch proverb

18 CHAPTER 1 Systems

they can pass each other, effectively doubling the number of trains that the track can
carry each day. However, the train operations are now much more complex than they
used to be. If either train is delayed, the schedules of both are disrupted. A signal-
ing system needs to be installed because human schedulers or operators may make
mistakes. And—an emergent property—the trains now have a limit on their length. If
two trains are to pass in the middle, at least one of them must be short enough to pull
completely onto the side track.

The train in the canyon is a good illustration of how efforts to increase utilization
can increase complexity. When striving for higher utilization, one usually encounters
a general design principle that economists call

the law of diminishing returns

The more one improves some measure of goodness, the more effort the next improvement
will require.

This phenomenon is particularly noticeable in attempts to use resources more effi-
ciently: the more completely one tries to use a scarce resource, the greater the com-
plexity of the strategies for use, allocation, and distribution. Thus a rarely used street

intersection requires no traffic control
beyond a rule that the car on the right
has the right-of-way. As usage increases,
one must apply progressively more com-
plex measures: stop signs, then traffic
lights, then marked turning lanes with
multiphase lights, then vehicle sensors
to control the lights. As traffic in and out
of an airport nears the airport’s capacity,
measures such as stacking planes, holding
them on the ground at distant airports, or
coordinated scheduling among several
airlines must be taken. As a general rule,
the more one tries to increase utilization
of a limited resource, the greater the com-
plexity (see Figure 1.2).

The perceptive reader will notice that
Figures 1.1 and 1.2 are identical. It would

It is impossible to foresee the consequences of being clever.

— Christopher Strachey, as reported by roger needham

S
ub

je
ct

iv
e

co
m

pl
ex

ity

Utilization
0 100%

figure 1.2

An example of diminishing returns: complexity
grows with increasing utilization.

191�3 Coping with Complexity I

be useful to memorize this figure because some version of it can be used to describe
many different things about systems.

1.3 COping witH COmplexity i
As one might expect, with many fields contributing examples of systems with com-
mon problems and sources of complexity, some common techniques for coping with
complexity have emerged. These techniques can be loosely divided into four general
categories: modularity, abstraction, layering, and hierarchy. The following sections
sketch the general method of each of the techniques. In later chapters many examples
of each technique will emerge. It is only by studying those examples that their value
will become clear.

1.3.1 modularity

The simplest, most important tool for reducing complexity is the divide-and-conquer
technique: analyze or design the system as a collection of interacting subsystems,
called modules. The power of this technique lies primarily in being able to consider
interactions among the components within a module without simultaneously think-
ing about the components that are inside other modules.

To see the impact of reducing interactions, consider the debugging of a large
 program with, say, N statements. Assume that the number of bugs in the program is
proportional to its size and the bugs are randomly distributed throughout the code.
The programmer compiles the program, runs it, notices a bug, finds and fixes the bug,
and recompiles before looking for the next bug. Assume also that the time it takes to
find a bug in a program is roughly proportional to the size of the program. We can
then model the time spent debugging:

BugCount N
DebugTime N 3 BugCount

 N 2

Unfortunately, the debugging time grows proportional to the square of the program
size.

Now suppose that the programmer divides the program into K modules, each of
roughly equal size, so that each module contains N/K statements. To the extent that
the modules implement independent features, one hopes that discovery of a bug usu-
ally will require examining only one module. The time required to debug any one
module is thus reduced in two ways: the smaller module can be debugged faster, and

Plan to throw one away; you will, anyhow.

— frederick p. Brooks, The Mythical Man Month (1974)

20 CHAPTER 1 Systems

since there are fewer bugs in smaller programs, any one module will not need to be
debugged as many times. These two effects are partially offset by the need to debug
all K modules. Thus our model of the time required to debug the system of K modules
becomes

DebugTime (N __
K

) 2 3 K

 N 2 ___ K

Modularization into K components thus reduces debugging time by a factor of K.
Although the detailed mechanism by which modularity reduces effort differs from
system to system, this property of modularity is universal. For this reason, one finds
modularity in every large system.

The feature of modularity that we are taking advantage of here is that it is easy
to replace an inferior module with an improved one, thus allowing incremental
improvement of a system without completely rebuilding it. Modularity thus helps
control the complexity caused by change. This feature applies not only to debug-
ging but to all aspects of system improvement and evolution. At the same time, it
is important to recognize a design principle associated with modularity, which we
may call

the unyielding foundations rule

It is easier to change a module than to change the modularity.

The reason is that once an interface has been used by another module, changing
the interface requires replacing at least two modules. If an interface is used by many
modules, changing it requires replacing all of those modules simultaneously. For this
reason, it is particularly important to get the modularity right.

Whole books have been written about modularity and the good things it brings.
Sidebar 1.5 describes one of those books.

1.3.2 Abstraction

An important assumption in the numerical example of the effect of modularity on
debugging time may not hold up in practice: that discovery of a bug should usually
lead to examining just one module. For that assumption to hold true, there is a further
requirement: there must be little or no propagation of effects from one module to

The purpose of computing is insight, not numbers.

— richard w. Hamming, Numerical Methods for Scientists and Engineers (1962)

211�3 Coping with Complexity I

Sidebar 1.5 How Modularity reshaped the computer industry Two Harvard
Business School professors, Carliss Baldwin and Kim Clark, have written a whole book
about modularity.* It discusses many things, but one of the most interesting is its
 explanation of a major transition in the computer business. In the 1960s, computer
systems were a vertically integrated industry. That is, IBM, Burroughs, Honeywell, and
 several others each provided top-to-bottom systems and support, offering processors,
memory, storage, operating systems, applications, sales, and maintenance; IBM even
 manufactured its own chips. By the 1990s, the industry had transformed into a hori-
zontally organized one in which Intel sells processors, Micron sells memory, Seagate
sells disks, Microsoft sells operating systems, Adobe sells text and image applications,
Oracle sells database systems, and Gateway and Dell assemble boxes called “comput-
ers” out of components provided by the other players.

Carliss Baldwin and Kim Clark explain this transition as an example of modularity in
 action. The companies that created vertically integrated product lines immediately
found complexity running amok, and they concluded that the only effective way
to control it was to modularize their products. After a few experiments with wrong
 modularities (IBM originally designed different computers for business and for
 scientific applications), they eventually hit on effective ways of splitting things up and
thereby keeping their development costs and delivery schedules under control:

IBM developed the System/360 architecture specification, which could apply to ■

machines of widely ranging performance. This modularity allowed any software
to run on any size processor. IBM also developed a standard I/O bus and disk
interface, so that any I/O device or disk manufactured by IBM could be attached
to any IBM computer.

Digital Equipment Corporation developed the PDP–11 family, which, with ■

improving technology, could simultaneously be driven down in price toward
the PDP–11/03 and up in function toward the PDP–11/70. A hardware-assisted
emulation strategy for missing hardware instructions on the smaller machines
allowed applications written for any machine to run on any other machine in
the family. Digital also developed an I/O architecture, the UNIBUS®, that allowed
any I/O device to attach to any PDP–11 model.

The long-range result was that once this modularity was defined and proven to be
effective, other vendors were able to jump in and turn each module into a distinct
business. The result is the computer industry since the 1990s, which is remarkably
horizontal, especially considering its rather different shape only 20 years earlier.

 (Sidebar continues)

*Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modularity [see Suggestions
for Further Reading 1.3.7]. Warning: the authors use the word “modularity” to mean all of
modularity, abstraction, layering, and hierarchy.

22 CHAPTER 1 Systems

another. Although there are lots of ways of dividing a system up into modules, some of
these ways will prove to be better than others—“according to the natural formation,
where the joint is, not breaking any part as a bad carver might” (Plato, Phaedrus 265e,
Benjamin Jowett translation).

Thus the best divisions usually follow natural or effective boundaries. They are
characterized by fewer interactions among modules and by less propagation of effects
from one module to another. More generally, they are characterized by the ability of
any module to treat all the others entirely on the basis of their external specifica-
tions, without need for knowledge about what goes on inside. This additional require-
ment on modularity is called abstraction. Abstraction is separation of interface from
internals, of specification from implementation. Because abstraction nearly always
 accompanies modularity, some authors do not make any distinction between the two
ideas. One sometimes sees the term functional modularity used to mean modularity
with abstraction.

Thus one purchases a DVD player planning to view it as a device with a dozen or
so buttons on the front panel and hoping never to look inside. If one had to know
the details of the internal design of a television set in order to choose a compatible
DVD player, no one would ever buy the player. Similarly, one turns a package over to
an overnight delivery service without feeling a need to know anything about the par-
ticular kinds of vehicles or routes the service will use. Confidence that the package
will be delivered tomorrow is the only concern.

In the computer world, abstraction appears in countless ways. The general ability
of sequential circuits to remember state is abstracted into particular, easy-to- describe
modules called registers. Programs are designed to hide details of their represen-
tation of complex data structures and details of which other programs they call.
Users expect easy-to-use, button-pushing application interfaces such as computer

Carliss Baldwin and Kim Clark also observe, more generally, that a market economy
is characterized by modularity. Rather than having a self-supporting farm family that
does everything for itself, a market economy has coopers, tinkers, blacksmiths, stables,
dressmakers, and so on, each being more productive in a modular specialty, all selling
things to one another using a universal interface—money.

It must be remembered that there is nothing more difficult to plan, more doubtful of suc-
cess, nor more dangerous to manage than the creation of a new system. For the initiator
has the enmity of all who would profit by the preservation of the old institutions and merely
lukewarm defenders in those who would gain by the new ones.

— niccolò machiavelli, The prince (1513, published 1532; tr. by thomas g. Bergin,
Appleton-Century-Crofts, 1947)

231�3 Coping with Complexity I

games, spreadsheet programs, or Web browsers that abstract incredibly complex
 underpinnings of memory, processor, communication, and display management.

The goal of minimizing interconnections among modules may be defeated if unin-
tentional or accidental interconnections occur as a result of implementation errors
or even well-meaning design attempts to sneak past modular boundaries in order
to improve performance or meet some other requirement. Software is particularly
subject to this problem because the modular boundaries provided by separately com-
piled subprograms are somewhat soft and easily penetrated by errors in using point-
ers, filling buffers, or calculating array indices. For this reason, system designers pre-
fer techniques that enforce modularity by interposing impenetrable walls between
modules. These techniques ensure that there can be no unintentional or hidden
interconnections. Chapters 4 and 5 develop some of these techniques for enforcing
modularity.

Well-designed and properly enforced modular abstractions are especially impor-
tant in limiting the impact of faults because they control propagation of effects. As we
shall see when we study fault tolerance in Chapter 8 [on-line], modules are the units
of fault containment, and the definition of a failure is that a module does not meet its
abstract interface specifications.

Closely related to abstraction is an important design rule that makes modularity
work in practice:

the robustness principle

Be tolerant of inputs and strict on outputs.

This principle means that a module should be designed to be liberal in its interpre-
tation of its input values, accepting them even if they are not within specified ranges,
if it is still apparent how to sensibly interpret them. On the other hand, the module
should construct its outputs conservatively in accordance with its specification—if
possible making them even more accurate or more constrained than the specification
requires. The effect of the robustness principle is to tend to suppress, rather than
propagate or even amplify, noise or errors that show up in the interfaces between
modules.

The robustness principle is one of the key ideas underlying modern mass produc-
tion. Historically, machinists made components that were intended to mate by machin-
ing one of the components and then machining a second component to exactly fit
against or into the first one, a technique known as fitting. The breakthrough came
with the realization that if one specified tolerances for components and designed

We are faced with an insurmountable opportunity.

— pogo (walt Kelley)

24 CHAPTER 1 Systems

each component to mate with any other component that was within its specified
tolerance, then it would be possible to modularize and speed up manufacturing by
having interchangeable parts. Apparently, this concept was first successfully applied
in an 1822 contract to deliver rifles to the United States Army. By the time production
lines for the Model T automobile were created, Henry Ford captured the concept in
the aphorism, “In mass production there are no fitters.”

The robustness principle plays a major role in computer systems. It is particularly
important in human interfaces, network protocols, and fault tolerance, and, as Section
1.4 of this chapter explains, it forms the basis for digital logic. At the same time, a ten-
sion exists between the robustness principle and another important design principle:

the safety margin principle

Keep track of the distance to the cliff, or you may fall over the edge.

When inputs are not close to their specified values, that is usually an indication that
something is starting to go wrong. The sooner that something going wrong can be
noticed, the sooner it can be fixed. For this reason, it is important to track and report
out-of-tolerance inputs, even if the robustness principle would allow them to be inter-
preted successfully.

Some systems implement the safety margin principle by providing two modes of
operation, which might be called “shake-out” and “production”. In shake-out mode,
modules check every input carefully and refuse to accept anything that is even slightly
out of specification, thus allowing immediate discovery of problems and of program-
ming errors near their source. In production mode, modules accept any input that
they can reasonably interpret, in accordance with the robustness principle. Carefully
designed systems blend the two ideas: accept any reasonable input but report any
input that is beginning to drift out of tolerance so that it may be repaired before it
becomes completely unusable.

1.3.3 layering

Systems that are designed using good abstractions tend to minimize the number of
interconnections among their component modules. One powerful way to reduce
module interconnections is to employ a particular method of module organization
known as layering. In designing with layers, one builds on a set of mechanisms that is
already complete (a lower layer) and uses them to create a different complete set of
mechanisms (an upper layer). A layer may itself be implemented as several modules,

There is no such thing as a small change to a large system.

— systems folklore, source lost in the mists of time

251�3 Coping with Complexity I

but as a general rule, a module of a given layer interacts only with its peers in the same
layer and with the modules of the next higher and next lower layers. That restriction
can significantly reduce the number of potential intermodule interactions in a big
system.

Some of the best examples of this approach are found in computer systems:
an interpreter for a high-level language is implemented using a lower-level, more
machine-oriented, language. Although the higher-level language doesn’t allow any
new programs to be expressed, it is easier to use, at least for the application for which
it was designed.

Thus, nearly every computer system comprises several layers. The lowest layer
consists of gates and memory cells, upon which is built a layer consisting of a pro-
cessor and memory. On top of this layer is built an operating system layer, which
acts as an augmentation of the processor and memory layer. Finally, an application
program executes on this augmented processor and memory layer. In each layer, the
functions provided by the layer below are rearranged, repackaged, reabstracted, and
reinterpreted as appropriate for the convenience of the layer above. As will be seen
in Chapter 7 [on-line], layers are also the primary organizing technique of data com-
munication networks.

Layered design is not unique to computer systems and communications. A house
has an inner structural layer of studs, joists, and rafters to provide shape and strength, a
layer of sheathing and drywall to keep the wind out, a layer of siding, flooring and roof
tiles to make it watertight, and a cosmetic layer of paint to make it look good. Much of
mathematics, particularly algebra, is elegantly organized in layers (in the case of alge-
bra, integers, rationals, complex numbers, polynomials, and polynomials with polyno-
mial coefficients), and that organization provides a key to deep understanding.

1.3.4 Hierarchy

The final major technique for coping with complexity also reduces interconnections
among modules but in a different, specialized way. Start with a small group of mod-
ules, and assemble them into a stable, self-contained subsystem that has a well-defined
interface. Next, assemble a small group of subsystems to produce a larger subsys-
tem. This process continues until the final system has been constructed from a small
number of relatively large subsystems. The result is a tree-like structure known as a
hierarchy. Large organizations such as corporations are nearly always set up this way,
with a manager responsible for only five to ten employees, a higher-level manager
responsible for five to ten managers, on up to the president of the company, who may

The first 80 percent of a project takes 80 percent of the effort.
The last 20 percent takes another 80.

— source unknown

26 CHAPTER 1 Systems

supervise five to ten vice presidents. The same thinking applies to armies. Even layers
can be thought of as a kind of degenerate one-dimensional hierarchy.

There are many other striking examples of hierarchy, ranging from microscopic
biological systems to the assembly of Alexander’s empire. A classic paper by Herbert
Simon, “The architecture of complexity” [Suggestions for Further Reading 1.4.3], con-
tains an amazing range of such examples and offers compelling arguments that, under
evolution, hierarchical designs have a better chance of survival. The reason is that
hierarchy constrains interactions by permitting them only among the components
of a subsystem. Hierarchy constrains a system of N components, which in the worst
case might exhibit N 3 (N 2 1) interactions, so that each component can interact
only with members of its own subsystem, except for an interface component that also
interacts with other members of the subsystem at the next higher level of hierarchy.
(The interface component in a corporation is called a “manager”; in an army it is called
the “commanding officer”; for a program it is called the “application programming
interface”.) If subsystems have a limit of, say, 10 components, this number remains
constant no matter how large the system grows. There will be N/10 lowest level sub-
systems, N/100 next higher level subsystems, and so on, but the total number of sub-
systems, and thus the number of interactions, remains proportional to N. Analogous
to the way that modularity reduces the effort of debugging, hierarchy reduces the
number of potential interactions among modules from square-law to linear.

This effect is most strongly noticed by the designer of an individual module. If
there are no constraints, each module should in principle be prepared to interact with
every other module of the system. The advantage of a hierarchy is that the module
designer can focus just on interactions with the interfaces of other members of its
immediate subsystem.

1.3.5 putting it Back together: names make Connections

The four techniques for coping with complexity—modularity, abstraction, layering,
and hierarchy—provide ways of dividing things up and placing the resulting mod-
ules in suitable relation one to another. However, we still need a way of connecting
those modules. In digital systems, the primary connection method is that one module
names another module that it intends to use. Names allow postponing of decisions,
easy replacement of one module with a better one, and sharing of modules. Software
uses names in an obvious way. Less obviously, hardware modules connected to a bus
also use names for interconnection—addresses, including bus addresses, are a kind of
name.

Hofstadter’s Law: It always takes longer than you expect, even when you take into
 account Hofstadter’s Law.

— douglas Hofstadter: Gödel, Escher, Bach: An Eternal Golden Braid (1979)

271�4 Computer Systems are the Same but Different

In a modular system, one can usually find several ways to combine modules to
implement a desired feature. The designer must at some point choose a specific
implementation from among many that are available. Making this choice is called
binding. Recalling that the power of modularity comes from the ability to replace an
implementation with a better one, the designer usually tries to maintain maximum
flexibility by delaying binding until the last possible instant, perhaps even until the
first instant that the feature is actually needed.

One way to delay binding is just to name a feature rather than implementing it.
Using a name allows one to design a module as if a feature of another module exists,
even if that feature has not yet been implemented, and it also makes it mechanically
easy to later choose a different implementation. By the time the feature is actually
invoked, the name must, of course, be bound to a real implementation of the other
module. Using a name to delay or allow changing a binding is called indirection, and
it is the basis of a design principle:

decouple modules with indirection

Indirection supports replaceability.

A folk wisdom version of this principle, attributed to computer scientist David Wheeler
of the University of Cambridge, exaggerates the power of indirection by suggesting
that “any problem in a computer system can be solved by adding a layer of indirec-
tion.” A somewhat more plausible counterpart of this folk wisdom is the observation
that any computer system can be made faster by removing a layer of indirection.

When a module has a name, several other modules can make use of it by name,
thereby sharing the design effort, cost, or information contained in the first module.
Because names are a cornerstone element of modularity in digital systems, Chapters 2
and 3 are largely about the design of naming schemes.

1.4 COmputer SyStemS Are tHe SAme But different
As we have repeatedly suggested, there is an important lesson to be drawn from the
wide range of examples used up to this point to illustrate system problems. Certain
common problems show up in all complex systems, whatever their field. Emergent
properties, propagation of effects, incommensurate scaling, and trade-offs are consid-
erations in activities as diverse as space station design, management of the economy,

A system is never finished being developed until it ceases to be used.

— attributed to gerald m. weinberg

28 CHAPTER 1 Systems

the building of skyscrapers, gene-splicing, petroleum refineries, communication satel-
lite networks, and the governing of India, as well as in the design of computer systems.
Furthermore, the techniques that have been devised for coping with complexity are
universal. Modularity, abstraction, layering, and hierarchy are used as tools in most
fields that deal with complex systems. It is therefore useful for the computer system
designer to investigate systems from other fields, both to gain additional perspective
on how system problems arise and to discover specific techniques from other fields
that may also apply to computer systems. Stated briefly, we conclude that computer
systems are the same as all other systems.

But there is one problem with that conclusion: it is wrong. There are at least two
significant ways in which computer systems differ from every other kind of system
with which designers have experience:

 ■ The complexity of a computer system is not limited by physical laws.
 ■ The rate of change of computer system technology is unprecedented.

These two differences have an enormous impact on complexity and on ways of cop-
ing with it.

1.4.1 Computer Systems have no nearby Bounds on Composition

Computer systems are mostly digital, and they are controlled by software. Each of
these two properties separately leads to relaxations of what, in other systems, would
be limits on complexity arising from physical laws.

Consider first the difference between analog and digital systems. All analog systems
have the engineering limitation that each component of the system contributes noise.
This noise may come from the environment in the form of, for example, vibration or
electromagnetic radiation. Noise may also appear because the component’s physical
behavior does not precisely follow any tractable model of operation: the pile of rocks
that a civil engineer specifies to go under a bridge abutment does not obey a simple
deformation model; a resistor in an electronic circuit generates random noise whose
level depends on the temperature. When analog components are composed into sys-
tems, the noise from individual components accumulates (if the noise sources are sta-
tistically independent, the noise may accumulate only slowly but it still accumulates).
As the number of components increases, noise will at some point dominate the behav-
ior of the system. (This analysis applies to systems designed by human engineers.

I was to learn later in life that we tend to meet any new situation by reorganisation; and
what a wonderful method it can be for creating the illusion of progress while producing
confusion, inefficiency and demoralisation.

— shortened version of an observation by Charlton Ogburn, “merrill’s marauders: the
truth about an incredible adventure”, Harper’s Magazine (January 1957). widely but
improbably misattributed to petronius Arbiter (ca. a.d. 60)

291�4 Computer Systems are the Same but Different

O
ut

pu
t l

ev
el

Input level
zero one

zero

one

figure 1.3

How gain and non-linearity of a digital compo-
nent restore levels. The input level and output
level span the same range of values, but the
range of accepted inputs is much wider than
the range of generated outputs.

Natural biological, thermodynamic, and
macroeconomic systems, composed of
billions of analog components, some-
how use hierarchy, layering, abstraction,
and modularity to operate despite noise,
but they are so complex that we do not
understand them well enough to adopt
the same techniques.)

Noise thus provides a limit on the
number of analog components that a
designer can usefully compose or on the
number of stages that a designer can use-
fully cascade. This argument applies to
any engineered analog system: a bridge
across a river, a stereo, or an airliner. It is
the reason a photocopy of a photocopy
is harder to read than the original. There
may also be other limits on size (arising
from the strength of materials, for exam-
ple), but noise is always a limit on the
complexity of analog systems.

In contrast, digital systems are noise-free; complexity can therefore grow without
any constraint of a bound arising from noise. The designers of digital logic use a ver-
sion of the robustness principle known as the static discipline. This discipline is the
primary source of the magic that seems to surround digital systems. The static disci-
pline requires that the range of analog values that a device accepts as meaning the
digital value one (or zero) be wider than the range of analog values that the device
puts out when it means digital one (or zero). This discipline is an example of being
tolerant of inputs and strict on outputs.

Digital systems are, at some lower level, constructed of analog components.
The analog components chosen for this purpose are non-linear, and they have gain
between input and output. When used appropriately, non-linearity allows inputs to
have a wide tolerance, and gain ensures that outputs stay within narrow specifica-
tions, as shown in Figure 1.3. Together they produce the property of digital circuits
called level restoration or regeneration. Regenerated signal levels appear at the out-
put of every digital component, whatever their level of granularity: a gate, a flip-
flop, a memory chip, a processor, or a complete computer system. Regenerated levels
create clean interfaces that allow one subsystem to be connected to the next with

The probability of failure of a system tends to be proportional to the confidence that its
designer has in its reliability.

— systems folklore, source lost

30 CHAPTER 1 Systems

 confidence. Unlike the civil engineer’s pile of rocks, a logic gate performs exactly as
its designer intends.

The static discipline and level restoration do not guarantee that devices with digi-
tal inputs and outputs never make mistakes. Any component can fail. Or an input
signal that is intended to be a one may be so far out of tolerance that the receiving
component accepts it as a zero. When that happens, the output of the component that
accepted that value incorrectly is likely to be wrong, too. The important consequence
is that digital components make big mistakes, not little ones, and as we shall see when
we reach the chapter on fault tolerance, big mistakes are relatively easy to detect and
handle.

If a signal does not accumulate noise as it goes through a string of devices, then
noise does not limit the number of devices one can string together. In other words,
noise does not constrain the maximum depth of composition for digital systems.
Unlike analog systems, digital systems can grow in complexity until they exceed the
ability of their designers to understand them. As of 2009, processor chips contain over
two billion transistors, far more than any analog chip. No airliner has nearly that many
components—except in its on-board computers.

The second reason composition has no nearby bounds is that computer systems
are controlled by software. Bad as the contribution to complexity from the static
discipline may be, the contribution from software turns out to be worse. Hardware
is at least subject to some physical limits—the speed of light, the rate of settling of
signals in real semiconductor materials, unwanted electrical coupling between adja-
cent components, the rate at which heat can be removed, and the space that it occu-
pies. Software appears to have no physical limits whatever beyond the availability of
memory to store it and processors to execute it. As a result, composition of software
can go on as fast as people can create it. Thus one routinely hears of operating sys-
tems, database systems, and even word processors consisting of more than 10 million
program statements.

In principle, abstraction can help control software composition by hiding imple-
mentation beneath module interfaces. The problem is that most abstractions are, in
reality, slightly “leaky” in that they don’t perfectly conceal the underlying implemen-
tation. A simple example of leakiness is addition of integers: in most implementa-
tions, the addition operation perfectly matches the mathematical specification as long
as the result fits in the available word size, but if the result is larger than that, the
resulting overflow becomes a complication for the programmer. Leakiness, like noise
in analog systems, accumulates as the number of software modules grows. Unlike
noise, it accumulates in the form of complexity, so the lack of physical constraints on

The major difference between a thing that might go wrong and a thing that cannot possibly
go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns
out to be impossible to get at or repair.

— douglas Adams, Mostly Harmless (Hitchhiker’s Guide to the Galaxy V) (1993)

311�4 Computer Systems are the Same but Different

 software composition remains a fundamental problem. It is, therefore, mechanically
easy to create a system with complexity that is far beyond the ability of its designers
to understand. And since it is easy, it happens often, and sometimes with disastrous
results.*

Between the absence of a noise-imposed limit on composition of digital hard-
ware and very distant physical limits on composition of software, it is too easy for an
unwary designer to misuse the tools of modularity, abstraction, layering, and hierarchy
to include still more complexity. This phenomenon is quite unknown in the design
of bridges and airliners. In contrast with other systems, computer systems allow
composition to a depth whose first limit is the designer’s ability to understand.
Unfortunately, this lack of nearby natural, physical bounds on depth of composition
tempts designers to build more complex systems. If nature does not impose a nearby
limit on composition, the designer must self-impose a limit. Since it can be hard to say
no to a reasonable-sounding feature, features keep getting added. Therein lies the fate
of too many computer system designs.

1.4.2 d(technology)/dt is unprecedented

For reasons partly explained by Sidebar 1.6, during the last 35 years the cost of the
digital hardware used for computation and communication has dropped an average
of about 30% each year. This rate of change means that just two years’ passage of time
has been enough to allow technology to cut prices in half, and in seven or eight years
it has led to a drop in prices by a factor of 10. Some components have experienced
even greater rates of improvement. Figure 1.4 shows the cost of magnetic disk storage
over a 25-year span. During that time, disk prices have actually dropped by a factor of
10 roughly every five years, so disk prices have dropped nearly 60% each year. Disk
experts project a similar rate of improvement for at least another few years. Their
projection seems relatively safe, since no major roadblocks have been reported by
development laboratories that are already working on the next rounds of magnetic
recording technology. Similar charts apply to random access memory, processor cost,
and the speed of optical fiber transmission.

This rapid change of technology has created a substantial difference between
computer systems and other engineering systems. Since complex systems can
take several years to build, by the time a computer system is ready for delivery, the

*The terminology “leaky” is apparently due to software developer Joel Spolsky.

Structural engineering is the art of modeling materials we do not wholly understand, into
shapes we cannot precisely analyse so as to withstand forces we cannot properly assess,
in such a way that the public has no reason to suspect the extent of our ignorance.

— A. r. dykes, Scottish Branch, institution of Structural engineers (1946)

32 CHAPTER 1 Systems

Sidebar 1.6 Why computer Technology has improved Exponentially with
Time Popular media frequently use the term “exponential” to describe the explosive
rate of improvement of computer technology. Stephen Ward has pointed out that
there is a good reason this adjective is appropriate: computer technology appears to
be the rare engineering discipline in which the technology being improved is rou-
tinely employed to improve the technology. People building airplanes, bridges, sky-
scrapers, and chemical plants rarely, if ever, have this opportunity.

For example, the performance of a microprocessor is determined at least in part by the
cleverness of its layout, which in turn is limited by the time available to use computer-
 assisted layout tools that can take advantage of lithography advances. If Intel, through
improved layout, makes a version of the Pentium that is twice as fast, as soon as that
new Pentium is available, it will be used as the processor to make the layout tools for
the next Pentium run twice as fast; the next design can benefit from twice as much
computation in its layout. This effect is probably one of the drivers of Moore’s law,
which predicts an exponential increase in component count on chips with a doubling
time of 18 months [Suggestions for Further Reading 1.6.1].

If indeed the rate at which we can improve our technology is proportional to the
quality of the technology itself, we can express this idea as

d(technology)

dt

 5 K 3 technology

which has an exponential solution,

 technology 5 eK·t

The actual situation is, of course, far more complicated than that equation suggests, but all
equations that even remotely resemble that form, in which technology’s rate of growth is
some positive function of its current state, have growing exponentials in their solution.

In the real world, exponentials must eventually hit some limit. In hardware there are
fairly clear fundamental physical limits to exponential growth, such as the uncertainty
principle, the minimum energy required to switch a gate, and the rate at which heat
can be removed from a device. The interesting part is that it isn’t obvious which one is
going to become the roadblock, or when. Thus far, engineering ingenuity in exploiting
trade-offs has postponed the day of reckoning. For software, similar limits on exponen-
tial growth must exist, but their nature is not at all clear.

More to the immediate point, virtually every improvement in computer and commu-
nications technology—whether faster chips, better Internet routing algorithms, more
effective prototyping languages, better browser interfaces, faster compilers, bigger
disks, or larger RAM—is immediately put to work by everyone who is working on
faster chips, better Internet routing algorithms, more effective prototyping languages,
better browser interfaces, faster compilers, bigger disks, or larger RAM. Computer
system designers live inside a giant feedback system that, at least for the moment, is
enjoying exponential solutions.

331�4 Computer Systems are the Same but Different

ground rules under which it was originally designed have shifted. Incommensurate
scaling typically means that the designer must adjust for strains when any system
parameter changes by a factor of 2, because not all of the components scale up (or
down) by the same proportion. More to the point, a whole new design is usually
needed when any system parameter changes by a (decimal) order of magnitude.
This rule of thumb about strains caused by parameter changes gives us our next
design principle:

the incommensurate scaling rule

Changing any system parameter by a factor of 10 usually requires a new design.

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

$100,000

$10,000

$1,000

$100

$10

$1

$/
G

ig
ab

yt
e

Year

$0.1

figure 1.4

Magnetic disk price history and projection, 1983–2007.

If you design it so that it can be assembled wrong, someone will assemble it wrong.

— edward A. murphy, Jr. (paraphrase of the original murphy’s law, 1949; see sidebar 2.5)

34 CHAPTER 1 Systems

This rule, when combined with the observed rate of change of technology, means
that by the time a newly designed computer system is ready for delivery it may have
already needed two rounds of adjustment and be ready for a complete redesign. Even
if the designer has tried to predict the impact of technology change, crystal balls are at
best cloudy. Worse, during the development of the system, things may run an order of
magnitude slower than they will when the system is finished, the code and data don’t
fit in the available address space, or perhaps the data has to be partitioned across sev-
eral hard disks instead of nicely fitting on one. One can compensate for each of these
problems, but each such compensation absorbs intellectual resources and contributes
complexity to the development process.

Even without those adjustments or redesign, the original plan was probably already
a new design. A bridge (or airplane) may have a modest number of things that are dif-
ferent from the previous one, but a civil (or aeronautical) engineer almost always ends
up designing something that is only a little different from some previous bridge (or
airplane). In the case of computer systems, ideas that were completely unrealistic a
year or two ago can become mainstream in no time, so the computer system designer
almost always ends up designing something that is significantly different from the pre-
vious computer system. This difference makes deep analysis of previous designs more
rewarding for civil and aeronautical engineers than for computer system designers,
and also usually means that in computer systems there hasn’t been time to discover
and iron out most of the mistakes of the previous design before going on to the next
major revision. Those mistakes can contribute strongly to complexity.

Because technology has improved so rapidly, the field of computer system design
tends to place much less emphasis on detailed performance analysis and fine-tuning
than do most other engineering endeavors. Where an electric power generation sys-
tem may benefit dramatically from a new steam turbine that improves energy transfer
by 1%, a needed 20% improvement in performance of a computer system can usually
be obtained just by waiting four months for the next round of hardware product
announcements. If a proposal to rewrite an application to obtain that same improve-
ment would require a year of work, it is probably more cost-effective to just wait for
technology change to solve the problem. Put another way, rapidly improving technol-
ogy means that brute-force solutions (buy more memory, wait for a faster processor,
use a simpler algorithm) are often the right approach in computer systems, whereas
in other systems they may be unthinkable. The owner of the railroad through the
canyon probably would not view as economically reasonable a proposal to blast the
canyon wider and install a second track. Even if the resources were available, the envi-
ronmental impact would be a deterrent.

This “telephone” has too many shortcomings to be seriously considered as a means of
communication. The device is inherently of no value to us.

— frequently attributed to an 1876 western union internal memo, but there is no
evidence of this memo and it is probably a myth.

351�5 Coping with Complexity II

A second major consequence of the rapid rate of change of technology in com-
puter systems is that usability, and related qualities that go under the label “human
engineering”, of computer systems is always ragged. It takes years of trial and error
to make systems usable, friendly, and forgiving, but by the time one level of computer
technology has been tamed, a new level of computer technology opens the possibili-
ties of many new features at the same cost, or of providing the previous features more
cheaply to a vast new audience of unprepared users.

Similarly, legal and judicial processes take decades to come to grips with new issues,
as people debate the wisdom of various policies, discover abuses, and explore alterna-
tive remedies. In the face of rapidly changing computer system technology, these pro-
cesses fall far behind, delaying resolution of such concerns as how to reward innova-
tive software ideas, or what rules should protect information stored in computers, and
adding uncertainty of requirements to the burden of the computer system designer.*

Finally, modern high-speed communications with global reach have greatly accel-
erated the rate at which people discover that a new technology is useful and adopt
it. Where it took several decades for electricity and the telephone to move from
curiosities to widespread use, recent innovations such as digital cameras and DVDs
have swept their markets in less than a decade, and a single mention of a previously
obscure World Wide Web site on CNN or in Newsweek magazine can cause that site to
be suddenly overwhelmed with millions of hits per day. More generally, newly viable
applications, such as peer-to-peer file sharing, can change the shape of the workload
on existing systems practically overnight.

Thus, the study of computer systems involves telescoping of the usual processes
of planning, examining requirements, tailoring details, and integrating with users and
society. This telescoping leads to the delivery of systems that have rough edges and
without the benefit of the cleverest thought. People who build airplanes and bridges
do not have to face these problems. Such problems can be viewed either as a frustrat-
ing difficulty or as an exciting challenge, depending on one’s perspective.

1.5 COping witH COmplexity ii
Modest physical limits in hardware and very distant physical limits in software together
give us the opportunity to create systems of unimaginable—and unmanageable—
complexity, and the rapid pace of technology change tempts designers to deliver

*Lawrence Lessig provides a good analysis of the interactions of law, society, and computer
 technology in Code: and Other Laws of Cyberspace [Suggestions for Further Reading 1.1.4].

Books will soon be obsolete in the public schools. . . . It is possible to teach every branch
of human knowledge with the motion picture. Our school system will be completely
changed inside of ten years.

— thomas A. edison, as quoted in the New York Dramatic Mirror (July 9, 1913)

36 CHAPTER 1 Systems

systems using new and untested ground rules. These two effects amplify the complexity
of computer systems when compared with systems from other engineering areas. Thus,
computer system designers need some additional tools to cope with complexity.

1.5.1 why modularity, Abstraction, layering, and Hierarchy aren’t
enough

Modularity, abstraction, layering, and hierarchy are a major help, but by themselves
they aren’t enough to keep the resulting complexity under control. The reason is that
all four of those techniques assume that the designer understands the system being
designed. In the real, fast-changing world of computer systems, it is hard to choose

the ■ right modularity from a sea of plausible alternative modularities.
the ■ right abstraction from a sea of plausible alternative abstractions.
the ■ right layering from a sea of plausible alternative layerings.
the ■ right hierarchy from a sea of plausible alternative hierarchies.

Although some design principles are available, they are far too few, and the only real
guidance comes from experience with previous systems.

As might be expected, designers of computer systems have developed and refined
at least one additional technique to cope with complexity. Designers of other kinds
of systems use this technique as well, but they usually do not consider it to be so fun-
damental to success as it is for computer systems, probably because the technique is
particularly feasible with software. It is a development process called iteration.

1.5.2 iteration

The essence of iteration is to start by building a simple, working system that meets
only a modest subset of the requirements and then evolve that system in small steps
to gradually encompass more and more of the full set of requirements. The idea is that
small steps can help reduce the risk that complexity will overwhelm a system design.
Having a working system available at all times helps provide assurance that something
can be built and provides on-going experience with the current technology ground
rules as well as an opportunity to discover and fix bugs. Finally, adjustments for tech-
nology changes that arrive during the system development are easier to incorporate
as part of one or more of the iterations. When you see a piece of software identified
as “release 5.4”, that is usually an indication that the vendor is using iteration.

Successful iteration requires considerable foresight. That foresight involves several
elements, two of which we identify as design principles:

I think there is a world market for maybe five computers.

— frequently claimed to be said by thomas J. watson, Sr., chairman of iBm, in
a 1943 talk, but there is little evidence that it is anything but a legend.

371�5 Coping with Complexity II

First of all ■ ,

design for iteration

You won’t get it right the first time, so make it easy to change.

 Document the assumptions behind the design so that when the time comes
to change the design you can more easily figure out what else has to change.
Expect not only to modify and replace modules, but also to remodularize as the
system and its requirements become better understood.

 ■ Take small steps. The purpose is to allow discovery of both design mistakes
and bad ideas quickly, so that they can be changed or removed with small
 effort and before other parts of the system in later iterations start to depend on
them and they effectively become unchangeable. Systems under active develop-
ment may be subjected to a complete system rebuild every day because the
rebuilding process invokes a large number of checks and tests that can reveal
implementation mistakes, while the changes that caused the mistakes are fresh
in the minds of the implementers.

 ■ Don’t rush. Even though individual steps may be small, they must still be well
planned. In most projects, the temptation is to rush to implementation. With
iterative design, that temptation can be stronger, and the designer must make
sure that the design is ready for the next step.

 ■ Plan for feedback. Include as part of the design both feedback paths and posi-
tive incentives to provide feedback. Testers, installers, maintainers, and users of
the system can provide much of the information needed to refine it. Alpha test-
ing (“we’re not at all sure this even works”) and beta testing (“seems to work,
use at your own risk”) are common examples, and many vendors encourage
users to report details of problems and transcripts of failures by e-mail. A well-
designed system will provide many such feedback schemes at all levels.

 ■ Study failures. An important goal is to learn from failures rather than assign
blame for them. Incentives must be carefully designed to ensure that feedback
about failures is not ignored or even suppressed by people fearful of being
blamed. Then, having found the apparent cause of a failure,

Keep digging

Complex systems fail for complex reasons.

Computers in the future may weigh no more than 1.5 tons.

— popular Mechanics (march 1949)

38 CHAPTER 1 Systems

 Continue looking for other contributing or more basic causes. Working systems
often work for reasons that aren’t well understood. It is common to find that a
new release of a system reveals a bug that has actually been in the system for a
long time but has never mattered until now. Much can be learned by figuring out
why it never mattered. It can also be useful to explore the mindset of the design-
ers to understand what allowed them to design a system that could fail in this
way.* Similarly, don’t ignore unexplained behavior. If the feedback reports some-
thing that now seems not to be a problem or to have gone away, it is probably a
sign that something is wrong rather than that the system magically fixed itself.

Iteration sounds like a straightforward technique, but several obstacles tend to
interfere with it. The main obstacle is that as a design evolves through a series of itera-
tions, a risk of losing conceptual integrity arises. That risk suggests that the overall
plan for the initial, simplest version of the system must accommodate all of the itera-
tions needed to reach the final version (thus the need for foresight). Someone must
constantly be on guard to make sure that the overall design rationale remains clear
despite changes made during iteration.

In most organizations, good news (e.g., a major piece of the system is working
ahead of schedule) flows rapidly throughout the organization, but bad news (e.g., an
important module isn’t working yet) often gets confined to the part of the organiza-
tion that discovers it, at least until it can fix the problem and report good news. This
phenomenon, the bad-news diode, can prevent realization that changing a different
part of the system is more appropriate.

A related problem is that when someone finally realizes that the modularity is
wrong, it can be hard to change, for two reasons. First, the unyielding foundations
rule (see page 20) comes into play. Changing modularity by definition involves chang-
ing more than one module, and sometimes several. Second, designers who have
invested time and effort in developing a module that, from their point of view, is
doing what was intended can be reluctant to see this time and effort lost in a rework.
Simply put, to change modularity one must deal with both committed components
and committed designers.

*The idea of learning from failure and the observation that complex systems fail for complex
 reasons are the themes of a fascinating book by Henry Petroski, Design Paradigms: Case Histories
of Error and Judgment in Engineering [Suggestions for Further Reading 1.2.3].

Based on extensive financial and market analysis, it’s projected that no more than five
thousand of the new Haloid machines will sell. . . . Model 914, has no future in the office
copying market.

— Consulting firm Arthur d. little’s report to iBm on the prospects for xerographic
copying machines (1959)

391�5 Coping with Complexity II

A longer-term risk of iteration sometimes shows up when the initial design is both
simple and successful. Success can lead designers to be overconfident and to be too
ambitious on a later iteration. Technology has improved in the time since deployment
of the initial version of the system and feedback has suggested lots of new features.
Each suggested feature looks straightforward by itself, and it is difficult to judge how
they might interact. The result is often a disastrous overreaching and consequent fail-
ure that is so common that it has a name: the second-system effect.

Iteration can be thought of as applying modularity to the management of the sys-
tem design and implementation process. It thus takes us into the realm of manage-
ment techniques, which are not directly addressed in this book.*

1.5.3 Keep it Simple

Remarkably, one of the most effective techniques in coping with complexity is also
one that is most difficult to apply: simplicity. As Section 1.4.1 explained, computer
systems lack natural physical limits to curb their complexity, so the designer must
impose limits; otherwise the designer risks being overwhelmed.

The problem with the apparently obvious advice to keep it simple is that

previous systems give a taste of how great things could be if more features were ■

added.
the technology has improved so much that cost and performance are not ■

 constraints.
each of the suggested new features has been successfully demonstrated some- ■

where.
none of the exceptions or other complications seems by itself to be especially ■

hard to deal with.
there is fear that a competitor will market a system that has even more ■

 features.
among system designers, arrogance, pride, and overconfidence are more com- ■

mon than clear awareness of the dangers of complexity.

These considerations make it hard to say “no” to any one requirement, feature, excep-
tion, or complication. It is their cumulative impact that produces the complexity
explosion illustrated in Figure 1.1. The system designer must keep this cumulative

*An excellent book on the subject of system development, by a veteran designer, is Frederick P.
Brooks Jr., The Mythical Man-Month [Suggestions for Further Reading 1.1.3]. Another highly
 recommended reading is the Alan Turing Award lecture by Fernando J. Corbató, “On building
 systems that will fail” [Suggestions for Further Reading 1.5.3].

There is no reason anyone would want a computer in their home.

— Kenneth Olsen, president of digital equipment Corporation (1977)

40 CHAPTER 1 Systems

impact in mind at all times. The bottom line is that a computer system designer’s
most potent weapon against complexity is the ability to say, “No. This will make it too
complicated.”

As we proceed to study specific computer system engineering topics, we shall
make much use of a particular kind of simplicity, to the extent that it is yet another
design principle:

Adopt sweeping simplifications

So you can see what you are doing.

Each topic area will explicitly introduce one or more sweeping simplifications. The
reason is that they allow the designer to make compelling arguments for correct-
ness, they make detail irrelevant, and they make clear to all participants exactly what
is going on. They will turn out to be one of our best hopes for keeping control of
complexity.

wHAt tHe reSt Of tHiS BOOK iS ABOut
This chapter has introduced some basic ideas that underlie the study of computer
systems. In the course of building on these basic ideas, the ensuing chapters explore a
series of system engineering topics in the light of three recurring themes:

The pervasive importance of modularity ■

Principle-based system design ■

Making systems robust and resilient ■

Modularity appears in each engineering topic either as one of the goals of that
topic or as one of its design cornerstones. Words from chapter titles suggest this
theme. Abstractions and layering are particular ways to build on modularity. Naming
is a fundamental mechanism for interconnecting and replacing modules. Clients and
services and virtualization are two ways of enforcing modularity. Networks are built
on a foundation of modularity. In fault tolerance, the module is the unit that limits
the extent of failure. Atomicity is an exceptionally robust form of modularity that
the designer can exploit to obtain consistency. Finally, protection of information
involves further strengthening of modular walls.

The second theme, principle-based system design, has already emerged, both in explicit
mention of several principles and in the list of design principles on the inside front cover.
These principles capture, in brief phrases, widely applicable nuggets of wisdom that
have been developed by generations of computer system designers. Later chapters apply
these general principles and also introduce additional design principles that are more
specific to particular engineering areas. Even with these principles in mind, it is often dif-
ficult to offer a precise recipe for design. Therefore throughout the text the reader will
find a second form of captured wisdom in the form of several design hints that encode

41Exercises

rationales for making trade-offs.* Together, the principles and hints suggest that computer
system design, though for the most part not based on mathematical theories, is also not
completely ad hoc: it is actually based on sound principles derived from experience and
analysis of both successful and failed systems. The reader who understands and absorbs
these principles and hints will have learned much of what this book has to say.

The third theme, making systems robust and resilient, has also already emerged,
both in the statement of the robustness principle and with the idea that modular-
ity, by limiting interconnections, can help control propagation of effects. The terms
robustness and resilience are informal and overlapping descriptions of a general goal
of design: that a system should not be sensitive to modest, long-term shifts in its envi-
ronment (usually called robustness) and that it should continue operating correctly
in the face of transient adversity (usually called resilience). Each succeeding chapter
introduces at least one progressively stronger way to make a system more robust and
resilient. Thus, the chapter on naming shows how indirection of names can make
systems less fragile. Then, the chapters on clients and services and on virtualization
demonstrate how to enforce modularity to limit the effects of mistakes and accidents.
The chapter on networks introduces techniques that provide reliable communica-
tions despite communication failures. The chapter on fault tolerance then generalizes
those techniques to make entire systems resilient, even though they contain faulty
components. The chapters on atomicity and consistency apply fault tolerance tech-
niques to the particular problem of maintaining the integrity of stored data, despite
concurrent activity and in the face of software and hardware failures. Finally, the chap-
ter on protecting information introduces techniques to limit the impact of malicious
adversaries who would deliberately steal, modify, or deny access to information.

exerCiSeS
1.1 True or false? Explain: modularity reduces complexity because

a. It reduces the effect of incommensurate scaling.
B. It helps control propagation of effects.

1994–1–3d and 1995-1-1e

1.2 True or false? Explain: hierarchy reduces complexity because
a. It reduces the size of individual modules.
B. It cuts down on the number of interconnections between elements.
c. It assembles a number of smaller elements into a single larger element.
d. It enforces a structure on the interconnections between elements.
E. All of the above.

1994-1-3c and 1999–1–02

*Many, if not all, of the hints were originally described by Butler Lampson in his paper “Hints for
computer system design” [Suggestions for Further Reading 1.5.4].

42 CHAPTER 1 Systems

1.3 If one created a graph of personal friendships, one would have a hierarchy.
True or false?

1995–1–1b

1.4 Which of the following is usually observed in a complex computer system?
a. The underlying technology has a high rate of change.
B. It is easy to write a succinct description of the behavior of the system.
c. It has a large number of interacting features.
d. It exhibits emergent properties that make the system perform better than envisioned

by the system’s designers.

2005-1-1

1.5 Ben Bitdiddle has written a program with 16 major modules of code. Each mod-
ule contains several procedures. In the first implementation of his program, he
finds that each module contains at least one call to every other module. Each
module contains 100 lines of code.
1.5a How long is Ben’s program in lines of code?
1.5b How many module interconnections are there in his implementation? (Each call

from one module to another is an interconnection.)
 Ben decides to change the implementation. Now there are four main modules,

each containing four submodules in a one-level hierarchy. The four main mod-
ules each have calls to all the other main modules, and within each main module,
the four submodules each have calls to one another. There are still 100 lines of
code per submodule, but each main module needs 100 lines of management
code.
1.5c How long is Ben’s program now?
1.5d How many interconnections are there now? Include module-to-module and

 submodule-to-submodule interconnections.
1.5e Was using hierarchy a good decision? Why or why not?

1996–1–2a…e

additional exercises relating to chapter 1 can be found in the problem sets
beginning on page 425.

43

CHAPTER

Principles of Computer System Design: An Introduction
Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. All rights of reproduction in any form reserved.
DOI: 10.1016/B978-0-12-374957-4.00010-4

Elements of Computer
System Organization 2
CHAPTER CONTENTS
Overview ��44
2�1 The Three Fundamental Abstractions ��45

2.1.1 Memory ...45
2.1.2 Interpreters ..53
2.1.3 Communication Links ...59

2�2 Naming in Computer Systems ��60
2.2.1 The Naming Model ...61
2.2.2 Default and Explicit Context References ...66
2.2.3 Path Names, Naming Networks, and Recursive Name Resolution71
2.2.4 Multiple Lookup: Searching Through Layered Contexts73
2.2.5 Comparing Names ..75
2.2.6 Name Discovery ...76

2�3 Organizing Computer Systems with Names and Layers ���78
2.3.1 A Hardware Layer: The Bus ...80
2.3.2 A Software Layer: The File Abstraction ...87

2�4 Looking Back and Ahead ���90
2�5 Case Study: unix® File System Layering and Naming ���91

2.5.1 Application Programming Interface for the unix File System91
2.5.2 The Block Layer ...93
2.5.3 The File Layer ..95
2.5.4 The Inode Number Layer ...96
2.5.5 The File Name Layer ...96
2.5.6 The Path Name Layer ...98
2.5.7 Links ..99
2.5.8 Renaming ..101
2.5.9 The Absolute Path Name Layer ..102
2.5.10 The Symbolic Link Layer ...104
2.5.11 Implementing the File System API ...106

44 CHAPTER 2 Elements of Computer System Organization

2.5.12 The Shell and Implied Contexts, Search Paths, and Name Discovery110
2.5.13 Suggestions for Further Reading ..112

Exercises ���112

Overview
Although the number of potential abstractions for computer system components is
unlimited, remarkably the vast majority that actually appear in practice fall into one of
three well-defined classes: the memory, the interpreter, and the communication link.
These three abstractions are so fundamental that theoreticians compare computer algo-
rithms in terms of the number of data items they must remember, the number of steps
their interpreter must execute, and the number of messages they must communicate.

Designers use these three abstractions to organize physical hardware structures,
not because they are the only ways to interconnect gates, but rather because

they supply fundamental functions of recall, processing, and communication, ■

so far, these are the only hardware abstractions that have proven both to be ■

widely useful and to have understandably simple interface semantics.

To meet the many requirements of different applications, system designers build lay-
ers on this fundamental base, but in doing so they do not routinely create completely
different abstractions. Instead, they elaborate the same three abstractions, rearrang-
ing and repackaging them to create features that are useful and interfaces that are
convenient for each application. Thus, for example, the designer of a general-purpose
system such as a personal computer or a network server develops interfaces that
exhibit highly refined forms of the same three abstractions. The user, in turn, may
see the memory in the form of an organized file or database system, the interpreter
in the form of a word processor, a game-playing system, or a high-level programming
language, and the communication link in the form of instant messaging or the World
Wide Web. On examination, underneath each of these abstractions is a series of layers
built on the basic hardware versions of those same abstractions.

A primary method by which the abstract components of a computer system inter-
act is reference. What that means is that the usual way for one component to connect
to another is by name. Names appear in the interfaces of all three of the fundamental
abstractions as well as the interfaces of their more elaborate higher-layer counter-
parts. The memory stores and retrieves objects by name, the interpreter manipulates
named objects, and names identify communication links. Names are thus the glue
that interconnects the abstractions. Named interconnections can, with proper design,
be easy to change. Names also allow the sharing of objects, and they permit finding
previously created objects at a later time.

This chapter briefly reviews the architecture and organization of computer sys-
tems in the light of abstraction, naming, and layering. Some parts of this review will be
familiar to the reader with a background in computer software or hardware, but the
systems perspective may provide some new insights into those familiar concepts and

452�1 The Three Fundamental Abstractions

it lays the foundation for coming chapters. Section 2.1 describes the three fundamen-
tal abstractions, Section 2.2 presents a model for naming and explains how names are
used in computer systems, and Section 2.3 discusses how a designer combines the
abstractions, using names and layers, to create a typical computer system, presenting
the file system as a concrete example of the use of naming and layering for the mem-
ory abstraction. Section 2.4 looks at how the rest of this book will consist of designing
some higher-level version of one or more of the three fundamental abstractions, using
names for interconnection and built up in layers. Section 2.5 is a case study showing
how abstractions, naming, and layering are applied in a real file system.

2.1 The Three fundamenTal absTracTiOns
We begin by examining, for each of the three fundamental abstractions, what
the abstraction does, how it does it, its interfaces, and the ways it uses names for
interconnection.

2.1.1 memory

Memory, sometimes called storage, is the system component that remembers data
values for use in computation. Although memory technology is wide-ranging, as sug-
gested by the list of examples in Figure 2.1, all memory devices fit a simple abstract
model that has two operations, named write and read:

write (name, value)
value ← read (name)

The write operation specifies in value a value to be remembered and in name a name
by which one can recall that value in the future. The read operation specifies in name
the name of some previously remembered value, and the memory device returns that

value. A later call to write that specifies
the same name updates the value associ-
ated with that name.

Memories can be either volatile or
 non-volatile. A volatile memory is one
whose mechanism of retaining informa-
tion consumes energy; if its power supply
is interrupted for some reason, it forgets
its information content. When one turns
off the power to a non-volatile memory
(sometimes called “stable storage”), it
retains its content, and when power is
again available, read operations return
the same values as before. By connecting
a volatile memory to a battery or an

figure 2.1

Some examples of memory devices that may
be familiar.

Hardware memory devices:

 RAM chip

 Flash memory

 Magnetic tape

 Magnetic disk

 CD-R and DVD-R

Higher level memory systems:

 RAID

 File system

 Database management system

46 CHAPTER 2 Elements of Computer System Organization

 uninterruptible power supply, it can be made durable, which means that it is designed
to remember things for at least some specified period, known as its durability. Even
non-volatile memory devices are subject to eventual deterioration, known as decay,
so they usually also have a specified durability, perhaps measured in years. We will
revisit durability in Chapters 8 [on-line] and 10 [on-line], where we will see methods
of obtaining different levels of durability. Sidebar 2.1 compares the meaning of dura-
bility with two other, related words.

At the physical level, a memory system does not normally name, read, or write
values of arbitrary size. Instead, hardware layer memory devices read and write con-
tiguous arrays of bits, usually fixed in length, known by various terms such as bytes
(usually 8 bits, but one sometimes encounters architectures with 6-, 7-, or 9-bit bytes),
words (a small integer number of bytes, typically 2, 4, or 8), lines (several words), and
blocks (a number of bytes, usually a power of 2, that can measure in the thousands).
Whatever the size of the array, the unit of physical layer memory written or read is
known as a memory (or storage) cell. In most cases, the name argument in the read
and write calls is actually the name of a cell. Higher-layer memory systems also read
and write contiguous arrays of bits, but these arrays usually can be of any convenient
length, and are called by terms such as record, segment, or file.

2.1.1.1 Read/Write Coherence and Atomicity
Two useful properties for a memory are read/write coherence and before-or-after
atomicity. Read/write coherence means that the result of the read of a named cell
is always the same as the most recent write to that cell. Before-or-after atomicity

Sidebar 2.1 Terminology: Durability, Stability, and Persistence Both in common
English usage and in the professional literature, the terms durability, stability, and
persistence overlap in various ways and are sometimes used almost interchangeably.
In this text, we define and use them in a way that emphasizes certain distinctions.

Durability A property of a storage medium: the length of time it remembers.
Stability A property of an object: it is unchanging.
Persistence A property of an active agent: it keeps trying.

Thus, the current chapter suggests that files be placed in a durable storage medium—
that is, they should survive system shutdown and remain intact for as long as they are
needed. Chapter 8 [on-line] revisits durability specifications and classifies applications
according to their durability requirements.

This chapter introduces the concept of stable bindings for names, which, once deter-
mined, never again change.

Chapter 7 [on-line] introduces the concept of a persistent sender, a participant in a
message exchange who keeps retransmitting a message until it gets confirmation that
the message was successfully received, and Chapter 8 [on-line] describes persistent
faults, which keep causing a system to fail.

472�1 The Three Fundamental Abstractions

means that the result of every read or write is as if that read or write occurred either
 completely before or completely after any other read or write. Although it might seem
that a designer should be able simply to assume these two properties, that assump-
tion is risky and often wrong. There are a surprising number of threats to read/write
coherence and before-or-after atomicity:

 ■ Concurrency. In systems where different actors can perform read and write
operations concurrently, they may initiate two such operations on the same
named cell at about the same time. There needs to be some kind of arbitration
that decides which one goes first and to ensure that one operation completes
before the other begins.

 ■ Remote storage. When the memory device is physically distant, the same con-
cerns arise, but they are amplified by delays, which make the question of “which
write was most recent?” problematic and by additional forms of failure intro-
duced by communication links. Section 4.5 introduces remote storage, and
Chapter 10 [on-line] explores solutions to before-or-after atomicity and read/
write coherence problems that arise with remote storage systems.

 ■ Performance enhancements. Optimizing compilers and high-performance pro-
cessors may rearrange the order of memory operations, possibly changing the
very meaning of “the most recent write to that cell” and thereby destroying read/
write coherence for concurrent read and write operations. For example, a com-
piler might delay the write operation implied by an assignment statement until
the register holding the value to be written is needed for some other purpose.
If someone else performs a read of that variable, they may receive an old value.
Some programming languages and high-performance processor architectures
provide special programming directives to allow a programmer to restore read/
write coherence on a case-by-case basis. For example, the Java language has a
synchronized declaration that protects a block of code from read/write inco-
herence, and Hewlett-Packard’s Alpha processor architecture (among others)
includes a memory barrier (mb) instruction that forces all preceding reads
and writes to complete before going on to the next instruction. Unfortunately,
both of these constructs create opportunities for programmers to make subtle
mistakes.

 ■ Cell size incommensurate with value size. A large value may occupy multiple
memory cells, in which case before-or-after atomicity requires special attention.
The problem is that both reading and writing of a multiple-cell value is usually
done one cell at a time. A reader running concurrently with a writer that is
updating the same multiple-cell value may end up with a mixed bag of cells, only
some of which have been updated. Computer architects call this hazard write
tearing. Failures that occur in the middle of writing multiple-cell values can
further complicate the situation. To restore before-or-after atomicity, concurrent
readers and writers must somehow be coordinated, and a failure in the middle
of an update must leave either all or none of the intended update intact. When
these conditions are met, the read or write is said to be atomic. A closely related

48 CHAPTER 2 Elements of Computer System Organization

risk arises when a small value shares a memory cell with other small values.
The risk is that if two writers concurrently update different values that share
the same cell, one may overwrite the other’s update. Atomicity can also solve
this problem. Chapter 5 begins the study of atomicity by exploring methods
of coordinating concurrent activities. Chapter 9 [on-line] expands the study of
atomicity to also encompass failures.

 ■ Replicated storage. As Chapter 8 [on-line] will explore in detail, reliability of
storage can be increased by making multiple copies of values and placing those
copies in distinct storage cells. Storage may also be replicated for increased
performance, so that several readers can operate concurrently. But replication
increases the number of ways in which concurrent read and write operations
can interact and possibly lose either read/write coherence or before-or-after
atomicity. During the time it takes a writer to update several replicas, readers of
an updated replica can get different answers from readers of a replica that the
writer hasn’t gotten to yet. Chapter 10 [on-line] discusses techniques to ensure
read/write coherence and before-or-after atomicity for replicated storage.

Often, the designer of a system must cope with not just one but several of these
threats simultaneously. The combination of replication and remoteness is particularly
challenging. It can be surprisingly difficult to design memories that are both efficient
and also read/write coherent and atomic. To simplify the design or achieve higher per-
formance, designers sometimes build memory systems that have weaker coherence
specifications. For example, a multiple processor system might specify: “The result
of a read will be the value of the latest write if that write was performed by the same
processor.” There is an entire literature of “data consistency models” that explores
the detailed properties of different memory coherence specifications. In a layered
memory system, it is essential that the designer of a layer know precisely the coher-
ence and atomicity specifications of any lower layer memory that it uses. In turn, if
the layer being designed provides memory for higher layers, the designer must specify
precisely these two properties that higher layers can expect and depend on. Unless
otherwise mentioned, we will assume that physical memory devices provide read/
write coherence for individual cells, but that before-or-after atomicity for multicell
values (for example, files) is separately provided by the layer that implements them.

2.1.1.2 Memory Latency
An important property of a memory is the time it takes for a read or a write to complete,
which is known as its latency (often called access time, though that term has a more
precise definition that will be explained in Sidebar 6.4). In the magnetic disk memory
(described in Sidebar 2.2) the latency of a particular sector depends on the mechani-
cal state of the device at the instant the user requests access. Having read a sector, one
may measure the time required to also read a different but nearby sector in microsec-
onds—but only if the user anticipates the second read and requests it before the disk
rotates past that second sector. A request just a few microseconds late may encounter

492�1 The Three Fundamental Abstractions

Sidebar 2.2 How Magnetic Disks Work Magnetic disks consist of rotating circular
 platters coated on both sides with a magnetic material such as ferric oxide. An elec-
tromagnet called a disk head records information by aligning the magnetic field of the
particles in a small region on the platter’s surface.The same disk head reads the data
by sensing the polarity of the aligned particles as the platter spins by. The disk spins
continuously at a constant rate, and the disk head actually floats just a few nanometers
above the disk surface on an air cushion created by the rotation of the platter.

From a single position above a platter, a disk head can read or write a set of bits, called
a track, located a constant distance from the center. In the top view below, the shaded
region identifies a track. Tracks are formatted into equal-sized blocks, called sectors,
by writing separation marks periodically around the track. Because all sectors are the
same size, the outer tracks have more sectors than the inner ones.

Seek arm

Platter

Top view

Sector

Track

Side view

Platter

Platter

Platter

Disk head

A typical modern disk module, known as a “hard drive” because its platters are made of
a rigid material, contains several platters spinning on a common axis called a spindle,
as in the side view above. One disk head per platter surface is mounted on a comb-
like structure that moves the heads in unison across the platters. Movement to a spe-
cific track is called seeking, and the comb-like structure is known as a seek arm. The
set of tracks that can be read or written when the seek arm is in one position (for
 example, the shaded regions of the side view) is called a cylinder. Tracks, platters, and
sectors are each numbered. A sector is thus addressed by geometric coordinates: track
number, platter number, and rotational position. Modern disk controllers typically do
the geometric mapping internally and present their clients with an address space
consisting of consecutively numbered sectors.

To read or write a particular sector, the disk controller first seeks the desired track.
Once the seek arm is in position, the controller waits for the beginning of the desired
sector to rotate under the disk head, and then it activates the head on the desired plat-
ter. Physically encoding digital data in analog magnetic domains usually requires that
the controller write complete sectors.

The time required for disk access is called latency, a term defined more precisely in
Chapter 6. Moving a seek arm takes time. Vendors quote seek times of 5 to 10 mil-
liseconds, but that is an average over all possible seek arm moves. A move from one

(Sidebar continues)

50 CHAPTER 2 Elements of Computer System Organization

a delay that is a thousand times longer, waiting for that second sector to again rotate
under the read head. Thus the maximum rate at which one can transfer data to or from
a disk is dramatically larger than the rate one would achieve when choosing sectors at
random. A random access memory (RAM) is one for which the latency for memory
cells chosen at random is approximately the same as the latency for cells chosen in
the pattern best suited for that memory device. An electronic memory chip is usually
configured for random access. Memory devices that involve mechanical movement,
such as optical disks (CDs and DVDs) and magnetic tapes and disks, are not.

For devices that do not provide random access, it is usually a good idea, having
paid the cost in delay of moving the mechanical components into position, to read or
write a large block of data. Large-block read and write operations are sometimes rela-
beled get and put, respectively, and this book uses that convention. Traditionally, the
unqualified term memory meant random-access volatile memory and the term stor-
age was used for non-volatile memory that is read and written in large blocks with get
and put. In practice, there are enough exceptions to this naming rule that the words
“memory” and “storage” have become almost interchangeable.

2.1.1.3 Memory Names and Addresses
Physical implementations of memory devices nearly always name a memory cell by
the geometric coordinates of its physical storage location. Thus, for example, an elec-
tronic memory chip is organized as a two-dimensional array of flip-flops, each holding
one named bit. The access mechanism splits the bit name into two parts, which in

cylinder to the next may require only 1/20 of the time of a move from the innermost
to the outermost track. It also takes time for a particular sector to rotate under the
disk head. A typical disk rotation rate is 7200 rpm, for which the platter rotates once
in 8.3 milliseconds. The time to transfer the data depends on the magnetic record-
ing density, the rotation rate, the cylinder number (outer cylinders may transfer at
higher rates), and the number of bits read or written. A platter that holds 40 gigabytes
transfers data at rates between 300 and 600 megabits per second; thus a 1-kilobyte
sector transfers in a microsecond or two. Seek time and rotation delay are limited by
mechanical engineering considerations and tend to improve only slowly, but mag-
netic recording density depends on materials technology, which has improved both
steadily and rapidly for many years.

Early disk systems stored between 20 and 80 megabytes. In the 1970s Kenneth Haughton,
an IBM inventor, described a new technique of placing disk platters in a sealed enclo-
sure to avoid contamination. The initial implementation stored 30 megabytes on each
of two spindles, in a configuration known as a 30–30 drive. Haughton nicknamed it
the “Winchester”, after the Winchester 30–30 rifle. The code name stuck, and for many
years hard drives were known as Winchester drives. Over the years, Winchester drives
have gotten physically smaller while simultaneously evolving to larger capacities.

512�1 The Three Fundamental Abstractions

turn go to a pair of multiplexers. One multiplexer selects an x-coordinate, the other a
y-coordinate, and the two coordinates in turn select the particular flip-flop that holds
that bit. Similarly, in a magnetic disk memory, one component of the name electrically
selects one of the recording platters, while a distinct component of the name selects
the position of the seek arm, thereby choosing a specific track on that platter. A third
name component selects a particular sector on that track, which may be identified by
counting sectors as they pass under the read head, starting from an index mark that
identifies the first sector.

It is easy to design hardware that maps geometric coordinates to and from sets
of names consisting of consecutive integers (0, 1, 2, etc.). These consecutive integer
names are called addresses, and they form the address space of the memory device.
A memory system that uses names that are sets of consecutive integers is called a
location-addressed memory. Because the addresses are consecutive, the size of the
memory cell that is named does not have to be the same as the size of the cell that is
read or written. In some memory architectures each byte has a distinct address, but
reads and writes can (and in some cases must always) occur in larger units, such as a
word or a line.

For most applications, consecutive integers are not exactly the names that one
would choose for recalling data. One would usually prefer to be allowed to choose
less constrained names. A memory system that accepts unconstrained names is called
an associative memory. Since physical memories are generally location-addressed,
a designer creates an associative memory by interposing an associativity layer, which
may be implemented either with hardware or software, that maps unconstrained
 higher-level names to the constrained integer names of an underlying location-
 addressed memory, as in Figure 2.2. Examples of software associative memories,
 constructed on top of one or more underlying location-addressed memories, include
personal telephone directories, file systems, and corporate database systems. A cache,
a device that remembers the result of an expensive computation in the hope of not
redoing that computation if it is needed again soon, is sometimes implemented as an

WRITE (address, value)

READ (address)
Associativity

layer

Associative memory

Location-
addressed
memory

(physical layer)

WRITE (name, value)

READ (name)

figure 2.2

An associative memory implemented in two layers. The associativity layer maps the unconstrained
names of its arguments to the consecutive integer addresses required by the physical layer
location-addressed memory.

52 CHAPTER 2 Elements of Computer System Organization

 associative memory, either in software or hardware. (The design of caches is discussed
in Section 6.2.)

Layers that provide associativity and name mapping figure strongly in the design
of all memory and storage systems. For example, Table 2.2 on page 93 lists the lay-
ers of the unix file system. For another example of layering of memory abstractions,
Chapter 5 explains how memory can be virtualized by adding a name-mapping
layer.

2.1.1.4 Exploiting the Memory Abstraction: RAID
Returning to the subject of abstraction, a system known as RAID provides an illustra-
tion of the power of modularity and of how the storage abstraction can be applied to
good effect. RAID is an acronym for Redundant Array of Independent (or Inexpensive)
Disks. A RAID system consists of a set of disk drives and a controller configured with
an electrical and programming interface that is identical to the interface of a single disk
drive, as shown in Figure 2.3. The RAID controller intercepts read and write requests

coming across its interface, and it directs
them to one or more of the disks. RAID
has two distinct goals:

Improved performance, by reading ■

or writing disks concurrently
Improved durability, by writing ■

infor mation on more than one disk

Different RAID configurations offer dif-
ferent trade-offs between these goals.
Whatever trade-off the designer chooses,
because the interface abstraction is that
of a single disk, the programmer can
take advantage of the improvements
in performance and durability without
reprogramming.

Certain useful RAID configurations
are traditionally identified by (some-
what arbitrary) numbers. In later chap-
ters, we will encounter several of these
numbered configurations. The configura-
tion known as RAID 0 (in Section 6.1.5)
provides increased performance by
allowing concurrent reading and writ-
ing. The configuration known as RAID 4
(shown in Figure 8.6 [on-line]) improves
disk reliability by applying error-correc-
tion codes. Yet another configuration
known as RAID 1 (in Section 8.5.4.6
 [on-line]) provides high durability by

RAID
controller

Disk

Disk

Disk

Disk

Disk

Disk

Single disk drive

RAID system

Identical interface

figure 2.3

Abstraction in RAID. The read/write
electrical and programming interface of the
RAID system, represented by the solid arrow,
is identical to that of a single disk.

532�1 The Three Fundamental Abstractions

making identical copies of the data on different disks. Exercise 8.8 [on-line] explores
a simple but elegant performance optimization known as RAID 5. These and several
other RAID configurations were originally described in depth in a paper by Randy
Katz, Garth Gibson, and David Patterson, who also assigned the traditional num-
bers to the different configurations [see Suggestions for Further Reading 10.2.2].

2.1.2 interpreters

Interpreters are the active elements of a computer system; they perform the actions
that constitute computations. Figure 2.4 lists some examples of interpreters that may
be familiar. As with memory, interpreters also come in a wide range of physical mani-
festations. However, they too can be described with a simple abstraction, consisting
of just three components:

1. An instruction reference, which tells the interpreter where to find its next
instruction

2. A repertoire, which defines the set of actions the interpreter is prepared to
 perform when it retrieves an instruction from the location named by the
instruction reference

3. An environment reference, which tells the interpreter where to find its
 environment, the current state on which the interpreter should perform the
action of the current instruction

The normal operation of an interpreter is to proceed sequentially through some
 program, as suggested by the diagram and pseudocode of Figure 2.5. Using the envi-
ronment reference to find the current environment, the interpreter retrieves from that
environment the program instruction indicated in the instruction reference. Again
using the environment reference, the interpreter performs the action directed by the

program instruction. That action typically
involves using and perhaps changing data
in the environment, and also an appropri-
ate update of the instruction reference.
When it finishes performing the instruc-
tion, the interpreter moves on, taking as
its next instruction the one now named
by the instruction reference. Certain
events, called interrupts, may catch the
attention of the interpreter, causing it,
rather than the program, to supply the
next instruction. The original program no
longer controls the interpreter; instead, a
different program, the interrupt handler,
takes control and handles the event. The
interpreter may also change the environ-
ment reference to one that is appropriate
for the interrupt handler.

Hardware:

 Pentium 4, PowerPC 970, UltraSPARC T1

 disk controller

 display controller

Software:

 Alice, AppleScript, Perl, Tcl, Scheme

 LISP, Python, Forth, Java bytecode

 JavaScript, Smalltalk

 TeX, LaTeX

 Safari, Internet Explorer, Firefox

figure 2.4

Some common examples of interpreters.
The disk controller example is explained in
Section 2.3 and the Web browser examples
are the subject of Exercise 4.5.

54 CHAPTER 2 Elements of Computer System Organization

Retrieve next
instruction

Interpret retrieved
instruction

Interrupt
signal?

Instruction
reference

Environment
reference

No

Yes

Instruction
repertoire

Interpreter

Instructions

Memory

Data

Change instruction
and environment

reference

1 procedure INTERPRET()

2 do forever
3 instruction ← READ (instruction_reference)
4 perform instruction in the context of environment_reference
5 if interrupt_signal TRUE then
6 instruction_reference ← entry point of INTERRUPT_HANDLER

7 environment_reference ← environment ref of INTERRUPT_HANDLER

figure 2.5

Structure of, and pseudocode for, an abstract interpreter. Solid arrows show control flow, and
dashed arrows suggest information flow. Sidebar 2.3 describes this book’s conventions for
 expressing pseudocode.

Sidebar 2.3 Representation: Pseudocode and Messages This book presents many
 examples of program fragments. Most of them are represented in pseudocode, an
imaginary programming language that adopts familiar features from different existing
programming languages as needed and that occasionally intersperses English text to
characterize some step whose exact detail is unimportant. The pseudocode has some
standard features, several of which this brief example shows.

1 procedure sum (a, b) // Add two numbers.
2 total ← a 1 b
3 return total

The line numbers on the left are not part of the pseudocode; they are there simply
to allow the text to refer to lines in the program. Procedures are explicitly declared

(Sidebar continues)

552�1 The Three Fundamental Abstractions

(as in line 1), and indentation groups blocks of statements together. Program variables
are set in italic, program key words in bold, and literals such as the names of pro-
cedures and built-in constants in small caps. The left arrow denotes substitution or
 assignment (line 2) and the symbol "=" denotes equality in conditional expressions.
The double slash precedes comments that are not part of the pseudocode. Various
forms of iteration (while, until, for each, do occasionally), conditionals (if), set operations
(is in), and case statements (do case) appear when they are helpful in expressing an
example. The construction for j from 0 to 3 iterates four times; array indices start at
0 unless otherwise mentioned. The construction y.x means the element named x in
the structure named y. To minimize clutter, the pseudocode omits declarations wher-
ever the meaning is reasonably apparent from the context. Procedure parameters are
passed by value unless the declaration reference appears. Section 2.2.1 of this chapter
discusses the distinction between use by value and use by reference. When more
than one variable uses the same structure, the declaration structure_name instance
 variable_name may be used.

The notation a(11. . .15) denotes extraction of bits 11 through 15 from the string a
(or from the variable a considered as a string). Bits are numbered left to right starting
with zero, with the most significant bit of integers first (using big-endian notation, as
described in Sidebar 4.3). The 1 operator, when applied to strings, concatenates the
strings.

Some examples are represented in the instruction repertoire of an imaginary
reduced instruction set computer (RISC). Because such programs are cumber-
some, they appear only when it is essential to show how software interacts with
 hardware.

In describing and using communication links, the notation

x ⇒ y: {M}

represents a message with contents M from sender x to recipient y. The notation {a, b,
c} represents a message that contains the three named fields marshaled in some way
that the recipient presumably understands how to unmarshal.

Many systems have more than one interpreter. Multiple interpreters are usually
asynchronous, which means that they run on separate, uncoordinated, clocks. As a
result, they may progress at different rates, even if they are nominally identical and
running the same program. In designing algorithms that coordinate the work of mul-
tiple interpreters, one usually assumes that there is no fixed relation among their prog-
ress rates and therefore that there is no way to predict the relative timing, for exam-
ple, of the load and store instructions that they issue. The assumption of interpreter
asynchrony is one of the reasons memory read/write coherence and before-or-after
 atomicity can be challenging design problems.

56 CHAPTER 2 Elements of Computer System Organization

2.1.2.1 Processors
A general-purpose processor is an implementation of an interpreter. For purposes of
concrete discussion throughout this book, we use a typical reduced instruction set
processor. The processor’s instruction reference is a program counter, stored in a
fast memory register inside the processor. The program counter contains the address
of the memory location that stores the next instruction of the current program. The
environment reference of the processor consists in part of a small amount of built-in
location-addressed memory in the form of named (by number) registers for fast access
to temporary results of computations.

Our general-purpose processor may be directly wired to a memory, which is also
part of its environment. The addresses in the program counter and in instructions
are then names in the address space of that memory, so this part of the environment
reference is wired in and unchangeable. When we discuss virtualization in Chapter 5,
we will extend the processor to refer to memory indirectly via one or more registers.
With that change, the environment reference is maintained in those registers, thus
allowing addresses issued by the processor to map to different names in the address
space of the memory.

The repertoire of our general-purpose processor includes instructions for express-
ing computations such as adding two numbers (add), subtracting one number from
another (sub), comparing two numbers (cmp), and changing the program counter to the
address of another instruction (jmp). These instructions operate on values stored in the
named registers of the processor, which is why they are colloquially called “op-codes”.

The repertoire also includes instructions to move data between processor regis-
ters and memory. To distinguish program instructions from memory operations, we
use the name load for the instruction that reads a value from a named memory cell
into a register of the processor and store for the instruction that writes the value from
a register into a named memory cell. These instructions take two integer arguments,
the name of a memory cell and the name of a processor register.

The general-purpose processor provides a stack, a push-down data structure that
is stored in memory and used to implement procedure calls. When calling a proce-
dure, the caller pushes arguments of the called procedure (the callee) on the stack.
When the callee returns, the caller pops the stack back to its previous size. This imple-
mentation of procedures supports recursive calls because every invocation of a pro-
cedure always finds its arguments at the top of the stack. We dedicate one register for
implementing stack operations efficiently. This register, known as the stack pointer,
holds the memory address of the top of the stack.

As part of interpreting an instruction, the processor increments the program
counter so that, when that instruction is complete, the program counter contains the
address of the next instruction of the program. If the instruction being interpreted is
a jmp, that instruction loads a new value into the program counter. In both cases, the
flow of instruction interpretation is under control of the running program.

The processor also implements interrupts. An interrupt can occur because the
processor has detected some problem with the running program (e.g., the pro-
gram attempted to execute an instruction that the interpreter does not or cannot

572�1 The Three Fundamental Abstractions

implement, such as dividing by zero). An interrupt can also occur because a signal
arrives from outside the processor, indicating that some external device needs atten-
tion (e.g., the keyboard signals that a key press is available). In the first case, the
interrupt mechanism may transfer control to an exception handler elsewhere in the
program. In the second case, the interrupt handler may do some work and then return
control to the original program. We shall return to the subject of interrupts and the
distinction between interrupt handlers and exception handlers in the discussion of
threads in Chapter 5.

In addition to general-purpose processors, computer systems typically also have
 special-purpose processors, which have a limited repertoire. For example, a clock
chip is a simple, hard-wired interpreter that just counts: at some specified frequency,
it executes an add instruction, which adds 1 to the contents of a register or memory
location that corresponds to the clock. All processors, whether general-purpose or
specialized, are examples of interpreters. However, they may differ substantially in the
repertoire they provide. One must consult the device manufacturer’s manual to learn
the repertoire.

2.1.2.2 Interpreter Layers
Interpreters are nearly always organized in layers. The lowest layer is usually a hard-
ware engine that has a fairly primitive repertoire of instructions, and successive layers
provide an increasingly rich or specialized repertoire. A full-blown application system
may involve four or five distinct layers of interpretation. Across any given layer inter-
face, the lower layer presents some repertoire of possible instructions to the upper
layer. Figure 2.6 illustrates this model.

Upper layer procedure

Instruction

Instruction Instruction Instruction

Lower layer procedure

figure 2.6

The model for a layered interpreter. Each layer interface, shown as a dashed line, represents an
abstraction barrier, across which an upper layer procedure requests execution of instructions
from the repertoire of the lower layer. The lower layer procedure typically implements an
 instruction by performing several instructions from the repertoire of a next lower layer interface.

58 CHAPTER 2 Elements of Computer System Organization

Consider, for example, a calendar management program. The person making
requests by moving and clicking a mouse views the calendar program as an inter-
preter of the mouse gestures. The instruction reference tells the interpreter to obtain
its next instruction from the keyboard and mouse. The repertoire of instructions is
the set of available requests—to add a new event, to insert some descriptive text, to
change the hour, or to print a list of the day’s events. The environment is a set of files
that remembers the calendar from day to day.

The calendar program implements each action requested by the user by invok-
ing statements in some programming language such as Java. These statements—such
as iteration statements, conditional statements, substitution statements, procedure
calls—constitute the instruction repertoire of the next lower layer. The instruction
reference keeps track of which statement is to be executed next, and the environ-
ment is the collection of named variables used by the program. (We are assuming here
that the Java language program has not been compiled directly to machine language.
If a compiler is used, there would be one less layer.)

The actions of the programming language are in turn implemented by hardware
machine language instructions of some general-purpose processor, with its own
instruction reference, repertoire, and environment reference.

Figure 2.7 illustrates the three layers just described. In practice, the layered struc-
ture may be deeper—the calendar program is likely to be organized with an internal
upper layer that interprets the graphical gestures and a lower layer that manipulates
the calendar data, the Java interpreter may have an intermediate byte-code interpreter
layer, and some machine languages are implemented with a microcode interpreter
layer on top of a layer of hardware gates.

Human user
generating
requests

Calendar
program

Hardware

Calendar manager
layer interface

Java language
layer interface

Machine language
layer interface

Typical instruction
across this interface

Add new event on
February 27

nextch � instring [j];

ADD R1, R2

Interface

Java
interpreter

figure 2.7

An application system that has three layers of interpretation, each with its own repertoire of
instructions.

592�1 The Three Fundamental Abstractions

One goal in the design of a layered interpreter is to ensure that the designer of each
layer can be confident that the layer below either completes each instruction suc-
cessfully or does nothing at all. Half-finished instructions should never be a concern,
even if there is a catastrophic failure. That goal is another example of atomicity, and
achieving it is relatively difficult. For the moment, we simply assume that interpret-
ers are atomic, and we defer the discussion of how to achieve atomicity to Chapter 9
[on-line].

2.1.3 communication links

A communication link provides a way for information to move between physically
separated components. Communication links, of which a few examples are listed in
Figure 2.8, come in a wide range of technologies, but, like memories and interpreters,
they can be described with a simple abstraction. The communication link abstraction
has two operations:

send (link_name, outgoing_message_buffer)
receive (link_name, incoming_message_buffer)

The send operation specifies an array of bits, called a message, to be sent over the
 communication link identified by link_name (for example, a wire). The argument
outgoing_message_buffer identifies the message to be sent, usually by giving the
address and size of a buffer in memory that contains the message. The receive opera-
tion accepts an incoming message, again usually by designating the address and size of
a buffer in memory to hold the incoming message. Once the lowest layer of a system
has received a message, higher layers may acquire the message by calling a receive
interface of the lower layer, or the lower layer may “upcall” to the higher layer, in
which case the interface might be better characterized as deliver (incoming_message).

Names connect systems to communication links in two different ways. First, the
link_name arguments of send and receive identify one of possibly several available com-

munication links attached to the system.
Second, some communication links are
actually multiply-attached networks of
links, and some additional method is
needed to name which of several pos-
sible recipients should receive the mes-
sage. The name of the intended recipient
is typically one of the components of the
message.

At first glance, it might appear
that sending and receiving a mes-
sage is just an example of copying
an array of bits from one memory to
another memory over a wire using a
sequence of read and write operations,

Hardware technology:

 twisted pair

 coaxial cable

 optical fiber

Higher level

 Ethernet

 Universal Serial Bus (USB)

 the Internet

 the telephone system

 a unix pipe

figure 2.8

Some examples of communication links.

60 CHAPTER 2 Elements of Computer System Organization

so there is no need for a third abstraction. However, communication links involve
more than simple copying—they have many complications, such as a wide range
of operating parameters that makes the time to complete a send or receive opera-
tion unpredictable, a hostile environment that threatens integrity of the data trans-
fer, asynchronous operation that leads to the arrival of messages whose size and
time of delivery can not be known in advance, and most significant, the mes-
sage may not even be delivered. Because of these complications, the semantics of
send and receive are typically quite different from those associated with read and
write. Programs that invoke send and receive must take these different semantics
explicitly into account. On the other hand, some communication link implementa-
tions do provide a layer that does its best to hide a send/receive interface behind a
read/write interface.

Just as with memory and interpreters, designers organize and implement commu-
nication links in layers. Rather than continuing a detailed discussion of communica-
tion links here, we defer that discussion to Section 7.2 [on-line], which describes a
three-layer model that organizes communication links into systems called networks.
Figure 7.18 [on-line] illustrates this three-layer network model, which comprises a link
layer, a network layer, and an end-to-end layer.

2.2 naming in cOmpuTer sysTems
Computer systems use names in many ways in their construction, configuration, and
operation. The previous section mentioned memory addresses, processor registers,
and link names, and Figure 2.9 lists several additional examples, some of which are prob-
ably familiar, others of which will turn up in later chapters. Some system names resem-
ble those of a programming language, whereas others are quite different. When building
systems out of subsystems, it is essential to be able to use a subsystem without having
to know details of how that subsystem refers to its components. Names are thus used to
achieve modularity, and at the same time, modularity must sometimes hide names.

We approach names from an object point of view: the computer system manipu-
lates objects. An interpreter performs the manipulation under control of a program
or perhaps under the direction of a human user. An object may be structured, which
means that it uses other objects as components. In a direct analogy with two ways in
which procedures can pass arguments, there are two ways to arrange for one object
to use another as a component:

create a copy of the component object and include the copy in the using ■

 object (use by value), or
choose a name for the component object and include just that name in the using ■

object (use by reference). The component object is said to export the name.

When passing arguments to procedures, use by value enhances modularity,
because if the callee accidentally modifies the argument it does not affect the origi-
nal. But use by value can be problematic because it does not easily permit two or
more objects to share a component object whose value changes. If both object A

612�2 Naming in Computer Systems

and B use object C by value, then changing the value of C is a concept that is either
 meaningless or difficult to implement—it could require tracking down the two copies
of C included in A and B to update them. Similarly, in procedure calls it is sometimes
useful to give the callee the ability to modify the original object, so most programming
languages provide some way to pass the name (pseudocode in this text uses the refer-
ence declaration for that purpose) rather than the value. One purpose of names, then,
is to allow use by reference and thus simplify the sharing of changeable objects.

Sharing illustrates one fundamental purpose for names: as a communication and
an organizing tool. Because two uses of the same name can refer to the same object,
whether those uses are by different users or by the same user at different times, names
are invaluable both for communication and for organization of things so that one can
find them later.

A second fundamental purpose for a name is to allow a system designer to defer
to a later time an important decision: to which object should this name refer? A name
also makes it easy to change that decision later. For example, an application program
may refer to a table of data by name. There may be several versions of that table, and
the decision about which version to use can wait until the program actually needs
the table.

Decoupling one object from another by using a name as an intermediary is known
as indirection. Deciding on the correspondence between a name and an object is an
example of binding. Changing a binding is a mechanically easy way to replace one
object with another. Modules are objects, so naming is a cornerstone of modularity.

This section introduces a general model for the use of names in computer systems.
Some parts of this model should be familiar; the discussion of the three fundamental
abstractions in the previous section introduced names and some naming terminology.
The model is only one part of the story. Chapter 3 discusses in more depth the many
decisions that arise in the design of naming schemes.

2.2.1 The naming model

It is helpful to have a model of how names are associated with specific objects.
A system designer creates a naming scheme, which consists of three elements. The
first element is a name space, which comprises an alphabet of symbols together
with syntax rules that specify which names are acceptable. The second element is

R5 (processor register)

174FFFhex (memory address)

pedantic.edu (network attachment point name)

18.72.0.151 (network attachment point address)

alice (user name)

alice@pedantic.edu (e-mail address)

/u/alice/startup_plan.doc (file name)

http://pedantic.edu/alice/home.html (WWW URL)

figure 2.9

Examples of names
used in systems.

http://pedantic.edu/alice/home.html

62 CHAPTER 2 Elements of Computer System Organization

a name-mapping algorithm, which associates some (not necessarily all) names of
the name space with some (again, not necessarily all) values in a universe of values,
which is the third and final element of the naming scheme. A value may be an object,
or it may be another name from either the original name space or from a different
name space. A name-to-value mapping is an example of a binding, and when such a
mapping exists, the name is said to be bound to the value. Figure 2.10 illustrates.

In most systems, typically several distinct naming schemes are in operation simul-
taneously. For example, a system may be using one naming scheme for e-mail mailbox
names, a second naming scheme for Internet hosts, a third for files, and a fourth for vir-
tual memory addresses. When a program interpreter encounters a name, it must know
which naming scheme to invoke. The environment surrounding use of the name usu-
ally provides enough information to identify the naming scheme. For example, in
an application program, the author of that program knows that the program should
expect file names to be interpreted only by the file system and Internet host names to
be interpreted only by some network service.

The interpreter that encounters the name runs the name-mapping algorithm of
the appropriate naming scheme. The name-mapping algorithm resolves the name,
which means that it discovers and returns the associated value (for this reason, the
name-mapping algorithm is also called a resolver). The name-mapping algorithm is
usually controlled by an additional parameter, known as a context. For a given naming
scheme, there can be many different contexts, and a single name of the name space
may map to different values when the resolver uses different contexts. For example,
in ordinary discourse when a person refers to the names “you”, “here”, or “Alice”, the
meaning of each of those names depends on the context in which the person utters
it. On the other hand, some naming schemes have only one context. Such naming
schemes provide what are called universal name spaces, and they have the nice
property that a name always has the same meaning within that naming scheme, no
matter who uses it. For example, in the United States, social security numbers, which
identify government pension and tax accounts, constitute a universal name space.

Name space Universe of values

N1
N2
N3
N4
N5
N6
N7

1 7

13 N9

2 25
foo

Context A

Name-
mapping
algorithm

figure 2.10

General model of the
operation of a naming
scheme. The name-
mapping algorithm
takes in a name and a
context, and it returns
an element from the
universe of values. The
arrows indicate that,
using context “A”,
the algorithm resolves
the name “N4” to the
value “13”.

632�2 Naming in Computer Systems

When there is more than one context, the interpreter may tell the resolver which one
it should use or the resolver may use a default context.

We can summarize the naming model by defining the following conceptual opera-
tion on names:

value ← resolve (name, context)

When an interpreter encounters a name in an object, it first figures out what naming
scheme is involved and thus which version of resolve it should invoke. It then identi-
fies an appropriate context, resolves the name in that context, and replaces the name
with the resolved value as it continues interpretation. The variable context tells resolve
which context to use. That variable contains a name known as a context reference.

In a processor, register numbers are names. In a simple processor, the set of regis-
ter names, and the registers those names are bound to, are both fixed at design time.
In most other systems that use names (including the register naming scheme of some
high-performance processors), it is possible to create new bindings and delete old
ones, enumerate the name space to obtain a list of existing bindings, and compare
two names. For these purposes we define four more conceptual operations:

status ← bind (name, value, context)
status ← unbind (name, context)
list ← enumerate (context)
result ← compare (name1, name2)

The first operation changes context by adding a new binding; the status result reports
whether or not the change succeeded (it might fail if the proposed name violates the
syntax rules of the name space). After a successful call to bind, resolve will return the
new value for name.* The second operation, unbind, removes an existing binding from
context, with status again reporting success or failure (perhaps because there was no
such existing binding). After a successful call to unbind, resolve will no longer return
that value for name. The bind and unbind operations allow the use of names to make
connections between objects and change those connections later. A designer of an
object can, by using a name to refer to a component object, choose the object to which
that name is bound either then or at a later time by invoking bind, and eliminate a bind-
ing that is no longer appropriate by invoking unbind, all without modifying the object
that uses the name. This ability to delay and change bindings is a powerful tool used in
the design of nearly all systems. Some naming implementations provide an enumerate
operation, which returns a list of all the names that can be resolved in context. Some
implementations of enumerate can also return a list of all values currently bound in
context. Finally, the compare operation reports (true or false) whether or not name1
is the same as name2. The meaning of “same” is an interesting question addressed in
Section 2.2.5, and it may require supplying additional context arguments.

*The write operation of the memory abstraction creates a name-value association, so it can be
viewed as a specialized instance of bind. Similarly, the read operation can be viewed as a specialized
instance of resolve.

64 CHAPTER 2 Elements of Computer System Organization

Different naming schemes have different rules about the uniqueness of name-to-
value mappings. Some naming schemes have a rule that a name must map to exactly
one value in a given context and a value must have only one name, while in other
naming schemes one name may map to several values, or one value may have several
names, even in the same context. Another kind of uniqueness rule is that of a unique
identifier name space, which provides a set of names that will never be reused for
the lifetime of the name space and, once bound, will always remain bound to the same
value. Such a name is said to have a stable binding. If a unique identifier name space
also has the rule that a value can have only one name, the unique names become use-
ful for keeping track of objects over a long period of time, for comparing references to
see if they are to the same object, and for coordination of multiple copies in systems
where objects are replicated for performance or reliability. For example, the customer
account number of most billing systems constitutes a unique identifier name space.
The account number will always refer to the same customer’s account as long as that
account exists, despite changes in the customer’s address, telephone number, or even
personal name. If a customer’s account is deleted, that customer’s account number
will not someday be reused for a different customer’s account. Named fields within
the account, such as the balance due, may change from time to time, but the binding
between the customer account number and the account itself is stable.

The name-mapping algorithm plus a single context do not necessarily map all
names of the name space to values. Thus, a possible outcome of performing resolve
can be a not-found result, which resolve may communicate to the caller either as a
reserved value or as an exception. On the other hand, if the naming scheme allows
one name to map to several values, a possible outcome can be a list of values. In that
case, the unbind operation may require an additional argument that specifies which
value to unbind. Finally, some naming schemes provide reverse lookup, which means
that a caller can supply a value as an argument to the name-mapping algorithm, and
find out what name or names are bound to that value.

Figure 2.10 illustrates the naming model, showing a name space, the correspond-
ing universe of values, a name-mapping algorithm, and a context that controls the
name-mapping algorithm.

In practice, one encounters three frequently used name-mapping algorithms:

Table lookup ■

Recursive lookup ■

Multiple lookup ■

The most common implementation of a context is a table of {name, value} pairs.
When the implementation of a context is a table, the name-mapping algorithm is just
a lookup of the name in that table. The table itself may be complex, involving hash-
ing or B-trees, but the basic idea is still the same. Binding a new name to a value con-
sists of adding that {name, value} pair to the table. Figure 2.11 illustrates this common
implementation of the naming model. There is one such table for each context, and
different contexts may contain different bindings for the same name.

652�2 Naming In Computer Systems

Real-world examples of both the gen-
eral naming model and the table-lookup
implementation abound:

1. A telephone book is a table-lookup
context that binds names of people
and organizations to telephone num-
bers. As in the data communication
network example, telephone numbers
are themselves names that the tele-
phone company resolves into physi-
cal line appearances, using a name-
mapping algorithm that involves area
codes, exchanges, and physical switch-
gear. The telephone books for Boston
and for San Francisco are two con-
texts of the same naming scheme; any
particular name may appear in both
telephone books, but if so, it is prob-
ably bound to different telephone
numbers.

2. Small integers name the registers of a processor. The value is the register itself, and
the mapping from name to value is accomplished by wiring.

3. Memory cells are similarly named with the numbers called addresses, and the
name-to-value mapping is again accomplished by wiring. Chapter 5 describes an
address-renaming mechanism known as virtual memory, which binds blocks of
virtual addresses to blocks of contiguous memory cells. When a system imple-
ments multiple virtual memories, each virtual memory is a distinct context;
a given address can refer to a different memory cell in each virtual memory.
Memory cells can also be shared among virtual memories, in which case the
same memory cell may have the same (or different) addresses in different vir-
tual memories, as determined by the bindings.

4. A typical computer file system uses several layers of names and contexts: disk
sectors, disk partitions, files, and directories are all named objects. Directories
are examples of table-lookup contexts. A particular file name may appear
in several different directories, bound to either the same or different files.
Section 2.5 presents a case study of naming in the unix file system.

5. Computers connect to data communication networks at places known as net-
work attachment points. Network attachment points are usually named with
two distinct naming schemes. The first one, used inside the network, involves
a name space consisting of numbers in a fixed-length field. These names are
bound, sometimes permanently and sometimes only briefly, to physical entrance

N1

N2

N3

N4

N5

N6

N7

 7

foo

 25

 13

 2

 1

 N9

Context A

Bindings

Name Value

figure 2.11

A system that uses table lookup as the
name-mapping algorithm. As in the example
of Figure 2.10, this system also resolves the
name “N4” to the value “13”.

66 CHAPTER 2 Elements of Computer System Organization

and exit points of the network. A second naming scheme, used by clients of the
network, maps a more user-friendly universal name space of character strings to
names of the first name space. Section 4.4 is a case study of the Domain Name
System, which provides user-friendly attachment point naming for the Internet.

6. A programmer identifies procedure variables by names, and each activation
of the procedure provides a distinct context in which most such names are
resolved. Some names, identified as “static” or “global names”, may instead be
resolved in a context that is shared among activations or among different proce-
dures. When a procedure is compiled, some of the original user-friendly names
of variables may be replaced with integer identifiers that are more convenient
for a machine to manipulate, but the naming model still holds.

7. A Uniform Resource Locator (URL) of the World Wide Web is mapped to a spe-
cific Web page by a relatively complicated algorithm that breaks the URL up into
several constituent parts and resolves the parts using different naming schemes;
the result eventually identifies a particular Web page. Section 3.2 is a case study
of this naming scheme.

8. A customer billing system typically maintains at least two kinds of names for
each customer account. The account number names the account in a unique
identifier name space, but there is also a distinct name space of personal names
that can also be used to identify the account. Both of these names are typi-
cally mapped to account records by a database system, so that accounts can be
retrieved either by account number or by personal name.

These examples also highlight a distinction between “naming” and binding. Some,
but not all, contexts “name” things, in the sense that they map a name to an object that
is commonly thought of as having that name. Thus, the telephone directory does not
“name” either people or telephone lines. Somewhere else there are contexts that bind
names to people and that bind telephone numbers to particular physical phones. The
telephone directory binds the names of people to the names of telephones.

For each of these examples a context reference must identify the context in which
the name-mapping algorithm should resolve the name. Next, we explore where con-
text references come from.

2.2.2 default and explicit context references

When a program interpreter encounters a name in an object, someone must supply
a context reference so that the name-mapping algorithm can know which context it
should use to resolve the name. Many apparently puzzling problems in naming can be
simply diagnosed: the name-mapping algorithm, for whatever reason, used the wrong
context reference.

There are two ways to come up with a context with which to resolve the names
found in an object: default and explicit. A default context reference is one that the
resolver supplies, whereas an explicit context reference is one that comes packaged

672�2 Naming In Computer Systems

with the name-using object. Sometimes
a naming scheme allows for use of both
explicit and default methods: it uses an
explicit context reference if the object or
name provides one; if not, it uses a default
context. Figure 2.12 outlines the taxon-
omy of context references described in
the next two paragraphs.

A default context reference can be a
constant that is built in to the resolver as
part of its design. Since a constant allows
for just one context, the resulting name
space is universal. Alternatively, a default

context reference can be a variable that the resolver obtains from its current execu-
tion environment. That variable may be set by some context assignment rule. For
example, in most multiple-user systems, each user’s execution environment contains a
state variable called the working directory. The working directory acts as the default
context for resolving file names. Similarly, the system may assign a default context for
each distinct activity of a user or even, as will be seen in Chapter 3 (Figures 3.2 and
3.3), for each major subsystem of a system.

In contrast, an explicit context reference commonly comes in one of two forms:
a single-context reference intended to be used for all the names that an object uses,
or a distinct context reference associated with each name in the object. The second
form, in which each name is packaged with its own context reference, is known as a
qualified name.

A context reference is itself a name (it names the context), which leads some
writers to describe it as a base name. The name resolver must thus resolve the name
represented by the context reference before it can proceed with the original name
resolution. This recursion may be repeated several times, but it must terminate some-
where, with the invocation of a name resolver that has a single built-in context. This
built-in context contains the bindings that permit the recursion to be unraveled.

That description is quite abstract. To make it concrete, let’s revisit the previous
real-world examples of names, in each case looking for the context reference the
resolver uses:

1. When looking up a number in a telephone book, you must provide the con-
text reference: you need to know whether to pick up the Boston or the
San Francisco telephone book. If you call Directory Assistance to ask for a num-
ber, the operator will immediately ask you for the context reference by saying,
“What city, please?” If you got the name from a personal letter, that letter may
mention the city—an example of an explicit context reference. If not, you may
have to guess, or undertake a search of the directories of several different cities.

2. In a processor, there is usually only one set of numbered registers; they comprise
a default context that is built-in using wires. Some processors have multiple

Context references for names found in an
object

 ■ Default: supplied by the resolver

 ❏ Constant built in to the resolver
 ❏ Variable from the current environment

 ■ Explicit: supplied by the object

 ❏ Per object
 ❏ Per name (qualified name)

figure 2.12

Taxonomy of context references.

68 CHAPTER 2 Elements of Computer System Organization

 register sets, in which case there is an additional register, usually hidden from
the application programmer, that determines which register set is currently in
use. The processor uses the contents of that register, which is a component
of the current interpretation environment, as a default context reference. It
resolves that number with a built-in context that binds register set numbers to
physical register sets by interpreting the register set number as an address that
locates the correct bank of registers.

3. In a system that implements multiple virtual memories, the interpretation
environment includes a processor register (the page-map address register of
Chapter 5) that names the currently active page table; that register contains a
reference to the default context. Some virtual memory systems provide a fea-
ture known as segments. In those systems, a program may issue addresses that
contain an explicit context reference known as a segment number. Segments
are discussed in Section 5.4.5.

4. In a file system with many directories, when a program refers to a file using an
unqualified or incompletely qualified file name, the file system uses the work-
ing directory as a default context reference. Alternatively, a program may use an
absolute path name, an example of a fully qualified name that we will discuss
in depth in just a moment. The path name contains its own explicit context ref-
erence. In both the working directory and the absolute path name, the context
reference is itself a name that the resolver must resolve before it can proceed
with the original name resolution. This need leads to recursive name resolution,
which is discussed in Section 2.2.3.

5. In the Internet, names of network attachment points may be qualified (e.g.,
 ginger.pedantic.edu) or unqualified (e.g., ginger). When the network
name resolver encounters an unqualified name, it qualifies that name with a
default context reference, sometimes called the default domain. However it
materializes, a qualified name is an absolute path name that still needs to be
resolved. A different default—usually a configuration parameter of the name
resolver—supplies the context for resolution of that absolute path name in the
universal name space of Internet domain names. Section 4.4 describes in detail
the rather elaborate mechanism that resolves Internet domain names.

6. The programming language community uses its own terminology to describe
default and explicit context references. When implementing dynamic scope, the
resolver uses the current naming environment as a default context for resolv-
ing names. When implementing static (also called lexical) scope, the creator
of an object (usually a procedure object) associates the object with an explicit
context reference—the naming environment at that instant. The language com-
munity calls this combination of an object and its context reference a closure.

7. For resolution of a URL for the World Wide Web, the name resolver is distrib-
uted, and different contexts are used for different components of the URL.
Section 3.2 provides details.

692�2 Naming In Computer Systems

8. Database systems provide the contexts for resolution of both account numbers
and personal names in a billing system. If the billing system has a graphical user
interface, it may offer a lookup form with blank fields for both account number
and personal name. A customer service representative chooses the context ref-
erence by typing in one of the two fields and hitting a “find” button, which
invokes the resolver. Each of the fields corresponds to a different context.

A context reference can be dynamic, meaning that it changes from time to time.
An example is when the user clicks on a menu button labeled “Help”. Although the
button may always appear in the same place on the screen, the context in which the
name “Help” is resolved (and thus the particular help screen that appears in response)
is likely to depend on which application program, or even which part of that program,
is running at the instant that the user clicks on the button.

A common problem is that the object that uses a name does not provide an explicit
context, and the name resolver chooses the wrong default context. For example, a file
system typically resolves a file name relative to a current working directory, even
though this working directory may be unrelated to the identity of the program or data
object making the reference. Compared with the name resolution environment of a
programming system, most file systems provide a rather primitive name resolution
mechanism.

An electronic mail system provides an example of the problem of making sure
that names are interpreted in the intended context. Consider the e-mail message of
Figure 2.13, which originated at Pedantic University. In this message, Alice, Bob, and
Dawn are names from the local name space of e-mailboxes at Pedantic University, and
Charles@cse.Scholarly.edu is a qualified name of an e-mailbox managed by a
mail service named cse.Scholarly.edu at the Institute of Scholarly Studies. The
name Charles is of a particular mailbox at that mail service, and the @-sign is conven-
tionally used to separate the name of the mailbox from the name of the mail service.

As it stands, if user Charles tries to reply to the sender of this message, the response
will be addressed to Bob. Since the first name resolver to encounter the reply message
is probably inside the system named cse.Scholarly.edu, that resolver would in the
normal course of events use as a default context reference the name of the local mail
service. That is, it would try to send the message to Bob@cse.Scholarly.edu. That
isn’t the mailbox address of the user who sent the original message. Worse, it might
be someone else’s mailbox address.

To: Bob
Cc: Charles@cse.Scholarly.edu
From: Alice

Based on Dawn’s suggestions, this chapter has
 experienced a major overhaul this year. If you
like it, send your compliments to Dawn (her e-mail
address is “Dawn”); if you do not like it, send your
 complaints to me.

figure 2.13

An e-mail message
that uses default
contexts.

70 CHAPTER 2 Elements of Computer System Organization

When constructing the e-mail message, Alice intended local names such as Bob to
be resolved in her own context. Most mail sending systems know that a local name is
not useful to anyone outside the local context, so it is conventional for the mail system
to tinker with unqualified names found in the address fields by automatically rewrit-
ing them as qualified names, thus adding an explicit context reference to the names
Bob and Alice, as shown in Figure 2.14.

Unfortunately, the mail system can perform this address rewriting only for the
headers because that is the only part of the message format it fully understands. If an
e-mail address is embedded in the text of the message (as in the example, the mailbox
name Dawn), the mail system has no way to distinguish it from the other text. If the
recipient of the message wishes to make use of an e-mail address found in the text
of the message, that recipient is going to have to figure out what context reference is
needed. Sometimes it is easy to figure out what to do, but if a message has been for-
warded a few times, or the recipient is unaware of the problem, a mistake is likely.

A partial solution could be to tag the e-mail message with an explicit context ref-
erence, using an extra header, as in Figure 2.15. With this addition, a recipient of this
message could select either Alice in the header or Dawn in the text and ask the mail
system to send a reply. The mail system could, by examining the Context: header,
determine how to resolve any unqualified e-mail address associated with this message,
whether found in the original headers or extracted from the text of the message. This
scheme is quite ad hoc; if user Bob forwards the message of Figure 2.15 with an added
note to someone in yet another naming context, any unqualified addresses in the
added note would need a different explicit context reference. Although this scheme is
not actually used in any e-mail system that the authors are aware of, it has been used in
other naming systems. An example is the base element of HTML, the display language
of the World Wide Web, described briefly in Section 3.2.2.

A closely related problem is that different contexts may bind different names
for the same object. For example, to call a certain telephone, it may be that a person
in the same organization dials 2–7104, a second person across the city dials 312–7104,
a third who is a little farther away dials (517) 312–7104, and a person in another coun-
try may have to dial 001 (517) 312–7104. When the same object has different names
in different contexts, passing a name from one user to another is awkward because, as
with the e-mail message example, someone must translate the name before the other
user can use it. As with the e-mail address, if someone hands you a scrap of paper on

To: Bob@Pedantic.edu
cc: Charles@cse.Scholarly.edu
From: Alice@Pedantic.edu

Based on Dawn’s suggestions, this chapter has
 experienced a major overhaul this year. If you
like it, send your compliments to Dawn (her e-mail
address is “Dawn”); if you do not like it, send
your complaints to me.

figure 2.14

The e-mail mes-
sage of Figure 2.13
after the mail system
 expands every
 unqualified address
in the headers to
include an explicit
context reference.

712�2 Naming In Computer Systems

which is written the telephone number 312–7104, simply dialing that number may or
may not ring the intended telephone. Even though the several names are related, some
effort may be required to figure out just what translation is required.

2.2.3 path names, naming networks, and recursive name resolution

The second of the three common name-mapping algorithms listed on page 64 is
recursive name resolution. A path name can be thought of as a name that explicitly
includes a reference to the context in which it should be resolved. In some naming
schemes, path names are written with the context reference first, in others with the
context reference last. Some examples of path names are:

ginger.pedantic.edu.
/usr/bin/emacs
Macintosh HD:projects:CSE 496:problem set 1
Chapter 2, section 2, part 3, first paragraph
Paragraph 1 of part 3 of section 2 of chapter 2

As these examples suggest, a path name involves multiple components and some
syntax that permits a name resolver to parse the components. The last two examples
illustrate that different naming schemes place the component names in opposite
orders, and indeed the other examples also demonstrate both orders. The order of
the components must be known to the user of the name and to the name resolver,
but either way interpretation of the path name is most easily explained recursively by
 borrowing terminology from the representation of numbers: all but the least signifi-
cant component of a path name is an explicit context reference that identifies the con-
text to be used to resolve that least significant component. In the above examples, the
least significant components and their explicit context references are, respectively,

Least significant component Explicit context reference

ginger pedantic.edu.
emacs /usr/bin
problem set 1 Macintosh hd:projects:CSE 491
first paragraph Chapter 2, section 2, part 3
Paragraph 1 part 3 of section 2 of chapter 2

To: Bob
cc: Charlies@cse.Scholarly.edu
From: Alice
Context: Pedantic.edu

Based on Dawn’s suggestions, this chapter has
 experienced a major overhaul this year. If you
like it, send your compliments to Dawn (her e-mail
address is “Dawn”); if you do not like it, send your
complaints to me.

figure 2.15

An e-mail message
that provides an
explicit context
reference as one
of its headers.

72 CHAPTER 2 Elements of Computer System Organization

The recursive aspect of this description is that the explicit context reference is
itself a path name that must be resolved. So we repeat the analysis as many times
as needed until what was originally the most significant component of the path
name is also the least significant component, at which point the resolver can do an
 ordinary table lookup using some context. In the choice of this context, the previous
 discussion of default and explicit context references again applies. In a typical design,
the resolver uses one of two default context references:

A special context reference, known as the ■ root, that is built in to the resolver.
The root is an example of a universal name space. A path name that the resolver
can resolve with recursion that ends at the root context is known as an absolute
path name.

The path name of yet another default context. To avoid circularity, this path name ■

must be an absolute path name. A path name that is resolved by looking up its most
significant component in yet another context is known as a relative path name. (In
a file system, the path name of this default context is what example 4 on page 68
identified as the working directory.) Thus in the unix file system, for example, if the
working directory is /usr/Alice, the relative path name plans/Monday would
resolve to the same file as the absolute path name /usr/Alice/plans/Monday.

If a single name resolver is prepared to resolve both relative and absolute path names,
some scheme such as a syntactic flag (e.g., the initial "/" in /usr/bin/emacs and
the terminal "." in ginger.pedantic.edu.) may distinguish one from the other,
or perhaps the name resolver will try both ways in some order, using the first one
that seems to work. Trying two schemes in order is a simple form of multiple name
lookup, about which we will have more to say in the next subsection.

Path names can also be thought of as identifying objects that are organized in what
is called a naming network. In a naming network, contexts are treated as objects,
and any context may contain a name-to-object binding for any other object, including
another context. The name resolver somehow chooses one context to use as the root
(perhaps by having a lower-level name for that context wired into the resolver), and
it then resolves all absolute path names by tracing a path from the chosen root to the
first named context in the path name, then the next, continuing until it reaches the
object that was named by the original path name. It similarly resolves relative path
names starting with a default context found in a variable in its environment. That
variable contains the absolute path name of the default context. Since there can be
many paths from one place to another, there can be many different path names for the
same object or context. Multiple names for the same object are known as synonyms
or aliases. (This text avoids the word “alias” because different systems use it in quite
different ways.) On the other hand, since the root provides a universal name space,
every object that uses the same absolute path name is referring to the same exporting
object.

Sharing names of a naming network can be a problem because each user may
express path names relative to a different starting point. As a result, it may not be

732�2 Naming In Computer Systems

 obvious how to translate a path name when passing it from one user to another. One
standard solution to this problem is to require that users share only absolute path
names, all of which begin with the root.

The file system of a computer operating system is usually organized as a naming
network, with directories acting as contexts. It is common in file systems to encounter
implementation-driven restrictions on the shape of the naming network, for example,
requiring that the contexts be organized in a naming hierarchy with the root act-
ing as the base of the tree. A true naming hierarchy is so constraining that it is rarely
found in practice; real systems, even if superficially hierarchical, usually provide some
way of adding cross-hierarchy links. The simplest kind of link is just a synonym: a
single object may be bound in more than one context. Some systems allow a more
 sophisticated kind of link, known as an indirect name. An indirect name is one that
a context binds to another name in the same name space rather than to an object.
Because many designers have independently realized that indirect names are useful,
they have come to be called by many different labels, including symbolic link, soft
link, alias, and shortcut. The unix file system described in Section 2.5 includes a nam-
ing hierarchy, links, and indirect names called soft links.

A path name has internal structure, so a naming scheme that supports path names usu-
ally has rules regarding construction of allowable path names. Path names may have a max-
imum length, and certain symbols may be restricted for use only as structural separators.

2.2.4 multiple lookup: searching through layered contexts

Returning to the topic of default contexts (in the taxonomy of Figure 2.12), context
assignment rules are a blunt tool. For example, a directory containing library pro-
grams may need to be shared among different users; no single assignment rule can
suffice. This inflexibility leads to the third, more elaborate name resolution scheme,
multiple lookup.* The idea of multiple lookup is to abandon the notion of a single,
default context and instead resolve the name by systematically trying several differ-
ent contexts. Since a name may be bound in more than one context, multiple lookup
can produce multiple resolutions, so some scheme is needed to decide which resolu-
tion to use.

A common such scheme is called the search path, which is nothing more than
a specific list of contexts to be tried, in order. The name resolver tries to resolve the
name using the first context in the list. If it gets a not-found result, it tries the next
context, and so on. If the name is bound in more than one of the listed contexts, the
one earliest in the list wins and the resolver returns the value associated with that
binding.

A search path is often used in programming systems that have libraries. Suppose,
for example, a library procedure that calculates the square root math function exports

*The operating system community traditionally uses the word “search” for multiple lookup, but
the advent of “search engines” on both the Internet and the desktop has rendered that usage
 ambiguous. The last paragraph of Section 2.2.4, on page 75, discusses this topic.

74 CHAPTER 2 Elements of Computer System Organization

a procedure interface named sqrt. After compiling this function, the writer places a
copy of the binary program in a math library. A prospective user of the square root
function writes the statement

x ← sqrt(y)

in a program, and the compiler generates code that uses the procedure named sqrt.
The next step is that the compiler (or in some systems a later loader) undertakes a
series of lookups in various public and private libraries that it knows about. Each
library is a context, and the search path is a list of the library contexts. Each step of
the multiple lookup involves an invocation of a simpler, single-context name resolver.
Some of these attempted resolutions will probably return a not-found result. The first
resolution attempt that finds a program named sqrt will return that program as the
result of the lookup.

A search path is usually implemented as a per-user list, some or all of whose ele-
ments the user can set. By placing a library that contains personally supplied programs
early in the search path, an individual user can effectively replace a library program
with another that has the same name, thereby providing a user-dependent binding. This
replace-by-name feature can be useful, but it can also be hazardous because one may
unintentionally choose a name for a program that is also exported by some completely
unrelated library program. When some other application tries to call that unrelated
program, the ensuing multiple lookup may find the wrong one. As the number of librar-
ies and names in the search path increases, the chance increases that two libraries will
accidentally contain two unrelated programs that happen to export the same name.

Despite the hazards, search paths are a widely used mechanism. In addition to
loaders using search paths to locate library procedures, user interfaces use search
paths to locate commands whose names the user typed, compilers use search paths
to locate interfaces, documentation systems use search paths to find cited documents,
and word processing systems use search paths to locate text fragments to be included
in the current document.

Some naming schemes use a more restricted multiple lookup method. For
example, rather than allowing an arbitrary list of contexts, a naming scheme may
require that contexts be arranged in nested layers. Whenever a resolution returns
not-found in some layer, the resolver retries in the enclosing layer. Layered con-
texts were at one time popular in programming languages, where programs define
and call on subprograms, because it can be convenient (to the point of being
undisciplined, which is why it is no longer so popular) to allow a subprogram
access by name to the variables of the defining or calling program. For another
example, the scheme for numbering Internet network attachment points has
an outer public layer and an inner private layer. Certain Internet address ranges
(e.g., all addresses with a first byte of 10) are reserved for use in private networks;
those address ranges constitute an inner private layer. These network addresses may
be bound to different network attachment points in different private contexts with-
out risk of conflict. Internet addresses that are outside the ranges reserved for private
contexts should not be bound in any private context; they are instead resolved in the
public context.

752�2 Naming In Computer Systems

In a set of layered contexts, the scope of a name is the range of layers in which
the name is bound to the same object. A name that is bound only in the outermost
layer, and is always bound to the same object, independent of the current context
layer, is known as a global name. The outermost layer that resolves global names is an
example of a universal name space.

Incidentally, we have now used the term path as both an adjective qualifier and a
noun, but with quite different meanings. A path name is a name that carries its own
explicit context, while a search path is a context that consists of a list of contexts.
Thus each element of a search path may be a path name.

The word “search” also has another, related but somewhat different, meaning.
Internet search engines such as Google and AltaVista take as input a query consist-
ing of one or more key words, and they return a list of World Wide Web pages that
contain those key words. Multiple results (known as “hits”) are the common case,
and Google, for example, implements a sophisticated system for ranking the hits.
Google also offers the user the choice of receiving just the highest-ranked hit (“I’m
feeling lucky”) or receiving a rank-ordered list of hits. Most modern desktop computer
systems also provide some form of key word search for local files. When one encoun-
ters the unqualified word “search”, it is a good idea to pause and figure out whether it
refers to multiple lookup or to key word query.

2.2.5 comparing names

As mentioned earlier, one more operation is sometimes applied to names:

result ← compare(name1, name2)

where result is a binary value, true or false. The meaning of name comparison requires
some thought because the invoker might have one of three different questions in
mind:

1. Are the two names the same?
2. Are the two names bound to the same value?
3. If the value or values are actually the identifiers of storage containers, such as

memory cells or disk sectors, are the contents of the storage containers the
same?

The first question is mechanically easiest to answer because it simply involves
comparing the representations of the two names (“Is Jim Smith the same as Jim
Smith?”), and it is exactly what a name resolver does when it looks things up in a
table-lookup context: look through the context for a name that is the same as the one
being resolved. On the other hand, in many situations the answer is not useful, since
the same name may be bound to different values in different contexts and two differ-
ent names may be synonyms that are bound to the same value. All one learns from the
first question is whether or not the name strings have the same bit pattern.

For that reason, the answer to the second question is often more interesting. (“Is
the Jim Smith who just received the Nobel prize the same Jim Smith I knew in high
school?”) Getting that answer requires supplying the contexts for the two names as

76 CHAPTER 2 Elements of Computer System Organization

additional arguments to compare, so that it can resolve the names and compare the
results. Thus, for example, resolving the variable name A and the variable name B may
reveal that they are both bound to the same storage cell address. Even this answer may
still not reveal as much as expected because the two names may resolve to two names
of a different, lower-layer naming scheme, in which case the same questions need
to be asked recursively about the lower-layer names. For example, variable names
A and B may be bound to different storage cell addresses, but if a virtual memory is in
use those different virtual storage cell addresses might map to the same physical cell
address. (This example will make more sense when we reach Chapter 5.)

Even after reaching the bottom of that recursion, the result may be the names
of two different physical storage containers that contain identical copies of data, or
it may be two different lower-layer names (that is, synonyms) for the same storage
container. (“This biography file on Jim Smith is identical to that biography file on Jim
Smith. Are there one or two biography files?” “This biography about Edwin Aldrin is
identical to that biography about Buzz Aldrin. Are those two names for the same per-
son?”) Thus the third question arises, along with a need to understand what it means
to be the “same”. Unless one has some specific understanding of the underlying physi-
cal representation, the only way to distinguish the two cases may be to change the
contents of one of the named storage containers and see if that causes the contents of
the other one to change. (“Kick this one and see if that one squeals.”)

In practice, systems (and some programming languages) typically provide several
compare operators that have different semantics designed to help answer these differ-
ent questions, and the programmer or user must understand which compare operation
is appropriate for the task at hand. For example, the LISP language provides three
comparison operators, named eq (which compares the bindings of its named argu-
ments), equ (which compares the values of its named arguments), and equals (which
recursively compares entire data structures.)

2.2.6 name discovery

Underlying all name reference is a recursive protocol that answers the question, “How
did you know to use this name?” This name discovery protocol informs an object’s pro-
spective user of the name that the object exports. Name discovery involves two basic
elements: the exporter advertises the existence of the name, while the prospective
user searches for an appropriate advertisement. The thing that makes name discovery
recursive is that the name user must first know the name of a place to search for the
advertisement. This recursion must terminate somewhere, perhaps in a direct, outside-
the-computer communication between some name user and some name exporter.

The simplest case is a programmer who writes a program consisting of two pro-
cedures, one of which refers to the other by name. Since the same programmer wrote
both, name discovery is explicit and no recursion is necessary. Next, suppose the two
programs are written by two different programmers. The programmer who wants
to use a procedure by name must somehow discover the exported name. One pos-
sibility is that the second programmer performs the advertisement by shouting the

772�2 Naming In Computer Systems

 procedure’s name down the hall. Another possibility is that the using programmer
looks in a shared directory in which everyone agrees to place shared procedures. How
does that programmer know the name of that shared directory? Perhaps someone
shouted that name down the hall. Or perhaps it is a standard library directory whose
name is listed in the programmers’ reference manual, in which case that manual termi-
nates the recursive protocol. Although program library names don’t usually appear in
 magazine advertisements or on billboards, it has become commonplace to discover the
name of a World Wide Web site in such places. Name discovery can take several forms:

 ■ Well-known name: A name (such as “Google” or “Yahoo!”) that has been advertised
so widely that one can depend on it being stable for at least as long as the thing it
names. Running across a well-known name is a method of name discovery.

 ■ Broadcast: A way of advertising a name, for example by wearing a badge that says
“Hello, my name is . . . ”, posting the name on a bulletin board, or sending it to a
mailing list. Broadcast is used by automatic configuration protocols sometimes
called “plug-and-play” or “zero configuration”. It may even be used on a point-to-
point communication link in the hope that there is someone listening at the other
end who will reply. Listening for broadcasts is a method of name discovery.

 ■ Query (also called search): Present one or more key words to, for example,
a search engine such as Google. Query is a widely used method of name
discovery.

 ■ Broadcast query: A generalized form of key word query. Ask everyone within
hearing distance “does anyone know a name for . . . ?” (sometimes confusingly
called “reverse broadcast”).

 ■ Resolving a name of one name space to a name of a different name space:
Looking up a name in the telephone book leads to discovery of a telephone
number. The Internet Domain Name System, described in Section 4.4, performs
a similar service, looking up a domain name and returning a network attach-
ment point address.

 ■ Introduction: What happens at parties and in on-line dating services. Some
 entity that you already know knows a name and gives that name to you. In a
computer system, a friend may send you an e-mail message that mentions the
name of an interesting Web site or the e-mail address of another friend. For
another example, each World Wide Web page typically contains introductions
(technically known as hypertext links) to other Web pages.

 ■ Physical rendezvous: A meeting held outside the computer. It requires some-
how making prior arrangements concerning time and place, which implies
prior communication, which implies prior knowledge of some names. Once set
up, physical rendezvous can be used for discovering other names as well as for
verifying authenticity. Many organizations require that setting up a new account
on a company computer system must involve a physical rendezvous with the
system administrator to exchange names and choose a password.

78 CHAPTER 2 Elements of Computer System Organization

Any of the above methods of name discovery may require first discovering some other
name, such as the name of the reference source for well-known names, the name of the
bulletin board on which broadcasts are placed, the name of the name resolver, the name
of the party host, and so on. The method of discovering this other name may be the same
as the method first invoked, or it may be different. The important thing the designer must
keep in mind is that the recursion must terminate somewhere—it can’t be circular.

Some method of name discovery is required wherever a name is needed. An
 interesting exercise is to analyze some of the examples of names mentioned in earlier
parts of this chapter, tracing the name discovery recursion to see how it terminates,
because in many cases that termination is so distant from the event of name usage and
resolution that it has long since been forgotten. Many additional examples of name
discovery will show up in later chapters: names used for clients and services, where
a client needs to discover the name of an appropriate service; data communication
networks, where routing provides a particularly explicit example of name discovery;
and security, where it is critical to establish the integrity of the terminating step.

2.3 Organizing cOmpuTer sysTems wiTh names
and layers

Section 2.1 demonstrated how computer system designers use layers to implement more
elaborate versions of the three fundamental abstractions, and Section 2.2 explained
how names are used to connect system components. Designers also use layers and
names in many other ways in computer systems. Figure 2.16 shows the typical organiza-
tion of a computer system as three distinct layers. The bottom layer consists of hardware
components, such as processors, memories, and communication links. The middle layer
consists of a collection of software modules, called the operating system (see Sidebar
2.4), that abstract these hardware resources into a convenient application program-
ming interface (API). The top layer consists of software that implements application-
specific functions, such as a word processor, payroll program, computer game, or Web

Application layer

Operating system layer

Hardware layer

Application
programming

interface (API)

Software/hardware
interface

(O/S bypass)

figure 2.16

A typical computer
system organized
in three layers. The
operating system layer
allows bypass, so the
application layer can
directly invoke many
features of the hard-
ware layer. However,
the operating system
layer hides certain
dangerous features of
the hardware layer.

792�3 Organizing Computer Systems with Names and Layers

browser. If we examine each layer in detail, we are likely to find that it is itself organized
in layers. For example, the hardware layer may comprise a lower layer of gates, flip-flops,
and wires, and an upper layer of registers, memory cells, and finite-state machines.

The exact division of labor between the hardware layer and the software layers
is an engineering trade-off and a topic of considerable debate between hardware
and software designers. In principle, every software module can be implemented in
hardware. Similarly, most hardware modules can also be implemented in software,
except for a few foundational components such as transistors and wires. It is surpris-
ingly difficult to state a generic principle for how to decide between an implementa-
tion in hardware or software. Cost, performance, flexibility, convenience, and usage
patterns are among the factors that are part of the trade-off, but for each individual
function they may be weighted differently. Rather than trying to invent a principle,
we discuss the trade-off between hardware and software in the context of specific
functions as they come up.

The operating system layer usually exhibits an interesting phenomenon that we
might call layer bypass. Rather than completely hiding the lower, hardware layer, an
operating system usually hides only a few features of the hardware layer, such as

Sidebar 2.4 What is an Operating System? An operating system is a set of programs
and libraries that make it easy for computer users and programmers to do their job.
In the early days of computers, operating systems were simple programs that assisted
operators of computers (at that time the only users who interacted with a computer
directly), which is why they are called operating systems.

Today operating systems come in many flavors and differ in the functions they pro-
vide. The operating system for the simplest computers, such as that for a microwave
oven, may comprise just a library that hides hardware details in order to make it eas-
ier for application programmers to develop applications. Personal computers, on the
other hand, ship with operating systems that contain tens of millions of lines of code.
These operating systems allow several people to use the same computer; permit users
to control which information is shared and with whom; can run many programs at
the same time while keeping them from interfering with one another; provide sophis-
ticated user interfaces, Internet access, file systems, backup and archive applications,
device drivers for the many possible hardware gadgets on a personal computer, and a
wide range of abstractions to simplify the job of application programmers, and so on.

Operating systems also offer an interesting case study of system design. They are evolv-
ing rapidly because of new requirements. Their designers face a continuous struggle
to control their complexity. Some modern operating systems have interfaces consist-
ing of thousands of procedures, and their implementations are so complex that it is a
challenge to make them work reliably.

This book has much more to say about operating systems, starting in Section 5.1.1,
where it begins development of a minimal model operating system.

80 CHAPTER 2 Elements of Computer System Organization

 particularly dangerous instructions. The remaining features of the hardware layer
(in particular, most of the instruction repertoire of the underlying processor) pass
through the operating system layer for use directly by the application layer, as in
Figure 2.16. Thus, the dangerous instructions can be used only by the operating sys-
tem layer, while all of the remaining instructions can be used by both the operating
system and application layers. Conceptually, a designer could set things up so that the
operating system layer intercepts every invocation of the hardware layer by the appli-
cation layer and then explicitly invokes the hardware layer. That design would slow a
heavily used interface down unacceptably, so in the usual implementation the appli-
cation layer directly invokes the hardware layer, completely bypassing the operating
system layer. Operating systems provide bypass for performance reasons, but bypass is
not unique to operating systems, nor is it used only to gain performance. For example,
the Internet is a layered communication system that permits bypass of most features
of most of its layers, to achieve flexibility.

In this section we examine two examples of layered computer system organiza-
tion: the hardware layer at the bottom of a typical computer system and one part of
the operating system layer that creates the typical application programming interface
known as the file system.

2.3.1 a hardware layer: The bus

The hardware layer of a typical computer is constructed of modules that directly
implement low-level versions of the three fundamental abstractions. In the example
of Figure 2.17, the processor modules interpret programs, the random access memory
modules store both programs and data, and the input/output (I/O) modules imple-
ment communication links to the world outside the computer.

There may be several examples of each kind of hardware module—multiple pro-
cessors (perhaps several on one chip, an organization that goes by the buzzword
name multicore), multiple memories, and several kinds of I/O modules. On closer
inspection the I/O modules turn out to be specialized interpreters that implement
I/O programs. Thus, the disk controller is an interpreter of disk I/O programs. Among
its duties are mapping disk addresses to track and sector numbers and moving data
from the disk to the memory. The network controller is an interpreter that talks on
its other side to one or more real communication links. The display controller inter-
prets display lists that it finds in memory, lighting pixels on the display as it goes. The
keyboard controller interprets keystrokes and places the result in memory. The clock
may be nothing but a minuscule interpreter that continually updates a single register
with the time of day.

The various modules plug into the shared bus, which is a highly specialized commu-
nication link used to send messages to other modules. There are numerous bus designs,
but they have some common features. One such common feature is a set of wires*

*This description in terms of several parallel wires is of a structure called a parallel bus. A more
thorough discussion of link communication protocols in Section 7.3 [on-line] shows how a bus can
also be implemented by sending coded signals down just a few wires, a scheme called a serial bus.

812�3 Organizing Computer Systems with Names and Layers

 comprising address, data, and control lines that connect to a bus interface on each mod-
ule. Because the bus is shared, a second common feature is a set of rules, called the bus
arbitration protocol, for deciding which module may send or receive a message at any
particular time. Some buses have an additional module, the bus arbiter, a circuit or a tiny
interpreter that chooses which of several competing modules can use the bus. In other
designs, bus arbitration is a function distributed among the bus interfaces. Just as there
are many bus designs, there are also many bus arbitration protocols. A particularly influ-
ential example of a bus is the UNIBUS®, introduced in the 1970s by Digital Equipment
Corporation. The modularity provided by a shared bus with a standard arbitration pro-
tocol helped to reshape the computer industry, as was described in Sidebar 1.5.

A third common feature of bus designs is that a bus is a broadcast link, which
means that every module attached to the bus hears every message. Since most mes-
sages are actually intended for just one module, a field of the message called the bus
address identifies the intended recipient. The bus interface of each module is config-
ured to respond to a particular set of bus addresses. Each module examines the bus
address field (which in a parallel bus is usually carried on a set of wires separate from
the rest of the message) of every message and ignores any message not intended for
it. The bus addresses thus define an address space. Figure 2.17 shows that the two
processors might accept messages at bus addresses 101 and 102, respectively; the
display controller at bus address 103; the disk controller at bus addresses 104 and 105
(using two addresses makes it convenient to distinguish requests for its two disks);
the network at bus address 106; the keyboard at bus address 107; and the clock at
bus address 109. For speed, memory modules typically are configured with a range of
bus addresses, one bus address per memory address. Thus, if in Figure 2.17 the two
memory modules each implement an address space of 1,024 memory addresses, they
might be configured with bus addresses 1024–2047 and 3072–4095, respectively.*

*These bus addresses are chosen for convenience of the illustration. In practice, a memory module
is more likely to be configured with enough bus addresses to accommodate several gigabytes.

Processor 1

Network
controller

Bus Processor 2 Clock

Display
controller

Keyboard
controller

Disk
controller Memory 1 Memory 2

101 102 109
104, 105 103107 1061024–2047 3072–4095

figure 2.17

A computer with several modules connected by a shared bus. The numbers are the bus
 addresses to which the attached module responds.

82 CHAPTER 2 Elements of Computer System Organization

Any bus module that wishes to send a message over the bus must know a bus
address that the intended recipient is configured to accept. Name discovery in some
buses is quite simple: whoever sets up the system explicitly configures the knowledge
of bus addresses into the processor software, and that software passes this knowledge
along to other modules in messages it sends over the bus. Other bus designs dynami-
cally assign bus addresses to modules as they are plugged in to the bus and announce
their presence.

A common bus design is known as split-transaction. In this design, when one
module wants to communicate with another, the first module uses the bus arbitration
protocol on the control wires to request exclusive use of the bus for a message. Once
it has that exclusive use, the module places a bus address of the destination module
on the address wires and the remainder of the message on the data wires. Assuming a
design in which the bus and the modules attached to it run on uncoordinated clocks
(that is, they are asynchronous), it then signals on one of the control wires (called
ready) to alert the other modules that there is a message on the bus. When the receiv-
ing module notices that one of its addresses is on the address lines of the bus, it cop-
ies that address and the rest of the message on the data wires into its local registers
and signals on another control line (called acknowledge) to tell the sender that it is
safe to release the bus so that other modules can use it. (If the bus and the modules
are all running with a common clock, the ready and acknowledge lines are not needed;
instead, each module checks the address lines on each clock cycle.) Then, the receiver
inspects the address and message and performs the requested operation, which may
involve sending one or more messages back to the original requesting module or, in
some cases, even to other modules.

For example, suppose that processor #2, while interpreting a running application
program, encounters the instruction

load 1742, R1

which means “load the contents of memory address 1742 into processor register R1”.
In the simplest scheme, the processor just translates addresses it finds in instructions
directly to bus addresses without change. It thus sends this message across the bus:

processor #2 ⇒ all bus modules: {1742, read, 102}

The message contains three fields. The first message field (1742) is one of the bus
addresses to which memory #1 responds; the second message field requests the recip-
ient to perform a read operation; and the third indicates that the recipient should
send the resulting value back across the bus, using the bus address 102. The memory
addresses recognized by each memory module are based on powers of two, so the
memory modules can recognize all of the addresses in their own range by examining
just a few high-order address bits. In this case, the bus address is within the range rec-
ognized by memory module 1, so that module responds by copying the message into
its own registers. It acknowledges the request, the processor releases the bus, and the
memory module then performs the internal operation

value ← read (1742)

832�3 Organizing Computer Systems with Names and Layers

With value in hand, the memory module now itself acquires the bus and sends the
result back to processor #2 by performing the bus operation

memory #1 ⇒ all bus modules: {102, value}

where 102 is the bus address of the processor as supplied in the original read request
message. The processor, which is probably waiting for this result, notices that the
bus address lines now contain its own bus address 102. It therefore copies the value
from the data lines into its register R1, as the original program instruction requested.
It acknowledges receipt of the message, and the memory module releases the bus for
use by other modules.

Simple I/O devices, such as keyboards, operate in a similar fashion. At system initial-
ization time, one of the processors sends a message to the keyboard controller telling
it to send all keystrokes to that processor. Each time that the user depresses a key, the
keyboard controller sends a message to the processor containing as data the name of
the key that was depressed. In this case, the processor is probably not waiting for this
message, but its bus interface (which is in effect a separate interpreter running concur-
rently with the processor) notices that a message with its bus address has appeared.
The bus interface copies the data from the bus into a temporary register, acknowl-
edges the message, and sends a signal to the processor that will cause the processor to
perform an interrupt on its next instruction cycle. The interrupt handler then transfers
the data from the temporary register to some place that holds keyboard input, perhaps
by sending yet another message over the bus to one of the memory modules.

One potential problem of this design is that the interrupt handler must respond and
read the keystroke data from the temporary register before the keyboard handler sends
another keystroke message. Since keyboard typing is slow compared with computer
speeds, there is a good chance that the interrupt handler will be there in time to read
the data before the next keystroke overwrites it. However, faster devices such as a hard
disk might overwrite the temporary register. One solution would be to write a processor
program that runs in a tight loop, waiting for data that the disk controller sends over the
bus and immediately sending that data again over the bus to a memory module.

Some low-end computer designs do exactly that, but a designer can obtain substan-
tially higher performance by upgrading the disk controller to use a technique called
direct memory access, or DMA. With this technique, when a processor sends a request
to a disk controller to read a block of data from the disk, it includes the address of
a buffer in memory as a field of the request message. Then, as data streams in from
the disk, the disk controller sends it directly to the memory module, incrementing
the memory address appropriately between sends. In addition to relieving the load
on the processor, DMA also reduces the load on the shared bus because it transfers
each piece of data across the bus just once (from the disk controller to the memory)
rather than twice (first from the disk controller to the processor and then from the
processor to the memory). Also, if the bus allows long messages, the DMA control-
ler may be able to take better advantage of that feature than the processor, which
is usually designed to send and receive bus data in units that are the same size as its
own registers. By sending longer messages, the DMA controller increases performance

84 CHAPTER 2 Elements of Computer System Organization

because it amortizes the overhead of the bus arbitration protocol, which it must per-
form once per message. Finally, DMA allows the processor to execute some other
program at the same time that the disk controller is transferring data. Because concur-
rent operation can hide the latency of the disk transfer, it can provide an additional
performance enhancement. The idea of enhancing performance by hiding latency is
discussed further in Chapter 6.

A convenient interface to I/O and other bus-attached modules is to assign bus
addresses to the control registers and buffers of the module. Since each proces-
sor maps bus addresses directly into its own memory address space, load and store
instructions executed in the processor can in effect address the registers and buffers
of the I/O module as if they were locations in memory. The technique is known as
memory-mapped I/O.

Memory-mapped I/O can be combined with DMA. For example, suppose that a
disk controller designed for memory-mapped I/O assigns bus addresses to four of its
control registers as follows:

bus address control register
 121 sector_number
 122 DMA_start_address
 123 DMA_count
 124 control

To do disk I/O, the processor uses store instructions to send appropriate initializa-
tion values to the first three disk controller registers and a final store instruction to
send a value that sets a bit in the control register that the disk controller interprets as
the signal to start. A program to get a 256-byte disk sector currently stored at sector
number 11742 and transfer the data into memory starting at location 3328 starts by
loading four registers with these values and then issuing stores of the registers to the
appropriate bus addresses:

r1 ← 11742; R2 ← 3328; R3 ← 256; R4 ← 1;
store 121,R1 // set sector number
store 122,R2 // set memory address register
store 123,R3 // set byte count
store 124,R4 // start disk controller running

Upon completion of the bus send generated by the last store instruction, the disk con-
troller, which was previously idle, leaps into action, reads the requested sector from
the disk into an internal buffer, and begins using DMA to transfer the contents of the
buffer to memory one block at a time. If the bus can handle blocks that are 8 bytes
long, the disk controller would send a series of bus messages such as

disk controller #1 ⇒ all bus modules: {3328, block[1]}
disk controller #1 ⇒ all bus modules: {3336, block[2]}
etc . . .

Memory-mapped I/O is a popular interface because it provides a uniform memory-like
load and store interface to every bus module that implements it. On the other hand,

852�3 Organizing Computer Systems with Names and Layers

the designer must be cautious in trying to extend the memory-mapped model too far.
For example, trying to arrange so the processor can directly address individual bytes or
words on a magnetic disk could be problematic in a system with a 32-bit address space
because a disk as small as 4 gigabytes would use up the entire address space. More
important, the latency of a disk is extremely large compared with the cycle time of a
processor. For the store instruction to sometimes operate in a few nanoseconds (when
the address is in electronic memory) and other times require 10 milliseconds to com-
plete (when the address is on the disk) would be quite unexpected and would make
it difficult to write programs that have predictable performance. In addition, it would
violate a fundamental rule of human engineering, the principle of least astonishment
(see Sidebar 2.5). The bottom line is that the physical properties of the magnetic disk
make the DMA access model more appropriate than the memory-mapped I/O model.

Sidebar 2.5 Human Engineering and the Principle of Least Astonishment An
important principle of human engineering for usability, which for computer systems
means designing to make them easy to set up, easy to use, easy to program, and easy to
maintain, is the principle of least astonishment.

The principle of least astonishment

People are part of the system. The design should match the user’s experience,
 expectations, and mental models.

Human beings make mental models of the behavior of everything they encounter: com-
ponents, interfaces, and systems. If the actual component, interface, or system follows that
mental model, there is a better chance that it will be used as intended and less chance
that misuse or misunderstanding will lead to a mistake or disappointment. Since com-
plexity is relative to understanding, the principle also tends to help reduce complexity.

For this reason, when choosing among design alternatives, it is usually better to choose
one that is most likely to match the expectations of those who will have to use, apply,
or maintain the system. The principle should also be a factor when evaluating trade-
offs. It applies to all aspects of system design, especially to the design of human inter-
faces and to computer security.

Some corollaries are to be noted: Be consistent. Be predictable. Minimize side-effects.
Use names that describe. Do the obvious thing. Provide sensible interpretations for all
reasonable inputs. Avoid unnecessary variations.

Some authors prefer the words “principle of least surprise” to “principle of least
 astonishment”. When Bayesian statisticians invoke the principle of least surprise, they
usually mean “choose the mostly likely explanation”, a version of the closely related
Occam’s razor. (See the aphorism at the bottom of page 9.)

(Sidebar continues)

86 CHAPTER 2 Elements of Computer System Organization

Human Engineering and the Original Murphy’s Law. If you ask a group of peo-
ple “What is Murphy’s law?” most responses will be some variation of “If anything can
go wrong, it will”, followed by innumerable equivalents, such as the toast always falls
butter side down.

In fact, Murphy originally said something quite different. Rather than a comment
on the innate perversity of inanimate objects (sometimes known as Finagle’s law,
from a science fiction story), Murphy was commenting on a property of human
nature that one must take into account when designing complex systems: If you
design it so that it can be assembled wrong, someone will assemble it wrong.
Murphy was pointing out the wisdom of good human engineering of things that
are to be assembled: design them so that the only way to assemble them is the
right way.

Edward A. Murphy, Jr., was an engineer working on United States Air Force rocket
sled experiments at Edwards Air Force Base in 1949, in which Major John Paul Stapp
 volunteered to be subjected to extreme decelerations (40 Gs) to determine the limits
of human tolerance for ejection seat design. On one of the experiments, someone
wired up all of the strain gauges incorrectly, so at the end of Stapp’s (painful) ride
there was no usable data. Murphy said, in exasperation at the technician who wired
up the strain gauges, “if that guy can find a way to do it wrong, he will.” Stapp, who
as a hobby made up laws at every opportunity, christened this observation “Murphy’s
law,” and almost immediately began telling it to others in the different and now widely
known form “If anything can go wrong, it will.”

A good example of Murphy’s original observation in action showed up in an incident
on a Convair 580 cargo plane in 1997. Two identical control cables ran from a cockpit
control to the elevator trim tab, a small movable surface on the rear stabilizing wing
that, when adjusted up or down, forces the nose of the plane to rise or drop, respec-
tively. Upon take-off on the first flight after maintenance, the pilots found that the
plane was pitching nose-up. They tried adjusting the trim tab to maximum nose-down
position, but the problem just got worse. With much effort they managed to land
the plane safely. When mechanics examined the plane, they discovered that the two
cables to the trim tab had been interchanged, so that moving the control up caused
the trim tab to go down and vice versa*.

A similar series of incidents in 1988 and 1989 involved crossed connections in cargo
area smoke alarm signal wires and fire extinguisher control wires in the Boeing 737,
757, and 767 aircraft†.

*Transportation Safety Board of Canada, Report A97O0077, January 13, 2000, updated October 6,
2002.
†Karen Fitzgerald, “Boeing’s crossed connections”, IEEE Spectrum 26, 5 (May 1989), pages
30–35.

872�3 Organizing Computer Systems with Names and Layers

2.3.2 a software layer: The file abstraction

The middle and higher layers of a computer system are usually implemented as soft-
ware modules. To make this layered organization concrete, consider the file, a high-
level version of the memory abstraction. A file holds an array of bits or bytes, the
number of which the application chooses. A file has two key properties:

 ■ It is durable. Information, once stored, will remain intact through system shut-
downs and can be retrieved later, perhaps weeks or months later. Applications
use files to durably store documents, payroll data, e-mail messages, programs, and
anything else they do not want to be lost.

 ■ It has a name. The name of a file allows users and programs to store information
in such a way that they can find and use it again at a later time. File names also
make it possible for users to share information. One can write a named file and
tell a friend the file name, and then the friend can use the name to read the file.

Taken together, these two features mean that if, for example, Alice creates a new file
named “strategic plan”, writes some information in it, shuts down the computer, and
the next day turns it on again, she will then be able to read the file named “strategic
plan” and get back its content. Furthermore, she can tell Bob to look at the file named
“strategic plan”. When Bob asks the system to read a file with that name, he will read
the file that she created. Most file systems also provide other additional properties for
files, such as timestamps to determine when they were created, last modified, or last
used, assurances about their durability (a topic that Chapter 10 [on-line] revisits), and
the ability to control who may share them (one of the topics of Chapter 11 [on-line]).

The system layer implements files using modules from the hardware layer.
Figure 2.18 shows the pseudocode of a simple application that reads input from a
keyboard device, writes that input to a file, and also displays it on the display device.

character buf // buffer for input character
file ← open ("strategic plan", readwrite) // open file for reading and writing
input ← open ("keyboard", readonly) // open keyboard device for reading
display ← open ("display", writeonly) // open display device for writing

while not end_of_file (input) do
 read (input, buf, 1) // read 1 character from keyboard
 write (file, buf, 1) // store input into file
 write (display, buf, 1) // display input

close (file)
close (input)
close (display)

figure 2.18

Using the file abstraction to implement a display program, which also writes the keyboard input
in a file. For clarity, this program ignores the possibility that any of the abstract file primitives may
return an error status.

88 CHAPTER 2 Elements of Computer System Organization

A typical API for the file abstraction contains calls to open a file, to read and write
parts of the file, and to close the file. The open call translates the file name into a tem-
porary name in a local name space to be used by the read and write operations. Also,
open usually checks whether this user is permitted access to the file. As its last step,
open sets a cursor, sometimes called a file pointer, to zero. The cursor records an off-
set from the beginning of the file to be used as the starting point for reads and writes.
Some file system designs provide a separate cursor for reads and writes, in which case
open may initialize the write cursor to the number of bytes in the file.

A call to read delivers to the caller a specified number of bytes from the file, starting
from the read cursor. It also adds to the read cursor the number of bytes read so that
the next read proceeds where the previous read left off. If the program asks to read
bytes beyond the end of the file, read returns some kind of end-of-file status indicator.

Similarly, the write operation takes as arguments a buffer with bytes and a length, stores
those bytes in the file starting at the offset indicated by the write cursor (if the write cur-
sor starts at or reaches the end of the file, write usually implies extending the size of the
file), and adds to the write cursor the number of bytes written so that the next write can
continue from there. If there is not enough space on the device to write that many bytes,
the write procedure fails by returning some kind of device-full error status or exception.

Finally, when the program is finished reading and writing, it calls the close proce-
dure. close frees up any internal state that the file system maintains for the file (for
example, the cursors and the record of the temporary file name, which is no longer
meaningful). Some file systems also ensure that, when close returns, all parts of the
modified file have been stored durably on a non-volatile memory device. Other file
systems perform this operation in the background after close returns.

The file system module implements the file API by mapping bytes of the file to
disk sectors. For each file the file system creates a record of the name of the file and
the disk sectors in which it has stored the file. The file system also stores this record
on the disk. When the computer restarts, the file system must somehow discover the
place where it left these records so that it can again find the files. A typical procedure
for name discovery is for the file system to reserve one, well-known, disk sector such
as sector number 1, and use that well-known disk sector as a toehold to locate the
sectors where it left the rest of the file system information. A detailed description of
the unix file system API and its implementation is in Section 2.5.

One might wonder why the file API supports open and close in addition to read and
write; after all, one could ask the programmer to pass the file name and a file position
offset on each read and write call. The reason is that the open and close procedures mark
the beginning and the end of a sequence of related read and write operations so that the
file system knows which reads and writes belong together as a group. There are several
good reasons for grouping and for the use of a temporary file name within the grouping.
Originally, performance and resource management concerns motivated the introduc-
tion of open and close, but later implementations of the interface exploited the existence
of open and close to provide clean semantics under concurrent file access and failures.

Early file systems introduced open to amortize the cost of resolving a file name.
A file name is a path name that may contain several components. By resolving the file

892�3 Organizing Computer Systems with Names and Layers

name once on open and giving the result a simple name, read and write avoid having
to resolve the name on each invocation. Similarly, open amortizes the cost of checking
whether the user has the appropriate permissions to use the file.

close was introduced to simplify resource management: when an application invokes
close, the file system knows that the application doesn’t need the resources (e.g., the
cursor) that the file system maintains internally. Even if a second application removes a
file before a first application is finished reading and writing the file, the file system can
implement read and write procedures for the first application sensibly (for example, dis-
card the contents of the file only after everyone that opened the file has called close).

More recent file systems use open and close to mark the beginning and end of an
atomic action. The file system can treat all intervening read and write calls as a single
indivisible operation, even in the face of concurrent access to the file or a system
crash after some but not all of the writes have completed. Two opportunities ensue:

1. The file system can use the open and close operations to coordinate concurrent
access to a file: if one program has a file open and another program tries to
open that same file, the file system can make the second program wait until the
first one has closed the file. This coordination is an example of before-or-after
 atomicity, a topic that Section 5.2.4 explores in depth.

2. If the file system crashes (for example, because of a power failure) before the
application closes the file, none of the writes will be in the file when the system
comes back up. If it crashes after the application closed the file, all of the writes
will be in the file. Not all file systems provide this guarantee, known as all-or-
nothing atomicity, since it is not easy to implement correctly and efficiently, as
Chapter 9 [on-line] explains.

There is a cost to the open/close model: the file system must maintain per-client state
in the form of the resolved file name and the cursor(s). It is possible to design a com-
pletely stateless file interface. An example is the Network File System, described in
Section 4.5.

The file is such a convenient memory abstraction that in some systems (for exam-
ple, the unix system and its derivatives) every input/output device in a computer sys-
tem provides a file interface (see Figure 2.19). In such systems, files not only are an
abstraction for non-volatile memories (e.g., magnetic disks), but they are also a con-
venient interface to the keyboard device, the display, communication links, and so on.
In such systems, each I/O device has a name in the file naming scheme. A program
opens the keyboard device, reads bytes from the keyboard device, and then closes the
keyboard device, without having to know any details about the keyboard manage-
ment procedure, what type of keyboard it is, and the like. Similarly, to interact with
the display, a program can open the display device, write to it, and close it. The program
need not know any details about the display. In accordance with the principle of least
astonishment, each device management procedure provides some reasonable inter-
pretation for every file system method. The pseudocode of Figure 2.18 exemplifies
the benefit of this kind of design uniformity.

90 CHAPTER 2 Elements of Computer System Organization

One feature of such a uniform interface is that in many situations one can, by sim-
ply rebinding the name, replace an I/O device with a file, or vice versa, without modi-
fying the application program in any way. This use of naming in support of modularity
is especially helpful when debugging an application program. For example, one can
easily test a program that expects keyboard input by slipping a file filled with text in
the place of the keyboard device. Because of such examples, the file system abstrac-
tion has proven to be very successful.

2.4 lOOking back and ahead
This chapter has developed several ideas and concepts that provide useful back-
ground for the study of computer system design. First, it described the three major
abstractions used in designing computer systems—memory, interpreters, and com-
munication links. Then it presented a model of how names are used to glue together
modules based on those abstractions to create useful systems. Finally, it described
some parts of a typical modern layered computer system in terms of the three major
abstractions. With this background, we are now prepared to undertake a series of
more in-depth discussions of specific computer system design topics. The first such
in-depth discussion, in Chapter 3, is of the several engineering problems surrounding
the use of names. Each of the remaining chapters undertakes a similar in-depth discus-
sion of a different system design topic.

Before moving on to those in-depth discussions, the last section of this chapter is
a case study of how abstraction, naming, and layers appear in practice. The case study
uses those three concepts to describe the unix system.

Application
program

File
system

Device
managers

Map blocks into
tracks and sectors, read

and write them

Read characters from
keyboard

Implementations of OPEN, READ, WRITE, and CLOSE: check
permissions, map files into blocks, etc.

Write characters on
display

Word processing program

figure 2.19

Using the file abstraction and layering to integrate different kinds of input and output devices.
The file system acts as an intermediary that provides a uniform, abstract interface, and the
various device managers are programs that translate that abstract interface into the operational
requirements for different devices.

912�5 Case Study: unix File System Layering and Naming

2.5 case sTudy: unix® file sysTem layering and naming
The unix family of operating systems can trace its lineage back to the unix operating
system that was developed by Bell Telephone Laboratories for the Digital Equipment
Corporation PDP line of minicomputers in the late 1960s and early 1970s [Suggestions
for Further Reading 2.2], and before that to the Multics* operating system in the early
1960s [Suggestions for Further Reading 1.7.5 and 3.1.4]. Today there are many flavors
of unix systems with complex historical relationships; a few examples include GNU/
Linux, versions of GNU/Linux distributed by different organizations (e.g., Red Hat,
Ubuntu), Darwin (a unix operating system that is part of Apple’s operating system Mac
OS X), and several flavors of BSD operating systems. Some of these are directly derived
from the early unix operating system; others provide similar interfaces but have been
implemented from scratch. Some are the result of an effort by a small group of pro-
grammers, and others are the result of an effort by many. In the latter case, it is even
unclear how to exactly name the operating system because substantial parts come
from different teams.† The collective result of all these efforts is that operating systems
of the unix family run on a wide range of computers, including personal computers,
server computers, parallel computers, and embedded computers. Most of the unix
interface is an official standard,‡ and non-unix operating systems often support this
standard too. Because the source code of some versions is available to the public, one
can easily study the unix system.

This case study examines the various ways in which the unix file system uses names
in its design. In the course of examining how it implements its naming scheme, we will
also incidentally get a first-level overview of how the unix file system is organized.

2.5.1 application programming interface for the unix file system

A program can create a file with a user-chosen name, read and write the file’s content,
and set and get a file’s metadata. Example metadata include the time of last modifica-
tion, the user ID of the file’s owner, and access permissions for other users. (For a full
discussion of metadata see Section 3.1.2.) To organize their files, users can group them
in directories with user-chosen names, creating a naming network. Users can also graft
a naming network stored on a storage device onto an existing naming network, allow-
ing naming networks for different devices to be incorporated into a single large nam-

*The name unix evolved from Unics, which was a word joke on Multics.
†We use “Linux” for the Linux kernel, while we use “GNU/Linux” for the complete system,
 recognizing that this naming convention is not perfect either because there are pieces of the system
that are neither GNU software nor part of the kernel (e.g., the X Window System; see Sidebar 4.4).
‡POSIX® (Portable Operating System Interface), Federal Information Processing Standards (FIPS)
151-2. FIPS 151-2 adopts ISO/IEC 9945-1: 2003 (IEEE Std. 1003.1: 2001) Information Technology-
Portable Operating System Interface (POSIX)-Part 1: System Application: Program Interface (API)
[C Language].

92 CHAPTER 2 Elements of Computer System Organization92 CHAPTER 2 Elements of Computer System Organization

ing network. To support these operations, the unix file system provides the application
programming interface (API) shown in Table 2.1.

To tackle the problem of implementing this API, the unix file system employs a
divide-and-conquer strategy. The unix file system makes use of several hidden layers of
machine-oriented names (that is, addresses), one on top of another, to implement files.
It then applies the unix durable object naming scheme to map user-friendly names to
these files. Table 2.2 illustrates this structure.

In the rest of this section we work our way up from the bottom layer of
Table 2.2 to the top layer, proceeding from the lowest layer of the system up toward

Table 2.1 unix File System Application Programming Interface

Procedure Brief Description

open (name, flags, mode) Open file name. If the file doesn’t exist and flags is set,
create file with permissions mode. Set the file cursor
to 0. Returns a file descriptor.

read (fd, buf, n) Read n bytes from the file at the current cursor and
increase the cursor by the number of bytes read.

write (fd, buf, n) Write n bytes at the current cursor and increase the
cursor by the bytes written.

seek (fd, offset, whence) Set the cursor to offset bytes from beginning, end, or
current position.

close (fd) Delete file descriptor. If this is the last reference to the
file, delete the file.

fsync (fd) Make all changes to the file durable.

stat (name) Read metadata of file.

chmod, chown, etc. Various procedures to set specific metadata.

rename (from_name, to_name) Change name from from_name to to_name

link (name, link_name) Create a hard link link_name to the file name.

unlink (name) Remove name from its directory. If name is the last
name for a file, remove file.

symlink (name, link_name) Create a symbolic name link_name for the file name.

mkdir (name) Create a new directory named name.

chdir (name) Change current working directory to name.

chroot (name) Change the default root directory to name.

mount (name, device) Graft the file system on device onto the name space
at name.

unmount (name) Unmount the file system at name.

932�5 Case Study: unix File System Layering and Naming

the user. This description corresponds closely to the implementation of Version 6 of
the unix system, which dates back to the early 1970s. Version 6 is well documented
[Suggestions for Further Reading 2.2.2] and captures the important ideas that are
found in many modern unix file systems, but modern versions are more complex; they
provide better robustness and handle large files, many files, and so on, more efficiently.
In a few places we will point out some of these differences, but the reader is encour-
aged to consult papers in the file system literature to find out how modern unix file
systems work and are evolving.

2.5.2 The block layer

At the bottom layer the unix file system names some physical device such as a mag-
netic disk, flash disk, or magnetic tape that can store data durably. The storage on
such a device is divided into fixed-size units, called blocks. For a magnetic disk (see
Sidebar 2.2), a block corresponds to a small number of disk sectors. A block is the
smallest allocation unit of disk space, and its size is a trade-off between several goals.
A small block reduces the amount of disk wasted for small files; if many files are smaller
than 4 kilobytes, a 16-kilobyte block size wastes space. On the other hand, a very small
block size may incur large data structures to keep track of free and allocated blocks.
In addition, there are performance considerations that impact the block size, some of
which we discuss in Chapter 6. In version 6, the unix file system used 512-byte blocks,
but modern unix file systems often use 8-kilobyte blocks.

The names of these blocks are numbers, which typically correspond to the offset
of the block from the beginning of the device. In the bottom naming layer, a storage

Table 2.2 The Naming Layers of the unix File System

Layer Purpose

Symbolic link layer Integrate multiple file systems with
 symbolic links. ↑

Absolute path name layer Provide a root for the naming hierarchies.
user-oriented

names

Path name layer Organize files into naming hierarchies. ↓
File name layer Provide human-oriented names for files.

machine-user
interface

Inode number layer Provide machine-oriented names for files. ↑
File layer Organize blocks into files.

machine-oriented
names

Block layer Identify disk blocks. ↓

94 CHAPTER 2 Elements of Computer System Organization

device can be viewed as a context that binds block numbers to physical blocks. The
name-mapping algorithm for a block device is simple: it takes as input a block number
and returns the block. Actually, we don’t really want the block itself—that would be a
pile of iron oxide. What we want is the contents of the block, so the algorithm actually
implements a fixed mapping between block name and block contents. If we represent
the storage device as a linear array of blocks, then the following code fragment imple-
ments the name-mapping algorithm:

procedure block_number_to_block (integer b) returns block
 return device[b]

In this simple algorithm the variable name device refers to some particular physi-
cal device. In many devices the mapping is more complicated. For example, a hard
drive might keep a set of spare blocks at the end and rebind the block numbers of
any blocks that go bad to spares. The hard drive may itself be implemented in layers,
as will be seen in Section 8.5.4 [on-line]. The value returned by block_number_to_block
is the contents of block b.

Name discovery: The names of blocks are integers from a compact set, but the
block layer must keep track of which blocks are in use and which are available
for assignment. As we will see, the file system in general has a need for a descrip-
tion of the layout of the file system on disk. As an anchor for this information, the
unix file system starts with a super block, which has a well-known name (e.g., 1).
The super block contains, for example, the size of the file system’s disk in blocks.
(Block 0 typically stores a small program that starts the operating system; see
Sidebar 5.3.)

Different implementations of the unix file system use different representations
for the list of free blocks. The version 6 implementation keeps a list of block
numbers of unused blocks in a linked list that is stored in some of the unused
blocks. The block number of the first block of this list is stored in the super block.
A call to allocate a block leads to a procedure in the block layer that searches the
list array for a free block, removes it from the list, and returns that block’s block
number.

Modern unix file systems often use a bitmap for keeping track of free blocks. Bit i in
the bitmap records whether block i is free or allocated. The bitmap itself is stored at a
well-known location on the disk (e.g., right after the super block). Figure 2.20 shows
a possible disk layout for a simple file system. It starts with the super block, followed
by a bitmap that records which disk blocks are in use. After the bitmap comes the
inode table, which has one entry for each file (as explained next), followed by blocks
that are either free or allocated to some file. The super block contains the size of the
bitmap and inode table in blocks.

Super
block

Boot
block

Bitmap for
free blocks

Inode table
File

block
File

block• • •

0 1 • • • n 21
figure 2.20

Possible disk layout
for a simple file
system.

952�5 Case Study: unix File System Layering and Naming

2.5.3 The file layer

Users need to store items that are larger than one block in size and that may grow or
shrink over time. To support such items, the unix file system introduces a next naming
layer for files. A file is a linear array of bytes of arbitrary length. The file system needs
to record in some way which blocks belong to each file. To support this requirement,
the unix file system creates an index node, or inode for short, as a container for meta-
data about the file. Our initial declaration of an inode is:

structure inode
 integer block_numbers[N] // the numbers of the blocks that constitute the file
 integer size // the size of the file in bytes

The inode for a file is thus a context in which the various blocks of the file are named
by integer block numbers. With this structure, a simplified name-mapping algorithm
for resolving the name of a block in a file is as follows:

procedure index_to_block_number (inode instance i, integer index) returns integer
 return i.block_numbers[index]

The version 6 unix file system uses this algorithm for small files, which are limited
to N 5 8 blocks. For large files, version 6 uses a more sophisticated algorithm for
mapping the index-th block of an inode to a block number. The first seven entries
in i.block_numbers are indirect blocks. Indirect blocks do not contain data, but block
numbers. For example, with a block size of 512 bytes and an index of 2 bytes (as in
Version 6), an indirect block can contain 256 2-byte block numbers. The eighth entry
is a doubly indirect block (blocks that contain block numbers of indirect blocks). This
design with indirect and doubly indirect blocks allows for (N 2 1) 3 256 1 1 3 256 3
256 5 67,329 blocks when N 5 8, about 32 megabytes.* Problem set 1 explores some
design trade-offs to allow the file system to support large files. Some modern unix file
systems use different representations or more sophisticated data structures, such as
B1 trees, to implement files.

The unix file system allows users to name any particular byte in a file by layering
the previous two naming schemes and specifying the byte number as an offset from
the beginning of the file:

1 procedure inode_to_block (integer offset, inode instance i) returns block
2 o ← offset / blocksize

3 b ← index_to_block_number (i, o)
4 return block_number_to_block (b)

The value returned is the entire block that holds the value of the byte at offset.
Version 6 used for offset a 3-byte number, which limits the maximum file size to
224 bytes. Modern unix file systems use a 64-bit number. The procedure returns the

*The implementation of Version 6, however, restricts the maximum number of blocks per file to 215.

96 CHAPTER 2 Elements of Computer System Organization

entire block that contains the named byte. As we will see in Section 2.5.11, read uses
this procedure to return the requested bytes.

2.5.4 The inode number layer

Instead of passing inodes themselves around, it would be more convenient to name
them and pass their names around. To support this feature, the unix file system pro-
vides another naming layer that names inodes by an inode number. A convenient way
to implement this naming layer is to employ a table that directly contains all inodes,
indexed by inode number. Here is the naming algorithm:

1 procedure inode_number_to_inode (integer inode_number) returns inode
2 return inode_table[inode_number]

where inode_table is an object that is stored at a fixed location on the storage device
(e.g., at the beginning). The name-mapping algorithm for inode_table just returns the
starting block number of the table.

Name discovery: inode numbers, like disk block numbers, are a compact set of
integers, and again the inode number layer must keep track of which inode num-
bers are in use and which are free to be assigned. As with block number assignment,
 different implementations use various representations for a list of free inodes and
provide calls to allocate and deallocate inodes. In the simplest implementation, the
inode contains a field recording whether or not it is free.

By putting these three layers together, we obtain the following procedure:

1 procedure inode_number_to_block (integer offset, integer inode_number)
2 returns block
3 inode instance i ← inode_number_to_inode (inode_number)
4 o ← offset / blocksize

5 b ← index_to_block_number (i, o)
6 return block_number_to_block (b)

This procedure returns the block that contains the byte at offset in the file named by
inode_number. This procedure traverses three layers of naming. There are numbers for
storage blocks, numbered indexes for blocks belonging to an inode, and numbers for
inodes.

2.5.5 The file name layer

Numbers are convenient names for use by a computer (numbers can be stored in
fixed-length fields that simplify storage allocation) but are inconvenient names for
use by people (numbers have little mnemonic value). In addition, block and inode
numbers specify a location, so if it becomes necessary to rearrange the physical stor-
age, the numbers must change, which is again inconvenient for people. The unix file
system deals with this problem by inserting a naming layer whose sole purpose is

972�5 Case Study: unix File System Layering and Naming

to hide the metadata of file management.
Above this layer is a user-friendly nam-
ing scheme for durable objects—files
and input/output devices. This naming
scheme again has several layers. The
most visible component of the durable
object naming scheme is the directory.
In the unix file system, a directory is a

context containing a set of bindings between character-string names and inode
numbers.

To create a file, the unix file system allocates an inode, initializes its metadata, and
binds the proposed name to that inode in some directory. As the file is written, the file
system allocates blocks to the inode.

By default, the unix file system adds the file to the current working directory. The
current working directory is a context reference to the directory in which the active
application is working. The form of the context reference is just another inode num-
ber. If wd is the name of the state variable that contains the working directory for a
running program (called a process in the unix system), one can look up the inode
number of the just-created file by supplying wd as the second argument to a proce-
dure such as:

procedure name_to_inode_number (character string filename, integer dir) returns integer
 return lookup (filename, dir)

The procedure chdir, whose implementation we describe later, allows a process
to set wd.

To represent a directory, the unix file system reuses the mechanisms developed so
far: it represents directories as files. By convention, a file that represents a directory
contains a table that maps file names to inode numbers. For example, Figure 2.21 is a
directory with two file names (“program” and “paper”), which are mapped to inode
numbers 10 and 12, respectively. In Version 6, the maximum length of a name is 14
bytes, and the entries in the table have a fixed length of 16 bytes (14 for the name and
2 for the inode number). Modern unix file systems allow for variable-length names, and
the table representation is more sophisticated.

To record whether an inode is for a directory or a file, the unix file system extends
the inode with a type field:

structure inode
 integer block_numbers[N] // the numbers of the blocks that constitute the file
 integer size // the size of the file in bytes
 integer type // type of file: regular file, directory, . . .

mkdir creates a zero-length file (directory) and sets type to directory. Extensions intro-
duced later will add additional values for type.

File name

program

paper

10

12

Inode number

figure 2.21

A directory.

98 CHAPTER 2 Elements of Computer System Organization

With this representation of directories and inodes, lookup is as follows:

1 procedure lookup (character string filename, integer dir) returns integer
2 block instance b
3 inode instance i ← inode_number_to_inode (dir)
4 if i.type directory then return failure

5 for offset from 0 to i.size – 1 do
6 b ← inode_number_to_block (offset, dir)
7 if string_match (filename, b) then
8 return inode_number (filename, b)
9 offset ← offset 1 blocksize
10 return failure

lookup reads the blocks that contain the data for the directory dir and searches for the
string filename in the directory’s data. It computes the block number for the first block
of the directory (line 6) and the procedure string_match (no code shown) searches
that block for an entry for the name filename. If there is an entry, inode_ number (no code
shown) returns the inode number in the entry (line 8). If there is no entry, lookup com-
putes the block number for the second block, and so on, until all blocks of the directory
have been searched. If none of the blocks contain an entry for filename, lookup returns
an error (line 10). As an example, an invocation of lookup (“program”, dir), where dir is
the inode number for the directory of Figure 2.21, would return the inode number 10.

2.5.6 The path name layer

Having all files in a single directory makes it hard for users to keep track of large num-
bers of files. Enumerating the contents of a large directory would generate a long list
that is organized simply (e.g., alphabetically) at best. To allow arbitrary groupings of
user files, the unix file system permits users to create named directories.

A directory can be named just like a file, but the user also needs a way of nam-
ing the files in that directory. The solution is to add some structure to file names: for
example, “projects/paper”, in which “projects” names a directory and “paper” names a
file in that directory. Structured names such as these are examples of path names. The
unix file system uses a virgule (forward slash) as a separator of the components of a
path name; other systems choose different separator characters such as period, back
slash, or colon. With these tools, users can create a hierarchy of directories and files.

The name-resolving algorithm for path names can be implemented by layering a
recursive procedure over the previous directory lookup procedure:

1 procedure path_to_inode_number (character string path, integer dir) returns integer
2 if (plain_name (path)) return name_to_inode_number (path, dir)
3 else
4 dir ← lookup (first (path), dir)
5 path ← rest (path)
6 return path_to_inode_number (path, dir)

The function plain_name (path) scans its argument for the unix standard path
name separator (forward slash) and returns true if it does not find one. If there is no

992�5 Case Study: unix File System Layering and Naming

 separator, the program resolves the simple name to an inode number in the requested
directory (line 2). If there is a separator in path, the program takes it to be a path
name and goes to work on it (lines 4 through 6). The function first peels off the first
component name from the path, and rest returns the remainder of the path name.
Thus, for example, the call path_to_name ("projects/paper", wd) results in the recur-
sive call path_to_name ("paper", dir), where dir is the inode number for the directory
“projects”.

With path names, one often has to type names with many components. To address
this annoyance, the unix file system supports a change directory procedure, chdir,
allowing a process to set its working directory:

procedure chdir (path character string)
 wd ← path_to_inode_number (path, wd)

When a process starts, it inherits the working directory from the parent process that
created this process.

2.5.7 links

To refer to files in directories other than the current working directory still requires
typing long names. For example, while we are working in the directory “projects”—
after calling chdir ("projects")—we might have to refer often to the file “Mail/inbox/
new-assignment”. To address this annoyance, the unix file system supports synonyms
known as links. In the example, we might want to create a link for this file in the cur-
rent working directory, “projects”. Invoking the link procedure with the following
arguments:

link ("Mail/inbox/new-assignment", "assignment")

makes “assignment” a synonym for “Mail/inbox/new-assignment” in “projects”, if
“assignment” doesn’t exist yet. (If it does, link will return an error saying “assignment”
already exists.) With links, the directory hierarchy turns from a strict hierarchy into a
directed graph. (The unix file system allows links only to files, not to directories, so the
graph is not only directed but acyclic. We will see why in a moment.)

The unix file system implements links simply as bindings in different contexts that
map different file names to the same inode number; thus, links don’t require any
extension to the naming scheme developed so far. For example, if the inode number
for “new-assignment” is 481, then the directory “Mail/inbox” contains an entry {“new-
assignment”, 481} and after the above command is executed the directory “projects”
contains an entry {“assignment”, 481}. In unix system jargon, “projects/assignment” is
now linked to “Mail/inbox/new-assignment”.

When a file is no longer needed, a process can remove a file using unlink (filename),
indicating to the file system that the name filename is no longer in use. unlink removes
the binding of filename to its inode number from the directory that contains filename.
The file system also puts filename’s inode and the blocks of filename’s inode on the free
list if this binding is the last one containing the inode’s number.

100 CHAPTER 2 Elements of Computer System Organization

Before we added links, a file was bound to a name in only one directory, so if a
process asks to delete the name from that directory, the file system can also delete
the file. But now that links have been added, when a process asks to delete a name,
there may still be names in other directories bound to the file, in which case the
file shouldn’t be deleted. This raises the question, when should a file be deleted?
The unix file system deletes a file when a process removes the last binding for a
file. The unix file system implements this policy by keeping a reference count in
the inode:

structure inode
 integer block_numbers[N]
 integer size
 integer type
 integer refcnt

Whenever it makes a binding to an inode, the file system increases the reference
count of that inode. To delete a file, the unix file system provides an unlink(filename)
procedure, which deletes the binding specified by filename. At the same time the
file system decreases the reference count in the corresponding inode by one. If the
decrease causes the reference count to go to zero, that means there are no more bind-
ings to this inode, so the file system can free the inode and its corresponding blocks.
For example, unlink (“Mail/inbox/new-assignment”) removes the directory entry
“new-assignment” in the directory “Mail/inbox”, but not “assignment”, because after
the unlink the refcnt in inode 481 will be 1. Only after calling unlink (“assignment”)
will the inode 481 and its blocks be freed.

Using reference counts works only if there are no cycles in the naming graph. To
ensure that the unix naming network is a directed graph without cycles, the unix file
system forbids links to directories. To see why cycles are avoided, consider a directory
“a”, which contains a directory “b”. If a program invokes link ("a/b/c", "a") in the direc-
tory that contains “a”, then the system would return an error and not perform the
operation. If the system had performed this operation, it would have created a cycle
from “c” to “a” and would have increased the reference count in the inode of “a” by
one. If a program then invokes unlink ("a"), the name “a” is removed, but the inode and
the blocks of “a” wouldn’t be removed because the reference count in the inode of “a”
is still positive (because of the link from “c” to “a”). But once the name “a” would be
removed, a user would no longer be able to name the directory “a” and wouldn’t be
able to remove it either. In that case, the directory “a” and its subdirectories would
be disconnected from the naming graph, but the system would not remove it because
the reference count in the inode of “a” is still positive. It is possible to detect this situa-
tion, for example by using garbage collection, but it is expensive to do so. Instead, the
designers chose a simpler solution: don’t allow links to directories, which rules out
the possibility of cycles.

There are two special cases, however. First, by default each directory contains a
link to itself; the unix file system reserves the string “.” (a single dot) for this purpose.
The name “.” thus allows a process to name the current directory without knowing

1012�5 Case Study: unix File System Layering and Naming

which the directory it is. When a directory is created, the directory’s inode has a refer-
ence count of two: one for the inode of the directory and one for the link “.”, because
it points to itself. Because “.” introduces a cycle of length 0, there is no risk that part
of the naming network will become disconnected when removing a directory. When
unlinking a directory, the file system just decreases the reference count of the direc-
tory’s inode by 2.

Second, by default, each directory also contains a link to a parent directory; the
file system reserves the string “..” (two consecutive dots) for this purpose. The name
“..” allows a process to name a parent directory and, for example, move up the file
hierarchy by invoking chdir (".."). The link doesn’t create problems. Only when a direc-
tory has no other entries than “.” and “..” can it be removed. If a user wants to remove
a directory “a”, which contains a directory “b”, then the file system refuses to do so
until the user first has removed “b”. This rule ensures that the naming network cannot
become disconnected.

2.5.8 renaming

Using link and unlink, Version 6 implemented rename (from_name, to_name) as follows:

1 unlink (to_name)
2 link (from_name, to_name)
3 unlink (from_name)

This implementation, however, has an undesirable property. Programs often use rename
to change a working copy of a file into the official version; for example, a user may be
editing a file “x”. The text editor actually makes all changes to a temporary file “#x”.
When the user saves the file, the editor renames the temporary file “#x” to “x”.

The problem with implementing rename using link and unlink is that if the com-
puter fails between steps 1 and 2 and then restarts, the name to_name (“x” in this case)
will be lost, which is likely to surprise the user, who is unlikely to know that the file
still exists but under the name “#x”. What is really needed is that “#x” be renamed to
“x” in a single, atomic operation, but that requires atomic actions, which are the topic
of Chapter 9 [on-line].

Without atomic actions, it is possible to implement the following slightly weaker
specification for rename: if to_name already exists, an instance of to_name will always
exist, even if the system should fail in the middle of rename. This specification is
good enough for the editor to do the right thing and is what modern versions
provide.

Modern versions implement this specification in essence as follows:

1 link (from_name, to_name)
2 unlink (from_name)

Because one cannot link to a name that already exists, rename implements the effects
of these two calls by manipulating the file system structures directly. rename first
changes the inode number in the directory entry for to_name to the inode number for

102 CHAPTER 2 Elements of Computer System Organization

from_name on disk. Then, rename removes the directory entry for from_name. If the file
system fails between these two steps, then on recovery the file system must increase
the reference count in from_name’s inode because both from_name and to_name are
pointing to the inode. This implementation ensures that if to_name exists before the
call to rename, it will continue to exist, even if the computer fails during rename.

2.5.9 The absolute path name layer

The unix system provides each user with a personal directory, called a user’s home
directory. When a user logs on to a unix system, it starts a command interpreter (known
as the shell) through which a user can interact with the system. The shell starts with
the working directory (wd) set to the inode number of the user’s home directory. With
the above procedures, users can create personal directory trees to organize the files
in their home directory.

But having several personal directory trees does not allow one user to share files
with another. To do that, one user needs a way of referring to the names of files that
belong to another user. The easiest way to accomplish that is to bind a name for each
user to that user’s top-level directory, in some context that is available to every user.
But then there is a requirement to name this systemwide context. Typically, there are
needs for other systemwide contexts, such as a directory containing shared program
libraries. To address these needs with a minimum of additional mechanisms, the file
system provides a universal context, known as the root directory. The root directory
contains bindings for the directory of users, the directory containing program librar-
ies, and any other widely shared directories. The result is that all files of the system are
integrated into a single directory tree (with restricted cross-links) based on the root.

This design leaves a name discovery question: how can a user name the root direc-
tory? Recall that name lookup requires a context reference—the name of a directory
inode—and until now that directory inode has been supplied by the working directory
state variable. To implement the root, the file system simply declares inode number 1 to
be the inode for the root directory. This well-known name can then be used by any user
as the starting context in which to look up the name of a shared context, or another user
(or even to look up one’s own name, to set the working directory when logging in).

The file system actually provides two ways to refer to things in the root directory.
Starting from any directory in the system, one can use the name “..” to name that direc-
tory’s parent, “../..” to name the directory above that, and so on until the root directory is
reached. A user can tell that the root directory is reached, because “..” in the root direc-
tory names the root directory. That is, in the root directory, both “.” and “..” are links to
the root directory. The other way is with absolute path names, which in the unix file sys-
tem are names that start with a “/”, for example, “/Alice/Mail/inbox/new-assignment”.

To support absolute path names as well as relative path names, we need one more
layer in the naming scheme:

1 procedure generalpath_to_inode_number (character string path) returns integer
2 if (path[0] = "/") return path_to_inode_number(path, 1)
3 else return path_to_inode_number(path, wd)

1032�5 Case Study: unix File System Layering and Naming

At this point we have completed a naming scheme that allows us to name and
share durable storage on a single disk. For example, to find the blocks corresponding
to the file “/programs/pong.c” with the information in Figure 2.22, we start by find-
ing the inode table, which starts at a block number (block 4 in our example) stored
in the super block (not shown in this figure, but see Figure 2.20). From there we
locate the root inode (which is known to be inode number 1). The root inode con-
tains the block numbers that in turn contain the blocks of the root directory; in the
figure the root starts in block number 14. Block 14 lists the entries in the root direc-
tory: “programs” is named by inode number 7. The inode table says that data for inode
number 7 starts in block number 23, which contains the contents of the “ programs”
directory. The file “pong.c” is named by inode number 9. Referring once more to the
inode table, to see where inode 9 is stored, we see that the data corresponding to
inode 9 starts in block number 61. In short, directories and files are carefully laid out
so that all information can be found by starting from the well-known location of the
root inode.

The default root directory in Version 6 is inode 1. Version 7 added a call, chroot, to
change the root directory for a process. For example, a Web server can be run in the
corner of the unix name space by changing its root directory to, for example, “/tmp”.
After this call, the root directory for the Web server corresponds to the inode number
of the directory “/tmp” and “..” in “/tmp” is a link to “/tmp”. Thus, the server can name
only directories and files below “/tmp”.

Inode table

Numbered blocks

14 programs
data

14

1 7

23

23

pong.c61

9

61

pong(){
 …
}

Block numbers

File names

37
16

28
55

44
15

4 5 6

Inode #’s

7 … … …

Inode #’s

Root
directory

A
directory

A
file

7
6

9

Root inode

51

figure 2.22

Example disk layout for a unix file system, refining Figure 2.20 by focusing on the inode table and
data blocks. The inode table is a group of contiguous blocks starting at a well-known address,
found in the super block (not shown). In this example, blocks 4, 5, and 6 contain the inode table,
while blocks 7–61 contain directories and files. The root inode is by convention the well-known
 inode #1. Typically, inodes are smaller than a block, so in this example there are four inodes in
each block. Blocks #14, #37, and #16 constitute the root directory, while block #23 is the first of
four blocks of the directory named “/programs”, and block #61 is the first block of the three-
block file “/programs/pong.c”.

104 CHAPTER 2 Elements of Computer System Organization

2.5.10 The symbolic link layer

To allow users to name files on other disks, the unix file system supports an operation
to attach new disks to the name space. A user can choose the name under which each
device is attached: for example, the procedure

mount ("/dev/fd1", "/flash")

grafts the directory tree stored on the physical device named “/dev/fd1” onto the
directory “/flash”. (This command demonstrates that each device also has a name in
the same object name space we have been describing; the file corresponding to a
device typically contains information about the device itself.) Typically mounts do not
survive a shutdown: after a reboot, the user has to explicitly remount the devices. It
is interesting to contrast the elegant unix approach with the DOS approach, in which
devices are named by fixed one-character names (e.g., “C:”).

The unix file system implements mount by recording in the in-memory inode for
“flash” that a file system has been mounted on it and keeps this inode in memory until
at least the corresponding unmount. In memory, the system also records the device and
the root inode number of the file system that has been mounted on it. In addition, it
records in the in-memory version of the inode for “/dev/fd1” what its parent inode is.

The information for mount points is all recorded in volatile memory instead of on
disk and doesn’t survive a computer failure. After a failure, the system administrator
or a program must invoke mount again. Supporting mount also requires a change to the
file name layer: if lookup runs into an inode on which a file system is mounted, it uses
the root inode of the mounted file system for the lookup.

unmount undoes the mount.

With mounted file systems, synonyms become a more difficult problem because
per mounted file system there is an address space of inode numbers. Every inode
number has a default context: the disk on which it is located. Thus, there is no way
for a directory entry on one disk to bind to an inode number on a different disk.
This problem can be approached in several ways, two of which are: (1) make inodes
unique across all disks or (2) create synonyms for files on other disks in a different
way. The unix system chooses the second approach by using indirect names called
symbolic or soft links, which bind a file name to another file name. Most systems use
method (2) because of the complications that would be involved in trying to keep
inode numbers universally unique, small in size, and fast to resolve.

Using the procedure symlink, users can create synonyms for files in the same file
system or for files in mounted file systems. The file system implements the procedure
symlink by allowing the type field of an inode to be a symlink, which tells whether the
blocks associated with the inode contain data or a path name:

structure inode
 integer block_numbers[N]
 integer size
 integer type // Type of inode: regular file, directory, symbolic link, . . .
 integer refcnt

1052�5 Case Study: unix File System Layering and Naming

If the type field has value symlink, then the data in the array blocks[i] actually con-
tains the characters of a path name rather than a set of inode numbers.

Soft links can be implemented by layering them over generalpath_to_node_number:

1 procedure pathname_to_inode (character string filename) returns inode
2 inode instance i
3 inode_number ← generalpath_to_inode_number (filename)
4 i ← inode_number_to_inode (inode_number)
5 if i.type = symbolic then
6 i = generalpath_to_inode_number (coerce_to_string (i.block_numbers))
7 return i

The value returned by pathname_to_inode is the contents of the inode for the file
named by filename. The procedure first looks up the inode number for filename. Then,
it looks up the the inode using inode_number_to_inode. If the inode indicates that this
file is a symbolic link, the procedure interprets the contents of data of the file as a path
name and invokes generalpath_to_inode_number again.

We now have two types of synonyms. A direct binding to an inode number is called
a hard link, to distinguish it from a soft link. Continuing an earlier example, a soft link to
“Mail/inbox/new-assignment” would contain the string “Mail/inbox/new-assignment”,
rather than the inode number 481. A soft link is an example of an indirect name: it
binds a name to another name in the same name space, while a hard link binds a name
to an inode number, which is a name in a lower-layer name space. As a result, the soft
link depends on the file name “Mail/inbox/new-assignment”; if the user changes the
file’s name or deletes the file, then “projects/assignment”, the link, will end up as a dan-
gling reference (Section 3.1.6 discusses dangling references). But because it links by
name rather than by inode number, a soft link can point to a file on a different disk.

Recall that the unix system forbids cycles of hard links, so that it can use reference
counts to detect when it is safe to reclaim the disk space for a file. However, you
can still form cycles with soft links: a name deep down in the tree can, for example,
name a directory high up in the tree. The resulting structure is no longer a directed
 acyclic graph, but a fully general naming network. Using soft links, a program can
even invoke symlink (“cycle”, “cycle”), creating a synonym for a file name that doesn’t
have a file associated with it! If a process opens such a file, it will follow the link chain
only a certain number of steps before reporting an error such as “Too many levels of
soft links”.

Soft links have another interesting behavior. Suppose that the working directory is
“/Scholarly/programs/www” and that this working directory contains a symbolic link
named “CSE499-web” to “/Scholarly/CSE499/www”. The following calls

chdir ("CSE499-web")
chdir ("..")

leave the caller in “/Scholarly/CSE499” rather than back where the user started. The
reason is that “..” is resolved in the new default context, “/Scholarly/CSE499/www”,
rather than what might have been the intended context, “/Scholarly/programs/www”.
This behavior may be desirable or not, but it is a direct consequence of the unix

106 CHAPTER 2 Elements of Computer System Organization

naming semantics; the Plan 9 system has a different plan,* which is also explored in
 exercises 3.2 and 3.3.

In summary, much of the power of the unix object naming scheme comes from
its layers of naming. Table 2.3 reprises Table 2.2, this time showing the name, value,
context, and pseudocode procedure used at each layer interface. (Although we have
examined each of the layers in this table, the algorithms we have demonstrated have
in some cases bridged across layers in ways not suggested by the table.) The general
design technique has been to introduce for each problem another layer of naming, an
application of the principle decouple modules with indirection.

2.5.11 implementing the file system api

In the process of describing how the unix file system is structured, we saw how it
implements chdir, mkdir, link, unlink, rename, symlink, mount, and unmount. We complete
the description of the file system API by describing the implementation of open, read,
write, and close. Before describing their implementation, we describe what features
they must support.

*Rob Pike. Lexical File Names in Plan 9 or Getting Dot-Dot Right. Proceedings of the 2000 USENIX
Technical Conference (2000), San Diego, pages 85–92.

Table 2.3 The unix Naming Layers, with Details of the Naming Scheme of Each Layer

Layer Names Values Context Name-Mapping Algorithm

Symbolic
link

Path
names

Path
names

The
directory
hierarchy

pathname_to_general_path

↑
Absolute
path
name

Absolute
path
names

Inode
 numbers

The root
directory

generalpath_to_inode_ number user-oriented
names

Path
name

 Relative
path
names

Inode
 numbers

The
 working
directory

path_to_inode_number

↓
File
name

File
names

Inode
 numbers

A direc-
tory

name_to_inode_number machine-user
interface

Inode
number

Inode
 numbers

Inodes The inode
table

inode_number_to_inode ↑
File Index

 numbers
Block
 numbers

An inode index_to_block_number machine-
 oriented names

Block Block
 numbers

Blocks The disk
drive

block_number_to_block ↓

1072�5 Case Study: unix File System Layering and Naming

The file system allows users to control who has access to their files. An owner of a
file can specify with what permissions other users can make accesses to the file. For
example, the owner may specify that other users have permission only to read a file
but not to write it. open must check whether the caller has the appropriate permis-
sions. As a sophistication, a file can be owned by a group of users. Chapter 11 [on-line]
discusses security in detail, so we will skip the details here.

The file system records timestamps that capture the date and time of the last
access, last modification to a file, and last change to a file’s inode. This information is
important for programs such as incremental backup, which must determine which
files have changed since the last time backup ran. The file system procedures must
update these values. For example, read updates last access time, write updates last
modification time and change time, and link updates last change time.

open returns a short name for a file, called a file descriptor (fd), which read, write,
and close use to name the file. Each process starts with three open files: “standard in”
(file descriptor 0), “standard out” (file descriptor 1), and “standard error” (file descrip-
tor 2). A file descriptor may name a keyboard device, a display device, or a file on disk;
a program doesn’t need to know. This setup allows a designer to develop a program
without having to worry about where the program’s input is coming from and where
the program’s output is going to; the program just reads from file descriptor 0 and
writes to file descriptor 1.

Several processes can use a file concurrently (e.g., several processes might
write to the display device). If several processes open the same file, their read
and write operations have their own file cursor for that file. If one process opens
a file, and then passes the file descriptor for that file to another process, then the
two processes share the cursor of the file. This latter case is common because in
the unix system when one process (the parent) starts another process (the child),
the child inherits all open file descriptors from the parent. This design allows the
parent and child, for instance, to share a common output file correctly. If the child
writes to the output file, for example, after the parent has written to it, the output
of the child appears after the output of the parent because they share the cursor.

If one process has a file open and another process removes the last name pointing
to that file, the inode isn’t freed until the first process calls close.

To support these features, the inode is extended as follows:

structure inode
 integer block_numbers[N] // the number of blocks that constitute the file
 integer size // the size of the file in bytes
 integer type // type of file: regular file, directory, symbolic link
 integer refcnt // count of the number of names for this inode
 integer userid // the user ID that owns this inode
 integer groupid // the group ID that owns this inode
 integer mode // inode’s permissions
 integer atime // time of last access (read, write, . . .)
 integer mtime // time of last modification
 integer ctime // time of last change of inode

108 CHAPTER 2 Elements of Computer System Organization

To implement open, read, write, and close, the file system keeps in memory several
tables: one file table (file_table) and for each process a file descriptor table (fd_table).
The file table records information for the files that processes have open (i.e., files
for which open was successful, but for which close hasn’t been called yet). For each
open file, this information includes the inode number of the file, its file cursor, and a
reference count recording how many processes have the file open. The file descriptor
table records for each file descriptor the index into the file table. Because a file’s cur-
sor is stored in the file_table instead of the fd_table, children can share the cursor for
an inherited file with their parent.

With this information, open is implemented as follows:

1 procedure open (character string filename, flags, mode)
2 inode_number ← path_to_inode_number (filename, wd)
3 if inode_number = failure and flags = o_create then // Create the file?
4 inode_number ← create (filename, mode) // Yes, create it.
5 if inode_number = failure then
6 return failure

7 inode ← inode_number_to_inode (inode_number)
8 if permitted (inode, flags) then // Does this user have the required permissions
9 file_index ← insert (file_table, inode_number)
10 fd ← find_unused_entry (fd_table) // Find entry in file descriptor table
11 fd_table[fd] ← file_index // Record file index for file descriptor
12 return fd // Return fd
13 else return failure // No, return a failure

Line 2 finds the inode number for the file filename. If the file doesn’t exist, but the
caller wants to create the file as indicated by the flag o_create (line 3), open calls cre-
ate, which allocates an inode, initializes it, and returns its inode number (line 4). If
the file doesn’t exist (even after trying to create it), open returns a value indicating
a failure (line 6). Line 7 locates the inode. Line 8 uses the information in the inode
to check if the caller has permission to open the file; the check is described in detail
in Section 11.6.3.4 [on-line]. If so, line 9 creates a new entry for the inode number
in the file table and sets the entry’s file cursor to zero and reference count to 1. Line
10 finds the first unused file descriptor, records its file index, and returns the file
descriptor to the caller (lines 10 through 12). Otherwise, it returns a value indicating
a failure (line 13).

If a process starts another process, the child process inherits the open file descrip-
tors of the parent. That is, the information in every used entry in the parent’s fd_table
is copied to the same numbered entry in the child’s fd_table. As a result, the parent
and child entries in the fd_table will point to the same entry in the file_table, resulting
in the cursor being shared between parent and child.

1092�5 Case Study: unix File System Layering and Naming

read is implemented as follows:

1 procedure read (fd, character array reference buf, n)
2 file_index ← fd_table[fd]
3 cursor ← file_table[file_index].cursor
4 inode ← inode_number_to_inode (file_table[file_index].inode_number)
5 m = minimum (inode.size – cursor, n)
6 atime of inode ← now ()
7 if m = 0 then return end_of_file

8 for i from 0 to m – 1 do {
9 b ← inode_number_to_block (i, inode_number)
10 copy (b, buf, minimum (m – i, blocksize))
11 i ← i + minimum (m – i, blocksize)
12 file_table[file_index].cursor ← cursor 1 m
13 return m

Lines 2 and 3 use the file index to find the cursor for the file. Line 4 locates the
inode. Line 5 and 6 compute how many bytes read can read and updates the last
access time. If there are no bytes left in the file, read returns a value indicating end
of file. Lines 8 through 12 copy the bytes from the file’s blocks into the caller’s buf.
Line 13 updates the cursor.

One could design a more sophisticated naming scheme for read that, for example,
allowed naming by keywords rather than by offsets. Database systems typically imple-
ment such naming schemes by representing the data as structured records that are
indexed by keywords. But in order to keep its design simple, the unix file system
restricts its representation of a file to a linear array of bytes.

The implementation of write is similar to read. The major differences are that it
copies buf into the blocks of the inode, allocating new blocks as necessary, and that it
updates the inode’s size and mtime.

close frees the entry in the file descriptor table and decreases the reference count
in entry in the file table. If no other processes are sharing this entry (i.e., the reference
count has reached zero), it also frees the entry in the file table. If there are no other
entries in the file table using this file and the reference count in the file’s inode has
reached zero (because another process unlinked it), then close frees the inode.

Like rename, some of these operations require several disk writes to complete. If
the file system fails (e.g., because the power goes off) in the middle of one of the oper-
ations, then some of the disk writes may have completed and some may not. Such a
failure can cause inconsistencies among the on-disk data structures. For example, the
on-disk free list may show that a block is allocated, but no on-disk inode records that
block in its index. If nothing is done about this inconsistency, then that block is effec-
tively lost. Problem set 8 explores this problem and a simple, special-case solution.
Chapter 9 [on-line] explores systematic solutions.

110 CHAPTER 2 Elements of Computer System Organization

Version 6 (and all modern implementations) maintain an in-memory cache of recently
used disk blocks. When the file system needs a block, it first checks the cache for the
block. If the block is present, it uses the block from the cache; otherwise, it reads it from
the storage device. With the cache, even if the file system needs to read a particular
block several times, it reads that block from the storage device only once. Since reading
from a disk device is often an expensive operation, the cache can improve the perfor-
mance of the file system substantially. Chapter 6 discusses the implementation of caches
in detail and how they can be used to improve the performance of a file system.

Similarly, to achieve high performance on operations that modify a file (e.g., write),
the file system will update the file’s blocks in the cache, but will not force the file’s
modified inode and blocks to the storage device immediately. The file system delays
the writes until later so that if a block is updated several times, it will write the block
only once. Thus, it can coalesce many updates in one write (see Section 6.1.8).

If a process wants to ensure that the results of a write and inode changes are prop-
agated to the device that stores the file system, it must call fsync; the unix specification
requires that if an invocation of fsync for a file returns, all changes to the file must have
been written to the storage device.

2.5.12 The shell and implied contexts, search paths,
and name discovery

Using the file system API, the unix system implements programs for users to manipu-
late files and name spaces. These programs include text editors (such as ed, vi, and
emacs), rm (to remove a file), ls (to list a directory’s content), mkdir (to make a new
directory), rmdir (to remove a directory), ln (to make link names), cd (to change the
working directory), and find (to search for a file in a directory tree).

One of the more interesting unix programs is its command interpreter, known as
the “shell”. The shell illustrates a number of other unix naming schemes. Say a user
wants to compile the C source file named “x.c”. The unix convention is to overload
a file name by appending a suffix indicating the type of the file, such as “.c” for C
source files. (A full discussion of overloading can be found in Section 3.1.2.) The
user types this command to the shell:

cc x.c

This command consists of two names: the name of a program (the compiler “cc”)
and the name of a file containing source code (“x.c”) for the compiler to compile.
The first thing the shell must do is find the program we want to run, “cc”. To do that,
the unix command interpreter uses a default context reference contained in an envi-
ronment variable named path. That environment variable contains a list of contexts
(in this case directories) in which to perform a multiple lookup for the thing named
“cc”. Assuming the lookup is successful, the shell launches the program, calling it with
the argument “x.c”.

The first thing the compiler does is try to resolve the name “x.c”. This time it uses
a different default context reference: the working directory. Once the compilation

1112�5 Case Study: unix File System Layering and Naming

is underway, the file “x.c” may contain references to other named files, for example,
statements such as

#include <stdio.h>

This statement tells the compiler to include all definitions in the file “stdio.h” in the
file “x.c”. To resolve “stdio.h”, the compiler needs a context in which to resolve it. For
this purpose, the compiler consults another variable (typically passed as an argument
when invoking the compiler), which contains a default context to be used as a search
path where include files may be found. The variables used by the shell and by the
compiler each consist of a series of path names to be used as the basis for an ordered
multiple lookup just as was described in Section 2.2.4.

Many other unix programs, such as the documentation package, man, also do mul-
tiple lookups for files using search paths found in environment variables.

The shell resolves names for commands using the path variable, but sometimes
it is convenient to be able to say “I want to run the program located in the current
working directory”. For example, a user may be developing a new version of the C
compiler, which is also called “cc”. If the user types "cc", the shell will look up the C
compiler using the path variable and find the standard one instead of the new one in
the current working directory.

For these cases, users can type the following command:

./cc x.c

which bypasses the path variable and invokes the program named “cc” in the current
working directory (“.”).

Of course, the user could insert “.” at the beginning of the path variable, so that all
programs in the user’s working directory will take precedence over the correspond-
ing standard program. That practice, however, may create some surprises. Suppose “.”
is first entry in the path variable, and a user issues the following command sequence
to the shell:

cd /usr/potluck
ls

intending to list the contents of the directory named potluck. If that directory con-
tained a program named ls that did something different from the standard ls com-
mand, something surprising might happen (e.g., the program named ls could remove
all private files)! For this reason, it is not a good idea to include names that are context-
dependent, such as “.” or “..” in a search path. It is better to include the absolute path
name of the desired directory to the front of path.

Another command interpreter extension is that names can be descriptive rather
than simple names. For example, the descriptive name “*.c”, matches all file names
that end with “.c”. To provide this extension, the command interpreter transforms the
single argument into a list of arguments (with the help of a more complicated lookup
operation on the entries in the context) before it calls the specified command program.
In the unix shell, users can use full-blown regular expressions in descriptive names.

112 CHAPTER 2 Elements of Computer System Organization

As a final note, in practice, the unix object naming space has quite a bit of conven-
tional structure. In particular, there are several directories with well-known names. For
example, “/bin” names programs, “/etc” names configuration files, “/dev” names input/
output devices, and “/usr” (rather than the root itself) names user directories. Over
time these conventions have become so ingrained both in programmers’ minds and
in programs that much unix software will not install correctly, and a unix wizard will
become badly confused, when confronted with a system that does not follow these
conventions.

2.5.13 suggestions for further reading

For a detailed description of a more modern unix operating system, see the book
describing the BSD operating system [Suggestions for Further Reading 1.3.4]. A
descendant of the original unix system is Plan 9 [Suggestions for Further Reading
3.2.2], which contains a number of novel naming abstractions, some of which are find-
ing their way back into newer unix implementations. A rich literature exists describing
file system implementations and their trade-offs. A good starting point are the papers
on FFS [Suggestions for Further Reading 6.3.2], LFS [Suggestions for Further Reading
9.3.1], and soft updates [Suggestions for Further Reading 6.3.3].

exercises
2.1 Ben Bitdiddle has accepted a job with the telephone company and has been

asked to implement call forwarding. He has been pondering what to do if some-
one forwards calls to some number and then the owner of that number for-
wards calls to a third number. So far, Ben has thought of two possibilities for his
implementation:
a. Follow me. Bob is going to a party at Mary’s home for the evening, so he forwards his

telephone to Mary. Ann is baby-sitting for Bob, so she forwards her telephone to Bob.
Jim calls Ann’s number, Bob’s telephone rings, and Ann answers it.

b. Delegation. Bob is going to a party at Mary’s home for the evening, so he forwards his
telephone to Mary. Ann is gone for the week and has forwarded her telephone to Bob
so that he can take her calls. Jim calls Ann’s number, Mary’s telephone rings, and Mary
hands the phone to Bob to take the call.

2.1a Using the terminology of the naming section of this chapter, explain these two
possibilities.

2.1b What might go wrong if Bob has already forwarded his telephone to Mary before
Ann forwards her telephone to him?

2.1c The telephone company usually provides Delegation rather than Follow me. Why?

2.2 Consider the part of the file system naming hierarchy illustrated in the
following:

113Exercises

 You have been handed the following path name:

 /projects/systems/exercises/Ex.2.2

 and you are about to resolve the third component of that path name, the name
exercises.
2.2a In the path name and in the figure, identify the context that you should use for that

resolution and the context reference that allows locating that context.
2.2b Which of the terms default, explicit, built-in, per-object, and per-name apply to this

context reference?

1995–2–1a

2.3 One way to speed up the resolving of names is to implement a cache that
remembers recently looked-up {name, object} pairs.
2.3a What problems do synonyms pose for cache designers, as compared with caches

that don’t support synonyms?
1994–2–3

2.3b Propose a way of solving the problems if every object has a unique ID.

1994–2–3a

2.4 Louis Reasoner has become concerned about the efficiency of the search rule
implementation in the Eunuchs system (an emasculated version of the unix
 system). He proposes to add a referenced object table (ROT), which the system

projects

systems

exercises

/
(root)

Consider the
part of the
file sys…

Ex.2.2

Ex.2.1

Ex.2.3

quizzes

solutions

theory

ai

users

programs

114 CHAPTER 2 Elements of Computer System Organization

will maintain for each session of each user, set to be empty when the user logs
in. Whenever the system resolves a name through of use a search path, it makes
an entry in the ROT consisting of the name and the path name of that object.
The “already referenced” search rule simply searches the ROT to determine if
the name in question appears there. If it finds a match, then the resolver will
use the associated path name from the ROT. Louis proposes to always use the
“already referenced” rule first, followed by the traditional search path mecha-
nism. He claims that the user will detect no difference, except for faster name
resolution. Is Louis right?

1985–2–2

2.5 The last line of Figure 2.4 names three Web browsers as examples of interpret-
ers. Explain how a Web browser is an interpreter by identifying its instruction
reference, its repertoire, and its environment reference.

2009-0-1

 Additional exercises relating to Chapter 2 can be found in the problem
sets beginning on page 425.

115

CHAPTER

3The Design of Naming
Schemes

CHAPTER CONTENTS
Overview ��115
3�1 Considerations in the design of naming schemes ���116

3.1.1 Modular Sharing ...116
3.1.2 Metadata and Name Overloading ...120
3.1.3 Addresses: Names that Locate Objects ...122
3.1.4 Generating Unique Names ..124
3.1.5 Intended Audience and User-Friendly Names ..127
3.1.6 Relative Lifetimes of Names, Values, and Bindings129
3.1.7 Looking Back and Ahead: Names are a Basic System Component131

3�2 Case Study: The Uniform Resource Locator (URL) ���132
3.2.1 Surfing as a Referential Experience; Name Discovery132
3.2.2 Interpretation of the URL ..133
3.2.3 URL Case Sensitivity ..134
3.2.4 Wrong Context References for a Partial URL ..135
3.2.5 Overloading of Names in URLs ..137

3�3 War stories: Pathologies in the Use of Names ��138
3.3.1 A Name Collision Eliminates Smiling Faces ..139
3.3.2 Fragile Names from Overloading, and a Market Solution139
3.3.3 More Fragile Names from Overloading, with Market Disruption140
3.3.4 Case-Sensitivity in User-Friendly Names ...141
3.3.5 Running Out of Telephone Numbers ...142

Exercises ���144

Overview
In the previous chapter we developed an abstract model of naming schemes. When the
time comes to design a practical naming scheme, many engineering considerations—
constraints, additional requirements or desiderata, and environmental pressures—shape

Principles of Computer System Design: An Introduction
Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. All rights of reproduction in any form reserved.
DOI: 10.1016/B978-0-12-374957-4.00011-6

116 CHAPTER 3 The Design of Naming Schemes

the design. One of the main ways in which users interact with a computer system is
through names, and the quality of the user experience can be greatly influenced by the
quality of the system’s naming schemes. Similarly, since names are the glue that con-
nects modules, the properties of the naming schemes can significantly affect the impact
of modularity on a system.

This chapter explores the engineering considerations involved in designing
naming schemes. The main text introduces a wide range of naming considerations
that affect modularity and usability. A case study of the World Wide Web Uniform
Resource Locator (URL) illustrates both the naming model and some problems that
arise in the design of naming schemes. Finally, a war stories section explores some
pathological problems of real naming schemes.

3.1 COnsideratiOns in the design Of naming sChemes
We begin with a discussion of an interaction between naming and modularity.

3.1.1 modular sharing

Connecting modules by name provides great flexibility, but it introduces a hazard: the
designer sometimes has to deal with preexisting names, perhaps chosen by someone
else over whom the designer has no control. This hazard can arise whenever modules
are designed independently. If, in order to use a module, the designer must know
about and avoid the names used within that module for its components, we have
failed to achieve one of the primary goals of modularity, called modular sharing.
Modular sharing means that one can use a shared module by name without knowing
the names of the modules it uses.

Lack of modular sharing shows up in the form of name conflict, in which for some
reason two or more different values compete for the binding of the same name in the
same context. Name conflict can arise when integrating two (or more) independently
conceived sets of programs, sets of documents, file systems, databases, or indeed any
collection of components that use the same naming scheme for internal intercon-
nection as for integration. Name conflict can be a serious problem because fixing it
requires changing some of the uses of the conflicting names. Making such changes can
be awkward or difficult, for the authors of the original subsystems are not necessarily
available to help locate, understand, and change the uses of the conflicting names.

The obvious way to implement modular sharing is to provide each subsystem with its
own naming context, and then work out some method of cross-reference between the
contexts. Getting the cross-reference to work properly turns out to be the challenge.

Consider, for example, the two sets of programs shown in Figure 3.1—a word
processor and a spelling checker—each of which comprises modules linked by name
and each of which has a component named initialize. The designer of the procedure
word_processor wants to use spell_check as a component. If the designer tries to com-
bine the two sets of programs by simply binding all of their names in one naming

1173�1 Considerations in the Design of Naming Schemes

context, as in the figure (where the arrows show the binding of each name), there are
two modules competing for binding of the name initialize. We have a name conflict.

So the designer instead tries to create a separate context for each set of programs,
as in Figure 3.2. That step by itself doesn’t completely address the problem because
the program interpreter now needs some rule to determine which context to use

Combined context

SPELL_CHECK

INITIALIZE

WORD_PROCESSOR

?

procedure INITIALIZE()

 …

procedure INITIALIZE()

 …

procedure WORD_PROCESSOR()

 INITIALIZE()

 …
 SPELL_CHECK()

 …

procedure SPELL_CHECK()

 INITIALIZE()

 …

figure 3.1

Too-simple integration of two independently written sets of programs by just merging their
contexts. Procedure word_processor calls spell_check, but spell_check has a component that
has the same name as a component of word_processor. No single set of bindings can do the
right thing.

INITIALIZE

WORD_PROCESSOR

Context for WORD_PROCESSOR

SPELL_CHECK

INITIALIZE

•
•

Context for SPELL_CHECK

procedure WORD_PROCESSOR()

 INITIALIZE()

 …
 SPELL_CHECK()

 …

procedure SPELL_CHECK()

 INITIALIZE()

 …

procedure INITIALIZE()

 …

procedure INITIALIZE()

 …

figure 3.2

Integration of the same two programs but using separate contexts. Having a separate context for
spell_check eliminates the name conflict, but the program interpreter now needs some basis for
choosing one context over the other.

118 CHAPTER 3 The Design of Naming Schemes

for each use of a name. Suppose, for example, it is running word_processor, and it
encounters the name initialize. How does it know that it should resolve this name in
the context of word_processor rather than the context of spell_check?

Following the naming model of Chapter 2, and the example of the e-mail system,
a direct solution to this problem would be to add a binding for spell_check in the
word_processor context and attach to every module an explicit context reference,
as in Figure 3.3. This addition would require tinkering with the representation of the
modules, an alternative that may not be convenient or even not allowed if some of the
modules belong to someone else.

Figure 3.4 suggests another possibility: augment the program interpreter to keep
track of the context in which it originally found each program. The program interpreter
would use that context for resolving all names found in that program. Then, to allow
the word processor to call the spell checker by name, place a binding for spell_check
in the word_processor context as shown by the solid arrow numbered 1 in that figure.
(imagine that the contexts are now file system directories).

That extra binding creates a subtle problem that may produce a later surprise.
Because the program interpreter found spell_check in the word processor’s context,
its context selection rule tells it (incorrectly) to use that context for the names it finds
inside of spell_check, so spell_check will call the wrong version of initialize. A solution
is to place an indirect name (the dashed arrow numbered 2 in Figure 3.2) in the word
processor’s context, bound to the name of spell_check in spell_check’s own context.
Then, the interpreter (assuming it keeps track of the context where it actually found
each program) will correctly resolve names found in both groups of programs.

•

•

•

•

SPELL_CHECK

INITIALIZE

WORD_PROCESSOR •

•
•

SPELL_CHECK

INITIALIZE

•
•

Context for WORD_PROCESSOR Context for SPELL_CHECK

procedure INITIALIZE()

 …

procedure INITIALIZE()

 …

procedure WORD_PROCESSOR()

 INITIALIZE()

 …
 SPELL_CHECK()

 …

procedure SPELL_CHECK()

 INITIALIZE()

 …

figure 3.3

Modular sharing with explicit context references. The small circles added to each program
 module are context references that tell the name interpreter which context to use for names
found in that module.

1193�1 Considerations in the Design of Naming Schemes

Keeping track of contexts and using indirect references (perhaps by using file
system directories as contexts) is commonplace, but it is a bit ad hoc. Another, more
graceful, way of attaching a context reference to an object without modifying its rep-
resentation is to associate the name of an object not directly with the object itself
but instead with a structure that consists of the original object plus its context refer-
ence. Some programming languages implement just such a structure for procedure
definitions, known as a “closure”, which connects each procedure definition with
the naming context in which it was defined. Programming languages that use static
scope and closures provide a much more systematic scheme for modular sharing of
named objects within the different parts of a large application program, but compa-
rable mechanisms are rarely found* in file systems or in merging applications such as
the word processing and spell-checking systems of the previous example. One reason
for the difference is that a program usually contains many references to lots of named
objects, so it is important to be well organized. On the other hand, merging applica-
tions involves a small number of large components with only a few cross-references,
so ad hoc schemes for modular sharing may seem to suffice.

*An ambitious attempt to design a naming architecture with all of these concepts wired into
the hardware was undertaken by IBM in the 1970s, documented in a technical report by
George Radin and Peter R. Schneider: An architecture for an extended machine with protected
 addressing, IBM Poughkeepsie Laboratory Technical Report TR 00.2757, May, 1976. Although
the architecture itself never made it to the market, some of the ideas later appeared in the IBM
System/38 and AS/400 computer systems.

SPELL_CHECK

INITIALIZE

WORD-PROCESSOR •

•
•

SPELL_CHECK

INITIALIZE

Context for WORD_PROCESSOR Context for SPELL_CHECK

procedure INITIALIZE()

procedure INITIALIZE()

 …

1

2

procedure WORD_PROCESSOR()

 INITIALIZE()

 …
 SPELL_CHECK()

 …

procedure SPELL_CHECK()

 INITIALIZE()

 …

figure 3.4

Integration with the help of separate contexts. Having a separate context for spell-check
 eliminates the name conflict, but the program interpreter still needs some basis for choosing one
context over the other. Adding the solid arrow numbered 1 doesn’t quite work, but the dashed
arrow numbered 2, an indirect name, does.

120 CHAPTER 3 The Design of Naming Schemes

3.1.2 metadata and name Overloading

The name of an object and the context reference that should be associated with it are
two examples of a class of information called metadata—information that is useful
to know about an object but that cannot be found inside the object itself (or if it is
inside may not be easy to find). A library bibliographic record is a collection of meta-
data, including title, author, publisher, publication date, date of acquisition, and shelf
location of a book, all in a standard format. Libraries have a lot of experience in dealing
with metadata, but failure to systematically organize metadata is a design shortcoming
frequently encountered in computer systems.

Some common examples of metadata associated with an object in a computer
system are a user-friendly name, a unique identifier, the type of the object (execut-
able program, word processing text, video stream, etc.), the dates it was created, last
modified, and last backed up, the location of backup copies, the name of its owner,
the program that created it, a cryptographic quality checksum (known as a witness—
see Sidebar 7.1 [on-line]) to verify its integrity, the list of names of who is permitted
to read or update the object, and the physical location of the representation of the
object. A common, though not universal, property of metadata is that it is information
about an object that may be changed without changing the object itself.

One strategy for maintaining metadata in a file system is to reserve storage for the
metadata in the same file system structure that keeps track of the physical location of
the file and to provide methods for reading and updating the metadata. This strategy
is attractive because it allows applications that do not care about the metadata to
easily ignore it. Thus, a compiler can read an input file without having to explicitly
identify and ignore the file owner’s name or the date on which the file was last backed
up, whereas an automatic backup application can use the metadata access method
to check those two fields. The unix file system, described in Section 2.5.1, uses this
 strategy by storing metadata in inodes.

Computer file systems nearly always provide for management of specialized meta-
data about each file such as its physical location, size, and access permissions, but
they rarely have any provision for user-supplied metadata other than the file name.
Because of this limitation, it is common to discover that file names are overloaded
with metadata that has little or nothing to do with the use of the name as a reference.*
The naming scheme may even impose syntax rules on allowable names to support
overloading with metadata. A typical example of name overloading is a file name that
ends with an extension that identifies the type of the file, such as text, word process-
ing document, spreadsheet, binary application program, or movie. Other examples
are illustrated in Figure 3.5. A physical address is another example of name overload-
ing that is so common that the next section explores its special properties. Names
that have no overloading whatever are known as pure names. The only operations it
makes sense to apply to a pure name are compare, resolve, bind, and unbind; one cannot

*Use of the word “overloading” to describe names that carry metadata is similar to, but distinct
from, the use of the same word to describe symbols that stand for several different operators in a
programming language.

1213�1 Considerations in the Design of Naming Schemes

extract metadata from it by applying a parsing operation. An overloaded name, on the
other hand, can be used in two distinct ways:

1. As an identifier, using compare, resolve, bind, and unbind.
2. As a source from which to extract the overloaded metadata.

Path names are especially susceptible to overloading. Because they describe a path
through a series of contexts, the temptation is to overload them with information
about the route to the physical location of the object.

Overloading of a name can be harmless, but it can also lead to violation of the prin-
ciples of modular design and abstraction. The problem usually shows up in the form
of a fragile name. Name fragility appears, for example, when it is necessary to change
the name of a file that moves to a new physical location, even though the identity and
content of the file have not changed. For example, suppose that a library program that
calculates square roots and that happens to be stored on disk05 is named /disk05/
library/sqrt. If disk05 later becomes too full and that library has to be moved
to disk06, the path name of the program changes to /disk06/library/sqrt, and
someone has to track down and modify every use of the old name. Name fragility is
one of the reasons that World Wide Web addresses stop working. The case study in
Section 3.2 explores that problem in more detail.

The general version of this observation is that overloading creates a tension
between the goal of keeping names unchanged and the need to modify the over-
loaded information. Typically, a module that uses a name needs the name to remain
unchanged for at least as long as that module exists. For this reason, overloading must
be used with caution and with understanding of how the name will be used.

Finally, in a modular system, an overloaded name may be passed through several
modules before reaching the module that actually knows how to interpret the over-
loading. A name is said to be opaque to a module if the name has no overloading

name some of the things that overload this name
solutions.txt solutions 5 file content; txt 5 file format
solutions.txt.backup 2 backup 2 5 this is the second backup copy
businessplan 10–26–2007.doc 10–26–2007 5 when file was created
executive summary v4 v4 5 version number
image079.large.jpg 079 5 where file fits in a sequence; large 5 image size
/disk–07/archives/Alice/ disk–07 5 physical device that holds file; Alice 5 user id
OSX.10.5.2.dmg OSX 5 program name; 10.5.2 5 program version
IPCC_report_TR–4 IPCC 5 author; TR–4 5 technical report series identifier
cse.pedantic.edu cse 5 department name; pedantic 5 university name; edu 5 registrar
 name

ax539&ttiejh!90rrwl no (apparent) overloading

figure 3.5

Some examples of overloaded names and a pure name.

122 CHAPTER 3 The Design of Naming Schemes

that the module knows how to interpret. A pure name can be thought of as being
opaque to all modules except resolve.

There are also more subtle forms of metadata overloading. Overloading can be
less obvious if the user’s mind, rather than the computer system, performs the meta-
data extraction. For example, in the Internet host name “CityClerk.Reston.VA.US”, the
identifier of the context, “Reston.VA.US”, is also recognizable as the identifier of a
real place, a town named Reston, Virginia, in the United States. Each component of
this name is being used to name two different real-world things: the name “Reston”
identifies both a town and a table of name/value pairs that acts as a context in which
the name of a municipal department may be looked up. Because it has mnemonic
value, people find this reuse by overloading helpful—assuming that it is done accu-
rately and consistently. (On the other hand, if someone names a World Wide Web
service in Chicago “SaltLakeCity.net” people seeing that name are likely to assume—
incorrectly—that it is actually located in Salt Lake City.)

3.1.3 addresses: names that Locate Objects

In a computer system, an address is the name of a physical location or of a virtual
 location that maps to a physical location. Computer systems are constructed of real
physical objects, so they abound in examples of addresses: register numbers, physi-
cal and virtual memory addresses, processor numbers, disk sector numbers, remov-
able media volume numbers, I/O channel numbers, communication link identifiers,
network attachment point addresses, pixel positions on a display—the list seems
endless.

Addresses are not pure names. The thing that characterizes an address is that it is
overloaded in such a way that parsing the address provides a guide to the location of
the named object in some virtual or real coordinate system. As with other overloaded
names, addresses can be used in two ways, in this case:

1. As an identifier with the usual naming operations.
2. As a locator.

Thus, “Leonardo da Vinci” is an identifier that was once bound to a physical person
and is now bound to the memory of that Leonardo. This identifier could have been
used in comparisons to avoid confusion with Leonardo di Pisa when both of them
were visiting Florence.* Today, the identifier helps avoid mixing up their writings. At
the same time, “Leonardo da Vinci” is also a locator; it indicates that if you want to
examine the birth record of that Leonardo, you should look in the archives of the
town named Vinci.

Since access to many physical devices is geometric, addresses are often chosen
from compact sets of integers in such a way that address adjacency corresponds
to physical adjacency, and arithmetic operations such as “add 1” or subtracting one

*Actually, they could not have both visited Florence at the same time. The mathematician Leonardo
di Pisa (also known as Fibonacci) lived three centuries before the artist Leonardo da Vinci.

1233�1 Considerations in the Design of Naming Schemes

address from another have a useful, physical meaning. For example, a seek arm finds
track #1079 on a magnetic disk by counting the number of tracks it passes, and a
disk arm scheduler looks at differences in track addresses to decide the best order
in which to perform seeks. For another example, a memory chip contains an array of
bits, each of which has a unique integer address. When a read or write request for a
particular address arrives at the chip, the chip routes individual bits of that address to
selectors that guide the flow of information to and from the intended bit of storage.

Sometimes it is inappropriate to apply arithmetic operations to addresses, even
when they are chosen from compact sets of integers. For example, telephone num-
bers (known technically as “directory numbers”) are integers that are overloaded with
routing information in their area and exchange codes, but there is no necessary physi-
cal adjacency of two area codes that have consecutive addresses. Similarly, there is no
necessary physical adjacency of two telephones that have consecutive directory num-
bers. (In decades past, there was physical adjacency of consecutive directory numbers
inside the telephone switching equipment, but that adjacency was so constraining
that it was abandoned by introducing a layer of indirection as part of the telephone
switch gear.)

The overloaded location information found in addresses can cause name fragility.
When an object moves, its address, and thus its name, changes. For this reason, system
designers usually follow the example of telephone switching systems: they apply
the design principle decouple modules with indirection to hide addresses. Adding
a layer of indirection provides a binding from some externally visible, but stable, name
to an address that can easily be changed when the object moves to a new location.
Ideally, addresses never need to be exposed above the layer of interpretation that
directly manipulates the objects. Thus, for example, the user of a personal computer
that has a communication port may be able to write programs using a name such
as com1 for the port, rather than a hexadecimal address such as 4D7Chex, which may
change to 4D7Ehex when the port card is replaced.

When a name must be changed because it is being used as an address that is not
hidden by a layer of indirection, things become more complicated and they may start
to go wrong. At least four alternatives have been used in naming schemes:

Search for and change all uses of the old address. At best, this alternative is a ■

 nuisance. In a large or geographically distributed system, it can be quite pain-
ful. The search typically misses some uses of the name, and those users, on their
next attempted use of the name, either receive a puzzling not-found response
for an object that still exists or, worse, discover that the old address now leads
to a different object. For that reason, this scheme may be combined with the
next one.

Plan that users of the name must undertake an attribute-based search for the ■

object if they receive a not-found response or detect that the address has been
rebound to a different object. If the search finds the correct object, its new
 address can replace the old one, at least for that user. A different user will have
to do another search.

124 CHAPTER 3 The Design of Naming Schemes

If the naming scheme provides either synonyms or indirect names, add bind- ■

ings so that both the old and new addresses continue to identify the object. If
addresses are scarce and must be reused, this alternative is not attractive.

If the name is bound to an active agent, such as a post office service that accepts ■

mail, place an active intermediary, such as a mail forwarder, at the old address.

None of these alternatives may be attractive. The better method is nearly always for
the designer to hide addresses behind a layer of indirection. Section 3.3.2 provides
an example of this problem and the solution using indirection. Exercise 2.1 explores
some interesting indirection-related naming problems in the telephone system related
to the feature known as call forwarding.

One might suggest avoiding the name fragility problem by using only pure names,
that is, names with no overloading. The trouble with that approach is that it makes
it difficult to locate the object. When the lowest-layer name carries no overloaded
addressing metadata, the only way to resolve that name to a physical object is by search-
ing through an enumeration of all the names. If the context is small and local, that
technique may be acceptable. If the context is universal and widely distributed, name
resolution becomes quite problematic. Consider, for example, the problem of locating
a railway car, given only a unique serial number painted on its side. If for some reason
you know that the car is on a particular siding, searching may be straightforward, but if
the car can be anywhere on the continent, searching is a daunting prospect.

3.1.4 generating unique names

In a unique identifier name space, some protocol is needed to ensure that all of the
names actually are unique. The usual approach is for the naming scheme to generate
a name for a newly created object, rather than relying on the creator to propose a
unique name. One simple scheme for generating unique names is to dole out con-
secutive integers or sufficiently fine timestamp values. Sidebar 3.1 shows an example.
Another scheme for generating unique names is to choose them at random from a suf-
ficiently large name space. The idea is to make the probability of accidentally choosing
the same name twice (a form of name conflict called a collision) negligibly small. The
trouble with this scheme is that it is hard for a finite-state machine to create genuine
randomness, so the chance of accidentally creating a name collision may be much
higher than one would predict from the size of the name space. One must apply care-
ful design, for example, by using a high-quality pseudorandom number generator and
seeding it with a unique input such as a timestamp that was created when the system
started. An example of such a design is the naming system used inside the Apollo
dOMAIN operating system, which provided unique identifiers for all objects across a
local-area network to provide a high-degree of transparency to users of the system; for
more detail, see Suggestions for Further Reading 3.2.1.

Yet another way to avoid generated name collisions, for an object that has a binary
representation and that already exists when it is being named, is to choose as its unique
name the contents of the object. This approach assigns two objects with the same con-
tent the same name. In some applications, however, that may be a feature—it provides

1253�1 Considerations in the Design of Naming Schemes

Sidebar 3.1 Generating a Unique Name from a Timestamp Some banking
 systems generate a unique character-string name for each transaction. A typical
name generation scheme is to read a digital clock to obtain a timestamp and convert
the timestamp to a character string. A typical timestamp might contain the number
of microseconds since January 1, 2000. A 50-bit timestamp would repeat after about
35 years, which may be sufficient for the bank’s purpose. Suppose the timestamp at
1:35 p.m. on April 1, 2007, is

00010111110110101101001100111001100010111010011001

To convert this string of bits to a character string, divide it into five-bit chunks and
interpret each chunk as an index into a table of 32 alphanumeric characters. The five-
bit chunks are:

00010–11111–01101–01101–00110–01110–01100–01011–10100–11001

Next, reinterpret the chunks as index numbers:

2 31 13 13 6 16 12 11 20 25

Then look those numbers up in this table of 32 alphanumeric characters:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

B C d F G H J K L M N P Q R S T U V W X Y Z 1 2 3 4 5 6 7 8 9 0

The result is the 10-character unique name "D9RRJ-UQTYP". You may have seen similar
unique names in transactions performed with an on-line banking system.

a way of discovering the existence of unwanted duplicate copies. That name is likely to
be fairly long, so a more practical approach is to use as the name a shorter version of
its contents, known as a hash. For example, one might run the contents of a stored file
through a cryptographic transformation function whose output is a bit string of mod-
est, fixed length, and use that bit string as the name. One version of the Secure Hash
Algorithm (SHA, described in Sidebar 11.8 [on-line]) produces, for any size of input, an
output that is 160 bits in length. If the transforming function is of sufficiently high qual-
ity, two different files will almost certainly end up with different names.

The main problem with any naming scheme that is based on the contents of the
named object is that the name is overloaded. When someone modifies an object
whose name was constructed from its original contents, the question that arises is
whether to change its name. This question does not come up in preservation storage
systems that do not allow objects to be modified, so hash-generated unique names are
sometimes used in those systems.

Unique identifiers and generated names can also be used in places other than
unique identifier name spaces. For example, when a program needs a name for a
temporary file, it may assign a generated name and place the file in the user’s working
directory. In this case, the design challenge for the name generator is to come up with
an algorithm that will not collide with the names of already existing names chosen

126 CHAPTER 3 The Design of Naming Schemes

by people or generated by other automated name generators. Section 3.3.1 gives an
example of a system that failed to meet this challenge.

Providing unique names in a large, geographically distributed system requires careful
design. One approach is to create a hierarchical naming scheme. This idea takes advan-
tage of an important feature of hierarchy: delegation. For example, a goal of the Internet
is to allow creation of several hundred million different, unique names in a universal
name space for attachment points for computers. If one tried to meet that goal by hav-
ing someone at the International Telecommunications Union coordinating name assign-
ment, the immense number of name assignments would almost certainly lead to long
delays as well as mistakes in the form of accidental name collisions. Instead, some cen-
tral authority assigns the name “edu” or “uk” and delegates the responsibility for naming
things ending with that suffix to someone else—in the case of “edu”, a specialist in assign-
ing university names. That specialist accepts requests from educational institutions and,
for example, assigns the name “pedantic” and thereby delegates the responsibility for
names ending with the suffix “.pedantic.edu” to the Pedantic University network staff.
That staff assigns the name “cse” to the Computer Science and Engineering department,
further delegating responsibility for names ending with the suffix “.cse.pedantic.edu”
to someone in that department. The network manager inside the department can, with
the help of a list posted on the wall or a small on-line database, assign a name such as
“ginger” that is locally unique and at the same time can be confident that the fully quali-
fied name “ginger.cse.pedantic.edu” is also globally unique.

A different example of a unique identifier name space is the addressing plan for the
commercial Ethernet. Every Ethernet interface has a unique 48-bit media access control
(MAC) address, typically set into the hardware by the manufacturer. To allow this assign-
ment to be made uniquely, but without a single central registry for the whole world,
there is a shallow hierarchy of MAC addresses. A standards-setting authority allocates to
each Ethernet interface manufacturer a block of MAC addresses, all of which start with
the same prefix. The manufacturer is then free to allocate MAC addresses within that
block in any way that is convenient. If a manufacturer uses up all the MAC addresses in
a block, it applies to the central authority for another block, which may have a prefix
that has no relation to the previous prefix used by that same manufacturer.

One consequence of this strategy, especially noticeable in a large network, is that
the MAC address of an Ethernet interface does not provide any overloading informa-
tion that is useful for physically locating the interface card. Even though the MAC
address is assigned hierarchically, the hierarchy is used only to delegate and thus
decentralize address assignment, and it has no assured relation to any property (such
as the physical place where the card attaches to the network) that would help locate
it. Just as in locating a railway car knowing only its unique identifier, resolving a MAC
address to the particular physical device that carries it is difficult unless one already
has a good idea where to start looking.

People struggling to figure out how to tie a software license to a particular com-
puter sometimes propose to associate the license with the Ethernet MAC address of
that computer because that address is globally unique. Apart from the problem that
some computers have no Ethernet interface and others have more than one, a trouble

1273�1 Considerations in the Design of Naming Schemes

with this approach is that if an Ethernet interface card on the computer fails and
needs to be replaced, the new card will have a different MAC address, even though the
location of the system, the software, and its owner are unchanged. Furthermore, if the
card that failed is later repaired and reinstalled in another system, that other system
will now have the MAC address that was previously associated with the first system.
The MAC address is thus properly viewed only as the unique name of a specific hard-
ware component, not of the system in which it is embedded.

deciding what constitutes the unique identity of a system that is constructed of
replaceable components is ultimately a convention that requires an arbitrary choice
by the designer of the naming scheme. This choice is similar to the question of estab-
lishing the identity of wooden ships. If, over the course of 300 years, every piece of
wood in the ship has been replaced, is it still the same ship? Apparently, ship registries
say “yes”. They do not associate the name of the ship with any single component; the
name is instead associated with the ship as a whole. Answering this identity question
can clarify which of the three meanings of the compare operation that was discussed
in Section 2.2.5 is most appropriate for a particular design.

3.1.5 intended audience and user-friendly names

Some naming schemes are intended to be used by people. Names in such a name
space are typically user-chosen and user-friendly strings of characters with mnemonic
value such as “economics report”, “shopping list”, or “Joe.Smith” and are widely used
as names of files and e-mailboxes. Ambiguity (that is, non-uniqueness) in resolving
user-friendly names may be acceptable because in interactive systems the person
using the name can be asked to resolve the ambiguity.

Other naming schemes are intended primarily for use by machines. In these
schemes, the names need not have mnemonic value, so they are typically integers,
often of fixed width designed to fit into a register and to allow fast and unambiguous
resolution. Memory addresses and disk sector addresses are examples. Sometimes the
term identifier is used for a name that is not intended to be intelligible to people, but
this usage is by no means universal. Names intended for use by machines are usually
chosen mechanically.

When a name is intended to be user-friendly, a tension arises between a need for it
to be a unique, easily resolvable identifier and a need to respect other, non-technical
values such as being easy to remember or being the same as some existing place
or personal name. This tension may be resolved by maintaining a second, machine-
 oriented identifier, in addition to the user-friendly name—thus billing systems for large
companies usually have both an account name and an account number. The second
identifier can be unique and thus resolve ambiguities and avoid problems related to
overloading of the account name. For example, personal names are usually overloaded
with family history metadata (such as the surname, a given middle name that is the
same as a mother’s surname, or an appended “Jr.” or “III”), and they are frequently not
unique. Proposals to require that personal names be chosen uniquely always founder
on cultural and personal identity objections. To avoid these problems, most systems

128 CHAPTER 3 The Design of Naming Schemes

that maintain personal records assign distinct unique identifiers to people, and include
both the user-friendly name and the unique identifier in their metadata.

Another example of tension in the choice of user-friendly names is found in the
use of capital and small letters. Up through the mid-1960s, computer systems used
only capital letters, and printed computer output always seemed to be shouting. There
were a few terminals and printers that had lower-case letters, but one had to write
a device-dependent application to make use of that feature, just as today one has
to write a device-dependent application to use a virtual reality helmet. In 1965, the
designers of the Multics time-sharing system introduced lower-case alphabetics to
names of the file system. This being the first time anyone had tried it, they got it wrong.
The designers of the unix file system copied the mistake. In turn, many modern file
systems copy the unix design in order to avoid changing a widely used interface. The
mistake is that the names “Court docket 5” and “Court docket 5” can be bound to
different files. The resulting violation of the principle of least astonishment can lead
to significant confusion, since the computer rigidly enforces a distinction that most
people are accustomed to overlooking on paper. Systems that enforce this distinction
are called case-sensitive.

A more user-friendly way to allow upper- and lower-case letters in names is to
permit the user to specify a preferred combination of upper- and lower-case letters
for storage and display of a name, but coerce all alphabetic characters to the same
case when doing name comparisons. Thus, when another person types the name, the
case does not have to precisely match the display form. Systems that operate this
way are called case-preserving. Both the Internet domain Name System (described
in Section 4.4) and the Macintosh file system provide this more user-friendly naming
interface. A less satisfactory way to reduce case confusion is case-coercing, in which all
names are both coerced to and stored in one case. A case-coercing system constrains
the appearance of names in a way that can interfere with good human engineering.

The case studies in Section 3.2 and the war stories in Section 3.3 describe some
unusual results when a system design mixes case-sensitive and case-preserving nam-
ing systems.

User-friendly names are not always strings of characters. In a graphical user inter-
face (GUI), the shape (and sometimes the position) of an icon on the display is an
identifier that acts exactly like a name, even if a character string is not associated
with it. What action the system undertakes when the user clicks the mouse depends
on where the mouse cursor was at that instant, and in a video game the action may
depend on what else is happening at the same time. The identifier is thus bound to a
time and a position on the screen, and that combination of values is in turn an identi-
fier that is bound to some action.

Another, similar example of a user-friendly name that does not take the form of a
string of characters is the cross-linking system developed by the M.I.T. Shakespeare
Project. In that system, hypertext links say where they are coming from rather than
where they are going to. Resolution starts by looking up the identifier of the place
where the link was found. The principle is identical to that of the GUI/mouse example,
and the system is described in Sidebar 3.2.

1293�1 Considerations in the Design of Naming Schemes

Sidebar 3.2 Hypertext Links in the Shakespeare Electronic Archive There
are many representations of all of Shakespeare’s plays: a modern text, the sixteenth-
century folios, and several movies. In addition, a huge amount of metadata is available
about each play: commentaries, stage directions, photographs and sketches of sets,
directors’ notes, and so on. In the study of a play, it would be helpful if these various
representations could be linked together, so that, for example, if one were interested in
the line “Alas, poor Yorick! I knew him, Horatio” from Hamlet, one could quickly check
the wording in the several editions, compare different movie clips of the presentation
of that line, and examine commentaries and stage directions that pertain to that line.

The M.I.T. Shakespeare Project has developed a system intended to make this kind of
cross-reference easy. The basic scheme is first to assign a line number to every line
in the play and then index every representation of the play by line number. A user
displays one representation, for example, the text of a modern edition, and selects
a line. Because the edition is indexed by line number, that selection is a reference
that is bound to the line number. The user then clicks on the selection, causing the
 system to look up the associated line number in one of several contexts, each context
 corresponding to one of the other representations. The user selects a context, and
the system can immediately resolve the line number in that context and display that
representation in a different window on the user’s screen.

3.1.6 relative Lifetimes of names, values, and Bindings

If names must be chosen from a name space of short, fixed-length strings of bits or
characters, they are by nature limited in number. The designer may permanently bind
the names of a limited name space, as in the case of the registers of a simple pro-
cessor, which may, for example, run from zero to 31. If the names of a limited name
space can be dynamically bound, they must be reused. Therefore, the naming scheme
usually replaces the bind and unbind operations with some kind of name allocation/
deallocation procedure. In addition, the naming scheme for a limited name space typi-
cally assigns the names, rather than letting the user choose them. On the other hand,
if the name space is unlimited, meaning that it does not significantly constrain name
lengths, it is usually possible to allow the user to choose arbitrary names. Thus, the
telephone system in North America uses a naming scheme with short, fixed-length
names such as 208–555–0175 for telephone numbers, and the telephone company
nearly always assigns the numbers. (Section 3.3.5 describes some of the resulting
problems.) On the other hand, names in most modern computer file systems are for
practical purposes unlimited, and the user gets to choose them.

A naming scheme, a name, the binding of that name to a value, and the value to
which the name is bound can all have different lifetimes. Often, both names and values
are themselves quite long-lived, but the bindings that relate one to the other are some-
what more transient. Thus, both personal names and telephone numbers are typically
long-lived, but when a person moves to a different city, the telephone company will

130 CHAPTER 3 The Design of Naming Schemes

usually bind that personal name to a new telephone number and, after some delay,
bind a new personal name to the old telephone number. In the same way, an applica-
tion program and the operating system interfaces it uses may both be long-lived, but
the binding that connects them may be established anew every time the program
runs. Renewing the bindings each time the program is launched makes it possible to
update the application program and the operating system independently. For another
example, a named network service, such as PostOffice.gov, and a network attach-
ment point, such as the Internet address 10.72.43.131, may both be long-lived, but
the binding between them may change when the Post Office discovers that it needs
to move that service to a different, more reliable computer, and it reassigns the old
 computer to a less important service.

When a name outlives its binding, any user of that name that still tries to resolve it
will encounter a dangling reference, which is a use of a previously bound name that
resolves either to a not-found result or to an irrelevant value. Thus, an old telephone
number that rings in the wrong house or leads to a message saying “that number has
been disconnected” is an example of a dangling reference. dangling references are
nearly always a concern when the name space is limited because names from limited
name spaces must be reused. An object that incorrectly uses old names may make seri-
ous mistakes and even cause damage to an unrelated object that now has that name
(for example, if the name is a physical memory address). In some cases, it may be pos-
sible to deal with dangling references by considering names to be simply hints that
require verification. Thus when looking up the telephone number of a long-lost friend
in a distant city, the first question when someone answers the phone at that number
is something such as “are you the James Wilson who attended high school in . . . ?”

When a name space is unlimited and names are never reused, dangling references
affect only the users of names that have for some reason been unbound from their
former values. These dangling references can be less disruptive. For example, in a
file system, an indirect name is one that is bound to some other (target) file system
name. The indirect name becomes a dangling reference if someone removes the target
name. Because an unbound indirect name simply produces a not-found result, it is
more likely to be a nuisance than a source of damage. However, if someone acciden-
tally or maliciously reuses the target name for a completely different file, the user of
the indirect name could be in for a surprise.

When systems are large or distributed, however, a name, once bound and exported,
tends to be discovered and remembered in widely dispersed places. That dispersion
creates a need for stable bindings. This effect has been particularly noticed in the
World Wide Web, whose design encourages the creation of cross-references to docu-
ments whose names are under someone else’s control, with the result that cross-
references often evolve into dangling references.

There is a converse to the dangling reference: when an object outlives every binding
of a name to it, that object becomes what is known as an orphan or a lost object because
no one can ever refer to it by name again. Lost objects can be a serious problem because
there may be no good way to reclaim the physical storage they occupy. A system that
regularly loses track of objects in this way is said to have a storage leak. To avoid lost

1313�1 Considerations in the Design of Naming Schemes

objects, some naming schemes keep track of the number of bindings to each object,
and, when an unbind operation causes that number to reach zero, the system takes the
opportunity to reclaim the storage occupied by the object. We saw this reference count-
ing scheme used for links in the case study in Section 2.5. It contrasts with tracing
garbage collection, an alternative technique used in some programming languages that
involves occasional exploration of the named connections among objects to see which
objects can and cannot be reached. The unix file system, described in Section 2.5, uses
reference counting for file objects.

3.1.7 Looking Back and ahead: names are a Basic system Component

In this and the previous chapter, we have explored both the underlying principles
of, and many engineering considerations surrounding, the use of names, but we have
only lightly touched on the applications of names in systems. Names are a fundamental
building block in all system areas. Looking ahead, almost every chapter will develop
techniques and methods that depend on the use of names, name spaces, and binding:

In modularizing systems with clients and services (■ Chapter 4), clients need a
way to name services.

In modularizing systems with virtualization (■ Chapter 5), virtual memory is an
address naming system.

In enhancing performance (■ Chapter 6), caches are renaming devices.

data communication networks (■ Chapter 7 [on-line]) use names to identify nodes
and to route data to them.

In transactions (■ Chapter 9 [on-line]) it is frequently necessary to modify several
distinct objects “at the same time”, meaning that all the changes appear to hap-
pen in a single program step, an example of atomicity. One way to obtain this
form of atomicity is by temporarily grouping copies of all the objects that are to
be changed into a composite object that has a temporary, hidden name, modify-
ing the copies, and then rebinding the composite object to a visible name. In this
way, all of the changed components are revealed simultaneously.

In security (■ Chapter 11 [on-line]), designers use keys, which are names chosen
randomly from a very large and sparsely populated address space. The underly-
ing idea is that if the only way to ask for something is by name, and you don’t
know and can’t guess its name, you can’t ask for it, so it is protected.

Name discovery, which was introduced in the preceding chapter, will reappear
when we discuss information protection and security. When one user either tries to
identify or grant permission to another named user, it is essential to know the authentic
name of that other user. If someone can trick you into using the wrong name, you may
grant permission to a user who shouldn’t have it. That requirement in turn means that
one needs to be able to trace the name discovery procedure back to some terminating

132 CHAPTER 3 The Design of Naming Schemes

direct communication step, verify that the direct communication took place in a
 credible fashion (such as examining a driver’s license), and also evaluate the amount
of trust to place in each of the other steps in the recursive name discovery protocol.
Chapter 11 [on-line] describes this concern as the name-to-key binding problem.

discovery of user names is one example in which authenticity is clearly of concern,
but a similar authenticity concern can apply to any name binding, especially in systems
shared by many users or attached to a network. If anyone can tinker with a binding,
a user of that binding may make a mistake, such as sending something confidential
to a hostile party. Chapter 11 [on-line] addresses in depth techniques of achieving
authenticity. The User Internet Architecture research project uses such techniques
to provide a secure, global naming system for mobile devices based on physical ren-
dezvous and the trust found in social networks. For more detail, see Suggestions for
Further Reading 3.2.5.

There is also a relation between uniqueness of names and security: If someone can
trick you into using the same supposedly unique name for two different things, you
may make a mistake that compromises security. The Host Identity Protocol addresses
this problem by creating a name space of Internet hosts that is protected by crypto-
graphic techniques similar to those described in Chapter 11 [on-line]. For more detail,
see Internet Engineering Task Force Request for Comments RFC 4423.

This look ahead completes our introduction of concepts related to the design of
naming systems. The next two sections of this chapter provide a case study of the rela-
tively complex naming scheme used for pages of the World Wide Web, and a collection
of war stories that illustrate what can go wrong when naming concepts fail to receive
sufficient design consideration.

3.2 Case study: the unifOrm resOurCe LOCatOr (urL)
The World Wide Web [see Suggestions for Further Reading 3.2.3] is a naming network
with no unique root, potentially many different names for the same object, and com-
plex context references. Its name-mapping algorithm is a conglomeration of several
different component name-mapping algorithms. Let’s fit it into the naming model.*

3.2.1 surfing as a referential experience; name discovery

The Web has two layers of naming: an upper layer that is user-friendly, and a lower
layer, which is also based on character strings, but is nevertheless substantially more
mechanical.

*This case study informally introduces three message-related concepts that succeeding chapters
will define more carefully: client (an entity that originates a request message); server (an entity that
responds to a client’s request); and protocol (an agreement on what messages to send and how to
interpret their contents.) Chapter 4 expands on the client/service model, and Chapter 7 [on-line]
expands the discussion of protocols.

1333�2 Case Study: The Uniform Resource Locator (URL)

At the upper layer, a Web page looks like any other page of illustrated text, except
that one may notice what seem to be an unusually large number of underlined words,
for example, Alice’s page. These underlined pieces of text, as well as certain icons and
regions within graphics, are labels for hyperlinks to other Web pages. If you click on a
hyperlink, the browser will retrieve and display that other Web page. That is the user’s
view. The browser’s view of a hyperlink is that it is a string in the current Web page writ-
ten in HyperText Markup Language (HTML). Here is an example of a text hyperlink:

Alice's page

Nestled inside this hyperlink, between the quotation marks, is a Uniform Resource
Locator or, in Webspeak, a URL, which in the example is the name of another Web
page at the lower naming layer. We can think of a hyperlink as binding a name (the
underlined label) to a value (the URL) that is itself a name in URL name space. Since
a context is a set of bindings of names to values, any page that contains hyperlinks
can be thought of as a context, albeit not of the simple table-lookup variety. Instead,
the name-mapping algorithm is one carried on in the mind of the user, matching ideas
and concepts to the various hyperlink labels, icons, and graphics. The user does not
usually traverse this naming network by typing path names, but rather by clicking on
selected objects. In this naming network, a URL plays the role of a context reference
for the links in the page fetched by the URL.

In order to retrieve a page in the World Wide Web, you need its URL. Many URLs
can be found in hyperlinks on other Web pages, which helps if you happen to know
the URL of one of those Web pages, but somewhere there must be a starting place.
Most Web browsers come with one or more built-in Web pages that contain the URL
of the browser maker plus a few other useful starting points in the Web. This is one
way to get started on name discovery. Another form of name discovery is to see a URL
mentioned in a newspaper advertisement.

3.2.2 interpretation of the urL

In the example hyperlink above, we have an absolute URL, which means that the URL
carries its own complete, explicit context reference:

http://web.pedantic.edu/Alice/www/home.html

The name-mapping algorithm for a URL works in several steps, as follows.

1. The browser extracts the part before the colon (here, http), considers it to be
the name of a network protocol to use, and resolves that name to a protocol han-
dler using a table-lookup context stored in the browser. The name of that con-
text is built in to the browser. The interpretation of the rest of the URL depends
on the protocol handler. The remaining steps describe the interpretation for the
case of the hypertext transfer protocol (http) handler.

2. The browser takes the part between the // and the following / (in our exam-
ple, that would be web.pedantic.edu) and asks the Internet domain Name
System (dNS) to resolve it. The value that dNS returns is an Internet address.

http://web.pedantic.edu/Alice/www/home.html
http://web.pedantic.edu/Alice/www/home.html

134 CHAPTER 3 The Design of Naming Schemes

Section 4.4 is a case study of dNS that describes in detail how this resolution
works.

3. The browser opens a connection to the server at that Internet address, using
the protocol found in step 1, and as one of the first steps of that protocol it
sends the remaining part of the URL, /Alice/www/home.html, to the server.

4. The server looks for a file in its file system that has that path name.

5. If the name resolution of step 4 is successful, the server sends the file with that path
name to the client. The client transforms the file into a page suitable for display.

(Some Web servers perform additional name resolution steps. The discussion in
Section 3.3.4 describes an example.)

The page sent by the server might contain a hyperlink of its own such as the
following:

How to contact Alice.

In this case the URL (again, the part between the quotation marks) does not carry its
own context. This abbreviated URL is called a relative or partial URL. The browser has
been asked to interpret this name, and in order to proceed it must supply a default
context. The URL specification says to derive a context from the URL of the page
in which the browser found this hyperlink, assuming somewhat plausibly that this
hypertext link should be interpreted in the same context as the page in which it was
found. Thus it takes the original URL and replaces its last component (home.html)
with the partial URL, obtaining

http://web.pedantic.edu/Alice/www/contacts.html

It then performs the standard name-mapping algorithm on this newly fabricated
absolute URL, and it should expect to find the desired page in Alice’s www directory.

A page can override this default context by providing something called a base
element (e.g., <base href="some absolute URL">). The absolute URL in the base
element is a context reference to use in resolving any partial URL found on the page
that contains the base element.

3.2.3 urL Case sensitivity

Multiple naming schemes are involved in the Web naming algorithm, as is clear by
noticing that some parts of a URL are case sensitive and other parts are not. The result
can be quite puzzling. The host name part of a Uniform Resource Locator (URL) is
interpreted by the Internet domain Name System, which is case-insensitive. The rest
of the URL is a different matter. The protocol name part is interpreted by the cli-
ent browser, and case sensitivity depends on its implementation. (Check to see if a
URL starting with "HTTP://" works with your favorite Web browser.) The Macintosh
implementation of Firefox treats the protocol name in a case- preserving fashion, but
the now-obsolete Macintosh implementation of Internet Explorer is case-coercing.

http://web.pedantic.edu/Alice/www/contacts.html

1353�2 Case Study: The Uniform Resource Locator (URL)

The more interesting case-sensitivity questions come after the host name. The
Web specifies that the server should interpret this part of the URL using a scheme
that depends on the protocol. In the case of the HTTP protocol, the URL speci-
fication is insistent that this string is not a unix file name, but it is silent on case
sensitivity. In practice, most systems interpret this string as a path name in their
file system, so case-sensitivity depends on the file system of the server. Thus if the
server is running a standard unix system, the path name is case-sensitive, while
if the server is a standard Macintosh, the path name is case-preserving. There
are examples that mix things up even further; Section 3.3.4 describes one such
example.

3.2.4 wrong Context references for a Partial urL

The practice of interpreting URL path names as path names of the server’s file system
can result in unexpected surprises. As described earlier, the Web browser supplies a
default context reference for relative names (that is, partial URLs) found in Web pages.
The default context reference it supplies is simply the URL that the browser used to
retrieve the page that contained the relative name, truncated back to the last slash
character. This context reference is the name of a directory at the server that should
be used to resolve the (first component of) the relative name.

Some servers provide a URL name space by simply using the local (for exam-
ple, unix) file system name space. When the local file system name space allows
synonyms (symbolic links and the Network File System mounts described in
Section 4.5 are two examples) for directory names, the mapping of local file
system name space to the URL name space is not unique. Thus, several different
URLs can have different path names for the same object. For example, suppose
that there is a unix file system with a symbolic link named /alice/home.html
that is actually an indirect reference to the file named /alice/www/home.html.
In that case, the URLs

1 <http://web.pedantic.edu/alice/home.html>

and

2 <http://web.pedantic.edu/alice/www/home.html>

refer to the same file. Trouble can arise when the object that has multiple URLs is a
directory whose name is used as a context reference. Continuing the example, sup-
pose that file home.html contains the hyperlink .
Both home.html and contacts.html are stored in the directory /alice/www.
Suppose further that the browser obtained home.html by using the URL 1 above.

Now, the user clicks on the hyperlink containing the partial URL contacts.html,
asking the browser to resolve it. Following the usual procedure, the browser material-
izes a default context reference by truncating the original URL to obtain:

http://web.pedantic.edu/alice/

http://web.pedantic.edu/alice/home.html
http://web.pedantic.edu/alice/www/home.html
http://web.pedantic.edu/alice/

136 CHAPTER 3 The Design of Naming Schemes

and then uses this name as a context by concatenating the partial URL:

http://web.pedantic.edu/alice/contacts.html

This URL will probably produce a not-found response because the file we are looking
for actually has the path name /alice/www/contacts.html. Or worse, this request
could return a different file that happens to be named contacts.html in the direc-
tory /alice. The confusion may be compounded if the different file with the same
name turns out to be an out-of-date copy of the current contacts.html. On the
other hand, if the user originally used URL 2, the browser would retrieve the file
named /alice/www/contacts.html, as the Web page designer expected.

A similar problem can arise when interpreting the relative name “..”. This name
is, conventionally, the name for the parent directory of the current directory. The
unix system provides a semantic interpretation: look up the name “..” in the cur-
rent directory, where by convention it evaluates (in inode name space) to the par-
ent directory. In contrast, the Web specifies that “..” is a syntactic signal that means
“modify the default context reference by discarding the least significant component
of the path name.” despite these drastically different interpretations of “..”, the result
is usually the same because the parent of an object is usually the thing named by
the next-earlier component of that object’s path name. The exception (and the prob-
lem) arises when the Web’s syntactic modification rule is applied to a path name
with a component that is an indirect name for a directory. If the path name in the
URL does not traverse the directory’s parent, syntactic interpretation of “..” creates a
default context reference different from the one that would be supplied by semantic
interpretation.

Suppose, in our example, that the file home.html contains the hyperlink
. If the user who reached home.html via URL 1 clicks
on this hyperlink, the browser will truncate that URL and concatenate it with the
partial URL, to obtain

http://web.pedantic.edu/alice/../phone.html

and then use the syntactic interpretation of ".." to produce the URL

http://web.pedantic.edu/phone.html

another non-existent file. Again, if the user had started with URL 2, the result of syn-
tactic interpretation of ".." would be to request the file

http://web.pedantic.edu/alice/phone.html

as originally intended.

This problem could be fixed in at least three different ways:

1. Arrange things so that the default context reference always works.
 Always install a a. unix link to the referenced page in the directory that held
the referring page. (Or never use unix links at all.)
Never use “..” in hyperlinks.b.

http://web.pedantic.edu/alice/contacts.html
http://web.pedantic.edu/alice/phone.html
http://web.pedantic.edu/phone.html
http://web.pedantic.edu/alice/phone.html

1373�2 Case Study: The Uniform Resource Locator (URL)

2. do a better of job of choosing a default context reference.
 The client sends the original URL plus the Web link to the server and lets a.
the server figure out what context to use.

3. Provide an explicit context reference.
 The server places an absolute URL in a a. location field of the protocol header.
The client uses that URL as the context reference.b.

One might suggest that the implementer of the server (or the writer of the pages
containing the relative links) failed to heed the following warning in the Web URL
specification* for path names: “The similarity to unix and other disk operating system
filename conventions should be taken as purely coincidental, and should not be taken
to indicate that URIs should be interpreted as file names.”

This warning is technically correct, but the suggestion is misleading. Unfortunately,
the problem is built in to the Web naming specifications. Those specifications require
that relative names be interpreted syntactically, yet they do not require that every
object have a unique URL. Unambiguous syntactic interpretation of relative names
requires that the context reference be a unique path name. Since the browser derives
the context reference from the path name of the object that contained the relative
name, and that object’s path name does not have to be unique, it follows that syntactic
interpretation of relative names will intrinsically be ambiguous. When servers try to
map URL path names to unix path names, which are not unique, they are better char-
acterized as exposing, rather than causing, the problem.

That analysis suggests that one way to conquer the problem is to change the way in
which the browser acquires the context reference. If the browser could somehow obtain
a canonical path name for the context reference, the same canonical path name that the
unix system uses to reach the directory from the root, the problem would vanish.

3.2.5 Overloading of names in urLs

Occasionally, one will encounter a URL that looks something like

http://www.amazon.com/exec/obidos/ASIN/0670672262/o/qid=
 921285151/sr=2–2/002–7663546–7016232

or perhaps

 http://www.google.com/search?hl=en&q=books+about+systems&btnG=
 Google+Search&aq=f&oq=

Here we have two splendid examples of overloading of names. The first example is
of a shopping service. Because the server cannot depend on the client to maintain any
state about this shopping session other than the URL of the Web page currently being
displayed, the server has encoded the state of the shopping session, in the form of an
identifier of a state-maintaining file at the server, in the path name part of the URL.

*Tim Berners-Lee, Universal Resource Identifiers: Recommendations.

http://www.amazon.com/exec/obidos/ASIN/0670672262/o/qid=921285151/sr=2�2/002�7663546�7016232
http://www.google.com/search?hl=en&q=books+about+systems&btnG=Google+Search&aq=f&oq=

138 CHAPTER 3 The Design of Naming Schemes

The second example is of a search service; the browser has encoded the user’s
search query into the path name part of the URL it has submitted. The tip-off here
is the question mark in the middle of the name, which is a syntactic trick to alert
the server that the string up to the question mark is the name of a program to be
launched, while the string after the question mark is an argument to be given to that
program. To see what processing www.google.com does to respond to such a query,
see Suggestions for Further Reading 3.2.4.

There is another form of overloading in many URLs: they concatenate the name
of a computer site with a path name of a file, neither of which is a particularly stable
identifier. Consider the following name for an earthquake information service:

http://HPserver14.pedantic.edu/disk05/science/geophysics/
 quakes.html

This name is at risk of change if the HP computer is replaced by a Sun server, if the
file server is moved to disk04, if the geophysics department is renamed “geology” or
moves out of the school of science, or if the responsibility for the earthquake server
moves to the Institute for Scholarly Studies. A URL such as this example frequently
turns out to be unresolvable, even though the page it originally pointed to is still out
there somewhere, perhaps having moved to a different site or simply to a different
directory at the original site.

One way to avoid trapping the name of a site in the URLs that point to it is to
choose a service name and arrange for dNS to bind that service name as an indirect
name for the site. Then, if it becomes necessary to move the Web site to a different
computer, a change to the binding of the service name is all that is needed for the old
URLs to continue working. Similarly, one can avoid trapping an overloaded path name
in a URL by judicious use of indirect file names. Thus the name

http://quake.org/library/quakes.html

could refer to the same Web page, yet it can remain stable through a wide variety of
changes.

Considerable intellectual energy has been devoted to inventing a replacement for
the URL that has less overloading and is thus more robust in the face of changes of
server site and file system structure. Several systems have been proposed: Permanent
URL (PURL), Universal Resource Name (URN), Digital Object Identifier (dOI)®, and
handle. To date, none of these proposals has yet achieved wide enough adoption to
replace the URL.

3.3 war stOries: PathOLOgies in the use Of names
Although designing a naming scheme seems to be a straightforward exercise, it is
surprisingly difficult to meet all of the necessary requirements simultaneously. The
following are several examples of strange and sometimes surprising results that have
been noticed in deployed naming schemes.

http://www.google.com
http://HPserver14.pedantic.edu/disk05/science/geophysics/quakes.html
http://HPserver14.pedantic.edu/disk05/science/geophysics/quakes.html
http://quake.org/library/quakes.html

1393�3 War Stories: Pathologies in the Use of Names

3.3.1 a name Collision eliminates smiling faces

A west coast university provides a “visual class list” Web interface that instructors can
use to obtain the names and photos of all the students enrolled in a particular section
of a class. At the beginning of the fall 2004 teaching term, instructors noticed that
their classes had several photographs of the same individual. One might believe a sec-
tion includes a set of triplets, but not triskaidekatuplets.

What went wrong: When there is no picture available for a student, the system
inserts an image of a smiley face with the words “No picture available”. The system
designer stored the image in a file named “smiley.jpg”. That fall a new freshman whose
last name was Smiley registered the user name “smiley”. As one might expect, the
freshman’s photograph was named “smiley.jpg”, and it became the “No picture avail-
able” image.

3.3.2 fragile names from Overloading, and a market solution

Internet mailbox names such as Alice@Awesome.net can be viewed as two-
component addresses. The component before the @-sign identifies a particular mail-
box, and the component after the @-sign is an Internet domain name that identifies
the Internet service provider (ISP) that provides that mailbox. When two ISPs (say,
Awesome.net and Awful.net) merge, the customers of one of them (and some-
times both) typically receive a letter telling them that their mailbox address, which
contained some representation of the name of their former ISP, will have to change.
The new ISP may automatically forward mail addressed to the old address, or it
may require that the user notify all of his or her correspondents of the new mail-
box address. The reason for the change is that the second component of the old
 mailbox name was overloaded with a trademark. The new provider does not want
to continue using that old trademark, and the old provider may not want to see the
trademark used by the new provider.

Alice may also find, to her disappointment, that not only does the domain name of
her mailbox change from Awesome.net to Awful.net, but that in Awful.net’s mailbox
name space, another customer has already captured the personal mailbox name Alice,
so she may even have to choose a new personal mailbox name, such as Alice24.

As the Internet grows, some ISPs have prospered and others have not, so there
have been many mergers and buyouts. The resulting fragility of e-mail service pro-
vider names has created a market for indirect domain names. The customers in this
market are users who require a stable e-mail address, such as people who run pri-
vate businesses or who have a large number of correspondents. For an annual fee,
an indirect name provider will register a new domain name, such as Alice.com,
and configure a dNS name server so that the mailbox name Alice@Alice.com
becomes a synonym for Alice@Awesome.Net. Then, upon being notified of the ISP
merger, Alice simply asks the indirect name provider to rebind the mailbox name
Alice@Alice.com to Alice24@Awful.net, and her correspondents don’t have to
know that anything happened.

140 CHAPTER 3 The Design of Naming Schemes

3.3.3 more fragile names from Overloading, with market disruption

The United States Post Office assigns postal delivery codes, called Zip codes, hierar-
chically, so that it can take advantage of the hierarchy in routing mail. Zip codes have
five digits. The first digit identifies one of 10 national areas; New England is area 0
and California, Washington, and Oregon comprise area 9. The next two digits identify
a section. The South Station Postal Annex in Boston, Massachusetts, is the headquar-
ters of section 021. All Zip codes beginning with those three digits have their mail
sorted at that sectional center. Zip codes beginning with 024 identify the Waltham,
Massachusetts, section. The last two digits of the Zip code identify a specific post
office (known as a station), such as Waban, Massachusetts, 02468. Zip codes can also
have four appended digits (called Zip 1 4) that are used to sort mail into delivery
order for each mail carrier. Although they are numerical, adjacent zip codes are not
necessarily assigned to adjacent stations or adjacent sections, so they are really names
rather than physical addresses. despite not being interpretable as physical addresses,
these names are overloaded with routing information.

Although routing is hierarchical, apparently the 10 national areas have no rout-
ing significance; everything is done by section. It is reported that if you walk into
the South Station Postal Annex in Boston, you will find that outgoing mail is being
sorted into 999 bins, one for each sectional center, nationwide. In addition, for mail
addressed with Zip codes beginning with 021 (that is, within the South Station
 section) there are 99 bins, one for each station within the section. The mail in the
outgoing bins goes into bags, with each bag containing mail for one section. Then
all the bags for Southern California sections, for example, go into the same truck to
the airport, where they go onto a plane to Los Angeles. As they come off the plane
in Los Angeles, they are loaded onto different trucks that go to the various Southern
California sections. The mail in the 99 bins for section 021 also goes into bags, with
each bag destined for a different post office within the 021 section.

Mail that originates at a post office and is destined for the same post office still
goes to the sectional center for sorting because individual post offices don’t have the
automatic sorting machines that can put things into delivery order. There used to be
many exceptions to the rule that all mail goes to a sectional center, but the number of
exceptions has been gradually reduced over the years.

When the volume of mail handled by the South Station Postal Annex began to
exceed its capacity in the late 1990s, the Post Office decided to transfer part of that
section’s work to the newer Waltham, Massachusetts, section. Since the first three
digits of the Zip code are overloaded with routing information, to accomplish this
change it announced that about half of the Zip codes that began with 021 would, on
July 1, 1998, change to 024. The result, as one might expect, was rather chaotic. The
Post Office tried to work with large mailers to have them automatically update their
address records, but loose ends soon appeared.

For example, American Express, a credit card company, installed a Zip code
translator in its mail label printing system, so that its billing statements would go
directly to the Waltham section, but it did not change its internal customer address

1413�3 War Stories: Pathologies in the Use of Names

records because its computer system flags all address changes as “moves”, which
affect verification procedures as well as credit ratings. So everything that American
Express mailed was addressed properly, but their internal records retained the old
Zip codes.

Now comes the problem: some Internet vendors will not accept a credit card
unless the shipping address is identical to the credit card address. Customers began
to encounter situations in which the Internet vendor rejected the Zip code 02168 as
being an invalid delivery address, and American Express rejected the Zip code 02468
because it did not match its customer record. When this situation arose, it was not
possible to complete a purchase without human intervention.

despite the vendor check that identifies 02168 as invalid, mail addressed with that
Zip code continued to be correctly delivered to addresses in Waban for several years.
It just took an extra day to be delivered because it went first to the South Station
Postal Annex, which simply forwarded it to the Waltham sectional center. The renam-
ing was done not because the post office was running out of Zip codes, but rather
because the sorting capacity of one of its sectional centers was exceeded.

3.3.4 Case-sensitivity in user-friendly names

Even though, as described on page 128, the unix system propagated case-sensitive
file names to many other file systems, not all widely used naming schemes are case-
 sensitive. The Internet generally is case-preserving. For example, in the Internet
domain Name System described in Section 4.4, one can open a network connection
to cse.pedantic.edu or to CSE.Pedantic.edu; both refer to the same destination.
The Internet mail system is also specified to be case-preserving, so you can send mail
to alice@pedantic.edu, Alice@pedantic.edu, and aLiCe@pedantic.edu, and all
three messages should go to the same mailbox.

In contrast, the Kerberos authentication system (described in Sidebar 11.6
 [on-line]) is case-sensitive, so the names “alice” and “Alice” can identify different
users. The rationale for this decision is muddy. Requiring that the case accurately
match makes it harder for an intruder to guess a user’s name, so one can argue that
this decision enhances security. But allowing “alice” and “Alice” to identify different
users can lead to serious mistakes in setting up permissions, so one can also argue
that this decision weakens security. This decision comes to a head, for example, in
the implementation of a mail delivery service with Kerberos authentication. It is
not possible to correctly do a direct mapping of Kerberos user names to mailbox
names because the necessary coercion might merge the identities of two distinct
users.

A mixed example is a service-naming service developed at M.I.T. and called Hesiod,
which uses the Internet domain Name System (dNS) as a subsystem. One of the kinds
of services Hesiod can name is a remote file system. dNS (and thus Hesiod) is case-
insensitive, while file system names in unix systems are case-sensitive. This difference
leads to another example of a user interface glitch. If a user asks to attach a remote file

142 CHAPTER 3 The Design of Naming Schemes

system, specifying its Hesiod name, Hesiod will locate the file system using whatever
case the user typed, but the unix mount command mounts the file system using the
name coerced to lower case. Thus if the user says, for example, to mount the remote
file system named CSE, Hesiod will locate that remote file system, but the unix system
will mount it using the name cse. To use this directory in a file name, the user must
then type its name in lower case, which may come as a surprise.

Hesiod is used as a subsystem in larger systems, so the mixing of case-sensitive and
case-insensitive names can become worse. For example, the current official M.I.T. Web
server responds to the URL

http://web.mit.edu/Alice/www/home.html

by first trying a simple path name resolution of the string /Alice/www/home.html.
If it gets a not-found result from the resolution of that path name, it extracts the first
component of the path name (Alice) and presents it to the Hesiod service naming
system, with a request to interpret it as a remote file system name. Since Hesiod is
case-insensitive, it doesn’t matter whether the presented name is Alice, alice, or
aLiCe. Whatever the case of the name presented, Hesiod coerces it to a standard case,
and then it returns the standard file system path name of the corresponding remote
file system directory, which for this example might be

/afs/athena/user/alice

The Web server then replaces the original first component (Alice) with this path
name and attempts to resolve the path name:

/afs/athena/user/alice/www/home.html

Thus for the current M.I.T. Web server, the first component name after the host
name in a URL is case-insensitive, while the rest of the name is case-sensitive.

3.3.5 running Out of telephone numbers

“Nynex is Proposing New ‘646’ Area Code for Manhattan Lines”

— headline, Wall Street Journal, March 3, 1997

The North American telephone numbering plan name space is nicely hierarchical,
which would seem to make it easy to add phone numbers. Although this appears to be
an example of an unlimited name space, it is not. It is hierarchical, but the hierarchy is
rigid—there is a fixed number of levels, and each level has a fixed size.

Much of Europe does it the other way. In some countries it seems that every
phone number has a different number of digits. A variable-length numbering plan
has a downside. The telephone numbers are longest in the places that grew the most
and thus have the most telephone calls. In addition, because the central exchange
can’t find the end of a variable-length telephone number by counting digits, some
other scheme is necessary, such as noticing that the user has stopped dialing for a
while.

http://web.mit.edu/Alice/www/home.html

1433�3 War Stories: Pathologies in the Use of Names

A European-style solution to the shortage of phone numbers in Manhattan would
be to simply announce that from now on, all numbers in Manhattan will be 11 dig-
its long. But since the entire American telephone system assumes that telephone
numbers are exactly 10 digits long, the American solution is to introduce a new
area code.

A new area code can be introduced in one of two ways: splitting and overlay.
Traditionally, the phone companies have used only splitting, but overlay is beginning
to receive wider attention.

Splitting (sometimes called partition) is done by drawing a geographical line
across the middle of the old area code—say 84th street in Manhattan—and declaring
that everyone north of that line is now in code 646 and everyone south of that line
will remain in code 212. When splitting is used, no one “changes” their seven-digit
number, but many people must learn a new number when calling someone else. For
example,

Callers from Los Angeles who used to dial (212)–xxx–xxxx must now dial ■

(646)–xxx–xxxx if they are calling to a phone north of 84th street, but they
must use the old area code for phones located south of 84th street.
Calling from one side of 84th street to the other now requires adding an area ■

code, where previously a seven-digit number was all one had to dial.

In the alternative scheme, overlay, area code 212 would continue to cover all of
Manhattan, but when there weren’t any phone numbers left in that area code, the
telephone companies would simply start assigning new numbers with area code
646. Overlay places a burden on the switching system, and it wouldn’t have worked
with the step-by-step switches developed in the 1920s, in which the telephone num-
ber described the route to that telephone. When the Bell System started to design
the crossbar switches introduced in the 1940s, it realized that this inflexibility was
a killer problem, so it introduced a number-to-route lookup—a name-resolving sys-
tem called a translator—as part of switch design. With modern computer-based
switches, translation is easy. So there is now nothing (but old software) to prevent
two phones served by the same switch from having numbers with different area
codes.

Overlay sounds like a great idea because it means that callers from Los Angeles
continue to dial the same numbers they have always dialed. However, as in most engi-
neering trade-offs, someone loses. Everyone in Manhattan now has to dial a 10-digit
number to reach other places in Manhattan. One no longer can tell what the area code
is by the geographic location of the phone. One also can’t pinpoint the location of the
target by its area code because the area code has lost its status as geographic metadata.
This could be a concern if people become confused as to whether or not they were
making a toll call.

Another possibility would be to use as a default context the area code of the
originating phone. If calling from a 212 phone, one wouldn’t have to dial an
area code to call another 212 number. The prevailing opinion—which may be
wrong—is that people can’t handle the resulting confusion. Two phones on the

144 CHAPTER 3 The Design of Naming Schemes

same desk, or two adjacent pay phones, may have different area codes, and thus
to call someone in the next office one might have to dial different numbers from
the two phones.

Here is one way of coping: BankBoston (long since merged into larger banks) once
arranged that the telephone number 788–5000 ring its customer service center from
every area code in the state of Massachusetts. The nationwide toll-free number (800)
788–5000 also rang there. Although that arrangement did not completely eliminate
name translation, it reduced it significantly and made the remaining name translation
simple enough that people could actually remember how to do it.

Requiring that all numbers be dialed with all 10 digits encourages a more
coherent model: the number you dial to reach a particular target phone does not
depend on the number from which you are calling. The trade-off is that every North
American number dialed would require 10 digits, even when calling the phone
next door. The North American telephone system has been gradually moving in
this direction for a long time. In many areas, it was once possible to call people in
the same exchange simply by dialing just the last four digits of their number. Then
it took five digits. Then seven. The jump to 10 would thus be another step in the
sequence.

The newspaper also reports that at the rate telephone numbers are being used up
in Manhattan, another area code will be needed within a few years. That observation
would seem to affect the decision. Splitting is disruptive every time, but overlay is dis-
ruptive only the first time it is done. If there is going to be another area code needed
that soon, it might be better to use overlay at the earliest opportunity, since adding still
more area codes with overlay will cause no disruption at all.

Overlay is already widely used. Manhattan cell phones and beepers have long
used area code 917, and little confusion resulted. Also, in response to an outcry
over “yet another number change”, in 1997 the Commonwealth of Massachusetts
began requiring that future changes to its telephone numbering plan be done with
overlay.

exerCises
3.1 Alyssa asks you for some help in understanding how metadata is handled in the

unix file system, as described in Section 2.5.
3.1a Where does the unix system store system metadata about a file?
3.1b Where does it store user metadata about the file?
3.1c Where does it store system metadata about a file system?

2008-0-1

3.2 Bob and Alice are using a unix file system as described in Section 2.5. The file
system has two disks, mounted as /disk1 and /disk2. A system administrator

145Exercises

creates a “home” directory containing symbolic links to the home directories of
Bob and Alice via the commands:

mkdir /home
ln -s /disk1/alice /home/alice
ln -s /disk2/bob /home/bob

Subsequently, Bob types the following to his shell:

cd /home/alice
cd ../bob

 and receives an error.

 Which of the following best explains the problem?
A. The unix file system forbids the use of “..” in a cd command when the current working

directory contains a symbolic link.
B. Since Alice’s home directory now has two parents, the system complains that “..” is

ambiguous in that directory.
C. In Alice’s home directory, “..” is a link to /disk1, while the directory “bob” is in

/disk2.
D. Symbolic links to directories on other disks are not supported in the unix file system;

their call-by-name semantics allows their creation but causes an error when they are
used.

2007-1-7

3.3 We can label the path names in the previous question as semantic path names.
If Bob types "cd .." while in working directory d, the command changes the
working directory to the directory in which d was created. To make the behavior
of ".." more intuitive, Alice proposes that ".." should behave in path names
syntactically. That is, the parent of a directory d, d/.. is the same directory that
would obtain if we instead referred to that directory by removing the last path
name component of d. For example, if Bob’s current working directory is /a/b/c
and Bob types "cd ..", the result is exactly as if Bob had executed "cd /a/b"
3.3a If the unix file system were to implement syntactic path names, in which directory

would Bob end up after typing the following two commands?

cd /home/alice
cd ../bob

3.3b Under what circumstances do semantic path names and syntactic path names pro-
vide the same behavior?

 A. When the name space of the file system forms an undirected graph.
 B. When the name space of the file system forms a tree rooted at “/”.
 C. When there are no synonyms for directories.
 D. When symbolic links, like hard links, can be used as synonyms only for files.

146 CHAPTER 3 The Design of Naming Schemes

3.3c Bob proposes the following implementation of syntactic names. He will first
rewrite a path name syntactically to eliminate the "..", and then resolve
the rewritten path name forward from the root. Compared to the implementation
of semantic path names as described in Section 2.5, what is a disadvantage of this
syntactic implementation?
A. The syntactic implementation may require many more disk accesses than for

semantic path names.
B. This cost of the syntactic implementation scales linearly with the number of

path name components.
C. The syntactic implementation doesn’t work correctly in the presence of hard

links.
D. The syntactic implementation doesn’t resolve "." correctly in the current

 working directory.

2007-0-1

3.4 The inode of a file plays an important role in the unix file system. Which of these
statements is true of the inode data structure, as described in Section 2.5?
A. The inode of a file contains a reference count.
B. The reference count of the inode of a directory should not be larger than 1.
C. The inode of a directory contains the inodes of the files in the directory.
D. The inode of a symbolic link contains the inode number of the target of the link.
E. The inode of a directory contains the inode numbers of the files in the directory.
F. The inode number is a disk address.
G. A file’s inode is stored in the first 64 bytes of the file.

2005-1-4, 2006-1-1, and 2008-1-3

3.5 Section 3.3.1 describes a name collision problem. What could the designer of
that system have done differently to eliminate (or reduce to a negligible prob-
ability) the possibility of this problem arising?

2008-0-2

Additional exercises relating to Chapter 3 can be found in the problem sets
beginning on page 425.

147

CHAPTER

4Enforcing Modularity with
Clients and Services

Overview ��148
4�1 Client/Service Organization ��149

4.1.1 From Soft Modularity to Enforced Modularity ..149
4.1.2 Client/Service Organization ..155
4.1.3 Multiple Clients and Services ..163
4.1.4 Trusted Intermediaries ..163
4.1.5 A Simple Example Service...165

4�2 Communication Between Client and Service ��167
4.2.1 Remote Procedure Call (RPC) ..167
4.2.2 RPCs are not Identical to Procedure Calls ...169
4.2.3 Communicating Through an Intermediary ..172

4�3 Summary and The Road Ahead ��173
4�4 Case Study: The Internet Domain Name System (DNS) ���������������������������������������175

4.4.1 Name Resolution in DNS ..176
4.4.2 Hierarchical Name Management ..180
4.4.3 Other Features of DNS ..181
4.4.4 Name Discovery in DNS ..183
4.4.5 Trustworthiness of DNS Responses ...184

4�5 Case Study: The Network File System (NFS) ��184
4.5.1 Naming Remote Files and Directories ...185
4.5.2 The NFS Remote Procedure Calls ..187
4.5.3 Extending the unix File System to Support NFS190
4.5.4 Coherence ...192
4.5.5 NFS Version 3 and Beyond ..194

Exercises ���195

CHAPTER CONTENTS

Principles of Computer System Design: An Introduction
Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. All rights of reproduction in any form reserved.
DOI: 10.1016/B978-0-12-374957-4.00012-8

148 CHAPTER 4 Enforcing Modularity with Clients and Services

Overview
The previous chapters established that dividing a system into modules is good and
showed how to connect modules using names. If all of the modules were correctly
implemented, the job would be finished. In practice, however, programmers make
errors, and without extra thought, errors in implementation may too easily propagate
from one module to another. To avoid that problem, we need to strengthen the modu-
larity. This chapter introduces a stronger form of modularity, called enforced modu-
larity, that helps limit the propagation of errors from one module to another. In this
chapter we focus on software modules. In Chapter 8 [on-line] we develop techniques
to handle hardware modules.

One way to limit interactions between software modules is to organize systems as
clients and services. In the client/service organization, modules interact only by send-
ing messages. This organization has three main benefits:

Messages are the only way for a programmer to request that a module provide ■

a service. Limiting interactions to messages makes it more difficult for program-
mers to violate the modularity conventions.

Messages are the only way for errors to propagate between modules. If clients ■

and services fail independently and if the client and the service check messages,
they may be able to limit the propagation of errors.

Messages are the only way for an attacker to penetrate a module. If clients and ■

services carefully check the messages before they act on them, they can block
attacks.

Because of these three benefits, system designers use the client/service organiza-
tion as a starting point for building modular, fault tolerant, and secure systems.

Designers use the client/service model to separate larger software modules, rather
than, say, individual procedures. For example, a database system might be organized as
clients that send messages with queries to a service that implements a complete data-
base management system. As another example, an e-mail application might be organized
into readers—the clients—that collect e-mail from a service that stores mailboxes.

One effective way to implement the client/service model is to run each client
and service module in its own computer and set up a communication path over a
wire between the computers. If each module has its own computer, then if one com-
puter (module) fails, the other computer (module) can continue to operate. Since the
only communication path is that wire, that is also the only path by which errors can
propagate.

Section 4.1 of this chapter shows how the client/service model can enforce mod-
ularity between modules. Section 4.2 presents two styles of sending and receiving
messages: remote procedure call and publish/subscribe. Section 4.3 summarizes the
major issues identified in this chapter but not addressed, and presents a road map for
addressing them. Finally, there are detailed case studies of two widely used client/ser-
vice applications, the Internet Domain Name System and the Network File System.

1494�1 Client/Service Organization

4.1 Client/serviCe OrganizatiOn
A standard way to create modularity in a large program is to divide it up into named
procedures that call one another. Although the resulting structure can be called mod-
ular, implementation errors can propagate from caller to callee and vice versa, and not
just through their specified interfaces. For example, if a programmer makes a mistake
and introduces an infinite loop in a called procedure and the procedure never returns,
then the callee will never receive control again. Or since the caller and callee are in
the same address space and use the same stack, either one can accidentally store
something in a space allocated to the other. For this reason, we identify this kind of
modularity as soft. Soft modularity limits interactions of correctly implemented mod-
ules to their specified interfaces, but implementation errors can cause interactions
that go outside the specified interfaces.

To enforce modularity, we need hard boundaries between modules so that errors
cannot easily propagate from one module to another. Just as buildings have firewalls
to contain fires within one section of the building and keep them from propagating
to other sections, so we need an organization that limits the interaction between mod-
ules to their defined interfaces.

This section introduces the client/service organization as one approach to struc-
turing systems that limit the interfaces through which errors can propagate to the
specified messages. This organization has two benefits: first, errors can propagate only
with messages. Second, clients can check for certain errors by just considering the
messages. Although this approach doesn’t limit the propagation of all errors, it pro-
vides a sweeping simplification in terms of reasoning about the interactions between
modules.

4.1.1 From soft Modularity to enforced Modularity

As a more concrete example of how modules interact, suppose we are writing a sim-
ple program that measures how long a function runs. We might want to split it into
two modules: (1) one system module that provides an interface to obtain the time in
units specified by the caller and (2) one application module that measures the run-
ning time of a function by asking for time from the clock device, running the func-
tion, and requesting the time from the clock device after the function completes. The
purpose of this split is to separate the measurement program from the details of the
clock device:

1 procedure measure (func) 1 procedure get_time (units)
2 start ← get_time (seconds) 2 time ← clock

3 func () // invoke the function 3 time ← convert_to_units (time, units)
4 end ← get_time (seconds) 4 return time
5 return end – start

150 CHAPTER 4 Enforcing Modularity with Clients and Services

The procedure measure takes a function func as argument and measures its run-
ning time. The procedure get_time returns the time measured in the units specified by
the caller. We may desire this clear separation in modules because, for example, we
don’t want every function that needs the time to know the physical address of the
clock (clock in line 2 of gettime) in all application programs, such as measure, that use
the clock. On one computer, the clock is at physical address 17E5hex, but on the next
computer it is at 24FFF2hex. Or some clocks return microseconds, and others return
sixtieths of a second. By putting the clock’s specific properties into get_time, the call-
ers of get_time do not have to be changed when a program is moved to another com-
puter; only get_time must be changed.

This boundary between get_time and its caller, is soft, however. Although pro-
cedure call is a primary tool for modularity, errors can still leak too easily from one
module to another. It is obvious that if get_time returns a wrong answer, the caller has
a problem. It is less obvious that programming errors in get_time can cause trouble for
the caller even if get_time returns a correct answer. This section explains why proce-
dure call allows propagation of a wide variety of errors and will introduce an alterna-
tive that resembles procedure call but that more strongly limits propagation of errors.

To see why procedure calls allow propagation of many kinds of errors, one must
look at the detail of how procedure calls work and at the processor instructions that
implement procedure calls. There are many ways to compile the procedures and the
call from measure to get_time into processor instructions. For concreteness we pick
one procedure call convention. Others differ in the details but exhibit the same issues
that we want to explore.

We implement the call to get_time with a stack, so that get_time could call other
procedures (although in this example it does not do so). In general, a called procedure
may call another procedure or even call itself recursively. To allow for calls to other
procedures, the implementation must adhere to the stack discipline: each invocation
of a procedure must leave the stack as it found it.

To adhere to this discipline, there must be a convention for who saves what regis-
ters, who puts the arguments on the stack, who removes them, and who allocates space

on the stack for temporary variables.
The particular convention used by a
system is called the procedure calling
convention. We use the convention
shown in Figure 4.1. Each procedure
call results in a new stack frame, which
has space for saved registers, the argu-
ments for the callee, the address where
the callee should return, and local vari-
ables of the callee.

Given this calling convention, the
processor instructions for these two
modules are shown in Figure 4.2. In
this example, the instructions of the

Saved
temporary registers

Return address

Space for local
variables

Space for local
variables

Stack frame caller

Stack frame callee

SP

Stack
growing

up

Stack

Arguments

Figure 4.1

Procedure call convention.

1514�1 Client/Service Organization

caller (measure) start at address 100, the instructions of the callee (get_time) start at
address 200. The stack grows up, from a low address to a high address. The return
value of a procedure is passed through register r0. For simplicity, assume that instruc-
tions, memory locations, and addresses are all 4 bytes wide. For our example, measure
invokes gettime as follows:

1. The caller saves content of temporary registers (r1 and r2) at addresses 100
through 112.

2. The caller stores the arguments on the stack (address 116 through 124) so that
the callee can find them. (get_time takes one argument: unit.)

3. The caller stores a return address on the stack (address 128 through 136) so
that the callee can know where the caller should resume execution. (The
return address is 148.)

Machine code for measure:

100: store r1, sp // save content of r1
104: add 4, sp // adjust stack
108: store r2, sp // save content of r2
112: add 4, sp // adjust stack
116: mov seconds, r1 // move argument to get_time in r1
120: store r1, sp // store argument in r1 on stack
124: add 4, sp // adjust stack
128: mov 148, r1 // place return address in r1
132: store r1, sp // store return address in r1 on stack
136: add 4, sp // adjust stack
140: store 200, r1 // load address of get_time into r1
144: jmp r1 // jump to it
148: sub 8, sp // adjust top of stack
152: mov sp, r2 // restore r2's content
156: sub 4, sp // adjust stack
160: mov sp, r1 // restore r1's content
164: sub 4, sp // adjust stack
168: mov r0, start // store result in local stack variable start
172: // invoke func and get_time again

Machine code for get_time:

200: mov sp, r1 // move stack pointer into r1
204: sub 8, r1 // subtract 8 from sp in r1
208: load r1, r2 // load argument from stack into r2
212: // instructions for body of get_time

220: mov time, r0 // move return value in r0
224: mov sp, r1 // move stack pointer in r1
228: sub 4, r1 // subtract 4 from sp in r1
232: load r1, pc // load return address from stack into pc

Figure 4.2

The procedure measure (located at address 100) calls get_time (located at address 200).

152 CHAPTER 4 Enforcing Modularity with Clients and Services

4. The caller transfers control to the callee by jumping to the address of its first
instruction (address 140 and 144). (The callee, get_time, is located at address
200.) The stack for our example looks now as in the following figure.

R1

R2

SECONDS

SP

144Stack
grows
up

5. The callee loads its argument from the stack into r2 (address 200 through 208).
6. The callee computes with the arguments, perhaps calling other functions

(address 212).
7. The callee loads the return value of get_time into r0, the register the imple-

mentation reserves for returning values (address 220).
8. The callee loads the return address from the stack into pc (address 224 through

232), which causes the caller to resume control at address 148.
9. The caller adjusts the stack (address 148).

10. The caller restores content of r1 and r2 (addresses 152 through 164).

We use the low-level instructions of the processor for the specific example in
Figure 4.2 because it exposes the fine print of the contract between the caller and
the callee, and shows how errors can propagate. In the measure example, the contract
specifies that the callee returns the current time in some agreed-upon representa-
tion to the caller. If we look under the covers, however, we see that this functional
specification is not the full contract and that the contract doesn’t have a good way of
limiting the propagation of errors. To uncover the fine print of the contract between
modules, we need to inspect how the stack from Figure 4.2 is used to transfer control
from one module to another. The contract between caller and callee contains several
subtle potential problems:

By contract, the caller and callee modify only shared arguments and their own ■

variables in the stack. The callee leaves the stack pointer and the stack the way
the caller has set it up. If there is a problem in the callee that corrupts the
caller’s area of the stack, then the caller might later compute incorrect results
or fail.

By contract, the callee returns where the caller told it to. If by mistake the callee ■

returns somewhere else, then the caller probably performs an incorrect compu-
tation or loses control completely and fails.

1534�1 Client/Service Organization

By contract, the callee stores return values in register ■ r0. If by mistake the callee
stores the return value somewhere else, then the caller will read whatever value
is in register r0 and probably perform an incorrect computation.

By contract, the caller saves the values in the temporary registers (■ r1, r2, etc.) on
the stack before the call to the callee and restores them when it receives control
back. If the caller doesn’t follow the contract, the callee may have changed the
content of the temporary registers when the caller receives control back, and
the caller probably performs an incorrect computation.

Disasters in the callee can have side effects in the caller. For example, if the ■

callee divides by zero and, as a result, terminates, the caller may terminate too.
This effect is known colloquially as fate sharing.

If the caller and callee share global variables, then by contract, the caller and ■

callee modify only those global variables that are shared between them. Again, if
the caller or callee modifies some other global variable, they (or other modules)
might compute incorrectly or fail altogether.

Thus, the procedure call contract provides us with what might be labeled soft
modularity. If a programmer makes an error or there is an error in the implementa-
tion of the procedure call convention, these errors can easily propagate from the
callee to the caller. Soft modularity is usually attained through specifications, but noth-
ing forces the interactions among modules to their defined interfaces. If the callee
doesn’t adhere (intentionally or unintentionally) to the contract, the caller has a seri-
ous problem. We have modularity that is not enforced.

There are also other possibilities for propagation of errors. The procedures share
the same address space, and, if a defective procedure incorrectly smashes a global
variable, even a procedure that did not call the defective one may be affected. Any
procedure that doesn’t adhere, either intentionally or unintentionally, to the contract
may cause trouble for other modules.

Using a constrained and type-safe implementation language such as Java can beef
up soft modularity to a certain extent (see Sidebar 4.1) but is insufficient for complete
systems. For one, it is uncommon that all modules in a system are implemented in type-
safe language. Often some modules of a system are for performance reasons written in
a programming language that doesn’t enforce modularity, such C, C11, or processor
instructions. But even if the whole system is developed in a type-safe language like
Java, we have a need for stronger modularity. If any of the Java modules raises an error
(because the interpreter raises a type violation, the module allocated more memory
than available, the module couldn’t open a file, etc.) or has a programming error (e.g.,
an infinite loop), we would like to ensure that other modules don’t immediately fail
too. Even if a called procedure doesn’t return, we would like to ensure that the caller
has a controlled problem.

What we desire in systems is enforced modularity: modularity that is enforced
by some external mechanism. This external mechanism limits the interaction among
 modules to the ones we desire. Such a limit on interactions reduces the number of

154 CHAPTER 4 Enforcing Modularity with Clients and Services

Sidebar 4.1 Enforcing Modularity with a High-Level Languages A high-level
 language is helpful in enforcing modularity because its compiler and runtime system
perform all stack and register manipulation, presumably accurately and in accordance
with the procedure calling convention. Furthermore, if the programming language
enforces a restriction that programs write only to memory locations that correspond
to variables managed by the language and in accordance with their type, then pro-
grams cannot overwrite arbitrary memory locations and, for example, corrupt the
stack. That is, a program cannot use the value of a variable of type integer as an address
of a memory location and then store to that memory location. Such languages are
called strongly typed and, if a program cannot avoid the type system in any way, type
safe. Modern examples of strongly typed languages include Java and C#.

But even with strongly typed languages, modularity through procedure calls doesn’t
limit the interactions between modules to their defined interfaces. For example, if the
callee has a programming error and allocates all of the available memory space, then
the caller may be unable to proceed. Also, strongly typed languages allow the pro-
grammer to escape the type system of the language to obtain direct access to memory
or to processor registers and to exercise system features that the language does not
support (e.g., reading and writing memory locations that correspond to the control
registers and state of a device). But this access opens a path for the programmer to
make mistakes that violate the procedure call contract.

Another concern is that in many computer systems different modules are written in
different programming languages, perhaps because an existing, older module is being
reused, even though its implementation language does not provide the type-safety fea-
tures, or because a lower-level language fragment is essential for achieving maximum
performance. Even when the caller and callee are written in two different, strongly
typed languages, unexpected interactions can occur at their interface because their
conventions do not match.

Another source of errors, which in practice seem to occur much less often, is an
implementation error in the interpreter of the application (though with increasing
complexity of compilers, runtime support systems, and processor designs, this source
may yet become significant). The compiler may have a programming error, the run-
time support system may have set up the stack incorrectly, the processor or oper-
ating system may save and restore registers incorrectly on an interrupt, a memory
error causes a load instruction to return an incorrect value, and so on. Although these
sources are less likely to occur than programming errors, it is good to contain the
resulting errors so that they don’t propagate to other modules.

For all these reasons, designers use the client/service organization. Combining the
client/service organization with writing a system in a strongly typed language offers
additional opportunities for enforcing modularity; see, for example, the design of the
Singularity operating system [Suggestions for Further Reading 5.2.3].

1554�1 Client/Service Organization

opportunities for propagation of errors. It also allows verification that a user uses a
module correctly, and it helps prevent an attacker from penetrating the security of a
module.

4.1.2 Client/service Organization

One good way to enforce modularity is to limit the interactions among modules to
explicit messages. It is convenient to impose some structure on this organization by
identifying participants in a communication as clients or services.

Figure 4.3 shows a common interaction between client and service. The client is
the module that initiates a request: it builds a message containing all the data neces-
sary for the service to carry out its job and sends it to a service. The service is the
module that responds: it extracts the arguments from the request message, executes
the requested operations, builds a response message, sends the response message
back to the client, and waits for the next request. The client extracts the results from
the response message. For convenience, the message from the client to the service is
called the request, and the message is called the response or reply.

Figure 4.3 shows one common way in which a client and a service interact: a
request is always followed by a response. Since a client and a service can interact
using many other sequences of messages, designers often represent the interactions
using message timing diagrams (see Sidebar 4.2). Figure 4.3 is an instance of a simple
timing diagram.

Conceptually, the client/service model runs client and services on separate com-
puters, connected by a wire. This implementation also allows client and service to be
separated geographically (which can be good because it reduces the risk that both
fail owing to a common fault such as a power outage) and restricts all interactions to
well-defined messages sent across a wire.

The disadvantage of this implementation is that it requires one computer per mod-
ule, which may be costly in equipment. It may also have a performance cost because
it may take a substantial amount of time to send a message from one computer to
another, in particular if the computers are far away geographically. In some cases
these disadvantages are unimportant; for cases in which it does matter, Chapter 5 will
explain how to implement the client/service model within a single computer using

Client Service

Time
REQUEST

Put argument into message

Wait for response

Wait for request message

Get arguments from request

Put result in response message

Remove result from response
Check results

RESPONSE

Compute Figure 4.3

Communication
between client and
service.

156 CHAPTER 4 Enforcing Modularity with Clients and Services

Sidebar 4.2 Representation: Timing Diagrams A timing diagram is a convenient
representation of the interaction between modules. When the system is organized in
a client/service style, this presentation is particularly convenient, because the interac-
tions between modules are limited to messages. In a timing diagram, the lifetime of a
module is represented by a vertical line, with time increasing down the vertical axis.
The following example illustrates the use of a timing diagram for a sewage pumping
system. The label at the top of a timeline names the module (pump controller, sensor
service, and pump service). The physical separation between modules is represented
horizontally. Since it takes time for a message to get from one point to another, a mes-
sage going from the pump controller to the pump service is represented by an arrow
that slopes downward to the right.

The modules perform actions, and send and receive messages. The labels next to the
time indicate actions taken by the module at a certain time. Modules can take actions
at the same time, for example, if they are running on different processors.

The arrows indicate messages. The start of the arrow indicates the time the mes-
sage is sent by the sending module, and the point of an arrow indicates the time
the message is received at the destination module. The content of a message is
described by the label associated with the arrow. In some examples, messages can
be reordered (arrows cross) or lost (arrows terminate midflight before reaching a
module).

Pump controller Pump serviceTime

Read sensor

Start pump?

MEASURE TANK LEVEL

level

START PUMP

Start pump

Sensor service

The simple timing diagram shown in this sidebar describes the interaction between
a pump controller and two services: a sensor service and a pump service. There is a
request containing the message “measure tank level” from the client to the sensor
service, and a response reports the level read by the sensor. There is a third message,
“start pump”, which the client sends to the pump service when the level is too high.
The second message has no response. The diagram shows three actions: reading the
sensor, deciding whether the pump must be started, and starting the pump. Figure 7.7
[on-line] shows a timing diagram with a lost message, and Figure 7.9 [on-line] shows
one with a delayed message.

1574�1 Client/Service Organization

an operating system. For the rest of this chapter we will assume that the client and the
service each have their own computer.

To achieve high availability or handle big workloads, a designer may choose to
implement a service using multiple computers. For instance, a file service might use
several computers to achieve a high degree of fault tolerance; if one computer fails,
another one can take over its role. An instance of a service running on a single com-
puter is called a server.

To make the client/service model more concrete, let’s rearrange our measure pro-
gram into a simple client/service organization (see Figure 4.4). To get a time from
the service, the client procedure builds a request message that names the service
and specifies the requested operation and arguments (lines 2 and 6). The requested
operation and arguments must be converted to a representation that is suitable for
transmission. For example, the client computer may be a big-endian computer (see
Sidebar 4.3), while the service computer may be a little-endian computer. Thus, the
client must convert arguments into a canonical representation so that the service can
interpret the arguments.

This conversion is called marshaling. We use the notation {a, b} to denote a
 marshaled message that contains the fields a and b. Marshaling typically involves
 converting an object into an array of bytes with enough annotation so that the

Client program

1 procedure measure (func)
2 send_message (NameForTimeService, {"Get time", convert2external(seconds)})
3 response ← receive_message (NameForClient)
4 start ← convert2internal (response)
5 func () // invoke the function
6 send_message (NameForTimeService, {"Get time", convert2external(seconds)})
7 response ← receive_message (NameForClient)
8 end ← convert2internal (response)
9 return end – start

Service program

10 procedure time_service ()
11 do forever
12 request ← receive_message (NameForTimeService)
13 opcode ← get_opcode (request)
14 unit ← convert2internal(get_argument (request))
15 if opcode 5 "Get time" and (unit 5 seconds or unit 5 minutes) then
16 time ← convert_to_units (clock, unit)
17 response ← {"Ok", convert2external (time)}
18 else
19 response ←{"Bad request"}
20 send_message (NameForClient, response)

Figure 4.4

Example client/service application: time service.

158 CHAPTER 4 Enforcing Modularity with Clients and Services

Sidebar 4.3 Representation: Big-Endian or Little-Endian? Two common con-
ventions exist for numbering bits within a byte, bytes within a word, words within a
page, and the like. One convention is called big-endian, and the other little-endian.*
In big-endian the most significant bit, byte, or word is numbered 0, and the signifi-
cance of bits decreases as the address of the bit increases:

Words

Bytes

Bits

7 ……
…

110 0
… …20 21 22 20 21 22263

7
…263

0 1

In big-endian the hex number ABCDhex would be stored in memory, so that if you read
from memory in increasing memory address order, you would see A-B-C-D. The string
“john” would be stored in memory as john.

In little-endian, the other convention, the least significant bit, byte, or word is num-
bered 0, and the significance of bits increases as the address of the bit increases:

Words

Bytes

Bits

…

n 1

… 017 701

n

… …22 21 20…22 21 20 263…263

In little-endian, the hex number ABCDhex would be stored in memory, so that if you
read from memory in increasing memory address order, you see D-C-B-A. The string
“john” would still be stored in memory as john. Thus, code that extracts bytes from
character strings transports between architectures, but code that extracts bytes from
integers does not transport.

Some processors, such as the Intel x86 family, use the little-endian convention, but
others, such as the IBM PowerPC family, use the big-endian convention. As Danny
Cohen pointed out in a frequently cited article “On holy wars and a plea for peace”
[Suggestions for Further Reading 7.2.4], it doesn’t matter which convention a designer
uses as long as it is the same one when communicating between two processors. The
processors must agree on the convention for numbering the bits sent over the wire
(that is, send the most significant bit first or send the least significant bit first). Thus,
if the communication standard is big-endian (as it is in the Internet protocols), then a
client running on a little-endian processor must marshal data in big-endian order. This
book uses the big-endian convention.

This book also follows the convention that bit numbers start with zero. This choice is
independent of the big-endian convention; we could have chosen to use 1 instead, as
some processors do.

*The labels “big-endian” and “little-endian” were coined by Jonathan Swift in Chapter 4 of Gulliver’s
Travels, to identify two quarreling factions that differed over which end of an egg it was best to open.

1594�1 Client/Service Organization

unmarshal procedure can convert it back into a language object. In this example,
we show the marshal and unmarshal operations explicitly (e.g., the procedure calls
starting with convert), but in many future examples these operations will be implicit
to avoid clutter.

After constructing the request, the client sends it (2 and 6), waits for a response
(line 3 and 7), and unmarshals the time (4 and 8).

The service procedure waits for a request (line 12) and unmarshals the request
(lines 13 and 14). Then, it checks the request (line 15), processes it (lines 16
through 19), and sends back a marshaled response (line 20).

The client/service organization not only separates functions (abstraction), it also
enforces that separation (enforced modularity). Compared to modularity using proce-
dure calls, the client/service organization has the following advantages:

The client and service don’t rely on shared state other than the messages. ■

Therefore, errors can propagate from the client to the service, and vice versa,
in only one way. If the services (as in line 15) and the clients check the validity
of the request and response messages, then they can control the ways in which
errors propagate. Since the client and service don’t rely on global, shared data
structures such as a stack, a failure in the client cannot directly corrupt data in
the service, and vice versa.

The transaction between a client and a service is an arm’s-length transaction. ■

Many errors cannot propagate from one to the other. For instance, the client
does not have to trust the service to return to the appropriate return address,
as it does using procedure calls. As another example, arguments and results
are marshaled and unmarshaled, allowing the client and service to check them.

The client can protect itself even against a service that fails to return because ■

the client can put an upper limit on the time it waits for a response. As a result,
if the service gets into an infinite loop, or fails and forgets about the request, the
client can detect that something has gone wrong and undertake some recovery
procedure, such as trying a different service. On the other hand, setting timers
can create new problems because it can be difficult to predict how long a wait
is reasonable. The problem of setting timers for service requests is discussed in
detail in Section 7.5.2 [on-line]. In our example, the client isn’t defensive against
service errors; providing these defenses will make the program slightly more
complex but can help eliminate fate sharing.

Client/Service organization encourages explicit, well-defined interfaces. Because ■

the client and service can interact only through messages, the messages that a
service is willing to receive provide a well-defined interface for the service. If
those messages are well specified and their specification is public, a program-
mer can implement a new client or service without having to understand the
internals of another client or the service. Clear specification allows clients
and service to be implemented by different programmers, and can encourage
 competition for the best implementation.

160 CHAPTER 4 Enforcing Modularity with Clients and Services

Separating state and passing well-defined messages reduce the number of potential
interactions, which helps contain errors. If the programmer who developed the ser-
vice introduces an error and the service has a disaster, the client has only a controlled
problem. The client’s only concern is that the service didn’t deliver its part of the
contract; apart from this wrong or missing value, the client has no concern for its own
integrity. The client is less vulnerable from faults in the service, or, in slightly differ-
ent words, fate sharing can be reduced. Clients can be mostly independent of service
failures, and vice versa.

The client/service organization is an example of a sweeping simplification because
the model eliminates all forms of interaction other than messages. By separating the
client and the service from each other using message passing, we have created a
firewall between them. As with firewalls in buildings, if there is a fire in the service, it
will be contained in the service, and, assuming the client can check for flames in the
response, it will not propagate to the client. If the client and service are well imple-
mented, then the only way to go from the client to the service and back is through
well-defined messages.

Of course, the client/service organization is not a panacea. If a service returns an
incorrect result, then the client has a problem. This client can check for certain problems
(e.g., syntactic ones) but not all semantic errors. The client/service organization reduces
fate sharing but doesn’t eliminate it. The degree to which the client/service organization
reduces fate sharing is also dependent on the interface between the client and service.
As an extreme example, if the client/service interface has a message that allows a client
to write any value to any address in the service’s address space, then it is easy for errors
to propagate from the client to the service. It is the job of the system designer to define
a good interface between client and service so that errors cannot propagate easily. In
this chapter and later chapters, we will see examples of good message interfaces.

For ease of understanding, most of the examples in this chapter exhibit modules
consisting of a single procedure. In the real world, designers usually apply the client/
service organization between software modules of a larger granularity. The tendency
toward larger granularity arises because the procedures within an application typi-
cally need to be tightly coupled for some practical reason, such as they all operate
on the same shared data structure. Placing every procedure in a separate client or
service would make it difficult to manipulate the shared data. The designer thus faces
a trade-off between ease of accessing the data that a module needs and ease of error
propagation within a module. A designer makes this trade-off by deciding which data
and procedures to group into a coherent unit with the data that they manipulate. That
coherent unit then becomes a separate service, and errors are contained within the
unit. The client and service units are often complete application programs or similarly
large subsystems.

Another factor in whether or not to apply the client/service organization to two
modules is the plan for recovery when the service module fails. For example, in a
simulator program that uses a function to compute the square root of its argument, it
makes little sense to put that function into a separate service because it doesn’t reduce
fate sharing. If the square-root function fails, the simulator program cannot proceed.
Furthermore, a good recovery plan is for the programmer to reimplement the function

1614�1 Client/Service Organization

correctly, as opposed to running two square-root servers, and failing over to the sec-
ond one when the first one fails. In this example, the square-root function might as
well be part of the simulator program because the client/service organization doesn’t
reduce fate sharing for the simulator program and thus there is no reason use it.

A nice example of a widely used system that is organized in a client/service style,
with the client and service typically running on separate computers, is the World
Wide Web. The Web browser is a client, and a Web site is a service. The browser and
the site communicate through well-defined messages and are typically geographically
separated. As long as the client and service check the validity of messages, a failure of
a service results in a controlled problem for the browser, and vice versa. The World
Wide Web provides enforced modularity.

In Figures 4.3 and 4.4, the service always responds with a reply, but that is not a
requirement. Figure 4.5 shows the pseudocode for a pump controller for the sewage
pumping system in Sidebar 4.2. In this example, there is no need for the pump service
to send a reply acknowledging that the pump was turned off. What the client cares
about is a confirmation from an independent sensor service that the level in the tank
is going down. Waiting for a reply from the pump service, even for a short time, would
just delay sounding the alarm if the pump failed.

Client program: pump controller

1 procedure pump_controller ()
2 do forever
3 send_message (NameForSensor, "measure tank level")
4 level ← receive_message (NameForClient)
5 if level > UpperPumpLimit then send_message (NameForPump, "turn on pump")
6 if level < LowerPumpLimit then send_message (NameForPump, "turn pump off")
7 if level > OverflowLimit then sound_alarm ()

Pump service

1 procedure pump_service ()
2 do forever
3 request ← receive_message (NameForPump)
4 if request = "Turn on pump" then set_pump (on)
5 else if request = "Turn off pump" then set_pump (off)

Sensor service

1 procedure sensor_service ()
2 do forever
3 request ← receive_message (NameForSensor)
4 if request 5 "Measure tank level" then
5 response ← read_sensor ()
6 send_message (NameForClient, response)

Figure 4.5

Example client/service application: controller for a sewage pump.

162 CHAPTER 4 Enforcing Modularity with Clients and Services

Sidebar 4.4 The X Window System The X Window System [Suggestions for
Further Reading 4.2.2] is the window system of choice on practically every engineer-
ing workstation and many personal computers. It provides a good example of using
the client/service organization to achieve modularity. One of the main contributions
of the X Window System is that it remedied a defect that had crept into the unix sys-
tem when displays replaced typewriters: the display and keyboard were the only hard-
ware-dependent parts of the unix application programming interface. The X Window
System allowed display-oriented unix applications to be completely independent of
the underlying hardware.

The X Window System achieved this property by separating the service program that
manipulates the display device from the client programs that use the display. The
service module provides an interface to manage windows, fonts, mouse cursors, and
images. Clients can request services for these resources through high-level operations;
for example, clients perform graphics operations in terms of lines, rectangles, curves,
and the like. The advantage of this split is that the client programs are device indepen-
dent. The addition of a new display type may require a new service implementation,
but no application changes are required.

Another advantage of a client/service organization is that an application running on
one machine can use the display on some other machine. This organization allows,
for example, a computing-intensive program to run on a high-performance supercom-
puter, while displaying the results on a user’s personal computer.

It is important that the service be robust to client failures because otherwise a buggy
client could cause the entire display to freeze. The X Window system achieves this prop-
erty by having client and service communicate through carefully designed remote pro-
cedure calls, a mechanism described in Section 4.2. The remote procedure calls have
the property that the service never has to trust the clients to provide correct data and
that the service can process other client requests if it has to wait for a client.

The service allows clients to send multiple requests back to back without waiting for
individual responses because the rate at which data can be displayed on a local dis-
play is often higher than the network data rate between a client and service. If the cli-
ent had to wait for a response on each request, then the user-perceived performance
would be unacceptable. For example, at 80 characters per request (one line of text
on a typical display) and a 5-millisecond round-trip time between client and service,
only 16,000 characters per second can be drawn, while typical hardware devices are
capable of displaying an order of magnitude faster.

Other systems avoid response messages for performance reasons. For example,
the popular X Window System (see Sidebar 4.4) sends a series of requests that ask
the service to draw something on a screen and that individually have no need for a
response.

1634�1 Client/Service Organization

4.1.3 Multiple Clients and services

In the examples so far, we have seen one client and one service, but the client/service
model is much more flexible:

One service can work for multiple clients. A printer service might work for many ■

clients so that the cost of maintaining the printer can be shared. A file service might
store files for many clients so that the information in the files can be shared.

One client can use several services, as in the sewage pump controller (see ■

Figure 4.5), which uses both a pump service and a sensor service.

A single module can take on the roles of both client and service. A printer ser- ■

vice might temporarily store documents on a file service until the printer is
ready to print. In this case, the print service functions as a service for printing
requests, but it is also a client of the file service.

4.1.4 trusted intermediaries

A single service that has multiple clients brings up another technique for enforcing
modularity: the trusted intermediary, a service that functions as the trusted third
party among multiple, perhaps mutually suspicious, clients. The trusted intermediary
can control shared resources in a careful manner. For example, a file service might
store files for multiple clients, some of which are mutually suspicious; the clients,
however, trust the service to keep their affairs distinct. The file service could ensure
that a client cannot have access to files not owned by that client, or it could, based on
instructions from the clients, allow certain clients to share files.

The trusted intermediary enforces modularity among multiple clients and
ensures that a fault in one client has limited (or perhaps no) effect on another
client. If the trusted intermediary provides sharing of resources among multiple
clients, then it has to be carefully designed and implemented to ensure that the
failures of one client don’t affect another client. For example, an incorrect update
made by one client to its private files shouldn’t affect the private files of another
client.

A file service is only one example of a trusted intermediary. Many services in
 client/service applications are trusted intermediaries. E-mail services store mailboxes
for many users so that individual users don’t have to worry about losing their e-mail.
As another example, instant message services provide private buddy lists. It is usually
the clients that need some form of controlled sharing, and trusted intermediaries can
provide that.

There are also situations in which intermediaries that do not have to be trusted
are useful. For example, Section 4.2.3 describes how an untrusted intermediary can
be used to buffer and deliver messages to multiple recipients. This use allows com-
munication patterns other than request/response.

Another common use of trusted intermediaries is to simplify clients by having the
trusted intermediary provide most functions. The buzzword in trade magazines for

164 CHAPTER 4 Enforcing Modularity with Clients and Services

Sidebar 4.5 Peer-to-peer: Computing without Trusted Intermediaries Peer-
to-peer is a decentralized design that lacks trusted intermediaries. It is one of the old-
est designs and has been used by, for example, the Internet e-mail system, the Internet
news bulletin service, Internet service providers to route Internet packets, and IBM’s
Systems Network Architecture. Recently, it has received much attention in the popular
press because file-sharing applications have rediscovered some of its advantages.

In a peer-to-peer application, every computer participating in the application is a peer
and is equal in function (but perhaps not in capacity) to any other computer. That is,
no peer is more important than any other peer; if one peer fails, then this failure may
degrade the performance of the application, but it won’t fail the application. The cli-
ent/service organization doesn’t have this property: if the service fails, the application
fails, even if all client computers are operational.

UsenetNews is a good example of an older peer-to-peer application. UsenetNews,
an on-line news bulletin, is one of the first peer-to-peer applications and has been
operational since the 1980s. Users post to a newsgroup, from which other users read
articles and respond. Nodes in UsenetNews propagate newsgroups to peers and serve
articles to clients. An administrator of a node decides with which nodes the adminis-
trator’s node peers. Because most nodes interconnect with several other nodes, the
system is fault tolerant, and the failure of one node leads at most to a performance
degradation rather than to a complete failure. Because the nodes are spread across the
world in different jurisdictions, it is difficult for any one central authority to censor
content (but an administrator of a node can decide not to carry a group). Because of
these properties, designers have proposed organizing other applications in a peer-to-
peer style. For example, LOCKSS [Suggestions for Further Reading 10.2.3] has built a
robust digital library in that style.

Recently, music-sharing applications and improvements in technology have brought
peer-to-peer designs into the spotlight. Today, client computers are as powerful as yester-
day’s computers for services and are connected with high data-rate links to the Internet.
In music-sharing applications the clients are peers, and they serve and store music for
one another. This organization aggregates the disk space and network links of all clients
to provide a tremendous amount of storage and network capacity, allowing many songs
to be stored and served. As often happens in the history of computer systems, the first
version of this application was developed not by a computer scientist but by an 18-year-
old, Shawn Fanning, who developed Napster. It (and its successors) has changed the
characteristics of network traffic on the Internet and has raised legal questions as well.

In Napster, clients serve and store songs, but a trusted intermediary stores the location
of a song. Because Napster was used for illegal music sharing, the Recording Industry
Association of America (RIAA) sued the operators of the intermediary and was able to
shut it down. In more recent peer-to-peer designs, developers adopted the design of
censor-resistant applications and avoided the use of a trusted intermediary to locate

(Sidebar continues)

1654�1 Client/Service Organization

this use is “thin-client computing”. In this use, only the trusted intermediary must run
on a powerful computer (or a collection of computers connected by a high-speed
network) because the clients don’t run complex functions. Because in most applica-
tions there are a few trusted intermediaries (compared to the number of clients), they
can be managed by a professional staff and located in a secure machine room. Trusted
intermediaries of this type may be expensive to design, build, and run because they
may need many resources to support the clients. If one isn’t careful, the trusted inter-
mediary can become a choke point during a flash crowd when many clients ask for
the service at the same time. At the cost of additional complexity, this problem can
be avoided by carefully dividing the work between clients and the trusted intermedi-
ary and replicating services using the techniques described in Chapters 8 [on-line]
through 10 [on-line].

Designs that have trusted intermediaries also have some general downsides. The
trusted intermediary may be vulnerable to failures or attacks that knock out the ser-
vice. Users must trust the intermediary, but what if it is compromised or is subjected
to censorship? Fortunately, there are alternative architectures; see Sidebar 4.5.

4.1.5 a simple example service

Figure 4.6 shows the file system example of Figure 2.18 organized in a client/service
style, along with the messages between the clients and services. The editor is a client of
the file service, which in turn is a client of the block-storage service. The figure shows
the message interaction among these three modules using a message timing diagram.

songs. In these successors to Napster, the peers locate music by querying other peers;
if any individual node is shut down, it will not render the service unavailable. The
RIAA must now sue individual users.

Accurately and quickly finding information in a large network of peers without a
trusted intermediary is a difficult problem. Without an intermediary there is no cen-
tral, well-known computer to track the locations of songs. A distributed algorithm is
necessary to find a song. A simple algorithm is to send a query for a song to all neigh-
bor peers; if they don’t have a copy, the peers forward the query to their neighbors,
and so on. This algorithm works, but it is inefficient because it sends a query to every
node in the network.To avoid flooding the network of peers on each query, one can
stop forwarding the query after it has been forwarded a number of times. Bounding a
search in this way may cause some queries to return no answer, even though the song
is somewhere in the network.

This problem has sparked interest in the research community, leading to the invention
of better algorithms for decentralized search services and resulting in a range of new
peer-to-peer applications. Some of these topics are covered in problem sets; see, for
example, problem sets 20 [on-line] and 23 [on-line].

166 CHAPTER 4 Enforcing Modularity with Clients and Services

In the depicted example, the client constructs an open message, specifying the
name of the file to be opened. The service checks permissions and, if the user is
allowed access, sends a response back indicating success (OK) and the value of the
file pointer (0) (see Section 2.3.2 for an explanation of a file pointer). The client writes
text to the file, which results in a write request that specifies the text and the number
of bytes to be written. The service writes the file by allocating blocks on the block ser-
vice, copies the specified bytes into them, and returns a message stating the number
of bytes written (16). After receiving a response from the block service, it constructs
a response for the client, indicating success and informing the client of the new value
of the file pointer. When the client is done editing, the client sends a close message,
telling the service that the client is finished with this file.

This message sequence is too simple for use in practice because it doesn’t deal
with failures (e.g., what happens if the service fails while processing a write request),
concurrency (e.g., what happens if multiple clients update a shared file), or security
(e.g., how to ensure that a malicious person cannot write the business plan). A file
service that is almost this simple is the Woodstock File System (WFS), designed by
researchers at the Xerox Palo Alto Research Center [Suggestions for Further Reading
4.2.1]. Section 4.5 is a case study of a widely used successor, the Network File System
(NFS), which is organized as a client/service application, and summarizes how NFS
handles failures and concurrency. Handling concurrency, failures, and security in
 general are topics we explore in a systematic way in later chapters.

The file service is a trusted intermediary because it protects the content of files.
It must check whether the messages came from a legitimate client (and not from
an attacker), it decides whether the client has permission to perform the requested
operation, and, if so, it performs the operation. Thus, as long as the file service does
its job correctly, clients can share files (and thus also the block-storage service) in a
protected manner.

OPEN “January business plan”

OK, 0

File serviceEditor

Check permissions

WRITE “Once upon a time”, 16

OK, 16

CLOSE

CleanupOK

Read user input

User is done

Time

Block service

ALLOCATE block
10hex

STORE 10hex,“Once upon a time”
OK

Copy bytes into block

Figure 4.6

File service using message timing diagram.

1674�2 Communication Between Client and Service

4.2 COMMuniCatiOn between Client and serviCe
This section describes two extensions to sending and receiving messages. First, it
introduces remote procedure call (RPC), a stylized form of client/service interac-
tion in which each request is followed by a response. The goal of RPC systems is to
make a remote procedure call look like an ordinary procedure call. Because a service
fails independently from a client, however, a remote procedure call can generally
not offer identical semantics to procedure calls. As explained in the next subsection,
some RPC systems provide various alternative semantics and the programmer must
be aware of the details.

Second, in some applications it is desirable to be able to send messages to a recipi-
ent that is not on-line and to receive messages from a sender that is not on-line. For
example, electronic mail allows users to send e-mail without requiring the recipient
to be on-line. Using an intermediary for communication, we can implement these
applications.

4.2.1 remote Procedure Call (rPC)

In many of the examples in the previous section, the client and service interact in a
stylized fashion: the client sends a request, and the service replies with a response
after processing the client’s request. This style is so common that it has received its
own name: remote procedure call, or RPC for short.

RPCs come in many varieties, adding features to the basic request/response style
of interaction. Some RPC systems, for example, simplify the programming of clients
and services by hiding many the details of constructing and formatting messages. In
the time service example above, the programmer must call send_message and receive_
message, and convert results into numbers, and so on. Similarly, in the file service
example, the client and service have to construct messages and convert numbers into
bit strings and the like. Programming these conversions is tedious and error prone.

Stubs remove this burden from the programmer (see Figure 4.7). A stub is a proce-
dure that hides the marshaling and communication details from the caller and callee.
An RPC system can use stubs as follows. The client module invokes a remote proce-
dure, say get_time, in the same way that it would call any other procedure. However,
get_time is actually just the name of a stub procedure that runs inside the client mod-
ule (see Figure 4.8). The stub marshals the arguments of a call into a message, sends
the message, and waits for a response. On arrival of the response, the client stub
unmarshals the response and returns to the caller.

Similarly, a service stub waits for a message, unmarshals the arguments, and calls
the procedure that the client requests (get_time in the example). After the procedure
returns, the service stub marshals the results of the procedure call into a message and
sends it in a response to the client stub.

Writing stubs that convert more complex objects into an appropriate on-wire
representation becomes quite tedious. Some high-level programming languages

168 CHAPTER 4 Enforcing Modularity with Clients and Services

such as Java can generate these stubs automatically from an interface specification
[Suggestions for Further Reading 4.1.3], simplifying client/service programming even
further. Figure 4.9 shows the client for such an RPC system. The RPC system would
generate a procedure similar to the get_time stub in Figure 4.8. The client program of
Figure 4.9 looks almost identical to the one using a local procedure call on page 149,

Client program

1 procedure measure (func)
2 start ← get_time (seconds)
3 func () // invoke the function
4 end ← get_time (seconds)
5 return end – start
6
7 procedure get_time (unit) // the client stub for get_time

8 send_message (NameForTimeService, {"Get time", unit})
9 response ← receive_message (NameForClient)
10 return convert2internal (response)

Service program

1 procedure time_service () // the service stub for get_time

2 do forever
3 request ← receive_message (NameForTimeService)
4 opcode ← get_opcode (request)
5 unit ← get_argument (request)
6 if opcode 5 "Get time" and (unit 5 seconds or unit 5 minutes) then
7 response ← {"ok", get_time (unit)}
8 else
9 response ← {"Bad request"}
10 send_message (NameForClient, response)

Figure 4.8

get_time client and service using stubs.

Client

GET_TIME()
GET_TIME()

RESPONSE

REQUEST

...
return time

Service

10:42:18 PM EST

Stub Stub

Figure 4.7

Implementation of
a remote procedure
call using stubs. The
stubs hide all remote
communication from
the caller and callee.

1694�2 Communication Between Client and Service

except that it handles an additional error because remote procedure calls are not
identical to procedure calls (as discussed below). The procedure that the service calls
on line 7 is just the original procedure get_time on page 149.

Whether a system uses RPC with automatic stub generation is up to the imple-
menters. For example, some implementations of Sun’s Network File System (see
Section 4.5) use automatic stub generation, but others do not.

4.2.2 rPCs are not identical to Procedure Calls

It is tempting to think that by using stubs one can make a remote procedure call
behave exactly the same as an ordinary procedure call, so that a programmer
doesn’t have to think about whether the procedure runs locally or remotely. In fact,
this goal was a primary one when RPC was originally proposed—hence the name
remote “procedure call”. However, RPCs are different from ordinary procedure calls
in three important ways: First, RPCs can reduce fate sharing between caller and
callee by exposing the failures of the callee to the caller so that the caller can
recover. Second, RPCs introduce new failures that don’t appear in procedure calls.
These two differences change the semantics of remote procedure calls as compared
with ordinary procedure calls, and the changes usually require the programmer to
make adjustments to the surrounding code. Third, remote procedure calls take more
time than procedure calls; the number of instructions to invoke a procedure (see
Figure 4.2) is much less than the cost of invoking a stub, marshaling arguments,
sending a request over a network, invoking a service stub, unmarshaling arguments,
marshaling the response, receiving the response over the network, and unmarshal-
ing the response.

To illustrate the first difference, consider writing a procedure call to the
library program sqrt, which computes the square root of its argument x. A careful
 programmer would plan for the case that sqrt (x) will fail when x is negative by
 providing an explicit exception handler for that case. However, the programmer
using ordinary procedure calls almost certainly doesn’t go to the trouble of plan-
ning for certain possible failures because they have negligible probability. For

The client program

1 procedure measure (func)
2 try
3 start ← get_time (seconds)
4 catch (signal servicefailed)
5 return servicefailed
6 func () // invoke the function
7 try
8 end ← get_time (seconds)
9 catch (signal servicefailed)
10 return servicefailed
11 return end – start

Figure 4.9
get_time client
 using a system that
generates RPC stubs
automatically.

170 CHAPTER 4 Enforcing Modularity with Clients and Services

example, the programmer probably would not think of setting an interval timer
when invoking sqrt (x), even though sqrt internally has a successive-approximation
loop that, if programmed wrong, might not terminate.

But now consider calling sqrt with an RPC. An interval timer suddenly becomes
essential because the network between client and service can lose a message, or the
other computer can crash independently. To avoid fate sharing, the RPC programmer
must adjust the code to prepare for and handle this failure. When the client receives
a “service failure” signal, the client may be able to recover by, for example, trying
a different service or choosing an alternative algorithm that doesn’t use a remote
service.

The second difference between ordinary procedure calls and RPCs is that RPCs
introduce a new failure mode, the “no response” failure. When there is no response
from a service, the client cannot tell which of two things went wrong: (1) some failure
occurred before the service had a chance to perform the requested action, or (2) the
service performed the action and then a failure occurred, causing just the response
to be lost.

Most RPC designs handle the no-response case by choosing one of three imple-
mentation strategies:

 ■ At-least-once RPC. If the client stub doesn’t receive a response within some
specific time, the stub resends the request as many times as necessary until it
receives a response from the service. This implementation may cause the ser-
vice to execute a request more than once. For applications that call sqrt, execut-
ing the request more than once is harmless because with the same argument
sqrt should always produce the same answer. In programming language terms,
the sqrt service has no side effects. Such side-effect-free operations are also
idempotent: repeating the same request or sequence of requests several times
has the same effect as doing it just once. An at-least-once implementation does
not provide the guarantee implied by its name. For example, if the service was
located in a building that has been blown away by a hurricane, retrying doesn’t
help. To handle such cases, an at-least-once RPC implementation will give up
after some number of retries. When that happens, the request may have been
executed more than once or not at all.

 ■ At-most-once RPC. If the client stub doesn’t receive a response within some
specific time, then the client stub returns an error to the caller, indicating
that the service may or may not have processed the request. At-most-once
semantics may be more appropriate for requests that do have side effects. For
example, in a banking application, using at-least-once semantics for a request
to transfer $100 from one account to another could result in multiple $100
transfers. Using at-most-once semantics assures that either zero or one transfers
take place, a somewhat more controlled outcome. Implementing at-most-once
RPC is harder than it sounds because the underlying network may duplicate
the request message without the client stub’s knowledge. Chapter 7 [on-line]
describes an at-most-once implementation, and Birrell and Nelson’s paper gives

1714�2 Communication Between Client and Service

a nice, complete description of an RPC system that implements at-most-once
[Suggestions for Further Reading 4.1.1].

 ■ Exactly-once RPC. These semantics are the ideal, but because the client and
 service are independent it is in principle impossible to guarantee. As in the
case of at-least-once, if the service is in a building that was blown away by a
 hurricane, the best the client stub can do is return error status. On the other
hand, by adding the complexity of extra message exchanges and careful record-
keeping, one can approach exactly-once semantics closely enough to satisfy
some applications. The general idea is that, if the RPC requesting transfer of
$100 from account A to B produces a “no response” failure, the client stub sends
a separate RPC request to the service to ask about the status of the request that
got no response. This solution requires that both the client and the service stubs
keep careful records of each remote procedure call request and response. These
records must be fault tolerant because the computer running the service might
fail and lose its state between the original RPC and the inquiry to check on the
RPC’s status. Chapters 8 [on-line] through 10 [on-line] introduce the necessary
techniques.

The programmer must be aware that RPC semantics differ from those of ordinary
procedure calls, and because different RPC systems handle the no-response case in
different ways, it is important to understand just which semantics any particular RPC
system tries to provide. Even if the name of the implementation implies a guarantee
(e.g., at-least-once), we have seen that there are cases in which the implementation
cannot deliver it. One cannot simply take a collection of legacy programs and arbi-
trarily separate the modules with RPC. Some thought and reprogramming is inevitably
required. Problem set 2 explores the effects of different RPC semantics in the context
of a simple client/service application.

The third difference is that calling a local procedure takes typically much less time
than calling a remote procedure call. For example, invoking a remote sqrt is likely to
be more expensive than the computation for sqrt itself because the overhead of a
remote procedure call is much higher than the overhead of following the procedure
calling conventions. To hide the cost of a remote procedure call, a client stub may
deploy various performance-enhancing techniques (see Chapter 6), such as caching
results and pipelining requests (as is done in the X Window System of Sidebar 4.4).
These techniques increase complexity and can introduce new problems (e.g., how to
ensure that the cache at the client stays consistent with the one at the service). The
performance difference between procedure calls and remote procedure calls requires
the designer to consider carefully what procedure calls should be remote ones and
which ones should be ordinary, local procedure calls.

A final difference between procedure calls and RPCs is that some programming
language features don’t combine well with RPC. For example, a procedure that com-
municates with another procedure through global variables cannot typically be
 executed remotely because separate computers usually have separate address spaces.
Similarly, other language constructs that use explicit addresses won’t work. Arguments

172 CHAPTER 4 Enforcing Modularity with Clients and Services

 consisting of data structures that contain pointers, for example, are a problem because
pointers to objects in the client computer are local addresses that have different bind-
ings when resolved in the service computer. It is possible to design systems that use
global references for objects that are passed by reference to remote procedure calls
but require significant additional machinery and introduce new problems. For exam-
ple, a new plan is needed for determining whether an object can be deleted locally
because a remote computer might still have a reference to the object. Solutions exist,
however; see, for example, the article on Network Objects [Suggestions for Further
Reading 4.1.2].

Since RPCs don’t provide the same semantics as procedure calls, the word “pro-
cedure” in “remote procedure call” can be misleading. Over the years the concept of
RPC has evolved from its original interpretation as an exact simulation of an ordinary
procedure call to instead mean any client/service interaction in which the request is
followed by a response. This text uses this modern interpretation.

4.2.3 Communicating through an intermediary

Sending a message from a sender to a receiver requires that both parties be avail-
able at the same time. In many applications this requirement is too strict. For exam-
ple, in electronic mail we desire that a user be able to send an e-mail to a recipient
even if the recipient is not on-line at the time. The sender sends the message and
the recipient receives the message some time later, perhaps when the sender is not
on-line. We can implement such applications using an intermediary. In the case of
communication, this intermediary doesn’t have to be trusted because communica-
tion applications often consider the intermediary to be part of an untrusted net-
work and have a separate plan for securing messages (as we will see in Chapter 11
[on-line]).

The primary purpose of the e-mail intermediary is to implement buffered com-
munication. Buffered communication provides the send/receive abstraction but avoids
the requirement that the sender and receiver be present simultaneously. It allows
the delivery of a message to be shifted in time. The intermediary can hold messages
until the recipient comes on-line. The intermediary might buffer messages in volatile
memory or in non-volatile memory, such as a file system. The latter design allows the
intermediary to buffer messages across power failures.

Once we have an intermediary, three interesting design opportunities arise. First,
the sender and receiver may make different choices of whether to push or pull mes-
sages. Push is when the initiator of a data movement sends the data. Pull is when the
initiator of a data movement asks the other end to send it the data. These definitions
are independent of whether or not the system uses an intermediary, but in systems
with intermediaries it is not uncommon to find both in a single system. For example,
the sender in the Internet’s e-mail system, Simple Mail Transfer Protocol (SMTP),
pushes the mail to the service that holds the recipient’s mailbox. On the other hand,
the receiving client pulls messages to fetch mail from a mailbox: the user hits the

1734�3 Summary and The Road Ahead

“Get new mail” button, which causes the mail client to contact the mailbox service
and ask it for any new mail.

Second, the existence of an intermediary opens an opportunity to apply the design
principle decouple modules with indirection by having the intermediary, rather than
the originator, determine to whom a message is delivered. For example, an Internet
user can send a message to president@whitehouse.gov. The intermediary that for-
wards the message will deliver it to whoever happens to be the President. As another
example, users should be able to send an e-mail to a mailing list or to post a message
to a bulletin board without knowing exactly who is on the mailing list or subscribed
to the bulletin board.

Third, when indirection through an intermediary is available, the designer has a
choice of when and where to duplicate messages. In the mailing list example, the
intermediary sends a copy of the e-mail to each member of the list. In the bulletin
board example, an intermediary may group messages and send them as a group to
other intermediaries. When a user fetches the bulletin article from its local intermedi-
ary, the local intermediary makes a final copy for delivery to the user.

Publish/subscribe is a general style of communication that takes advantage of the
three design opportunities of communication through an intermediary. In this com-
munication model, the sender is called the publisher and notifies an event service that
it has produced a new message on a certain topic. Recipients subscribe to the event
service and express their interest in certain topics. If multiple recipients are inter-
ested in the same topic, all of them receive a copy of the message. Popular usages of
publish/subscribe are electronic mailing lists and instant messaging services that pro-
vide chat rooms. A user might join a chat room on a certain topic. When another user
publishes a message in the room, all the members of that room receive it. Another
publish/subscribe application is Usenet News, a bulletin board service (described in
Sidebar 4.5 on peer-to-peer computing).

4.3 suMMary and the rOad ahead
The client/service model enforces modularity and is the basic approach to organizing
complex computer systems. The rest of the book works out major issues in building
computer systems that this chapter has identified but has not addressed:

 ■ Enforcing modularity within a computer (Chapter 5). Restricting the imple-
mentation of client/service systems to one computer per module can be too
expensive. Chapter 5 shows how an operating system can use a technique called
virtualization to create many virtual computers out of one physical computer.
The operating system can enforce modularity between each client and each ser-
vice by giving each client and each service a separate virtual computer.

 ■ Performance (Chapter 6). Computer systems have implicit or explicit perform-
ance goals. If services are not carefully designed, it is possible that the slowest

174 CHAPTER 4 Enforcing Modularity with Clients and Services

service in the system becomes a performance bottleneck, which causes the
 complete system to operate at the performance of the slowest service. Identifying
performance bottlenecks and avoiding them is a challenge that a designer faces
in most computer systems.

 ■ Networking (Chapter 7 [on-line]). The client/service model must have a way
to send the request message from the client to the service, and the response
message back. Implementing send_message and receive_message is a challenging
problem, since networks may lose, reorder, or duplicate messages while routing
them between the client and the service. Furthermore, networks exhibit a wide
range of performance properties, making straightforward solutions inadequate.

 ■ Fault tolerance (Chapter 8 [on-line]). We may need for a service to continue to
operate even if some of the hardware and software modules fail. For example, we
may want to construct a fault tolerant date-and-time service that runs on several
computers so that if one of the computers fails, another computer can still deliver
a response to requests for the date and time. In systems that harness a large num-
ber of computers to deliver a single service, it is unavoidable that at any instant of
time some of the computers will have failed. For example, Google, which indexes
the Web, reportedly uses more than 100,000 computers to deliver the service.
(A description of the systems Google has designed can be found in Suggestions
for Further Reading 3.2.4 and 10.1.10.) With so many computers, some of them
are certain to be unavailable. Techniques for fault tolerance allow designers to
implement reliable services out of unreliable components. These techniques
involve detecting failures, containing them, and recovering from them.

 ■ Atomicity (Chapter 9 [on-line]). The file service described in this chapter
(Figure 4.6 in Section 4.1.6) must work correctly in the face of concurrent
access and failures, and use open and close calls to mark related read and write
operations. Chapter 9 [on-line] introduces a single framework called atomicity
that addresses both issues. This framework allows the operations between an
open and close call to be executed as an atomic, indivisible action. As we saw
in Section 4.2.2, exactly-once RPC is ideal for implementing a banking applica-
tion. Chapter 9 [on-line] introduces the necessary tools for exactly-once RPC
and building such applications.

 ■ Consistency (Chapter 10 [on-line]). This chapter uses messages to implement
various protocols to ensure consistency of data stores on different computers.

 ■ Security (Chapter 11 [on-line]). The client/service model protects against acci-
dental errors propagating from one module to another module. Some services
may need to protect against malicious attacks. This requirement arises, for exam-
ple, when a file service is storing sensitive data and needs to ensure that mali-
cious users cannot read the sensitive data. Such protection requires that the
service reliably identify users so that it can make an authorization decision. The
design of systems in the face of malicious users is a topic known as security.

1754�4 Case Study: The Internet Domain Name System (DNS)

The subsystems that address these topics are interesting systems in their own right
and are case studies of managing complexity. Typically, these subsystems are internally
structured as client/service systems, applying the concept of this chapter recursively.
The next two sections provide two case studies of real-world client/service systems
and also illustrate the need for the topics addressed in the subsequent chapters.

4.4 Case study: the internet dOMain naMe systeM (dns)
The Internet Domain Name System (DNS) provides an excellent case study of both
a client/service application and a successful implementation of a naming scheme,
in this case for naming of Internet computers and services. Although designed for
that specific application, DNS is actually a general-purpose name management and
name resolution system that hierarchically distributes the management of names
among different naming authorities and also hierarchically distributes the job of
resolving names to different name servers. Its design allows it to respond rapidly
to requests for name resolution and to scale up to extremely large numbers of
stored records and numbers of requests. It is also quite resilient, in the sense that it
provides continued, accurate responses in the face of many kinds of network and
server failures.

The primary use for DNS is to associate user-friendly character-string names, called
domain names, with machine-oriented binary identifiers for network attachment
points, called Internet addresses. Domain names are hierarchically structured, the
term domain being used in a general way in DNS: it is simply a set of one or more
names that have the same hierarchical ancestor. This convention means that hierar-
chical regions can be domains, but it also means that the personal computer on your
desk is a domain with just one member. In consequence, although the phrase “domain
name” suggests the name of a hierarchical region, every name resolved by DNS is
called a domain name, whether it is the name of a hierarchical region or the name of
a single attachment point. Because domains typically correspond to administrative
organizations, they also are the unit of delegation of name assignment, using exactly
the hierarchical naming scheme described in Section 3.1.4.

For our purposes, the basic interface to DNS is quite simple:

 value ← dns_resolve (domain_name)

This interface omits the context argument from the standard name-resolving interface
of the naming model of Section 2.2.1 because there is just a single, universal, default
context for resolving all Internet domain names, and the reference to that one context
is built into dns_resolve as a configuration parameter.

In the usual DNS implementation, binding is not accomplished by invoking bind
and unbind procedures as suggested by our naming model, but rather by using a text
editor or database generator to create and manage tables of bindings. These tables are
then loaded into DNS servers by some behind-the-scenes method as often as their
managers deem necessary. One consequence of this design is that changes to DNS

176 CHAPTER 4 Enforcing Modularity with Clients and Services

bindings don’t often occur within seconds of the time you request them; instead, they
typically take hours.

Domain names are path names, with components separated by periods (called
dots, particularly when reading domain names aloud) and with the least significant
component coming first. Three typical domain names are

ginger.cse.pedantic.edu ginger.scholarly.edu ginger.com

DNS allows both relative and absolute path names. Absolute path names are sup-
posed to be distinguished by the presence of a trailing dot. In human interfaces the
trailing dot rarely appears; instead, dns_resolve applies a simple form of multiple
lookup. When presented with a relative path name, dns_resolve first tries append-
ing a default context, supplied by a locally set configuration parameter. If the result-
ing extended name fails to resolve, dns_resolve tries again, this time appending just
a trailing dot to the originally presented name. Thus, for example, if one presents
dns_resolve with the apparently relative path name "ginger.com", and the default
context is "pedantic.edu.", dns_resolve will first try to resolve the absolute path
name "ginger.com.pedantic.edu.". If that attempt leads to a not-found result, it
will then try to resolve the absolute path name "ginger.com."

4.4.1 name resolution in dns

DNS name resolution might have been designed in at least three ways:

1. The telephone book model: Give each network user a copy of a file that contains
a list of every domain name and its associated Internet address. This scheme has
a severe problem: to cover the entire Internet, the size of the file would be
proportional to the number of network users, and updating it would require
delivering a new copy to every user. Because the frequency of update tends to
be proportional to the number of domain names listed in the file, the volume
of network traffic required to keep it up to date would grow with the cube of
the number of domain names. This scheme was used for nearly 20 years in the
Internet, was found wanting, and was replaced with DNS in the late 1980s.

2. The central directory service model: Place the file on a single well-connected
server somewhere in the network and provide a protocol to ask it to resolve
names. This scheme would make update easy, but with growth in the number of
users its designer would have to adopt increasingly complex strategies to keep
it from becoming both a performance bottleneck and a potential source of mas-
sive failure. There is yet another problem: whoever controls the central server is
by default in charge of all name assignment. This design does not cater well to
delegation of responsibility in assignment of domain names.

3. The distributed directory service model. The idea is to have many servers,
each of which is responsible for resolving some subset of domain names, and a
 protocol for finding a server that can resolve any particular name. As we shall see
in the following descriptions, this model can provide delegation and respond

1774�4 Case Study: The Internet Domain Name System (DNS)

to increases in scale while maintaining reliability and performance. For those
reasons, DNS uses this model.

With the distributed directory service model, the operation of every name server
is the same: a server maintains a set of name records, each of which binds a domain
name to an Internet address. When a client sends a request for a name resolution, the
name server looks through the collection of domain names for which it is respon-
sible, and if it finds a name record, it returns that record as its response. If it does
not find the requested name, it looks through a separate set of referral records. Each
referral record binds a hierarchical region of the DNS name space to some other
name server that can help resolve names in that region of the naming hierarchy.
Starting with the most significant component of the requested domain name, the
server searches through referral records for the one that matches the most compo-
nents, and it returns that referral record. If nothing matches, DNS cannot resolve the
original name, so it returns a “no such domain” response.

The referral architecture of DNS, though conceptually simple, has a number of
elaborations that enhance its performance, scalability, and robustness. We begin with
an example of its operation in a simple case, and we later add some of the enhance-
ments. The dashed lines in Figure 4.10 illustrate the operation of DNS when the client
computer named ginger.cse.pedantic.edu, in the lower left corner, tries to
resolve the domain name ginger.Scholarly.edu. The first step, shown as request
#1, is that dns_resolve sends that domain name to a root name server, whose Internet
address it somehow knows. Section 4.4.4 explains how dns_resolve discovers that
address.

The root name server matches the name in the request with the subset of domain
names it knows about, starting with the most significant component of the requested
domain name (in this example, edu). In this example, the root name server discovers
that it has a referral record for the domain edu, so it responds with a referral, saying,
in this example, “There is a name server for a domain named edu. The name record
for that name server binds the name names.edu. to Internet address 192.14.71.191.”
This response illustrates that name servers, like any other servers, have both domain
names and Internet addresses. Usually, the domain name of a name server gives some
clue about what domain names it serves, but there is no necessary correspondence.
Responding with a complete name record provides more information than the client
really needs (the client usually doesn’t care about the name of the name server), but
it allows all responses from a name server to be uniform. Because the name server’s
domain name isn’t significant and to reduce clutter in Figure 4.10, that figure omits it
in the illustrated response.

When the client’s dns_resolve receives this response, it immediately resends the
same name resolution request, but this time it directs the request (request 2 in the
figure) to the name server located at the Internet address mentioned in response
number 1. That name server matches the requested path name with the set of domain
names it knows about, again starting with the most significant component. In this case,
it finds a match for the name Scholarly.edu. in a referral record. It thus sends back
a response saying, “There is a name server for a domain named Scholarly.edu. The

178 CHAPTER 4 Enforcing Modularity with Clients and Services

edu.
com.
net.
org.

192.14.71.191 NS
192.14.71.192 NS
192.14.71.193 NS
192.14.72.4 NS

Pedantic.edu.

Scholarly.edu.
StudyHere.edu.

18.72.0.3 NS

128.32.136.9 NS
171.64.2.210 NS

thyme.pedantic.edu. 18.62.5.70 AP

ginger. 169.229.2.16 AP

ginger.cse 18.26.0.82 AP

name server: 192.112.36.4

name server: 18.72.0.3

Request 1:

Response 1:

Request 2:
ginger.Scholarly.edu.?

Response 2:
128.32.136.9 is NS
for Scholarly.edu.

Request 3:

192.14.71.191 is NS
for edu.

Response 3:
169.229.2.16 AP

18.64.1.14 AP
cse.pedantic.edu. 18.26.0.36 NS

anise.pedantic.edu.

Response:
18.64.1.14 AP

Request:

domain addr type

192.14.71.191

Name Server
names.edu.

192.112.36.4

Name Server
a.root.net.

128.32.136.9

Name Server
ns.iss.edu.

18.72.0.3

Name Server
ns.pedantic.edu.

18.26.0.36

Name Server
ns3.cse.pedantic.edu.

18.26.0.82

Name Client
ginger.cse.pedantic.edu.

18.62.5.70

Name Client
thyme.pedantic.edu.

domain addr type

domain addr type

domain addr type

domain addr type

Scholarly.edu.

.pedantic.edu

anise.pedantic.edu.?

ginger.Scholarly.edu.?

ginger.Scholarly.edu.?

Figure 4.10

Structure and operation of the Internet Domain Name System. In this figure, each circle repre-
sents a name server, and each rectangle is a name client. The type NS in a table or in a response
means that this is a referral to another name server, while the type AP in a table or a response
means that this is an Internet address. The dashed lines show the paths of the three requests
made by the name client in the lower left corner to resolve the name ginger.Scholarly.edu,
starting with the root name server. The dotted lines show resolution of a request of the name client
in the lower right corner to resolve anise.pedantic.edu starting with a local name server.

1794�4 Case Study: The Internet Domain Name System (DNS)

name record for that name server binds the name ns.iss.edu. to Internet address
128.32.136.9.” The illustration again omits the domain name of the name server.

This sequence repeats for each component of the original path name, until
dns_resolve finally reaches a name server that has the name record for ginger.
Scholarly.edu. That name server sends back a response saying, “The name record
for ginger.Scholarly.edu. binds that name to Internet address 169.229.2.16.”
This being the answer to the original query, dns_resolve returns this result to its caller,
which can go on to initiate an exchange of messages with its intended target.

The server that holds either a name record or a referral record for a domain name
is known as the authoritative name server for that domain name. In our example,
the name server ns3.cse.pedantic.edu. is authoritative for the ginger.cse.
pedantic.edu. domain, as well as all other domain names that end with cse.
pedantic.edu., and ns.iss.edu. is authoritative for the Scholarly.edu. domain.
Since a name server does not hold the name record for its own name, a name server
cannot be the authoritative name server for its own name. Instead, for example, the
root name server is authoritative for the domain name edu., while the names.edu.
name server is authoritative for all domain names that end in edu.

That is the basic model of DNS operation. Here are some elaborations in its opera-
tion, each of which helps make the system fast-responding, robust, and capable of
growing to a large scale.

1. It is not actually necessary to send the initial request to the root name server.
dns_resolve can send the request to any convenient name server whose Internet
address it knows. The name server doesn’t care where the request came from;
it simply compares the requested domain name with the list of domain names
for which it is responsible in order to see if it holds a record that can help. If
it does, it answers the request. If it doesn’t, it answers by returning a referral
to a root name server. The ability to send any request to a local name server
means that the common case in which the client, the name server, and the
target domain name are all three in the same domain (e.g., pedantic.edu) can
be handled swiftly with a single request/response interaction. (The dotted lines
in the lower right corner of Figure 4.10 show an example, in which thyme.
pedantic.edu. asks the name server for the pedantic.edu domain for the
address of anise.pedantic.edu.) This feature also simplifies name discovery
because all a client needs to know is the Internet address of any nearby name
server. The first request to that nearby server for a distant name (in the cur-
rent example, ginger.scholarly.edu) will return a referral to the Internet
address of a root name server.

2. Some domain name servers offer what is (perhaps misleadingly) called recur-
sive name service. If the name server does not hold a record for the requested
name, rather than sending a referral response, the name server takes on the
responsibility for resolving the name itself. It forwards the initial request to a
root name server, then continues to follow the chain of responses to resolve the
complete path name, and finally returns the desired name record to its client. By

180 CHAPTER 4 Enforcing Modularity with Clients and Services

itself, this feature seems merely to simplify life for the client, but in conjunction
with the next feature it provides a major performance enhancement.

3. Every name server is expected to maintain, in addition to its authoritative records,
a cache of all name records it has heard about from other name servers. A server
that provides recursive name service thus collects records that can greatly speed
up future name resolution requests. If, for example, the name server for cse.
pedantic.edu offers recursive service and it is asked to resolve the name
flower.cs.scholarly.edu, in the course of doing so (assuming that it does not
in turn request recursive service), its cache might acquire the following records:

edu refer to names.edu at 198.41.0.4
Scholarly.edu refer to ns.iss.edu at 128.32.25.19
cs.Scholarly.edu refer to cs.Scholarly.edu at 128.32.247.24
flower.cs.Scholarly.edu Internet address is 128.32.247.29

 Now, when this name server receives, for example, the request to resolve
the name psych.Scholarly.edu, it will discover the record for the domain
Scholarly.edu in the cache and it will be able to quickly resolve the name by
forwarding the initial request directly to the corresponding name server.

 A cache holds a duplicate copy, which may go out of date if someone changes
the authoritative name record. On the basis that changes of existing name bind-
ings are relatively infrequent in the Domain Name System and that it is hard to
keep track of all the caches to which a domain name record may have propa-
gated, the DNS design does not call for explicit invalidation of changed entries.
Instead, it uses expiration. That is, the naming authority for a DNS record marks
each record that it sends out with an expiration period, which may range from
seconds to months. A DNS cache manager is expected to discard entries that
have passed their expiration period. The DNS cache manager provides a mem-
ory model that is called eventual consistency, a topic taken up in Chapter 10
[on-line].

4.4.2 hierarchical name Management

Domain names form a hierarchy, and the arrangement of name servers described
above matches that hierarchy, thereby distributing the job of name resolution. The
same hierarchy also distributes the job of managing the handing out of names, by
distributing the responsibility of operating name servers. Distributing responsibility is
one of the main virtues of the distributed directory service model.

The way this works is actually quite simple: whoever operates a name server can
be a naming authority, which means that he or she may add authoritative records
to that name server. Thus, at some point early in the evolution of the Internet, some
Pedantic University network administrator deployed a name server for the domain
pedantic.edu and convinced the administrator of the edu domain to install a bind-
ing for the domain name pedantic.edu. associated with the name and Internet

1814�4 Case Study: The Internet Domain Name System (DNS)

address of the pedantic.edu name server. Now, if Pedantic University wants to add
a record, for example, for an Internet address that it wishes to name archimedes.
pedantic.edu, its administrator can do so without asking permission of anyone
else. A request to resolve the name archimedes.pedantic.edu can arrive at any
domain name server in the Internet; that request will eventually arrive at the name
server for the pedantic.edu domain, where it can be answered correctly. Similarly, a
network administrator at the Institute for Scholarly Studies can install a name record
for an Internet address named archimedes.Scholarly.edu on its own authority.
Although both institutions have chosen the name archimedes for one of their com-
puters, because the path names of the domains are distinct there was no need for
their administrators to coordinate their name assignments. Put another way, their nam-
ing authorities can act independently.

Continuing this method of decentralization, any organization that manages a name
server can create lower-level naming domains. For example, the Computer Science and
Engineering Department of Pedantic University may have so many computers that it is
convenient for the department to manage the names of those computers itself. All that
is necessary is for the department to deploy a name server for a lower-level domain
(named, for example, cse.pedantic.edu) and convince the administrator of the
pedantic.edu domain to install a referral record for that name in its name server.

4.4.3 Other Features of dns

To ensure high availability of name service, the DNS specification calls on every orga-
nization that runs a name service to arrange that there be at least two identical rep-
lica servers. This specification is important, especially at higher levels of the domain
naming hierarchy, because most Internet activity uses domain names and inability to
resolve a name component blocks reachability to all sites below that name compo-
nent. Many organizations have three or four replicas of their name servers, and as of
2008 there were about 80 replicas of the root name server. Ideally, replicas should
be attached to the network at places that are widely separated, so that there is some
protection against local network and electric power outages. Again, the importance of
separated attachment increases at higher levels of the naming hierarchy. Thus, the 80
replicas of the root name server are scattered around the world, but the three or four
replicas of a typical organization’s name server are more likely to be located within
the campus of that organization. This arrangement ensures that, even if the campus is
disconnected from the outside world, communication by name within the organiza-
tion can still work. On the other hand, during such a disconnection, correspondents
outside the organization cannot even verify that a name exists, for example, to validate
an e-mail address. Therefore, a better arrangement might be to attach at least one of
the organization’s multiple replica name servers to another part of the Internet.

For the same reason that name servers need to be replicated, many network
services also need to be replicated, so DNS allows the same name to be bound to
several Internet addresses. In consequence, the value returned by dns_resolve can
be a list of (presumably) equivalent Internet addresses. The client can choose which

182 CHAPTER 4 Enforcing Modularity with Clients and Services

Internet address to contact, based on order in the list, previous response times, a
guess as to the distance to the attachment point, or any other criterion it might have
available.

The design of DNS allows name service to be quite robust. In principle, the job of
a DNS server is extremely simple: accept a request packet, search a table, and send a
response packet. Its interface specification does not require it to maintain any con-
nection state, or any other durable, changeable state; its only public interface is idem-
potent. The consequence is that a small, inexpensive personal computer can provide
name service for a large organization, which encourages dedicating a computer to this
service. A dedicated computer, in turn, tends to be more robust than one that supplies
several diverse and unrelated network services. In addition a server with small, read-
only tables can be designed so that when something such as a power failure happens,
it can return to service quickly, perhaps even automatically. (Chapters 8 [on-line] and
9 [on-line] discuss how to design such a system.)

DNS also allows synonyms, in the form of indirect names. Synonyms are used
conventionally to solve two distinct problems. For an example of the first prob-
lem, suppose that the Pedantic University Computer Science and Engineering
Department has a computer whose Internet address is named minehaha.cse.
pedantic.edu. This is a somewhat older and slower machine, but it is known to
be very reliable. The department runs a World Wide Web server on this computer,
but as its load increases the department knows that it will someday be necessary
to move the Web server to a faster machine named mississippi.cse.pedantic.
edu. Without synonyms, when the server moves, it would be necessary to inform
everyone that there is a new name for the department’s World Wide Web service.
With synonyms, the laboratory can bind the indirect name www.cse.pedantic.
edu to minehaha.cse.pedantic.edu and publicize the indirect name as the name
of its Web site. When the time comes for mississippi.cse.pedantic.edu to take
over the service, it can do so by simply having the manager of the cse.pedantic.
edu domain change the binding of the indirect name. All those customers who
have been using the name www.cse.pedantic.edu to get to the Web site will find
that name continues to work correctly; they don’t care that a different computer is
now handling the job. As a general rule, the names of services can be expected to
outlive their bindings to particular Internet addresses, and synonyms cater to this
difference in lifetimes.

The second problem that synonyms can handle is to allow a single computer to
appear to be in two widely different naming domains. For example, suppose that a
geophysics group at the Institute of Scholarly Studies has developed a service to pre-
dict volcano eruptions but that organization doesn’t actually have a computer suitable
for running that service. It could arrange with a commercial vendor to run the service
on a machine named, perhaps, service-bureau.com and then ask the manager of
the Institute’s name server to bind the indirect name volcano.iss.edu to service-
bureau.com. The Institute could then advertise its service under the indirect name. If
the commercial vendor raises its prices, it would be possible to move the service to a
different vendor by simply rebinding the indirect name.

http://www.cse.pedantic.edu
http://www.cse.pedantic.edu

1834�4 Case Study: The Internet Domain Name System (DNS)

Because resolving a synonym requires an extra round-trip through DNS, and the
basic name-to-Internet-address binding of DNS already provides a level of indirection,
some network specialists recommend just manipulating name-to-Internet-address
bindings to get the effect of synonyms.

4.4.4 name discovery in dns

Name discovery comes up in at least three places in the Domain Name System: a
 client must discover the name of a nearby name server, a user must discover the
domain name of a desired service, and the resolving system must discover an exten-
sion for unqualified domain names.

First, in order for dns_resolve to send a request to a name server, it needs to know
the Internet address of that name server. dns_resolve finds this address in a configura-
tion table. The real name-discovery question is how this address gets into the con-
figuration table. In principle, this address would be the address of a root server, but
as we have seen it can be the address of any existing name server. The most widely
used approach is that when a computer first connects to a network it performs a
name discovery broadcast to which the Internet service provider (ISP) responds by
assigning the attacher an Internet address and also telling the attacher the Internet
address of one or more name servers operated by or for the ISP. Another way to ter-
minate name discovery is by direct communication with a local network manager, to
obtain the address of a suitable name server, followed by configuring the answer into
dns_resolve.

The second form of name discovery involves domain names themselves. If you
wish to use the volcano prediction service at the Institute for Scholarly Studies, you
need to know its name. Some chain of events that began with direct communication
must occur. Typically, people learn of domain names via other network services, such
as by e-mail, querying a search engine, reading postings in newsgroups or while surfing
the Web, so the original direct communication may be long forgotten. But using each
of those services requires knowing a domain name, so there must have been a direct
communication at some earlier time. The purchaser of a personal computer is likely
to find that it comes with a Web browser that has been preconfigured with domain
names of the manufacturer’s suggested World Wide Web query and directory services
(as well as domain names of the manufacturer’s support sites and other advertisers).
Similarly, a new customer of an Internet service provider typically may, upon register-
ing for service, be told the domain name of that ISP’s Web site, which can then be used
to discover names for many other services.

The third instance of name discovery concerns the extension that is used for unqual-
ified domain names. Recall that the Domain Name System uses absolute path names,
so if dns_resolve is presented with an unqualified name such as library it must some-
how extend it, for example, to library.pedantic.edu. The default context used for
extension is usually a configuration parameter of dns_resolve. The value of this param-
eter is typically chosen by the human user when initially setting up a computer, with
an eye to minimizing typing for the most frequently used domain names.

184 CHAPTER 4 Enforcing Modularity with Clients and Services

4.4.5 trustworthiness of dns responses

A shortcoming of DNS is that, although it purports to provide authoritative name reso-
lutions in its responses, it does not use protocols that allow authentication of those
responses. As a result, it is possible (and, unfortunately, relatively easy) for an intruder
to masquerade as a DNS server and send out mischievous or malevolent responses to
name resolution requests.

Currently, the primary way of dealing with this problem is for the user of DNS
to treat all of its responses as potentially unreliable hints and independently verify
(using the terminology of Chapters 7 [on-line] and 11 [on-line] we would say “per-
form end-to-end authentication of”) the identity of any system with which that user
communi cates. An alternative would be for DNS servers to use authentication proto-
cols in communication with their clients. However, even if a DNS response is assuredly
authentic, it still might not be accurate (for example, a DNS cache may hold out-of-date
information, or a DNS administrator may have configured an incorrect name-to-address
binding), so a careful user would still want to independently authenticate the identity
of its correspondents.

Chapter 11 [on-line] describes protocols that can be used for authentication; there
is an ongoing debate among network experts as to whether or how DNS should be
upgraded to use such protocols.

The reader interested in learning more about DNS should explore the documents
in the readings for DNS [Suggestions for Further Reading 4.3].

4.5 Case study: the netwOrk File systeM (nFs)
The Network File System (NFS), designed by Sun Microsystems, Inc. in the 1980s,
is a client/service application that provides shared file storage for clients across a
network. An NFS client grafts a remote file system onto the client’s local file system
name space and makes it behave like a local unix file system (see Section 2.5). Multiple
clients can mount the same remote file system so that users can share files.

The need for NFS arose because of technology improvements. Before the 1980s,
computers were so expensive that each one had to be shared among multiple users
and each computer had a single file system. But a benefit of the economic pressure
was that it allowed for easy collaboration because users could share files easily. In the
early 1980s, it became economically feasible to build workstations, which allowed
each engineer to have a private computer. But users still desired to have a shared
file system for ease of collaboration. NFS provides exactly that: it allows a user at any
workstation to use files stored on a shared server, a powerful workstation with local
disks but often without a graphical display.

NFS also simplifies the management of a collection of workstations. Without NFS,
a system administrator must manage each workstation and, for example, arrange for
backups of each workstation’s local disk. NFS allows for centralized management; for
example, a system administrator needs to back up only the server’s disks to archive the
file system. In the 1980s, the setup also had a cost benefit: NFS allowed organizations

1854�5 Case study: The Network File System (NFS)

to buy workstations without disks, saving the cost of a disk interface on every work-
station and the cost of unused disk space on each workstation.

The designers of NFS had four major goals. NFS should work with existing applica-
tions, which means NFS should provide the same semantics as a local unix file system.
NFS should be deployable easily, which means its implementation should be able to
retrofit into existing unix systems. The client should be implementable in other oper-
ating systems such as Microsoft’s DOS, so that a user on a personal computer can have
access to the files on an NFS server; this goal implies that the client/service messages
cannot be too unix system-specific. Finally, NFS should be efficient enough to be toler-
able to users, but it doesn’t have to provide as high performance as local file systems.
NFS only partially achieves these goals because achieving them all is difficult. The
designers made a trade-off: simplify the design and lose some of the unix semantics.

This section describes version 2 of NFS. Version 1 was never deployed outside of
Sun Microsystems, while version 2 has been in use since 1987. The case study con-
cludes with a brief summary of the changes in versions 3 (1990s) and 4 (early 2000s),
which address weaknesses in version 2. Problem set 3 explores an NFS-inspired design
to reinforce the ideas in NFS.

4.5.1 naming remote Files and directories

To programs, NFS appears as a unix file system providing the file interface presented in
Section 2.5. User programs can name remote files in the same way as local files. When
a user program invokes, say, open (“/users/alice/.profile”, readonly), it cannot tell from
the path name whether “users” or “alice” are local or remote directories.

To make naming remote files transparent to users and their programs, the NFS client
must mount a remote file system on the local name space. NFS performs this operation
by using a separate program, called the mounter. This program serves a similar function
as the mount call (described in Section 2.5.10); it grafts the remote file system—named
by host :path, where host is a DNS name and path a path name—onto the local file name
space. The mounter sends a remote procedure call to the file server host and asks for a
file handle, a 32-byte name for the object identified by path. On receiving the reply, the
NFS client marks the mount point in the local file system as a remote file system. It also
remembers the file handle for path and the network address for the server.

To the NFS client a file handle is a 32-byte opaque name that identifies an object
on a remote NFS server. An NFS client obtains file handles from the server when the
client mounts a remote file system, or it looks up a file in a directory on the NFS server.
In all subsequent remote procedure calls to the NFS server for that file, the NFS client
includes the file handle. In many ways the file handle is similar to an inode number; it
is not visible to applications, but it used as a name internal to NFS to name files.

To the NFS server a file handle is a structured name—containing a file system
identifier, an inode number, and a generation number—which the server can use
to locate the file. The file system identifier allows the server to identify the file system
responsible for the file. The inode number (see page 58) allows the identified file sys-
tem to locate the file on the disk.

186 CHAPTER 4 Enforcing Modularity with Clients and Services

One might wonder why the NFS designers didn’t choose to put path names in file
handles. To see why, consider the following scenario with two user programs running
on different clients:

 Program 1 on client 1 Program 2 on client 2

 1 chdir ("dir1")
 2 fd ← open ("f", readonly) Time
 3 rename ("dir1", "dir2")
 4 rename ("dir3", "dir1")
 5 read (fd, buf, n)

rename (source, destination) changes the name of source to destination. The first
rename operation (on line 3) in program 2 renames “dir1” to “dir2”, and the second
one (on line 4) renames “dir3” to “dir1”. This scenario raises the following question:
when program 1 invokes read (line 5) after the two rename operations have com-
pleted, does program 1 read data from “dir1/f”, or “dir2/f”?

If the two programs were running on the same computer and sharing a local unix
file system, program 1 would read “dir2/f”, according to the unix specification. The
goal is that NFS should provide the same behavior. If the NFS server were to put path
names inside handles, then the read call would result in a remote procedure call for
the file “dir1/f”. By putting the inode number in the handle the specification is met.

The file handle includes a generation number to handle scenarios such as the
 following almost correctly:

 Program 1 on client 1 Program 2 on client 2 Time

 1 fd ← open ("f", readonly)
 2 unlink ("f")
 3 fd ← open ("f", create)
 4 read (fd, buf, n)

A program on a client 1 deletes a file “f” (line 2) and creates a new file with the
same name (line 3), while another program on a client 2 already has opened the
original file (on line 1). If the two programs were running on the same computer and
sharing a local unix file system, program 2 would read the old file on line 4.

If the server should happen to reuse the inode of the old file for the new file,
remote procedure calls from client 2 will get the new file, the one created by client
1, instead of the old file. The generation number allows NFS to avoid this incorrect
behavior. When the server reuses an inode, it increases the generation number by one.
In the example, client 1 and client 2 would receive different file handles, and client 2
will use the old handle. Increasing the generation number makes it always safe for the
NFS server to recycle inodes immediately.

For this scenario, NFS does not provide identical semantics to a local unix file sys-
tem because that would require that the server know which files are in use. With NFS,
when client 2 uses the file handle, it will receive an error message: “stale file handle”.

1874�5 Case study: The Network File System (NFS)

Table 4.1 NFS Remote Procedure Calls

Remote Procedure Call Returns

null () Do nothing.

lookup (dirfh, name) fh and file attributes

create (dirfh, name, attr) fh and file attributes

remove (dirfh, name) status

getattr (fh) file attributes

setattr (fh, attr) file attributes

read (fh, offset, count) file attributes and data

write (fh, offset, count, data) file attributes

rename (dirfh, name, tofh, toname) status

link (dirfh, name, tofh, toname) status

symlink (dirfh, name, string) status

readlink (fh) string

mkdir (dirfh, name, attr) fh and file attributes

rmdir (dirfh, name) status

readdir (dirfh, offset, count) directory entries

statfs (fh) file system information

This case is one example of the NFS designers trading some unix semantics to obtain
a simpler implementation.

File handles are usable across server failures, so that even if the server computer fails
and restarts between a client program opening a file and then reading from the file, the
server can identify the file using the information in the file handle. Making file handles
(which include a file system identifier and a generation number) usable across server
failures requires small changes to the server’s on-disk file system: the NFS designers modi-
fied the super block to record the file system identifier and modified inodes to record the
generation number for the inode. With this information recorded, after a reboot the NFS
server will be able to process NFS requests that the server handed out before it failed.

4.5.2 the nFs remote Procedure Calls

Table 4.1 shows the remote procedure calls used by NFS. The remote procedure calls are
best explained by example. Suppose we have the following fragment of a user program:

 fd ← open ("f", readonly)
 read (fd, buf, n)
 close (fd)

188 CHAPTER 4 Enforcing Modularity with Clients and Services

Figure 4.11 shows the corresponding timing diagram where “f” is a remote file.
The NFS client implements each file system operation using one or more remote
procedure calls.

In response to the program’s call to open, the NFS client sends the following remote
procedure call to the server:

 lookup (dirfh, "f")

From before the program runs, the client has a file handle for the current working
directory’s (dirfh). It obtained this handle as a result of a previous lookup or as a result
of mounting the remote file system.

On receiving the lookup request, the NFS server extracts the file system identifier
and inode number from dirfh, and asks the identified file system to look up the inode
number in dirfh. The identified file system uses the inode number in dirfh to locate
the directory’s inode. Now the NFS server searches the directory identified by the
inode number for “f”. If present, the server creates a handle for “f”. The handle con-
tains the file system identifier of the local file system, the inode number for “f”, and
the generation number stored in the inode of “f”. The NFS server sends this file handle
to the client.

On receiving the response, the client allocates the first unused entry in the pro-
gram’s file descriptor table, stores a reference to f’s file handle in that entry, and returns
the index for the entry (fd) to the user program.

Next, the program calls read (fd, buf, n). The client sends the following remote
 procedure call to the NFS server:

read (fh, 0, n)

Figure 4.11

Example interaction between an NFS client and service. Since the NFS service is stateless,
the client does not need to inform the service when the application calls close. Instead, it just
 deallocates fd and returns.

NFS Client
OPEN ("f", 0)

NFS Server

fh and file attributes

READ (fd, buf, n) READ (fh, 0, n)

Data and file attributes

LOOKUP (dirfh, "f")

Look up “ f ” in
directory dirfh

Read from fh

CLOSE (fd)

Application

fd

Data

1894�5 Case study: The Network File System (NFS)

As with the directory file handle, the NFS server looks up the inode for fh. Then, the
server reads the data and sends the data in a reply message to the client.

When the program calls close to tell the local file system that it is done with the file
descriptor fd, NFS doesn’t issue a close remote procedure call; the protocol doesn’t
have a close remote procedure call. Because the application didn’t modify the file, the
NFS client doesn’t have to issue any remote procedure calls. As we shall see in Section
4.5.4, if a program modifies a file, the NFS client will issue remote procedure calls on
a close system call to provide coherence for the file.

The NFS remote procedure calls are designed so that the server can be stateless,
that is, the server doesn’t need to maintain any other state than the on-disk files. NFS
achieves this property by making each remote procedure call contain all the infor-
mation necessary to carry out that request. The server does not maintain any state
about past remote procedure calls to process a new request. For example, the client,
not the server, must keep track of the file cursor (see Section 2.3.2), and the client
includes it as an argument in the read remote procedure call. As another example,
the file handle contains all information to find the inode on the server, as explained
above.

This stateless property simplifies recovery from server failures: a client can just
repeat a request until it receives a reply. In fact, the client cannot tell the difference
between a server that failed and recovered, and a server that is slow. Because a client
repeats a request until it receives a response, it can happen that the server executes
a request twice. That is, NFS implements at-least-once semantics for remote proce-
dure calls.

Since many requests are idempotent (e.g., lookup, read, etc.), that is not a problem,
but for some requests it results in surprising behavior. Consider a user program that
calls unlink on an existing file that is stored on a remote file system. The NFS client
would send a remove remote procedure call and the server would execute it, but it
could happen that the network lost the reply. In that case, the client would resend
the remove request, the server would execute the request again, and the user program
would receive an error saying that the file didn’t exist!

Later implementations of NFS minimize this surprising behavior by avoiding exe-
cuting remote procedure calls more than once when there are no server failures.
In these implementations, each remote procedure call is tagged with a transaction
number and the server maintains some “soft” state (it is lost if the server fails), namely,
a reply cache. The reply cache is indexed by transaction identifier and records the
response for the transaction identifier. When the server receives a request, it looks up
the transaction identifier (ID) in the reply cache. If the ID is in the cache, the server
returns the reply from the cache, without reexecuting the request. If the ID is not in
the cache, the server processes the request.

If the server doesn’t fail, a retry of a remove request will receive the same response
as the first attempt. If, however, the server fails and restarts between the first attempt
and a retry, the request is executed twice. The designers opted to maintain the reply
cache as soft state because storing it in non-volatile storage is expensive. Doing so
would require that the reply cache be stored, for example, on a disk and would require

190 CHAPTER 4 Enforcing Modularity with Clients and Services

a disk write for each remote procedure call to record the response. As explained
in Section 6.1.8, disk writes are often a performance bottleneck and much more
 expensive than a remote procedure call.

Although the stateless property of NFS simplifies recovery, it makes it impossible
to implement the unix file interface correctly because the unix specification requires
maintaining state. Consider again the case where one program deletes a file that
another program has open. The unix specification is that the file exists until the sec-
ond program closes the file.

If the programs run on different clients, NFS cannot adhere to this specification
because it would require that the server keep state. It would have to maintain a
reference count per file, which would be incremented on an open system call and
decremented on a close system call, and persist across server failures. In addition,
if a client would not respond to messages, the server would have to wait until the
client becomes reachable again to decrement the reference count. Instead, NFS
just does the easy but slightly wrong thing: remote procedure calls return an error
“stale file handle” if a program on another client deletes a file that the first client
has open.

NFS does not implement the unix specification faithfully because that simplifies the
design of NFS. NFS preserves most of the unix semantics, and only in rarely encoun-
tered situations may users see different behavior. In practice, these situations are not
a serious problem, and in return NFS gets by with simple recovery.

4.5.3 extending the unix File system to support nFs

To implement NFS as an extension of the unix file system while minimizing the num-
ber of changes required to the unix file system, the NFS designers split the file sys-
tem program by introducing an interface that provides vnodes, virtual nodes (see
Figure 4.12). A vnode is a structure in volatile memory that abstracts whether a file
or directory is implemented by a local file system or a remote file system. This design
allows many functions in the file system call layer to be implemented in terms of
vnodes, without having to worry about whether a file or directory is local or remote.
The interface has an additional advantage: a computer can easily support several, dif-
ferent local file systems.

When a file system call must perform an operation on a file (e.g., reading data), it
invokes the corresponding procedure through the vnode interface. The vnode inter-
face has procedures for looking up a file name in the contents of a directory vnode,
reading from a vnode, writing to a vnode, closing a vnode, and so on. The local file
system and NFS support their own implementation of these procedures.

By using the vnode interface, most of the code for file descriptor tables, current
directory, name lookup, and the like, can be moved from the local file system module
into the file system call layer with minimal effort. For example, with a few changes,
the procedure pathname_to_inode from Section 2.5 can be modified to be pathname_to_
vnode and be provided by the file system call layer.

1914�5 Case study: The Network File System (NFS)

To illustrate the vnode design, we consider a user program that invokes open for
a file (see Figure 4.12). To open the file, the file system call layer invokes pathname_
to_vnode, passing the vnode for the current working directory and the path name
for the file as arguments. pathname_to_vnode will parse the path name, invoking
lookup in the vnode layer for each component in the path name. If the directory is a
local directory, the vnode-layer lookup invokes the lookup procedure implemented
by the local file system to obtain a vnode for the path name component. If the
directory is a remote directory, lookup invokes the lookup procedure implemented
by the NFS client.

The NFS client invokes the lookup remote procedure call on the NFS server, pass-
ing as arguments the file handle of the directory and the path name’s component. On
receiving the lookup request, the NFS server extracts the file system identifier and
inode number from the file handle for the directory to look up the directory’s vnode
and then invokes lookup in the vnode layer, passing the path name’s component as an
argument. If the directory is implemented by the server’s local file system, the vnode
layer invokes the procedure lookup implemented by the server’s local file system,
passing the path name’s component as an argument. The local file system looks up
the name and, if present, creates a vnode and returns the vnode to the NFS server. The
NFS server sends a reply containing the vnode’s file handle and some metadata for the
vnode to the NFS client.

On receiving the reply, the NFS client creates a vnode, which contains the file
handle, on the client computer and returns it to the file system call layer on the cli-
ent machine. When the file system call layer has resolved the complete path name, it
returns a file descriptor for the file to the user program.

Figure 4.12

NFS implementation for the unix system

User program

File system call layer

Local
file

system

NFS client

RPC stubs

OPEN (name, flags)

Network

Client computer Server computer

Vnode layer

LOOKUP (name)

LOOKUP (name)

LOOKUP (name)

File system call layer

NFS server

RPC stubs

LOOKUP (name) LOOKUP (name)

LOOKUP (name)

Vnode layer

Local
file

system

192 CHAPTER 4 Enforcing Modularity with Clients and Services

To achieve usable performance, a typical NFS client maintains various caches.
A client stores the vnode for every open file so that the client knows the file handles
for open files. A client also caches recently used vnodes, their attributes, recently
used blocks of those cached vnodes, and the mapping from path name to vnode.
Caching reduces the latency of file system operations on remote files because for
cached files a client can avoid the cost of remote procedure calls. In addition, because
 clients make fewer remote procedure calls, a single server can support more clients. If
 multiple clients cache the same file, however, NFS must ensure read/write coherence
in some way.

4.5.4 Coherence

When programs share a local file in a unix system, the program calling read observes
the data from the most recent write, even if this write was performed by another
program. This property is called read/write coherence (see Section 2.1.1.1). If the
programs are running on different clients, caching complicates implementing these
semantics correctly.

To illustrate the problem, consider a user program on one computer that writes
a block of a file. The file system call layer on that computer might perform the
update to the block in the cache, delaying the write to the server, just like the
local unix file system delays a write to disk. If a program on another computer
then reads the file from the server, it may not observe the change made on the
first computer because that change may not have been propagated to the server
yet. Because this behavior would be incorrect, NFS implements a form of read/
write coherence.

NFS could guarantee read/write coherence for every operation, or just for cer-
tain operations. One option is to provide read/write coherence for only open and
close. That is, if an application opens a file, writes, and closes the file on one client,
and if later an application on a second client opens the same file, then the second
application will observe the results of the writes by the first application. This option
is called close-to-open consistency. Another option is to provide read/write coher-
ence for every read and write. That is, if two applications on different clients have
the same file open concurrently, then a read of one observes the results of writes of
the other.

Many NFS implementations provide close-to-open consistency because it allows
for higher data rates for reading or writing a big file; a client can send several reads or
write requests without having to wait for a response after each request. Figure 4.13
illustrates close-to-open semantics in more detail. If, as in case 1, a program on one
client calls write and then close, and then another client calls open and read, the NFS
implementation will ensure that the read will include the results of the writes by the
first client. But, as in case 2, if two clients have the same file open, one client writes a
block of the file, and then the other client invokes read, read may return the data either
from before or after the last write; the NFS implementation makes no guarantees in
that case.

1934�5 Case study: The Network File System (NFS)

NFS implementations provide close-to-open semantics as follows. The client stores
with each data block in its cache the modification of the block’s vnode at the time the
client reads the block from the server. When a user program opens a file, the client
sends a getattr request to fetch the last modification time of the file. The client reads
a cached data block only if the block’s modification time is the same as its vnode’s
modification time. If the modification times are not the same, the client removes the
data block from its cache and fetches it from the server.

The client implements write by modifying its local cached version, without incur-
ring the overhead of remote procedure calls. Then, in the close call of Figure 4.11,
the client, rather than simply returning, would first send any cached writes to the
server and wait for an acknowledgment. This implementation is simple and pro-
vides decent performance. The client can perform reads and writes at local memory
speeds. By delaying sending the modified blocks until close, the client absorbs modi-
fications that are overwritten (e.g., the application writes the same block multiple
times) and aggregates writes to the same block (e.g., writes that modify different
parts of the block).

By providing close-to-open semantics, most user programs written for a local unix
file system will work correctly when their files are stored on NFS. For example, if a
user edits a program on a personal workstation but prefers to compile on a faster
compute machine, then NFS with close-to-open consistency works well, requiring
no modifications to the editor and the compiler. After the editor has written out the
modified file and the user starts the compiler on the compute machine, the compiler
will observe the edits.

On the other hand, certain programs will not work correctly using NFS implemen-
tations that provide close-to-open consistency. For example, a multiclient database
program that reads and writes records stored in a file over NFS will not work cor-
rectly because, as the second case in Figure 4.13 illustrates, close-to-open semantics

Client 1 Client 2 Client 1 Client 2

OPEN

OPEN

READ

WRITE

CLOSE

Time

OPEN

WRITE

OPEN

READ

CLOSE

Case 1: READ observes last WRITE Case 2: READ may observe last WRITE or not

Figure 4.13

Two cases illustrating close-to-open consistency

194 CHAPTER 4 Enforcing Modularity with Clients and Services

doesn’t specify the semantics when clients execute operations concurrently—for
example, if client 2 opens the database file before client 1 closes it and client 3 opens
the database file after client 1 closes it. If client 2 and 3 then read data from the file,
 client 2 may not see the data written by client 1, while client 3 will see the data writ-
ten by client 1.

Furthermore, because NFS caches blocks (instead of whole files), the file may have
blocks from different versions of the file intermixed. When a client fetches a file, it
fetches only the inode and perhaps prefetches a few blocks. Subsequent read RPCs
may fetch blocks from a newer version of the file because another client may have
written those blocks after this client opened the file.

To provide the correct semantics in this case requires more sophisticated machin-
ery, which NFS implementations don’t provide, because databases often have their
own special-purpose solutions anyway, as we discuss in Chapters 9 [on-line] and 10
[on-line]. If the database program doesn’t provide a special-purpose solution, then
tough luck—one cannot run it over NFS.

4.5.5 nFs version 3 and beyond

NFS version 2 is being replaced by NFS version 3. Version 3 addresses a number of
limitations in version 2, but the extensions do not significantly change the preced-
ing description. For example, version 3 supports 64-bit numbers for recording file
sizes and adds an asynchronous write (i.e., the server may acknowledge an asyn-
chronous write request as soon as it receives the request, before it has written the
data to disk).

NFS version 4, which took a number of lessons from the Andrew File System
[Suggestions for Further Reading 4.2.3], is a bigger change than version 3; in version 4
the server maintains some state. Version 4 also protects against intruders who can
snoop and modify network traffic using techniques discussed in Chapter 11 [on-line].
Furthermore, it provides a more efficient scheme for providing close-to-open consis-
tency, and it works well across the Internet, where the client and server may be con-
nected using low-speed links.

The following references provide more details on NFS:

1. Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
“Design and implementation of the Sun network file system”, Proceedings of
the 1985 Summer Usenix Technical Conference, June 1985, El Cerrito, CA,
pages 119–130.

2. Chet Juszezak, “Improving the performance and correctness of an NFS server”,
Proceedings of the 1989 Winter Usenix Technical Conference, January 1989,
Berkeley, CA, pages 53–63.

3. Brian Pawlowski, Chet Juszezak, Peter Staubach, Carl Smith, Diana Lebel, and
David Hitz, “NFS Version 3 design and implementation”, Proceedings of the
1990 Summer Usenix Technical Conference, June 1994, Boston, MA.

195Exercises

4. Brian Pawlowski, Spencer Shepler, Carl Beame, Brent Callaghan, Michael
Eisler, David Noveck, David Robinson, and Robert Turlow, “The NFS Version 4
 protocol”, Proceedings of Second International SANE Conference, May 2000,
Maastricht, The Netherlands.

exerCises
4.1 When modularity between a client and a service is enforced, there is no way for

errors in the implementation of the service to propagate to its clients. True or
False? Explain.

1995–1–1d

4.2 Chapter 1 discussed four general methods for coping with complexity: modular-
ity, abstraction, hierarchy, and layering.
4.2a Which of those four methods does client/service use as its primary organizing

scheme?
4.2b Which does remote procedure call use? Explain.

1996–1–1b,d

4.3 To client software, a notable difference between remote procedure call and ordi-
nary local procedure call is:
A. None. That’s the whole point of RPC!
B. There may be multiple returns from one RPC call.
C. There may be multiple calls for one RPC return.
D. Recursion doesn’t work in RPC.
E. The runtime system may report a new type of error as a result of an RPC.
F. Arguments to RPCs must be scalars.

1998–2–4

4.4 Which of the following statements is true of the X Window System (see
Sidebar 4.4)?
A. The X server is a trusted intermediary and attempts to enforce modularity between X

clients in their use of the display resource.
B. An X client always waits for a response to a request before sending the next request

to the X server.
C. When a program running on another computer displays its window on your local

workstation, that remote computer is considered an X server.

2005–1–6

4.5 While browsing the Web, you click on a link that identifies an Internet host named
www.cslab.scholarly.edu. Your browser asks your Domain Name System (DNS)

http://www.cslab.scholarly.edu

196 CHAPTER 4 Enforcing Modularity with Clients and Services196

name server, M, to find an Internet address for this domain name. Under what condi-
tions is each of the following statements true of the name resolution process?
A. To answer your query, M must contact one of the root name servers.
B. If M answered a query for www.cslab.scholarly.edu in the past, then it can answer

your query without asking any other name server.
C. M must contact one of the name servers for cslab.scholarly.edu to resolve the

domain name.
D. If M has the current Internet address of a working name server for scholarly.edu

cached, then that name server will be able to directly provide an answer.
E. If M has the current Internet address of a working name server for cslab. scholarly.

edu cached, then that name server will be able to directly provide an answer.

4.6 For the same situation as in Exercise 4.5, which of the following is always true
of the name resolution process, assuming that all name servers are configured
correctly and no messages are lost?
A. If M had answered a query for the IP address corresponding to www.cslab.

scholarly.edu at some time in the past, then it can respond to the current query
without contacting any other name server.

B. If M has a valid IP address of a functioning name server for cslab.scholarly.edu in
its cache, then M will get a response from that name server without any other name
servers being contacted.

2000–2–5 and 2005–2–4

4.7 The Network File System (NFS) described in Section 4.5 allows a client machine
to run operations on files that are stored at a remote server. For the version of
NFS described there, decide if each of these assertions is true or false:
A. When the server responds to a client’s write call, all modifications required by that

write will have made it to the server’s disk.
B. An NFS client might send multiple requests for the same operation to the NFS server.
C. When an NFS server crashes, after the operating system restarts and recovers the disk

contents, the server must also run its own recovery procedure to make its state con-
sistent with that of its clients.

2005–1–2

4.8 Assume that an NFS (described in Section 4.5) server contains a file /a/b and
that an NFS client mounts the NFS server’s root directory in the location /x, so
that the client can now name the file as /x/a/b. Further assume that this is the
only client and that the client executes the following two commands:

 chdir /x/a
 rm b

 The remove message from the client to the server gets through, and the server
removes the file. Unfortunately, the response from the server to the client is lost

http://www.cslab.scholarly.edu
http://www.cslab.-scholarly.edu
http://www.cslab.-scholarly.edu

197Exercises

and the client resends the message to remove the (now non-existent) file. The
server receives the resent message. What happens next depends on the server
implementation. Which of the following are correct statements?
A. If the server maintains an in-memory reply cache in which it records all operations it

previously executed, and there are no server failures, the server will return “OK”.
B. If the server maintains an in-memory reply cache but the server has failed, restarted,

and its reply cache is empty, both of the following responses are possible: the server
may return “file not found” or “OK”.

C. If the server is stateless, it will return “file not found”.
D. Because remove is an idempotent operation, any server implementation will return

“OK”.

2006–2–2

Additional exercises relating to Chapter 4 can be found in the problem sets
beginning on page 425.

199

CHAPTER

5Enforcing Modularity
with Virtualization

Overview ��200
5�1 Client/Server Organization within a Computer Using Virtualization �����������������������201

5.1.1 Abstractions for Virtualizing Computers ..203
5.1.2 Emulation and Virtual Machines ..208
5.1.3 Roadmap: Step-by-Step Virtualization ..208

5�2 Virtual Links Using send, receive, and a Bounded Buffer ��������������������������������������210
5.2.1 An Interface for send and receive with Bounded Buffers210
5.2.2 Sequence Coordination with a Bounded Buffer211
5.2.3 Race Conditions ...214
5.2.4 Locks and Before-or-After Actions ..218
5.2.5 Deadlock ...221
5.2.6 Implementing acquire and release ��222
5.2.7 Implementing a Before-or-After Action Using the One-Writer Principle225
5.2.8 Coordination between Synchronous Islands

with Asynchronous Connections ...228
5�3 Enforcing Modularity in Memory ���230

5.3.1 Enforcing Modularity with Domains ..230
5.3.2 Controlled Sharing Using Several Domains ..231
5.3.3 More Enforced Modularity with Kernel and User Mode234
5.3.4 Gates and Changing Modes ...235
5.3.5 Enforcing Modularity for Bounded Buffers ..237
5.3.6 The Kernel ...238

5�4 Virtualizing Memory ��242
5.4.1 Virtualizing Addresses ...243
5.4.2 Translating Addresses Using a Page Map ..245
5.4.3 Virtual Address Spaces ...248
5.4.4 Hardware versus Software and the Translation Look-Aside Buffer252
5.4.5 Segments (Advanced Topic) ...253

Principles of Computer System Design: An Introduction
Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. All rights reserved.
DOI: 10.1016/B978-0-12-374957-4.00013-X

CHAPTER CONTENTS

200 CHAPTER 5 Enforcing Modularity with Virtualization

5�5 Virtualizing Processors Using Threads ���255
5.5.1 Sharing a Processor Among Multiple Threads ..255
5.5.2 Implementing yield ��260
5.5.3 Creating and Terminating Threads ..264
5.5.4 Enforcing Modularity with Threads: Preemptive Scheduling269
5.5.5 Enforcing Modularity with Threads and Address Spaces271
5.5.6 Layering Threads ..271

5�6 Thread Primitives for Sequence Coordination ���273
5.6.1 The Lost Notification Problem ...273
5.6.2 Avoiding the Lost Notification Problem with Eventcounts

and Sequencers ...275
5.6.3 Implementing await, advance, ticket, and read (Advanced Topic)280
5.6.4 Polling, Interrupts, and Sequence Coordination282

5�7 Case Study: Evolution of Enforced Modularity in the Intel x86 ����������������������������284
5.7.1 The Early Designs: No Support for Enforced Modularity285
5.7.2 Enforcing Modularity Using Segmentation ..286
5.7.3 Page-Based Virtual Address Spaces ..287
5.7.4 Summary: More Evolution ...288

5�8 Application: Enforcing Modularity Using Virtual Machines ����������������������������������290
5.8.1 Virtual Machine Uses ..290
5.8.2 Implementing Virtual Machines ...291
5.8.3 Virtualizing Example ...293

Exercises ���294

Overview
The goal of the client/service organization is to limit the interactions between cli-
ents and services to messages. To ensure that there are no opportunities for hidden
inter actions, the previous chapter assumed that each client module and service mod-
ule runs on a separate computer. Under that assumption, the network between the
computers enforces modularity. This implementation reduces the opportunity for
programming errors to propagate from one module to another, but it is also good
for achieving security (because the service module can be penetrated only by send-
ing messages) and fault tolerance (service modules can be separated geographically,
which reduces the risk that a catastrophic failure such as an earthquake or a massive
power failure affects all servers that implement the service).

The main disadvantage of using one computer per module is that it requires as many
computers as modules. Since the modularity of a system and its applications shouldn’t
be dictated by the number of computers available, this requirement is undesirable. If the
designer decides to split a system or application into n modules and would like to enforce
modularity between them, the choice of n should not be constrained by the number of
computers that happen to be in stock and easily obtained. Instead, the designer needs a
way to run several modules on the same computer without resorting to soft modularity.

2015�1 Client/Server Organization within a Computer Using Virtualization

This chapter introduces virtualization as the primary approach to achieve this
goal and presents three new abstractions (send and receive with bounded buffers,
virtual memory, and threads) that correspond to virtualized versions of the three
main abstractions (communication links, memory, and processors). The three new
 abstractions allow a designer to implement as many virtual computers as needed for
running the desired n modules.

5.1 Client/server OrganizatiOn within a COmputer
using virtualizatiOn

To enforce modularity between modules running on the same computer, we create
several virtual computers using one physical computer and execute each module
(usually an application or a subsystem) in its own virtual computer.

This idea can be realized using a technique called virtualization. A program
that virtualizes a physical object simulates the interface of the physical object, but
it creates many virtual objects by multiplexing one physical instance, or it may pro-
vide one large virtual object by aggregating many physical instances, or implement
a virtual object from a different kind of physical object using emulation. For the
user of the simulated object, it provides the same behavior as a physical instance,
but it isn’t the physical instance, which is why it is called virtual. A primary goal of
virtualization is to preserve an existing interface. That way, modules designed to use
a physical instance of an object don’t have to be modified to use a virtual instance.
Figure 5.1 gives some examples of the three virtualization methods, which we will
discuss in turn.

Hosting several Web sites on a single physical server is an example of virtualization
involving multiplexing. If the aggregate peak load of the Web sites is less than what a

Figure 5.1

Examples of
 virtualization.

Virtualization Method Physical Resource Virtual Resource

multiplexing server Web site

multiplexing processor thread

multiplexing real memory virtual memory

multiplexing and
emulation

real memory
and disk

virtual memory
with paging

multiplexing wire or communication
channel

virtual circuit

aggregation communication channel channel
bonding

aggregation disk RAID

emulation disk RAM disk

emulation Macintosh virtual PC

202 CHAPTER 5 Enforcing Modularity with Virtualization

single server computer can support, providers often prefer to use a single server to host
several Web sites because it is less expensive than buying one server for each Web site.

The next three examples relate to threads and virtual memory, which we will
 overview in Section 5.1.1. Some of these usages don’t rely on a single method of vir-
tualization but combine several or use different methods to obtain different proper-
ties. For example, virtual memory with paging (described in Section 6.2) uses both
multiplexing and aggregation.

A virtual circuit virtualizes a wire or communication channel using multiplexing.
For example, it allows several phone conversations to take place over a single wire
with a technique called time division multiplexing, as we will discuss in Chapter 7
[on-line]. Channel bonding aggregates several communication channels to provide a
combined high data rate.

RAID (see Section 2.1.1.4) is an example of virtualization involving aggregation. In
RAID, a number of disks are aggregated together in a clever way that provides an identi-
cal interface to the one of a single disk, but together the disks provide improved perfor-
mance (by reading and writing disks concurrently) and durability (by writing information
on more than one disk). A system administrator can replace a single disk with a RAID and
take advantage of the RAID improvements without having to change the file system.

A RAM disk is an example of virtualization involving emulation. A RAM disk pro-
vides the same interface as a physical disk but stores blocks in memory instead of on
a disk platter. RAM disks can therefore read and write blocks much faster than a physi-
cal disk but, because RAM is volatile, it provides little durability. Administrators can
configure a file system to use a RAM disk instead of a physical disk without needing
to modify the file system itself. For example, a system administrator may configure the
file system to use RAM disk to store temporary files, which allows the file system to
read and write temporary files fast. And since temporary files don’t have to be stored
durably, nothing is lost by storing them on a RAM disk.

A virtual PC is an example of virtualization using emulation. It allows the construc-
tion of a virtual personal computer out of a physical personal computer, perhaps of a
different type (e.g., using a Macintosh to emulate a virtual PC). Virtual PCs can be use-
ful to run several operating systems on a single computer, or simplify the testing and
the development of a new operating system. Section 5.1.2 discusses this virtualization
technique in more detail.

Designers are often tempted to tinker slightly with an interface rather than virtual-
izing it exactly, to improve it or to add a useful feature. Such tinkering can easily cross
a line in which the original goal of not having to modify other modules that use the
interface is lost. For example, the X Window System described in Sidebar 4.4 imple-
ments objects that could be thought of as virtual displays, but because the size of those
objects can be changed on the fly and the program that draws on them should be pre-
pared to redraw them on command, it is more appropriate to call them “windows”.

Similarly, a file system (see Section 2.3.2) creates objects that store bits and thus
has some similarity to a virtualized hard disk, but because files have names, are of
adjustable length, allow controlled sharing, and can be organized into hierarchies,
they are more appropriately thought of as a different memory abstraction.

2035�1 Client/Server Organization within a Computer Using Virtualization

The preceding examples suggest how we could implement the client/service
organization within a single computer. Consider a computer on which we would like
to run five modules: a text editor, an e-mail reader, a keyboard manager, the window
service, and the file service. When a user works with the text editor, keyboard input
should go to the editor. When the user moves the mouse from the editor window to
the mail reader window, the next keyboard input should go to the mail reader. When
the text editor saves a file, the file service must execute to store the file. If there
are more modules than computers, some solution is needed for sharing a single
computer.

The idea is to present each module with its own virtual computer. The power of
this idea is that programmers can think of each module independently. From the pro-
grammer’s perspective, every program module has a virtual computer to itself, which
executes independently of the virtual computers of other modules. This idea enforces
modularity because a virtual computer can contain a module’s errors and no module
can halt the progress of other modules.

The virtual computer design does not enforce modularity as well as running mod-
ules on physically separate computers because, for example, a power failure will knock
out all virtual computers on the same physical computer. Also, once an attacker has
broken into one virtual computer, the attacker may discover a way to exploit a flaw
in the implementation of virtualization to break into other virtual computers. The
primary modularity goal of employing virtual computers is to ensure that module
failures due to accidental programming errors don’t propagate from one virtual com-
puter to another. Virtual computers can contribute to security goals but are better
viewed as only one of several lines of defense.

5.1.1 abstractions for virtualizing Computers

The main challenge in implementing virtual computers is finding the right abstrac-
tions to build them. This chapter introduces three abstractions that correspond to
virtualized versions of the main abstractions: send and receive with bounded buf-
fers (virtualizes communication links), virtual memory (virtualizes memory), and
threads (virtualizes processors).

These three abstractions are typically implemented by a program that is called the
operating system (which was briefly discussed in Sidebar 2.4 but will be discussed
in detail in this chapter). Using an operating system that provides the three abstrac-
tions, we can implement the client/service organization within a single computer
(see Figure 5.2). For example, with this design the text editor running on one virtual
computer can send a message over the virtual communication link to the file service,
running on a different virtual computer, and ask it, for example, to save a file. In the
figure each virtual computer has one virtual processor (implemented by a thread) and
its own virtual memory with a virtual address space ranging from 0 to 2n. To build an
intuition for these abstractions and learn how they can be used to implement a virtual
computer, we give a brief overview of them.

204 CHAPTER 5 Enforcing Modularity with Virtualization

5.1.1.1 Threads
The first step in virtualizing a computer is to virtualize the processor. To provide the
editor module (shown in Figure 5.3) with a virtual processor, we create a thread of
execution, or thread for short. A thread is an abstraction that encapsulates the execu-
tion state of an active computation. It encapsulates the state of a conceptual interpreter
that executes the computation (see Section 2.1.2). The state of a thread consists of the
variables internal to the interpreter (e.g., processor registers), which include

1. A reference to the next program step (e.g., a program counter)
2. References to the environment (e.g., a stack, a heap, and other current objects)

The thread abstraction encapsulates enough of the interpreter’s state that one can
stop a thread at any point in time, and later resume it. The ability to stop a thread and
resume it later allows virtualization of the interpreter and provides a convenient way
of multiplexing a physical processor. Threads are the most widely used implementa-
tion strategy to virtualize physical processors. In fact, this implementation strategy is
so common that in the context of virtualizing physical processors the words “thread”
and “virtual processor” have become synonyms in practice.

The next few paragraphs give a high-level overview of how threads can be used to
virtualize physical processors. A user might type the name of the module that the user
wants to run, or a user might select the name from a pull-down menu. The command
line interpreter or the window system can then start the program as follows:

1. Load the program’s text and data stored in the file system into memory.
2. Allocate a thread and start it at a specified address. Allocating a thread involves

allocating a stack to allow the thread to make procedure calls, setting the sp reg-
ister to the top of the stack, and setting the pc register to the starting address.

Operating system

Editor File
service

0 0

2n 2n

SEND RECEIVE

A bounded buffer

Figure 5.2

An operating system providing the editor and file service module each their own virtual computer.
Each virtual computer has a thread that virtualizes the processor. Each virtual computer has a
virtual memory that provides each module with the illusion that it has its own memory. To allow
communication between virtual computers, the operating system provides send, receive, and a
bounded buffer of messages.

2055�1 Client/Server Organization within a Computer Using Virtualization

A module may have one or several threads. A module with only one thread (and thus
one processor) is common because then the programmer can think of it as executing a
program serially: it starts at the beginning, computes (perhaps producing some output
by performing a remote procedure call to a service), and then terminates. This simple
structure follows the principle of least astonishment for programmers. Humans are
better at understanding serial programs than at understanding programs that have
several, concurrent threads, which can have surprising behavior.

Modules may have more than one thread by creating several threads. A module,
for example, may create a thread per device that the module manages so that the
module can operate the devices concurrently. Or a module may create several threads
to overlap the latency of an expensive operation (e.g., waiting for a disk) by running
the expensive operation in another thread. A module may allocate several threads to
exploit several physical processors that run each thread concurrently. A service module
may create several threads to process requests from different clients concurrently.

The thread abstraction is implemented by a thread manager. The thread man-
ager’s job is to multiplex the possibly many threads on the limited number of physi-
cal processors of the computer, and in such a way that a programming error in one
thread cannot interfere with the execution of another thread. Since the thread encap-
sulates enough of the state so that one can stop a thread at any point in time, and
later resume it, the thread manager can stop a thread and allocate the released physi-
cal processor to another thread by resuming that thread. Later the thread manager
can resume the suspended thread again by reallocating a physical processor to that
thread. In this way, the thread manager can multiplex many threads across a number
of physical processors. The thread manager can ensure that no thread hogs a physical
processor by forcing each thread to periodically give up its physical processor on a
clock interrupt.

With the introduction of threads, it is helpful to refine the description of the inter-
rupt mechanism described in Chapter 2. External events (e.g., a clock interrupt or a
magnetic disk signals the completion of an I/O) interrupt a physical processor, but
the event may have nothing to do with the thread running on the physical processor.
On an interrupt, the processor invokes the interrupt handler and after returning from
the handler continues running the thread that was running on the physical processor
before the interrupt. If one processor should not be interrupted because it is already
busy processing an interrupt, the next interrupt may interrupt another processor in
the computer, allowing interrupts to be processed concurrently.

Figure 5.3

Sketch of the program for the editor module.

1 input ← open (keyboard) // open the keyboard device
2 file ← open (argument) // open the file that was passed an argument to the editor
3 do forever
4 n ← readline (input, buf) // read characters from the keyboard into buf
5 apply (file, buf, n) // apply them to the file being edited

206 CHAPTER 5 Enforcing Modularity with Virtualization

Some interrupts do pertain to the currently running thread. We shall refer to this
class of interrupts as exceptions. The exception handler runs in the context of the inter-
rupted thread; it can read and modify the interrupted thread’s state. Exceptions often
happen when a thread performs some operation that the hardware cannot complete
(e.g., divide by zero). Many programming languages also have a notion of an exception;
for example, a square root program may signal an exception if its caller hands it a nega-
tive argument. We shall see that because exception handlers run in the context of the
interrupted thread, but interrupt handlers run in the context of the operating system,
there are different restrictions on what the two kinds of handlers can safely do.

5.1.1.2 Virtual Memory
As described so far, all threads and handlers share the same physical memory. Each
processor running a thread sends read and write requests across a bus along with
an address identifying the memory location to be read or written. Sharing memory
has benefits, but uncontrolled sharing makes it too easy to make a mistake. If several
threads have their programs and data stored in the same physical memory, then the
threads of each module have access to every other module’s data. In fact, a simple
programming error (e.g., the program computes the wrong address) can result in a
store instruction overwriting another module’s data or a jmp instruction executing
procedures of another module. Thus, without a memory enforcement mechanism we
have, at best, soft modularity. In addition, the physical memory and address space may
be too small to fit the applications, requiring the applications to manage the memory
carefully.

To enforce modularity, we must ensure that the threads of one module cannot
overwrite the data of another module by accident. To do so, we give each module
its own virtual memory, as Figure 5.2 illustrates. Virtual memory can provide each
module with its own virtual address space, which has its own virtual addresses. That
is, the arguments to jmp, load, and store instructions are all virtual addresses, which
a new hardware gadget (called a virtual memory manager) translates to physical
addresses. If each module has its own virtual address space, then a module can name
only its own physical memory and cannot store to the memory of another module. If
a thread of a module by accident calculates an incorrect virtual address and stores to
that virtual address, it will affect only that module.

With threads and virtual memory, we can create a virtual computer for each mod-
ule. Each module has one or more threads that execute the code of the module. The
threads of one module share a single virtual address memory that threads of other
modules by default cannot touch.

5.1.1.3 Bounded Buffer
To allow client and service modules on virtual computers to communicate, we intro-
duce send and receive with a bounded buffer of messages. A thread can invoke send,
which attempts to insert the supplied message into a bounded buffer of messages. If
the bounded buffer is full, the sending thread waits until there is space in the bounded
buffer. A thread invokes receive to retrieve a message from the buffer; if there are no

2075�1 Client/Server Organization within a Computer Using Virtualization

messages, the calling thread waits. Using send, receive, and bounded buffers, we can
implement remote procedure calls and enforce strong modularity between modules
on different virtual computers running on the same physical computer.

5.1.1.4 Operating System Interface
To make the abstractions concrete, this chapter develops a minimal operating system
that provides the abstractions (see Table 5.1 for its interface). This minimal design
exhibits many of the mechanisms that are found in existing operating systems, but
to keep the explanation simple it doesn’t describe any existing system. Existing sys-
tems have evolved over many years, incorporating new ideas as they came along. As a
result, few existing systems provide an example of a clean, simple design. In addition,
a complete operating system includes many services (such as a file system, a window
system, etc.) that are not included in the minimal operating system described in this
chapter.

Table 5.1 The Interface Developed in this Chapter

Abstraction Procedure

Memory

create_address_space

delete_address_space

allocate_block

free_block

map

unmap

Interpreter

allocate_thread

exit_thread

destroy_thread

yield

await

advance

ticket

acquire

release

Communication

allocate_bounded_buffer

deallocate_bounded_buffer

send

receive

208 CHAPTER 5 Enforcing Modularity with Virtualization

5.1.2 emulation and virtual machines

The previous section described briefly three high-level abstractions to virtualize pro-
cessors, memory, and links to enforce modularity. An alternative approach is to pro-
vide an interface that is identical to some physical hardware. In this approach, one
can enforce modularity by providing each application with its own instance of the
physical hardware.

This approach can be implemented using a technique called emulation. Emulation
simulates some physical hardware so faithfully that the emulated hardware can run
any software the physical hardware can. For example, Apple Inc. has used emulation
successfully to move customers to new hardware designs. Apple used a program
named Classic to emulate Motorola Inc.’s 68030 processor on the PowerPC processor
and more recently used a program named Rosetta to emulate the PowerPC processor
on Intel Inc.’s x86 processor. As another example, some processors include a micro-
code interpreter inside the processor to simulate instructions of other processors or
instructions from older versions of the same processor. It is also standard practice for
a vendor developing a new processor to start by writing an emulator for it and run-
ning the emulator on some already existing processor. This approach allows software
development to begin before the chip for the new processor is manufactured, and
when the chip does become available, the emulator acts as a kind of specification
against which to debug the chip.

Emulation in software is typically slow because interpreting the instructions of the
emulated machine in software has substantial overhead. Looking at the structure of
an interpreter in Figure 2.5, it is easy to see that decoding the simulated instruction,
performing its operation, and updating the state of the simulated processor can take
tens of instructions on the processor that performs the emulation. As a result, emula-
tion in software can cost a factor 10 in performance and a designer must work hard
to do better.

A specialized approach to fast emulation is using virtual machines. In this
approach, a physical processor is used as much as possible to implement many virtual
instances of itself. That is, virtual machines emulate many instances of a machine M
using a physical machine M. This approach loses the portability of general emulation
but provides better performance. The part of the operating system that provides vir-
tual machines is often called a virtual machine monitor. Section 5.8 of this chapter
discusses virtual machines and virtual machine monitors in more detail. Internally, a
virtual machine monitor typically uses bounded buffers, virtual memory, and threads,
the main topics of this chapter.

5.1.3 roadmap: step-by-step virtualization

This chapter gradually develops the tools needed to provide a virtual com-
puter. We start out assuming that there are more physical processors than threads
and that the operating system can allocate each thread its own physical processor. We
will even assume that each interrupt handler has its own physical processor, so when

2095�1 Client/Server Organization within a Computer Using Virtualization

an interrupt occurs, the handler runs on that dedicated processor. Figure 5.4 shows a
modified version of Figure 2.2, in which each thread has its own processor. Consider
again the example that we would like to run the following five modules on a single
computer: a text editor, an e-mail reader, a keyboard manager, the window service, and
the file service. Processor 1, for example, might run the text editor thread. Processor 2
might run the e-mail reader thread. The window manager might have one thread per
window, each running on a separate processor. Similarly, the file service might have
several threads, each running on a separate processor. The load and store instructions
of threads refer to addresses that name memory locations or registers of the various
controllers. That is, threads share the memories and controllers.

Given this setup, Section 5.2 shows how the client/server organization can be
implemented in a computer with many processors and a single address space by
allowing the threads of different modules to communicate through a bounded buf-
fer. This implementation takes advantage of the fact that processors within a com-
puter can interact with one another through a shared memory. That ability will prove
useful to implement virtual communication links, but such unconstrained interaction
through shared memory would drastically compromise modularity. For this reason,
Section 5.3 will adjust this assumption to show how to provide and enforce walls
between the memory regions used by different modules to restrict and control shar-
ing of memory.

Sections 5.4, 5.5, and 5.6 of this chapter remove restrictions on the design pre-
sented in Sections 5.2 and 5.3. In Section 5.4 we will remove the restriction that
processors must share one single, large address space, and provide each module with
its own virtual memory, while still allowing controlled sharing. In Section 5.5 we
remove the restriction that each thread must have its own physical processor while
still ensuring that no thread can halt the progress of other threads involuntarily. Finally,

Processor ...

Network
controller

Bus

Processor 2 Clock

Display
controller

Keyboard
controller

Disk
controller Memory 1 Memory 2

Processor 1 Processor n

Thread 1 Thread 2 Thread ... Thread n

Figure 5.4

A computer with several hardware modules connected by a shared bus. Each thread of the
 software modules has its own processor allocated to it.

210 CHAPTER 5 Enforcing Modularity with Virtualization

in Section 5.6 we remove the restriction that a thread must use a physical processor
continuously to test if another thread has sent a message.

The operating system, thread manager, virtual memory manager, and send and receive
with bounded buffers presented in this chapter are less complex than the designs found
in contemporary computer systems. One reason is that most contemporary designs
have evolved over time with changing technologies, while also allowing users to con-
tinue to run old programs. As an example of this evolution, Section 5.7 briefly describes
the history of the Intel x86 processor, a widely used general-purpose processor design
that has, over the years, provided increasing support for enforced modularity.

5.2 virtual links using send, receive, and a bOunded
buFFer

Operating systems designers have developed many abstractions for virtual communi-
cation links. One popular abstraction is pipes [Suggestions for Further Reading 2.2.1
and 2.2.2], which allow two programs to communicate using procedures from the file
system call interface. Because send and receive with a bounded buffer mirror a com-
munication link directly, we describe them in more detail in this chapter. The imple-
mentation of send and receive with a bounded buffer also mirrors implementations of
sockets, an interface for virtual links provided in operating systems such as unix and
Microsoft Windows.

The main challenge in implementing send and receive with bounded buffers is that
several threads, perhaps running in parallel on separate physical processors, may add and
remove messages from the same bounded buffer concurrently. To ensure correctness,
the implementation must coordinate these updates. This section will present bounded
buffers in detail and introduce some techniques to coordinate concurrent actions.

5.2.1 an interface for send and receive with bounded buffers

An operating system might provide the following interface for send and receive with
bounded buffers:

 ■ buffer ← allocate_bounded_buffer (n): allocate a bounded buffer that can hold n
messages.

 ■ deallocate_bounded_buffer (buffer): free the bounded buffer buffer.
 ■ send (buffer, message): if there is room in the bounded buffer buffer, insert mes-

sage in the buffer. If not, stop the calling thread and wait until there is room.
 ■ message ← receive (buffer): if there is a message in the bounded buffer buffer, return

the message to the calling thread. If there is no message in the bounded buffer, stop
the calling thread and wait until another thread sends a message to buffer buffer.

send and receive with bounded buffers allow sending and receiving messages as
described in Chapter 4. By building stubs that use these primitives, we can implement
remote procedure calls between threads on the same physical computer in the same

2115�2 Virtual Links Using send, receive, and a Bounded Buffer

way as remote procedure calls between physical computers. That is, from the client’s
point of view in Figure 4.8, there is no difference between sending a message to a
local virtual computer or to a remote physical computer. In both cases, if the client or
service module fails because of a programming error, then the other module needs to
provide a recovery strategy, but it doesn’t necessarily fail.

5.2.2 sequence Coordination with a bounded buffer

The implementation with bounded buffers requires coordination between sending
and receiving threads because a thread may have to wait until buffer space is avail-
able or until a message arrives. Two quite different approaches to thread coordination
have developed over the years by researchers in different fields. One approach, usually
taken by operating system designers, assumes that the programmer is an all-knowing
genius who makes no mistakes. The other approach, usually taken by database design-
ers, assumes that the programmer is a mere mortal, so it provides strong automatic
support for coordination correctness, but at some cost in flexibility.

The next couple of subsections exhibit the genius approach to coordination, not
because it is the best way to tackle coordination problems, but rather to give some
intuition about why it requires a coordination genius, and thus should be subcon-
tracted to such a specialist whenever possible. In addition, to implement the database
approach the designer of the automatic coordination support approach must use the
genius approach. Chapter 9 [on-line] uses the concepts introduced in this chapter to
implement the database approach for mere mortals.

The scenario is that we have two threads (a sending thread and a receiving thread)
that share a buffer into which the sender puts messages and the receiver removes
those messages. For clarity we will assume that the sending and receiving thread
each have their own processor allocated to them; that is, for the rest of this section
we can equate thread with processor, and thus threads can proceed concurrently at
independent rates. As mentioned earlier, Section 5.5 will explore what happens when
we eliminate that assumption.

The buffer is bounded, which means that it has a fixed size. To ensure that the
buffer doesn’t overflow, the sending thread should hold off putting messages into the
buffer when the number of messages there reaches some predefined limit. When that
happens, the sender must wait until the receiver has consumed some messages.

The problem of sharing a bounded buffer between two threads is an instance
of the producer and consumer problem. For correct operation, the consumer and
the producer must coordinate their activities. In our example, the constraint is that
the producer must first add a message to the shared buffer before the consumer can
remove it and that the producer must wait for the consumer to catch up when the
buffer fills up. This kind of coordination is an example of sequence coordination: a
coordination constraint among threads stating that, for correctness, an event in one
thread must precede an event in another thread.

Figure 5.5 shows an implementation of send and receive using a bounded buf-
fer. This implementation requires making some subtle assumptions, but before diving

212 CHAPTER 5 Enforcing Modularity with Virtualization

into these assumptions let’s first consider how the program works. The two threads
implement the sequence coordination constraint using n (the size of the shared
bounded buffer) and the variables in (the number of items produced) and out (the
number of items consumed). If the buffer contains items (i.e., in out on line 10),
then the receiver can proceed to consume the items; otherwise, it loops until the
sender has put some items in the buffer. Loops in which a thread is waiting for an
event without giving up its processor are called spin loops.

To ensure that the sender waits when the buffer is full, the sender puts new items
in the buffer only if in 2 out n (line 6); otherwise, it spins until the receiver made
room in the buffer by consuming some items. This design ensures that the buffer does
not overflow.

The correctness of this implementation relies on several assumptions:

1. The implementation assumes that there is one sending thread and one receiv-
ing thread and that only one thread updates each shared variable. In the pro-
gram only the receiver thread updates out, and only the sender thread updates
in. If several threads update the same shared variable (e.g., multiple sending
threads update in or the receiving thread and the sending thread update a vari-
able), then the updates to the shared variable must be coordinated, which this
implementation doesn’t do.

 This assumption exemplifies the principle that coordination is simplest
when each shared variable has just one writer:

One-writer principle

If each variable has only one writer, coordination becomes easier.

1 shared structure buffer // A shared bounded buffer
2 message instance message[N] // With a maximum of N messages
3 integer in initially 0 // Counts number of messages put in the buffer
4 integer out initially 0 // Counts number of messages taken out of the buffer

5 procedure send (buffer reference p, message instance msg)
6 while p.in 2 p.out 5 N do nothing // If buffer is full, wait for room
7 p.message [p.in modulo N] ← msg // Put message in the buffer
8 p.in ← p.in 1 1 // Increment in

9 procedure receive (buffer reference p)
10 while p.in 5 p.out do nothing // If buffer is empty, wait for message
11 msg ← p.message [p.out modulo N] // Copy item out of buffer
12 p.out ← p.out 1 1 // Increment out
13 return msg // Return message to receiver

Figure 5.5

An implementation of a send and receive using bounded buffers.

2135�2 Virtual Links Using send, receive, and a Bounded Buffer

 That is, if you can, arrange your program so that two threads don’t update the
same shared variable. Following this principle also improves modularity because
information flows in only one direction: from the single writer to the reader.
In our implementation, out contains information that flows from the receiver
thread to the sender, and in contains information that flows from the sender
thread to the receiver. This restriction of information flow simplifies correctness
arguments and, as we will see in Chapter 11 [on-line], can also enhance security.

 A similar observation holds for the way the bounded buffer buffer is imple-
mented. Because messages is a fixed-size array, the entries are written only by
the sender thread. If the buffer had been implemented as a linked list, we might
have a situation in which the sender and the receiver need to update a shared
variable at the same time (e.g., the pointer to the head of the linked list) and
then these updates would have to be coordinated.

2. The spin loops on lines 6 and 10 require the previously mentioned assump-
tion that the sender and the receiver threads each run on a dedicated proces-
sor. When we remove that assumption in Section 5.5 we will have to do some-
thing about these spin loops.

3. This implementation assumes that the variables in and out are integers whose
representation must be large enough that they will never overflow for the life
of the buffer. Integers of width 64 or 96 bits would probably suffice for most
applications. (An alternative way to remove this assumption is to make the
implementation of the bounded buffer more complicated: perform all additions
involving in and out modulo N, and reserve one additional slot in the buffer to
distinguish a full buffer from an empty one.)

4. The implementation assumes that the shared memory provides read/write
coherence (see Section 2.1.1.1) for in and out. That is, a load of the variable in
or out by one thread must be guaranteed to obtain the result of the most recent
store to that variable by the other thread.

5. The implementation assumes before-or-after atomicity for the variables in and
out. If these two variables fit in a 16- or 32-bit memory cell that can be read and
written with a single load or store, this assumption is likely to be true. But a 64-
or 96-bit integer would probably require multiple memory cells. If they do, read-
ing and writing in and out would require multiple loads or stores, and additional
measures will be necessary to make these multistep sequences atomic.

6. The implementation assumes that the result of executing a statement becomes
visible to other threads in program order. If an optimizing compiler or proces-
sor reorders statements to achieve better performance, this program could work
incorrectly. For example, if the compiler generates code that reads p.in once, holds
it in a temporary register for use in lines 6 through 8, and updates the memory
copy of p.in immediately, then the receiver may read the contents of the in th entry
of the shared buffer before the sender has copied its message into that entry.

214 CHAPTER 5 Enforcing Modularity with Virtualization

The rest of this section explains what problems occur when assumptions 1 (the
one-writer principle) and 5 (before-or-after atomicity of multistep load and store
sequences) don’t hold and introduces techniques to ensure them. In Section 5.5 we
will find out how to remove assumption 2 (more processors than threads). Throughout,
we assume that assumptions 3, 4, and 6 always hold.

5.2.3 race Conditions

To illustrate the importance of the six assumptions in guaranteeing the correctness
of the program in Figure 5.5, let’s remove two of those assumptions, one at a time,
to see just what goes wrong. What we will find is that to deal with the removed
assumptions we need additional mechanisms, mechanisms that Section 5.2.4 will
introduce. This illustration reinforces the observation that concurrent programming
needs the attention of specialists: all it takes is one subtle change to make a correct
program wrong.

To remove the first assumption, let’s allow several senders and receivers. This
change will violate the one-writer principle, so we should not be surprised to find
that it introduces errors. Multiple senders and receivers are common in practice. For
example, consider a printer that is shared among many clients. The service managing
the printer may receive requests from several clients. Each request adds a document
to the shared buffer of to-be-printed documents. In this case, we have several senders
(the threads adding jobs to the buffer) and one receiver (the printer).

As we will see, the errors that will manifest themselves are difficult to track down
because they don’t always show up. They appear only with a particular ordering of
the instructions of the threads involved. Thus, concurrent programs are not only dif-
ficult to get right, but also difficult to debug when they are wrong.

The solution in Figure 5.5 doesn’t work when several senders execute the code
concurrently. To see why, let’s assume n is 20 and that all entries in the buffer are
empty (e.g., out is 0 and in is 0), and each thread is running on its own processor:

Bus

Processor 2

Memory

Processor 1

Thread A Thread B

In
Out

Buffer

If two sending threads run concur rently—one on processor A and one on pro-
cessor B—the threads issue instructions independently of each other, at their own

2155�2 Virtual Links Using send, receive, and a Bounded Buffer

pace. The processors may have different speeds and take interrupts at different times,
or instructions may hit in the cache on one processor and miss on another, so there
is no way to predict the relative timing of the load and store instructions that the
threads issue.

This scenario is an instance of asynchronous interpreters (described in Section
2.1.2). Thus, we should make no assumptions about the sequence in which the mem-
ory operations of the two threads execute. When analyzing the concurrent execution
of two threads, both executing instructions 6 through 8 in Figure 5.5, we can assume
they execute in some serial sequence (because the bus arbiter will order any memory
operations that arrive at the bus at the same time). However, because the relative
speeds of the threads are unpredictable, we can make no assumptions about the order
in the sequence.

We represent the execution of instruction 6 by thread A as “A6”. Using this repre-
sentation, we see that one possible sequence might be as follows: A6, A7, A8, B6, B7,
B8. In this case, the program works as expected. Suppose we just started, so variables
in and out are both zero. Thread A performs all of its three instructions before thread B
performs any of its three instructions. With this order, thread A inserts an item in entry
0 and increments in from 0 to 1. Thread B adds an item in entry 1 and increments in
from 1 to 2.

Another possible, but undesirable, sequence is A6, B6, B7, A7, A8, B8, which cor-
responds to the following timing diagram:

A

B

Time

in ← 1

in ← 2buffer is empty

buffer is empty

fill entry 0

fill entry 0
6

6

7

7 8

8

With this order, thread A, at A6, discovers that entry 0 of the buffer is free. Then,
at B6, B also discovers that buffer entry 0 is free. At B7, B stores an item in entry 0
of buffer. Then, A proceeds: at A7 it also stores an item in entry 0, overwriting B’s
item. Then, both increment in (A8 and B8), setting in first to 1 and then to 2. Thus, at
the end of this order of instructions, one print job is lost (thread B’s job), and (because
both threads incremented in) the receiver will find that entry 1 in the buffer was
never filled in.

This type of error is called a race condition because it depends on the exact tim-
ing of two threads. Whether or not an error happens cannot be controlled. It is nasty,
since some sequences deliver a correct result and some sequences deliver an incor-
rect result.

Worse, small timing changes between invocations might result in different behav-
ior. If we notice that B’s print job was lost and we run it again to see what went
wrong, we might get a correct result on the retry because the relative timing of

216 CHAPTER 5 Enforcing Modularity with Virtualization

the instructions has changed slightly. In particular, if we add instructions (e.g., for
 debugging) on the retry, it is almost guaranteed that the timing is changed (because
the threads execute additional instructions) and we will observe a different behavior.
Bugs that disappear when the debugger starts to close in on them are colloquially
called “Heisenbugs” in a tongue-in-cheek pun on the Heisenberg uncertainty prin-
ciple of quantum mechanics. Heisenbugs are difficult to reproduce, which makes
debugging difficult.

Race conditions are the primary pitfall in writing concurrent programs and the
main reason why developing concurrent programs should be left to specialists, despite
the existence of tools to help identifying races (e.g., see Savage et al. [Suggestions for
Further Reading 5.5.6]). Concurrent programming is subtle. In fact, with several send-
ers the program of Figure 5.5 has a second race condition. Consider the statement 8
that the senders execute:

in ← in 1 1

In reality, a thread executes this statement in three separate steps, which can be
expressed as follows:

1 load in, r0 // Load the value of in into a register
2 add r0, 1 // Increment
3 store r0, in // Store result back to in

Consider two sending threads running simultaneously, threads A and B, respec-
tively. The instructions of the threads might execute in the sequence A1, A2, A3,
B1, B2, B3, which corresponds to the following timing diagram:

A

B

Time

in ← 1

in ← 21 2 3

1 2 3

In this case in is incremented by two, as the programmer intended.
But now consider the execution sequence A1, B1, A2, A3, B2, B3, which corre-

sponds to the following timing diagram:

Time

A

B

in ← 1read 0

read 0 in ← 1

1 2 3

1 2 3

2175�2 Virtual Links Using send, receive, and a Bounded Buffer

When the two threads finish, this ordering of memory references has increased in
by only 1. At A1, thread A loads the r0 register of its thread with the value of in, which
is 0. At B1, thread B does exactly the same thing, loading its thread’s register r0 with
the value 0. Then, at A2, thread A computes the new value in r0 and at A3 updates in
with the value 1. Next, at B2 and B3, thread B does the same thing: it computes the
new value in r0 and updates in with the value 1. Thus, in ends up containing 1 instead
of the intended 2. Any time two threads update a shared variable concurrently (i.e.,
the one-writer principle is violated), a race condition is possible.

We caused this second race condition by allowing multiple senders. But the manip-
ulation of the variables in and out also has a potential race even if there is only one
sender and one receiver, and we remove assumption 5 (the before-or-after atomicity
requirement). Let’s assume that we want to make in and out of type long integer so
that there is little risk of overflowing those two variables. In that case, in and out each
span two memory cells instead of one, and updates to in and out are no longer atomic
operations. That change creates yet another race.

If in is a long integer, then updating in would require two instructions:

1 store r0, in11 // Update the least-significant word of in
2 store r1, in // Update the most-significant word of in

To read in would also require two instructions:

3 load in11, r0 // Load the least-significant word of in into a register
4 load in, r1 // Load the most-significant word of in into a register

If the sender executes instructions 1 and 2 at about the same time that the receiver
executes instructions 3 and 4, a race condition could manifest itself. Let’s assume that
two threads call send and receive 232–1 times, and interleave their calls perfectly. At this
point there are no messages in the buffer and in 5 out 5 00000000FFFFFFFFhex using
big-endian notation.

Let’s consider the scenario in which thread A has just added a message to the buf-
fer, has read in into r0 and r1 (at instructions 3 and 4), has computed the new value for
in in the registers r0 and r1, and has executed instruction 1 to update in to memory.
But before A executes instruction 2, thread B adds a message:

A

B

Time

in � 1 ← 0 in ← 1

reads 0

reads 00000000FFFFFFFFhex

3 4

3 4 1 2

In this case, the program works incorrectly because A has stored a message in
entry 15 of the buffer (00000000FFFFFFFFhex modulo 20 5 15), B stores a message
in entry 0, and A completes the update of in, which sets in to 0000000100000000hex.
B’s message in entry 0 will be lost because entry 0 will be overwritten by the next
caller to send.

218 CHAPTER 5 Enforcing Modularity with Virtualization

Race conditions are not uncommon in complex systems. Two notorious ones
occurred in CTSS and in the Therac-25 machine. In CTSS, an early operating system,
all running instances of a text editor used the same name for temporary files. At some
point, two administrators were concurrently editing the file with the message of the
day and a file containing passwords. The content of the two files ended up being
exchanged (see Section 11.11.2 [on-line] for the details): when users logged into CTSS,
it displayed the pass phrases of all other users as the message of the day.

The Therac-25 is a machine that delivers medical irradiation to human patients
[Suggestions for Further Reading 1.9.5]. A race condition between a thread and the
operator allowed an incorrect radiation intensity to be set: as a result, some patients
died. The repairman could not reproduce the problem, since he typed more slowly
than the more experienced operator of the machine.

Problem sets 4, 5, and 6 ask the reader to find race conditions in a few small, con-
current code fragments.

5.2.4 locks and before-or-after actions

From the examples in the preceding section we can see that the program in Figure 5.5
was carefully written so that it didn’t violate assumptions 1 and 5. If we make slight
modifications to the program or use the program in slightly different ways than it was
intended to be used, we violate the assumptions and the program exhibits race condi-
tions. We would like a technique by which a developer can systematically avoid race
conditions. This section introduces a mechanism called a lock, with which a designer
can make a multistep operation behave like a single-step operation. By using locks
carefully, we can modify the program in Figure 5.5 so that it enforces assumptions
1 and 5, and thus avoids the race conditions systematically.

A lock is a shared variable that acts as a flag to coordinate usage of other shared
variables. To work with locks we introduce two new primitives: acquire and release,
both of which take the name of a lock as an argument. A thread may acquire a lock,
hold it for a while, and then release it. While a thread is holding a lock, other threads
that attempt to acquire that same lock will wait until the first thread releases the
lock. By surrounding multistep operations involving shared variables with acquire and
release, the designer can make the multistep operation on shared variables behave like
a single-step operation and avoid undesirable interleavings of multistep operations.

Figure 5.6 shows the code of Figure 5.5 with the addition of acquire and release
invocations. The modified program uses only one lock (buffer_lock) because there is a
single data structure that must protected. The lock guarantees that the program works
correctly when there are several senders and receivers. It also guarantees correctness
when in and out are long integers. That is, the two assumptions under which the pro-
gram of Figure 5.5 is correct are now guaranteed by the program itself.

The acquire and release invocations make the reads and writes of the shared vari-
ables p.in and p.out behave like a single-step operation. The lock set by acquire and
release ensures the test, and manipulation of the buffer is executed as one indivisible
action; thus, no undesirable interleavings and races can happen. If two threads attempt

2195�2 Virtual Links Using send, receive, and a Bounded Buffer

to execute the multistep operation between acquire and release concurrently, one
thread acquires the lock and finishes the complete multistep operation before the
other thread starts on the operation. The acquire and release primitives have the effect
of dynamically implementing the one-writer principle on those variables: they ensure
there is only a single writer at any instant, but the identity of the writer can change.

It is important to keep in mind that when a thread acquires a lock, the shared
variables that the lock is supposed to protect are not mechanically protected from
access by other threads. Any thread can still read or write those variables without
acquiring the lock. The lock variable merely acts as a flag, and for correct coordination
all threads must honor an additional convention: they must not perform operations on
shared variables unless they hold the lock. If any thread fails to honor that convention,
there may be undesirable interleavings and races.

To ensure correctness in the presence of concurrent threads, a designer must
identify all potential races and carefully insert invocations of acquire and release to
prevent them. If the locking statements don’t ensure that multistep operations on
shared variables appear as single-step operations, then the program may have a race
condition. For example, if in the send procedure of Figure 5.6 the programmer places
the acquire and release statements around just the statements on lines 11 through

1 shared structure buffer // A shared bounded buffer
2 message instance message[N] // with a maximum of N messages
3 long integer in initially 0 // Counts number of messages put in the buffer
4 long integer out initially 0 // Counts number of messages taken out of the buffer
5 lock instance buffer_lock initially UNLOCKED // Lock to order sender and receiver

6 procedure send (buffer reference p, message instance msg)
7 acquire (p.buffer_lock)
8 while p.in 2 p.out 5 N do // Wait until there is room in the buffer
9 release (p.buffer_lock) // While waiting release lock so that receive

10 acquire (p.buffer_lock) // can remove a message
11 p.message[p.in modulo N] ← msg // Put message in the buffer
12 p.in ← p.in 1 1 // Increment in
13 release (p.buffer_lock)

14 procedure receive (buffer reference p)
15 acquire (p.buffer_lock)
16 while p.in 5 p.out do // Wait until there is a message to receive
17 release (p.buffer_lock) // While waiting release lock so that send

18 acquire (p.buffer_lock) // can add a message
19 msg ← p.message[p.out modulo N] // Copy item out of buffer
20 p.out ← p.out 1 1 // Increment out
21 release (p.buffer_lock)
22 return msg

Figure 5.6

An implementation of send and receive that adds locks so that there can be multiple senders and
receivers. The release and acquire on lines 9 and 10 are explained in Section 5.25.

220 CHAPTER 5 Enforcing Modularity with Virtualization

12, then several race conditions may happen. If the lock doesn’t protect the test of
whether there’s space in the buffer (line 8), a buffer with only one space free could be
appended to by multiple concurrent invocations to send. Also, before-or-after atomic-
ity for in and out (assumption 5) could be violated during the comparisons of p.in with
p.out, so the race described in Section 5.2.3 could still occur. Programming with locks
requires great attention to detail. Chapter 9 [on-line] will explore schemes that allow
the designer to systematically ensure correctness for multistep operations involving
shared variables.

A lock can be used to implement before-or-after atomicity. During the time that
a thread holds a lock that protects one or more shared variables, it can perform a
multistep operation on these shared variables. Because other threads that honor the
lock protocol will not concurrently read or write any of the shared variables, from
their point of view the multiple steps of the first thread appear to happen indivisibly:
before the lock is acquired, none of the steps have occurred; after the lock is released
all of them are complete. Any operation by a concurrent thread must happen either
completely before or completely after the before-or-after atomic action.

The need for before-or-after atomicity has been realized in different contexts,
and as a result that concept and before-or-after atomic actions are known by vari-
ous names. The database literature uses the terms isolation and isolated actions;
the operating system literature uses the terms mutual exclusion and critical sec-
tions; and the computer architecture literature uses the terms atomicity and atomic
actions. Because Chapter 9 [on-line] introduces a second kind of atomicity, this text
uses the qualified term “before-or-after atomicity” for precision as well as for its self-
defining and mnemonic features.

In general, in the computer science community, a tremendous amount of work has
been done on approaches to finding race conditions in programs and on approaches
to avoid them in the first place. This text introduces the fundamental ideas in concur-
rent programming, but the interested reader is encouraged to explore the literature
to learn more.

The usual implementation of acquire and release guarantees that only a single
thread can acquire a given lock at any one time. This requirement is called the single-
acquire protocol. If the programmer knows more details about how the protected
shared variables will be used, a more relaxed protocol may be able to allow more con-
currency. For example, Section 9.5.4 describes a multiple-reader, single-writer locking
protocol.

In larger programs with many shared data structures, a programmer often uses
 several locks. For example, if each of the several data structures is used by different
operations, then we might introduce a separate lock for each shared data structure. That
way, the operations that use different shared data structures can proceed concurrently.
If the program used just one lock to protect all of the data structures, then all opera-
tions would be serialized by the lock. On the other hand, using several locks raises the
complexity of understanding a program by another notch, as we will see next.

Problem sets 4 and 5 explore several possible locations for acquire and release
statements in an attempt to remove a race condition while still allowing for concur-
rent execution of some operations. Birrell’s tutorial [Suggestions for Further Reading

2215�2 Virtual Links Using send, receive, and a Bounded Buffer

5.3.1] provides a nice introduction on how to write concurrent programs with
threads and locks.

5.2.5 deadlock

A programmer must use locks with care, because it is easy to create other undesirable
situations that are as bad as race conditions. For example, using locks, a programmer
can create a deadlock, which is an undesirable interaction among a group of threads in
which each thread is waiting for some other thread in the group to make progress.

Consider two threads, A and B, that both must acquire two locks, L1 and L2, before
they can proceed with their task:

 Thread A Thread B
acquire(L1) acquire(L2)
acquire(L2) acquire(L1)

This code fragment has a race condition that results in deadlock, as shown in the
following timing diagram:

A

B

Time

ACQUIRE (L1) ACQUIRE (L2)

ACQUIRE (L1)

must wait for L1

must wait for L2

ACQUIRE (L2)

Thread A cannot make forward progress because thread B has acquired L2, and
thread B cannot make forward progress because thread A has acquired L1. The threads
are in a deadly embrace.

If we had modified the code so that both threads acquire the locks in the same
order (L1 and then L2, or vice versa), then no deadlock could have occurred. Again,
small changes in the order of statements can result in good or bad behavior.

A convenient way to represent deadlocks is using a wait-for graph. The nodes in
a wait-for graph are threads and resources such as locks. When a thread acquires a
lock, it inserts a directed edge from the lock node to the thread node. When a thread
must wait for a resource, it inserts another directed edge from the thread node to the
resource node. As an example, the race condition with threads A, B, and locks L1 and
L2 results in the following wait-for graph:

L1

L2

Thread A

Thread B

1

2

3

4

222 CHAPTER 5 Enforcing Modularity with Virtualization

When thread A acquires lock L1, it inserts arrow 1. When thread B acquires
lock L2, it inserts arrow 2. When thread A must wait for lock L2, it inserts
arrow 3. When thread B attempts to acquire lock L1 but must wait, it inserts
arrow 4. When a thread must wait, we check if the wait-for graph contains a
cycle. A cycle indicates deadlock: everyone is waiting for someone else to release
a resource. In general, if, and only if, a wait-for graph contains a cycle, then threads
are deadlocked.

When there are several locks, a good programming strategy to avoid deadlock
is to enumerate all lock usages and ensure that all threads of the program acquire
the locks in the same order. This rule will ensure there can be no cycles in the wait-
for graph and thus no deadlocks. In our example, if thread B above did acquire(L1)
before acquire (L2), the same order that thread A used, then there wouldn’t have
been a problem. In our example program, it is easy for the programmer to modify
the program to ensure that locks are acquired in the same order because the acquire
statements are shown next to each other and there are only two locks. In a real
program, however, the four acquire statements may be buried deep inside two sepa-
rate modules that threads A and B happen to call indirectly in different orders, and
ensuring that all locks are acquired in a static global order requires careful thinking
and design.

A deadlock doesn’t always have to involve multiple locks. For example, if the
sender forgets to release and acquire the lock on lines 9 and 10 of Figure 5.6, then
a deadlock is also possible. If the buffer is full, the receiver will not get a chance to
remove a message from the buffer because it cannot acquire the lock, which is being
held by the sender. In this case, the sender is waiting on the receiver to change the
value of p.out (in a wait-for graph, the resource is buffer space represented by the
value of p.out), and the receiver is waiting on the sender to release the lock. Simple
programming errors can lead to deadlocks.

A problem related to deadlock is livelock—an interaction among a group of
threads in which each thread is repeatedly performing some operations but is never
able to complete the whole sequence of operations. An example of livelock is given in
Sidebar 5.2, which presents an algorithm to implement acquire and release.

5.2.6 implementing acquire and release

A correct implementation of acquire and release must enforce the single-acquire
protocol. Several threads may attempt to acquire the lock at the same time, but
only one should succeed. This requirement makes the implementation of locks
challenging. In essence, we must make sure that acquire itself is a before-or-after
action.

To see what goes wrong if acquire is not a before-or-after action, consider the
 too-simple implementation of acquire as shown in Figure 5.7. This implementa-
tion is broken because it has a race condition. If two threads labeled A and B call

2235�2 Virtual Links Using send, receive, and a Bounded Buffer

faulty_acquire at the same time, the threads may execute the statements in the order
A5, B5, A6, B6, which corresponds to the following timing diagram:

A

B

Time

L is UNLOCKED lock L

L is UNLOCKED lock L

5 6

5 6

The result of this sequence of events is that both threads acquire the lock, which
violates the single-acquire protocol.

The faulty acquire has a multistep operation on a shared variable (the lock), and
we must ensure in some way that acquire itself is a before-or-after action. Once
acquire is a before-or-after action, we can use it to turn arbitrary multistep operations
on shared variables into before-or-after actions. This reduction is an example of a
technique called bootstrapping, which resembles an inductive proof. Bootstrapping
means that we look for a systematic way to reduce a general problem (e.g., making
multistep operations on shared variables before-or-after actions) to some much-nar-
rower particular version of the same problem (e.g., making an operation on a single
shared lock a before-or-after action). We then solve the narrow problem using some
specialized method that might work for only that case because it takes advantage of
the specific situation. The general solution then consists of two parts: a method for
solving the special case and a method for reducing the general problem to the special
case. In the case of acquire, the solution for the specific problem is either building
a special hardware instruction that is itself a before-or-after action or programming
very carefully.

1 structure lock
2 integer state
3
4 procedure faulty_acquire (lock reference L)
5 while L.state 5 locked do nothing // spin until L is unlocked

6 L.state ← locked // the while test failed, got the lock
7
8 procedure release (lock reference L)
9 L.state ← unlocked

Figure 5.7

Incorrect implementation of acquire. locked and unlocked are constants that have different
values; for example, locked is 1 and unlocked is 0.

224 CHAPTER 5 Enforcing Modularity with Virtualization

We first look at a solution involving a special instruction, Read and Set Memory
(rsm). rsm performs the statements in the block do atomic as a before-or-after
action:

 1 procedure rsm (reference mem) // rsm memory location mem
 2 do atomic
 3 r ← mem // Load value stored at mem into r
 4 mem ← locked // Store locked into memory location mem
 5 return r

Most modern computers implement some version of the rsm procedure in hard-
ware, as an extension to the memory abstraction. rsm is then often called test-and-set;
see Sidebar 5.1. For the rsm instruction to be a before-or-after action, the bus arbiter
that controls the bus connecting the processors to the memory must guarantee that
the load (line 3) and store (line 4) instruction execute as before-or-after actions—for
example, by allowing the processor to read a value from a memory location and to
write a new value into that same location in a single bus cycle. We have thus pushed
the problem of providing a before-or-after action down to the bus arbiter, a piece
of hardware whose precise function is turning bus operations into before-or-after

Sidebar 5.1 rsm, Test-and-Set, and Avoiding Locks rsm is often called “test-and-
set” or “test-and-set-locked” for accidental reasons. An early version of the instruction
tested the lock and performed the store only if the test showed that the lock was
not set. The instruction also set a bit that the software could test to find out whether
or not the lock had been set. Using this instruction, one can implement the body of
acquire as follows:

while test_and_set (L) 5 locked do nothing

This version appears to be shorter than the one shown in Figure 5.8, but the hardware
performs a test that is redundant. Thus, later hardware designers removed the test
from test-and-set, but the name stuck.

In addition to rsm, there are many other instructions, including “test-and-test-and-set”
(which allows for a more efficient implementation of a spin lock) and compare_and_
swap (v1, m, v2) (which compares, in a before-or-after action the content of a memory
location m to the value v1 and, if they are the same, stores v2 in m). The “compare-
and-swap” instruction can be used, for example, to implement a linked list in which
threads can insert elements concurrently without having to use locks, avoiding the
risk of spinning until other threads have completed their insert [see Suggestions for
Further Reading 5.5.8 and 5.5.9]. Such implementations are called non-blocking.

The Linux kernel uses yet another form of coordination that avoids locks. It is called
read-copy update and is tailored to data structures that are mostly read and infre-
quently updated [see Suggestions for Further Reading 5.5.7].

2255�2 Virtual Links Using send, receive, and a Bounded Buffer

actions: the arbiter guarantees that if two requests arrive at the same time, one of
those requests is executed completely before the other begins.

Using the rsm instruction, we can implement any other before-or-after action. It is
the one essential before-or-after action from which we can bootstrap any other set of
before-or-after actions. Using rsm, we can implement acquire and release as shown in
Figure 5.8. This implementation follows the single-acquire protocol: if L is locked, then
one thread has the lock L; if L contains unlocked, then no thread has acquired the lock L.

To see that the implementation is correct, let’s assume that L is unlocked. If some
thread calls acquire (L), then after rsm, L is locked and r1 contains unlocked, so that
thread has acquired the lock. The next thread that calls acquire (L) sees locked in r1
after the rsm instruction, signaling that some other thread holds the lock. The thread
that tried to acquire will spin until r1 contains unlocked. When releasing a lock, no
test is needed, so an ordinary store instruction can do the job without creating a race
condition.

This implementation assumes that the shared memory provides read/write coher-
ence. For example, if a manager thread sets L to unlocked on line 7, then we assume
that the thread observes that store and falls out of the spinning loop on line 3 in
acquire. Some memories provide more relaxed semantics than read/write coherence;
in that case, additional mechanisms are needed to make this program work correctly.

With this implementation, even a single thread can deadlock itself by calling
acquire twice on the same lock. With the first call to acquire, the thread obtains the
lock. With the second call to acquire the thread deadlocks, since some thread (itself)
already holds the lock. By storing the thread identifier of the lock’s owner in L (instead
of true or false), acquire could check for this problem and return an error.

Problem set 6 explores concurrency issues using a set-and-get remote procedure
call, which executes as a before-or-after action.

5.2.7 implementing a before-or-after action using
the One-writer principle

The rsm instruction can also be implemented without extending the memory
abstraction. In fact, one can implement rsm as a procedure in software using ordi-
nary load and store instructions, but such implementations are complex. The key

1 procedure acquire (lock reference L)
2 r1 ← rsm (L.state) // read and set lock L
3 while r1 5 locked do // was it already locked?
4 r1 ← rsm(L.state) // yes, do it again, till we see it wasn’t
5
6 procedure release (lock reference L)
7 L.state ← unlocked

Figure 5.8

acquire and release using rsm.

226 CHAPTER 5 Enforcing Modularity with Virtualization

Sidebar 5.2 Constructing a Before-or-After Action Without Special Instructions
In 1959, E. Dijkstra, a well-known Dutch programmer and researcher, posed to his col-
leagues the problem of providing a before-or-after action with ordinary read and write
instructions as an amusing puzzle. Th. J. Dekker provided a solution for two threads, and
Dijkstra generalized the idea into a solution for an arbitrary number of threads [Suggestions
for Further Reading 5.5.2]. Subsequently, numerous researchers have looked for provable,
efficient solutions. We present a simple implementation of rsm based on L. Lamport’s
solution. Lamport’s solution, like other solutions, relies on the existence of a bus arbiter
that guarantees that any single load or store is a before-or-after action with respect to
every other load and store. Given this assumption, rsm can be implemented as follows:

shared boolean flag[N] // one boolean per thread

1 procedure rsm (lock reference L) // set lock L and return old value
2 do forever // me is my index in flag
3 flag[me] ← true // warn other threads
4 if anyone_else_interested (me) then // is another thread warning us?
5 flag[me] ← false // yes, reset my warning, try again
6 else
7 R ← L.state // set R to value of lock
8 L.state ← locked // and set the lock
9 flag[me] ← false

10 return R
11
12 procedure anyone_else_interested (me) // is another thread updating L?
13 for i from 0 to N–1 do
14 if i ≠ me and flag[i] 5 true then return true

15 return false

To guarantee that rsm is indeed a before-or-after action, we need to assume that each
entry of the shared array is in its own memory cell, that the memory provides read/
write coherence for memory cells, and that the instructions execute in program order,
as we did for the sender and receiver in Figure 5.5.

Under these assumptions, rsm ensures that the shared variable L is never written by
two threads at the same time. Each thread has a unique number, me. Before me is
allowed to write L, it must express its interest in writing L by setting me’s entry in the
boolean array flag (line 3) and check that no other thread is interested in writing L
(line 4). If no other thread has expressed interest, then me acquires L (line 8).

If two threads A and B call rsm at the same time, either A or B may acquire L, or both
may retry, depending on how the shared memory system orders the accesses of A and
B to the flag[i] array. There are three cases:

1. A sets flag[A], calls anyone_else_interested, and reads flags at least as far as flag[B]
before B sets flag[B]. In this case, A sees no other flags set and proceeds to acquire L;

(Sidebar continues)

2275�2 Virtual Links Using send, receive, and a Bounded Buffer

problem that our implementation without rsm of acquire has is that several threads
are attempting to modify the same shared variable (L in our example). For two
threads to read L concurrently is fine (the bus arbiter ensures that loads are before-
or-after actions, and both threads will read the same value), but reading and modify-
ing L is a multistep operation that must be performed as a before-or-after action. If
not, this multistep operation can lead to a race condition in which the outcome may
be a violation of the single-acquire protocol. This observation suggests an approach
to implementing rsm based on the one-writer principle: ensure that only one thread
modifies L.

Sidebar 5.2 describes a software solution that follows that approach. This software
solution is complex compared to the hardware implementation of rsm. To ensure that
only one thread writes L, the software solution requires an array with one entry per
thread. Such an array must be allocated for each lock. Moreover, the number of mem-
ory accesses to acquire a lock is linear in the number of threads. Also, if threads are
created dynamically, the software solution requires a more complex data structure
than an array. Between the need for efficiency and the requirement for an array of
unpredictable size, designers generally implement rsm as a hardware instruction that
invokes a special bus cycle.

B discovers A’s flag and tries again. On its next try, B encounters no flags, but by the
time B writes locked to L, L is already set to locked, so B’s write will have no effect.

2. B sets flag[B], calls anyone_else_interested, and reads flags at least as far as flag[A]
before A sets flag[A]. In this case, B sees no other flags set and proceeds to acquire
L; A discovers B’s flag and tries again. On its next try, A encounters no flags, but by
the time A writes locked to L, L is already set to locked, so A’s write will have no
effect.

3. A sets flag[A] and B sets flag[B] before either of them gets far enough through
 anyone_else_interested to reach the other’s flag location. In this case, both A and B
reset their own flag[i] entries and try again. On the retry, all three cases are again
possible.

The implementation of rsm has a livelock problem because the two threads A and B
might end up in the final case (neither of them gets to update L), every time they retry.
rsm could reduce the chance of livelock by inserting a random delay before retrying, a
technique called random backoff. Chapter 7 [on-line] will refine the random backoff
idea to make it applicable to a wider range of problems.

This implementation of rsm is not the most efficient one; it is linear in the number of
threads because anyone_else_interested reads all but one element of the array flag. More
efficient versions of rsm exist, but even the best implementation [Suggestions for Fur-
ther Reading 5.5.3] requires two loads and five stores (if there is no contention for L),
which can be proven to be optimal under the given assumptions.

228 CHAPTER 5 Enforcing Modularity with Virtualization

If one follows the one-writer principle carefully, one can write programs without
locks (for example, as in Figure 5.5). This approach without locks can improve a pro-
gram’s performance because the expense of locks is avoided, but eliminating locks
makes it more difficult to reason about the correctness.

The designers of the computer system for the space shuttle used many threads
sharing many variables, and they deployed a systematic design approach to encourage
a correct implementation. Designed in the late 1970s and early 1980s, the computers
of the space shuttle were not efficient enough to follow the principled way of pro-
tecting all shared variables using locks. Understanding the risks of sharing variables
among concurrent threads, however, the designers followed a rule that the program
declaration for each unprotected shared variable must be accompanied by a com-
ment, known as an alibi, explaining why no race conditions can occur even though
that variable is unprotected. At each new release of the software, a team of engineers
inspects all alibis and checks whether they still hold. Although this method has a high
verification overhead, it helps discover many race conditions that otherwise might go
undetected until too late. The use of alibis is an example of design for iteration.

5.2.8 Coordination between synchronous islands
with asynchronous Connections

As has been seen in this chapter, all implementations of before-or-after actions rely
on bootstrapping from a properly functioning hardware arbiter. This reliance should
catch the attention of hardware designers, who are aware that under certain condi-
tions, it can be problematic (indeed, theoretically impossible) to implement a perfect
arbiter. This section explains why and how hardware designers deal with this prob-
lem in practice. System designers need to be aware of how arbiters can fail, so that
they know what questions to ask the designer of the hardware on which they rely.

The problem arises at the interface between asynchronous and synchronous
components, when an arbiter that provides input to a synchronous subsystem is
asked to choose between two asynchronous but closely spaced input signals. An
 asynchronous-input arbiter can enter a metastable state, with an output value some-
where between its two correct values or possibly oscillating between them at a high
rate.* After applying asynchronous signals to an arbiter, one must therefore wait for
the arbiter’s output to settle. Although the probability that the output of the arbiter
has not settled falls exponentially fast, for any given delay time some chance always
remains that the arbiter has not settled yet, and a sample of its output may find it still
changing. By waiting longer, one can reduce the probability of it not having settled
to as small a figure as necessary for any particular application, but it is impossible to
drive it to zero within a fixed time. Thus if the component that acquires the output of
the arbiter is synchronous, when its clock ticks there is a chance that the component’s

*Our colleague Andreas Reuter points out that the possibility that an arbiter may enter a metastable
state has been of concern since antiquity: “How long halt ye between two opinions”?—1 Kings
18:21.

2295�2 Virtual Links Using send, receive, and a Bounded Buffer

input (that is, the arbiter’s output) is not ready. When that happens, the component
may behave unpredictably, launching a chain of failure. Although the arbiter itself will
certainly come to a decision at some point, not doing so before the clock ticks is
known as arbiter failure.

Arbiter failure can be avoided in several ways:

Synchronize the clocks of the two components. If the two processors, the arbi- ■

ter, and the memory all operate with a common clock (more precisely, all of
their interfaces are synchronous), arbiter design becomes straightforward. This
technique is used, for example, to arbitrate access within some chips that have
several processors.

Design arbiters with multiple stages. Multiple stages do not eliminate the pos- ■

sibility of arbiter failure, but each additional stage multiplicatively reduces the
probability of failure. The strategy is to provide enough stages that the probabil-
ity of failure is so low that it can be neglected. With current technology, two or
three stages are usually sufficient, and this technique is used in most interfaces
between asynchronous and synchronous devices.

Stop the clock of the synchronous component (thus effectively making it asyn- ■

chronous) and wait for the arbiter’s output to settle before restarting. In mod-
ern high-performance systems, clock distribution requires continuous ticks to
 provide signals for correcting phase errors, so one does not often encounter this
technique in practice.

Make all components asynchronous. The component that takes the output of ■

the arbiter then simply waits until the arbiter reports that it has settled. A flurry
of interest in asynchronous circuit design arose in the 1970s, but synchronous
circuits proved to be easier to design and so won out. However, as clock speeds
increase to the point that it is difficult to distribute clock even across a single
chip, interest is reawakening.

Communication across a network link is nearly always asynchronous, communi-
cation between devices in the same box (for example, between a disk drive and a
 processor) is usually asynchronous, and as mentioned in the last bullet above, as advanc-
ing technology reduces gate delays, it is becoming challenging to maintain a common,
fast-enough clock all the way across even a single chip. Thus, within-chip intercom-
munication is becoming more network-like, with synchronous islands connected by
asynchronous links (see, for example, Suggestions for Further Reading 1.6.3).

As pointed out, arbiter failure is an issue only at the boundary between synchro-
nous and asynchronous components. Over the years, that boundary has moved
with changing technology. The authors are not aware of any current implementa-
tions of rsm () or their equivalents that cross a synchronous/asynchronous bound-
ary (in other words, current multiprocessor practice is to use the method of the
first bullet above). Thus, before-or-after atomicity based on rsm () is not at risk of
arbiter failure. But that was not true in the past, and it may not be true again at

230 CHAPTER 5 Enforcing Modularity with Virtualization

some point in the future. The system designer thus needs to be aware of where
arbiters are being used and verify that they are specified appropriately for the
application.

5.3 enFOrCing mOdularity in memOry
The implementation of bounded buffers took advantage of the fact that all threads
share the same physical memory (see Figure 5.4 on page 209), but sharing memory
does not enforce modularity well. A program may calculate a shared address incor-
rectly and write to a memory location that logically belongs to another module. To
enforce modularity, we must ensure that the threads of one module cannot overwrite
the data of another module. This section introduces domains and a memory manager to
enforce memory boundaries, assuming that the address space is very large (i.e., so large
that we can consider it unlimited). In Section 5.4, we will remove that assumption.

5.3.1 enforcing modularity with domains

To contain the memory references of a thread, we restrict the thread’s references
to a domain, a contiguous range of memory addresses. When a programmer calls
 allocate_thread, the programmer specifies a domain in which the thread is to run. The
thread manager records a thread’s domain.

To enforce the rule that a thread should refer only to memory within its domain,
we add a domain register to each processor and introduce a special interpreter, a
memory manager, that is typically implemented in hardware and placed between
a processor and the bus (see Figure 5.9). A processor’s domain register contains the

Processor

Memory
manager

Low High

Domain register

Memory

0

264 � 1

Bus

Editor

Mail reader

Keyboard
manager

Window service

File service

Unused

1000

1000

3000

Editor thread

3000

Figure 5.9

An editor thread running with its domain.

2315�3 Enforcing Modularity in Memory

lowest (low) and highest address (high) that the currently running thread is allowed to
use. allocate_thread loads the processor’s domain register with the thread’s domain.

The memory manager checks for each memory reference that the address is equal
or higher than low and smaller than high. If it is, the memory manager issues the cor-
responding bus request. If not, it interrupts the processor, signaling a memory refer-
ence exception. The exception handler can then decide what to do. One option is to
deliver an error message and destroy the thread.

This design ensures that a thread can make references only to addresses that are in
its domain. Threads cannot overwrite or jump to memory locations of other threads.

This domain design achieves the main goal, but it lacks a number of desirable
features:

1. A thread may need more than one domain. By using many domains, threads
can control what memory they share and what memory they keep private. For
example, a thread might allocate a domain for a bounded buffer and share that
domain with another thread, but allocate private domains for the text of its
program and private data structures.

2. A thread should be unable to change its own domain. That is, we must ensure
that the thread cannot change the content of its processor’s domain register
directly or indirectly. If a thread can change the content of its processor’s domain
register, then the thread can make references to addresses that it shouldn’t.

The rest of Section 5.3 adds these features.

5.3.2 Controlled sharing using several domains

To allow for sharing, we extend the design to allow each thread to have several
domains and give each processor several domain registers, for the moment, as many
as a thread needs. Now a designer can partition the memory of the programs shown
in Figure 5.9 and control sharing. For example, a designer may split a client into four
separate domains (see Figure 5.10): one domain containing the program text for the
client thread, one domain containing the data for the client, one domain containing
the stack of the client thread, and one domain containing the bounded message buf-
fer. The designer may split a service in the same way. This setup allows both threads
to use the shared bounded buffer domain, but restricts the other references of the
threads to their private domains.

To manage this hardware design, we introduce a software component to the mem-
ory manager, which provides the following interface:

 ■ base_address ← allocate_domain (size): Allocate a new domain of size bytes and
return the base address of the domain.

 ■ map_domain (base_address): Add the domain starting at address base_address to the
calling thread’s domains.

232 CHAPTER 5 Enforcing Modularity with Virtualization

The memory manager can implement this interface by keeping a list of memory regions
that are not in use, allocate size bytes of memory on an allocate_domain request, and
maintain a domain table with allocated domains. An entry in the domain table records
the base_address and size.

map_domain loads the domain’s bounds from the domain table into a domain regis-
ter of the thread’s processor. If two or more threads map a domain, then that domain
is shared among those threads.

We can improve the control mechanism by extending each domain register to
record access permissions. In a typical design, a domain register might include three
bits, which separately control permission to read, write, or execute (i.e., retrieve and
use as an instruction) any of the bytes in the associated domain.

With these permissions, the designer can give the threads in Figure 5.10 execute
and read permissions to their text domains, and read and write permissions to their
stack domains and the shared bounded buffer domain. This setup prevents a thread
from taking instructions from its stack, which can help catch programming mistakes
and also help avoid buffer overrun attacks (see Sidebar 11.4 [on-line]). Giving the
 program text only read and execute permissions helps avoid the mistake of acciden-
tally writing data into the text of the program.

The permissions also allow more controlled sharing: one thread can have access
to a shared domain with only read permission, whereas another thread can have read
and write permissions.

To provide permissions, we modify the map_domain call as follows:

 ■ map_domain (base_address, permission): loads the domain’s bounds from the domain
table into one of the calling thread’s domain registers with permission permission.

To check permissions, the memory manager must know which permissions are
needed for each memory reference. A load instruction requires read permission for
its address, and thus the memory manager must check that the address is in a domain
with read access. A store instruction requires write permission for its address, and

Service’s text

Service’s data

Client’s text

Client’s data

Shared bounded
buffer

Client
thread

Server
thread

Service’s stack

Client’s stack

Figure 5.10

A client and service, each with three private domains and one shared domain.

2335�3 Enforcing Modularity in Memory

thus the memory manager must check that the address is in a domain with write
access. To execute an instruction at the address in the pc requires execute permis-
sion. The domain holding instructions may also require read permission because the
program may have stored constants in the program text.

The pseudocode in Figure 5.11 details the check performed by the memory man-
ager. Although we describe the function of the memory manager using pseudocode, in
practice the memory manager is a hardware device that implements its function in digi-
tal circuitry. In addition, the memory manager is typically integrated with the processor
so that the address checks run at the speed of the processor. As Section 5.3 develops, we
will add more functions to the memory manager, some of which may be implemented in
software as part of the operating system. Later, in Section 5.4.4, we discuss the trade-offs
involved in implementing parts of the memory manager in software.

As shown in the figure, on a memory reference, the memory manager checks all
the processor’s domain registers. For each domain register, the memory manager calls
check_domain, which takes three arguments: the address the processor requested, a
bit mask with the permissions needed by the current instruction, and the domain
register. If address falls between low and high of the domain and if the permissions
needed are a subset of permissions authorized for the domain, then check_domain
returns true and the memory manager will issue the desired bus request. If address
falls between low and high of the domain but the permissions needed aren’t sufficient,
then check_domain interrupts the processor, indicating a memory reference exception
as before. Now, however, it is useful to demultiplex the memory reference exception
in two different categories: illegal memory reference exception and permission error
exception. If address doesn’t fall in any domain, the exception handler indicates an
illegal memory reference exception. If the address falls in a domain, but the threads
didn’t have sufficient permissions, the exception handler indicates a permission error
exception.

1 procedure lookup_and_check (integer address, perm_needed)
2 for each domain do // for each domain register of this processor
3 if check_domain (address, perm_needed, domain) return domain
4 signal memory_exception
5
6 procedure check_domain (integer address, perm_needed, domain) returns boolean
7 if domain.low address and address domain.high then
8 if permitted (perm_needed, domain.permission) then return true

9 else signal permission_exception
10 return false

11
12 procedure permitted (perm_needed, perm_authorized) returns boolean
13 if perm_needed perm_authorized then return true // is perm_needed a subset?
14 else return false // permission violation

Figure 5.11

The memory manager’s pseudocode for looking up an address and checking permissions.

234 CHAPTER 5 Enforcing Modularity with Virtualization

The demultiplexing of memory reference exceptions can be implemented either
in hardware or software. If implemented in hardware, the memory manager signals an
illegal memory reference exception or a permission error exception to the processor.
If implemented in software, the memory manager signals a memory reference excep-
tion, and the exception handler for memory reference exceptions demultiplexes it by
calling either the illegal memory reference exception handler or the permission error
exception handler. As we will see in Chapter 6 (see Section 6.2.2), we will want to
refine the categories of memory exceptions further. In processors in the field, some of
the demultiplexing is implemented in hardware with further demultiplexing imple-
mented in software in the exception handler.

In practice, only a subset of the possible combinations of permissions are use-
ful. The ones used are: read permission, read and write permissions, read and execute
permissions, and read, write, and execute permissions. The read, write, and execute
 combination of permissions might be used for a domain that contains a program that
generates instructions and then jumps to the generated instructions, so-called self-
modifying programs. Supporting self-modifying programs is risky, however, because
this also allows an adversary to write a new procedure as data into a domain (e.g., using
a buffer overrun attack) and then execute that procedure. In practice, self-modifying
programs have proven to be more trouble than they are worth, except to system
crackers. A domain with only execute permission or with just write and execute permis-
sions isn’t useful in practice.

If memory-mapped I/O (described in Section 2.3.1) is used, then domain registers
can also control which devices a thread can use. For example, a keyboard manager
thread may have access to a domain that corresponds to the registers of the keyboard
controller. If none of the other threads has access to this domain, then only the key-
board manager thread has access to the keyboard device. Thus, the same technique
that controls separation of memory ranges can also control access to devices.

The memory manager can implement security policies because it controls which
threads have access to which parts of memory. It can deny or grant a thread’s request
for allocating a new domain or for sharing an existing domain. In the same way, it can
control which threads have access to which devices. How to implement such security
policies is the topic of Chapter 11 [on-line].

5.3.3 more enforced modularity with kernel and user mode

Domain registers restrict the addresses to which a thread can make reference, but we
must also ensure that a thread cannot change its domains. That is, we need a mecha-
nism to control changes to the low, high, and permission fields of a domain register. To
complete the enforcement of domains, we modify the processor to prevent threads
from overwriting the content of domain registers as follows:

Add one bit to the processor indicating whether the processor is in ■ kernel mode
or user mode, and modify the processor as follows. Instructions can change the
value of the processor’s domain registers only in kernel mode, and instructions

2355�3 Enforcing Modularity in Memory

that attempt to change the domain register in user mode generate an illegal
instruction exception. Similarly, instructions can change the mode bit only in
kernel mode.

Extend the set of permissions for a domain to include ■ kernel-only, and modify
the processor to make it illegal for threads in user mode to reference addresses
in a domain with kernel-only permission. A thread in user mode that attempts
to read or write memory with kernel-only permission causes a permission error
exception.

Switch to kernel mode on an interrupt and on an exception so that the handler ■

can process the interrupt (or exception) and invoke privileged instructions.

We can use the mechanisms as illustrated in Figure 5.12. Compared to Figure 5.10,
each thread has two additional domains, which are marked k for kernel-only. A thread
must be in kernel mode to be able to make references to this domain. This domain
contains the program text and data for the memory manager. These mechanisms ensure
that a thread running in user mode cannot change its processor’s domain registers; only
when a thread executes in kernel mode can it change the processor domain registers.
Furthermore, because the memory manager and its table are in kernel domains, a thread
in user mode cannot change its domain information. We see that the kernel/user mode
bit helps in enforcing modularity by restricting what threads in user mode can do.

5.3.4 gates and Changing modes

Because threads running in user mode cannot invoke procedures of the memory man-
ager directly, a thread must have a way of changing from user mode to kernel mode
and entering the memory manager in a controlled manner. If a thread could enter at
an arbitrary address, it might create problems; for example, if a thread could enter a

Service’s text

Client’s text

Client’s data

Shared bounded
buffer

Service
thread

Client
thread

Memory manager

Domain table

Client’s stack

Service’s data
Service’s stack

KXRKXR

RW

XR

XR

RW

RW RW

KRWKRW

RW

RW

Figure 5.12

Threads with a kernel domain containing the memory manager and its domain table.

236 CHAPTER 5 Enforcing Modularity with Virtualization

domain with kernel permission at the instruction that sets the user-mode bit to kernel,
it might be able to gain control of the processor with kernel privileges. To avoid this
problem, a thread may enter a kernel domain only at certain addresses, called gates.

We implement gates by adding one more special instruction to the processor,
the supervisor call instruction (svc), which specifies in a register the name for the
intended gate. Upon executing the svc instruction, the processor performs two opera-
tions as one action:

1. Change the processor mode from user to kernel.
2. Set the pc to an address predefined by the hardware, the entry point of the gate

manager.

The gate manager now has control in kernel mode; it can call the appropriate pro-
cedures to serve the thread’s request. Typically, gate names are numbers, and the gate
manager has a table that records for each gate number the corresponding procedure.
For example, the table might map gate 0 to allocate_domain, gate 1 to map_domain, gate
2 to allocate_thread, and so on.

Implementing svc has a slight complication: the steps to enter the kernel must
happen as a before-or-after action: they must all be executed without interruption.
If the processor can be interrupted in the middle of these steps, a thread might end
up in kernel mode but with the program counter still pointing to an address in one
of its user-level domains. Now the thread is executing instructions from an applica-
tion module in kernel mode. To avoid this potential problem, processors complete all
steps of an svc instructions before executing another instruction.

When the thread wants to return to user mode, it executes the following
instructions:

1. Change mode from kernel to user.
2. Load the program counter from the top of the stack into the processor’s pc.

Processors don’t have to perform these steps as a before-or-after action. After
step 1, it is fine for a processor to return to kernel mode, for example, to process an
outstanding interrupt.

The return sequence assumes that a thread has pushed the return address on its
stack before invoking svc. If the thread hasn’t done so, then the worst that can happen
when the thread returns to user mode is that it resumes at some arbitrary address,
which might cause the thread to fail (as with many other programming errors), but it
cannot create a problem for a domain with kernel-only permission because the thread
cannot refer to that domain in user mode.

The difference between entering and leaving kernel mode is that on leaving, the
value loaded in the program counter isn’t a predefined value. Instead, the kernel sets
it to the saved address.

Gates can also be used to handle interrupts and exceptions. If the processor encoun-
ters an interrupt, the processor enters a special gate for interrupts and the gate manager
dispatches the interrupt to the appropriate handler, based on the source of the interrupt
(clock interrupt, permission error, illegal memory reference, divide by zero, etc.). Some

2375�3 Enforcing Modularity in Memory

processors have a different gate for errors caused by exceptions (e.g., a permission
error); others have one gate for interrupts (e.g., clock interrupt) and exceptions.

Problem set 9 explores in a minimal operating system the interactions between
hardware and software for setting modes and handling interrupts.

5.3.5 enforcing modularity for bounded buffers

The implementation of send and receive in Figure 5.6 assumes that the sending and
receiving threads share the bounded buffer, using, for example, a shared domain, as
shown in Figure 5.12. This setup enforces a boundary between all domains of the
threads, except for the domain containing the shared buffer. A thread can modify
the shared buffer accidentally because both threads have write permissions to the
shared domain. Thus, an error in one thread could indirectly affect the other thread;
we would like to avoid that and enforce modularity for the bounded buffer.

We can protect the shared bounded buffer, too, by putting the buffer in a shared
kernel domain (see Figure 5.13). Now the threads cannot directly write the shared
buffer in user mode. The threads must transition to kernel mode to copy messages
into the shared buffer. In this design, send and receive are supervisor calls. When a
thread invokes send, it changes to kernel mode and copies the message from the send-
ing thread’s domain into the shared buffer. When the receiving thread invokes receive,
it changes to kernel mode and copies a message from the shared buffer into the
receiving’s domain. As long as the program that is running in kernel mode is written
carefully, this design provides stronger enforced modularity because threads in user
mode have no direct access to a bounded buffer’s messages.

This stronger enforced modularity comes at a performance cost for performing
supervisor calls for send and receive. This cost can be significant because transitions
between user mode and kernel mode can be expensive. The reason is that a processor
typically maintains state in its pipeline and a cache as a speedup mechanism. This state

Text service

Data
service

Text client

Data client

Shared bounded
buffer

Client
thread

Service
thread

Memory manager

Domain table

KXR

RW

XR

KRW

KXR

XR

RW

KRW

KRWKRW

Figure 5.13

Threads with a kernel domain containing the shared buffer, the memory manager, and the
 domain table.

238 CHAPTER 5 Enforcing Modularity with Virtualization

Text
editor

Login
service

Kernel

Memory File service

Network service Window service

Figure 5.14

Monolithic organization: the kernel implements the operating system.

may have to be flushed or invalidated on a user-kernel mode transition because other-
wise the processor may execute instructions that are still in the pipeline incorrectly.

Researchers have come up with techniques to reduce the performance cost by
optimizing the kernel code paths for the send and receive supervisor calls, by having
a combined call that sends and receives, by cleverly setting up domains to avoid the
cost of copying large messages, by passing small arguments through processor reg-
isters, by choosing a suitable layout of data structures that reduces the cost of user-
kernel mode transitions, and so on [Suggestions for Further Reading 6.2.1, 6.2.2, and
6.2.3]. Problem set 7 illustrates a lightweight remote procedure call implementation.

5.3.6 the kernel

The collection of modules running in kernel mode is usually called the kernel pro-
gram, or kernel for short. A question that arises is how the kernel and the first domain
come into existence. Sidebar 5.3 details how a processor starts in kernel mode with
domain checking disabled, how the kernel can then bootstrap the first domain, and
how the kernel can create user-level domains.

The kernel is a trusted intermediary because it is the only program that can
execute privileged instructions (such as storing to a processor’s domain registers)
and the application modules rely on the kernel to operate correctly. Because the
kernel must be a trusted intermediary for the memory manager hardware, many
designers also make the kernel the trusted intermediary for all other shared devices,
such as the clock, display, and disk. Modules that manage these devices must then
be part of the kernel program. In this design, the window manager module, network
manager module, and file manager module run in kernel mode. This kernel design,
in which most of the operating system runs in kernel mode, is called a monolithic
kernel (see Figure 5.14).

In kernel mode, errors such as dividing by zero are fatal and halt the computer
 because these errors are typically caused by programming mistakes in the kernel
program, from which there is no easy way to recover. Since kernel errors are fatal, we
must program and structure the kernel carefully.

2395�3 Enforcing Modularity in Memory

Sidebar 5.3 Bootstrapping an Operating System When the user switches on the
power for the computer, the processor starts with all registers set to zero; thus, the
user-mode bit is off. The first instruction the processor executes is the instruction at
address 0 (the value of the pc register). Thus after a reset, the processor fetches its first
instruction from address 0.

Address 0 typically corresponds to a read-only memory (ROM). This memory con-
tains some initial code, the boot code, a rudimentary kernel program, which loads
the full kernel program from a magnetic disk. The computer manufacturer burns into
the read-only memory the boot program, after which the boot program cannot be
changed. The boot program includes a rudimentary file system, which finds the ker-
nel program (probably written by a software manufacturer) at a pre-agreed location
on disk. The boot code reads the kernel into physical memory and jumps to the first
instruction of the kernel.

Bootstrapping the kernel through a small boot program provides modularity. The
hardware and software manufacturers can develop their products independently, and
 users can change kernels, for example, to upgrade to a newer version or to use a dif-
ferent kernel vendor, without having to modify their hardware.

Sometimes there are multiple layers of booting to handle additional constraints. For
example, the first boot loader may be able to load only a single block, which can be
too small to hold the rudimentary kernel program. In such cases, the boot code may
load first an even simpler kernel program, which then loads the rudimentary kernel
program, which then loads the kernel program.

Once it is running, the kernel allocates a thread for itself. This thread allocation involves
allocating a domain for use as a stack so that it can invoke procedure calls, allowing
the rest of the kernel to be written in a high-level language. It may also allocate a few
other domains, for example, one for the domain table.

Once the kernel has initialized, it typically creates one or more threads to run non-
 kernel services. It allocates to each service one or more domains (e.g., one for pro-
gram text, one for a stack, and one for data). The kernel typically preloads some of
the domains with the program text and data of the non-kernel services. A common
solution to locating the program text and data is to assume that the first non-kernel
program, like the kernel program, is at a predefined address on the magnetic disk or
part of the data of the kernel program.

Once thread is running in user mode, it can reenter the kernel using a gate for a kernel
procedure. Using the kernel procedures, the user-level thread can create more threads,
allocate domains for these threads, and, when done, exit.

Errors by threads in user mode (e.g., dividing by zero or using an address that is not
in the thread’s domains or violates permissions) cause an exception, which changes
the processor to kernel mode. The exception handler can then clean up the thread.

240 CHAPTER 5 Enforcing Modularity with Virtualization

We would like to keep the kernel small because the number of bugs in a pro-
gram is at least proportional to the size of a program—and some even argue to the
square of the size of program. In a monolithic kernel, if the programmer of the file
manager module has made an error, the file manager module may overwrite kernel
data structures unrelated to the file system, thus causing unrelated parts of the
kernel to fail.

The microkernel architecture structures the operating system itself in a client/
service style (see Figure 5.15). By applying the idea of enforced modularity to the
operating system itself, we can avoid some of the major problems of a monolithic
organization. In the microkernel architecture, system modules run in user mode in
their own domain, as opposed to being part of a monolithic kernel. The microkernel
itself implements a minimal set of abstractions, primarily domains to contain mod-
ules, threads to run programs, and virtual communication links to allow modules to
send messages to one another. The kernel described in this chapter with its interface
shown in Table 5.1 is an example of a microkernel.

In the microkernel organization, for example, the window service module runs
in its own domain with access to the display, the file service module runs in its own
domain with access to a disk extent, and the database service runs in its own domain
with its own disk extent. Clients of the services communicate with them by invoking
remote procedure calls, whose stubs in turn invoke the send and receive supervisor
calls. An early, clean design for a microkernel is presented by Hansen [Suggestions for
Further Reading 5.1.1].

A benefit of the microkernel organization is that errors are contained within a
module, simplifying debugging. A programming error in the file service module affects
only the file service module; no other module ever has its internal data structures
unintentionally modified because of an error by the programmer of the file service
module. If the file service fails, a programmer of the file service can focus on debug-
ging the file service and rule out the other services immediately. In contrast with the
monolithic kernel approach, it is difficult to attribute an error in the kernel to a par-
ticular module because the modules aren’t isolated from each other and an error in
one module may be caused by a flaw in another module.

Text
editor

Login
service

Microkernel

Network
service

File
service

Window
service

Memory
manager

Send and
receive

Thread
manager

Figure 5.15

Microkernel organization: the operating system organized using the client/service model.

2415�3 Enforcing Modularity in Memory

In addition, if the file service fails, the database service may be able to continue
operating. Of course, if the file service module fails, its clients cannot operate, but they
may be able to invoke a recovery procedure that repairs the damage and restarts the
file service. In the monolithic kernel approach if the file service fails, the kernel usu-
ally fails too, and the entire operating system must reboot.

Few widely used operating systems implement the microkernel approach in its
purest form. In fact, most widely used operating systems today have a mostly mono-
lithic kernel. Many critical services run inside the kernel, and only a few run outside
the kernel. For example, in the GNU/Linux operating system the file and the network
service run in kernel mode, but the X Window System runs in user mode.

Monolithic operating systems dominate the field for several reasons. First, if a ser-
vice (e.g., a file service) is critical to the functioning of the operating system, it doesn’t
matter much if it fails in user mode or in kernel mode; in either case, the system is
unusable.

Second, some services are shared among many modules, and it can be easier to
implement these services as part of the kernel program, which is already shared
among all modules. For example, a cache of recently accessed file data is more effec-
tive when shared among all modules. Furthermore, this cache may need to coordinate
its memory use with the memory manager, which is typically part of the kernel.

Third, the performance of some services is critical, and the overhead of send and
receive supervisor calls may be too large to split subsystems into smaller modules and
separate each module.

Fourth, monolithic systems can enjoy the ease of debugging microkernel systems
if the monolithic kernel comes with good kernel debugging tools.

Fifth, it may be difficult to reorganize existing kernel programs. In particular, there is
little incentive to change a kernel program that already works. If the system works and
most of the errors have been eradicated, the debugging advantage of microkernels begins
to evaporate, and the cost of send and receive supervisor calls begins to dominate.

In general, if one has the choice between a working system and a better designed,
but new system, one doesn’t want to switch over to the new system unless it is much
better. One reason is the overhead of switching: learning the new design, reengineer-
ing the old system to use the new design, rediscovering undocumented assumptions,
and discovering unrealized assumptions (large systems often work for reasons that
weren’t fully understood). Another reason is the uncertainty of the gain of switch-
ing. Until there is evidence from the field, the claims about the better design are
speculative. In the case of operating systems, there is little experimental evidence that
 microkernel-based systems are more robust than existing monolithic kernels. A final
reason is that there is an opportunity cost: one can spend time reengineering exist-
ing software, or one can spend time developing the existing software to address new
needs. For these reasons, few systems have switched to a pure microkernel design.
Instead many existing systems have stayed with monolithic kernels, perhaps running
services that are not as performance critical as user-mode programs. Microkernel
designs exist in more specialized areas, and research on microkernels continues to
be active.

242 CHAPTER 5 Enforcing Modularity with Virtualization

5.4 virtualizing memOry
To address one problem at a time, the previous section assumed that memory and
its address space is very large, large enough to hold all domains. In practice, memory
and address space are limited. Thus, when a programmer invokes allocate_domain, we
would like the programmer to specify a reasonable size. To allow a program to grow
its domain if the specified size turns out to be too small, we could offer the program-
mer an additional primitive grow_domain.

Growing domains, however, creates memory management problems. For exam-
ple, assume that program A allocates domain 1 and program 2 allocates domain
2, right after domain 1. Even if there is free memory after domain 2, program A
cannot grow domain 1 because it would cross into domain 2. In this case, the only
option left for program A is to allocate a new domain of the desired size, copy the
contents of domain 1 into the new domain, change the addresses in the program
that refer to addresses in domain 1 to instead refer to corresponding addresses in
the new domain 2, and deallocate domain 1.

Domain 1

Domain 2

0

Free

This memory management complicates writing programs and can make pro-
grams slow because of the memory copies. To reduce the programming burden of
managing memory, most modern computer systems virtualize memory, a step that
provides two features:

1. Virtual addresses. If programs address memory using virtual addresses and the
memory manager translates the virtual addresses to physical addresses on the
fly, then the memory manager can grow and move domains in memory behind
the program’s back.

2. Virtual address spaces. A single address space may not be large enough to hold
all addresses of all applications at the same time. For example, a single large
database program by itself may need all the address space available in the hard-
ware. If we can create virtual address spaces, then we can give each program
its own address space. This extension also allows a thread to have its program
loaded at an address of its choosing (e.g., address 0).

2435�4 Virtualizing Memory

A memory manager that virtualizes memory is called a virtual memory manager. The
design we work out in this section replaces the domain manager but incorporates the
main features of domains: controlled sharing and permissions. We describe the virtual
memory design in two steps. For the first step, Sections 5.4.1 and 5.4.2 introduce
virtual addresses and describe an efficient way to translate them. For the second step,
Section 5.4.3 introduces virtual address spaces. Section 5.4.4 discusses the trade-offs
of software and hardware aspects of implementing a virtual memory manager. Finally,
the section concludes with an advanced virtual memory design.

5.4.1 virtualizing addresses

The virtual memory manager will deal with two types of addresses, so it is convenient
to give them names. The threads issue virtual addresses when reading and writing
to memory (see Figure 5.16). The memory manager translates each virtual address
issued by the processor into a physical address, a bus address of a location in memory
or a register on a controller of a device.

Translating addresses as they are being used provides design flexibility. One can
design computers whose physical addresses have a different width than its virtual
addresses. The memory manager can translate several virtual addresses to the same
physical address, but perhaps with different permissions. The memory manager can
allocate virtual addresses to a thread but postpone allocating physical memory until
the thread makes a reference to one of the virtual addresses.

Virtualizing addresses exploits the design principle decouple modules with
 indirection. The virtual memory manager provides a layer of indirection between
the processor and the memory system by translating the virtual addresses of pro-
gram instructions into physical addresses, instead of having the program directly issue
physical memory addresses. Because it controls the translation from the addresses
issued by the program to the addresses understood by the memory system, the vir-
tual memory manager can translate any particular virtual address to different physical
memory addresses at different times. Thanks to the translation, the virtual memory
manager can rearrange the data in the memory system without having to modify any
application program.

Processor

Virtual address Virtual
memory
manager

Physical address

Data

BusR/W/X/K READ/WRITE

Figure 5.16

A virtual memory manager translating virtual addresses to physical addresses.

244 CHAPTER 5 Enforcing Modularity with Virtualization

From a naming point of view, the virtual memory manager creates a name space
of virtual addresses on top of a name space of physical addresses. The virtual memory
manager’s naming scheme translates virtual addresses into physical addresses.

Virtual memory has many uses. In this chapter, we focus on managing physical
memory transparently. Later, in Section 6.2 of Chapter 6, we describe how virtual
memory can also be used to transparently simulate a larger memory than the com-
puter actually possesses.

To see how address translation can help memory management, consider a virtual
memory manager with a virtual address space that is very large (e.g., 264 bytes) but
with a physical address space that is smaller. Let’s assume that a thread has allocated
two domains of size 100 bytes (see Figure 5.17a). The memory manager allocated
the domains in physical memory contiguously, but in the virtual address space the
domains are far away from each other. (allocate_domain returns a virtual address.)
When a thread makes a reference to a virtual address, the virtual memory manager
translates the address to the appropriate physical address.

Now consider the thread requesting to grow domain 1 from size 8 kilobytes to,
say, 16 kilobytes. Without virtual addresses, the memory manager would deny this
request because the domain cannot grow in physical memory without running into
domain 2. With virtual addresses (see Figure 5.17b), however, the memory manager
can grow the domain in the virtual address space, allocate the requested amount of
physical memory, copy the content of domain 1 into the newly allocated physical
memory, and update its mapping for domain 1. With virtual addresses, the application
doesn’t have to be aware that the memory manager moved the contents of its domain
in order to grow it.

Even ignoring the cost of copying the content of a domain, introducing virtual
addresses comes at a cost in complexity and performance. The memory manager
must manage virtual addresses in addition to a physical address space. It must allocate

(a) (b)

2

1

2

1

Virtual Physical

0
0

2
2

1
1

Virtual Physical

0

0

Figure 5.17

(a) A thread has allocated a domain 1 and 2; they are far apart in virtual memory but next to
each other in physical memory. (b) In response to the thread’s request to grow domain 1, the
virtual memory manager transparently moved domain 1 in physical memory and adjusted the
translation from virtual to physical addresses.

2455�4 Virtualizing Memory

and deallocate them (if the virtual address space isn’t large), it must set up translations
between virtual and physical addresses, and so on. The translation happens on-the-fly,
which may slow down memory references. The rest of this section investigates these
issues and presents a plan that doesn’t even require copying the complete content of
a domain when growing the domain.

5.4.2 translating addresses using a page map

A naïve way of translating virtual addresses into physical addresses is to maintain
a map that for each virtual address records its corresponding physical address. Of
course, the amount of memory required to maintain this map would be large. If each
physical address is a word (8 bytes) and the address space has 264 virtual addresses,
then we might need 272 bytes of physical memory just to store the mapping.

A more efficient way of translation is using a page map. The page map is an array
of page map entries. Each entry translates a fixed-sized range of contiguous bytes of
virtual addresses, called a page, to a range of physical addresses, called a block, which
holds the page. For now, the memory manager maintains a single page map, so that all
threads share the single virtual address space, as before.

With this organization, we can think of the memory that threads see as a set of con-
tiguous pages. A virtual address then is a name overloaded with structure consisting
of two parts: a page number and a byte offset within that page (see Figure 5.18). The
page number uniquely identifies an entry in the page map, and thus a page, and the
byte offset identifies a byte within that page. (If the processor provides word address-
ing instead of byte addressing, offset would specify the word within a page.) The size
of a page, in bytes, is equal to the maximum number of different values that can be
stored in the byte offset field of the virtual address. If the offset field is 12 bits wide,
then a page contains 4,096 (212) bytes.

With this arrangement, the virtual memory manager records in the page map, for
each page, the block of physical memory that contains that page. We can think of a
block as the container of a page. Physical memory is then a contiguous set of blocks,
holding pages, but the pages don’t have to be contiguous in physical memory; that
is, block 0 may hold page 100, block 1 may hold page 2, and so forth. The mapping
between pages and the blocks that hold them can be arbitrary.

Processor

Virtual
memory
manager

Virtual address

Page # Byte offset

Physical address

Block # Byte offset

Data

BusR/W/X/K READ/WRITE

Figure 5.18

A virtual memory manager that translates virtual addresses by translating page numbers to block
numbers.

246 CHAPTER 5 Enforcing Modularity with Virtualization

The page map simplifies memory management because the memory manager can
allocate a block anywhere in physical memory and insert the appropriate mapping
into the page map, without having to copy domains in physical memory to coalesce
free space.

A physical address can also be viewed as having two parts: a block number that
uniquely identifies a block of memory and an offset that identifies a byte within that
block. Translating a virtual address to a physical address is now a two-step process:

1. The virtual memory manager translates the page number of the virtual address
to a block number that holds that page by means of some mapping from page
numbers to block numbers.

2. The virtual memory manager computes the physical address by concatenating
the block number with the byte offset from the original virtual address.

Several different representations are possible for the page map, each with its own
set of trade-offs for translating addresses. The simplest implementation of a page map
is an array implementation, often called a page table. It is suitable when most pages
have an associated block. Figure 5.19 demonstrates the use of a page map imple-
mented as a linear page table. The virtual memory manager resolves virtual addresses
into physical addresses by taking the page number from the virtual address and using
it as an index into the page table to find the corresponding block number. Then, the
manager computes the physical address by concatenating the byte offset with the

Page # Byte offset

Block #

Block # Byte offset

Virtual
address

Physical
address

64

1252

64

Virtual
memory
manager

Page table

0 63

52 12

Virtual

Physical

51 52

Figure 5.19

An implementation of a virtual memory manager using a page table.

2475�4 Virtualizing Memory

block number found in the page-table entry. Finally, it sends this physical address to
the physical memory.

If the page size is 212 bytes and virtual addresses are 64 bits wide, then a linear page
table is large (252 3 52 bits). Therefore, in practice, designers use a more efficient rep-
resentation of a page map, such as a two-level one or an inverted one (i.e., indexed by
physical address instead of virtual), but these designs are beyond the scope of this text.

To be able to perform the translation, the virtual memory manager must have a
way of finding and storing the page table. In the usual implementation, the page table
is stored in the same physical memory that holds the pages, and the physical address
of the base of the page map is stored in a reserved processor register, typically named
the page-map address register. To ensure that user-level threads cannot change trans-
lation directly and bypass enforced modularity, processor designs allow threads to
write the page-map address register only in kernel mode and allow only the kernel to
modify the page table directly.

Figure 5.20 shows an example of how a kernel could use the page map. The kernel
has allocated a page map in physical memory at address 0. The page map provides
modules with a contiguous universal address space, without forcing the kernel to allo-
cate blocks of memory for a domain contiguously. In this example, block 100 contains
page 12 and block 500 contains page 13. When a thread asks for a new domain or to
grow an existing domain, the kernel can allocate any unused block and insert it in the
page map. The level of indirection provided by the page map allows the kernel to do
this transparently—the running threads are unaware.

Processor

Memory

Address

Data
VM

manager

Page #

page-map
address register

0

100

200

300

400

500

12

13

READ/WRITE

Byte offset

100

500

0

Figure 5.20

A virtual memory manager using a page table. The page table is located at physical address 0.
It maps pages (e.g., 12) to blocks (e.g., 100).

248 CHAPTER 5 Enforcing Modularity with Virtualization248

5.4.3 virtual address spaces

The design so far has assumed that all threads share a single virtual address space that
is large enough that it can hold all active modules and their data. Many processors
have a virtual address space that is too small to do that. For example, many processors
use virtual addresses that are 32 bits wide and thus have only 232 addresses, which
represent 4 gigabytes of address space. This might be barely large enough to hold
the most frequently used part of a large database, leaving little room for other mod-
ules. We can eliminate this assumption by virtualizing the physical address space.

5.4.3.1 Primitives for Virtual Address Spaces
A virtual address space provides each application with the illusion that it has a com-
plete address space to itself. The virtual memory manager can implement a virtual
address space by giving each virtual address space its own page map. A memory man-
ager supporting multiple virtual address spaces may have the following interface:

 ■ id ← create_address_space (): create a new address space. This address space is
empty, meaning that none of its virtual pages are mapped to real memory. create_
address_space returns an identifier for that address space.

 ■ block ← allocate_block (): ask the memory manager for a block of memory. The
manager attempts to allocate a block that is not in use. If there are no free blocks,
the request fails. allocate_block returns the physical address of the block.

 ■ map (id, block, page_number, permission): put a block into id’s address space. map
maps the physical address block to virtual page page_number with permissions
permission. The memory manager allocates an entry in the page map for address
space id, mapping the virtual page page_number to block block, and setting the
page’s permissions to permission.

 ■ unmap (id, page_number): remove the entry for page_number from the page map so
that threads have no access to that page and its associated block. An instruction
that refers to a page that has been deleted is an illegal instruction.

 ■ free_block (block): add the block block to the list of free memory blocks.

 ■ delete_address_space (id): destroy an address space. The memory manager frees
the page map and its blocks of address space id.

Using this interface, a thread may allocate its own address space or share its address
space with other threads. When a programmer calls allocate_thread, the programmer
specifies the address space in which the thread is to run. In many operating systems,
the word “process” is used for the combination of a single virtual address space shared
by one or more threads, but not consistently (see Sidebar 5.4).

The virtual address space is a thread’s domain, and the page map defines how
it resides in physical memory. Thus the kernel doesn’t have to maintain a separate
domain table with domain registers. If a physical block doesn’t appear in an address
space’s page map, then the thread cannot make a reference to that physical block.

2495�4 Virtualizing Memory

If a physical block appears in an address space’s page map, then the thread can make
a reference to that physical block. If a physical block appears in two page maps, then
threads in both address spaces can make references to that physical block, which
allows sharing of memory.

The memory manager can support domain permissions by placing the permis-
sion bits in the page-map entries. For example, one address space may have a block
mapped with read and write permissions, while another address space has only read
permissions for that block. This design allows us to remove the domain registers,
while keeping the concept of domains.

Figure 5.21 illustrates the use of several address spaces. It depicts two threads, each
with its own address space but sharing block 800. Threads A and B have block 800
mapped at page 12. (In principle, the threads could map block 800 at different virtual

Sidebar 5.4 Process, Thread, and Address Space The operating systems com-
munity uses the word “process” often, but over the years it has come up with enough
variants on the concept that when you read or hear the word you need to guess its
meaning from its context. In the unix system (see Section 2.5), a process may mean
one thread in a private address space (as in the early version of that system), or a
group of threads in a private address space (as in later versions), or a thread (or group
of threads) in an address space that is partly or completely shared (as in later versions
of unix that also allow processes to share memory). That range of meanings is so broad
as to render the term less than useful, which is why this text uses process only in the
context of the early version of the unix system and otherwise uses only the terms
thread and address space, which are the two core concepts.

Memory

Virtual addresses

VM

manager

Block

Block

page-maps

p b

10

11

p

12

13

12

100

400

800

200

800

300 500

300

500

Virtual addresses

Thread A

Thread B

Virtual page-map
address register

Virtual page-map
address register R

P P

RW

RW

RX

RX

14 300 RW

b

Figure 5.21

Each thread has its own page-map address register. Thread A runs with the page map stored at
address 300, while B runs with the page map stored at address 500. The page map contains the
translation from page (p) to block (b), and the permissions required (P).

250 CHAPTER 5 Enforcing Modularity with Virtualization

addresses, but that complicates naming of the shared data in the block.) Thread A maps
block 800 with read permission, while thread B maps block 800 with read and write per-
missions. In addition to a shared block, each thread has two private blocks. Each thread
has a block mapped with read and execute permissions for, for example, its program text
and a block mapped with read and write permissions for, for example, its stack.

To support virtual address spaces, the page-map address register of a processor
holds the physical address of the page map of the running thread on the processor
and translation works then as follows:

1 procedure translate (integer virtual, perm_needed) returns physical_address
2 page ← virtual[0:41] // Extract page number
3 offset ← virtual[42:63] // Extract offset
4 page_table ← pmar // Use the current page table
5 perm_page ← page_table[page].permissions // Lookup permissions for page
6 if permitted (perm_needed, perm_page) then
7 block ← page_table[page].address // Index into page map
8 physical ← block 1 offset // Concatenate block and offset
9 return physical // Return physical address
10 else return error

Although usually implemented in hardware, in pseudocode form, we can view the
linear page table as an array that is indexed by a page number and that stores the cor-
responding block number. Line 2 extracts the page number, page, by extracting the
leftmost 42 bits. (As explained in Sidebar 4.3, this book uses the big-endian convention
for numbering bits and begins numbering with zero.) Then, it extracts the offset, the 12
rightmost bits of the virtual address (line 3). Line 4 reads the address from the active
page map out of pmar. Line 5 looks up the permissions for the page. If the permissions
necessary for using virtual are a subset of the permissions for the page (line 6), then
 translate looks up the corresponding block number by using page as an index into
page_table and computes the physical address by concatenating block with offset (lines 7
and 8). Now the virtual memory manager issues the bus request for the translated physi-
cal address or interrupts the processor with an illegal memory reference exception.

5.4.3.2 The Kernel and Address Spaces
There are two options for setting up page maps for the kernel program. The first
option is to have each address space include a mapping of the kernel into its address
space. For example, the top half of the address space might contain the kernel, in
which case the bottom half contains the user program. With this setup, switching
from the user program to the kernel (and vice versa) doesn’t require changing the
processor’s page-map address register; only the user-mode bit must be changed. To
protect the kernel, the kernel sets the permissions for kernel pages to kernel-only; in
user mode, performing a store to kernel pages is an illegal instruction. An additional
advantage of this design is that in kernel mode, it is easy for the kernel to read data
structures of the user program because the user program and kernel share the same
address space. A disadvantage of this design is that it reduces the available address

2515�4 Virtualizing Memory

space for user programs, which could be a problem in a legacy architecture that has
small address spaces.

The second option is for the memory manager to give the kernel its own separate
address space, which is inaccessible to user-level threads. To implement this option,
we must extend the svc instruction to switch the page-map address register to the
kernel’s page map when entering kernel mode. Similarly, when returning from kernel
mode to user mode, the kernel must change the page-map address register to the page
map of the thread that entered the gate.

The second option separates the kernel program and user programs completely,
but the memory manager, which is part of the kernel, must be able to create new
address spaces for user programs, and so on. The simple solution is to include the
page tables of all user address spaces in the kernel address space. By modifying the
page table for a user address space, the memory manager can modify that address
space. Since a page table is smaller than the address space it defines, the second
option wastes less address space than the first option.

If the kernel program and user programs have their own address spaces, the
 kernel cannot refer to data structures in user programs using kernel virtual addresses,
since those virtual addresses refer to locations in the kernel address space. User pro-
grams must pass arguments to supervisor calls by value or the kernel must use a more
involved method for copying data from a user address space to a kernel address space
(and vice versa). For example, the kernel can compute the physical address for a user
virtual address using the page table for that user address space, map the computed
physical address into the kernel address space at an unused address, and then use that
address.

5.4.3.3 Discussion
In the design with many virtual address spaces, virtual addresses are relative to an
address space. This property has the advantage that programs don’t have to be com-
piled to be position independent (see Sidebar 5.5). Every program can be stored at
virtual address 0 and can use absolute addresses for making references to memory in
its address space. In practice, this advantage is unimportant because it is not difficult
for compiler designers to generate position-independent instructions.

A disadvantage of the design with many address spaces is that sharing can be
confusing and less flexible. It can be confusing because a block to be shared can be
mapped by threads into two different address spaces at different virtual addresses.

Sidebar 5.5 Position-Independent Programs Position-independent programs
can be loaded at any memory address. To provide this feature, a compiler translat-
ing programs into processor instructions must generate relative, but not absolute,
addresses. For example, when compiling a for loop, the compiler should use a jump
instruction with an offset relative to the current pc to return to the top of a for loop
rather than a jump instruction with an absolute address.

252 CHAPTER 5 Enforcing Modularity with Virtualization

It can be less flexible because either threads share a complete address space
or a designer must accept a restriction on sharing. Threads in different address
spaces can share objects only at the granularity of a block: if two threads in differ-
ent address spaces share an object, that object must be mapped at a page boundary,
and holding the object requires allocating an integral number of pages and blocks.
If the shared object is smaller than a page, then part of the address space and
the block will be wasted. Section 5.4.5 describes an advanced design that doesn’t
have this restriction, but it is rarely used, since the waste isn’t a big problem in
practice.

5.4.4 hardware versus software and the translation look-aside buffer

An ongoing debate between hardware and software designers concerns what
parts of the virtual memory manager should be implemented in hardware as part
of the processor and what parts in software as part of the operating system, as
well as what the interface between the hardware module and the software module
should be.

There is no “right” answer because the designers must make a trade-off between
performance and flexibility. Because address translation is in the critical path of pro-
cessor instructions that use addresses, the memory manager is often implemented as
a digital circuit that is part of the main processor so that it can run at the speed of the
processor. A complete hardware implementation, however, reduces the opportuni-
ties for the operating system to exploit the translation between virtual and physical
addresses. This trade-off must be made with care when implementing the memory
manager and its page table.

The page table is usually stored in the same memory as the data, reachable over
the bus. This design requires that the processor make an additional bus reference
to memory each time it interprets an address: the processor must first translate the
virtual address into a physical address, which requires reading an entry in the page
map.

To avoid these additional bus references for translating virtual to physical addresses,
the processor typically maintains a cache of entries of the page map in a smaller fast
memory within the processor itself. The hope is that when the processor executes
the next instruction, it will discover a previously cached entry that can translate the
address, without making a bus reference to the larger memory. Only when the cache
memory doesn’t contain the appropriate entry must the processor retrieve an entry
from memory. In practice, this design works well because most programs exhibit
locality of reference. Thus, caching translation entries pays off, as we will see when
we study caches in Chapter 6. Caching page table entries in the processor introduces
new complexities: if a processor changes a page table entry, the cached versions must
be updated too, or invalidated.

A final design issue is how to implement the cache memory of translations effi-
ciently. A common approach is to use an associative memory instead of an indexed

2535�4 Virtualizing Memory

memory. By making the cache memory associative, any entry can store any translation.
Furthermore, because the cache is much smaller than physical memory, an associative
memory is feasible. In this design, the cache memory of translations is usually referred
to as the translation look-aside buffer (TLB).

In the hardware design of Figure 5.19, the format of the page table is determined
by the hardware. RISC processors typically don’t fix the format of the page table in
hardware but leave the choice of data structure to software. In these RISC designs,
only the TLB is implemented in hardware. When a translation is not in the TLB, the
processor generates a TLB miss exception. The handler for this interrupt looks up
the mapping in a data structure implemented in software, inserts the translation in
the TLB, and returns from the interrupt. With this design, the memory manager has
complete freedom in choosing the data structure for the page map. If a module uses
only a few pages, a designer may be able to save memory by storing the page map as
a linked list or tree of pages. If, as is common, the union of virtual addresses is much
larger than the physical memory, a designer may be able to save memory by inverting
the page map and storing one entry per physical memory block; the contents of the
entry identify the number of the page currently in the block.

In almost all designs of virtual addresses, the operating system manages the con-
tent of the page map in software. The hardware design may dictate the format of the
table, but the kernel determines the values stored in the table entries and thus the
mapping from virtual addresses to physical addresses. By allowing software to control
the mapping, designers open up many uses of virtual addresses. One use is to manage
physical memory efficiently, avoiding problems due to fragmentation. Another use is
to extend physical memory by allowing pages to be stored on other devices, such as
magnetic disks, as explained in Section 6.2.

5.4.5 segments (advanced topic)

An address space per program (as in Figure 5.21) limits the way objects can be shared
between threads. An alternative way is to use segments, which provide each object
with a virtual address space starting at 0 and ending at the size of the object. In the
segment approach, a large database program may have a segment for each table in a
database (assuming the table isn’t larger than a segment’s address space). This allows
threads to share memory at the granularity of objects instead of blocks, and in a flex-
ible manner. A thread can share one object (segment) with one thread and another
object (segment) with another thread.

To support segments, the processor must be modified because the addresses that
programs use are really two numbers. The first identifies the segment number, and
the second identifies the address within that segment. Unlike the model that has one
virtual address space per program, where the programmer is unaware that the virtual
address is implemented as a page number and an offset, in the segment model, the
compiler and programmer must be aware that an address contains two parts. The
programmer must specify which segment to use for an instruction, the compiler must

254 CHAPTER 5 Enforcing Modularity with Virtualization

put the generated code in the right segment, and so on. Problem set 11 explores
segments with a simple operating system and a processor with minimal support for
segments.

In the address space per program, a thread can do arithmetic on addresses because
the program’s address space is linear. In the segment model, a thread cannot do arith-
metic on addresses in different segments because adding to a segment number yields
a meaningless result; there is no notion of contiguity for segment numbers.

If two threads share an object, they typically use the same segment number for the
object; otherwise naming shared objects becomes cumbersome too.

Segments can be implemented by reintroducing slightly modified domain regis-
ters. Each segment has its own domain register, but we add a page_table field to the
domain register. This page_table field contains the physical address of the page table
that should be used to translate virtual addresses of the segment. When domain reg-
isters are used in this way, the literature calls them segment descriptors. Using this
implementation, the memory manager translates an address as follows: the memory
manager uses the segment number to look up the segment descriptor and uses the
page_table in the segment descriptor to translate the virtual address within the seg-
ment to a physical address.

Giving each object of an application its own segment potentially requires a large
number of segment descriptors per processor. We can solve this problem by putting
the segment descriptors in memory in a segment descriptor table and giving each
processor a single register that points to the segment descriptor table.

An advantage of the segment model is that the designer doesn’t have to predict the
maximum size of objects that grow dynamically during computation. For example, as
the stack of a running computation grows, the virtual memory manager can allocate
more pages on demand and increase the length of the stack segment. In the address
space per program model, the thread’s stack may grow into another data structure in
the virtual address space. Then either the virtual memory manager must raise an error,
or the complete stack must be moved to a place in the address space that has a large
enough range of unused contiguous addresses.

The programming model that goes with a segment per object can be a good match
for new programs written in an object-oriented style: the methods of an object class
can be in a segment with read and execute permissions, the data objects of an instance
of that class in a segment with read and write permissions, and so on. Porting an old
program to the segment model can be easy if one stores the complete program, code,
and data in a single segment, but this method loses much of the advantage of the seg-
ment model because the entire segment must have read, write, and execute permission.
Restructuring an old program to take advantage of multiple segments can be challeng-
ing because addresses are not linear; the programmer must modify the old program
to specify which segment to use. For example, upgrading a kernel program to take
advantage of segments in its internal construction is disruptive. A number of proces-
sors and kernels tried but failed (see Section 5.7).

Although virtual memory systems supporting segments have advantages and have
been influential (see, for example, the Multics virtual memory design [Suggestions

2555�5 Virtualizing Processors Using Threads

for Further Reading 5.4.1]), most virtual memory systems today follow the address
space per program approach instead of the segment approach. A few processors,
such as the Intel x86 (see Section 5.7), have support for segments, but today’s virtual
memory systems don’t exploit them. Virtual memory managers for the address space
per program model tend to be less complex because sharing is not usually a primary
requirement. Designers view an address space per program primarily as a method for
achieving enforced modularity, rather than an approach to sharing. Although one can
share pages between programs, that isn’t the primary goal, but it is possible to do it
in a limited way. Furthermore, porting an old application to the one address space
per program model requires little effort at the outset: just allocate a complete address
space for the application. If any sharing is necessary, it can be done later. In practice,
sharing patterns tend to be simple, so no sophisticated support is necessary. Finally,
today, address spaces are usually large enough that a program doesn’t need an address
space per object.

5.5 virtualizing prOCessOrs using threads
In order to focus on one new idea at a time, the previous sections assumed that a
separate processor was available to run each thread. Because there are usually not
enough processors to go around, this section extends the thread manager to remove
the assumption that each thread has its own processor. This extended thread manager
shares a limited number of processors among a larger number of threads.

Sharing of processors introduces a new concern: if a thread hogs a processor,
either accidentally or intentionally, it can slow down or even halt the progress of other
threads, thereby compromising modularity. Because we have proposed that a primary
requirement be to enforce modularity, one of the design challenges of the thread man-
ager is to eliminate this concern.

This section starts with the design of a simple thread manager that does not
avoid the hogging of a processor, and then moves to a design that does. It makes the
design concrete by providing a pseudocode implementation of a thread manager. This
 implementation captures the essence of a thread manager. In practice, thread manag-
ers differ in many details and sometimes are much more complex than our example
implementation.

5.5.1 sharing a processor among multiple threads

Recall from Section 5.1.1 that a thread is an abstraction that encapsulates the state of a
running module. A thread encapsulates enough state of the interpreter (e.g., a proces-
sor) that executes the thread that a thread manager can stop the thread and resume
the thread later. A thread manager animates a thread by giving it a processor. This
section explains how this ability to stop a thread and later resume it can be used to
multiplex many threads over a limited number of physical processors.

256 CHAPTER 5 Enforcing Modularity with Virtualization

To make the thread abstraction concrete, the thread manager might support this
simple version of a thread_allocate procedure:

 ■ thread_id ← allocate_thread (starting_procedure, address_space_id): allocate a new
thread in address space address_space_id. The new thread is to begin with a call
to the procedure specified in the argument starting_procedure. allocate_thread
returns an identifier that names the just-created thread. If the thread manager
cannot allocate a new thread (e.g., it doesn’t have enough free memory to allo-
cate a new stack), allocate_thread returns an error.

The thread manager implements allocate_thread as follows: it allocates a range of
memory in address_space_id to be used as the stack for procedure calls, selects a pro-
cessor, and sets the processor’s pc to the address starting_procedure in address_space_id
and the processor’s sp to the bottom of the allocated stack.

Using allocate_thread, an application can create more threads than there are
processors. Consider the applications running on the computer in Figure 5.4. These
applications can have more threads than there are processors; for example, the file
service might launch a new thread for each new client request. Starting a new mod-
ule will also create additional threads. So the problem is to share a limited number of
processors among potentially many threads.

We can solve this problem by observing that most threads spend much of their
time waiting for events to happen. Most modules that run on the computer in Figure
5.4 call read for input from the keyboard, the file system, or the network, and will wait
by spinning until there is input. Instead of spinning, the thread could, while it is wait-
ing, let another thread use its processor. If the consumer thread finds that it cannot
proceed (because the buffer is empty), then it could release its processor, giving the
keyboard manager (or any other thread) a chance to run.

This observation is the basic idea for virtualizing the processor: when a thread is
waiting for an event, its processor can switch from that thread to another one by sav-
ing the state of the waiting thread and loading the state of a different thread. Since in
most system designs many threads spend much of their life waiting for a condition
to become true, this idea is general. For example, most of the other modules (the
window manager, the mail reader, etc.) are consumers. They spend much of their exis-
tence waiting for input to arrive.

Over the years people have developed various labels for processor virtualization
schemes, such as “time-sharing”, “processor multiplexing”, “multiprogramming”, or
“multitasking”. For example, the word “time-sharing” was introduced in the 1950s to
describe virtualization of a computer system so that it could be shared among several
interactive human users. All these schemes boil down to the same idea: virtualizing
the processor, which this section describes in detail.

To make the discussion more concrete, consider the implementation of send
and receive with a bounded buffer in Figure 5.6. This spin-loop solution is appropri-
ate if there is a processor for each thread, but it is inappropriate if there are fewer
processors than threads. If there is just one processor and if the receiver started
before the sender, then we have a major problem. The receiver thread executes its

2575�5 Virtualizing Processors Using Threads

spinning loop, and the sender never gets a chance to run and add an item to the
buffer.

A solution with thread switching is shown in Figure 5.22. Comparing this code
with the code in Figure 5.6, we find that the only change is the addition of two calls
to a procedure named yield (lines 10 and 20). yield is an entry to the thread man-
ager. When a thread invokes yield, the thread manager gives the calling thread’s pro-
cessor to some other thread. At some time in the future, the thread manager returns a
processor to this thread by returning from the call to yield. In the case of the receiver,
when the processor returns at line 21, the receiving thread reacquires the lock again
and tests out 5 in. If out is now less than in, there is at least one new item in the buffer,
so the thread extracts an item from the buffer. If not, the thread releases the lock and
calls yield again to allow another thread to run. A thread therefore alternates between
two states, which we name running (executing on a processor) and runnable (ready to
run but waiting for a processor to become available).

1 shared structure buffer // A shared bounded buffer
2 message instance message[N] // with a maximum of N messages
3 long integer in initially 0 // Counts number of messages put in the buffer
4 long integer out initially 0 // Counts number of messages taken out of the buffer
5 lock instance buffer_lock initially unlocked // Lock to coordinate sender and receiver

6 procedure send (buffer reference p, message instance msg)
7 acquire (p.buffer_lock)
8 while p.in 2 p.out 5 N do // Wait until there room in the buffer
9 release (p.buffer_lock) // Release lock so that receiver can remove
10 yield () // Let another thread use the processor
11 acquire (p.buffer_lock) // Processor came back, maybe there is room
12 // Wait loop end, go back to test
13 p.message[p.in modulo n] ← msg // Put message in the buffer
14 p.in ← p.in 1 1 // Increment in
15 release (p.buffer_lock)

16 procedure receive (buffer reference p)
17 acquire (p.buffer_lock)
18 while p.in 5 p.out do // Wait until there is a message to receive
19 release (p.buffer_lock) // Release lock so that sender can add
20 yield () // Let another thread use the processor
21 acquire (p.buffer_lock) // yield returned, maybe there is a message
22 // Wait loop end, go back to test
23 msg ← p.message[p.out modulo N] // Copy item out of buffer
24 p.out ← p.out 1 1 // Increment out
25 release (p.buffer_lock)
26 return msg

Figure 5.22

An implementation of a virtual communication link for a system with more threads than
processors.

258 CHAPTER 5 Enforcing Modularity with Virtualization

The job of yield is to switch a processor from one thread to another. In its essence,
yield is a simple three-step operation:

1. Save this thread’s state so that it can resume later.
2. Schedule another thread to run on this processor.
3. Dispatch this processor to that thread.

The concrete problem that yield solves is multiplexing many threads over a poten-
tially smaller number of processors (see Figure 5.23). Each processor typically has an
identifier (id), a stack pointer (sp), a program counter (pc), and a page-map address
register (pmar), pointing to the page map that defines the thread’s address space.
Processors may have additional state, such as floating point registers. Each thread has
virtual versions of id, sp, pc, and pmar, and any additional state. yield must multiplex
perhaps many threads in the thread layer over a limited number of processors in the
processor layer.

yield implements the multiplexing as follows. When a thread running in the thread
layer calls yield, yield enters the processor layer. The processor saves the state of the
thread that is currently running. When that processor later exits from the processor
layer, it runs a new thread, usually one that is different from the one it was running
when it entered. This new thread may run in a different address space from the one
used by the thread that called yield, or it may run in the same address space, depend-
ing on how the two threads were originally allocated.

Because the implementation of yield is specific to a processor and must load and
save state that is often stored in processor registers (i.e., sp, pc, pmar), yield is written
in the instruction repertoire of the processor and can be thought of as a software
extension of the processor. Programs using yield may be written in any program-
ming language, but the implementation of yield itself is usually written in low-level
 processor-specific instructions. yield is typically a kernel procedure reached by a
supervisor call.

Using this layering picture, we can also explain how interrupts and exceptions
are multiplexed with threads. Interrupts invoke an interrupt handler, which always
runs in the processor layer, even if the interrupt occurs while in the thread layer.
On an interrupt, the interrupted processor runs the corresponding interrupt handler

ID, SP, PC, PMAR

Processor
layer

Thread
layer ID, SP, PC, PMAR ID, SP, PC, PMAR ID, SP, PC, PMAR

ID, SP, PC, PMAR

Thread 1 Thread 2 Thread n

Processor 1 Processor m

• • •

• • •

Figure 5.23

Multiplexing m processors among n threads (n m).

2595�5 Virtualizing Processors Using Threads

(e.g., when a clock interrupt occurs, it runs the clock handler) and then continues
with the thread that the processor was running before the interrupt.

Exceptions happen in the thread layer. That is, the exception handler runs in the
context of the interrupted thread; it has access to the interrupted thread’s state and
can invoke procedures on behalf of the interrupted thread.

As discussed in Sidebar 5.6, the literature is inconsistent both about the labels
and about the distinction between the concepts of interrupts and exceptions. For
purposes of this text, we define interrupts as events that may have no relation to the
currently running thread, whereas exceptions are events that specifically pertain to
the currently running thread. While both exceptions and interrupts are discovered by
the processor, interrupts are handled by the processor layer, and exceptions are usu-
ally referred to a handler in the thread layer.

This difference places restrictions on what code can run in an interrupt handler:
in general, an interrupt handler shouldn’t invoke procedures (e.g., yield) of the thread
layer that assume that the thread is running on the current processor because the
interrupt may have nothing to do with the currently running thread. An interrupt
handler can invoke an exception handler in the thread layer if the handler determines
that this interrupt pertains to the thread running on the interrupted processor. The
exception handler can then adjust the thread’s environment. We will see an example
of this case in Section 5.5.4 when the thread manager uses a clock interrupt to force
the currently running thread to invoke yield.

Although the essence of multiplexing is simple, the code implementing yield is
often among the most mysterious in an operating system. To dispel the mysteries,
Section 5.5.2 develops a simple implementation of a thread manager that supports
yield. Section 5.5.3 describes how this implementation can be extended to support
creation and termination of threads. Section 5.5.4 explains how an operating sys-
tem can enforce modularity among threads using interrupts and Section 5.5.5 adds
enforcement of separate address spaces. Section 5.5.6 explains how systems use mul-
tiplexing recursively to implement several layers of processor virtualization.

Sidebar 5.6 Interrupts, Exceptions, Faults, Traps, and Signals The systems
and architecture literature uses the words “interrupt” and “exception” inconsis-
tently, and some authors use different words, such as “fault”, “trap”, “signal”, and
“sequence break”. Some designers call a particular event an interrupt, while another
designer calls the same event an exception or a signal. An operating system designer
may label the handler for a hardware interrupt as an exception, trap, or fault han-
dler. Terminology questions also arise because an interrupt handler in the operat-
ing system may invoke a thread’s exception handler, which raises the question of
whether the original event is an interrupt or an exception. The layered model helps
answer this question: at the processor layer the event is an interrupt, and at the
thread layer it is an exception.

260 CHAPTER 5 Enforcing Modularity with Virtualization

5.5.2 implementing yield

To keep the implementation of yield as simple as possible, let’s temporarily restrict
its implementation to a fixed number of threads, say, seven, and assume there are
fewer than seven processors. (If there were seven or more processors and only seven
threads, then processor virtualization would be unnecessary.) We further start by
assuming that all seven threads run in the same address space, so we don’t have to
worry about saving and restoring a thread’s pmar. Finally, we will assume that the
threads are already running. (Section 5.5.3 will remove the last assumption, explaining
how threads are created and how the thread manager starts.)

With these assumptions we can implement yield as shown in Figure 5.24. The
implementation of yield relies on four procedures: get_thread_id, enter_processor_
layer, exit_processor_layer, and scheduler. Each procedure has only a few lines of code,
but they are subtle; we investigate them in detail.

As shown in the figure, the code for the procedures maintains two shared arrays:
an array with one entry per processor, known as the processor_table, and an array with
one entry per thread, known as the thread_table. The processor_table array records infor-
mation for each processor. In this simple implementation, the information is just the
identity of the thread that the processor is currently running. In later versions, we will
need to keep track of more information. To be able to index into this table, a proces-
sor needs to know what its identity is, which is usually stored in a special register
cpuid. That is, the procedure get_thread_id returns the identity of the thread running
on processor cpuid (line 7). The procedure get_thread_id virtualizes the register cpuid
to create a virtual id register for each thread, which records a thread’s identity.

Entry i of thread_table holds the stack pointer for thread i (whenever thread i is not
actually running on a processor) and records whether thread i is running (i.e., a proces-
sor is running thread i) or runnable (i.e., thread i is waiting to receive a processor). In a
system with n processors, n threads can be in the running state at the same time.

With these data structures, the processor layer works as follows. Suppose that two
processors, A and B, are busy running seven threads and that thread 0, which is running
on processor A, calls yield. yield acquires thread_table_lock at line 9 so that the processor
layer can implement switching threads as a before-or-after action. (The lock is needed
because there is more than one processor, so different threads might try to invoke yield
at the same time.) yield then calls enter_processor_layer to release its processor.

The statement on line 14 records that the calling thread will no longer be running
on the processor but that it is runnable. That is, if there are no other threads waiting
to run, the processor layer can schedule thread 0 again.

Line 15 saves thread 0’s stack pointer (held in processor A’s sp register) into thread
0’s entry in thread_table. The stack pointer is the only thread state that must be saved
because the processor layer always suspends a thread in enter_processor_layer; it is
unnecessary to save and restore the program counter. We are assuming that all threads
run in the same address space so pmar doesn’t have to be saved and restored either.
Other processors or calling conventions (or if a thread may be resumed at a different
address than in enter_processor_layer) might require that enter_processor_layer save

2615�5 Virtualizing Processors Using Threads

additional thread state. In that case, the thread_table entries must have additional fields,
and enter_processor_layer would save the additional state in the additional fields of
the thread_table entries.

The part of the processor layer that chooses the next thread is called the sched-
uler. In our simple implementation, statements on lines 20 through 22 constitute the
core of the scheduler. Processor A cycles through the thread table, skips threads that
are already running on another processor, stops searching when it finds a runnable

1 shared structure processor_table[7]
2 integer thread_id // identity of thread running on a processor
3 shared structure thread_table[7]
4 integer topstack // value of this thread’s stack pointer
5 integer state // runnable or running

6 shared lock instance thread_table_lock

7 procedure get_thread_id() return processor_table[cpuid].thread_id

8 procedure yield ()
9 acquire (thread_table_lock)
10 enter_processor_layer (get_thread_id())
11 release (thread_table_lock)
12 return

13 procedure enter_processor_layer (this_thread)
14 thread_table[this_thread].state ← runnable // switch state to runnable

15 thread_table[this_thread].topstack ← sp // store yielding’s thread sp

16 scheduler()
17 return

18 procedure scheduler()
19 j 5 get_thread_id()
20 do // schedule a runnable thread
21 j ← (j 1 1) modulo 7
22 while thread_table[j].state ≠ runnable // skip running threads
23 thread_table[j].state ← running // set state to running

24 processor_table[cpuid].thread_id ← j // record that processor runs thread j
25 exit_processor_layer (j) // dispatch this processor to thread j
26 return

27 // exit_processor_layer returns from the new thread’s invocation of
28 // enter_processor_layer and returns control to the new thread’s invocation of yield.
29 procedure exit_processor_layer (new)
30 sp ← thread_table[new].topstack // dispatch: load sp of new thread
31 return

Figure 5.24

An implementation of yield. exit_processor_layer will return to yield because exit_processor_layer
uses the sp that was saved in enter_process_layer. To make it easier to follow, the procedures
have explicit return statements.

262 CHAPTER 5 Enforcing Modularity with Virtualization

thread (let’s say thread 6), and sets thread 6’s state to running (line 23) so that another
processor doesn’t again select thread 6. This implementation schedules threads in a
round-robin fashion, but many other policies are possible; we discuss some others in
Chapter 6 (Section 6.3).

This implementation of the processor layer assumes that the number of threads
is more than (or at least equal to) the number of processors. Under this assumption,
processor A will select and run a thread different from the one that called yield, unless
the number of threads is the same as the number of processors, in which case proces-
sor A will cycle back to the thread that called yield because all the other threads are
running on other processors. If there are fewer threads than processors, this imple-
mentation leaves processor A cycling forever through thread_table without giving up
thread_table_lock, preventing any other thread from calling yield. We will fix this prob-
lem in Section 5.5.3, where we introduce a version of yield that supports the dynamic
creation and termination of threads.

After selecting thread 6 to run, the processor records that thread 6 is running on
this processor (line 24), so that on the next call to enter_processor_layer the proces-
sor knows which thread it is running. The processor leaves the processor layer by
calling exit_processor_layer, which dispatches processor A to thread 6. This part of the
thread manager is often called the dispatcher.

The procedure exit_processor_layer loads the saved stack pointer of thread 6 into
processor A’s sp register (line 30). (In implementations that have additional thread
state that must be restored, these lines would need to be expanded.) Now processor
A is running thread 6.

Because line 30 replaces sp with the value that thread 6 saved on line 15 when it
last ran, the flow of control when the processor reaches the return on line 31 requires
some thought. That return pops a return address off the stack. The return address is
the address that thread 6 pushed on its stack when it called enter_processor_layer at
line 10. Thus, the line 31 return actually goes to the caller of enter_processor_layer,
namely, yield, at line 11. Line 12 pops the next return address off the stack, returning con-
trol to the program in thread 6 that originally called yield. The overall effect is that thread
0 called yield, but control returns to the instruction after the call to yield in thread 6.

This flow of control has the curious effect of abandoning two stack frames, the
ones allocated on the calls to scheduler and exit_processor_layer. The original save
of sp in thread 6 at line 15 actually accomplished two goals: (1) save the value of sp
for future use when control returns to thread 6, and (2) mark a place that the pro-
cessor layer thread can use as a stack when executing scheduler and exit_processor_
layer. The reloading of sp at line 30 similarly accomplishes two goals: (1) restore the
thread 6 stack and (2) abandon the processor layer stack, which is no longer needed. A
more elaborate thread manager design, as we will see in Section 5.5.3, switches to a
 separate processor layer stack rather than borrowing space atop an existing thread
layer stack.

To understand why this implementation of yield works, consider two threads: one
running the send procedure of Figure 5.22 and one running the receive procedure.
Furthermore, assume that the sender thread is thread 0, that the receiver thread is
thread 6, and that the data and instructions of the procedures are located at address

2635�5 Virtualizing Processors Using Threads

1001 and up in memory. Finally, assume the following saved thread state for thread 0
and the following current state for processor A:

At some time in the past, thread 0 called yield and enter_processor_layer stored the
value of thread 0’s stack pointer (100) into the thread table and went on to run some
other thread. Processor A is currently running thread 6: A’s entry in the processor_table
array contains 6, A’s sp register points to the top of the stack of thread 6, and A’s pc
register contains address 1009, which holds the first instruction of yield (see line 9).

yield invokes the procedure enter_processor_layer, following the procedure call
convention of 4.1.1, which pushes some values on thread 6’s stack—in particular, the
return address (1011)—and change A’s sp to 220 (204 1 16).* enter_processor_layer
knows that the current thread has index 6 by reading the processor’s entry in the
processor_table array. Line 15 saves thread 6’s current top of stack (220) by storing
processor A’s sp into thread 6’s entry into thread_table.

The statements at lines 19 through 22 choose which thread to run next, using a simple
round-robin algorithm, and select thread 0. The scheduler invokes exit_ processor_layer to
dispatch processor A to thread 0.

Line 30 loads the saved sp of thread 0 so that processor A can find the top of the
stack at memory address 100. At the top of thread 0’s stack will be the return address;
this address will be 1011 (the line after the call to enter_processor_layer into yield,
line 11), since thread 0 entered enter_processor_layer from yield. Thread 0 releases
thread_table_lock so that another thread can enter enter_processor_layer and return
from yield. Thread 0 returns from exit_processor_layer following the procedure call
convention, which pops off the return address from the top of the stack. The address
that exit_processor_layer uses is 1011 because exit_processor_layer uses the sp saved
by enter_processor_layer and thus returns to yield at line 11. yield releases the thread_
table_lock and returns control to the program in thread 0 that originally called yield.

At this point, the thread switch has completed, and thread 0, rather than thread 6,
is running on processor A; the state is as follows:

* The 16 bytes provide space to save r0, r1, one argument, and a return address.

thread_table:

0

6

6

Processor A’s PC: 1009
100

...
RUNNABLE

Saved SP State

204Processor A’s SP:

Processor A’s thread_id :

thread_table:

0

0

6

Processor A’s PC: 1011
100

...
RUNNING

220 RUNNABLE

Saved SP State

72Processor A’s SP:

Processor A’s thread_id :

264 CHAPTER 5 Enforcing Modularity with Virtualization

At some time in the future, the thread manager will resume thread 6, at the instruction
at address 1011.

From this example we can see that a thread always releases its processor by call-
ing enter_processor_layer and that the thread always resumes right after the call to
enter_processor_layer. This stylized flow of control in which a thread always releases
its processor at the same point and resumes at that point is an example of what is
sometimes called co-routine.

To ensure that the thread switch is atomic, the thread that invokes enter_processor_
layer acquires thread_table_lock and the thread that resumes using exit_processor_layer
releases thread_table_lock (line 11). Because the scheduler is likely to choose a different
thread to run from the one that called yield, the thread that releases the lock is most likely
a different thread from the one that acquired the lock. In essence, the thread that releases
the processor passes the lock along to the thread that next receives the processor.

Thread switching relies on a detailed understanding of the processor and the
procedure call convention. In most systems, the implementation of thread switching
is more complex than the implementation in Figure 5.24 because we made several
assumptions that often don’t hold in real systems: there is a fixed number of threads,
all threads are runnable, and scheduling threads round-robin is an acceptable policy.
In the next sections, we will eliminate some of these assumptions.

5.5.3 Creating and terminating threads

The example yield procedure supports only a fixed number of threads. A full-blown
thread manager allows threads to be created and terminated on demand. To support a
variable number of threads, we would need to modify the implementation of allocate_
thread and extend the thread manager with the following procedures:

 ■ exit_thread (): destroy and clean up the calling thread. When a thread is done
with its job, it invokes exit_thread to release its state.

 ■ destroy_thread (id): destroy the thread identified by id. In some cases, one thread
may need to terminate another thread. For example, a user may have started a
thread that turns out to have a programming error such as an endless loop, and
thus the user wants to terminate it. For these cases, we might want to provide a
procedure to destroy a thread.

For the most part, the implementation of these procedures is relatively straightfor-
ward, but there are a few subtle issues. For example, if threads can terminate, we have
to fix the problem that the previous code required at least as many threads as proces-
sors. To get at these issues, we detail their implementation. First, we create a separate
thread for each processor (which we will call a processor-layer thread, or processor
thread for short), which runs the procedure scheduler (see Figure 5.25). The way to
think about this setup is that the scheduler runs in the processor layer, and it virtual-
izes its processor. A processor thread per processor is necessary because a thread in
the thread layer (a thread-layer thread) cannot deallocate its own stack since it can-
not call a procedure (e.g., deallocate or yield) on a stack that it has released. Instead,

2655�5 Virtualizing Processors Using Threads

we set it up so that the processor-layer thread cleans up thread-layer threads. When
starting the operating system kernel (e.g., after turning the computer on), the kernel
creates processor-layer threads as follows:

procedure run_processors ()
 for each processor do
 allocate stack and set up a processor thread
 shutdown ← false

 scheduler ()
 deallocate processor thread stack
 halt processor

This procedure allocates a stack and sets up a processor thread for each proces-
sor. This thread runs the scheduler procedure until some procedure sets the global
variable shutdown to true� Then, the computer restarts or halts.

We first revisit yield with this setup, and we then see how this generalization supports
thread creation and deletion. Using a separate processor thread, we find that switch-
ing a processor from one thread-layer thread to another actually requires two thread
switches: one from the thread that is releasing its processor to the processor thread and
one from the processor thread to the thread that is to receive the processor (see Figure
5.26). In more detail, let’s suppose, as before, that thread 0 calls yield on processor A and
that thread 6 is runnable and has called yield earlier. Thread 0 switches to the proces-
sor thread by invoking enter_processor_layer (line 12). The implementation of enter_
processor_layer is almost identical to enter_processor_layer of Figure 5.24: it saves the
stack pointer in the calling thread’s thread_table entry, but it loads a new stack pointer
from cpuid’s processor_table entry. When enter_processor_layer returns, it will switch to
the processor thread and resume at line 24 (right after exit_processor_layer).

The processor thread will cycle through the thread table until it hits thread 6,
which is runnable. The scheduler sets thread 6’s state to running (line 21), records
that thread 6 will run on this processor (line 22), and invokes exit_processor_layer, to
switch the processor to thread 6 (line 23). exit_processor_layer saves the scheduler’s
thread state into cpuid’s entry in the processor_table and loads thread 6’s state in the
processor. Because line 37 of exit_processor_layer has loaded sp, the return statement
at line 38 acts like a return from the procedure that saved sp. That procedure was
enter_processor_layer at line 33, so control passes to the caller of enter_ processor_
layer, namely, yield, at line 13. yield releases thread_table_lock and returns control to the
program of thread 6 that originally called it.

With this setup of thread switching in place, we can return to creating and deal-
locating threads dynamically. To keep track of which thread_table entries are in use, we
extend the set of possible states of each entry with the additional state free� Now we
can implement allocate_thread as follows:

1. Allocate space in memory for a new stack.
2. Place on the new stack an empty frame containing just a return address and

initialize that return address with the address of exit_thread�

266 CHAPTER 5 Enforcing Modularity with Virtualization

1 shared structure processor_table[7] // each processor maintains the following information:
2 integer topstack // value of stack pointer
3 byte reference stack // preallocated stack for this processor
4 integer thread_id // identity of thread currently running on this processor
5 shared structure thread_table[7] // each thread maintains the following information:
6 integer topstack // value of the stack pointer
7 integer state // runnable, running, or free

8 boolean kill_or_continue // terminate this thread? initialized to continue

9 byte reference stack // stack for this thread

10 procedure yield ()
11 acquire (thread_table_lock)
12 enter_processor_layer (get_thread_id(), cpuid) // See caption below!
13 release (thread_table_lock)
14 return
15
16 procedure scheduler ()
17 while shutdown 5 false do
18 acquire (thread_table_lock)
19 for i from 0 until 7 do
20 if thread_table[i].state 5 runnable then
21 thread_table[i].state ← running

22 processor_table[cpuid].thread_id ← i
23 exit_processor_layer (cpuid, i)
24 if thread_table[i].kill_or_continue 5 kill then
25 thread_table[i].state ← free

26 deallocate(thread_table[i].stack)
27 thread_table[i].kill_or_continue 5 continue

28 release (thread_table_lock)
29 return // Go shut down this processor

30 procedure enter_processor_layer (tid, processor)
31 thread_table[tid].state ← runnable

32 thread_table[tid].topstack ← sp // save state: store yielding’s thread sp

33 sp ← processor_table[processor].topstack // dispatch: load sp of processor thread
34 return

35 procedure exit_processor_layer (processor, tid) // transfers control to after line 14
36 processor_table[processor].topstack ← sp // save state: store processor thread’s sp

37 sp ← thread_table[tid].topstack // dispatch: load sp of thread
38 return

Figure 5.25

yield with support for dynamic thread creation and deletion. Control flow is not obvious because
some of those procedures reload sp, which changes the place to which they return. To make it
easier to follow, the procedures have explicit return statements. The procedure called on line 12
actually returns by passing control to line 24, and the procedure called on line 23 actually returns
by passing control to line 13. Figure 5.26 shows the control flow graphically.

2675�5 Virtualizing Processors Using Threads

MAIN

YIELD

YIELD

ENTER_P_L

ENTER_PROCESSOR_LAYER

load SP

return

load SP

return

User layer thread 0

Processor layer thread

MAIN

SCHEDULER

SCHEDULER

EXIT_P_L

User layer thread 6

ENTER_PROCESSOR_LAYER

load SP

EXIT_PROCESSOR_LAYER

YIELD

ENTER_P_L

return

MAIN

YIELD

Figure 5.26

Control flow example when thread 0 yields to thread 6.

268 CHAPTER 5 Enforcing Modularity with Virtualization

3. Place on the stack a second empty frame containing just a return address and
initialize this return address with the address of starting_procedure.

4. Find an entry in the thread table that is free and initialize that entry for the new
thread in the thread table by storing the top of the new stack.

5. Set the state of newly created thread to runnable.

If the thread manager cannot complete these steps (e.g., all entries in the thread table
are in use), then thread_allocate returns an error.

To illustrate this implementation, consider the following state for a newly created
thread 1:

Thread 1’s stack is located at address 292 and its saved stack pointer is 300. With
this initial setup, it appears that exit_thread called the procedure starting_procedure,
and thread 1 is about to return to this procedure. Thus, when scheduler selects this
thread, its return statement will go to the procedure starting_procedure. In detail,
when the scheduler selects the new thread (1) as the next thread to execute, it sets
its stack pointer to the top of the new stack (300) in exit_processor_layer. When
the processor returns from exit_processor_layer, it will set its program counter to
the address on top of the stack (starting_procedure), and start execution at that loca-
tion. The procedure starting_procedure releases thread_table_lock and the new thread
is running.

With this initial setup, when a thread finishes the procedure starting_procedure, it
returns using the standard procedure return convention. Since the thread_create pro-
cedure has put the address of the exit_thread procedure on the stack, this return
transfers control to the first instruction of the exit_thread procedure.

The exit_thread procedure can be implemented as follows:

1 procedure exit_thread()
2 acquire (thread_table_lock)
3 thread_table[tid].kill_or_continue ← kill

4 enter_processor_layer (get_thread_id (), cpuid)

exit_thread sets the kill_or_continue variable for thread and calls enter_processor_
layer, which switches the processor to the processor thread. The processor thread
checks the variable kill_or_continue on line 24 to see if a thread is done, and, if so, it

starting_procedure

300

296

EXIT_THREAD

Stack for thread 1

1000

1

thread_table (saved stack pointers):

300

2006

292

Top of stack

RUNNABLE

RUNNABLE

RUNNING

2695�5 Virtualizing Processors Using Threads

marks the thread entry as reusable (line 25) and deallocates its stack (line 26). Since
no thread is using that stack, it is safe to deallocate it.

The implementation of destroy_thread is also a bit tricky because the target thread
to be destroyed might be running on one of the processors. Thus, the calling thread
cannot just free the target thread’s stack; the processor running the target thread must
do that. We can achieve that in an indirect way. destroy_thread just sets the kill_or_
continue variable of the target thread to kill and returns. When a thread invokes yield
and enters the processor layer, the processor thread will check this variable and
release the thread’s resources. (Section 5.5.4 will show how to ensure that each
thread running on a processor will call yield at least occasionally.)

The implementation described for allocating and deallocating threads is just one
of many ways of handling the creation and destruction of threads. If one opens up the
internals of half a dozen different thread packages, one will find half a dozen quite
different ways to handle launching and terminating threads. The goal of this section
was not to exhibit a complete catalog, but rather, by illustrating one example in detail,
to dispel any mystery and expose the main issues that every implementation must
address. Problem set 10 explores an implementation of a thread package in a trivial
operating system for a single processor and two threads.

5.5.4 enforcing modularity with threads: preemptive scheduling

The thread manager described so far switches to a new thread only when a thread
calls yield. This scheduling policy, where a thread continues to run until it gives up
its processor, is called non-preemptive scheduling. It can be problematic because the
length of time a thread holds its processor is entirely under the control of the thread
itself. If, for example, a programming error sends one thread into an endless loop, no
other thread will ever be able to use that processor again. Non-preemptive scheduling
might be acceptable for a single module that has several threads (e.g., a Web server
that has several threads to increase performance) but not for several modules.

Some systems partially address this problem by having a gentlemen’s agreement
called cooperative scheduling (which in the literature sometimes is called coopera-
tive multitasking): every thread is supposed to call yield periodically, for instance,
once per 100 milliseconds. This solution is not robust because it relies on modules
behaving well and not having any errors. If a programmer forgets to put in a yield, or
if the program accidentally gets into an endless loop that does not include a yield, that
processor will no longer participate in the gentlemen’s agreement. If, as is common
with cooperative multitasking designs, there is only a single processor, the processor
may appear to freeze, since the other threads won’t have an opportunity to make
progress.

To enforce modularity among multiple threads, the operating system thread
manager must ensure thread switching by using what is called preemptive schedul-
ing. The thread manager must force a thread to give up its processor after, for exam-
ple, 100 milliseconds. The thread manager can implement preemptive scheduling by
setting the interval timer of a clock device. When the timer expires, the clock triggers

270 CHAPTER 5 Enforcing Modularity with Virtualization

an interrupt, switching to kernel mode in the processor layer. The clock interrupt han-
dler can then invoke an exception handler, which runs in the thread layer and forces
the currently running thread to yield. Thus, if a thread is in an endless loop, it receives
100 milliseconds to run on its turn, but it cannot stop other threads from getting at
least some use of the processor, too.

Supporting preemptive scheduling requires some changes to the thread manager
because in the implementation described so far an interrupt handler shouldn’t invoke
procedures in the thread layer at all, not even when the interrupt pertains to the cur-
rently running thread. To see why, consider a processor that invokes an interrupt han-
dler that calls yield� If the interrupt happens right after the thread on that processor
has acquired thread_table_lock in yield, then we will create a deadlock. The yield call in
the handler will try to acquire thread_table_lock too, but it already has been acquired
by the interrupted thread. That thread cannot continue and release the lock because
it has been interrupted by the handler.

The problem is that we have concurrent activity within the processor layer (see
Figure 5.23): the thread manager (i.e., yield) and the interrupt handler. The concurrent
execution within the thread layer is coordinated with locks, but the processor needs
its own mechanism. The processor may stop processing instructions of a thread at any
time and switch to processing interrupt instructions. We are lacking a mechanism to
turn the processor instruction stream and the interrupt instruction stream into sepa-
rate before-or-after actions.

One solution to prevent the interrupt instruction stream from interfering with the
processor instruction stream is to enable/disable interrupts. Disabling interrupts for
a region greater than the region in which the thread_table_lock is set ensures that both
streams are separate before-or-after actions. When a thread is about to acquire the
thread_table_lock, it also disables interrupts on its processor. Now the processor will
not switch to an interrupt handler when an interrupt arrives; interrupts are delayed
until they are enabled again. After the thread has released the thread_table_lock, it is
safe to reenable interrupts. Any pending interrupts will then execute immediately, but
it is now safe since no thread on this processor can be inside the thread manager. This
solution avoids the deadlock problem. For a more detailed description of the chal-
lenges and the solution in the Plan 9 operating system, see Suggestions for Further
Reading 5.3.5.

Problem set 9 explores an implementation of a thread package with preemptive
scheduling for a trivial operating system tailored to a single processor, which allows
for other solutions to coordinating interrupts.

Preemptive scheduling is the mechanism that enforces modularity among threads
because it isolates threads from one another’s behavior, guaranteeing that no thread
can halt the progress of other threads. The programmer can thus write a module
as a standard computer program, execute it with its own thread, and not have to
worry about any other modules in the system. Even though several programs are shar-
ing the processors, programmers can consider each module independently and can
think of each module as having a processor to itself. Furthermore, if a programming
error causes a module to enter into an endless loop, another module that interacts

2715�5 Virtualizing Processors Using Threads

with the user gets a chance to run at some point, thus allowing the user to destroy the
ill-behaving thread by calling the thread_destroy procedure.

5.5.5 enforcing modularity with threads and address spaces

Preemptive scheduling enforces modularity in the sense that one thread cannot stop
the progress of another thread, but if all threads share a single address space, then
they can modify each other’s memory accidentally. That may be okay for threads
that are working together on a common problem, but unrelated threads need to be
protected from erroneous or malicious stores of one another. We can provide that
protection by making the thread manager aware of the virtual address spaces of
Section 5.4.

This awareness can be implemented by having the thread manager, when it
switches a processor from one thread to another, also switch the address space. That
is, enter_processor_layer saves the contents of the processor’s pmar in the thread_table
entry of the thread that is releasing the processor, and exit_processor_layer loads the
processor’s pmar with the value in the thread_table entry of the new thread.

Loading the pmar adds one significant complication to the thread manager: start-
ing at the instant that the processor loads a new value into the pmar, the processor
will translate virtual addresses using the new page table, so that it will take its next
instruction from some location in the new virtual address space. As mentioned in
Section 5.4.3.2, one way to deal with this complication is to map both the instruc-
tions and the data of the thread manager into the same set of virtual addresses in
every virtual address space. Another possibility is to design hardware that can load
the pmar, sp, and pc as a single before-or-after action, thereby returning control to
the thread in the new virtual address space at the saved location and with the saved
stack pointer.

5.5.6 layering threads

Figure 5.23 and the program fragments in Figures 5.24 and 5.25 showed how to
create several threads in the thread layer from one thread in the processor layer. In
particular, Figure 5.25 explained how a processor thread in the processor layer can
be used to dynamically create and delete threads in the thread layer. Many systems
generalize this implementation to support interrupt handling and multiple layers of
thread management, as shown in Figure 5.27.

To support interrupts, we can think of a processor as a hard-wired thread man-
ager with two threads: (1) a processor thread (e.g., the thread that runs scheduler in
Figure 5.25) and (2) an interrupt thread that runs interrupt handlers in kernel mode.
On an interrupt, a processor’s hard-wired thread manager switches from a processor
thread to an interrupt thread that runs an interrupt handler in kernel mode, which
may invoke a thread-layer exception handler that calls yield.

The operating system thread layer uses the processor threads of the processor
layer to implement a second layer of threads and gives each application module one

272 CHAPTER 5 Enforcing Modularity with Virtualization

or more preemptively scheduled virtual processors. When the operating system thread
manager switches to another thread, it may also have to load the chosen thread’s page-
map address into the page-map address register to switch to the address space of the
chosen thread. The operating system thread manager runs in kernel mode.

Each application module in turn may implement, if it desires, its own, user-mode,
third-layer thread manager using one or more virtual processors provided by the
operating system layer. For example, some Web servers have an embedded Java inter-
preter to run Java programs, which may use several Java threads. To support threads at
the Java level, the Java interpreter has its own thread manager. Typically, a third-layer
thread manager uses non-preemptive scheduling because all threads belong to the
same application module and don’t have to be protected from each other.

Generalizing, we get the picture in Figure 5.27, where a number of threads at
layer n can be used to implement higher-layer threads at layer n 1 1. Each hardware
processor at the lowest layer creates two threads: a processor thread and an interrupt
thread. One layer up, the operating system uses the processor threads to provide one
or more threads per module: one thread for the editor, one thread for the window
manager, one thread for the keyboard manager, and several threads for the file service.
One layer further up, the file service thread creates three application-level threads
out of two operating system threads: one to wait for the disk and one for each of two
client requests. At each layer, a thread manager switches one or more threads of layer
n 2 1 among several layer n threads.

Although the layering idea is simple in the abstract, in practice a number of issues
must be carefully thought through—for example, if a thread blocks in a layer different
than the layer where it was created and where its scheduler runs. Clark [Suggestions
for Further Reading 5.3.3] and Anderson et al. [Suggestions for Further Reading 5.3.2]
discuss some of the practical issues.

Editor File service
thread layer

Disk

Window service

Client request 1 Client request 2

•••

InterruptScheduler

Keyboard
manager

Processor layer
 thread manager

Operating system
thread layer

Processor

InterruptScheduler

Processor

Figure 5.27

Thread managers applied recursively.

2735�6 Thread Primitives for Sequence Coordination

5.6 thread primitives FOr sequenCe COOrdinatiOn
The thread manager described in Section 5.5 allows processors to be shared among
many threads. A thread can release its processor so that other threads get a chance
to run, as the sender and receiver do using yield in Figure 5.22. When the sender or
receiver is scheduled again, it retests the shared variables in and out. This mode of inter-
action, where a thread continually tests a shared variable, is called polling. Polling in
software is usually undesirable because every time a thread discovers that the test for a
shared variable fails, it has acquired and released its processor needlessly. If a system has
many polling threads, then the thread manager spends much time performing unneces-
sary thread switches instead of running threads that have productive work to perform.

Ideally, a thread manager should schedule a thread only when the thread has use-
ful work to perform. That is, we would prefer a way of waiting that avoids spinning
on calls to yield. For example, a sender with a bounded buffer should be able to tell
the thread manager not to run it until in 2 out N� (That is, until the buffer has
room.) One way to approach this goal is for a thread manager to support primitives
for sequence coordination, which is what this section explores.

5.6.1 the lost notification problem

To see what we need for the primitives for sequence coordination, consider an obvious,
but incorrect, implementation of sender and receiver, as shown in Figure 5.28. This
implementation uses a variable shared between the sender and receiver, and two new,
but inadequate, primitives—wait and notify—that take as argument the name of the
shared variable:

 ■ wait (event_name) is a before-or-after action that sets this thread’s state to
 waiting, places event_name in the thread table entry for this thread, and yields its
processor.

 ■ notify (event_name) is a before-or-after action that looks in the thread table for a
thread that is in the state waiting for event_name and changes that thread to the
runnable state.

To support this interface, the thread manager must add the waiting state to the running
and runnable state for threads in the thread table. When the scheduler runs (for example,
when some thread invokes yield), it skips over any thread that is in the waiting state.

The program in the figure uses these primitives as follows. A thread invokes wait to
allow the thread manager to release the thread’s processor until a call to notify (lines
15 and 25). The thread that changes in invokes notify (line 15) to tell the thread man-
ager to give a processor to a receiver thread waiting on nonempty (line 22), since now
there is a message in the buffer (i.e., out in). There is a similar call to notify by the
thread that updates out (line 25), to tell the thread manager to give a processor to a
sending thread waiting on room (line 12), since now there is room to add a message to
the buffer. This implementation avoids needless thread switches because the waiting
receiver thread receives a processor only if notify has been called.

274 CHAPTER 5 Enforcing Modularity with Virtualization

Unfortunately, the use of wait and notify introduces a race condition. Let’s assume
that the buffer is empty (i.e., in 5 out) and a receiver and a sender run on separate
processors. The following order of statements will result in a lost notification: A20,
A21, B9 through B17, and A22:

The receiver finds that buffer is empty (A20) and releases the lock (A21), but before
the receiver executes A22, the sender executes B9 through B17, which adds an item

1 shared structure buffer // A shared bounded buffer
2 message instance message[N] // with a maximum of N messages
3 long integer in initially 0 // Counts number of messages put in the buffer
4 long integer out initially 0 // Counts number of messages taken out of the buffer
5 lock instance buffer_lock initially unlocked // Lock to coordinate sender and receiver
6 event instance room // Event variable to wait until there is room in buffer
7 event instance notempty // Event variable to wait until the buffer is not empty

8 procedure send (buffer reference p, message instance msg)
9 acquire (p.buffer_lock)
10 while p.in 2 p.out 5 N do // Wait until there room in the buffer
11 release (p.buffer_lock) // Release lock so that receiver can remove
12 wait(p.room) // Release processor
13 acquire (p.buffer_lock)
14 p.message[p.in modulo N] ← msg // Put message in the buffer
15 if p.in 5 p.out then notify(p.notempty) // Signal thread that there is a message
16 p.in ← p.in 1 1 // Increment in
17 release (p.buffer_lock)

18 procedure receive (buffer reference p)
19 acquire (p.buffer_lock)
20 while p.in 5 p.out do // Wait until there is a message to receive
21 release (p.buffer_lock) // Release lock so that sender can add
22 wait(p.notempty) // Release processor
23 acquire (p.buffer_lock)
24 msg ← p.message[p.out modulo N] // Copy item out of buffer
25 if p.in 2 p.out 5 N then notify(p.room) // Signal thread that there is room now
26 p.out ← p.out 1 1 // Increment out
27 release (p.buffer_lock)
28 return msg

Figure 5.28

An implementation of a virtual communication link for a system with locks, notify, and wait.

A

B

in = out release lock

notify A

wait forever
20 21 22

9–17

Time

2755�6 Thread Primitives for Sequence Coordination

to the buffer and notifies the receiver. The notification is lost because the receiver
hasn’t called wait yet. Now the receiver executes wait (A22) and waits for a notifica-
tion that will never come. The sender continues adding items to the buffer until the
buffer is full and then calls wait. Now both the receiver and sender are waiting.

We could modify the program to call notify on each invocation of send, but that
won’t fix the problem. It will make it more unlikely that the notification will be lost,
but it won’t eliminate the possibility. The following ordering of statements could hap-
pen: the receiver executes A20 and A21, then it is interrupted long enough for the
sender to add n items, and then the receiver calls A22. With this ordering, the receiver
misses all of the repeated notifications.

Swapping statements 21 and 22 will result in a lost notification too. Then the
receiver would call wait while still holding the lock on buffer_lock. But the sender
needs to be able to acquire buffer_lock in order to notify the receiver, so everything
would come to a halt.

The problem is that we have three operations on the shared buffer state that must
be turned into a before-or-after action: (1) testing if there is room in the shared buffer,
and (2) if not, going to sleep until there is room and (3) releasing the shared lock so
that another thread can make room. If these three operations are not a before-or-after
action, then the risk of the lost notification problem arises.

The pseudocode that uses wait and notify illustrates a tension between modularity
and locks. An observant reader might ask: if the problem is a race condition caused
by having concurrent threads running multistep actions (e.g., the sender (1) tests for
space and (2) calls wait, at the same time that the receiver (1) makes space and (2)
calls notify), why don’t we just make those steps into before-or-after actions by put-
ting a lock around them? The problem is that the steps we would like to make into
an atomic action are for the example of the sender (1) comparing in and out and (2)
changing the thread table entry from running to waiting. But the variables in and out are
owned by the sender and receiver modules, whereas the thread table is owned by the
thread manager module. These are not only separate modules, but the thread manager
is probably in the kernel. So who should own the lock that creates the before-or-after
action? We can’t allow correctness of the kernel to depend on a user program properly
setting and releasing a kernel lock, nor can we allow the correctness of the kernel to
depend on a user lock being correctly implemented. The real problem here is that the
lock needed to create the before-or-after action must protect an invariant that is a rela-
tion between a piece of application-owned state and a piece of system-owned state.

5.6.2 avoiding the lost notification problem with eventcounts
and sequencers

Designers have identified various solutions to the problem of creating before-or-after
actions to eliminate lost notifications. A general property of all these solutions is that
they bring some additional thread state that characterizes the event for which the
thread is waiting under protection of the thread table lock (i.e., thread_table_lock). By
extending the semantics of wait and notify to include examining and modifying the

276 CHAPTER 5 Enforcing Modularity with Virtualization

variable event_name, it is possible to avoid lost notifications. We leave that solution as
an exercise to the reader and instead offer simpler and more widely used solutions
based on primitives other than wait and notify. Problem set 13 introduces a solution
in which the additional thread state is held in what is called a condition variable,
and Birrell’s tutorial does a nice job of explaining how to program with threads and
condition variables [Suggestions for Further Reading 5.3.1]. Sidebar 5.7 and problem
set 12 describe a solution in which the additional thread state is a variable known as
a semaphore. In this section we describe a solution (one that is intended to be par-
ticularly easy to reason about) in which the additional thread state is found in variables
called eventcounts and sequencers [Suggestions for Further Reading 5.5.4]. In all of
these solutions, the additional thread state must be shared between the application
(e.g., send and receive) and the thread manager, so the semantics of wait/notify, condi-
tion variables, semaphores, eventcounts, and other similar solutions all contain non-
 obvious and sometimes quite subtle aspects. A good discussion of some of these subtle
issues is provided by Lampson and Redell [Suggestions for Further Reading 5.5.5].

Eventcounts and sequencers are variables that are shared among the sender, the
receiver, and the thread manager. They are manipulated using the following interface:

 ■ await (eventcount, value) is a before-or-after action that compares eventcount to
value. If eventcount exceeds value, await returns to its caller. If eventcount is less
than or equal to value, await changes the state of the calling thread to waiting,
places value and the name of eventcount in this thread’s entry in the thread table,
and yields its processor.

 ■ advance (eventcount) is a before-or-after action that increments eventcount by one
and then searches the thread table for threads that are waiting on this event-
count. For each one it finds, if eventcount now exceeds the value for which that
thread is waiting, advance changes that thread’s state to runnable.

 ■ ticket (sequencer) is a before-or-after action that returns a non-negative value that
increases by one on each call. Two threads concurrently calling ticket on the
same sequencer receive different values, and the ordering of the values returned
corresponds to the time ordering of the execution of ticket.

 ■ read (eventcount or sequencer) is a before-or-after action that returns to the caller
the current value of the variable. Having an explicit read procedure ensures
before-or-after atomicity for eventcounts and sequencers whose value may grow
to be larger than a memory cell.

To implement this interface, the scheduler skips over any thread that is in the
 waiting state.

To understand these primitives, consider first the implementation of a bounded
buffer for a single sender and receiver. Using eventcounts, we can rewrite the imple-
mentation of the bounded buffer from Figure 5.6 as shown in Figure 5.29. send waits
until there is space in the buffer. Because await implements the waiting operation, the
code in Figure 5.29 does not need the while loop that waits for success in Figure 5.6.
Once there is space, the sender adds the message to the buffer and increments in using

2775�6 Thread Primitives for Sequence Coordination

Sidebar 5.7 Avoiding the Lost Notification Problem with Semaphores
Semaphores are counters with special semantics for sequence coordination. A sema-
phore supports two operations:

- down (semaphore): if semaphore 0 decrement semaphore and return otherwise,
wait until another thread increases semaphore and then try to decrement again.

- up (semaphore): increment semaphore, wake up all threads waiting on semaphore,
and return.

Semaphores are inspired by the ones that the railroad system uses to coordinate the
use of a shared track. If a semaphore is down, trains must stop until the current train
on the track leaves the track and raises the semaphore. If a semaphore can take on only
the values 0 and 1 (sometimes called a binary semaphore), then up and down operate
similar to a railroad semaphore. Semaphores were introduced in computer systems
by the Dutch programmer Edgar Dijkstra (see also Sidebar 5.2), who called the down
operation P (“pakken”, for grabbing in Dutch) and the UP operation V (“verhogen”, for
raising in Dutch) [Suggestions for Further Reading 5.5.1].

The implementation of down and up must be before-or-after actions to avoid the lost
notification problem. This property can be realized in the same way as the eventcount
operations:

1 structure semaphore
2 integer count
3
4 procedure up (semaphore reference sem)
5 acquire (thread_table_lock)
6 sem.count ← sem.count 1 1
7 for i from 0 to 6 do // wakeup all threads waiting on this semaphore
8 if thread_table[i].state 5 waiting and thread_table[i].sem 5 sem then
9 thread_table[i].state ← runnable

10 release (thread_table_lock)

11 procedure down (semaphore reference sem)
12 acquire (thread_table_lock)
13 id ← get_thread_id()
14 thread_table[id].sem ← sem // record the semaphore ID is waiting on
15 while sem.count 1 do // give up the processor when sem 1
16 thread_table[id].state ← waiting

17 enter_processor_layer (id, cpuid)
18 sem.count ← sem.count 2 1
19 release (thread_table_lock)

Using semaphores, one can implement send and receive with a bounded buffer without
lost notifications (see problem set 12).

278 CHAPTER 5 Enforcing Modularity with Virtualization

advance, which may change the receiver’s state to runnable. Because await and advance
operations are before-or-after actions, the lost notification problem cannot occur.

Again, because await implements the waiting operation, the receiver implementa-
tion is also simple. receive waits until there is a message in the buffer. If so, the receiver
extracts the message from the buffer and increments out using advance, which may
change the sender’s state to runnable.

Figure 5.30 shows the implementation for the case of multiple senders with a
 single receiver. To ensure that several senders don’t try to write into the same location
within the buffer, we need to coordinate their actions. We can use the ticket primi-
tive to solve this problem, which requires changes only to send. The main difference
between Figure 5.30 and Figure 5.29 is that the senders must obtain a ticket to serial-
ize their operations. send obtains a ticket from the sequencer sender (line 7). ticket
operates likes the “take a number” machine in a bakery or post office. The returned
tickets create an ordering of senders and tell each sender its position in the order.
Each sender thread then waits until its turn comes up by invoking await, passing
as arguments the eventcount sent and the value of its ticket (t) (line 8). When sent
reaches the number on the ticket of a sender thread, that sender thread proceeds
to the next step, which is to wait until there is space in the buffer (line 9), and only
then does it add its item to its entry in buffer. Because ticket is a before-or-after action,
no two threads will get the same number. Again, because await and advance opera-
tions are before-or-after actions, the lost notification problem cannot happen.

Again, this solution doesn’t use a while loop that waits for the success in
Figure 5.6. With multiple senders, it is slightly tricky to see why this is correct. await
guarantees that eventcount exceeded value at some instant after await was called, but if
there are other, concurrent, threads that may increment value, by the time await’s caller
gets control back, eventcount may no longer exceed value. The proper view is that a

1 shared structure buffer
2 message instance message[N]
3 eventcount instance in initially 0
4 eventcount instance out initially 0

5 procedure send (buffer reference p, message instance msg)
6 await (p.out, p.in 2 N) // Wait until there is space in buffer
7 p.message[read(p.in) modulo N] ← msg // Copy message into buffer
8 advance (p.in) // Increment in and alert receiver

9 procedure receive (buffer reference p)
10 await (p.in, p.out) // Wait till something in buffer
11 msg ← p.message[read(p.out) modulo N] // Copy message out of buffer
12 advance (p.out) // Increment out and Alert sender
13 return msg

Figure 5.29

An implementation of a virtual communication link for a single sender and receiver using event-
counts.

2795�6 Thread Primitives for Sequence Coordination

return from await is a hint that the condition await was waiting for was true and it may
still be true, but the program that called await must check again to be sure.

The issue seems to arise when there are multiple senders. Suppose the buffer is full
(say in and out are 10) and there are two sending threads that are both waiting for a slot
to become empty. The first one of those sending threads that runs will absorb the buf-
fer entry and change in to 11. The second sending thread will find that in is 11 but out is
also 11, so from its point of view, await returned with in 5 out. Yet it doesn’t recheck the
condition. Closer inspection of the code reveals that this case can never arise because
the second sender is actually waiting its turn on the ticket returned by the sequencer

sender, not waiting for in out. There
is never a case in which two senders
are waiting for the same condition
to become true. If the program had
used a different way of coordinating
the senders, it might have required
a retest of the condition when await
returns. This is another example of
why programming with concurrent
threads requires great care.

If the implementation must also
work with multiple receivers, then a
similar sequencer is needed in receive
to allow the receivers to serialize
themselves.

With these additional primitives
for sequence coordination, we can
describe the life of a thread as a
state machine with four states (see
Figure 5.31). The thread manager

1 shared structure buffer
2 message instance message[N]
3 eventcount instance in initially 0
4 eventcount instance out initially 0
5 sequencer instance sender

6 procedure send (buffer reference p, message instance msg)
7 t ← ticket (p.sender) // Allocate a buffer slot
8 await (p.in, t) // Wait till previous slots are filled
9 await (p.out, read(p.in) 2 N) // Wait till there is space in buffer
10 p.message[read(p.in) modulo N] ← msg // Copy message into buffer
11 advance (p.in) // Increment in and alert receiver

Figure 5.30

An implementation of a virtual communication link for several senders using eventcounts.

WAITING

RUNNABLE RUNNING
SCHEDULER

EXIT_THREAD

NOT_ALLOCATED

ALLOCATE_THREAD

YIELD

AWAITADVANCE

Figure 5.31

Thread state diagram. In any of the three states
runnable, waiting, or running, a call to destroy_
thread sets a flag that causes the scheduler to
force the state to not_allocated the next time that
thread would have entered the running state.

280 CHAPTER 5 Enforcing Modularity with Virtualization

 creates a thread in the runnable state. The thread manager schedules one of the run-
nable threads and dispatches a processor to it; that thread changes to the running state.
By calling yield, the thread reenters the runnable state, and the manager can select
another thread and dispatch to it. Alternatively, a thread can change from the running
state to the not_allocated state by calling exit_thread� Or a running thread can enter the
waiting state by calling await when it cannot proceed until some event occurs. Another
thread, by calling advance, can make the waiting thread enter the runnable state again.

These primitives provide new opportunities for a programmer to create deadlocks.
For example, thread A may call await on an eventcount that it expects thread B to
advance, but thread B may be awaiting an eventcount that only thread A is in a position
to advance. Eventcounts and tickets can eliminate lost notifications, but the primitives
that manipulate them must still be used with care. The last few questions of problem
set 11 explore the problem of lost notifications by comparing a simple Web service
implemented using notify and advance.

5.6.3 implementing await, advance, ticket, and read (advanced topic)

To implement await, advance, ticket, and read we extend the thread manager as follows.
yield doesn’t require any modifications to support await and advance, but we must
extend the thread_table to record, for threads in the waiting state, a reference to the
eventcount on which it is waiting:

shared structure thread_table[7]
 integer topstack // value of the stack pointer
 integer state // waiting, runnable, terminate, not_allocated

 eventcount reference event // if waiting, the eventcount we are waiting on
 long integer value // if waiting, what value are we waiting for

shared lock instance thread_table_lock // lock to protect entries of thread_table

The field event is a reference to an eventcount so that the thread manager and the
calling thread can share it. This sharing is the key to resolving the tension mentioned
earlier: it allows a calling thread variable to be protected by the thread manager lock.

We implement await by testing the eventcount, setting the state to waiting if the test
fails, and calling enter_processor_layer to switch to the processor thread:

1 structure eventcount
2 long integer count

3 procedure await (eventcount reference event, value)
4 acquire (thread_table_lock)
5 id ← get_thread_id ()
6 thread_table[id].event ← event
7 thread_table[id].value ← value
8 if event.count ≤ value then thread_table[id].state ← waiting

9 enter_processor_layer (id, cpuid)
10 release (thread_table_lock)

This implementation of await releases its processor unless eventcount event exceeds
value in a before-or-after action. As before, the thread data structures are protected by

2815�6 Thread Primitives for Sequence Coordination

the lock thread_table_lock. In particular, the lock ensures that the line 8 comparison of
event with value and the potential change of state from running to waiting are two steps
of a before-or-after action that must occur either completely before or completely
after any concurrent call to advance that might change the value of event or the state of
this thread. The lock thus prevents lost notifications.

enter_processor_layer in await causes control to switch from this thread to the pro-
cessor thread, which may give the processor away. The thread that calls enter_proces-
sor_layer passes the lock it acquired to the processor thread, which passes it to the next
thread to run on this processor. Thus, no other thread can modify the thread state while
the thread that invoked await holds thread_table_lock. A return from that call to enter_
processor_layer means that some other thread called await or yield and the processor
thread has decided it is appropriate to assign a processor to this thread again. The
thread will return to line 10, release thread_table_lock, and return to the caller of await.

The advance procedure increments the eventcount event, finds all threads that
are waiting on count and whose value is less than count’s, and changes their state to
runnable:

1 procedure advance (eventcount reference event)
2 acquire (thread_table_lock)
3 event.count ← event.count 1 1
4 for i from 0 until 7 do
5 if thread_table[i].state 5 waiting and thread_table[i].event 5 event and
6 event.count thread_table[i].value then
7 thread_table[i].state ← runnable

8 release (thread_table_lock)

The key in the implementation of advance is that it uses thread_table_lock to make
advance a before-or-after action. In particular, the line 6 comparison of event.count with
thread[i].value and the line 7 change of state to runnable of the thread that called await
are now two steps of a before-or-after action. No thread calling await can interfere
with a thread that is in advance. Similarly, no thread calling advance can interfere with a
thread that is in await. This setup avoids races between await and advance, and thus the
lost notification problem.

advance just makes a thread runnable; it doesn’t call enter_processor_layer to
release its processor. The runnable thread won’t run until some other thread (perhaps
the caller of advance) calls yield or await, or until the scheduler preemptively releases
a processor.

We implement a sequencer and the ticket operation as follows:

1 structure sequencer
2 long integer ticket

3 procedure ticket (sequencer reference s)
4 acquire (thread_table_lock)
5 t ← s.ticket
6 s.ticket ← t 1 1
7 release (thread_table_lock)
8 return t

282 CHAPTER 5 Enforcing Modularity with Virtualization

For completeness, the implementation of read of an eventcount is as follows:

1 procedure read (eventcount reference event)
2 acquire (thread_table_lock)
3 e ← event.count
4 release (thread_table_lock)
5 return e

To ensure that read provides before-or-after atomicity, read is implemented as a
before-or-after action using locks. The implementation of read of a sequencer is
similar.

Recall that in Figure 5.8, acquire itself is implemented with a spin loop, polling
the lock continuously instead of releasing the processor. Given that acquire and
release are used to protect only short sequences of instructions, a spinning imple-
mentation is acceptable. Furthermore, inside the thread manager we must use a
spinning lock because if acquire (thread_table_lock) were to call await to wait until
the lock is unlocked, then the thread manager would be calling itself, but it isn’t
designed to be recursive. In particular, it does not have a base case that could stop
recursion.

5.6.4 polling, interrupts, and sequence Coordination

Some threads must interact with external devices. For example, the keyboard manager
must be able to interact with the keyboard controller on the keyboard, which is a
separate, special-purpose processor. As we shall see, this interaction is just another
example of sequence coordination.

The keyboard controller is a special-purpose processor, which runs a single pro-
gram that gathers key strokes. In the terminology of this chapter, we can think of the
keyboard controller as a single, hard-wired thread running with its own dedicated
processor. When the user presses a key, the keyboard controller thread raises a signal
line long enough to set a flip-flop, a digital circuit that can store one bit that the key-
board manager can read. The controller thread then lowers the signal line until next
time (i.e., until the next keystroke). The flip-flop shared between the controller and
the manager allows them to coordinate their activities.

In fact, using the shared flip-flop, the keyboard manager can run a wait-for-input
loop similar to the one in the receiver:

1 while flip_flop 5 0 do
2 yield ()

In this case, the keyboard controller sets the flip-flop and the keyboard manager reads
the flip-flip and tests it. If the flip-flop is not set, it reads 0, and the manager yields. If it
is set, it falls out of the loop. As a side-effect of reading the flip-flop, it is reset to 0, thus
providing a kind of coordination lock.

Here we have another example of polling. In polling, a thread keeps check-
ing whether another (perhaps hardware) thread needs attention. In our example,
the keyboard manager runs every time the scheduler offers it a chance, to see if

2835�6 Thread Primitives for Sequence Coordination

any new keys have been pressed. The keyboard manager thread is continually in a
 runnable state, and whenever the scheduler selects it to run, the thread checks the
flip-flop.

Polling has several disadvantages, especially if it is done by a program. If it is difficult
to predict the time until the event will occur, then there is no good choice for how
often a thread should poll. If the polling thread executes infrequently (e.g., because
the processors are busy executing other threads), then it might take a long time
before a device receives attention. In this case, the computer system might appear
to be unresponsive; for example, if a user must wait a long time before the computer
processes the user’s keyboard input, the user has a bad interactive experience. On
the other hand, if the scheduler selects the polling thread frequently (e.g., faster than
users can type), the thread wastes processor cycles, since often there will be no input
available. Finally, some devices might require that a processor executes their manag-
ers by a certain deadline because otherwise the device won’t operate correctly. For
example, the keyboard controller may have only a single keystroke register available
to communicate with the keyboard manager. If the user types a second keystroke
before the keyboard manager gets a chance to run and absorb the first one, the first
keystroke may be lost.

These disadvantages are similar to the disadvantages of not having explicit primi-
tives for sequence coordination. Without await and advance, the thread scheduler
doesn’t know when the receiver thread must run; therefore, the receiver thread may
make unnecessary, repeated calls to yield. This situation with the keyboard manager is
similar; ideally, when the controller has input that needs to be processed, it should be
able to alert the scheduler that the keyboard manager thread should run. We would like
to program the keyboard manager and keyboard controller as a sender and a receiver
using the primitives for sequence coordination, much as in Figure 5.30, except we
could use a solution that works for a single sender and a single receiver. Unfortunately,
the controller cannot invoke procedures such as await and advance directly; it shares
only a single flip-flop with the processors.

The trick is to move the polling loop down into the hardware by using inter-
rupts. The keyboard manager enables interrupts by setting a processor’s interrupt
control register to on, indicating to that processor that it must take interrupts from
the keyboard controller. Then, to check for an interrupt, the processor polls the
shared flip-flop at the beginning of every instruction cycle. When the processor finds
that the shared flip-flop has changed, instead of proceeding to the next instruction,
the processor executes the interrupt handler. In other words, interrupts are actually
imple mented as a polling loop inside a processor. A processor may support multiple
interrupts by providing multiple shared flip-flops and a map that associates a differ-
ent interrupt handler with each flip-flop.

A simple interrupt handler for the keyboard device calls advance, the call that the
keyboard controller is unable make directly, and then returns. The interrupted thread
continues operation without realizing that anything happened. But the next time any
thread calls yield or await, the thread manager can notice that the keyboard manager
thread has become runnable. When it runs, the keyboard manager can then copy the

284 CHAPTER 5 Enforcing Modularity with Virtualization

keystrokes from the device, translate them to a character representation, put them in
a shared buffer, (e.g., for the receiver), and wait for the next keystroke.

Because the interrupt handler gains control of a processor within one instruc-
tion time, it can be used to meet deadlines. For example, the interrupt handler
for the keyboard device could copy the user’s keystrokes to a buffer owned by
the keyboard manager immediately, instead of waiting until the keyboard manager
gets a chance to run. This way the keyboard device is immediately ready for the
user’s next keystroke. To meet such deadlines, interrupt handlers are usually more
elaborate than a single call to advance. It is common to place modest-sized chunks
of code in an interrupt handler to move data out of the device buffers (e.g., key-
strokes out of the keyboard device) or immediately restart an I/O device that has
turned itself off.

Putting code in an interrupt handler must be done with great care. An interrupt
handler must be cautious in reading or writing shared variables because it may be
invoked between any pair of instructions. Therefore, the handler cannot be sure of
the state of the thread currently running on the processor or on other processors.

Since interrupt handlers are not threads managed by the operating system thread
manager, the interrupt handlers and the operating system thread manager must be
carefully programmed. For example, the thread manager should call acquire and
release on the thread_table_lock with interrupts disabled because otherwise a dead-
lock might occur, as we saw in Section 5.5.4. As another example, an interrupt handler
should never call await because await may release its processor to the surprise of the
interrupted thread—the interrupted thread may be a thread that has nothing to do
with the interrupt but just happened to be running on the processor when the inter-
rupt occurred. On the other hand, an interrupt handler can invoke advance without
causing any problems.

The restrictions on exception handlers that process errors caused by the currently
running thread (e.g., a divide-by-zero error) are less severe because the handler runs
on behalf of the thread currently running on the processor. So, in that case, the han-
dler can call yield or await�

5.7 Case study: evOlutiOn OF enFOrCed mOdularity
in the intel x86

The previous sections introduced the main ideas for enforcing modularity within a
computer using a simple processor. This section presents a case study of how the
popular Intel x86 processor provides support for enforced modularity and how
 commonly used operating systems use this support. The next section provides a case
study of enforcing modularity at the processor level using virtual machines.

The Intel x86 processor architecture is currently the most widely used archi-
tecture for microprocessors of personal computers, laptops, and servers. The
x86 architecture started without any support for enforced modularity. As the
robustness of software on personal computers, laptops, and servers has become

2855�7 Case Study: Evolution of Enforced Modularity in the Intel x86

 important, the Intel designers have added support for enforcing modularity. The
Intel designers didn’t get it right on the first try. The evolution of x86 architecture
to include enforced modularity provides some good examples of the rapid improve-
ment in technology and challenges of designing complex systems, including market
pressure.

5.7.1 the early designs: no support for enforced modularity

In 1971 Intel produced its first microprocessor, the 4004, intended for calculators
and implemented in 2,250 transistors. The 4004 is a 4-bit processor (i.e., the word
size is 4 bits and the processor computes with 4-bit wide operands) and can address
as much as 4 kilobytes of program memory and 640 bytes of data memory. The 4004
provides a stack that can store only three stack frames, no interrupts, and no support
for enforcing modularity. Hardware support for the missing features was well known
in 1971, but there is little need for them in a calculator.

The follow-on processor, the 8080 (1974), was Intel’s first microprocessor that
was used in a personal computer, namely, the Altair, produced by MITS. Unlike the
4004, the 8080 is a general-purpose microprocessor. The 8080 has 5,000 transistors:
an 8-bit processor that can address up to 64 kilobytes of memory (16-bit addresses),
without support for enforcing modularity. Bill Gates and Paul Allen of Microsoft fame
developed a program that could run BASIC applications on the Altair. Since the Altair
couldn’t run more than a single, simple program at one time, there was still no need
for enforcing modularity.

The 8080 was followed by the 8086 in 1978, with 29,000 transistors. The 8086
is a 16-bit processor but with 20-bit bus addresses, allowing access to 1 megabyte
of memory. To make a 20-bit address out of a 16-bit address register, the 8086 has
four 16-bit wide segment descriptors. The 8086 combines the value in the segment
descriptors and the 16-bit address in an operand as follows: (16-bit segment descrip-
tor 3 16) 1 16-bit address, producing a 20-bit value. The segment descriptor can be
viewed as a memory address to which the 16-bit address in the operand field of the
instruction is added.

The primary purpose of these segments is to extend physical memory, as opposed
to providing enforced modularity. Using the four segment descriptors, a program
can refer to a total of 256 kilobytes of memory at one time. If a program needs to
address other memory, the programmer must save one of the segment descriptors
and load it with a new value. Thus, writing programs for the 8086 that use more than
256 kilobytes of memory is inconvenient because the programmer must keep track of
segment descriptors and where segment data is located.

Although the 8086 has a different instruction repertoire from the 8080, programs
for the 8080 could run on the 8086 unmodified using a translator provided by Intel. As
we will see, backwards compatibility is a recurring theme in the evolution of the Intel
processor architecture and one key to Intel’s success.

The 8088 (1979) was put together hastily in response to IBM’s request for a
 processor for its personal computer. The 8088 is identical to the 8086, except that it

286 CHAPTER 5 Enforcing Modularity with Virtualization

has an 8-bit data bus, which made the processor less expensive. Most devices at that
time had an 8-bit interface anyway. Microsoft supplied the operating system, named
Microsoft Disk Operating System (MS-DOS), for the IBM PC. Microsoft first licensed
the operating system from Seattle Computer Products and then acquired it shortly
before the release of the PC for $50,000. The IBM PC was a commercial success and
started the rise of Intel and Microsoft.

The IBM PC reserved the first 640 kilobytes of the 1-megabyte physical address
space for programs and the top 360 kilobytes for input and output. The designers
assumed that no programs on a personal computer needed more than 640 kilobytes
of memory. To keep the price and complexity down, neither 8088 nor MS-DOS had
any support for enforcing modularity.

5.7.2 enforcing modularity using segmentation

Because the IBM PC was inexpensive, it became widely used; more and more new
software was developed for it, and the existing software became richer in features. In
addition, users wanted to run several programs at the same time; that is, they wanted
to easily switch from one program to another without having to exit a program and
start it again later. These developments posed three new design goals for Intel and
Microsoft: larger address spaces to run more complex programs, running several pro-
grams at once, and enforcing modularity between them. Unfortunately, the last goal
conflicts with backwards compatibility because existing programs took full advantage
of having direct access to physical memory.

Intel’s first attempt to achieve some of these goals was the 80286* (1982), a
16-bit processor that can address up to 16 megabytes of memory (24-bit physi-
cal addresses) and has 134,000 transistors. The 80286 has two modes, named real
and protected: in real mode old 8086 programs can run; in protected mode new
programs can take advantage of enforced modularity through a change in the inter-
pretation of segment descriptors. In protected mode the segment descriptors don’t
define the base address of a segment (as in real mode); rather, they select a segment
descriptor out of a table of segment descriptors. This application of the design
principle decouple modules with indirection allows a protected-mode program to
refer to 214 segments. Furthermore, the low 2 bits of a segment selector are reserved
for permission bits; 2 bits supports four protection levels so that operating systems
designers can exploit several protection rings†. In practice, protection rings are of
limited usefulness, and operating system designers use only two rings (user and

*In 1982 Intel also introduced the 80186 and 80188, but these 6-mHz processors were used mostly
as embedded processors instead of processors for personal computing. One of the major contribu-
tions of the 80186 is the reduction in the number of chips required because it included a DMA
controller, an interrupt controller, and a timer.
†Michael D. Schroeder and Jerome H. Saltzer. A hardware architecture for implementing protection
rings. Communications of the ACM 15, 3 (March 1972), pages 157–170.

2875�7 Case Study: Evolution of Enforced Modularity in the Intel x86

kernel) to ensure, for example, that user-level programs cannot access kernel-only
segments.

Although Intel sold 15 million 80286s, it achieved the three goals only partially.
First, 24 bits was small compared to the 32 bits of address space offered by compet-
ing processors. Second, although it is easy to go from real to protected mode, there
was no easy way (other than exploiting an unrelated feature in the design of the
processor) to switch from protected mode back to real. This restriction meant that
an operating system could not easily switch between old and new programs. Third,
it took years after the introduction of the 80286 to develop an operating system,
OS/2, that could take advantage of the segmentation provided by the 80286. OS/2
was jointly created by Microsoft and IBM, for the purpose of taking advantage of
all the protected-mode features of the 80286. But when Microsoft grew concerned
about the project, it disowned OS/2, gave it to IBM, and focused instead on Windows
2.0. Most buyers didn’t wait for IBM and Microsoft to get their operating system acts
together and instead simply treated the 80286-based PC as a faster 8086 PC that
could use more memory.

Overlapping with the 80286, Intel invested over 100 person-years in the design of
a full-featured segment-based processor architecture known as the i432. This proces-
sor was a ground-up design to enforce modularity and support object-oriented pro-
gramming. The segment-based architecture included direct support for capabilities,
a protection technique for access control (see Chapter 11 [on-line]). The resulting
implementation was so complex that it didn’t fit on a single chip and it ran slower
than the 80286. It was eventually abandoned, not because it enforced modularity, but
because it was overly complex, slow, and lacked backward compatibility with the
x86 processor architectures.

5.7.3 page-based virtual address spaces

Under market pressure from Motorola, which was selling a 32-bit processor with
support for page-based virtual memory, Intel scratched the i432 and followed the
80286 with the 80386 in 1985. The 80386 has 270,000 transistors and addresses
the main shortcomings of the 80286, while still being backwards compatible
with it. The 80386 is a 32-bit processor, which can refer to up to 4 gigabytes of
memory (32-bit addresses) and supports 32-bit external data and address busses.
Compared with the two real and protected modes of the 80286, the 80386 pro-
vides an additional mode, called virtual real mode, which allows several real-mode
programs to run at the same time in virtual environments fully protected from
one another. The 80386 design also allows a single segment to grow to 232 bytes,
the maximum size of physical memory. Within a segment, the 80386 designers
added support for virtual memory using paging with a separate page table for each
segment. Operating system designers can choose to use virtual memory with seg-
ments, or pages, or both.

This design allows several old programs to run in virtual real mode, each in its
own paged address space. This design also allows old programs to have access to

288 CHAPTER 5 Enforcing Modularity with Virtualization

more memory than on the 80286, without being forced to use multiple segments.
Furthermore, because the 80386 segmentation was backwards compatible with the
80286, 80286 programs and the Windows 2.0 successor (Windows 3.0) could use
the larger segments without any modification. For these reasons, the 80386 was a
big hit immediately, but it took a while until 32-bit operating systems were available.
GNU/Linux, a widely-used open-source unix-based system came out in 1991, and
Microsoft’s Windows 3.1 and IBM’s OS/2 2.0 in 1992. All of these systems incorpo-
rated the enforced modularity ideas, pioneered in the time-sharing systems of the
1960s and 1970s.

5.7.4 summary: more evolution

After 1985, the Intel processor architecture was extended with new instructions,
but the core instruction repertoire remained the same. The main changes occurred
under the hood. Intel and other companies figured out how to implement processors
that provide the complex x86 instruction repertoire—some instructions are 1 byte,
and others can be up to 17 bytes long, which is why the literature calls the x86 a
Complex Instruction Set Computer, or CISC, while still running as fast as processor
architectures designed from scratch with a RISC instruction repertoire. This effort
has paid off in terms of performance but has required a large number of transistors
to achieve it.

Figure 5.32 shows the growth of Intel processors in terms of transistors over the
period 1970–2008*. The y-axis is on a logarithmic scale, and the straight line sug-
gests that the growth has been approximately exponential. The Pentium was origi-
nally designated the 80586, but Intel redesignated the 80586 the “Pentium” in order
to secure a trademark. This growth is a nice example of d(technology)/dt in action
(see Sidebar 1.6).

The growth in software is also large. Figure 5.33 shows the growth of the Linux
kernel in terms of lines of code during the period 1991–2008†. In this graph, the y-axis
is on a linear scale. As can be seen, the growth in terms of lines of code has been large,
and what is shown is just the kernel. A large contributor to this growth is device driv-
ers for new hardware devices.

The success of the x86 illustrates the importance of a specific instance of
the unyielding foundations rule: provide backwards compatibility. If one must
change an interface, keep the old interface around or simulate the old version of
the interface using the new version of the interface, so that clients keep working
without modifications. It is typically much less work to develop a simulation layer
that provides backwards compatibility than to reimplement all of the clients from
scratch.

For processors, backwards compatibility is particularly important because legacy
software is a big factor in the success of a processor architecture. The reason is that

*Source: Intel Web page (http://www.intel.com/pressroom/kits/quickreffam.htm).
†The sum of number of lines in all C files (source and include) in a kernel release.

http://www.intel.com/pressroom/kits/quickreffam.htm

2895�7 Case Study: Evolution of Enforced Modularity in the Intel x86

1990 1995 2000 2005
year

0

2000000

4000000

6000000

8000000

10000000

lin

es
 o

f c
od

e

0.01 1.0
2.0.1

2.2.0

2.4.0

2.6.0

2.6.10

2.6.20

2.6.27

Figure 5.33

Growth of the
 number of lines of
code in the Linux
kernel. The label
on each point is the
Linux release num-
ber. (Linear scale on
y-axis).

year

tr

an
si

st
or

s

1970 1980 1990 2000
1000

10000

100000

1E� 06

1E� 07

1E� 08

1E� 09

4004

8008

8086

286
386

486

Pentium

PII

PIII
P4

Pentium D

Core

Figure 5.32

Growth of the number
of transistors in Intel
processor chips. The
label on each point is
the commercial name
of the chip. (Log scale
on y-axis).

290 CHAPTER 5 Enforcing Modularity with Virtualization

legacy software is expensive to modify—the original programmers usually have
departed (or forgotten about it) and have not documented it well. Experience shows
that even minor modifications risk violating some undocumented assumptions, so
it is necessary for someone to understand the old program completely, which takes
almost as much effort as writing a completely new one. So customers will nearly
always choose the architecture that allows them to continue to run legacy software
unchanged. Because the x86 architecture provided backwards compatibility, it was
able to survive the competition from RISC processors.

Today we see the legacy software scenario being played out in the change from
32-bit virtual addresses to 64-bit virtual addresses. Intel’s Itanium architecture is gradu-
ally disappearing beneath the waves because it is not backwards compatible, while
competitor Advanced Micro Devices (AMD)’s 64-bit Athlon is backwards compatible
with the billion or so x86 processors currently in the field. At the time of writing, Intel
is abandoning the Itanium architecture and following AMD.

Backwards compatibility can also backfire. For example, Xerox decided it looked
more promising to create a PC-clone rather than to commercialize a workstation
that Xerox developed in its research lab, which had a mouse, a window manager,
and a WYSIWYG editor [Suggestions for Further Reading 1.3.3]. Steve Jobs saw the
prototype and developed an equivalent—the Apple Macintosh. The benefits of the
Macintosh were so great compared to PCs that customers were willing to buy it.
(The later evolution of the Macintosh is a different, less successful story.)

5.8 appliCatiOn: enFOrCing mOdularity using
virtual maChines

This chapter has introduced several high-level abstractions to virtualize processors,
memory, and links to enforce modularity. Applications interact with these abstractions
through a supervisor-call interface, and interrupt and exception handlers. Another
approach uses virtual machines. In this approach, a real physical machine is used
as much as possible to implement many virtual instances of itself (including its privi-
leged instructions, such as loading and storing to the page-map address register). That
is, virtual machines emulate many instances of a machine A using a real machine A. The
software that implements the virtual machines is known as a virtual machine moni-
tor. This section discusses virtual machines and virtual machine monitors in more
detail.

5.8.1 virtual machine uses

A virtual machine is useful in a number of situations:

To run several ■ guest operating systems side by side. For example, on one virtual
Intel x86 machine, one can run the GNU/Linux operating system, and on another

2915�8 Application: Enforcing Modularity Using Virtual Machines

one can run the Windows/XP operating system. If the virtual machine monitor
 implements the Intel x86 faithfully (i.e., instructions, state, protection levels,
page tables), then one can run GNU/Linux, Windows/XP, and their applications
on top of the monitor without modifications.

To contain errors in a guest operating system. Because the guest runs inside a ■

virtual machine, errors in the guest operating system cannot affect the operating
systems software on other virtual machines. This feature is handy for debugging
a new operating system or for containing an operating system that is flaky but
important for certain applications.

To simplify development of operating systems. The virtual machine monitor can ■

virtualize the physical hardware to provide a simpler interface, which may sim-
plify the development of an operating system. For example, the virtual machine
monitor may turn a multiprocessor computer into a few uniprocessor comput-
ers to allow the guest operating system to be written for a uniprocessor, which
simplifies coordination.

5.8.2 implementing virtual machines

Virtual machine monitors can be implemented in two ways. First, one can run the
monitor directly on hardware in kernel mode, with the guest operating systems in
user mode. Second, one can run the monitor as an application in user mode on top
of a host operating system. The latter may be less complex to implement because the
monitor can take advantage of the abstractions provided by the host operating sys-
tems, but it is only possible if the host operating system forwards all the events that
monitor needs to perform its job. For simplicity, we assume the first approach (see
Figure 5.34); the issues are the same in either case.

Word Internet
explorer

Windows OS GNU/ Linux

X Window
system

Firefox

Virtual machine monitor

Guest operating
systems

Kernel mode

User mode

Figure 5.34

A virtual machine monitor providing two virtual machines, each running a different guest
 operating with its own applications.

292 CHAPTER 5 Enforcing Modularity with Virtualization

To implement virtual machine, the virtual machine monitor must provide three
primary functions:

1. Virtualizing the computer. For example, if a guest operating system stores a
new value into the page-map address register, then the monitor must make the
guest operating system believe that it can do so, even though the guest is run-
ning in user mode.

2. Dispatch events. For example, the monitor must forward interrupts, exceptions,
and supervisor calls invoked by the applications to the appropriate guest oper-
ating systems.

3. Allocate resources. For example, the monitor must divide physical memory
among the guest operating systems.

Virtualizing the computer is easy if all instructions are virtualizable. That is,
all the instructions that allow a guest to tell the difference between running on
the physical and running on a virtual machine must result in an exception to the
monitor so that the monitor can emulate the intended behavior. In addition, the
exception must leave enough information for the exception handler to emulate
the instruction and restart the guest operating system as if it has executed the
instruction.

Consider instructions that load the page-map address register. These instructions
behave differently in user mode and kernel mode. In user mode, these instructions
result in an illegal instruction exception (because they are privileged), and in ker-
nel mode the hardware performs them. If a guest operating system invokes such an
instruction, for example, to switch to another application on the guest, the monitor
must emulate that instruction faithfully so that the application will run with the right
page-map. Thus, a requirement for such an instruction is that it results in an exception
so that the monitor receives control, that it leaves enough information around that the
monitor can emulate it, and that the monitor can restart the guest as if it executed
the instruction. That is, the guest should not be able to tell that the monitor emulated
the instruction.

If an instruction behaves differently in kernel mode than in user mode and
doesn’t result in an exception, then the instruction is called non-virtualizable.
For example, on the Intel x86 processor enabling interrupts is done by setting the
interrupt-enable bit in a register called eflags. This instruction behaves differently
in user mode and in kernel mode. In user mode, the instruction does not have any
effect (i.e., the processor just ignores it), but in kernel mode, the instruction sets the
bit in the eflags register and allows interrupts. If a guest operating system invokes
this instruction in user space, it will do nothing, but the guest operating system
assumes that it is running in kernel mode and that the instruction will enable inter-
rupts. This instruction is an example of a non-virtualizable instruction, and handling
instructions like these requires a more sophisticated plan, which is beyond the
scope of this text. The paper by Adams and Agesen explains it well [Suggestions for
Further Reading 5.6.4].

2935�8 Application: Enforcing Modularity Using Virtual Machines

Allocating resources well among the guest operating systems is more challenging
than the usual scheduling problem. For example, the monitor must guess which blocks
of physical memory are not in use so that it can use those blocks for other guests; the
monitor cannot directly inspect the guest’s list of free memory blocks. The paper
by Waldspurger introduces a nice trick for addressing this problem [Suggestions for
Further Reading 5.6.3]. As another example, the monitor must guess when a guest
operating system has no work to do; the monitor cannot directly observe that the
guest is in its idle loop. The literature on virtual machines contains schemes to address
these challenges.

5.8.3 virtualizing example

To make concrete what the implementation challenges of these functions are,
 consider a guest operating system that implements its own page tables, mapping
virtual addresses to physical addresses. Let’s assume that this guest operating system
runs on the processor developed in this text. The goal of the virtual machine moni-
tor is to run several guest operating system by virtualizing the example processor
used in this book (see Section 2.1.2), extended with the instructions documented in
this chapter.

To allow each guest operating system to address all physical memory, but not
other guests’ physical memory, the virtual machine monitor must guard the guest’s
physical addresses. One way to do so is to virtualize addresses recursively. That
is, the guest and virtual machine translate application virtual addresses to virtual
machine addresses; the monitor translates machine virtual addresses to physical
addresses. One challenge in designing the monitor is to maintain this mapping
from application virtual to virtual machine to physical addresses. The general plan
is for the monitor to emulate loads and stores to the page-map address register, and
keep its own translation map per virtual machine, which we will refer to as the
machine map.

The monitor can deduce which virtual machine memory a guest is using and the
mappings from virtual to machine addresses when the guest invokes a store instruc-
tion to the page-map address register. Because this instruction is privileged, the pro-
cessor will generate an illegal-instruction exception and transfer control to the moni-
tor. The argument to the store instruction contains the machine address of a page
map. The monitor can read that memory and see which virtual machine memory the
guest is planning to use and what the guest’s mappings from virtual to machine are
(including the permissions).

For each machine page (including the one that holds the guest page map), the
monitor can allocate a physical page and record in the machine map the transla-
tion from virtual to machine to physical address, together with its permissions.
Equipped with this information, the monitor can construct a new page map that
maps the guest’s virtual addresses to physical addresses and install that new map
in the real page-map address register (which will succeed since the monitor is

294 CHAPTER 5 Enforcing Modularity with Virtualization

 running in kernel mode). Thus, although there are two layers of page maps (virtual
to machine and machine to physical), the translation performed by the physical
processor is only one level: it translates application virtual addresses directly to
physical addresses, using the new page map set up by the monitor. To support this
double translation plan efficiently, Intel and AMD have added additional hardware
support.

As the final step, the monitor can resume the guest operating system at the instruc-
tion after the store to the page-map addresses register, providing the illusion to the
guest that it updated the page-map address register directly. Now the guest and the
 applications can continue execution.

If the guest changes its page map (e.g., it switches to one of its other applications),
the monitor will learn about this event because the store to the page-map address
register will result in an exception (because the instruction is privileged) and invoke
an exception handler in the monitor. The exception handler emulates this instruc-
tion by updating the physical page-map address register as above and resumes the
guest.

If the monitor wants to switch to another guest OS, it can just switch the
page-map address register to the new guest’s page map, like a switch between
applications.

If the application addresses a page that is not part of its address space, the hard-
ware will generate a missing-page exception, which will invoke an exception handler
in the monitor. Then, the exception handler in the monitor can invoke the excep-
tion handler of the appropriate guest. The guest exception handler now believes
it received the missing-page exception directly from the processor, and it can take
appropriate action.

A reader interested in learning more about this topic might find the readings on
virtual machines useful [Suggestions for Further Reading 5.6].

exerCises
5.1 Chapter 1 discussed four general methods for coping with complexity: modular-

ity, abstraction, hierarchy, and layering.
5.1a Which of those four methods does virtual memory use as its primary organizing

scheme?
5.1b Which does a microkernel use? Explain.

1996–1–1c,e

5.2 Alyssa is trying to organize her notes on virtual memory systems, and it occurred
to her that virtual memory systems can usefully be analyzed as naming systems.
She went through Chapter 3 and made a list of some technical terms about nam-
ing systems; that list is on the right, below. She then listed some mechanisms
found in virtual memory systems on the left. But she isn’t sure which naming

295Exercises

concept goes with which mechanism. Help Alyssa out by telling her which let-
ters on the right apply to each numbered mechanism on the left.

1. page map a. Search path

2. virtual address b. Naming network

3. physical address c. Context reference

4. a TLB entry d. Object

5. the page-map address register e. Name

 f. Context

 g. None of the above

1994–2–4

5.3 The Modest Mini Corporation’s best-selling computer allows at most two users to
run at a time. Its only addressing architecture feature is a single page map, which
creates a simple linear address space for the processor. The time- sharing system
for this computer loads the page map with a set of memory block addresses
before running a user; to switch to the other user, it reloads the entire page map
with a new set of memory block addresses. Normally, the set of memory blocks
belonging to one user has no overlap with the set of memory blocks belonging
to the other user, except that memory block 19 is always assigned as page 3 in
every user’s address space, providing a “communication region”.
5.3a Protection and privacy are obviously a problem with a completely public commu-

nication area, but is there any other difficulty in using the communication region
for any of the following types of data?
A. The character string name of the payroll file
B. An integer representing the number of names in the current payroll file
C. The virtual memory address, within the communication region, of another data

item
D. The virtual memory address of a program that lies outside the communication

region
E. A small program that is designed to remain within the communication region

and execute there

1980–2–4a

5.3b Ben Bitdiddle has decided that programming with page 3 always preassigned is a
nuisance. He has therefore proposed that a call to the system be added that reas-
signs the communication region to a different page of the calling user’s address
space, while not affecting the other users. What effect would this proposal have on
your answers to 5.3a?

1980–2–4b

296 CHAPTER 5 Enforcing Modularity with Virtualization

5.4 One advantage of a microkernel over a monolithic kernel is that it reduces the
load on the translation look-aside buffer, and thereby increases its hit rate and its
consequent effect on performance. True or False? Explain.

1994–1–3a

5.5 Louis writes a multithreaded program, which produces an incorrect answer
some of the time, but always completes. He suspects a race condition. Which of
the following are strategies that can reduce, and with luck eliminate, race condi-
tions in Louis’s program?
A. Separate a multithreaded program into multiple single-threaded programs, run each

thread in its own address space, and share data between them via a communication
link that uses send and receive.

B. Apply the one-writer rule.
C. Ensure that for each shared variable v, it is protected by some lock lv.
D. Ensure that all locks are acquired in the same order.

2006–1–4

5.6 Which of the following statements about operating system kernels are true?
A. Preemptive scheduling allows the kernel’s thread manager to run applications in a

way that helps avoid fate sharing.
B. The kernel serves as a trusted intermediary between programs running on the same

computer.
C. In an operating system that provides virtual memory, the kernel must be invoked to

resolve every memory reference.
D. When a kernel switches a processor from one application to another, the target applica-

tion sets the page-map address register appropriately after it is running in user space.

2007–1–4

5.7 Two threads, A and B, execute a procedure named glorp but always at different
times (that is, only one of the threads calls the procedure at a given time). glorp
contains the following code:

 procedure glorp ()
 acquire (lock_a)
 acquire (lock_b)
 …
 release (lock_b)
 release (lock_a)
 …
 acquire (lock_b)
 acquire (lock_a)
 …
 release (lock_a)
 release (lock_b)

297Exercises

5.7a Assuming that no other code in other procedures ever acquires more than one lock
at a time, can there be a deadlock? (If yes, give an example; if not, argue why not.)

1995–1–3a

5.7b Now, assuming that the two threads can be in the code fragment above at the same
time, can the program deadlock? (If yes, give an example; if not, argue why not.)

1995–1–3b

5.8 Consider three threads, concurrently executing the three programs shown
here. The variables x, y, and z are integers with initial value 0.

 Thread 1: Thread 2: Thread 3:

for i from 1 to 100 do for i from 1 to 100 do for i from 1 to 100 do
 acquire (A) acquire (B) acquire (A)
 acquire (B) acquire (C) acquire (C)
 x ← x 1 1 y ← z 1 1 z ← x 1 1
 release (B) release (C) release (C)
 release (A) release (B) release (A)

5.8a Can executing these three threads concurrently produce a deadlock? (If yes, give
an example; if not, argue why not.)

1993–1–5a

5.8b Does your answer change if the order of the release operations in each thread is
reversed? (If they can deadlock, give an example; if not, argue why not.)

1993–1–5b

Additional exercises relating to Chapter 5 can be found in the problem sets
beginning on page 425.

299

CHAPTER

Overview ��300
6�1 Designing for Performance ���300

6.1.1 Performance Metrics ...302
6.1.2 A Systems Approach to Designing for Performance304
6.1.3 Reducing Latency by Exploiting Workload Properties306
6.1.4 Reducing Latency using Concurrency ...307
6.1.5 Improving Throughput: Concurrency ...309
6.1.6 Queuing and Overload ...311
6.1.7 Fighting Bottlenecks ...313
6.1.8 An Example: The I/O Bottleneck ..316

6�2 Multilevel Memories ��321
6.2.1 Memory Characterization ...322
6.2.2 Multilevel Memory Management using Virtual Memory323
6.2.3 Adding Multilevel Memory Management to a Virtual Memory...................327
6.2.4 Analyzing Multilevel Memory Systems ..331
6.2.5 Locality of Reference and Working Sets ..333
6.2.6 Multilevel Memory Management Policies ..335
6.2.7 Comparative Analysis of Different Policies ..340
6.2.8 Other Page-Removal Algorithms ...344
6.2.9 Other Aspects of Multilevel Memory Management346

6�3 Scheduling ��347
6.3.1 Scheduling Resources...348
6.3.2 Scheduling Metrics ...349
6.3.3 Scheduling Policies ..352
6.3.4 Case Study: Scheduling the Disk Arm ...360

Exercises ���362

CHAPTER CONTENTS

Performance 6

Principles of Computer System Design: An Introduction
Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. All rights of reproduction in any form reserved.
DOI: 10.1016/B978-0-12-374957-4.00014-1

300 CHAPTER 6 Performance

Overview
The specification of a computer system typically includes explicit (or implicit) perfor-
mance goals. For example, the specification may indicate how many concurrent users
the system should be able to support. Typically, the simplest design fails to meet these
goals because the design has a bottleneck, a stage in the computer system that takes
longer to perform its task than any of the other stages. To overcome bottlenecks, the
system designer faces the task of creating a design that performs well, yet is simple
and modular.

This chapter describes techniques to avoid or hide performance bottlenecks.
Section 6.1 presents ways to identify bottlenecks and the general approaches to han-
dle them, including exploiting workload properties, concurrent execution of opera-
tions, speculation, and batching. Section 6.2 examines specific versions of the general
techniques to attack the common problem of implementing multilevel memory sys-
tems efficiently. Section 6.3 presents scheduling algorithms for services to choose
which request to process first, if there are several waiting for service.

6.1 Designing fOr perfOrmance
Performance bottlenecks show up in computer systems for two reasons. First, limits
imposed by physics, technology, or economics restrict the rate of improvement in
some dimensions of technology, while other dimensions improve rapidly. An obvious
class of limits are the physical ones. The speed of light limits how fast signals travel
from one end of a chip to the other, how many memory elements can be within a
given latency from the processor, and how fast a network message can travel in the
Internet. Many other physical limits appear in computer systems, such as power and
heat dissipation.

These limits force a designer to make trade-offs. For example, by shrinking a chip,
a designer can make the chip faster, but it also reduces the area from which heat can
be dissipated. Worse, the power dissipation increases as the designer speeds up the
chip. A related trade-off is between the speed of a laptop and its power consump-
tion. A designer wants to minimize a laptop’s power consumption so that the battery
lasts longer, yet customers want laptops with fast processors and large, bright screens.

Physical limits are only a subset of the limits a designer faces; there are also algo-
rithmic, reliability, and economic limits. More limits mean more trade-offs and a higher
risk of bottlenecks.

The second reason bottlenecks surface in computer systems is that several clients
may share a device. If a device is busy serving one client, other clients must wait until
the device becomes available. This property forces the system designer to answer
questions such as which client should receive the device first. Should the device
first perform the request that requires little work, perhaps at the cost of delaying the
request that requires a lot of work? The designer would like to devise a scheduling
plan that doesn’t starve some clients in favor of others, provides low turnaround time

3016�1 Designing for Performance

for each individual client request, and has little overhead so that it can serve many
 clients. As we will see, it is impossible to maximize all of these goals simultaneously,
and thus a designer must make trade-offs. Trade-offs may favor one class of requests
over another and may result in bottlenecks for the unfavored classes of requests.

Designing for performance creates two major challenges in computer systems.
First, one must consider the benefits of optimization in the context of technology
improvements. Some bottlenecks are intrinsic ones; they require careful thinking to
ensure that the system runs faster than the performance of the slowest stage. Some
bottlenecks are technology dependent; time may eliminate these, as technology
improves. Unfortunately, it is sometimes difficult to decide whether or not a bottle-
neck is intrinsic. Not uncommonly, a performance optimization for the next product
release is irrelevant by the time the product ships because technology improvements
have removed the bottleneck completely. This phenomenon is so common in com-
puter design that it has led to formulation of the design hint: when in doubt use
brute force. Sidebar 6.1 discusses this hint.

Sidebar 6.1 Design Hint: When in Doubt use Brute Force This chapter describes
a few design hints that help a designer resolve trade-offs in the face of limits. These
design hints are hints because they often guide the designer in the right direction,
but sometimes they don’t. In this book we cover only a few, but the interested
reader should digest Hints for computer system design by B. Lampson, which pres-
ents many more practical guidelines in the form of hints [Suggestions for Further
Reading 1.5.4].

The design hint “when in doubt use brute force” is a direct corollary of the
d(technology)/dt curve (see Section 1.4). Given computing technology’s historical
rate of improvement, it is typically wiser to choose simple algorithms that are well
understood rather than complex, badly characterized algorithms. By the time the com-
plex algorithm is fully understood, implemented, and debugged, new hardware might
be able to execute the simple algorithm fast enough. Thompson and Ritchie used a
fixed-size table of processes in the unix system and searched the table linearly because
a table was simple to implement and the number of processes was small. With Joe
Condon, Thompson also built the Belle chess machine that relied mostly on special-
purpose hardware to search many positions per second rather than on sophisticated
algorithms. Belle won the world computer chess championships several times in the
late 1970s and early 1980s and achieved an ELO rating of 2250. (ELO is a numerical
rating systems used by the World Chess Federation (FIDI) to rank chess players; a
rating of 2250 makes one a strong competitive player.) Later, as technology marched
on, programs that performed brute-force searching algorithms on an off-the-shelf PC
conquered the world computer chess championships. As of August 2005, the Hydra
supercomputer (64 PCs, each with a chess coprocessor) is estimated by its creators to
have an ELO rating of 3200, which is better than the best human player.

302 CHAPTER 6 Performance

A second challenge in designing for performance is maintaining the simplicity
of the design. For example, if the design uses different devices with approximately
the same high-level function but radically different performance, a challenge is to
abstract devices such that they can be used through a simple uniform interface. In
this chapter, we see how a clever implementation of the read and write interface
for memory can transparently extend the effective size of RAM to the size of a
 magnetic disk.

6.1.1 performance metrics

To understand bottlenecks more fully, recall that computer systems are organized
in modules to achieve the benefits of modularity and that to process a request, the
request may be handed from one module to another. For example, a camera may gen-
erate a continuous stream of requests containing video frames and send them to a
service that digitizes each frame. The digitizing service in turn may send its output to
a file service that stores the frames on a magnetic disk.

By describing this application in a client/service style, we can obtain some insights
about important performance metrics. It is immediately clear that in a computer sys-
tem such as this one, four metrics are of importance: the capacity of the service, its
utilization, the time clients must wait for request to complete, and throughput, the
rate at which services can handle requests. We will discuss each metric in turn.

6.1.1.1 Capacity, Utilization, Overhead, and Useful Work
Every service has some capacity, a consistent measure of a service’s size or amount
of resources. Utilization is the percentage of capacity of a resource that is used for
some given workload of requests. A simple measure of processor capacity is cycles.
For example, the processor might be utilized 10% for the duration of some workload,
which means that 90% of its processor cycles are unused. For a magnetic disk, the
capacity is usually measured in sectors. If a disk is utilized 80%, then 80% of its sectors
are used to store data.

In a layered system, each layer may have a different view of the capacity and utili-
zation of the underlying resources. For example, a processor may be 95% utilized but
delivering only 70% of its cycles to the application because the operating system uses
25%. Each layer considers what the layers below it do to be overhead in time and
space, and what the layers above it do to be useful work. In the processor example,
from the application point of view, the 25% of cycles used by the operating system is
overhead and the 70% is useful work. In the disk example, if 10% of the disk is used for
storing file system data structures, then from the application point of view that 10%
used by the file system is overhead and only 90% is useful capacity.

6.1.1.2 Latency
Latency is the delay between a change at the input to a system and the corresponding
change at its output. From the client/service perspective, the latency of a request is the
time from issuing the request until the time the response is received from the service.

3036�1 Designing for Performance

This latency has several components: the latency of sending a message to the service,
the latency of processing the request, and the latency of sending a response back.

If a task, such as asking a service to perform a request, is a sequence of subtasks, we
can think of the complete task as traversing stages of a pipeline, where each stage of
the pipeline performs a subtask (see Figure 6.1). In our example, the first stage in the
pipeline is sending the request, the second stage is the service digitizing the frame, the
third stage is the file service storing the frame, and the final stage is sending a response
back to the client.

With this pipeline model in mind, it is easy to see that latency of a pipeline with
stages A and B is greater than or equal to the sum of the latencies for each stage in
the pipeline:

latencyA1B latencyA 1 latencyB

It is possibly greater because passing a request from one stage to another might
add some latency. For example, if the stages correspond to different services, perhaps
running on different computers connected by a network, then the overhead of pass-
ing requests from one stage to another may add enough latency that it cannot be
ignored.

If the stages are of a single service, that additional latency is typically small (e.g., the
overhead of invoking a procedure) and can usually be ignored for first-order analy-
sis of performance. Thus, in this case, to predict the latency of a service that isn’t
 running yet but is expected to perform two functions, A and B, with known laten-
cies, a designer can approximate the joint latency of A and B by adding the latency
of A and the latency of B.

6.1.1.3 Throughput
Throughput is a measure of the rate of useful work done by a service for some given
workload of requests. In the camera example, the throughput we might care about is
how many frames per second the system can process because it may determine what
quality camera we want to buy.

The throughput of a system with pipelined stages is less than or equal to the mini-
mum of the throughput for each stage:

throughputA1B minimum(throughputA, throughputB)

figure 6.1

A simple service composed of several stages.

Stage 1 Stage 2 Stage n
Request

...
Response

Service

304 CHAPTER 6 Performance

Again, if the stages are of a single service, passing the request from one stage to
another usually adds little overhead and has little impact on total throughput. Thus,
for first-order analysis that overhead can be ignored, and the relation is usually close
to equality.

Consider a computer system with two stages: one that is able to process data at
a rate of 1,000 kilobytes per second and a second one at a rate of 100 kilobytes per
second. If the fast stage generates one byte of output for each byte of input, the overall
throughput must be less than or equal to 100 kilobytes per second. If there is negligi-
ble overhead in passing requests between the two stages, then the throughput of the
system is equal to the throughput of the bottleneck stage, 100 kilobytes per second. In
this case, the utilization of stage 1 is 10% and that of stage 2 is 100%.

When a stage processes requests serially, the throughput and the latency of a stage
are directly related. The average number of requests a stage handles is inversely pro-
portional to the average time to process a single request:

throughput 5 1 latency

If all stages process requests serially, the average throughput of the complete pipe-
line is inversely proportional to the average time a request spends in the pipeline. In
these pipelines, reducing latency improves throughput, and the other way around.

When a stage processes requests concurrently, as we will see later in this chapter,
there is no direct relationship between latency and throughput. For stages that pro-
cess requests concurrently, an increase in throughput may not lead to a decrease in
latency. A useful analogy is pipes through which water flows with a constant velocity.
One can have several parallel pipes (or one fatter pipe), which improves throughput
but doesn’t change latency.

6.1.2 a systems approach to Designing for performance

To gauge how much improvement we can hope for in reducing a bottleneck, we
must identify and determine the performance of the slowest and the next-slowest
bottleneck. To improve the throughput of a system in which all stages have equal
throughput requires improving all stages. On the other hand, improving the stage that
has a throughput that is 10 times lower than any other stage’s throughput may result
in a factor of 10 improvement in the throughput of the whole system. We might deter-
mine these bottlenecks by measurements or by using simple analytical calculations
based on the performance characteristics of each bottleneck. In principle, the per-
formance of any issue in a computer system can be explained, but sometimes it may
require substantial digging to find the explanation; see, for example, the study by Perl
and Sites on Windows NT’s performance [Suggestions for Further Reading 6.4.1].

One should approach performance optimization from a systems point of view.
This observation may sound trivial, but many person-years of work have disappeared
in optimizing individual stages that resulted in small overall performance improve-
ments. The reason that engineers are tempted to fine-tune a single stage is that

3056�1 Designing for Performance

 optimizations result in some measurable benefits. An individual engineer can design
an optimization (e.g., replacing a slow algorithm with a faster algorithm, removing
unnecessary expensive operations, reorganizing the code to have a fast path, etc.),
implement it, and measure it, and can usually observe some performance improve-
ment in that stage. This improvement stimulates the design of another optimization,
which results in new benefits, and so on. Once one gets into this cycle, it is difficult to
keep the law of diminishing returns in mind and realize that further improvements
may result in little benefit to the system as a whole.

Since optimizing individual stages typically runs into the law of diminishing returns,
an approach that focuses on overall performance is preferred. The iterative approach
articulated in Section 1.5.2 achieves this goal because at each iteration the designer
must consider whether or not the next iteration is worth performing. If the next itera-
tion identifies a bottleneck that, if removed, shows diminished returns, the designer
can stop. If the final performance is good enough, the designer’s job is done. If the
final performance doesn’t meet the target, the designer may have to rethink the whole
design or revisit the design specification.

The iterative approach for designing for performance has the following steps:

1. Measure the system to find out whether or not a performance enhancement
is needed. If performance is a problem, identify which aspect of performance
(throughput or latency) is the problem. For multistage pipelines in which stages
process requests concurrently, there is no direct relationship between latency
and throughput, so improving latency and improving throughput might require
different techniques.

2. Measure again, this time to identify the performance bottleneck. The bottleneck
may not be in the place the designer expected and may shift from one design
iteration to another.

3. Predict the impact of the proposed performance enhancement with a simple
back-of-the-envelope model. (We introduce a few simple models in this chap-
ter.) This prediction includes determining where the next bottleneck will be.
A quick way to determine the next bottleneck is to unrealistically assume that
the planned performance enhancement will remove the current bottleneck and
result in a stage with zero latency and infinite throughput. Under this assump-
tion, determine the next bottleneck and calculate its performance. This calcula-
tion will result in one of two conclusions:

 Removing the current bottleneck doesn’t improve system performance a.
significantly. In this case, stop iterating, and reconsider the whole design
or revisit the requirements. Perhaps the designer can adjust the interfaces
 between stages with the goal of tolerating costly operations. We will discuss
several approaches in the next sections.

 Removing the current bottleneck is likely to improve the system performance. b.
In this case, focus attention on the bottleneck stage. Consider brute-force
methods of relieving the bottleneck stage (e.g., add more memory). Taking

306 CHAPTER 6 Performance

advantage of the
d(technology)

dt

 curve may be less expensive than being

clever. If brute-force methods won’t relieve the bottleneck, be smart. For
 example, try to exploit properties of the workload or find better algorithms.

4. Measure the new implementation to verify that the change has the predicted
impact. If not, revisit steps 1–3 and determine what went wrong.

5. Iterate. Repeat steps 1–5 until the performance meets the required level.

The rest of this chapter introduces various systems approaches to reducing
latency and increasing throughput, as well as simple performance models to predict
the resulting performance.

6.1.3 reducing Latency by exploiting workload properties

Reducing latency is difficult because the designer often runs into physical, algorith-
mic, and economic limits. For example, sending a message from a client on the east
coast of the United States to a service on the west coast is dominated by the speed of
light. Looking up an item in a hash table cannot go faster than the best algorithm for
implementing hash tables. Building a very large memory that has uniform low latency
is economically infeasible.

Once a designer has run into such limits, the common approach is to reduce
the latency of some requests, perhaps even at the cost of increasing the latency for
other requests. A designer may observe that certain requests are more common than
other requests, and use that observation to improve the performance of the frequent
operations by splitting the staged pipeline into a fast path for the frequent requests
and a slow path for other requests (see Figure 6.2). For example, a service might
remember the results of frequently asked requests so that when it receives a repeat
of a recently handled request, it can return the remembered result immediately with-
out having to recompute it. In practice, exploiting non-uniformity in applications

Stage 1

Stage 2

Stage n

...

Service

Stage

Slow path

Fast path

Request Response

figure 6.2

A simple service with a slow and fast path.

3076�1 Designing for Performance

works so well that it has led to the design hint optimize for the common case (see
Sidebar 6.2).

To evaluate the performance of systems with a fast and slow path, designers typi-
cally compute the average latency. If we know the latency of the fast and slow paths,
and the frequency with which the system will take the fast path, then the average
latency is:

AverageLatency 5 Frequencyfast 3 Latencyfast 1 Frequencyslow 3 Latencyslow (6.1)

Whether introducing a fast path is worth the effort is dependent on the relative
difference in latency between the fast and slow path, and the frequency with which
the system can use the fast path, which is dependent on the workload. In addition, one
might be able to change the design so that the fast path becomes faster at the cost of
a slower slow path. If the frequency of taking the fast path is low, then introducing a
fast path (and perhaps optimizing it at the cost of the slow path) is likely not worth
the complexity. In practice, as we will see in Section 6.2, many workloads don’t have
a uniform distribution of requests, and introducing a fast path works well.

6.1.4 reducing Latency using concurrency

Another way to reduce latency that may require some intellectual effort but that can
be effective is to parallelize a stage. We take the processing that a stage must do for a
single request and divide that processing up into subtasks that can be performed con-
currently. Then, whenever several processors are available they can be assigned to run

Sidebar 6.2 Design Hint: Optimize for the Common Case A cache (see
Section 2.1.1.3) is the most common example of optimizing for the most fre-
quent cases. We saw caches in the case study of the Domain Name System (in
Section 4.4). As another example, consider a Web browser. Most Web browsers
maintain a cache of recently accessed Web pages. This cache is indexed by the name
of the Web page (e.g., http://www.Scholarly.edu) and returns the page for that name. If
the user asks to view the same page again, then the cache can return the cached copy
of the page immediately (a fast path); only the first access requires a trip to the service
(a slow path). In addition to improving the user’s interactive experience, the cache
helps reduce the load on services and the load on the network. Because caches are so
effective, many applications use several of them. For example, in addition to caching
Web pages, many Web browsers have a cache to store the results of looking up names,
such as “www.Scholarly.edu”, so that the next request to “www.Scholarly.edu” doesn’t
require a DNS lookup.

The design of multilevel memory in Section 6.2 is another example of how well a
designer can exploit non-uniformity in a workload. Because applications have locality
of reference, one can build large and fast memory systems out of a combination of a
small but fast memory and a large but slow memory.

http://www.Scholarly.edu
http://www.Scholarly.edu
http://www.Scholarly.edu

308 CHAPTER 6 Performance

those subtasks in parallel. The method can be applied either within a multiprocessor
system or (if the subtasks aren’t too entangled) with completely separate computers.

If the processing parallelizes perfectly (i.e., each subtask can run without any coor-
dination with other subtasks and each subtask requires the same amount of work), then
this plan can, in principle, speed up the processing by a factor n, where n is the number
of subtasks executing in parallel. In practice, the speedup is usually less than n because
there is overhead in parallelizing a computation—the subtasks need to communicate
with each other, for example, to exchange intermediate results; because the subtasks
do not require an equal amount of work; because the computation cannot be executed
completely in parallel, so some fraction of the computation must be executed sequen-
tially; or because the subtasks interfere with each other (e.g., they contend for a shared
resource such as a lock, a shared memory, or a shared communication network).

Consider the processing that a search engine needs to perform in order to respond
to a user search query. An early version of Google’s search engine—described in more
detail in Suggestions for Further Reading 3.2.4—parallelized this processing as follows.
The search engine splits the index of the Web up in n pieces, each piece stored on a
separate machine. When a front end receives a user query, it sends a copy of the query
to each of the n machines. Each machine runs the query against its part of the index
and sends the results back to the front end. The front end accumulates the results
from the n machines, chooses a good order in which to display them, generates a Web
page, and sends it to the user. This plan can give good speedup if the index is large and
each of the n machines must perform a substantial, similar amount of computation.
It is unlikely to achieve a full speedup of a factor n because there is parallelization
overhead (to send the query to the n machines, receive n partial results, and merge
them); because the amount of work is not balanced perfectly across the n machines
and the front end must wait until the slowest responds; and because the work done by
the front end in farming out the query and merging hasn’t been parallelized.

Although parallelizing can improve performance, several challenges must be
 overcome. First, many applications are difficult to parallelize. Applications such as
search have exploitable parallelism, but other computations don’t split easily into
n mostly independent pieces. Second, developing parallel applications is difficult
because the programmer must manage the concurrency and coordinate the activities
of the different subtasks. As we saw in Chapter 5, it is easy to get this wrong and intro-
duce race conditions and deadlocks. Systems have been developed to make develop-
ment of parallel applications easier, but they are often limited to a particular domain.
The paper by Dean and Ghemawat [Suggestions for Further Reading 6.4.3] provides
an example of how the programming and management effort can be minimized for
certain stylized applications running in parallel on hundreds of machines. In general,
however, programmers must often struggle with threads and locks, or explicit message
passing, to obtain concurrency.

Because of these two challenges in parallelizing applications, designers traditionally
have preferred to rely on continuous technology improvements to reduce application
latency. However, physical and engineering limitations (primarily the problem of heat
dissipation) are now leading processor manufacturers away from making processors

3096�1 Designing for Performance

faster and toward placing several (and soon, probably, several hundred or even several
thousand, as some are predicting [Suggestions for Further Reading 1.6.4]) processors
on a single chip. This development means that improving performance by using con-
currency will inevitably increase in importance.

6.1.5 improving Throughput: concurrency

If the designer cannot reduce the latency of a request because of limits, an alter-
native approach is to hide the latency of a request by overlapping it with other
requests. This approach doesn’t improve the latency of an individual request, but
it can improve system throughput. Because hiding latency is often much easier to
achieve than improving latency, it has led to the hint: instead of reducing latency,
hide it (see Sidebar 6.3). This section discusses how one can introduce concurrency
in a multistage pipeline to increase throughput.

To overlap requests, we give each stage in the pipeline its own thread of computa-
tion so that it can compute concurrently, operating much like an assembly line (see
Figure 6.3). If a stage has completed its task and has handed off the request to the
next stage, then the stage can start processing the second request while the next stage
processes the first request. In this fashion, the pipeline can work on several requests
concurrently.

An implementation of this approach has two challenges. First, some stages of the
pipeline may operate more slowly than other stage. As a result, one stage might not
be able to hand off the request to the next stage because that next stage is still
 working on a previous request. As a result, a queue of requests may build up, while
other stages might be idle. To ensure that a queue between two stages doesn’t grow
without bound, the stages are often coupled using a bounded buffer. We will discuss
queuing in more detail in Section 6.1.6.

The second challenge is that several requests must be available. One natural source
of multiple requests is if the system has several clients, each generating a request.
A single client can also be a source of multiple requests if the client operates asyn-
chronously. When an asynchronous client issues a request, rather than waiting for the
response, it continues computing, perhaps issuing more requests. The main challenge

Stage 1 Stage 2 Stage n

Requests

...

Responses

Service

figure 6.3

A simple service composed of several stages, with each stage operating concurrently using
threads.

310 CHAPTER 6 Performance

in issuing multiple requests asynchronously is that the client must then match the
responses with the outstanding requests.

Once the system is organized to have many requests in flight concurrently, a
designer may be able to improve throughput further by using interleaving. The idea
is to make n instances of the bottleneck stage and run those n instances concurrently
(see Figure 6.4). Stage 1 feeds the first request to instance 1, the second request to
instance 2, and so on. If the throughput of a single instance is t, then the throughput
using interleaving is n 3 t, assuming enough requests are available to run all instances

Sidebar 6.3 Design Hint: Instead of Reducing Latency, Hide it Latency is
often not under the control of the designer but rather is imposed on the designer
by physical properties such as the speed of light. Consider sending a message from
the east coast of the United States to the west coast at the speed of light. This takes
about 20 milliseconds (see Section 7.1 [online]); in the same time, a processor can
execute millions of instructions. Worse, each new generation of processors gets
faster every year, but the speed of light doesn’t improve. As David Clark, a network
researcher, put it succinctly: “One cannot bribe God.” The speed of light shows up
as an intrinsic barrier in many places of computer design, even when the distances
are short. For example, dies are so large that for a signal to travel from one end of a
chip to another is a bottleneck that limits the clock speed of a chip.

When a designer is faced with such intrinsic limits, the only option is to design sys-
tems that hide latency and try to exploit performance dimensions that do follow
d(technology)/dt. For example, transmission rates for data networks have improved
dramatically, and so if a designer can organize the system such that communication can
be overlapped with useful computation and many network requests can be batched
into a large request, then the large request can be transferred efficiently. Many Web
browsers use this strategy: while a large transfer runs in the background, users can
continue browsing Web pages, hiding the latency of the transfer.

Service

Request Response
Stage 1

Stage

Stage n...

Stage

figure 6.4

Interleaving requests.

3116�1 Designing for Performance

 concurrently at full speed and the requests don’t interfere with each other. The cost
of interleaving is additional copies of the bottleneck stage.

RAID (see Section 2.1.1.4) interleaves several disks to achieve a high aggregate
disk throughput. RAID 0 stripes the data across the disks: it stores block 0 on disk
0, block 1 on disk 1, and so on. If requests arrive for blocks on different disks, the
RAID controller can serve those requests concurrently, improving throughput. In a
similar style one can interleave memory chips to improve throughput. If the current
instruction is stored in memory chip 0 and the next one is in memory chip 1, the pro-
cessor can retrieve them concurrently. The cost of this design is the additional disks
and memory chips, but often systems already have several memory chips or disks, in
which case the added cost of interleaving can be small in comparison with the per-
formance benefit.

6.1.6 Queuing and Overload

If a stage in Figure 6.3 operates at its capacity (e.g., all physical processors are run-
ning threads), then a new request must wait until the stage becomes available; a queue
of requests builds up waiting for the busy stage, while other stages may run idle.
For example, the thread manager of Section 5.5 maintains a table of threads, which
records whether a thread is runnable; a runnable thread must wait until a processor
is available to run it. The stage that runs with an input queue while other stages are
running idle is a bottleneck.

Using queuing theory* we can estimate the time that a request spends waiting in a
queue for its turn to be processed (e.g., the time a thread spends in the ready queue).
In queuing theory, the time that it takes to process a request (e.g., the time from when
a thread starts running on the processor until it yields) is called the service time.
The simplest queuing theory model assumes that requests (e.g., a thread entering
the ready queue) arrive according to a random, memoryless process and have inde-
pendent, exponentially distributed service times. In that case, a well-known queuing
theory result tells us that the average queuing delay, measured in units of the average
service time and including the service time of this request, will be 1/(1–ρ), where ρ
is the service utilization. Thus, as the utilization approaches 1, the queuing delay will
grow without bound.

This same phenomenon applies to the delays for threads waiting for a processor
and to the delays that customers experience in supermarket checkout lines. Any time
the demand for a service comes from many statistically independent sources, there
will be fluctuations in the arrival of load and thus in the length of the queue at the
bottleneck stage and the time spent waiting for service. The rate of arrival of requests
for service is known as the offered load. Whenever the offered load is greater than the
capacity of a service for some duration, the service is said to be overloaded for that
time period.

*The textbook by Jain is an excellent source to learn about queuing theory and how to reason
about performance in computer systems [Suggestions for Further Reading 1.1.2].

312 CHAPTER 6 Performance

In some constrained cases, where the designer can plan the system so that the
capacity just matches the offered load of requests, it is possible to calculate the degree
of concurrency necessary to achieve high throughput and the maximum length of
the queue needed between stages. For example, suppose we have a processor that
performs one instruction per nanosecond using a memory that takes 10 nanosec-
onds to respond. To avoid having the processor wait for the memory, it must make a
memory request 10 instructions in advance of the instruction that needs it. If every
instruction makes a request of memory, then by the time the memory responds, the
processor will have issued 9 more. To avoid being a bottleneck, the memory therefore
must be prepared to serve 10 requests concurrently.

If half of the instructions make a request of memory, then on average there will
be five outstanding requests. Thus, a memory that can serve five requests concur-
rently would have enough capacity to keep up. To calculate the maximum length
of the queue needed for this case depends on the application’s pattern of memory
references. For example, if every second instruction makes a memory request, a fixed-
size queue of size five is sufficient to ensure that the queue never overflows. If the
processor performs five instructions that make memory references followed by five
that don’t, then a fixed-size queue of size five will work, but the queue length will
vary in length and the throughput will be different. If the requests arrive randomly,
the queue can grow, in principle, without limit. If we were to use a memory that can
handle 10 requests concurrently for this random pattern of memory references, then
the memory would be utilized at 50% of capacity, and the average queue length would
be (1/(120.5) 5 2. With this configuration, the processor observes latencies for some
memory requests of 20 or more instruction cycles, and it is running much slower
than the designer expected. This example illustrates that a designer must understand
non-uniform patterns in the references to memory and exploit them to achieve good
performance.

In many computer systems, the designer cannot plan the offered load that pre-
cisely, and thus stages will experience periods of overload. For example, an applica-
tion may have several threads that become runnable all at the same time and there
may not be enough processors available to run them. In such cases, at least occasional
overload is inevitable. The significance of overload depends critically on how long
it lasts. If the duration is comparable to the service time, then a queue is simply an
orderly way to delay some requests for service until a later time when the offered
load drops below the capacity of the service. Put another way, a queue handles short
bursts of too much demand by time-averaging with adjacent periods when there is
excess capacity.

If overload persists over long periods of time, the system designer has only two
choices:

1. Increase the capacity of the system. If the system must meet the offered load,
one approach is to design a system that has less overhead so that it can perform
more useful work or purchase a better computer system with higher capacity.
In computer systems, it is typically less expensive to buy the next generation of

3136�1 Designing for Performance

the computer system that has higher capacity because of technology improve-
ments than trying to squeeze the last ounce out of the implementation through
complex algorithms.

2. Shed load. If purchasing a computer system with higher capacity isn’t an option
and system performance cannot be improved, the preferred method is to shed
load by reducing or limiting the offered load until the load is less than the
capacity of the system.

One approach to control the offered load is to use a bounded buffer (see Figure
5.5) between stages. When the bounded buffer ahead of the bottleneck stage is full,
then the stage before it must wait until the bounded buffer empties a slot. Because
the previous stage is waiting, its bounded buffer may fill up too, which may cause the
stage before it to wait, and so on. The bottleneck may be pushed all the way back to
the beginning of the pipeline. If this happens, the system cannot accept any more
input, and what happens next depends on how the system is used.

If the source of the load needs the results of the output to generate the next
request, then the load will be self-managing. This model of use applies to some inter-
active systems, in which the users cannot type the next command until the previous
one finishes. This same idea will be used in Chapter 7 [on-line] in the implementation
of self-pacing network protocols.

If the source of the load decides not to make the request at all, then the offered
load decreases. If the source, however, simply holds on to the request and resubmits
it later, then the offered load doesn’t decrease, but some requests are just deferred,
perhaps to a time when the system isn’t overloaded.

A crude approach to limiting a source is to put a quota on how many requests a
source may have outstanding. For example, some systems enforce a rule that an appli-
cation may not create more than some fixed number of active threads at the same
time and may not have more than some fixed number of open files. If a source has
reached its quota for a given service, the system denies the next request, limiting the
offered load on the system.

An alternative to limiting the offered load is reducing it when a stage becomes
overloaded. We will see one example of this approach in Section 6.2. If the address
spaces of a number of applications cannot fit in memory, the virtual memory man-
ager can swap out a complete address space of one or more applications so that the
remaining applications fit in memory. When the offered load decreases to normal
levels, the virtual memory manager can swap in some of the applications that were
swapped out.

6.1.7 fighting Bottlenecks

If the designer cannot remove a bottleneck with the techniques described above, it
may be possible instead to fight the bottleneck using one or more of three different
techniques: batching, dallying, and speculation.

314 CHAPTER 6 Performance

6.1.7.1 Batching
Batching is performing several requests as a group to avoid the setup overhead of
doing them one at a time. Opportunities for batching arise naturally at a bottleneck
stage, which may have a queue of requests waiting to be processed. For example, if a
stage has several requests to send to the next stage, the stage can combine all of the
messages into a single message and send that one message to the next stage. This use
of batching divides the overhead of an expensive operation (e.g., sending a message)
over the several messages. More generally, batching works well when processing a
request has a fixed delay (e.g., transmitting the request) and a variable delay (e.g.,
performing the operation specified in the request). Without batching, processing n
requests takes n 3 (f 1 v), where f is the fixed delay and v is the variable delay. With
batching, processing n requests takes f 1 n 3 v.

Once a stage performs batching, the potential arises for additional performance
wins. Batching may create opportunities for the stage to avoid work. If two or more
write requests in a batch are for the same disk block, then the stage can perform just
the last one.

Batching may also provide opportunities to improve latency by reordering the
processing of requests. As we will see in Section 6.3.4, if a disk controller receives a
batch of requests, it can schedule them in an order that reduces the movement of the
disk arm, reducing the total latency for the batch of requests.

6.1.7.2 Dallying
Dallying is delaying a request on the chance that the operation won’t be needed, or
to create more opportunities for batching. For example, a stage may delay a request
that overwrites a disk block in the hope that a second one will come along for the
same block. If a second one comes along, the stage can delete the first request and
perform just the second one. As applied to writes, this benefit is sometimes called
write absorption.

Dallying also increases the opportunities for batching. It purposely increases the
latency of some requests in the hope that more requests will come along that can be
combined with the delayed requests to form a batch. In this case, dallying increases
the latency of some requests to improve the average latency of all requests.

A key design question in dallying is to decide how long to wait. There is no generic
answer to this question. The costs and benefits of dallying are application and system
specific.

6.1.7.3 Speculation
Speculation is performing an operation in advance of receiving a request on the
chance that it will be requested. The goal is that the results can be delivered with
less latency and perhaps with less setup overhead. Speculation can achieve this goal
in two different ways. First, speculation can perform operations using otherwise idle
resources. In this case, even if the speculation is wrong, performing the additional
operations has no downside. Second, speculation can use a busy resource to do an

3156�1 Designing for Performance

operation that has a long lead time so that the result of the operation can be available
without waiting if it turns out to be needed. In this case, speculation might increase
the delay and overhead of other requests without benefit because the prediction that
the results may be needed might turn out to be wrong.

Speculating may sound bewildering because how can a computer system predict
the input of an operation if it hasn’t received the request yet, and how can it predict
if the result of the operation will be useful in the future? Fortunately, many applica-
tions have request patterns that a system designer can exploit to predict an input.
In some cases, the input value is evident; for example, a future instruction may add
register 5 to register 9, and these register values may be available now. In some cases,
the input values can be predicted accurately; for example, a program that asks to read
byte n is likely to want to read bytes n 1 1, n 1 2, and so on, too. Similarly, for many
applications a system can predict what results will be useful in the future. If a program
 performs instruction n, it will likely soon need the result of instruction n 1 1; only
when the instruction n is a jmp will the prediction be wrong.

Sometimes a system can use speculation even if the system cannot predict accu-
rately what the input to an operation is or whether the result will be useful. For exam-
ple, if an input has only two values, then the system might create a new thread and
have the main thread run with one input value and the second thread with the other
input value. Later, when the system knows the value of the input, it terminates the
thread that is computing with the wrong value and undoes any changes that thread
might have made. This use of speculation becomes challenging when it involves
shared state that is updated by different thread, but using techniques presented in
Chapter 9 [on-line] it is possible to undo the operations of a thread, even when shared
state is involved.

Speculation creates more opportunities for batching and dallying. If the system
speculates that a read request for block n will be followed by read requests for blocks
n 1 1 through n 1 8, then the system can batch those read requests. If a write request
might soon be followed by another write request, the system can dally for a while to
see if any others come in and, if so, batch all the writes together.

Key design questions associated with speculation are when to speculate and how
much. Speculation can increase the load on later stages. If this increase in load results
in a load higher than the capacity of a later stage, then requests must wait and latency
will increase. Also, any work done that turns out to be not useful is overhead, and per-
forming this unnecessary work may slow down other requests. There is no generic
answer to this design question; instead, a designer must evaluate the benefits and cost
of speculation in the context of the system.

6.1.7.4 Challenges with Batching, Dallying, and Speculation
Batching, dallying, and speculation introduce complexity because they introduce
concurrency. The designer must coordinate incoming requests with the requests
that are batched, dallied, or speculated. Furthermore, if the requested operations
share variables, the designer must coordinate the references to these variables. Since
 coordination is difficult to get right, a designer must use these performance- enhancing

316 CHAPTER 6 Performance

techniques with discipline. There is always the risk that by the time the designer has
worked out the concurrency problems and the system has made it through the sys-
tem tests, technology improvements will have made the extra complexity unneces-
sary. Problem set 14 explores several performance-enhancing techniques and their
challenges with a simple multithreaded service.

6.1.8 an example: The i/O Bottleneck

We illustrate design for performance using batching, dallying, and speculation through
a case study involving a magnetic disk such as was described in Sidebar 2.2. The per-
formance problem with disks is that they are made of mechanical components. As
a result, reading and writing data to a magnetic disk is slow compared to devices
that have no mechanical components, such as RAM chips. The disk is therefore a
bottleneck in many applications. This bottleneck is usually referred to as the I/O
bottleneck.

Recall from Sidebar 2.2 that the performance of reading and writing a disk block
is determined by (1) the time to move the head to the appropriate track (the seek
latency); (2) plus the time to wait until the requested sector rotates under the disk head
(the rotational latency); (3) plus the time to transfer the data from the disk to the com-
puter (the transfer latency).

The I/O bottleneck is getting worse over time. Seek latency and rotational latency
are not improving as fast as processor performance. Thus, from the perspective of
 programs running on ever faster processors, I/O is getting slower over time. This
problem is an example of problems due to incommensurate rates of technology
improvement. Following the incommensurate scaling rule of Chapter 1, applications
and systems have been redesigned several times over the last few decades to cope
with the I/O bottleneck.

To build some intuition for the I/O bottleneck, consider a typical disk of the last
decade. The average seek latency (the time to move the head over one-third of the
disk) is about 8 milliseconds. The disks spin at 7,200 rotations per minute, which is
one rotation every 8.33 milliseconds. On average, the disk has to wait a half rotation
for the desired block to be under the disk head; thus, the average rotational latency is
4.17 milliseconds.

Bits read from a disk encounter two potential transfer rate limits, either of which
may become the bottleneck. The first limit is mechanical: the rate at which bits spin
under the disk heads on their way to a buffer. The second limit is electrical: the rate at
which the I/O channel or I/O bus can transfer the contents of the buffer to the com-
puter. A typical modern 400-gigabyte disk has 16,383 cylinders, or about 24 mega-
bytes per cylinder. That disk would probably have 8 two-sided platters and thus 16
read/write heads, so there would be 24/16 5 1.5 megabytes per track. When rotating
at 7,200 revolutions per minute (120 revolutions per second), the bits will go by a
head at 120 3 1.5 5 180 megabytes per second. The I/O channel speed depends on
which standard bus connects the disk to the computer. For the Integrated Device
Electronics (IDE) bus, 66 megabytes per second is a common number in practice; for

3176�1 Designing for Performance

the Serial ATA 3 bus the limit is 3 gigabytes per second. Thus, the IDE bus would be the
bottleneck at 66 megabytes per second; with a Serial ATA 3 bus, the disk mechanics
would be the bottleneck at 180 megabytes per second.

Using such a disk and I/O standard, reading a 4-kilobyte block chosen at random
takes:

average seek time 1 average rotation latency 1 transmission of 4 kilobytes
5 8 1 4.17 1 (4 / (180 3 1024)) 3 1000 milliseconds
5 8 1 4.17 1 0.02 milliseconds
5 12.19 milliseconds

The throughput for reading randomly chosen blocks one by one is:

5 1000/12.19 3 4 kilobytes per second
5 328 kilobytes per second

The main opportunity to handle the I/O bottleneck is to drive the disk at the
transfer rate (180 megabytes per second) instead of the rate of seeks and rotations
(327 kilobytes per second). This strategy is an example of hiding latency (moving
the disk arm) by exploiting throughput (the high transfer rate between computer
and disk).

Consider the following prototypical program, which processes a large input file
sequentially and produces an output file sequentially:

1 in ← open ("in", read) // open "in" for reading
2 out ← open ("out", write) // open "out" for reading
3
4 while not endoffile (in) do
5 block ← read (in, 4096) // read 4 kilobyte block from in
6 block ← compute (block) // compute for 1 millisecond
7 write (out, block, 4096) // write 4 kilobyte block to out
8 close (in)
9 close (out)

If we think of this application as a pipeline, then there are the following stages:
(1) the file system, which reads data from a disk in response to a read (line 5); (2) the
application, which computes new data using the data read (line 6); and (3) the file
system, which writes the new data to the disk (line 7).

If the application is organized naively, without batching, dallying, and speculation,
the average time to go around the loop is equal to the latency of the three stages. The
latencies of the two file system stages are dominated by the latency of the disk opera-
tions, and thus we can approximate the average latency of the loop as follows:

reading 4 kilobytes 1 1 millisecond of computation 1 writing 4 kilobytes
5 12.19 1 1 1 12.19 milliseconds
5 25.38 milliseconds

318 CHAPTER 6 Performance

In practice, the latency might be lower because this calculation assumes that each
disk access involves an average seek time, but if the file system has allocated the
blocks near each other on the disk, the disk might have to perform only a short seek.

How can we improve the performance of this program? The program reads the file
only once, and thus a cache cannot improve the latency of reading a block. The only
alternative is to hide the latency of read and write operations. The simplest optimiza-
tion is to overlap the reading and writing of blocks with the computation on line 6.
Let’s start with reading.

When the application reads a block, the file system can speculate that the appli-
cation will read a few blocks following the requested block. This speculation can
improve performance for our application if we combine it with two further optimi-
zations. First, we modify the file system to lay out the blocks of a file contiguously.
Second, we modify the file system to prefetch an entire track of data on each read.
Our prototypical application is perfect for prefetching, since the whole data set is
read sequentially.

These optimizations eliminate rotational delay before reading can start. An entire
track can be read in:

average seek time 1 1 rotational delay
5 8 1 8.33 milliseconds
5 16.33 milliseconds

With 1.5 megabytes (1,536 kilobytes) per track, the file system issues one read
request per 384 (1536/4) loop iterations, and we have the following timing diagram:

16.33 ms

READ track WRITE 4 kilobytes

12.19 ms

384 times

1 ms

compute

Time

READ track

16.33 ms …

The average time for 384 iterations is:

5 reading 1536 kilobytes 1 384 3 (1 millisecond of computation 1 writing 4
kilobytes)

5 16.33 1 384 3 (1 1 12.19) milliseconds
5 16.33 1 5065 milliseconds
5 5081 milliseconds

Thus, the average time for a loop iteration is 5081/384 5 13.23 milliseconds, a
 substantial improvement over 25.38 milliseconds.

We can improve the performance of writing blocks by dallying and batching write
requests. We modify write to use a buffer of blocks in RAM (see Figure 6.5). The write
call stores the updated block into this buffer and returns immediately, and the appli-
cation thread can continue. When the buffers fill up, the file system can batch the
blocks in the buffer and combine them into a single disk request, which the disk can
process in parallel with the processor running the application. Batching allows the

319

Application

File system

Disk

Bounded
buffer

Write Ok

Block Done

figure 6.5

Using a buffer to delay writes.

6�1 Designing for Performance

disk controller to execute writes to adjacent sectors with no rotational delay. Because
blocks are written contiguously in our example, the file system may take 384 contigu-
ous writes and batch them together to form a complete track write. These optimiza-
tions result in the following timing diagram:

16.33 ms

READ track WRITE track

16.33 ms384 ms

compute

Time

READ track

16.33 ms …

This optimization reduces the average time around the loop:

5 (16.33 1 384 1 16.33)/384 milliseconds
5 1.09 milliseconds

If we modify the file system to prefetch the next track before the application calls
the 385th read, we can overlap computation and I/O completely. If we modify the file
system to read the next track after it has processed, say, half of the last track read, then
we obtain the following timing diagram for each block of 384 loop iterations, other
than the first one:

READ track with
next 384 blocks

(16.33 ms)

Compute and produce 384 blocks
(384 ms) Time…

WRITE track with last
384 blocks
(16.33 ms)

…

Now the system overlaps computation with I/O
completely, the average time around the loop is
1 millisecond, and the application is now bot-
tlenecked by computation, rather than by I/O.

The optimizations take advantage of the
facts that the application processes the input
file sequentially and that the file system allo-
cates blocks for the output contiguously on
disk. However, even for applications that pro-
cess blocks not in the order in which they are
laid out on the disk, these optimizations can
be beneficial. The file system, for example, can
reorder the disk requests for a batch in the
order of their track number, thereby minimiz-
ing disk arm movement, and thus improving
performance for the whole batch of requests.
(To understand what a good algorithm is for
disk scheduling, we need to think more broadly
about scheduling requests in computer sys-
tems, which is the topic of Section 6.3.)

320 CHAPTER 6 Performance

The analysis assumes a simple performance model for the disk; for a more in-depth
discussion of the performance of disks, see Suggestions for Further Reading 6.3.1. The
analysis also assumes a single disk; using several disks can offer opportunities for
improving performance. For example, RAIDs have several disks (see Section 2.1.1.4),
which allows the file system to interleave read and write requests instead of serv-
ing them one by one, providing additional opportunities for increasing performance.
Finally, practical, alternative storage technologies are emerging, which change the
trade-offs. For example, designing a high performance storage system with Flash disks
provides new opportunities and new challenges (see, for example, Suggestions for
Further Reading 6.3.4).

A buffer without write-through can provide substantial performance improve-
ments but can lose on reliability. If the computer system fails before the file system
has written out data to the disk, some data is lost. The basic problem is how long to
delay before forcing the data to the disk. The longer the file system delays writes, the
larger the opportunity for higher performance will be, but the greater the probability
that data will be lost if, for example, the power fails and the volatile RAM resets.

There are at least four choices as to when the write request to the disk can be
issued:

Before ■ write returns to the caller (write-through).
On an explicit ■ force request from the user (user-controlled write).
When the file is closed (another kind of user-controlled write). ■

When a certain number of write requests have been accumulated or when some ■

fixed time has passed since the last write request. This option can be a bad idea
if one needs to control the order of writes.

A buffer without write-through also introduces some other complexities, mostly
related to reliability in the face of system failures. First, if the file system batches sev-
eral write requests in a single disk request, then the disk may write the blocks in an
order different from the order issued by the file system to reduce seek time. Thus,
the disk may not reflect a consistent state if the system crashes halfway through the
batched write request. Second, the disk controller may also use a buffer without write-
through. The file system may think the data has been stored reliably on disk when, in
fact, the disk controller is caching it. We shall see systematic ways of controlling the
problem caused by caches without write-through in Chapter 9 [on-line]; a nice appli-
cation of these systematic ways to design a high-performance and robust file system
is given by Ganger and Patt [Suggestions for Further Reading 6.3.3]. In general, here
we have a good example that increased performance comes at the cost of increased
complexity, as illustrated by Figure 1.1.

The prototypical application represents one particular workload for which the
techniques described above improve performance well. Improving the performance
of the prototypical application is challenging because it doesn’t reuse a block. Many
applications read and write a block multiple times, and in that case additional tech-
niques are available to improve performance. In particular, in that case it is worth-
while for the file system to maintain a cache of recently read blocks in RAM. If an

3216�2 Multilevel Memories

application reads a block that is already in the cache, then the file system doesn’t have
to perform any disk operations.

Introducing a cache leads to additional coordination constraints. The file system
may have to coordinate write and read operations with outstanding disk requests. For
example: a read operation may force the removal of a modified block from the cache
to make space for the block to be read. But the file system cannot throw out a modi-
fied block until it has been written it to the disk, so the file system must wait until the
write request of the modified block has completed before proceeding with the read
operation.

Understanding for what workloads a cache works well, learning how to design
a cache (e.g., which block to throw out to make space for a new block), and analyz-
ing a cache’s performance benefits are sophisticated topics, which we discuss next.
Problem set 16 explores these issues, as well as topics related to scheduling, in the
context of a simple high-performance video server.

6.2 muLTiLeveL memOries
The previous section described how to address the I/O bottleneck by using two types
of digital memory devices: a RAM chip and a magnetic disk, which have different
capacities, costs, and speeds. A system designer would like to have a single memory
device that is both as large and as fast as the application requires, and that at the
same time is affordable. Unfortunately, application requirements often exceed one or
another of these three parameters—a memory device that is both fast enough and
large enough is usually too expensive—so the designer must make some trade-offs.
The usual trade-off is to use more than one memory device, for example, one that is
fast but expensive (and thus necessarily too small), and another that is large and cheap
(but slower than desired). But fitting an application into such an environment adds
the complexity of deciding which parts of the application should use the small, fast
memory and which parts the large, slow one. It may also increase maintenance effort
if the memory configuration changes.

One might think that improvements in technology may eventually make a brute-
force solution economical—someday the designer can just buy a memory that is both
large and fast enough. But there are two problems with that thought: one practical and
one intrinsic. The practical problem is that historically the increase in memory size
has been matched by an equal increase in problem sizes. That is, the data that people
want to manipulate has grown along with memory technology.

The intrinsic problem is that memory has a trade-off between latency and size.
This trade-off becomes clear when we consider the underlying physics. Even if one
has an unlimited budget to throw at the design problem, the speed of light interferes.
To see why, imagine a processor that occupies a single point in space, with memory
clustered around it in a sphere, using the densest packing that physics allows. With
this packing, some of the memory cells will end up located quite near the processor,
so the latency (that is, the time required for access to those cells, which requires a

322 CHAPTER 6 Performance

propagation of a signal at the speed of light from the processor to the bit and back)
will be short. But because only a few memory cells can fit in the space near the pro-
cessor, most memory cells will be farther away, and they will necessarily have a larger
latency. Put another way, for any specified minimum latency requirement, there will
be some memory size for which at least some cells must exceed that latency, based
on speed-of-light considerations alone. Moreover, the geometry of spheres (the vol-
ume of a shell of radius r grows with the square of r) dictates that there must be more
high-latency cells than low-latency ones.

In practical engineering terms, available technologies also exhibit analogous pack-
ing problems. For example, the latency of a memory array on the same chip as the
processor (where it is usually called an L1 cache) is less than the latency of a separate
memory chip (which is usually called an L2 cache), which in turn is less than the
latency of a much larger memory implemented as a collection of memory chips on a
separate card. The result is that the designer is usually forced to deal with a composite
memory system in which different component memories have different parameters
of latency, capacity, and cost. The challenge then becomes that of achieving overall
maximum performance by deciding which data items to store in the fastest memory
device, which can be relegated to the slower devices, and deciding if and when to
move data items from one memory device to another.

6.2.1 memory characterization

Different memory devices are characterized not just by dimensions of capacity, latency,
and cost, but also by cell size and throughput. In more detail, these dimensions are:

 ■ Capacity, measured in bits or bytes. For example, a RAM chip may have a capac-
ity from a few to tens of megabytes, whereas magnetic disks have capacities
measured in scores or hundreds of gigabytes.

 ■ Average random latency, measured in seconds or processor clock cycles, for
a memory cell chosen at random. For example, the average latency of RAM is
measured in nanoseconds, which might correspond to hundreds of proces-
sor clock cycles. (On closer examination, RAM read latency is actually more
 complicated—see Sidebar 6.4.) Magnetic disks have an average latency mea-
sured in milliseconds, which corresponds to millions of processor clock cycles.
In addition, magnetic disks, because of their mechanical components, usually
have a much wider variance in their latency than does RAM.

 ■ Cost, measured in some currency per storage unit. The cost of RAM is typically
measured in cents per megabyte, while the cost of magnetic disks is measured
in dollars per gigabyte.

 ■ Cell size, measured as the number of bits or bytes transferred in or out of the
device by a single read or write operation. For example, the cell size of RAM is
typically a few bytes, perhaps 4, 8, or 16. The cell size of a magnetic disk is typi-
cally 512 bytes or more.

3236�2 Multilevel Memories

 ■ Throughput, measured in bits per second. RAM can typically transfer data at
rates measured in gigabytes per second, while magnetic disks transfer at the
rate of hundreds of megabytes per second.

The differences between RAM and magnetic disks along these dimensions are
orders of magnitude in all cases. RAM is typically about five orders of magnitude
faster than magnetic disk and two orders of magnitude more expensive. Many, but
not all, of the dimensions have been improving rapidly. For example, the capacity of
magnetic disks has doubled, and cost has fallen by a factor of 2 every year for the last
two decades, while the average latency has improved by only a factor of 2 in that same
20 years. Latency has not improved much because it involves mechanical operations
as opposed to all-electronic ones, as described in Sidebar 2.2. This incommensurate
rate of technology improvement makes effective memory management a challenge to
implement well.

6.2.2 multilevel memory management using virtual memory

Because larger latency and larger capacity usually go hand in hand, it is customary
and useful to describe the various available memory devices as belonging to different
levels, with the fastest, smallest device being at the highest level and slower, larger

Sidebar 6.4 RAM Latency Performance analysis sometimes requires a better model
of random access memory latency for read operations. Most random access memory
devices actually have two latency parameters of interest: cycle time and access time.
The distinction arises because the physical memory device may need time to recover
from one access before it can handle the next one. For example, some memory read
mechanisms are destructive: to read a bit out, the memory device literally smashes
the bit and examines the resulting debris to determine the value that the bit had.
Once it determines that value, the memory device writes the bit back so that its value
can again be available for future reads. This write-back operation typically cannot be
overlapped with an immediately following read operation. Thus, the cycle time of the
memory device is the minimum time that must pass between issuance of one read
request and issuance of the next one. However, the result of the read may be available
for delivery to the processor well before the cycle time is complete. The time from
issuance of the read to delivery of the response to the processor is known as the
access time of the memory device. The following figure illustrates.

Time

READ

request
#1

READ

response
#1

READ

request
#2

READ

response
#2

Next
request

...

Cycle
time

Cycle
time

Access
time

Access
time

324 CHAPTER 6 Performance

devices being at lower levels. A memory system constructed of devices from more
than one level is called a multilevel memory. Figure 6.6 shows a popular way of
depicting the multiple levels, using a pyramid, in which higher levels are narrower,
suggesting that their capacity is smaller. The memories in the top of the hierarchy are
fast and expensive, and they are therefore small; the memories at the bottom of the
hierarchy are slow and inexpensive; and so they can be much bigger. In a modern
computer system, an information item can be in the registers of the processor, the L1
cache memory, the L2 cache memory, main memory, a RAM disk cache, on a magnetic
disk, or even on another computer that is accessible through a network.

Two quite different ways can be used to manage a multilevel memory. One way is
to leave it to each application programmer to decide in which memory to place data
items and when to move them. The second way is automatic management: a subsys-
tem independent of any application program observes the pattern of memory refer-
ences being made by the program. With that pattern in mind, the automatic memory
management subsystem decides where to place data items and when to move them
from one memory device to another.

Most modern memory management is automatic because (1) there exist automatic
algorithms that have good performance on average and (2) automatic memory man-
agement relieves the programmer of the need to conform the program to specifics
of the memory system such as the capacities of the various levels. Without automatic
memory management, the application program explicitly allocates memory space
within each level and moves data items from one memory level to another. Such pro-
grams become dependent on the particular hardware configuration for which they
were written, which makes them difficult to write, to maintain, or to move to a differ-
ent computer. If someone adds more memory to one of the levels, the program will
probably have to be modified to take advantage of it. If some memory is removed, the
program may stop working.

As Chapter 2 described, there are two commonly encountered memory interfaces:
an interface to small-cell memory to which threads refer using read and write opera-
tions, and an interface to large-cell memory to which threads refer using get and

Level 1 cache

Level 2 cache

Main memory

Remote computer storage

Bigger, slower,
less expensive

Faster, smaller,
more expensive

CPU
registers

Magnetic disk storage

figure 6.6

A multilevel memory pyramid.

3256�2 Multilevel Memories

put operations. These two interfaces correspond roughly to the levels of a multilevel
memory; higher levels typically have small cells and use the read/write interface, while
lower levels typically have large cells and use the get/put interface.

One opportunity in the design of an automatically managed multilevel memory
system is to combine it with a virtual memory manager in such a way that the small-
cell read/write interface appears to the application program to apply to the entire
memory system. This creates what is sometimes called a one-level store, an idea first
introduced in the Atlas system.* Put another way, this scheme virtualizes the entire
memory system around the small-cell read/write interface, thus hiding from the appli-
cation programmer the get/put interface as well as the specifics of latency, capacity,
cost, cell size, and throughput of the component memory devices. The programmer
instead sees a single memory system that appears to have a large capacity, a uniform
cell size, a modest average cost per bit, and a latency and throughput that depend on
the memory access patterns of the application.

Just as with virtualization of addresses, virtualization of the read/write memory inter-
face further exploits the design principle decouple modules with indirection. In this
case, indirection allows the virtual memory manager to translate any particular virtual
address not only to different physical memory addresses at different times but also to
addresses in a different memory level. With the support of the virtual memory manager,
a multilevel memory manager can then rearrange the data among the memory levels
without having to modify any application program. By adding one more feature, the
indirection exception, this rearrangement can become completely automatic. An indi-
rection exception is a memory reference exception that indicates that memory manager
cannot translate a particular virtual address. The exception handler examines the virtual
address and may bind or rebind that value before resuming the interrupted thread.

With these techniques, the virtual memory manager not only can contain errors
and enforce modularity, but it also can help make it appear to the program that there
is a single, uniform, large memory. The multilevel memory management feature can be
slipped in underneath the application program transparently, which means that the
application program does not need to be modified.

Virtualization of widely used interfaces creates an opportunity to transparently
add features and thus evolve a system. Since by definition many modules use a widely
used interface, the transparent addition of features beneath such an interface can have
a wide impact, without having to change the clients of the interface. The memory
interface is an example of such a widely used interface. In addition to implementing
single-level stores, here are several other ways in which systems designers have used
a virtual memory manager with indirection exceptions:

 ■ Memory-mapped files. When an application opens a file, the virtual memory
manager can map files into an application’s address space, which allows the
application to read and write portions of a file as if they were located in RAM.
Memory-mapped files extend the idea of a single-level store to include files.

* T. Kilburn, D.B.J. Edwards, M.J. Lanigan, and F.H. Sumner. One-level storage system. IRE Transactions
on Electronic Computers, EC-11, 2 (April 1962), pages 223–235.

326 CHAPTER 6 Performance

 ■ Copy-on-write. If two threads are working on the same data concurrently, then
the data can be stored once in memory by mapping the pages that hold the data
with only read permissions. If one of the threads attempts to write a shared page,
the virtual memory hardware will interrupt the processor with a permission
exception. The handler can demultiplex this exception as an indirection excep-
tion of the type copy-on-write. In response to the indirection exception, the vir-
tual memory manager transparently makes a copy of the page and maps the copy
with read and write permissions in the address space of the threads that wants to
write the page. With this technique, only changed pages must be copied.

 ■ On-demand zero-filled pages. When an application starts, a large part of its address
space must be filled with zeros—for instance, the parts of the address space that
aren’t preinitialized with instructions or initial data values. Instead of allocating
zero-filled pages in RAM or on disk, the virtual memory manager can map those
pages without read and write permissions. When the application refers to one of
those pages, the virtual memory hardware will interrupt the processor with a
memory reference exception. The exception handler can demultiplex this excep-
tion as an indirection exception of the type zero-fill. In response to this zero-fill
exception, the virtual memory manager allocates a page dynamically and fills it
with zeros. This technique can save storage in RAM or on disk because the parts
of the address space that the application doesn’t use will not take up space.

 ■ One zero-filled page. Some designers implement zero-filled pages with a copy-
on-write exception. The virtual memory manager allocates just one page filled
with zeros and maps that one page in all page-map entries for pages that should
contain all zeros, but granting only read permission. Then, if a thread writes to
this read-only zero-filled page, the exception handler will demultiplex this indi-
rect exception as a copy-on-write exception, and the virtual memory manager
will make a copy and update that thread’s page table to have write permission
for the copy.

 ■ Virtual shared memory. Several threads running on different computers can
share a single address space. When a thread refers to a page that isn’t in its local
RAM, the virtual memory manager can fetch the page over the network from a
remote computer’s RAM. The remote virtual memory manager unmaps the page
and sends the content of the page back. The Apollo DOMAIN system (mentioned
in Suggestions for Further Reading 3.2.1) used this idea to make a collection of
distributed computers look like one computer. Li and Hudak use this idea to run
parallel applications on a collection of workstations with shared virtual memory
[Suggestions for Further Reading 10.1.8].

The virtual memory design for the Mach operating system [Suggestions for Further
Reading 6.1.3] provides an example design that supports many of these features and
that is used by some current operating systems.

The remainder of this section focuses on building large virtual memories using
 automatic multilevel memory management. To do so, a designer must address some

3276�2 Multilevel Memories

 challenging problems, but, once it is designed, application programmers do not have to
worry about memory management. Except for embedded devices (e.g., a computer act-
ing as the controller of a microwave oven), nearly all modern computer systems use vir-
tual memory to contain errors, enforce modularity, and manage multiple memory levels.

6.2.3 adding multilevel memory management to a virtual memory

Suppose for the moment that we have two memory devices, one that has a read/write
interface, such as a RAM, and the second that has a get/put interface, such as a mag-
netic disk. If the processor is already equipped with a virtual memory manager such
as the one illustrated in Figure 5.20, it is straightforward to add multilevel memory
management to create a one-level store.

The basic idea is that at any instant, only some of the pages listed in the page map
are actually in RAM (because the RAM has limited capacity) and the rest are on the
disk. To support this idea, we add to each entry of the page map a single bit, called the
resident bit, in the column identified as r? in Figure 6.7. If the resident bit of a page is
true, that means that the page is in a block of RAM and the physical address in the page
map identifies that block. If the resident bit of a page is false, that means that the page
is not currently in any block of RAM; it is instead on some block on the disk.

In the example, pages 10 and 12 are in RAM, while page 11 is only on the disk.
Thus, references to pages 10 and 12 can proceed as usual, but if the program tries to
refer to page 11, for example, with a load instruction, the virtual memory manager
must take some action because the processor can’t refer to the disk with read/write
operations. The action it takes is to alert the multilevel memory manager that it needs

Processor

RAM

Address

VM
manager

Page #

0

100

200

300

400

Data
READ/WRITE

Byte offset

Page-map
address register

300

Disk

(page 11)

Multilevel
memory
manager 87

101

(page 10)

(page 12)

(page 10)

114 (page 12)100

400

10
11
12

T

F

T

p br?

Current
page map

10 101

11 87

12 114

figure 6.7

Integrating a virtual memory manager with a multilevel memory manager. The virtual memory
manager is typically implemented in hardware, while the multilevel memory manager is typically
implemented in software as part of the operating system.

328 CHAPTER 6 Performance

to use the get/put interface of the disk to copy that page from the disk block into
some block in the RAM where the processor can directly refer to it. For this purpose,
the multilevel memory manager (at least conceptually) maintains a second, parallel
map that translates page numbers to disk block addresses. In practice, real implemen-
tations may merge the two maps.

The pseudocode of Figure 6.8 (which replaces lines 7–9 of the version of the
translate procedure of Section 5.4.3.1) illustrates the integration. When a program
makes a reference to a virtual memory address, the virtual memory manager invokes
translate, which (after performing the usual domain and permission checks) looks up
the page number in the page map. If the requested address is in a page that is resident
in memory, the manager proceeds as it did in Chapter 5, translating the virtual address
to a physical address in the RAM. If the page is not resident, the manager signals that
the page is missing.

The pseudocode of Figure 6.8 describes the operation of the virtual memory
 manager as a procedure, but to maintain adequate performance a virtual memory man-
ager is nearly always implemented in hardware because it must translate every virtual
address the processor issues. With this page-based design, the virtual memory man-
ager interrupts the processor with an indirect exception that is called a missing-page
exception or a page fault.

The exception handler examines the value in the program counter register to
determine which instruction caused the missing-page exception, and it then exam-
ines that instruction in memory to see what address that instruction issued. Next, it
calls send (see Figure 5.30) with a request containing the missing page number to
the port for the multilevel memory manager. send invokes advance, which wakes up a
thread of the multilevel memory manager. Then, the handler invokes await on behalf
of the application program’s thread (i.e., with the stack of the thread that caused the
exception). The await procedure yields the processor.

The multilevel memory manager receives the request and copies pages between
RAM blocks and disk blocks as they are needed. For each missing-page exception, the
multilevel memory manager first looks up that page in its parallel page map to deter-
mine the address of the disk block that holds the page. Next, it locates an unused block
in RAM. With these two parameters, it issues a get for the disk block that holds the

figure 6.8

Replacement for lines 7–9 of procedure translate of Chapter 5, to implement a multilevel
memory.

7.1 if resident of page_table[page] 5 false then // check if page is resident
7.2 signal missing_page (page) // no, signal a missing-page exception
7.3 else
7.4 block ← page_table[page].address // Index into page map
8 physical ← block 1 offset // Concatenate block and offset
9 return physical // return physical address

3296�2 Multilevel Memories

page, writing the result into the unused RAM block. The multilevel memory manager
then informs the virtual memory manager about the presence of the page in RAM
by writing the block number in the virtual memory manager’s page map and chang-
ing the resident bit to true, and makes the thread that experienced the missing-page
exception runnable by calling advance.

When that thread next runs, it backs up the program counter found in its return
point so that after the return to user mode the application program will reexecute the
instruction that encountered the missing page. Since that page is now resident in RAM
and the multilevel memory manager has updated the mappings of the virtual memory
manager, this time the translate function will be able to translate the virtual address
to a physical address.

If all blocks in RAM are occupied with pages, the multilevel memory manager must
select some page from RAM and remove it to make space for the missing page. The
page selected for removal is known colloquially as the victim, and the algorithm that
the multilevel memory manager uses to select a victim is called the page-removal
policy. A bad choice (for example, systematically selecting for removal the page that
will be needed by the next memory access) could cause the multilevel memory sys-
tem to run at the rate that pages can be retrieved from the disk, rather than the rate
that words can be retrieved from RAM. In practice, a selection algorithm that exploits
a property of most programs known as locality can allow those programs to run with
only occasional missing-page exceptions. The locality property is discussed in Section
6.2.5, and several different page removal policies are discussed in Section 6.2.6.

If the selected page was modified while it was in RAM, the multilevel memory
manager must put the modified page back to the disk before issuing a get for the new
page. Thus, in the worst case, a missing-page exception results in two accesses to the
disk: one to put a modified page back to the disk and one to get the page requested by
the missing-page exception handler. In the best case, the page in RAM has not been
modified since being read from disk, so it is identical to the disk copy. In this case, the
multilevel memory manager can simply adjust the virtual memory page-map entry to
show that this page is no longer resident, and the number of disk accesses needed is
just the one to get the missing page. This scheme maintains a copy of every virtual
memory page on the disk, whether or not that page is also resident in RAM, so the disk
must be larger than the RAM and the effective virtual memory capacity is equal to the
space allocated for virtual memory on the disk.

A concern about this scheme is that it introduces what sometimes are called
implicit I/Os. The multilevel memory manager performs I/O operations beyond the
ones performed by the application (which are then called explicit I/Os). Given that
a disk is often an I/O bottleneck (see Section 6.1.8), these implicit I/Os may risk
slowing down the application. Problem set 15 explores some of the issues related to
implicit I/Os in the context of a page-based and an object-based single-level store.

To mitigate the I/O bottleneck for missing-page exceptions, a designer can exploit
concurrency by implementing the multilevel memory manager with multiple threads.
When a missing-page exception occurs, the next available multilevel memory man-
ager thread can start to work on that missing page. The thread begins a get operation

330 CHAPTER 6 Performance

and waits for the get to complete. Meanwhile, the thread manager can assign the
 processor to some other thread. When the get completes, an interrupt notifies
the multilevel memory manager thread and it completes processing of the missing-
page exception. With this organization, the multilevel memory manager can overlap
the handling of a missing-page exception with the computation of other threads, and
it can handle multiple missing-page exceptions concurrently.

A quite different, less modular organization is used in many older systems: inte-
grate the multilevel memory manager with the virtual memory manager in the
kernel, with the goal of reducing the number of instructions required to handle
a missing-page exception, and thus improving performance. Typically, when inte-
grated, the multilevel memory manager runs in the application thread in the kernel,
thus reducing the number of threads and avoiding the cost of context switches.
Most such systems were designed decades ago when instruction count was a major
concern.

Comparing these two organizations, one benefit of the modularity of a separate
multilevel memory manager is that several multilevel memory managers can easily
coexist. For example, one multilevel memory manager that reads and writes blocks
to a magnetic disk to provide applications with the illusion of a large memory may

Sidebar 6.5 Design Hint: Separate Mechanism from Policy If a module needs
to make a policy decision, it is better to leave the policy decision to the clients of
the module so that they can make a decision that meets their goals. If the interface
between the mechanism and policy module is well defined, then this split allows
the schedule policies to be changed without having to change the implementation
of the mechanism. For example, one could replace the page-removal policy without
having to change the mechanism for handling missing-page exceptions. Furthermore,
when porting the missing-page exception mechanism to another processor, the
 missing-page handler may have to be rewritten, but the policy module may require
no modifications.

Of course, if a change in policy requires changes to the interface between the mecha-
nism and policy modules, then both modules must be replaced. Thus, the success of
following the hint is limited by how well the interface between the mechanism and
policy module is designed. The potential downsides of separating mechanism and
policy are a loss in performance due to control transfers between the mechanism
and policy module, and increased complexity if flexibility is unneeded. For example,
if one policy is always the right one, then separating policy and mechanism may just
be unnecessary complexity.

In the case of multilevel memory management, separating the missing-page mecha-
nism from the page replacement policy is mostly for ease of porting because the
least recently used page-replacement policy (discussed in Section 6.2.5) works well
in practice for most applications.

3316�2 Multilevel Memories

coexist with another multilevel memory manager that provides memory-mapped
files. These different multilevel memory managers can be implemented as separate
modules, as opposed to being integrated together with the virtual memory man-
ager. Separating the multilevel memory manager from the virtual memory manager
is an example of the design hint separate mechanism from policy, discussed in
Sidebar 6.5. The Mach virtual memory system is an example of a modern, modular
design [Suggestions for Further Reading 6.1.3].

If the multilevel managers are implemented as separate modules from the virtual
memory manager, then the designer has the choice of running the multilevel manager
modules in kernel mode or as separate applications in user mode. For the same rea-
sons that many deployed systems are monolithic kernel systems (see Section 5.3.6),
designers often choose to run the multilevel manager modules in kernel mode. In a
few systems, the multilevel managers run as separate user applications with their own
address spaces.

One question that requires some careful thought is what to do if a multilevel mem-
ory manager encounters a missing-page exception in its own procedures or data. In
principle, there is no problem with recursive missing-page exceptions as long as the
recursion bottoms out. To ensure that the recursion does bottom out, it is necessary
to make sure that some essential set of pages (for example, the pages containing the
instructions and tables of the interrupt handler and the kernel thread manager) is
never selected for removal from RAM. The usual method is to add a mark to the page-
map entries for those essential pages saying, in effect, “Don’t remove this page.” Pages
so marked are commonly said to be wired down.

6.2.4 analyzing multilevel memory systems

Multilevel memories are common engineering practice. From the processor perspec-
tive, stored instructions and data traverse some pyramid of memory devices such
as the one that was illustrated in Figure 6.6. But when analyzing or constructing a
multilevel memory, we do so by analyzing each adjacent pair of levels individually as
a two-level memory system, and then stacking the several two-level memory systems.
(One reason for doing it this way is that it seems to work. Another is that no one has
yet figured out a more satisfactory way to analyze or manage a three- or more-level
memory as a single system.)

Devices that function as the fast level in a two-level memory system are called
primary devices, and devices that function as the slow level are called secondary
devices. In virtual memory systems, the primary device is usually some form of RAM;
the secondary device can be either a slower RAM or a magnetic disk. Web browsers
typically use the local disk as a cache that holds pages of remote Web services. In
this case, the primary device is a magnetic disk; the remote service is the secondary
device, which may itself use magnetic disks for storage. The multilevel memory man-
agement algorithms described in the remainder of this section apply to both of these
different configurations, and many others.

332 CHAPTER 6 Performance

A cache and a virtual memory are two similar kinds of multilevel memory manag-
ers. They are so similar, in fact, that the only difference between them is in the name
space they provide for memory cells:

The user of a ■ cache identifies memory cells using the name space of the
 secondary memory device.
The user of a ■ virtual memory identifies memory cells using the name space of
the primary memory device.

Apart from that difference, designers of virtual memories and caches choose policies
for multilevel memory management from the same range of possibilities.

The pyramid of Figure 6.6 is typically implemented with the highest level expli-
citly managed by the application, a cache design at some levels and a virtual memory
design at other levels. For example, a multilevel memory system that includes all six
levels of the figure might be organized something like the following:

1. At the highest level, the registers of the processor are the primary device, and
the rest of the memory system is the secondary device. The application pro-
gram (as constructed by the compiler code generator) explicitly loads and
stores the registers to and from the rest of the memory system.

2. When the processor issues a read or write to the rest of the memory system, it
provides as an argument a name from the main memory name space, but this
name goes to a primary memory device located on the same chip as the proces-
sor. Since the name is from the lower level main memory name space, this level
of memory is being managed as a cache, commonly known as a “level 1 cache”
or “L1 cache”.

3. If the named cell is not found in the level 1 cache, a multilevel memory man-
ager looks in its secondary memory, an off-chip memory device, but again using
the name from the main memory name space. The off-chip memory is thus
another example of a cache, this one known as a “level 2 cache” or “L2 cache”.

4. The level 2 cache is now the primary device, and if the named memory cell is
not found there, the next lower multilevel manager (the one that manages the
level 2/main memory pair) looks in its secondary device—the main memory—
still using the name from the main memory name space.

5. At the next level, the main memory is the primary device. If an addressed cell
is not in main memory, a virtual memory manager invokes the next lower level
multilevel memory manager (the one described in Section 6.2.3, that manages
movement between main and disk memory) but still using the name from the
main memory name space. The multilevel memory manager translates this name
to a disk block address.

6. The sequence may continue down another layer; if the disk block is not
found on the (primary) local disk, yet another multilevel memory manager
may retrieve it from some remote (secondary) system. In some systems, this
last memory pair is managed as a cache, and in others as a virtual memory.

3336�2 Multilevel Memories

It should be apparent that the above example is just one of a vast range of possibili-
ties open to the multilevel memory designer.

6.2.5 Locality of reference and working sets

It is not obvious that an automatically managed multilevel memory system should
perform well. The basic requirement for acceptable performance is that all informa-
tion items stored in the memory must not have equal frequency of use. If every item is
used with equal frequency, then a multilevel memory cannot have good performance,
since the overall memory will operate at approximately the speed of the slowest
memory component. To illustrate this effect, consider a two-level memory system.
The average latency of a two-level memory is:

 AverageLatency 5 Rhit 3 Latencyprimary 1 Rmiss 3 Latencysecondary (6.2)

The term Rhit (known as the hit ratio) is the frequency with which items are found
in the primary device, and Rmiss is (1 2 Rhit). This formula is a direct application of
Equation 6.1, (in Section 6.1) which gives the average performance of a system with
a fast and slow path. Here the fast path is a reference to the primary device, while the
slow path is a reference to the secondary device.

If accesses to every cell of the primary and secondary devices were of equal fre-
quency, then the average latency would be proportional to the number of cells of
each device:

AverageLatency 5
Sprimary

Sprimary 1 Ssecondary

 3 Tprimary 1
Ssecondary

Sprimary 1 Ssecondary

 3 Tsecondary

 (6.3)

where S is the capacity of a memory device and T is its average latency. In a multilevel
memory, it is typical that Tprimary Tsecondary and Ssecondary Sprimary (as, for example,
with RAM for primary memory and magnetic disk for secondary memory), in which
case the first term is much smaller than the second, the coefficient of the second
term approaches 1, and AverageLatency Tsecondary. Thus, if accesses to every cell of
primary and secondary are equally likely, a multilevel memory doesn’t provide any
performance benefit.

On the other hand, if the frequency of use of some stored items is significantly
higher than the frequency of use of other stored items, even for a short time, automati-
cally managed multilevel memory becomes feasible. For example, if, somehow, 99%
of accesses were directed to the faster memory and only 1% to the slower memory,
then the average latency would be:

 AverageLatency 5 0.99 3 Tprimary 1 0.01 3 Tsecondary (6.4)

Thus if the primary device is L2 cache with 1 nanosecond latency and the sec-
ondary device is main memory with 10 nanoseconds latency, the average latency
becomes 0.99 1 0.10 5 1.09 nanoseconds, which makes the composite memory,

334 CHAPTER 6 Performance

with a capacity equal to that of the main memory, nearly as fast as the L2 cache. For a
second example, if the primary device is main memory with 10 nanoseconds latency
and the secondary device is magnetic disk with average latency of 10 milliseconds,
the average latency of the multilevel memory is

0.99 3 10 nanoseconds 1 0.01 3 10 milliseconds 5 100.0099 microseconds

That latency is substantially larger than the 10 nanosecond primary memory latency, but
it is also much smaller than the 10 millisecond secondary memory latency. In essence,
a multilevel memory just exploits the design hint optimize for the common case.

Most applications are not so well behaved that one can identify a static set of infor-
mation that is both small enough to fit in the primary device and for which reference
is so concentrated that it is the target of 99% of all memory references. However, in
many situations most memory references are to a small set of addresses for significant
periods of time. As the application progresses, the area of concentration of access
shifts, but its size still typically remains small. This concentration of access into a small
but shifting locality is what makes an automatically managed multilevel memory sys-
tem feasible. An application that exhibits such a concentration of accesses is said to
have locality of reference.

Analyzing the situation, we can think of a running application as generating a
stream of virtual addresses, known as the reference string. A reference string can
exhibit locality of reference in two ways:

 ■ Temporal locality: the reference string contains several closely spaced refer-
ences to the same address.

 ■ Spatial locality: the reference string contains several closely spaced references
to adjacent addresses.

An automatically managed multilevel memory system can exploit temporal locality
by keeping in the primary device those memory cells that appeared in the reference
string recently—thus applying speculation. It can exploit spatial locality by moving
into the primary device memory cells that are adjacent to those that have recently
appeared in the reference string—a combination of speculation and batching (because
issuing a get to a secondary device can retrieve a large block of data that can occupy
many adjacent memory cells in the primary device).

There are endless ways in which applications exhibit locality of reference:

Programs are written as a sequence of instructions. Most of the time, the next ■

instruction is stored in the memory cell that is physically adjacent to the previ-
ous instruction, thus creating spatial locality. In addition, applications frequently
execute a loop, which means there will be repeated references to the same
instructions, creating temporal locality. Between loops, conditional tests, and
jumps, it is common to see many instruction references directed to a small sub-
set of all the instructions of an application for an extended time. In addition,
depending on the conditional structure, large parts of an application program
may not be exercised at all.

3356�2 Multilevel Memories

Data structures are typically organized so that a reference to one component ■

of the structure makes references to physically nearby components more likely.
Arrays are an example; reference to the first element is likely to be followed
shortly by reference to the second. Similarly, if an application retrieves one field
of a record, it will likely soon retrieve another field of the same record. Each of
these examples creates spatial locality.

Information processing applications typically process files sequentially. For ■

example, a bank audit program may examine accounts one by one in physical
storage order (creating spatial locality) and may perform multiple operations on
each account (creating temporal locality).

Although most applications naturally exhibit a significant amount of locality of
reference, to a certain extent the concept also embodies an element of self-fulfilling
prophecy. Application programmers are usually aware that multilevel memory man-
agement is widely used, so they try to write programs that exhibit good locality of
reference in the expectation of better performance.

If we look at an application that exhibits locality of reference, in a short time the
application refers to only a subset of the total collection of memory cells. The set of
references of an application in a given interval t is called its working set. In one such
interval, the application may execute a procedure or loop that operates on a group
of related data items, causing most references to go to the text of the procedure and
that group of data items. Then, the application might call another procedure, causing
most references to go to the text and related data items of that procedure. The work-
ing set of an application thus grows, shrinks, and shifts with time.

If at some instant the current working set of an application is entirely stored in the
primary memory device, the application will make no references to the secondary
device. On the other hand, if the current working set of an application is larger than
the primary device, the application (or at least the multilevel memory manager) will
have to make at least some references to the secondary device, and it will therefore
run more slowly. An application whose working set is much larger than the primary
device is likely to cause repeated movement of data back and forth between the
primary and secondary devices, a phenomenon called thrashing. A design goal is to
avoid, or at least minimize, thrashing.

6.2.6 multilevel memory management policies

Equipped with the concepts of locality of reference and working set, we can now
examine the behavior of some common multilevel memory management policies,
algorithms that choose which stored objects to place in the primary device, which
to place in the secondary device, and when to move a stored object from one device
to the other. To make the discussion concrete, we will analyze multilevel memory
management policies in the context of a virtual memory system with two levels: RAM
(the primary device) and a magnetic disk (the secondary device), in which the stored
objects are pages of uniform size. However, it is important to keep in mind that the

336 CHAPTER 6 Performance

same analysis applies to any multilevel memory system, whether organized as a cache
or a virtual memory, with uniform or variable-sized objects, and any variety of primary
and secondary devices.

Each level of a multilevel memory system can be characterized by four items:

 ■ The string of references directed to that level. In a virtual memory system, the
reference string seen by the primary device is the sequence of page numbers
extracted from virtual addresses of both instructions and data, in the order that
the application makes references to them. The reference string seen by the sec-
ondary device is the sequence of page numbers that were misses in the primary
device. The secondary device reference string is thus a shortened version of the
primary device reference string.

 ■ The bring-in policy for that level. In a virtual memory system, the usual bring-in
policy for the primary device is on-demand: whenever a page is used, bring it to
the primary device if it is not already there. The only remaining policy decision
is whether or not to bring along some adjacent pages. In a two-level memory
system there is no need for a bring-in policy for the secondary device.

 ■ The removal policy for that level. In the primary device of a virtual memory
system, this policy chooses a page to evict (the victim) to make room for a new
page. Again, in a two-level memory system there is no need for a removal policy
for the secondary device.

 ■ The capacity of the level. In a virtual memory system, the capacity of the pri-
mary level is the number of primary memory blocks, and the capacity of the sec-
ondary level is the number of secondary memory blocks. Since the secondary
memory normally contains a copy of every page, the capacity of the multilevel
memory system is equal to the capacity of the secondary device.

The goal of a multilevel memory system is to have the primary device serve as
many references in its reference string as possible, thereby minimizing the num-
ber of references in the secondary device reference string. In the example of the
multilevel memory manager, this goal means to minimize the number of missing-
page exceptions. One might expect that increasing the capacity of the primary
device would guarantee a reduction (or at least not an increase) in the number
of missing-page exceptions. Surprisingly, this expectation is not always true. As an
example, consider the first-in, first-out (FIFO) page-removal policy, in which the
page selected for removal is the one that has been in the primary device the longest.
(That is, the first page that was brought in will be the first page to be removed. This
policy is attractive because it is easy to implement by managing the pages of the
primary device as a circular buffer.) If the reference string is 0 1 2 3 0 1 4 0 1 2 3 4,
and the primary device starts empty, then a primary device with a capacity of three
pages will experience nine missing-page exceptions, while a primary device with
a capacity of four pages will experience ten missing-page exceptions, as shown in
Tables 6.1 and 6.2:

3376�2 Multilevel Memories

This unexpected increase of missing-page exception numbers with a larger primary
device capacity is called Belady’s anomaly, named after the author of the paper that
first reported it. Belady’s anomaly is not commonly encountered in practice, but it sug-
gests that when comparing page-removal policies, what appears to be a better policy
might actually be worse with a different primary device capacity. As we shall see, one
way to simplify analysis is to avoid policies that can exhibit Belady’s anomaly.

The objective of a multilevel memory management policy is to select for removal
the page that will minimize the number of missing-page exceptions in the future. If
we knew the future reference string, we could look ahead to see which pages are
about to be touched. The optimal policy would always choose for removal the page
not needed for the longest time. Unfortunately, this policy is unrealizable because it
requires predicting the future. However, if we run a program and keep track of its
reference string, afterwards we can review that reference string to determine how
many missing-page exceptions would have occurred if we had used that optimal
policy. That result can then be compared with the policy that was actually used to
determine how close it is to the optimal one. This unrealizable policy is known as the
optimal (OPT) page-removal policy. Tables 6.3 and 6.4 show the result of the OPT
page- removal policy applied to the same reference string as before.

Table 6.1 FIFO Page-Removal Policy with a Three-Page Primary Device

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Primary
device
contents

–
–
–

0
–
–

0
1
–

0
1
2

3
1
2

3
0
2

3
0
1

4
0
1

4
0
1

4
0
1

4
2
1

4
2
3

Pages
brought

in
Remove – – – 0 1 2 3 – – 0 1 –

Bring in 0 1 2 3 0 1 4 – – 2 3 – 9

Table 6.2 FIFO Page-Removal Policy with a Four-Page Primary Device

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Primary
device
contents

–
–
–
–

0
–
–
–

0
1
–
–

0
1
2
–

0
1
2
3

0
1
2
3

0
1
2
3

4
1
2
3

4
0
2
3

4
0
1
3

4
0
1
2

3
0
1
2

Pages
brought

in

Remove – – – – – – 0 1 2 3 4 0

Bring in 0 1 2 3 – – 4 0 1 2 3 4 10

338 CHAPTER 6 Performance

It is apparent from the number of pages brought in that, at least for this ref-
erence string, the OPT policy is better than FIFO. In addition, at least for this
reference string, the OPT policy gets better when the primary device capacity is
larger.

The design goal thus becomes to devise page-removal algorithms that (1) avoid
Belady’s anomaly, (2) have hit ratios not much worse than the optimal policy, and (3)
are mechanically easy to implement.

Some easy-to-implement page-removal policies have an average performance on a
wide class of applications that is close enough to the optimal policy to be effective.
A popular one is the least-recently-used (LRU) page-removal policy. LRU is based on
the observation that, more often than not, the recent past is a fairly good predictor
of the immediate future. The LRU prediction is that the longer the time since a page
has been used, the less likely it will be needed again soon. So LRU selects as its victim
the page in the primary device that has not been used for the longest time (that is,
the “least-recently-used” page). Let’s see how LRU fares when it tackles our example
reference string:

Table 6.3 The OPT Page-Removal Policy with a Three-Page Primary Device

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Primary
device
contents

–
–
–

0
–
–

0
1
–

0
1
2

0
1
3

0
1
3

0
1
3

0
1
4

0
1
4

0
1
4

2
1
4

3
1
4

Pages
brought

in
Remove – – – 2 – – 3 – – 0 2 –

Bring in 0 1 2 3 – – 4 – – 2 3 – 7

Table 6.4 The OPT Page-Removal Policy with a Four-Page Primary Device

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Primary
device
contents

–
–
–
–

0
–
–
–

0
1
–
–

0
1
2
–

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
4

0
1
2
4

0
1
2
4

0
1
2
4

3
1
2
4

Pages
brought

in

Remove – – – – – – 3 – – – 0 –

Bring in 0 1 2 3 – – 4 – – – 3 – 6

3396�2 Multilevel Memories

For this reference string, LRU is better than FIFO for a primary memory device of
size 4 but not as good as the OPT policy. And for both LRU and the OPT policy the
number of page movements is monotonically non-decreasing with primary device
size; these two algorithms avoid Belady’s anomaly, for a non-obvious reason that will
be explained in Section 6.2.7.

Most useful algorithms require that the new page be the only page that moves
in and that only one page move out. Algorithms that have this property are called
demand algorithms. FIFO, LRU, and some algorithms that implement the OPT policy
are demand algorithms. If any other page moves in to primary memory, the algorithm
is said to use prepaging, one of the topics of Section 6.2.9.

As seen above, LRU is not as good as the OPT policy. Because it looks at history
rather than the future, it sometimes throws out exactly the wrong page (the page
movement at reference #11 in the four-page memory provides an example). For a
more extreme example, a program that runs from top to bottom through a virtual
memory that is larger than the primary device will always evict exactly the wrong
page. Consider a primary device with capacity of four pages that is part of a virtual

Table 6.6 The LRU Page-Removal Policy with a Four-Page Primary Device

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Primary
device
contents

–
–
–
–

0
–
–
–

0
1
–
–

0
1
2
–

0
1
2
3

0
1
2
3

0
1
2
3

0
1
4
3

0
1
2
4

0
1
2
4

0
1
2
4

0
1
2
3

Pages
brought

in

Remove – – – – – – 2 – – – 4 0

Bring in 0 1 2 3 – – 4 – – – 3 4 8

Table 6.5 The LRU Page-Removal Policy with a Three-Page Primary Device

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Primary
device
contents

–
–
–

0
–
–

0
1
–

0
1
2

0
2
3

0
1
3

0
1
3

0
1
4

0
1
4

0
1
4

0
1
2

3
1
2

Pages
brought

in
Remove – – – 1 – 2 3 – – 4 0 1

Bring in 0 1 2 3 – 1 4 – – 2 3 4 9

340 CHAPTER 6 Performance

memory that contains five pages being managed with LRU (the letter “F” means that
this reference causes a missing-page exception):

If the application repeatedly cycles through the virtual memory from one end to the
other, each reference to a page will result in a page movement. If we start with an empty
primary device, references to page 0 through 3 will result in page movements. The refer-
ence to page 4 will also result in a page movement, in which LRU will remove page 0,
since page 0 has been used least recently. The next reference, to page 0, will also result in
a page movement, which leads LRU to remove page 1, since it has been used least recently.
As a consequence, the next reference, to page 1, will result in a page movement, replacing
page 2, and so on. In short, every access to a page will result in a page movement.

For such an application, a most-recently-used (MRU) page-removal policy would
be better. MRU chooses as the victim the most recently used page.

Let’s see how MRU fares on the contrived example that gave LRU so much
trouble:

The initial references to pages 0 through 3 result in page movements that fill the
empty primary device. The first reference to page 4 will also result in a page move-
ment, replacing page 3, since page 3 has been used most recently. The next refer-
ence, to page 0, will not result in a missing-page exception since page 0 is still in the
primary device. Similarly, the succeeding references to page 1 and 2 will not result
in page movements. The second reference to page 3 will result in a page movement,
replacing page 2, but then there will be three references that do not require page
movements. Thus, with the MRU page-removal policy, our contrived application will
experience fewer missing-page exceptions than with the LRU page-removal policy:
once in steady state, MRU will result in one page movement per loop iteration.

In practice, however, LRU is surprisingly robust because past references frequently
are a reasonable predictor of future references; examples in which MRU does better
are uncommon. A secondary reason why LRU works well is that programmers assume
that the multilevel memory system uses LRU or some close approximation as the
removal policy and they design their programs to work well under that policy.

6.2.7 comparative analysis of Different policies

Once an overall system architecture that includes a multilevel memory system has
been laid out, the designer needs to decide two things that will affect performance:

How large the primary memory device should be ■

Which page removal policy to use ■

Reference string 0 1 2 3 4 0 1 2 3 4 0 1 2

4-page primary device F F F F F F F F F F F F F

Reference string 0 1 2 3 4 0 1 2 3 4 0 1 2

4-page primary memory F F F F F F F

3416�2 Multilevel Memories

These two decisions can be—and in practice often are—supported by an analysis that
begins by instrumenting a hardware processor or an emulator of a processor to main-
tain a trace of the reference string of a running program. After collecting several such
traces of typical programs that are to be run on the system under design, these traces
can then be used to simulate the operation of a multilevel memory with various pri-
mary device sizes and page-removal policies. The usual measure of a multilevel mem-
ory’s performance is the hit ratio because it is a pure number whose value depends
only on the size of the primary device and the page-removal policy. Given the hit ratio
and the latency of the primary and secondary memory devices, one can immediately
estimate the performance of the multilevel memory system by using Equation 6.2.

In the early 1970s, a team of researchers at the IBM Corporation developed a rapid
way of doing such simulations to calculate hit ratios for one class of page-removal
policies. If we look more carefully at the “primary device contents” rows of Tables 6.3
and 6.4, we notice that at all times the optimal policy keeps in the three-page memory
a subset of the pages that it keeps in the four-page memory. But in FIFO Tables 6.1
and 6.2, at times 8, 9, 11, and 12, this subset property does not hold. This difference
is no accident; it is the key to understanding how to avoid Belady’s anomaly and
how to rapidly analyze a reference string to see how a particular policy will perform
for any primary device size.

If a page-removal policy can somehow maintain this subset property at all times
and for every possible primary device capacity, then a larger primary device can never
have more missing-page exceptions than a smaller one. Moreover, if we consider a
 primary device of capacity n pages and a primary device of capacity n 1 1 pages,
the subset property ensures that the larger primary device contains exactly one page
that is not in the smaller primary device. Repeating this argument for every possible
primary device size n, we see that the subset property creates a total ordering of all
the pages of the multilevel memory system. For example, suppose a memory of size
1 contains page A. A memory of size 2 must also contain page A, plus one other page,
perhaps B. A memory of size 3 must then contain pages A and B plus one other page,
perhaps C. Thus, the subset property creates the total ordering {A, B, C}. This total order-
ing is independent of the actual capacity chosen for the primary memory device.

The IBM research team called this ordering a “stack” (in a use of that word that has
no connection with push-down stacks), and page-removal policies that maintain the
subset property have since become known as stack algorithms. Although requiring
the subset property constrains the range of algorithms, there are still several different,
interesting, and practical algorithms in the class. In particular, the OPT policy, LRU, and
MRU all turn out to be stack algorithms. When a stack algorithm is in use, the virtual
memory system keeps just the pages from the front of the ordering in the primary
device; it relegates the remaining pages to the secondary device. As a consequence, if
m < n, the set of pages in a primary device of capacity m is always a subset of the set
of pages in a primary device of capacity n. Thus a larger memory will always be able to
satisfy all of the requests that a smaller memory could—and with luck some additional
requests. Put another way, the total ordering ensures that if a particular reference hits
in a primary memory of size n, it will also hit in every memory larger than n. When a

342 CHAPTER 6 Performance

stack algorithm is in use, the hit ratio in the primary device is thus guaranteed to be a
non-decreasing function of increasing capacity. Belady’s anomaly cannot arise.

The more interesting feature of the total ordering and the subset property is that
for a given page-removal policy an analyst can perform a simulation of all possible pri-
mary memory sizes, with a single pass through a given reference string, by computing
the total ordering associated with that policy. At each reference, some page moves to
the top of the ordering, and the pages that were above it either move down or stay
in their same place, as dictated by the page-removal policy. The simulation notes, for
each primary memory device size of interest, whether or not these movements within
the total ordering also correspond to movements between the primary and secondary
memory devices. By counting those movements, when it reaches the end of the refer-
ence string the simulation can directly calculate the hit ratio for each potential primary
memory size. Table 6.7 shows the result of this kind of simulation for the LRU policy
when it runs with the reference string used in the previous examples. In this table, the
“size n in/out” rows indicate which pages, if any, the LRU policy will choose to bring
into and remove from primary memory in order to satisfy the reference above. Note
that at every instant of time, the “stack contents after reference” are in order by time
since last usage, which is exactly what intuition predicts for the LRU policy.

In contrast, when analyzing a non-stack algorithm such as FIFO, one would have
to perform a complete simulation of the reference string for each different primary
device capacity of interest and construct a separate table such as the one above for
each memory size. It is instructive to try to create a similar table for FIFO.

In addition, since the reference string is available, its future is known, and the
analyst can, with another simulation pass (running backward through the reference
string), learn how the optimal page-removal policy would have performed on that
same string for every memory size of interest. The analyst can then compare the OPT
result with various realizable page-removal candidate policies.

Table 6.7 Simulation of the LRU Page-Removal Policy for Several Primary Device Sizes

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Stack
contents
after reference

0
–
–
–
–

1
0
–
–
–

2
1
0
–
–

3
2
1
0
–

0
3
2
1
–

1
0
3
2
–

4
1
0
3
2

0
4
1
3
2

1
0
4
3
2

2
1
0
4
3

3
2
1
0
4

4
3
2
1
0

Number of
moves in

Size 1 in/out 0/– 1/0 2/1 3/2 0/3 1/0 4/1 0/4 1/0 2/1 3/2 4/3 12

Size 2 in/out 0/– 1/– 2/0 3/1 0/2 1/3 4/0 0/1 1/4 2/0 3/1 4/2 12

Size 3 in/out 0/– 1/– 2/– 3/0 0/1 1/2 4/3 –/– –/– 2/4 3/0 4/1 10

Size 4 in/out 0/– 1/– 2/– 3/– –/– –/– 4/2 –/– –/– 2/3 3/4 4/0 8

Size 5 in/out 0/– 1/– 2/– 3/– –/– –/– 4/- –/– –/– –/– –/– –/– 5

3436�2 Multilevel Memories

Proof that the optimal page removal policy minimizes page movements, and that
it can be implemented as an on-demand stack algorithm, is non-trivial. Table 6.8 illus-
trates that the statement is correct for the reference string of the previous examples.
Sidebar 6.6 provides the intuition of why OPT is a stack algorithm and optimal. The

Table 6.8 The Optimal Page-Removal Policy for All Primary Memory Sizes

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference
string

0 1 2 3 0 1 4 0 1 2 3 4

Stack contents
after
reference

0
–
–
–
–

1
0
–
–
–

2
0
1
–
–

3
0
1
2
–

0
3
1
2
–

1
0
3
2
–

4
0
1
3
2

0
4
1
3
2

1
0
4
3
2

2
0
4
3
1

3
0
4
2
1

4
0
3
2
1

Number of
pages removed

Size 1 victim – 0 1 2 3 0 1 4 0 1 2 3 11

Size 2 victim – – 1 2 – 3 1 – 1 2 3 4 10

Size 3 victim – – – 2 – – 4 – – 2 3 – 7

Size 4 victim – – – – – – 4 – – 2 – – 6

Size 5 victim – – – – – – – – – – – – 5

Sidebar 6.6 OPT is a Stack Algorithm and Optimal To see that OPT is a stack
algorithm, consider the following description of OPT, in terms of a total ordering:

1. Start with an empty primary device and an empty set that will become a total ordering.
As each successive page is touched, note its depth d in the total ordering (if it is not yet
in the ordering, set d to infinity) and move it to the front of the total ordering.

2. Then, move the page that was at the front down in the ordering. Move it down until it
follows all pages already in the ordering that will be touched before this page is needed
again, or to depth d, whichever comes first. This step requires knowing the future.

3. If d > m (where m is the size of the primary memory device), step 1 will require mov-
ing a page from the secondary device to the primary device, and step 2 will require
moving a page from the primary device to the secondary device.

The result is that, if the algorithm removes a page from primary memory, it will always
choose the page that will not be needed for the longest time in the future. Since the
total ordering of all pages is independent of the capacity of the primary device, OPT
is a stack algorithm. Therefore, for a particular reference string, the set of pages in a
primary device of capacity m is always a subset of the set of pages in a primary device
of capacity m 1 1. Table 6.8 illustrates this subset property.

344 CHAPTER 6 Performance

interested reader can find a detailed line of reasoning in the 1970 paper by the IBM
researchers [Suggestions for Further Reading 6.1.2] who introduced stack algorithms
and explained in depth how to use them in simulations.

6.2.8 Other page-removal algorithms

Any algorithm based on the LRU policy requires updating recency-of-usage informa-
tion on every memory reference, whether or not a page moves between the primary
and secondary devices. For example, in a virtual memory system every instruction and
data reference of the running program causes such an update. But manipulating the
representation of this usage information may itself require several memory references,
which escalates the cost of the original reference. For this reason, most multilevel
memory designers look for algorithms that have approximately the same effect but
are less costly to implement. One elegant approximation to LRU is the clock page-
removal algorithm.

The clock algorithm is based on a modest hardware extension in which the virtual
memory manager (implemented in the hardware of the processor) sets to true a bit,
called the referenced bit, in the page table entry for a page whenever the processor
makes a reference that uses that page table entry. If at some point in time the multilevel
memory manager clears the referenced bit for every page to false, and then the applica-
tion runs for a while, a survey of the referenced bits will reveal which pages that appli-
cation used. The clock algorithm consists of a systematic survey of the referenced bits.

Suppose the physical block numbers of the primary device are arranged in numer-
ical order in a ring (i.e., the highest block number is followed by block number 0),
as illustrated in Figure 6.9. All referenced bits are initially set to false, and the sys-
tem begins running. A little later, in Figure 6.9, we find that the pages residing in
blocks 0, 1, 2, 4, 6, and 7 have their referenced bits set to true, indicating that some
program touched them. Then, some program causes a missing-page exception, and
the system invokes the clock algorithm
to decide which resident page to evict
in order to make room for the missing
page. The clock algorithm maintains a
pointer much like a clock arm (which
is why it is called the clock algorithm).
When the virtual memory system needs
a free page, the algorithm begins mov-
ing the pointer clockwise, surveying the
referenced bits as it goes:

1. If the clock arm comes to a block
for which the referenced bit is
true, the algorithm sets the refer-
enced bit to false and moves the
arm ahead to the next block. Thus,

0

1

2

34

5

6

7

T

T

FT

F

T

T T
Referenced bit

Physical
page

number

figure 6.9

Example operation of the clock page-removal
policy.

3456�2 Multilevel Memories

the meaning of the referenced bit becomes “The processor has touched the
page residing in this block since the last pass of the clock arm.”

2. If the clock arm comes to a block for which the referenced bit is false, that
means that the page residing in this block has not been touched since the last
pass of the clock arm. This page is thus a good candidate for removal, since
it has been used less recently than any page that has its referenced bit set to
true. The algorithm chooses this page for eviction and leaves the arm point-
ing to this block for the next execution of the algorithm.

The clock algorithm thus removes the page residing in the first block that it
encounters that has a false referenced bit. If there are no such pages (that is, every
block in the primary device has been touched since the previous pass of the clock
arm), the clock will move all the way around once, resetting referenced bits as it goes,
but at the end of that round it will come again to the first block it examined, which
now has a false referenced bit, so it chooses the page in that block. If the clock algo-
rithm were run starting in the state depicted in Figure 6.9, it would choose to remove
the page in block 3, since that is the first block in the clockwise direction that has a
false referenced bit.

The clock algorithm has a number of nice properties. Space overhead is small:
just one extra bit per block of the primary device. The extra time spent per page
reference is small: forcing a single bit to true. Typically, the clock algorithm has to
scan only a small fraction of the primary device blocks to find a page with a false
referenced bit. Finally, the algorithm can be run incrementally and speculatively. For
example, if the designer of the virtual memory system wants to keep the number of
free blocks above some threshold, it can run the policy ahead of demand, removing
pages that haven’t been used recently, and stop moving the arm as soon as it has met
the threshold.

The clock algorithm provides only a rough approximation to LRU. Rather than
strictly determining which page has been used least recently, it simply divides pages
into two categories: (1) those used since the last sweep and (2) those not used since
the last sweep. It then chooses as its victim the first page that the arm happens to
encounter in the second category. This page has been used less recently than any of
the pages in the first category, but is probably not the least-recently-used page. What
seems like the worst-case scenario for the clock algorithm would be when all pages
have their referenced bit set to true; then the clock algorithm has no information on
which to decide which pages have recently been used. On the other hand, if every
page in the primary device has been used since the last sweep, there probably isn’t a
much better way of choosing a page to remove.

In multilevel memory systems that are completely implemented in hardware, even
the clock algorithm may involve too much complexity, so designers resort to yet sim-
pler policies. For example, some processors use a random removal policy for the
translation look-aside buffer described in Chapter 5. Random removal can be quite
effective in this application because

346 CHAPTER 6 Performance

its implementation requires minimal state to implement. ■

if the look-aside buffer is large enough to hold the current working set of transla- ■

tions, the chance that a randomly chosen victim turns out to be a translation that
is about to be needed is relatively small.
the penalty for removing the wrong translation is also quite small—just one ■

extra reference to a slightly slower random access memory.

Alternatively, some processor cache managers use a completely stateless policy called
direct mapping in which the page chosen for eviction is the one located in block n
modulo m, where n is the secondary device block number of the missing page and
m is the number of blocks in the primary device. If the compiler optimizer is aware
that the processor uses a direct mapping policy, and it knows the size of the primary
device, it can minimize the number of cache misses by carefully positioning instruc-
tions and data in the secondary device.

When page-removal policies are implemented in software, designers can use meth-
ods that maintain more state. One popular software policy is least-frequently-used,
which tracks how often a page is used. Complete coverage of page-removal polices is
beyond the scope of this book. The reader is encouraged to explore the large litera-
ture on this topic.

6.2.9 Other aspects of multilevel memory management

Page-removal policies are only one aspect of multilevel memory management. The
designer of a multilevel memory manager must also provide a bring-in policy that
is appropriate for the system load and, for some systems, may include measures to
counter thrashing.

The bring-in policy of all of the paging systems described so far is that pages are
moved to the primary device only when the application attempts to use them; such sys-
tems are called demand paging systems. The alternative method is known as prepaging.
In a prepaging system, the multilevel memory manager makes a prediction about which
pages might be needed and brings them in before the application demands them. By
moving pages that are likely to be used before they are actually requested, the multilevel
memory manager may be able to satisfy a future reference immediately instead of having
to wait for the page to be retrieved from a slower memory. For example, when someone
launches a new application or restarts one that hasn’t been used for a while, none of its
pages may be in the primary device. To avoid the delay that would occur from bringing
in a large number of pages one at a time, the multilevel memory manager might choose
to prepage as a single batch all of the pages that constitute the program text of the appli-
cation, or all of the data pages that the application used on a previous execution.

Both demand paging and prepaging make use of speculation to improve perfor-
mance. Demand paging speculates that the application will touch other bytes on the
page just brought in. Prepaging speculates that the application will use the prepaged
pages.

A problem that arises in a multiple-application system is that the working sets of
the various applications may not all simultaneously fit in the primary device. When

3476�3 Scheduling

that is case, the multilevel memory manager may have to resort to more drastic mea-
sures to avoid thrashing. One such drastic measure is swapping. When an application
encounters a long wait, the multilevel memory manager moves all of its pages out of
the primary device in a batch. A batch of writes to the disk can usually be scheduled
to go faster than a series of single-block writes (Section 6.3.4 discusses this oppor-
tunity). In addition, swapping an application completely out immediately provides
space for the other applications, so when they encounter a missing-page exception
there is no need to wait to move some page out. However, to do swapping, the mul-
tilevel memory manager must be able to quickly identify which pages in primary
memory are being used by the application being swapped out, and which of those
pages are shared with other applications and therefore should not be swapped out.

Swapping is usually combined with prepaging. When a swapped-out application is
restarted, the multilevel memory manager prepages the previous working set of that
application, in the hope of later reducing the number of missing-page exceptions. This
strategy speculates that when the program restarts, it will need the same pages that it
was using before it was swapped out.

The trade-offs involved in swapping and prepaging are formidable, and they resist
modeling analysis because reasonably accurate models of application program behav-
ior are difficult to obtain. Fortunately, technology improvements have made these
techniques less important for a large class of systems. However, they continue to be
applicable to specialized systems that require the utmost in performance.

6.3 scheDuLing
When a stage is temporarily overloaded in Figure 6.3, a queue of requests builds up. An
important policy decision is to determine which requests from the queue to perform
first. For example, if the disk has a queue of disk requests, in which order should the
disk manager schedule them to minimize latency? For another example, should a stage
schedule requests in the order they are received? That policy may result in high through-
put, but perhaps in high average latency for individual requests because one client’s
expensive request may delay several inexpensive requests from other clients. These
questions are all examples of the general question of how to schedule resources. This
section provides an introduction to systematic answers to this general question. This
introduction is sufficient to tackle resource scheduling problems that we encounter in
later chapters but scratches only the surface of the literature on scheduling.

Because the technology underlying resources improves rapidly in computer sys-
tems, some scheduling decisions become irrelevant over time. For example, in the
1960s and 1970s when several users shared a single computer and the processor
was a performance bottleneck, scheduling the processor among users was important.
With the arrival of personal computers and the increase in processing power, pro-
cessor scheduling became mostly irrelevant because it is no longer a performance
bottleneck in most situations, and any reasonable policy is good enough. On the other
hand, with massive Internet services handling millions of paying customers, the issue
of scheduling has increased in importance. The Internet exposes Web sites to extreme

348 CHAPTER 6 Performance

variations in load, which can result in more requests than a server can handle at an
instant of time, and the service must make a choice in which order to handle the
queued requests.

6.3.1 scheduling resources

Computer systems make scheduling decisions at different levels of abstraction. At a
high level of abstraction, a Web site selling goods might allocate more memory and
processor time to a user who always buys goods than to a user who never buys goods
but just browses the catalog. At a lower level of abstraction, a bus arbiter must decide
to which processor’s memory reference to allocate a shared bus.

Although in these examples allocation decisions are made at different levels of
abstraction, the scheduling problem is similar. From the perspective of scheduling, a
computer system is a collection of entities that require the use of a set of resources,
and scheduling is the set of policies and dispatch mechanisms to allocate resources
to entities. Examples of entities include threads, address spaces, users, clients, services,
and requests. Examples of resources include processor time, physical memory space,
disk space, network capacity, and I/O-bus time. Policies to assign resources to entities
include dividing the resources equally among the entities, giving one entity priority
over another entity, and providing some minimum guarantee by performing admis-
sion control on the number of entities. The scheduler is the component that imple-
ments a policy.

Designing the right policy is difficult because there are usually gaps between the
high-level goal and the available policy, between the chosen policy and mechanism
to dispatch, and between the chosen mechanism and its actual implementation. We
discuss each of these challenges in turn.

The desired scheduling policy might incorporate elements of the environment in
which the computer system is used but that are difficult to capture in a computer sys-
tem. For example, how can a Web site identify a high-value customer (that is, one who is
likely to make a large purchase)? The high-value user might never have bought before at
this site, or it may be difficult to associate an anonymous catalog-browsing request with
a particular previous customer. Even if we could identify the request with a particular
customer, the request may traverse several modules of the Web site, some of which may
have no notion of users. For example, the database that contains information about
prices and goods might be unable to prioritize requests from an important customer.

If we can construct the right policy, then there is the challenge of identifying
the mechanism to implement the policy. One module might implement a schedul-
ing policy, but because another module is not aware of it, the policy is ineffective.
For example, we might desire to give the text editor high priority to provide a good
interactive experience to users. We can easily change the thread scheduler to give the
thread running the editor higher priority than any other runnable thread. However,
how does the bus arbiter, shared file service, or disk scheduler know that a memory,
file, or disk request on behalf of the editor should have higher priority than other disk
or memory requests? Worse, the disk scheduler is likely to delay operations to batch

3496�3 Scheduling

disk requests to achieve high throughput, but this decision may result in bad interac-
tive performance for the text editor because its requests are delayed.

The final challenge is getting the actual implementation of the mechanism right.
Sidebar 6.7 on receive livelock provides an example of how easy it is for two sched-
ulers to interact badly. It illustrates that to design a computer system that doesn’t
collapse under overload is a challenge and requires that a designer carefully think
through all implementation decisions.

The list of challenges in designing and implementing schedulers is formidable,
but fortunately sophisticated schedulers are often not a requirement for computer
systems. Airlines use sophisticated and complex scheduling algorithms because they
deal with genuinely expensive and scarce resources (such as airplanes, landing slots,
and fuel) and situations in which the peak load can be far larger than usual load (e.g.,
travel around family holidays). Usually, in a computer system few resources are truly
scarce, and simple policies, mechanisms, and implementations suffice.

The rest of Section 6.3 introduces some common goals for a scheduler in a com-
puter system, describes some basic policies to achieve these goals, and presents a case
study of scheduling a disk arm. Along the way, the section points out a few scheduling
pitfalls, such as receive livelock and priority inversion.

6.3.2 scheduling metrics

To appreciate possible goals for a scheduler, consider the thread scheduler from the
previous chapter. It chooses a thread from a set of runnable threads. In the imple-
mentation of the thread manager in Figure 5.24, the scheduler picks the threads in
the order in which they appear in the thread table. This scheduling policy is one of
many possible policies.

By slightly restructuring the thread scheduler, it could implement different poli-
cies easily. A more general implementation of the thread manager would follow the
design hint separate mechanism from policy (see Sidebar 6.5). This implementation
would separate the dispatch mechanism (the mechanisms for suspending and resum-
ing a thread) from scheduling policy (selecting which thread to run next) by putting
them into their own procedures, so that a designer can change the policy without
having to change the dispatch mechanism.

A designer may want to change the policy because there is no one single best
 scheduling policy. “Best” might mean different things in different situations. For
example, there is tension between achieving good overall efficiency and providing
good service to individual requests. From the system’s perspective, the two important
measures for “best” are throughput and utilization. With a good scheduler, throughput
grows linearly with offered load until throughput hits the capacity of the system.
A good scheduler will also ensure that a system doesn’t collapse under overload con-
ditions. Finally, a good scheduler is efficient: it doesn’t consume many resources itself.
A scheduler that needs 90% of the processor’s time to do its job is not of much value.

Applications achieve high throughput by being immediately scheduled when
a request arrives and processing it to completion, without being rescheduled.

350 CHAPTER 6 Performance

Sidebar 6.7 Receive Livelock When a system is temporarily overloaded, it is impor-
tant to have an effective response to the overload situation. The response doesn’t
have to be perfect, but it must ensure that the system doesn’t collapse. For example,
suppose that a Web news server can handle 1,000 requests per second, but a short
time ago there was a big earthquake in Los Angeles and requests are arriving at the
rate 10,000 per second. The goal is to successfully serve (perhaps a random) 10% of
the load, but if the designer isn’t careful, the server may end up serving 0%. The prob-
lem is called receive livelock, and it can arise if the server spends too much of its time
saying “I’m too busy” and as a result never gets a chance to serve any of the requests.
Consider the following simple interrupt-driven Web service with a bounded buffer:

Kernel

Service

Interrupt
handler

Request

Buffer

When a request arrives on the network device, the device generates an interrupt,
which causes the interrupt handler to run. The interrupt handler copies the request
from the device into a bounded buffer and reenables interrupts so that it can receive
the next request. The service has a single thread, which consumes requests from the
bounded buffer. When the service is overloaded and requests arrive faster than the
service can process them, then the system as described reaches a state where it serves
no requests at all because it experiences receive livelock.

Consider what happens when requests arrive much faster than the service can pro-
cess them. While the service thread is processing a request, the processor receives an
interrupt from the network device and the interrupt handler runs. The interrupt han-
dler copies the request into the buffer, notifies the service thread, and returns, reen-
abling interrupts. As soon as the handler reenables interrupts, the arrival of another
request may interrupt the processor again, invoking the interrupt handler. The inter-
rupt handler goes through the same sequence as before until the buffer fills up; then
it has no other choice than to discard the request and return from the interrupt, reen-
abling interrupts. If the network device has another request available, it will interrupt
the processor immediately again; the interrupt handler will throw the request away
and return. This sequence of events continues indefinitely as long as requests arrive
faster than the time for the interrupt handler to run. We have receive livelock: the
 service never runs, and as a result the number of requests processed by the service
per second drops to zero; to users the Web site appears to be down!

The problem here is that the processor’s internal scheduler interacts badly with the
thread scheduler. Conceptually, the processor schedules the main thread and the

(Sidebar continues)

3516�3 Scheduling

For example, any time a thread scheduler starts a thread, but then preempts it to
run another thread, it is delaying the preempted thread. Thus, for an application to
achieve high throughput, a scheduler must minimize the number of preemptions and
the number of scheduling decisions. Unfortunately, this system-level goal may conflict
with the needs of individual threads.

Each individual request wants good service, which typically means good response:
it starts soon and completes quickly. There are several ways of measuring a request’s
response:

 ■ Turnaround time. The length of time from when a request arrives at a service
until it completes.

 ■ Response time. The length of time from when a request arrives at a service until it
starts producing output. For interactive requests, this measure is typically more use-
ful than turnaround time. For example, many Web browsers optimize for this met-
ric. Typically, a browser displays an incomplete Web page as soon as the browser
receives parts of it (e.g., the text) and fills in the remainder later (e.g., images).

interrupt thread, and the thread manager schedules the main processor thread among
the service thread and any other threads. The processor scheduler gives absolute pri-
ority to the interrupt thread, scheduling it as soon as an interrupt arrives; the main
thread never gets a chance to run the thread manager, and as a result the service thread
never receives the processor. This problem occurs when some processing must be
performed outside of the interrupt handler. One could contemplate moving all pro-
cessing into interrupt handlers. This approach has its own problems (as discussed in
Section 5.6.4) and negates the modularity advantages of using threads. However, once
the problem is stated as a scheduling problem, a solution is available.

The solution [Suggestions for Further Reading 6.4.2] is to modify the scheduling
policy so that the service thread gets a chance to run when requests are available
in the bounded buffer. This policy can be implemented with a slight modification to
the interrupt handler. If the bounded buffer fills up, the interrupt handler should not
reenable interrupts as it returns. When the service thread has drained the bounded
buffer, say, to only half full, it should reenable interrupts. This policy ensures that
the network device doesn’t discard requests unless the buffer is full (i.e., there is an
overload situation) and sees that the service thread gets a chance to process requests,
avoiding livelock.

It is still possible that requests may be discarded. If the network device receives a
request but it cannot generate an interrupt, the device has no other choice than to
discard the next request. This situation is unavoidable: if the network can generate
a higher load than the capacity of the service, the device must shed load. The good
news is that under overload the system will at least process some requests rather than
none at all.

352 CHAPTER 6 Performance

 ■ Waiting time. The length of time from when a request arrives at a service until
the service starts processing the request. This measure is better than turnaround
time, since it captures how long the thread must wait even though it is ready to
execute. The ideal waiting time is zero seconds.

More sophisticated measures are also possible by combining the performance of
all requests using some of these measures and some way of combining. For example,
one can compute average waiting time as the average of waiting times of all requests.
Similarly, one can calculate the sum of the waiting times, the variance in response
time, and so on.

In an interactive computer system, many requests are on behalf of a human user
sitting in front of a display. Therefore, the perception of the user is another measure
of the goodness of the service that a request receives. For example, an interactive user
may tend to perceive a high variance in response time to be more annoying than a
high mean. On the other hand, a response time that is faster than the human reaction
time may not improve the perception of goodness.

Sometimes a designer desires a scheduler that provides some degree of fairness,
which means that each request obtains an equal share of the shared service. A sched-
uler that starves a request to serve other requests is an unfair scheduler. An unfair
scheduler is not necessarily a bad scheduler; it may have higher throughput and better
response time than a fair scheduler.

It is easy to convince oneself that designing a scheduler that optimizes for fairness,
throughput, and response time all at the same time is an impossible task. As a result,
there are many different scheduling algorithms; each one of them optimizes along
different dimensions.

6.3.3 scheduling policies

To illustrate some basic scheduling algorithms, we present a number of them in
the context of a thread manager. The objective is to share the processor efficiently
among multiple threads. For example, when one thread is blocked waiting for I/O, we
would like to run a different, runnable thread on the processor. These threads might
be running different programs on a shared computer, or a number of threads that
cooperate to implement a high-performance Web service on a dedicated computer.

Since threads typically go through a cycle of running and waiting (e.g., waiting
for user input, a client request, or completion of disk request), it is useful to model a
thread as a series of jobs. Each job corresponds to one burst of activity.

We survey a few different algorithms to schedule these jobs. Many textbooks, lec-
ture notes, and papers explore these algorithms in more detail, and our description
is based on this literature. Although the algorithms are described in the context of a
thread manager for a single processor, the algorithms are generic and apply to other
contexts as well. For example, they work equally well for multiprocessors and have
the same pros and cons, but they are harder to illustrate when several jobs run con-
currently. The algorithms also apply to disk-arm scheduling, which we shall discuss in
Section 6.3.4.

3536�3 Scheduling

6.3.3.1 First-Come, First-Served
At a busy post office, customers may be asked to take a ticket with a number as they
walk in and wait until the number on their ticket is called. Typically, the post office
allocates the numbers in strict increasing order and calls the numbers in that order.
This policy is called a first-come, first-served (FCFS) scheduler and some thread man-
agers use it too.

A thread manager can implement the first-come, first-served policy by organizing the
ready list as a first-in, first-out queue. The manager simply runs the first job on the queue
until it finishes; then the manager runs the next job, which is now the first job, and so
on. When a job becomes ready, the scheduler simply adds it to the end of the queue.

To illustrate and analyze the behavior of a scheduling policy, the literature uses
sequences of job arrivals, in which each job has a specific amount of work. We adopt
one particular sequence, which illustrates the differences between the scheduling
algorithms that we cover. This sequence is the following:

Job Arrival Time Amount of Work

A 0 3

B 1 5

C 3 2

Given a specific sequence, one can draw a timeline that depicts when the thread
manager dispatches jobs. For the above sequence and the first-come, first-served
 policy this timeline is as follows:

A B C

3 80 10 Time

Given this timeline, one can fill out a table that includes finish time and waiting
times, and make some observations about a policy. For the above timeline and the
first-come, first-served policy this table is as follows:

Job
Arrival
Time

Amount
of Work

Start
Time

Finish
Time

Waiting
Time Till
Job Starts

Wait Time
Till Job is

Done

A 0 3 0 3 0 3

B 1 5 3 8 2 7

C 3 2 8 10 5 7

Total waiting 7

354 CHAPTER 6 Performance

From the table we can see that for the given job sequence, the first-come, first-
served policy favors the long jobs A and B. Job C waits 5 seconds to start a job that
takes 2 seconds. Relative to the amount of work, job C is punished the most.

Because first-come, first-served can favor long jobs over short jobs, a system can get
into an undesirable state. Consider what happens if we have a system with one thread
that periodically waits for I/O but mostly computes and several threads that perform
mostly I/O operations. Suppose the scheduler runs the I/O-bound threads first. They
will all quickly finish their jobs and go start their I/O operations, leaving the scheduler
to run the processor-bound thread. After a while, the I/O-bound threads will finish
their I/O and queue up behind the processor-bound thread, leaving all the I/O devices
idle. When the processor-bound thread finishes its job, it initiates its I/O operation,
allowing the scheduler to run the I/O-bound threads.

As before, the I/O-bound threads will quickly finish computation and initiate an I/O
operation. Now we have the processor sitting idle, while all the threads are waiting
for their I/O operations to complete. Since the processor-bound thread started its I/O
first, it will likely finish first, grabbing the processor and making all the other threads
wait before they can run. The system will continue this way, alternating between peri-
ods when the processor is busy and all the I/O devices are idle with periods when
the processor is idle and all the threads are doing I/O in a convoy, which is why the
literature sometimes refers to this case as a convoy effect. The main opportunity for
having threads is missed, since in this convoy scenario the system never overlaps
computation with I/O.

This scenario is unlikely to materialize in practice because workloads are unlikely
to have exactly the right mix of computing and I/O threads that would produce a
sequence of scheduling decisions that lead to a situation where I/O isn’t overlapped
at all with computation. Nevertheless, it has inspired researchers to think about poli-
cies other than first-come, first-served.

6.3.3.2 Shortest-Job-First
The undesirable scenario with the first-come first-served policy suggests another
scheduler: a shortest-job-first scheduler. Whenever the time comes to dispatch a job,
the scheduler chooses the job that has the shortest expected running time. Shortest-
job-first requires that the scheduler has a prediction of the running time of a job
before running it. In the general case, it is difficult to make predictions of the running
time of a job, but in practice there are special cases that can work.

Let’s assume we know the running time of a job beforehand and see how a
 shortest-job-first scheduler performs on the example sequence:

A C B

50 3 10 Time

As we can see, job C runs before job B because when the scheduler runs after job A
completes, it picks C instead of B, since job C has just entered the system and needs
less time than job B. Here is the complete table for the shortest-job-first policy:

3556�3 Scheduling

Job
Arrival
Time

Amount
of Work

Start
Time

Finish
Time

Waiting
Time Till
Job Starts

Waiting
Time Till
Job is Done

A 0 3 0 3 0 3

B 1 5 5 10 4 9

C 3 2 3 5 0 2

Total waiting 4

Job B’s waiting time has increased, but relative to the amount of work it has to do,
it has to wait less than job C did under the first-come, first-served policy. The total
amount of waiting time for the shortest-job-first policy decreased compared to the
first-come, first-served policy (4 versus 7).

The shortest-job-first policy has one implementation challenge: how do we
know the amount of work a job has to do? In some cases, we may be able to decide
before running the job whether or not this is a short job. For example, if we have
two requests for reading different sectors on the disk and the disk arm is close to
one of them, then the request that requires moving the arm to the closer track is
the shorter job.

If we cannot decide without executing a job whether or not the job is short,
we can make some forward progress by assuming that jobs fall in different classes:
a thread that is interactive has mostly short jobs, while a thread that is computation-
ally intensive is likely to have mostly long jobs. This suggests that if we track the past
behavior of a thread, then we might be able to predict its future behavior. For exam-
ple, if a thread just completed a short job, we might predict that its next job also will
be short. We can make this idea more precise by basing our prediction on all past jobs
of a given thread. One way of doing so is using an Exponentially Weighted Moving
Average (EWMA) (see Sidebar 7.6 [on-line]). Of course, past behavior may be a weak
indicator of future behavior.

A disadvantage of the shortest-job-first policy versus the first-come first-served
 policy is that shortest-job-first may lead to starvation. Several threads that consist
entirely of short jobs and that together present a load large enough to use up the avail-
able processors may prevent a long job from ever being run. In practice, as we will see
in Sections 6.3.3.4 and 6.3.4, the shortest-job-first policy can be combined with other
policies to avoid starvation.

6.3.3.3 Round-Robin
One of the issues with shortest job first is identifying which jobs are short and
which are long. One approach is to make all jobs short by breaking long jobs up
into a number of smaller jobs using preemptive scheduling. A preemptive scheduling
 policy stops a job after a certain amount of time so that the scheduler can pick

356 CHAPTER 6 Performance

another job, resuming the preempted one at some time later. As we discussed in
Chapter 5, preemptive scheduling also has the benefit that it enforces modularity; a
 programming error cannot cause a job to never release the processor.

A simple preemptive scheduling policy is round-robin scheduling. A round-robin
scheduler maintains a queue of runnable jobs as before. It selects the first job from
this queue, as in the first-come first-serve policy, but stops the job after some period
of time, and selects a new job. Some time later the scheduler will select the stopped
job again and run it again for no longer than the fixed period of time, and so on, until
the job completes.

Round-robin can be implemented as follows. Before running the job, the round-
robin scheduler sets a timer with a fixed time value, called a quantum. When the timer
expires, it causes an interrupt and the interrupt handler calls yield. This call gives con-
trol back to the scheduler, which moves the job to the end of the queue and selects a
new job from the front of the queue. The quantum should be long enough that most
short jobs complete without being interrupted, and it should be short enough that
most long jobs do get interrupted so that short jobs can get to run sooner.

Let’s look at how a round-robin scheduler with a quantum of 1 second performs
on the example sequence:

A B A B C A B C B B

0 1 2 3 4 5 6 7 8 9 10 Time

At time 0, only A is in the queue of runnable jobs, so the scheduler selects it. At
time 1, B is in the queue so the scheduler selects B and appends A to the end of the
queue, since it is not done. At time 2, A is at the front, so the scheduler selects A and
appends B to the end of the queue. At time 3, the scheduler appends C to the end of
the queue after B. Then, the scheduler selects B, since it is at the front of the queue,
and appends A after C. At time 4, the scheduler appends B to the end of the queue
and selects C to run. At time 5, the scheduler appends C to the end of the queue and
selects A. At time 6, A is done, and the scheduler selects B, and so on.

This timeline results in the following table:

Job
Arrival
Time

Amount
of Work

Start
Time

Finish
Time

Waiting
Time Till
Job Starts

Waiting
Time Till

Job is Done

A 0 3 0 6 0 6

B 1 5 1 10 1 9

C 3 2 5 8 2 5

Total waiting 3

3576�3 Scheduling

As can been seen in this example, compared to first-come, first-served and shortest-
job-first, round-robin results in the worst performance to complete an individual job,
measured in total time elapsed since start. This is not surprising because a round-
robin scheduler forces long jobs to stop after a quantum of time.

Round-robin, however, has the shortest total waiting time because with round-
robin jobs start earlier: every job runs no longer than a quantum before it is stopped
and the scheduler selects another job.

Round-robin favors jobs that run for less than a quantum at the expense of jobs
that are more than a quantum long, since the scheduler will stop a long job after
one quantum and run the short one before returning the processor to the long one.
Round-robin is found in many computer systems because many computer systems are
interactive, have short jobs, and a quick response provides a good user experience.

6.3.3.4 Priority Scheduling
Some jobs are more important than others. For example, a system thread that per-
forms minor housekeeping chores such as garbage collecting unused temporary files
might be given lower priority than a thread that runs a user program. In addition, if
a thread has been blocked for a long time, it might be better to give it higher priority
over threads that have run recently.

A scheduler can implement such policies using a priority scheduling policy, which
assigns each job a priority number. The dispatcher selects the job with the highest pri-
ority number. The scheduler must have some rule to break ties, but it doesn’t matter
much what the rule is, as long as it doesn’t consistenly favor one job over another.

A scheduler can assign priority numbers in many different ways. The scheduler
could use a predefined assignment (e.g., systems jobs have priority 1, and user jobs
have priority 0) or the priority could be computed using a policy function provided
by the system designer. Or the scheduler could compute priorities dynamically. For
example, if a thread has been waiting to run for a long time, the scheduler could tem-
porarily boost the priority number of the thread’s job. This approach can be used, for
example, to avoid the starvation problem of the shortest-job-first policy.

A priority scheduler may be preemptive or non-preemptive. In the preemptive
version, when a high-priority job enters while a low-priority job is running, the sched-
uler may preempt the low-priority job and start the high-priority job immediately. For
example, an interrupt may notify a high-priority thread. When the interrupt handler
calls notify, a preemptive thread manager may run the scheduler, which may interrupt
some other processor that is running a low-priority job. The non-preemptive version
would not do any rescheduling or preemption at interrupt time, so the low-priority
job would run to completion; when it calls await, the scheduler will switch to the
newly runnable high-priority job.

As we make schedulers more sophisticated, we have to be on the alert for sur-
prising interactions among different schedulers. For example, if a thread manager
that provides priorities isn’t carefully designed, it is possible that the highest prior-
ity thread obtains the least amount of processor time. Sidebar 6.8, which explains
 priority inversion, describes this pitfall.

358 CHAPTER 6 Performance

Sidebar 6.8 Priority Inversion Priority inversion is a common pitfall in design-
ing a scheduler with priorities. Consider a thread manager that implements a pre-
emptive, priority scheduling policy. Let’s assume we have three threads, T1, T2, and
T3, and threads T1 and T3 share a lock l that serializes references to a shared resource.
Thread T1 has a low priority (1), thread T2 has a medium priority (2), and thread T3
has a high priority (3).

The following timing diagram shows a sequence of events that causes the high-
 priority thread T3 to be delayed indefinitely while the medium priority thread T2
receives the processor continuously.

T1 T2 T3

ACQUIRE (l)

ACQUIRE (l)

Context switch

Context switch

Let’s assume that T2 and T3 are not runnable; for example, they are waiting for an I/O
operation to complete. The scheduler will schedule T1, and T1 acquires lock l. Now
the I/O operation completes, and the I/O interrupt handler notifies T2 and T3. The
scheduler chooses T3 because it has the highest priority. T3 runs for a short time until
it tries to acquire lock l, but because T1 already holds that lock, T3 must wait. Because
T2 is runnable and has higher priority than T1, the thread scheduler will select T2.
T2 can compute indefinitely; when T2’s time quantum runs out, the scheduler will
find two threads runnable: T1 and T2. It will select T2 because T2 has a higher prior-
ity than T1. As long as T2 doesn’t call wait, T2 will keep the processor. As long as T2 is
runnable, the scheduler won’t run T1, and thus T1 will not be able to release the lock
and T3, the high priority thread, will wait indefinitely. This undesirable phenomenon
is known as priority inversion.

The solution to this specific example is simple. When T3 blocks on acquiring lock l,
it should temporarily lend its priority to the holder of the lock (sometimes called
priority inheritance)—in this case, T1. With this solution, T1 will run instead of
T2, and as soon as T1 releases the lock its priority will return to its normal low
value and T3 will run. In essence, this example is one of interacting schedulers. The
thread manager schedules the processor and locks schedule references to shared
resources. A challenge in designing computer systems is recognizing schedulers
and understanding the interactions between them.

(Sidebar continues)

3596�3 Scheduling

6.3.3.5 Real-Time Schedulers
Certain applications have real-time constraints; they require delivery of results before
a specified deadline. A chemical process controller, for instance, might have a valve
that must be opened every 10 seconds because otherwise a container overflows.
Such applications employ real-time schedulers to guarantee that jobs complete by
the stated deadline.

For some systems, such as a chemical plant, a nuclear reactor, or a hospital
 intensive-care unit, missing a deadline might result in disaster. Such systems require
a hard real-time scheduler. For these schedulers, designers must carefully determine
the amount of resources each job takes and design the complete system to ensure
that all jobs can be handled in a timely manner, even in the worst case. Determining
the amount of resources necessary and the time that a job takes, however, is difficult.
For example, a system with a cache might sometimes run a job fast (when the job’s
references hit in the cache) and sometimes slow (when the job’s references miss in
the cache). Therefore, designers of hard real-time systems make the time a job takes
as predictable as possible, either by turning off performance-enhancing techniques
(e.g., caches) or by assuming the worst case performance. Typically, designers turn
off interrupts and poll devices so that they can carefully control when to interact
with a device. These techniques combined increase the likelihood that the designer
can estimate when jobs will arrive and for how long they will run. Once the amount
of resources and time required for each job are estimated, the designer of a hard real-
time system can compute the schedule for executing all jobs.

For other systems, such as a digital music system, missing a deadline occasionally
might be just a minor annoyance; such systems can use a soft real-time scheduler.
A soft real-time scheduler attempts to meet all deadlines but doesn’t guarantee it;
it may miss a deadline. If, for example, multiple jobs arrive simultaneously, all have
1 second of work, and all have a deadline in 1 second, all jobs except one will miss
their deadlines. The goal of a soft real-time scheduler is to avoid missing deadlines but
to accept that it might happen when there is more work than there is time before the
deadline to do the work.

The problem and solution have been “discovered” by researchers in the real-time
 system, database, and operating system communities, and are well documented by
now. Nevertheless, it is easy to fall into the priority inversion pitfall. For example, in
July 1997 the Mars Pathfinder spacecraft experienced total systems resets on Mars,
which resulted in loss of experimental data collected. The software engineers traced
the cause of the resets to a priority inversion problem*.

*Mike Jones. What really happened on Mars? Risks Forum 19, 49 (December 1997).
The Web page http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.
html includes additional information, including a follow-up by Glenn Reeves, who led the
 software team for the Mars Pathfinder.

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

360 CHAPTER 6 Performance

One popular heuristic for avoiding missing deadlines is the earliest-deadline-first
scheduler, which keeps the queue of jobs sorted by deadline. The dispatcher runs
the first job on the queue, which is always the one with the closest deadline. Most
students and faculty follow this policy: work first on the homework or paper that has
the earliest deadline. This scheduling policy minimizes the total (summed) lateness of
all the jobs.

For soft real-time schedulers that have a given set of jobs that must execute at
periodic intervals, we can develop scheduling algorithms instead of just heuristics.
Systems with periodic jobs are quite common. For example, a digital video recorder
must process a picture frame every 1/30th of a second to make the output look like
a movie.

To develop a scheduler for such a system, the total amount of work to be done by
the periodic jobs must be less than the capacity of the system. Consider a system with
n periodic jobs i that happen with a period of Pi seconds and that each requires Ci
seconds. The load of such a system can be handled only if:

 (
i 5 1

n

Ci

 __ Pi
) 1

If the total amount of work exceeds the system’s capacity at any time, then the
system will miss a deadline. If the total amount of work is less than the capacity,
the system may still miss a deadline occasionally because for some short interval
of time the total amount of work to be done is greater than the capacity of the
system. For example, a periodic interrupt may arrive at the same time that a peri-
odic task must run. Thus, the condition stated is a necessary condition but not a
sufficient one.

A good algorithm for dynamically scheduling periodic jobs is the rate mono-
tonic scheduler. In the design phase of the system, the designer assigns each job
a priority that is proportional to the frequency of the occurrence of that job. For
example, a job that needs to run every 100 milliseconds receives a priority 10, and
a job that needs to run every 200 milliseconds receives a priority 5. At runtime,
the scheduler always runs the highest priority job, preempting a running job if
necessary.

6.3.4 case study: scheduling the Disk arm

Much work has been done on thread scheduling, but since processors are no longer
a usual performance bottleneck, thread scheduling has become less important. As
explained in Section 6.1, however, disk arm scheduling is important because the
mechanical disk arm creates an I/O bottleneck. The typical goal of a disk arm sched-
uler is to optimize overall throughput as opposed to the delay for each individual
request.

3616�3 Scheduling

When a disk controller receives a batch of disk requests from the file system, it
must decide the order in which to process these requests. At first glance, it might
appear that first-come first-served is a fine choice for scheduling the requests, but
unfortunately that choice is a bad one.

To see why, recall from Section 6.1 that if the controller moves the disk arm, it
reduces the transfer rate of the disk because seeking from one track to another takes
time. However, the time required to do a seek depends on how many tracks the arm
must cross. A simple, but adequate, model is that a seek from one track to another
track that is n tracks away takes n 3 t seconds, where t is roughly constant.

Consider a disk controller that is on track 0 and receives four requests that require
seeks to the tracks 0 (the innermost track), 90, 5, and 100 (outermost track). If the
disk controller performs the four requests in the order in which it received them
(first-come first-served), then it will seek first to track 0, then to 90, back to 5, and then
forward to 100, for a total seek latency of 270t:

Request Movement Time

Seek 1 0 → 0 0t

Seek 2 0 → 90 90t

Seek 3 90 → 5 85t

Seek 4 5 → 100 95t

Total 270t

A much better algorithm is to sort the requests by track number and process them
in the sorted order. The total seek latency for that algorithm is 100t:

Request Movement Time

Seek 1 0 → 0 0t

Seek 2 0 → 5 5t

Seek 3 5 → 90 85t

Seek 4 90 → 100 10t

Total 100t

In practice, disk scheduling algorithms are more complex because new requests
arrive while the disk controller is working on a set of requests. For example, if the
disk controller is working on requests in the order of track number (0, 5, 90, and 100),
it finishes 5, and receives a new request for track 1, which request should it perform
next? It can go back and perform 1, or it can keep going and perform 90 and 100.
The first choice is an algorithm that is called shortest seek first; the second choice is
called the elevator algorithm, named after the algorithm that many elevators execute

362 CHAPTER 6 Performance

to transport people from floor to floor in buildings. With shortest-seek-first, the total
seek time is 108t:

Request Movement Time

Seek 1 0 → 0 0t

Seek 2 0 → 5 5t

Seek 3 5 → 1 4t

Seek 4 1 → 90 89t

Seek 5 90 → 100 10t

Total 108t

With the elevator algorithm, the total seek latency is 199t:

Request Movement Time

Seek 1 0 → 0 0t

Seek 2 0 → 5 5t

Seek 3 5 → 90 85t

Seek 4 90 → 100 10t

Seek 5 100 → 1 99t

Total 199t

Many disk controllers use a combination of the shortest-seek-first algorithm and
the elevator algorithm. When processing requests, for a while they use the shortest-
seek algorithm to choose requests, minimizing seek time, but then switch to the ele-
vator algorithm to avoid starving requests for more distant tracks. For example, if the
controller performs the request for track 1 first, starts seeking into the direction of
90, but at track 5 another request for track 1 comes in, then shortest-seek-first would
go back to track 1. Since this sequence of events may repeat forever, the disk control-
ler may never serve the request for tracks 90 and 100. By bounding the time that disk
controllers perform shortest-seek-first and then switching to the elevator algorithm,
requests for the distant tracks will also be served. This method is fine for disk systems,
since the primary objective is to maximize total throughput, and thus delaying one
request over another is acceptable. In a building, however, people do not want to
have long delays, and therefore for buildings the elevator algorithm is better.

exercises
6.1 Suppose a processor has a clock rate of 100 megahertz. The time required

to retrieve a word from the cache is 1 nanosecond, and the time required to
retrieve a word not in the cache is 101 nanoseconds.

363Exercises

6.1a Determine the hit rate needed such that the average memory latency equals the
processor cycle time.

1988–1–4a

6.1b Keeping the same memory devices but considering processors with a higher clock
rate, what is the maximum useful clock rate such that the average memory latency
equals the processor cycle time, and to what hit rate does it correspond?

1988–1–4b

6.2 A particular program uses 100 data objects, each 105 bytes long. The objects
are contiguously allocated in a two-level memory system using the LRU page
replacement policy with a fast memory of 106 bytes and a page size of 103 bytes.
The program always makes 1,000 accesses to randomly selected bytes in one
object, then moves on to another randomly selected object (with probability
0.01 it could be the same object), makes 1,000 accesses to randomly selected
bytes there, and so on.
6.2a Ignoring any memory accesses that might be needed for fetching instructions,

if the program runs long enough to reach an equilibrium state, what will the hit
ratio be?

1987–1–5a

6.2b Will the hit ratio go up or down if the page size is changed from 103 words to 104
words, with all other memory parameters unchanged?

1987–1–5b

6.3 OutTel corporation has been delivering j786 microprocessors to the computer
industry for some time, and Metoo systems has decided to get into the act by
building a microprocessor called the “clone7861”, which differs from the j786
by providing twice as many processor registers. Metoo has simulated many pro-
grams and concluded that this one change reduces the number of loads and
stores to memory by an average of 30%, and thus should improve performance,
assuming of course that all programs—including its popular microkernel operat-
ing system—are recompiled to take advantage of the extra registers. Why might
Metoo find the performance improvement to be less than their simulations pre-
dict? If there is more than one reason, which one is likely to reduce performance
the most?

1994–1–6

6.4 Mike R. Kernel is designing the OutTel P97 computer system, which currently
has one page table in hardware. The first tests with this design show excellent
performance with one application, but with multiple applications, performance
is awful. Suggest three design changes to Mike’s system that would improve

364 CHAPTER 6 Performance

performance with multiple applications, and explain your choices briefly. You
 cannot change processor speed, but any other aspect of the system is fair
game.

1996–1–3

6.5 Ben Bitdiddle gets really excited about remote procedure call and implements
an RPC package himself. His implementation starts a new service thread for each
arriving request. The thread performs the operation specified in the request,
sends a reply, and terminates. After measuring the RPC performance, Ben decides
that it needs some improvement, so Ben comes up with a brute-force solution:
he buys a much faster network. The transit time of the new network is half as
large as it was before. Ben measures the performance of small RPCs (meaning
that each RPC message contains only a few bytes of data) on the new network.
To his surprise, the performance is barely improved. What might be the reason
that his RPCs are not twice as fast?

1995–1–5c

6.6 Why might increasing the page size of a virtual memory system increase perfor-
mance? Why might increasing the page size of a virtual memory system decrease
performance?

1993–2–4a

6.7 Ben Bitdiddle and Louis Reasoner are examining a 3.5-inch magnetic disk
that spins at 7,500 RPM, with an average seek time of 6.5 milliseconds and a
data transfer rate of 10 megabytes per second. Sectors contain 512 bytes of
user data.
6.7a On average, how long does it take to read a block of eight contiguous sectors when

the starting sector is chosen at random?
6.7b Suppose that the operating system maintains a one-megabyte cache in RAM to hold

disk sectors. The latency of this cache is 25 nanoseconds, and for block transfers the
data transfer rate from the cache to a different location in RAM is 160 megabytes
per second. Explain how these two specifications can simultaneously be true.

6.7c Give a formula that tells the expected time to read 100 randomly chosen disk
 sectors, assuming that the hit ratio of the disk block cache is h.

6.7d Ben’s workstation has 256 megabytes of RAM. To increase the cache hit ratio, Ben
reconfigures the disk sector cache to be much larger than one megabyte. To his sur-
prise he discovers that many of his applications now run slower rather than faster.
What has Ben probably overlooked?

6.7e Louis has disassembled the disk unit to see how it works. Remembering that the
centrifuge in the biology lab runs at 36,000 RPM, he has come up with a bright idea
on how to reduce the rotational latency of the disk. He suggests speeding it up to

365Exercises

96,000 RPM. He calculates that the rotation time will now be 625 microseconds.
Ben says this idea is crazy. Explain Ben’s concern.

1994–3–1

6.8 Ben Bitdiddle has proposed the simple neat and robust file system (SNARFS).*
Ben’s system has no on-disk data structures other than the disk blocks them-
selves, which are self-describing. Each 4-kilobyte disk block starts with the
 following 24 bytes of information:

 ■ fid (File-ID): a 64-bit number that uniquely defines a file. A fid of zero implies that the
disk block is free.

 ■ sn (Sequence Number): a 64-bit number that identifies which block of a file this disk
block contains.

 ■ t (Time): The time this block was last updated.

In addition, the first block of a file contains the file name (string), version num-
ber, and the fid of its parent directory. The rest of the first block is filled with
data. Setting the directory fid to zero marks the entire file free.
 Directories are just files. Each directory should contain only the fid of its par-
ent directory. However, as a “hint” directories may also include a table giving the
mapping from name to fid and the mapping from fid to blocks for some of the
files in the directory.
 To allow fast access, three in-memory (virtual memory) structures are created
each time the system is booted:

 ■ map: an in-memory hash table that associates a (fid, sn) pair with the disk block con-
taining that block of that file

 ■ free: a free list that represents all of the free blocks on disk in a compact manner
 ■ recycle: a list of blocks that are available for reuse but have not yet been written with

a fid of 0

6.8a Each read or write of a disk block results in one disk I/O. What is the minimum
number of disk I/Os required in SNARFS to create a new file containing 2 kilobytes
of data in an existing directory? If the system crashes (i.e., the contents of virtual
memory are lost) after these I/Os are completed, the file should be present in the
appropriate directory after recovery.

6.8b Ben argues that the in-memory structures can easily be rebuilt after a crash. Explain
what actions are required to rebuild map, free, and recycle at boot time.

1995–3–4a…c

6.9 Ben Bitdiddle has written a “style checker” intended to uncover writing problems
in technical papers. The program picks up one sentence at a time, computes
intensely for a while to parse it into nouns, verbs, and the like, and then looks up

*Credit for developing Ex. 6.8 goes to William J. Dally.

366 CHAPTER 6 Performance

the resulting pattern in an enormous database of linguistic rules. The database
was so large that it was necessary to place it on a remote service and do the
lookup with a remote procedure call.
 Ben is distressed to find that the RPCs have such a long latency that his style
checker runs much more slowly than he hoped. He wonders if adding multiple
threads to the client could speed up his program.
6.9a Ben’s checker is running on a single-processor workstation. Explain how multiple

client threads could reduce the time to analyze a technical paper.
6.9b Ben implements a multithreaded style checker and runs a series of experiments

with various numbers of threads. He finds that performance does indeed improve
when he adds a second thread and again when he adds a third. But he finds that as
he adds more and more threads the additional performance improvement dimin-
ishes, and finally adding more threads leads to reduced performance. Give an expla-
nation for this behavior.

6.9c Suggest a way of improving the style checker’s performance without introducing
threads. (Ben is allowed to change only the client.)

1994–1–4a…c

6.10 Threads in a new multithreaded Web browser periodically query a nearby
World Wide Web server to retrieve documents. On average, a browser’s thread
performs a query every N instructions. Each request to the server incurs an aver-
age round-trip time of T milliseconds before the answer returns.
6.10a For N 5 2,000 instructions and T 5 1 millisecond, what is the smallest number

of such threads that would be required to keep a single 100 million instructions
every second (MIPS) processor 100% busy? Assume that the context switch
between threads is instantaneous and that the scheduler is optimal.

6.10b But context switches are not instantaneous. Assume that a context switch
takes C instructions to perform. Recompute the answer to 6.10a for C 5 500
instructions.

6.10c What property of the application threads might cause the answers of parts 6.10a
and 6.10b to be incorrect? That is, why might more threads be required to keep
the processor running the browser busy?

6.10d What property of the actual computer system might make the answers of 6.10a
and 6.10b gross overestimates?

1995–1–4a…d

6.11 What are the advantages of using the clock algorithm as compared with
 implementing LRU directly?
A. Only a single bit per object or page is required.
B. Clock is more efficient to execute.
C. The first object or page to be purged is the most recently used one.

2001–1–4

367Exercises

6.12 Louis Reasoner found the mention of prepaging systems in Section 6.2.9 to be
so intriguing that he has devised a version of OPT that uses prepaging. Here is a
description of Louis’s prepage-OPT:

 Knowing the reference string, create a total ordering of the pages in which each page ■

is in the o rder in which the application will next make reference to it. Then, prepage
the front of the stack into the primary memory.

 After each page reference, rearrange the ordering so that every page is again in the ■

order in which the application will next make reference to it. Thus, in contrast with
LRU, which maintains an ordering since most recent use, prepage-OPT maintains an
ordering of next use.

 To do this rearrangement requires moving exactly one page, the one that was
just touched, down in the ordering to the depth d where it will next be used.
All of the pages that were above depth d move up one position. A page that will
never be used again is assigned a depth of infinity and moves to the bottom of
the stack. This rearrangement scheme ensures that the first page of the ordering
is always the page that will be used next.

 If ■ d . m (where m is the size of the primary memory device), the operation of
the second bullet will result in a page being moved from the secondary memory to
the primary memory. Since the reference string has not yet demanded this page, this
movement anticipates a future need, another example of prepaging.

6.11a Is prepage-OPT a stack algorithm? Why or why not?
6.11b For the reference string in the example of Table 6.3, develop a version of that table

(or of Table 6.8 if that is more appropriate) that shows what page movements
occur with prepage-OPT for each memory size. Assume that the first step of the
run is to preload the primary memory with pages from the front of the ordering.

6.11c Is prepage-OPT better or worse than demand-OPT?

2006-0-1

Additional exercises relating to Chapter 6 can be found in the problem sets
beginning on page 425.

369

Part II of this textbook continues a main theme of Part I—enforcing modularity—by
introducing still stronger forms of modularity. Part I introduces the client/service
model and virtualization, both of which help prevent accidental errors in one mod-
ule from propagating to another. Part II introduces stronger forms of modularity that
can help protect against component and system failures, as well as malicious attacks.
Part II explores communication networks, constructing reliable systems from unreli-
able components, creating all-or-nothing and before-or-after transactions, and imple-
menting security. In doing so, Part II also introduces additional design principles to
guide a designer who needs to build computer systems that have stronger modularity.
Following is a brief summary of the topics of those [on-line] chapters and supple-
mentary materials. In addition, the Table of Contents for Part I lists the sections of the
Part II chapters.

Chapter 7 [on-line]: Networks. By running clients and services on different computers
that are connected by a network, one can build computer systems that exploit geo-
graphic separation to tolerate failures and construct systems that can enable informa-
tion sharing across geographic distances. This chapter approaches the network as a
case study of a system and digs deeply into how networks are organized internally
and how they work. After a discussion that offers insight into why networks are built
the way they are, it introduces a three-layer model, followed by a major section on each
layer. A discussion of congestion control helps bring together the complete picture of
interaction among the layers. The chapter ends with a short collection of war stories
about network design flaws.

Chapter 8 [on-line]: Fault tolerance. This chapter introduces the basic techniques to
build computer systems that, despite component failures, continue to provide service.
It offers a systematic development of design principles and techniques for creating
reliable systems from unreliable components, based on modularity and on generaliza-
tion of some of the techniques used in the design of networks. The chapter ends with
a case study of fault tolerance in memory systems and a set of war stories about fault
tolerant systems that failed to be fault tolerant. This chapter is an unusual feature for
an introductory text—this material, if it appears at all in a curriculum, is usually left
to graduate elective courses—yet some degree of fault tolerance is a requirement for
almost all computer systems.

Chapter 9 [on-line]: Atomicity. This chapter deals with the problem of making flawless
updates to data in the presence of concurrent threads and despite system failures.
It expands on concepts introduced in Chapter 5, taking a cross-cutting approach to
atomicity—making actions atomic with respect to failures and also with respect to
concurrent actions—that recognizes that atomicity is a form of modularity that plays
a fundamental role in operating systems, database management, and processor design.
The chapter begins by laying the groundwork for intuition about how a designer
achieves atomicity, and then it introduces an easy-to-understand atomicity scheme.

About Part II

370 About Part II

This basis sets the stage for straightforward explanations of instruction renaming,
transactional memory, logs, and two-phase locking. Once an intuition is established
about how to systematically achieve atomicity, the chapter goes on to show how
database systems use logs to create all-or-nothing actions and automatic lock manage-
ment to ensure before-or-after atomicity of concurrent actions. Finally, the chapter
explores methods of obtaining agreement among geographically separated workers
about whether or not to commit an atomic action. The chapter ends with case studies
of atomicity in processor design and management of disk storage.

Chapter 10 [on-line]: Consistency. This chapter discusses a variety of requirements
that show up when data is replicated for performance, availability, or durability: cache
coherence, replica management for extended durability, and reconciliation of usually
disconnected databases (e.g., “hotsync” of a personal digital assistant or cell phone
with a desktop computer). The chapter introduces the reader to the requirements
and the basic mechanisms used to meet those requirements. Sometimes these top-
ics are identified with the label “distributed systems”.

Chapter 11 [on-line]: Security. Earlier chapters gradually introduced more power-
ful and far-reaching methods of enforcing modularity. This chapter cranks up the
 enforcement level to maximum strength by introducing the techniques of ensuring
that modularity is enforced even in the face of adversaries who behave malevolently.
It starts with design principles and a security model, and it then applies that model
both to enforcement of internal modular boundaries (traditionally called “protec-
tion”) and to network security. An advanced topics section explains cryptographic
techniques, which are the basis for most network security. A case study of the Secure
Socket Layer (SSL) protocol and a set of war stories of protection system failures illus-
trate the range and subtlety of considerations involved in achieving security.

Suggestions for further reading. The suggested reading list in Part II is, apart from
updates, the same as the one in this book.

Problem sets. The Part II collection of problem sets includes both the Part I problem
sets and many additional problem sets for the Part II chapters.

Glossary. The on-line Glossary is identical to the one in this book. In addition to its
primary purpose of supporting this textbook, the on-line Glossary also can serve as
a reference source that workers in other specialties may find useful in coordinating
their terminology with that of the field of systems.

Comprehensive Index. The on-line Index of Concepts provides page numbers for both
Part I and Part II in a single alphabetic list.

371

APPENDIX

AThe Binary Classification
Trade-off

A binary classification trade-off arises when we wish to classify a set of things into
two categories (call them In and Out), but we do not have a direct way of doing
the classifying. On the other hand, there is a proxy for those things that is relatively
easy to classify. The problem is that the proxy is only approximate. Because it is
only approximate, there are four classification outcomes:

 ■ True positive: The proxy classifies things as In that should be In.
 ■ True negative: The proxy classifies things as Out that should be Out.
 ■ False negative: The proxy classifies things as Out that should be In.
 ■ False positive: The proxy classifies things as In that should be Out.

The trade-off is that it may be possible to reduce the frequency of one of the false
outcomes by adjusting some parameter of the proxy, but that adjustment will prob-
ably increase the frequency of the other false outcome*.

A common example is an e-mail spam filter, which is a proxy for the division
between wanted e-mail and spam. The filter correctly classifies e-mail most of the
time, but it occasionally misclassifies a wanted message as spam, with the undesirable
outcome that you may never see that message. It may also misclassify some spam as
wanted e-mail, with the undesirable outcome that the spam clutters up your mail-
box. The trade-off appears when someone tries to adjust the spam filter. If the filter
becomes more aggressive, more wanted e-mail is likely to end up misclassified as
spam. If the spam filter becomes less aggressive, more spam is likely to end up in your
mailbox.

Reducing both undesirable outcomes simultaneously usually requires discovering
a better proxy, but a better one may be hard to find or may not exist at all.

Representations: One can conveniently represent a binary classification trade-off
with a 2 3 2 matrix such as the one on the next page by answering two questions:
(1) What are the real categories? and (2) What are the proxy categories? The example
describes a smoke detector. The real categories are {fire, no fire}. The proxy categories
are {smoke detector signals, smoke detector is quiet}. A too-sensitive smoke detector

*In some areas, such as computer security and biometrics, the words “acceptance” and “rejection”
replace “positive” and “negative”, respectively.

372 APPENDIX A The Binary Classification Trade-off

may signal more false alarms, but an insensitive one may miss more real fires. When
someone replaces the labels with numbers of actual events, this representation is
called a confusion matrix.

A Venn diagram, such as the one below, can be another useful representation of a
binary classification trade-off. Take, for example, document retrieval (e.g., a Google
search) The real categories are wanted and unwanted documents. The proxy is a
query, for which the categories are that the query matches or the query misses.

Measures: Sometimes one can identify the true categorizations and compare them
with the proxy classifications. When that is possible, it can be useful to calculate
ratios to measure proxy quality. Unfortunately, there are too many possible ratios.
The confusion matrix contains four numbers, which may be used singly or may be
added up to use as either a numerator or a denominator in 14 ways, so it is possible
to calculate 14 3 13 5 182 different ratios. Not all of these ratios are interesting, but
one can usually find at least one ratio among the 182 that seems to support his or her
position in a debate.

Nine of these ratios are popular enough to have names, although three of the
nine are just complements of other named ratios. The information retrieval commu-
nity uses one set of labels for these ratios, whereas the medical and bioinformatics
 communities use another, with other communities developing their own nomencla-
ture. As will be seen, all of the labels can be confusing.

 Wanted
documents

 Returned
by query

 Wanted
documents

missed

 Set of all
documents

Junk
Wanted

documents
found

Proxy
categories

Real categories

fire no fire

detector
signals

TA: fire
extinguished

FA: false
alarm

detector
quiet

FR: house
burns down

TR: all
quiet

373APPENDIX A The Binary Classification Trade-off

Suppose that there is a population of In 1 Out 5 N items and that we have run
the classifier and counted the number of true and false positives and negatives. Here
are the nine ratios:

1. Prevalance: The fraction of the population that is In.

Prevalance 5 In/N

2. Efficiency, Accuracy, or Hit Rate: The fraction of the population the proxy clas-
sifies correctly.

Efficiency 5 (True Positives 1 True Negatives)/N

3. Precision (information retrieval) or Positive Predictive Value (medical): The
fraction of things that the proxy classifies as In that are actually In.

Precision 5 (True Positives)/(True Positives 1 False Positives)

4. Recall (information retrieval), Sensitivity (medical), or True acceptance rate
(biometrics): The fraction of things in the population that are In that the proxy
classifies as In.

Recall 5 (True Positives)/In

5. Specificity (medical) or True rejection rate (biometrics): The fraction of things
in the population that are Out that the proxy classifies as Out.

Specificity 5 (True Negatives)/Out

6. Negative Predictive Value: The fraction of things that the proxy classifies as Out
that are actually Out.

Negative Predictive Value 5
True Negatives

True Negatives 1 False Negatives

7. Misclassification Rate or Miss Rate: The fraction of the population the proxy
classifies wrong.

Miss Rate 5 (False Negatives 1 False Positives)/N 5 (1 2 Efficiency)

8. False Acceptance Rate: The fraction of Out items that are falsely classified as In.

Fasle Acceptance Rate 5 (False Positives)/Out 5 (1 2 Specificity)

9. False Rejection Rate: The fraction of In items that are falsely classified as Out.

Fasle Rejection Rate 5 (False Negatives)/In 5 (1 2 Sensitivity)

375

Suggestions for Further Reading

Introduction ���376
1 Systems ���378

1.1 Wonderful Books About Systems ..378
1.2 Really Good Books About Systems ...380
1.3 Good Books on Related Subjects Deserving Space on

the Systems Bookshelf ...381
1.4 Ways of Thinking About Systems ...385
1.5 Wisdom About System Design ...386
1.6 Changing Technology and its Impact on Systems ...388
1.7 Dramatic Visions ..389
1.8 Sweeping New Looks ..390
1.9 Keeping Big Systems Under Control ...393

2 Elements of Computer System Organization ��394
2.1 Naming Systems ..394
2.2 The unix® System ...395

3 The Design of Naming Schemes ���395
3.1 Addressing Architectures ..396
3.2 Examples ..396

4 Enforcing Modularity with Clients and Services ��397
4.1 Remote Procedure Call ...398
4.2 Client/Service Systems ...398
4.3 Domain Name System (DNS) ..399

5 Enforcing Modularity with Virtualization ��399
5.1 Kernels ...399
5.2 Type Extension as a Modularity Enforcement Tool ..400
5.3 Virtual Processors: Threads ...401
5.4 Virtual Memory ..402
5.5 Coordination ..402
5.6 Virtualization ...404

6 Performance ��405
6.1 Multilevel Memory Management ..405
6.2 Remote Procedure Call ...406
6.3 Storage ...406
6.4 Other Performance-Related Topics ...407

7 The Network as a System and as a System Component ���������������������������������������408
7.1 Networks ...408
7.2 Protocols ...408

TablE Of CONTENTS

376 Suggestions for Further Reading

7.3 Organization for Communication ..410
7.4 Practical Aspects ...411

 8 fault Tolerance: Reliable Systems from Unreliable Components ��������������������������411
8.1 Fault Tolerance ..411
8.2 Software Errors ..412
8.3 Disk Failures ...412

 9 atomicity: all-or-Nothing and before-or-after ���413
9.1 Atomicity, Coordination, and Recovery ..413
9.2 Databases ...413
9.3 Atomicity-Related Topics ..414

10 Consistency and Durable Storage ���415
10.1 Consistency ...415
10.2 Durable Storage ...417
10.3 Reconciliation ...418

11 Information Security ���418
11.1 Privacy ..418
11.2 Protection Architectures ...418
11.3 Certification, Trusted Computer Systems, and Security Kernels 419
11.4 Authentication ...420
11.5 Cryptographic Techniques ...421
11.6 Adversaries (The Dark Side) ..422

IntroductIon
The hardware technology that underlies computer systems has improved so rapidly
and continuously for more than four decades that the ground rules for system design
are constantly subject to change. It takes many years for knowledge and experience to
be compiled, digested, and presented in the form of a book, so books about computer
systems often seem dated or obsolete by the time they appear in print. Even though
some underlying principles are unchanging, the rapid obsolescence of details acts to
discourage prospective book authors, and as a result some important ideas are never
documented in books. For this reason, an essential part of the study of computer sys-
tems is found in current—and, frequently, older—technical papers, professional jour-
nal articles, research reports, and occasional, unpublished memoranda that circulate
among active workers in the field.

Despite that caveat, there are a few books, relatively recent additions to the litera-
ture in computer systems, that are worth having on the shelf. Until the mid-1980s, the
books that existed were for the most part commissioned by textbook publishers to
fill a market, and they tended to emphasize the mechanical aspects of systems rather
than insight into their design. Starting around 1985, however, several very good books
started to appear, when professional system designers became inspired to capture
their insights. The appearance of these books also suggests that the concepts involved
in computer system design are finally beginning to stabilize a bit. (Or it may just be

377Suggestions for Further Reading

that computer system technology is beginning to shorten the latencies involved in
book publishing.)

The heart of the computer systems literature is found in published papers. Two
of the best sources are Association for Computing Machinery (ACM) publications: the
journal ACM Transactions on Computer Systems (TOCS) and the bi-annual series
of conference proceedings, the ACM Symposium on Operating Systems Principles
(SOSP). The best papers of each SOSP are published in a following issue of TOCS,
and the rest—in recent years all—of the papers of each symposium appear in a spe-
cial edition of Operating Systems Review, an ACM special interest group quarterly
that publishes an extra issue in symposium years. Three other regular symposia are
also worth following: the European Conference on Computer Systems (EuroSys), the
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
and the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). These sources are not the only ones—worthwhile papers about computer
systems appear in many other journals, conferences, and workshops. Complete copies
of most of the papers listed here, including many of the older ones, can be found on
the World Wide Web by an on-line search for an author’s last name and a few words of
the paper title. Even papers whose primary listing requires a subscription are often
posted elsewhere as open resources.

The following pages contain suggestions for further reading about computer sys-
tems, both papers and books. The list makes no pretensions of being complete. Instead,
the suggestions have been selected from a vast literature to emphasize the best avail-
able thinking, best illustrations of problems, and most interesting case studies of com-
puter systems. The readings have been reviewed for obsolescence, but it is often the
case that a good idea is still best described by a paper from some time ago, where the
idea was developed in a context that no longer seems very interesting. Sometimes that
early context is much simpler than today’s systems, thus making it easier to see how
the idea works. Often, an early author was the first on the scene, so it was necessary to
describe things more completely than do modern authors who usually assume signifi-
cant familiarity with the surroundings and with all of the predecessor systems. Thus
the older readings included here provide a very useful complement to current works.

By its nature, the study of the engineering of computer systems overlaps with
other areas of computer science, particularly computer architecture, programming
languages, databases, information retrieval, security, and data communications. Each
of those areas has an extensive literature of its own, and it is often not obvious
where to draw the boundary lines. As a general rule, this reading list tries to provide
only first-level guidance on where to start in those related areas.

One thing the reader must watch for is that the terminology of the computer sys-
tems field is not agreed upon, so the literature is often confusing even to the profes-
sional. In addition, the quality level of the literature is quite variable, ranging from the
literate through the readable to the barely comprehensible. Although the selections
here try to avoid that last category, the reader must still be prepared for some papers,
however important in their content, that do not explain their subject as well as they
could.

378 Suggestions for Further Reading

In the material that follows, each citation is accompanied by a comment suggest-
ing why that paper is worth reading—its importance, interest, and relation to other
readings. When a single paper serves more than one area of interest, cross-references
appear rather than repeating the citation.

1 Systems

As mentioned above, a few wonderful and several really good books about computer
systems have recently begun to appear. Here are the must-have items for the reference
shelf of the computer systems designer. In addition to these books, the later groupings
of readings by topic include other books, generally of narrower interest.

1.1 Wonderful Books About Systems
1.1.1 David A. Patterson and John L. Hennessy. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, fourth edition, 2007. ISBN: 978–0–12–
370490–0. 704 1 various pages (paperback). The cover gives the authors’ names
in the opposite order.

This book provides a spectacular tour-de-force that explores much of the design
space of current computer architecture. One of the best features is that each
area includes a discussion of misguided ideas and their pitfalls. Even though the
subject matter gets very sophisticated, the book is always very readable. The
book is opinionated (with a strong bias toward RISC architecture), but nev-
ertheless this is a definitive work on computer organization from the system
perspective.

1.1.2 Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley &
Sons, 1991. ISBN: 978–0–471–50336–1. 720 pages.

Much work on performance analysis of computer systems originates in academic
settings and focuses on analysis that is mathematically tractable rather than on
measurements that matter. This book is at the other end of the spectrum. It is
written by someone with extensive industrial experience but an academic flair
for explaining things. If you have a real performance analysis problem, it will tell
you how to tackle it, how to avoid measuring the wrong thing, and how to step
by other pitfalls.

1.1.3 Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 20th Anniversary edition, 1995. ISBN: 978–0–201–
83595–3 (paperback). 336 pages.

Well-written and full of insights, this reading is by far the most significant one on
the subject of controlling system development. This is where you learn why add-
ing more staff to a project that is behind schedule will delay it further. Although
a few of the chapters are now a bit dated, much of the material here is timeless.
Trouble in system development is also timeless, as evidenced by continual reports

379Suggestions for Further Reading

of failures of large system projects. Most successful system designers have a copy
of this book on their bookshelf, and some claim to reread it at least once a year.
Most of the 1995 edition is identical to the first, 1974, edition; the newer edition
adds Brooks’ No Silver Bullets paper (which is well worth reading) and some
summarizing chapters.

1.1.4 Lawrence Lessig. Code and Other Laws of Cyberspace, Version 2.0. Basic
Books, 2006. ISBN: 978–0–465–03914–28 (paperback). 432 pages; 978–0–465–
03913–5 (paperback). 320 pages. Also available on-line at http://codev2.cc/

This book is an updated version of an explanation by a brilliant teacher of consti-
tutional law of exactly how law, custom, market forces, and architecture together
regulate things. In addition to providing a vocabulary to discuss many of the
legal issues surrounding technology and the Internet, a central theme of this
book is that because technology raises issues that were foreseen neither by law
nor custom, the default is that it will be regulated entirely by market forces and
architecture, neither of which is subject to the careful and deliberative thought
that characterize the development of law and custom. If you have any interest
in the effect of technology on intellectual property, privacy, or free speech, this
book is required reading.

1.1.5 Jim [N.] Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, California, 1993 (Look for the low-bulk
paper edition, which became available with the third printing in 1994). ISBN: 978–
1–55860–190–1. 1,070 pages.

All aspects of fault tolerance, atomicity, coordination, recovery, rollback, logs,
locks, transactions, and engineering trade-offs for performance are pulled
together in this comprehensive book. This is the definitive work on transactions.
Though not intended for beginners, given the high quality of its explanations,
this complex material is surprisingly accessible. The glossary of terms is excel-
lent, whereas the historical notes are good as far as they go, but are somewhat
database-centric and should not be taken as the final word.

1.1.6 Alan F. Westin. Privacy and Freedom. Atheneum Press, 1967. 487 pages.
(Out of print.)

If you have any interest in privacy, track down a copy of this book in a library
or used-book store. It is the comprehensive treatment, by a constitutional
lawyer, of what privacy is, why it matters, and its position in the U.S. legal
framework.

1.1.7 Ross Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, second edition, 2008. ISBN: 978–0–470–
06852–6. 1,040 pages.

This book is remarkable for the range of system security problems it considers,
from taxi mileage recorders to nuclear command and control systems. It provides

http://codev2.cc/

380 Suggestions for Further Reading

great depth on the mechanics, assuming that the reader already has a high-level
picture. The book is sometimes quick in its explanations; the reader must be
quite knowledgeable about systems. One of its strengths is that most of the dis-
cussions of how to do it are immediately followed by a section titled “What goes
wrong”, exploring misimplementations, fallacies, and other modes of failure. The
first edition is available on-line.

1.2 Really Good Books About Systems
1.2.1 Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, third edi-
tion, 2008. ISBN: 978–0–13–600663–3 (hardcover). 952 pages.

This book provides a thorough tutorial introduction to the world of operating
systems but with a tendency to emphasize the mechanics. Insight into why things
are designed the way they are is there, but in many cases requires teasing out.
Nevertheless, as a starting point, it is filled with street knowledge that is needed
to get into the rest of the literature. It includes useful case studies of GNU/Linux,
Windows Vista, and Symbian OS, an operating system for mobile phones.

1.2.2 Thomas P. Hughes. Rescuing Prometheus. Vintage reprint (paperback), origi-
nally published in 1998. ISBN: 978–0679739388. 372 pages.

A retired professor of history and sociology explains the stories behind the man-
agement of four large-scale, one-of-a-kind system projects: the Sage air defense
system, the Atlas rocket, the Arpanet (predecessor of the Internet), and the design
phase of the Big Dig (Boston Central Artery/Tunnel). The thesis of the book is
that such projects, in addition to unique engineering, also had to develop a differ-
ent kind of management style that can adapt continuously to change, is loosely
coupled with distributed control, and can identify a consensus among many
players.

1.2.3 Henry Petroski. Design Paradigms: Case Histories of Error and Judgment
in Engineering. Cambridge University Press, 1994. ISBN: 978–0–521–46108–5
(hardcover), 978–0–521–46649–3 (paperback). 221 pages.

This remarkable book explores how the mindset of the designers (in the exam-
ples, civil engineers) allowed them to make what in retrospect were massive
design errors. The failures analyzed range from the transportation of columns
in Rome through the 1982 collapse of the walkway in the Kansas City Hyatt
Regency Hotel, with a number of famous bridge collapses in between. Petroski
analyzes particularly well how a failure of a scaled-up design often reveals that
the original design worked correctly, but for a different reason than originally
thought. There is no mention of computer systems in this book, but it contains
many lessons for computer system designers.

1.2.4 Bruce Schneier. Applied Cryptography. John Wiley and Sons, second edi-
tion, 1996. ISBN: 978–0–471–12845–8 (hardcover), 978–0–471–11709–4 (paper-
back). 784 pages.

381Suggestions for Further Reading

Here is everything you might want to know about cryptography and crypto-
graphic protocols, including a well-balanced perspective on what works and
what doesn’t. This book saves the need to read and sort through the thousand
or so technical papers on the subject. Protocols, techniques, algorithms, real-
world considerations, and source code can all be found here. In addition to
being competent, it is also entertainingly written and very articulate. Be aware
that a number of minor errors have been reported in this book; if you are
implementing code, it would be a good idea to verify the details by consulting
reading 1.3.13.

1.2.5 Radia Perlman. Interconnections, second edition: Bridges, Routers, Switches,
and Internetworking Protocols. Addison-Wesley, 1999. ISBN: 978–0–201–63448–8.
560 pages.

This book presents everything you could possibly want to know about how the
network layer actually works. The style is engagingly informal, but the content is
absolutely first-class, and every possible variation is explored. The previous edi-
tion was simply titled Interconnections: bridges and routers.

1.2.6 Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems
Approach. Morgan Kaufman, fourth edition, 2007. ISBN: 978–0–12–370548–8.
848 pages.

This book provides a systems perspective on computer networks. It represents
a good balance of why networks are they way they are and a discussion of the
important protocols in use. It follows a layering model but presents fundamental
concepts independent of layering. In this way, the book provides a good discus-
sion of timeless ideas as well as current embodiments of those ideas.

1.3 Good Books on Related Subjects Deserving Space on the Systems
Bookshelf
There are several other good books that many computer system professionals insist
on having on their bookshelves. They don’t appear in one of the previous categories
because their central focus is not on systems or because the purpose of the book is
somewhat narrower.

1.3.1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. McGraw-Hill, second edition, 2001. 1,184 pages. ISBN:
978–0–07–297054–8 (hardcover); 978–0–262–53196–2 (M.I.T. Press paperback,
not sold in U.S.A.)

1.3.2 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman, 1996. 872 pages
ISBN: 978–1–55860–348–6.

Occasionally, a system designer needs an algorithm. Cormen et al. and Lynch’s
books are the place to find that algorithm, together with the analysis necessary
to decide whether or not it is appropriate for the application. In a reading list on

382 Suggestions for Further Reading

theory, these two books would almost certainly be in one of the highest catego-
ries, but for a systems list they are better identified as supplementary.

1.3.3 Douglas K. Smith and Robert C. Alexander. Fumbling the Future. William
Morrow and Company, 1988. ISBN: 978–0–688–06959–9 (hardcover), 978–1–
58348266–7 (iuniverse paperback reprint). 274 pages.

The history of computing is littered with companies that attempted to add
 general-purpose computer systems to an existing business—for examples, Ford,
Philco, Zenith, RCA, General Electric, Honeywell, A. T. & T., and Xerox. None has
succeeded, perhaps because when the going gets tough the option of walking
away from this business is too attractive. This book documents how Xerox man-
aged to snatch defeat from the jaws of victory by inventing the personal com-
puter, then abandoning it.

1.3.4 Marshall Kirk McKusick, Keith Bostic, and Michael J. Karels. The Design and
Implementation of the 4.4BSD Operating System. Addison-Wesley, second edi-
tion, 1996. ISBN: 978–0–201–54979–9. 606 pages.

This book provides a complete picture of the design and implementation of the
Berkeley version of the unix® operating system. It is well-written and full of detail.
The 1989 first edition, describing 4.3BSD, is still useful.

1.3.5 Katie Hafner and John Markoff. Cyberpunk: Outlaws and Hackers on the
Computer Frontier. Simon & Schuster (Touchstone), 1991, updated June 1995. ISBN:
978–0–671–68322–1 (hardcover), 978–0–684–81862–7 (paperback). 368 pages.

This book is a very readable, yet thorough, account of the scene at the ethical
edges of cyberspace: the exploits of Kevin Mitnick, Hans Hubner, and Robert
Tappan Morris. It serves as an example of a view from the media, but an unusually
well-informed view.

1.3.6 Deborah G. Johnson and Helen Nissenbaum. Computers, Ethics & Social
Values. Prentice-Hall, 1995. ISBN: 978–0–13–103110–4 (paperback). 714 pages.

A computer system designer is likely to consider reading a treatise on ethics to
be a terribly boring way to spend the afternoon, and some of the papers in this
extensive collection do match that stereotype. However, among the many scenar-
ios, case studies, and other reprints in this volume are a large number of interest-
ing and thoughtful papers about the human consequences of computer system
design. This collection is a good place to acquire the basic readings concerning
privacy, risks, computer abuse, and software ownership as well as professional
ethics in computer system design.

1.3.7 Carliss Y. Baldwin and Kim B. Clark. Design Rules: Volume 1, The Power of
Modularity. M.I.T. Press, 2000. ISBN: 978–0–262–02466–2. 471 pages.

This book focuses wholely on modularity (as used by the authors, this term
merges modularity, abstraction, and hierarchy) and offers an interesting

383Suggestions for Further Reading

 representation of interconnections to illustrate the power of modularity and
of clean, abstract interfaces. The work uses these same concepts to interpret
 several decades of developments in the computer industry. The authors, from
the Harvard Business School, develop a model of the several ways in which
modularity operates by providing design options and making substitution easy.
By the end of the book, most readers will have seen more than they wanted
to know, but there are some ideas here that are worth at least a quick reading.
(Despite the “Volume 1” in the title, there does not yet seem to be a Volume 2.)

1.3.8 Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, fourth
 edition, 2003. ISBN: 978–0–13–066102–9. 813 pages.

This book provides a thorough tutorial introduction to the world of networks.
Like the same author’s book on operating systems (see reading 1.2.1), this one
also tends to emphasize the mechanics. But again it is a storehouse of up-to-date
street knowledge, this time about computer communications, that is needed to
get into (or perhaps avoid the need to consult) the rest of the literature. The book
includes a selective and thoughtfully annotated bibliography on computer net-
works. An abbreviated version of this same material, sufficient for many readers,
appears as a chapter of the operating systems book.

1.3.9 David L. Mills. Computer Network Time Synchronization: The Network
Time Protocol. CRC Press/Taylor & Francis, 2006. ISBN: 978–0849358050. 286
pages.

A comprehensive but very readable explanation of the Network Time Protocol
(NTP), an under-the-covers protocol of which most users are unaware: NTP coor-
dinates multiple timekeepers and distributes current date and time information
to both clients and servers.

1.3.10 Robert G. Gallager. Principles of Digital Communication. Cambridge
University Press, 2008. ISBN: 978–0–521–87907–1. 422 pages.

This intense textbook focuses on the theory that underlies the link layer of data
communication networks. It is not for casual browsing or for those easily intimi-
dated by mathematics, but its an excellent reference source for analysis.

1.3.11 Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems:
Design and Evaluation. A. K. Peters Ltd., third edition, 1998. ISBN: 978–1–56881–
092–8. 927 pages.

This is probably the best comprehensive treatment of reliability that is available,
with well-explained theory and reprints of several case studies from recent litera-
ture. Its only defect is a slight “academic” bias in that little judgment is expressed
on alternative methods, and some examples are without warning of systems that
were never really deployed. The first, 1982, edition, with the title The Theory and
Practice of Reliable System Design, contains an almost completely different (and
much older) set of case studies.

384 Suggestions for Further Reading

1.3.12 Bruce Schneier. Secrets & Lies/Digital Security in a Networked World. John
Wiley & Sons, 2000. ISBN: 978–0–471–25311–2 (hardcover), 978–0–471–45380–2
(paperback). 432 pages.

This overview of security from a systems perspective provides much motivation,
many good war stories (though without citations), and a high-level outline of
how one achieves a secure system. Being an overview, it provides no specific
guidance on the mechanics, other than to rely on people who know what they
are doing. This is excellent book particularly for the manager who wants to go
beyond the buzzwords and get an idea of what achieving computer system secu-
rity involves.

1.3.13 A[lfred] J. Menezes, Paul C. Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. ISBN: 978–08493–8523–0. 816 pages.

This book is exactly what its title claims: a very complete handbook on putting
cryptography to work. It lacks the background and perspective of Reading 1.2.4,
and it is extremely technical, which makes parts of it inaccessible to less math-
ematically inclined readers. But its precise definitions and careful explanations
make this by far the best reference book available on the subject.

1.3.14 Johannes A. Buchman. Introduction to Cryptography. Springer, second edi-
tion, 2004. ISBN: 978–0–387–21156–56 (hardcover). 335 pages.

Buchman provides a nice, concise introduction to number theory for cryptography.

1.3.15 Simson Garfinkel and Gene [Eugene H.] Spafford. Practical Unix and
Internet Security. O’Reilly & Associates, Sebastopol, California, third edition, 2003.
ISBN: 978–59600323–4 (paperback). 986 pages.

This is a really comprehensive guide to how to run a network-attached unix sys-
tem with some confidence that it is relatively safe against casual intruders. In
addition to providing practical information for a system manager, it incidentally
gives the reader quite a bit of insight into the style of thinking and design needed
to provide security.

1.3.16 Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates,
Sebastopol, California, 1995. ISBN: 978–1–56592–098–9 (paperback). 430 pages.

Nominally a user’s guide to the PGP encryption package developed by Phil
Zimmermann, this book starts out with six very readable overview chapters on
the subject of encryption, its history, and the political and licensing environment
that surrounds encryption systems. Even the later chapters, which give details
on how to use PGP, are filled with interesting tidbits and advice applicable to all
encryption uses.

1.3.17 Warwick Ford and Michael S. Baum. Secure Electronic Commerce: Building
the Infrastructure for Digital Signatures and Encryption. Prentice-Hall, second
edition, 2000. ISBN: 978–0–13–027276–8. 640 pages.

385Suggestions for Further Reading

Although the title implies more generality, this book is about public key
 infrastructure: certificate authorities, certificates, and their legal status in prac-
tice. The authors are a technologist (Ford) and a lawyer (Baum). The book pro-
vides very thorough coverage and is a good way to learn a lot about the subject.
Because the status of this topic changes rapidly, however, it should be considered
a snapshot rather than the latest word.

1.4 Ways of Thinking About Systems
Quite a few books try to generalize the study of systems. They tend to be so abstract,
however, that it is hard to see how they apply to anything, so none of them are listed
here. Instead, here are five old but surprisingly relevant papers that illustrate ways to
think about systems. The areas touched are allometry, aerodynamics, hierarchy, ecol-
ogy, and economics.

1.4.1 J[ohn] B[urdon] S[anderson] Haldane (1892–1964). On being the right
size. In Possible Worlds and Other Essays, pages 20–28. Harper and Brothers
Publishers, 1928. Also published by Chatto & Windus, London, 1927, and recently
reprinted in John Maynard Smith, editor, On Being the Right Size and Other Essays,
Oxford University Press, 1985. ISBN: 0–19–286045–3 (paperback), pages 1–8.

This is the classic paper that explains why a mouse the size of an elephant would
collapse if it tried to stand up. It provides lessons on how to think about incom-
mensurate scaling in all kinds of systems.

1.4.2 Alexander Graham Bell (1847–1922). The tetrahedral principle in kite struc-
ture. National Geographic Magazine 14, 6 (June 1903), pages 219–251.

This classic paper demonstrates that arguments based on scale can be quite sub-
tle. This paper—written at a time when physicists were still debating the theo-
retical possibility of building airplanes—describes the obvious scale argument
against heavier-than-air craft and then demonstrates that one can increase the
scale of an airfoil in different ways and that the obvious scale argument does not
apply to all those ways. (This paper is a rare example of unreviewed vanity publi-
cation of an interesting engineering result. The National Geographic was—and
still is—a Bell family publication.)

1.4.3 Herbert A. Simon (1916–2001). The architecture of complexity. Proceed-
ings of the American Philosophical Society 106, 6 (December 1962), pages 467–
482. Republished as Chapter 4, pages 84–118, of The Sciences of the Artificial,
M.I.T. Press, Cambridge, Massachusetts, 1969. ISBN: 0–262–191051–6 (hardcover);
0–262–69023–3 (paperback).

This paper is a tour-de-force of how hierarchy is an organizing tool for complex
systems. The examples are breathtaking in their range and scope—from watch-
making and biology through political empires. The style of thinking shown in
this paper suggests that it is not surprising that Simon later received the 1978
Nobel Prize in economics.

386 Suggestions for Further Reading

1.4.4 LaMont C[ook] Cole (1916–1978). Man’s effect on nature. The Explorer:
Bulletin of the Cleveland Museum of Natural History 11, 3 (Fall 1969), pages
10–16.

This brief article looks at the Earth as an ecological system in which the actions
of humans lead both to surprises and to propagation of effects. It describes a clas-
sic example of the propagation of effects: attempts to eliminate malaria in North
Borneo led to an increase in the plague and roofs caving in.

1.4.5 Garrett [James] Hardin (1915–). The tragedy of the commons. Science 162,
3859 (December 13, 1968), pages 1243–1248. Extensions of “the tragedy of the
commons”. Science 280, 5364 (May 1, 1998), pages 682–683.

This seminal paper explores a property of certain economic situations in which
Adam Smith’s “invisible hand” works against everyone’s interest. It is interesting
for its insight into how to predict things about otherwise hard-to-model sys-
tems. In revisiting the subject 30 years later, Hardin suggested that the adjective
“unmanaged” should be placed in front of “commons”. Rightly or wrongly, the
Internet is often described as a system to which the tragedy of the (unmanaged)
commons applies.

1.5 Wisdom About System Design
Before reading anything else on this topic, one should absorb the book by Brooks,
The Mythical Man-Month, reading 1.1.3, and the essay by Simon, “The architecture of
complexity”, reading 1.4.3. The case studies on control of complexity in Section 1.9
also are filled with wisdom.

1.5.1 Richard P. Gabriel. Worse is better. Excerpt from LISP: good news, bad news,
how to win BIG, AI Expert 6, 6 (June 1991), pages 33–35.

This paper explains why doing the thing expediently sometimes works out to be
a better idea than doing the thing right.

1.5.2 Henry Petroski. Engineering: History and failure. American Scientist 80, 6
(November–December 1992), pages 523–526.

Petroski provides insight along the lines that one primary way that engi-
neering makes progress is by making mistakes, studying them, and trying
again. Petroski also visits this theme in two books, the most recent being
reading 1.2.3.

1.5.3 Fernando J. Corbató. On building systems that will fail. Communications of
the ACM 34, 9 (September 1991), pages 72–81. (Reprinted in the book by Johnson
and Nissenbaum, reading 1.3.6.)

The central idea in this 1991 Turing Award Lecture is that all ambitious systems
will have failures, but those that were designed with that expectation are more
likely to eventually succeed.

387Suggestions for Further Reading

1.5.4 Butler W. Lampson. Hints for computer system design. Proceedings of the
Ninth ACM Symposium on Operating Systems Principles, in Operating Systems
Review 17, 5 (October 1983), pages 33–48. Later republished, but with less satis-
factory copy editing, in IEEE Software 1, 1 (January 1984), pages 11–28.

This encapsulation of insights is expressed as principles that seem to apply to
more than one case. It is worth reading by all system designers.

1.5.5 Jon Bentley. The back of the envelope—programming pearls. Communica-
tions of the ACM 27, 3 (March 1984), pages 180–184.

One of the most important tools of a system designer is the ability to make rough
but quick estimates of how big, how long, how fast, or how expensive a design
will be. This brief note extols the concept and gives several examples.

1.5.6 Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems.
Proceedings of the First European Conference on Computer Systems (EuroSys
2006, Leuven, Belgium), pages 293–304. ACM Press, 2006, ISBN: 1–59593–322–0.
Also in Operating Systems Review 40, 4 (October 2006).

This paper explores in depth the concept of emergent properties described in
Chapter 1, providing a nice collection of examples and tying together issues and
problems that arise throughout computer and network system design. It also sug-
gests a taxonomy of emergent properties, lays out suggestions for future research,
and includes a comprehensive and useful bibliography.

1.5.7 Pamela Samuelson, editor. Intellectual property for an information age.
Communications of the ACM 44, 2 (February 2001), pages 67–103.

This work is a special section comprising several papers about the challenges of
intellectual property in a digital world. Each of the individual articles is written
by a member of a new generation of specialists who understand both technology
and law well enough to contribute some thoughtful insights to both domains.

1.5.8 Mark R. Chassin and Elise C. Becher. The wrong patient. Annals of Internal
Medicine 136 (June 2002), pages 826–833.

This paper is a good example, first, of how complex systems fail for complex
reasons and second, of the value of the “keep digging” principle. The case study
presented here centers on a medical system failure in which the wrong patient
was operated on. Rather than just identifying the most obvious reason, the case
study concludes that there were a dozen or more opportunities in which the
error that led to the failure should have been detected and corrected, but for
various reasons all of those opportunities were missed.

1.5.9 P[hillip] J. Plauger. Chocolate. Embedded Systems Programming 7, 3 (March
1994), pages 81–84.

388 Suggestions for Further Reading

This paper provides a remarkable insight based on the observation that many
failures in a bakery can be remedied by putting more chocolate into the mix-
ture. The author manages, with only a modest stretch, to convert this observation
into a more general technique of keeping recovery simple, so that it is likely to
succeed.

1.6 Changing Technology and its Impact on Systems
1.6.1 Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics 38, 8 (April 19, 1965), pages 114–117. Reprinted in Proceedings of the
IEEE 86, 1 (January 1998), pages 82–85.

This paper defined what we now call Moore’s law. The phenomena Moore
describes have driven the rate of technology improvement for more than four
decades. This paper articulates why and displays the first graph to plot Moore’s
law, based on five data points.

1.6.2 John L. Hennessy and Norman P. Jouppi. Computer technology and archi-
tecture: An evolving interaction. IEEE Computer 24, 9 (September 1991), pages
19–29.

Although some of the technology examples are a bit of out of date, the systems
thinking and the paper’s insights remain relevant.

1.6.3 Ajanta Chakraborty and Mark R. Greenstreet. Efficient self-timed interfaces
for crossing clock domains. Proceedings of the Ninth International Symposium
on Asynchronous Circuits and Systems, IEEE Computer Society (May 2003), pages
78–88. ISBN: 0–7695–1898–2.

This paper addresses the challenge of having a fast, global clock on a chip by
organizing the resources on a chip as a number of synchronous islands con-
nected by asynchronous links. This design may pose problems for constructing
perfect arbiters (see Section 5.2.8).

1.6.4 Anant Agarwal and Markus Levy. The KILL Rule for multicore. 44th ACM/
IEEE Conference on Design Automation (June 2007), pages 750–753. ISBN:
978–1–59593–627–1.

This short paper looks ahead to multiprocessor chips that contain not just four or
eight, but thousands of processors. It articulates a rule for power-efficient designs:
Kill If Less than Linear. For example, the designer should increase the chip area
devoted to a resource such as a cache only if for every 1% increase in area there
is at least a 1% increase in chip performance. This rule focuses attention on those
design elements that make most effective use of the chip area and from back-of-
the-envelope calculations favors increasing processor count (which the paper
assumes to provide linear improvement) over other alternatives.

1.6.5 Stephen P. Walborn et al. Quantum erasure. American Scientist 91, 4 (July–
August 2003), pages 336–343.

389Suggestions for Further Reading

This paper was written by physicists and requires a prerequisite of
 undergraduate-level modern physics, but it manages to avoid getting into
 graduate-level quantum mechanics. The strength of the article is its clear
 identification of what is reasonably well understood and what is still a mystery
about these phenomena. That identification seems to be of considerable value
both to students of physics, who may be inspired to tackle the parts that are not
understood, and to students of cryptography, because knowing what aspects of
quantum cryptography are still mysteries may be important in deciding how
much reliance to place on it.

1.7 Dramatic Visions
Once in a while a paper comes along that either has a dramatic vision of what future
systems might do or takes a sweeping new look at some aspect of systems design that
had previously been considered to be settled. The ideas found in the papers listed in
reading sections 1.7 and 1.8 often become part of the standard baggage of all future
writers in the area, but the reprises rarely do justice to the originals, which are worth
reading if only to see how the mind of a visionary (or revisionist) works.

1.7.1 Vannevar Bush. As we may think. Atlantic Monthly 176, 1 (July 1945), pages
101–108. Reprinted in Adele J. Goldberg, A History of Personal Workstations,
Addison-Wesley, 1988, pages 237–247 and also in Irene Greif, ed., Computer-
Supported Cooperative Work: A Book of Readings, Morgan Kaufman, 1988.
ISBN: 0–934613–57–5.

Bush looked at the (mostly analog) computers of 1945 and foresaw that they
would someday be used as information engines to augment the human intellect.

1.7.2 John G. Kemeny, with comments by Robert M. Fano and Gilbert W. King.
A library for 2000 a.d. In Martin Greenberger, editor, Management and the
Computer of the Future, M.I.T. Press and John Wiley, 1962, pages 134–178. (Out
of print.)

It has taken 40 years for technology to advance far enough to make it possible
to implement Kemeny’s vision of how the library might evolve when computers
are used in its support. Unfortunately, the engineering that is required still hasn’t
been done, so the vision has not yet been realized, but Google has stated a similar
vision and is making progress in realizing it; see reading 3.2.4.

1.7.3 [Alan C. Kay, with the] Learning Research Group. Personal Dynamic Media.
Xerox Palo Alto Research Center Systems Software Laboratory Technical Report
SSL–76–1 (undated, circa March 1976).

Alan Kay was imagining laptop computers and how they might be used long
before most people had figured out that desktop computers might be a good
idea. He gave many inspiring talks on the subject, but he rarely paused long
enough to write anything down. Fortunately, his colleagues captured some of
his thoughts in this technical report. An edited version of this report, with some

390 Suggestions for Further Reading

pictures accidentally omitted, appeared in a journal in the year following this
technical report: Alan [C.] Kay and Adele Goldberg. Personal dynamic media.
IEEE Computer 10, 3 (March 1977), pages 31–41. This paper was reprinted
with omitted pictures restored in Adele J. Goldberg, A history of personal
 workstations, Addison-Wesley, 1988, pages 254–263. ISBN: 0–201–11259–0.

1.7.4 Doug[las] C. Engelbart. Augmenting Human Intellect: A Conceptual Frame-
work. Research Report AFOSR–3223, Stanford Research Institute, Menlo Park,
California, October 1962. Reprinted in Irene Greif, ed., Computer-Supported Coop-
era tive Work: A Book of Readings, Morgan Kaufman, 1988. ISBN: 0–934613–57–5.

In the early 1960s Engelbart saw that computer systems would someday be
useful in myriad ways as personal tools. Unfortunately, the technology of his
time, multimillion-dollar mainframes, was far too expensive to make his vision
practical. Today’s personal computers and engineering workstations have now
 incorporated many of his ideas.

1.7.5 F[ernando] J. Corbató and V[ictor] A. Vyssotsky. Introduction and overview
of the Multics system. AFIPS 1965 Fall Joint Computer Conference 27, part I
(1965), pages 185–196.

Working from a few primitive examples of time-sharing systems, Corbató and
his associates escalated the vision to an all-encompassing computer utility. This
paper is the first in a set of six about Multics in the same proceedings, pages
185–247.

1.8 Sweeping New Looks
1.8.1 Jack B. Dennis and Earl C. Van Horne. Programming semantics for multipro-
grammed computations. Communications of the ACM 9, 3 (March 1966), pages
143–155.

This paper set the ground rules for thinking about concurrent activities, both the
vocabulary and the semantics.

1.8.2 J. S. Liptay. Structural aspects of the System/360 model 85: II. The cache.
IBM Systems Journal 7, 1 (1968), pages 15–21.

The idea of a cache, look-aside, or slave memory had been suggested indepen-
dently by Francis Lee and Maurice Wilkes some time around 1963, but it was not
until the advent of LSI technology that it became feasible to actually build one
in hardware. As a result, no one had seriously explored the design space options
until the designers of the IBM System/360 model 85 had to come up with a real
implementation. Once this paper appeared, a cache became a requirement for
most later computer architectures.

1.8.3 Claude E. Shannon. The communication theory of secrecy systems. Bell
System Technical Journal 28, 4 (October 1949), pages 656–715.

391Suggestions for Further Reading

This paper provides the underpinnings of the theory of cryptography, in terms
of information theory.

1.8.4 Whitfield Diffie and Martin E. Hellman. Privacy and authentication: An
 introduction to cryptography. Proceedings of the IEEE 67, 3 (March 1979), pages
397–427.

This is the first technically competent paper on cryptography since Shannon in
the unclassified literature, and it launched modern unclassified study. It includes
a complete and scholarly bibliography.

1.8.5 Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory IT–22, 6 (November 1976), pages 644–654.

Diffie and Hellman were the second inventors of public key cryptography (the
first inventor, James H. Ellis, was working on classified projects for the British
Government Communications Headquarters at the time, in 1970, and was not
able to publish his work until 1987). This is the paper that introduced the idea
to the unclassified world.

1.8.6 Charles T. Davies, Jr. Data processing spheres of control. IBM Systems
Journal 17, 2 (1978), pages 179–198. Charles T. Davies, Jr. Recovery semantics
for a DB/DC system. 1973 ACM National Conference 28 (August 1973), pages
136–141.

This pair of papers—vague but thought-provoking—gives a high-level discussion
of “spheres of control”, a notion closely related to atomicity. Everyone who writes
about transactions mentions that they found these two papers inspiring.

1.8.7 Butler W. Lampson and Howard Sturgis. Crash recovery in a distributed data
storage system. Working paper, Xerox Palo Alto Research Center, November 1976
and April 1979. (Never published)

Jim Gray called the 1976 version of this paper “an underground classic”. The
1979 version presents the first good definition of models of failure. Both describe
algorithms for coordinating distributed updates; they are sufficiently different
that both are worth reading.

1.8.8 Leonard Kleinrock. Communication Nets: Stochastic Message Flow and
Delay. McGraw-Hill, 1964. Republished by Dover, 2007. ISBN: 0–486–45880–6.
224 pages.

1.8.9 Paul Baran, S. Boehm, and J. W. Smith. On Distributed Communications. A
series of 11 memoranda of the RAND Corporation, Santa Monica, California, August
1964.

Since the growth in the Internet’s popularity, there has been considerable dis-
cussion about who first thought of packet switching. It appears that Leonard
Kleinrock, working in 1961 on his M.I.T. Ph.D. thesis on more effective ways

392 Suggestions for Further Reading

of using wired networks, and Paul Baran and his colleagues at Rand, working in
1961 on survivable communications, independently proposed the idea of packet
switching at about the same time; both wrote internal memoranda in 1961
describing their ideas. Neither one actually used the words “packet switching”,
however; that was left to Donald Davies of the National Physical Laboratory, who
coined that label several years later.

1.8.10 Lawrence G. Roberts and Barry D. Wessler. Computer network develop-
ment to achieve resource sharing. AFIPS Spring Joint Computer Conference 36
(May 1970), pages 543–549.

This paper and four others presented at the same conference session (pages
543–597) represent the first public description of the ARPANET, the first success-
ful packet-switching network and the prototype for the Internet. Two years later,
AFIPS Spring Joint Computer Conference 40 (1972), pages 243–298, presented
five additional, closely related papers. The discussion of priority concerning read-
ing 1.8.8 and reading 1.8.9 is somewhat academic; it was Roberts’s sponsorship
of the ARPANET that demonstrated the workability of packet switching.

1.8.11 V[inton G.] Cerf et al. Delay-Tolerant Networking Architecture. Request
for Comments RFC 4838, Internet Engineering Task Force (April 1997).

This document describes an architecture that evolved from a vision for an
Interplanetary Internet, an Internet-like network for interplanetary distances.
This document introduces several interesting ideas and highlights some assump-
tions that people make in designing networks without realizing it. NASA per-
formed its first successful tests of a prototype implementation of a delay-tolerant
network.

1.8.12 Jim Gray et al. Terascale Sneakernet. Using Inexpensive Disks for Backup,
Archiving, and Data Exchange. Microsoft Technical Report MS-TR-02-54 (May
2002). http://arxiv.org/pdf/cs/0208011

Sneakernet is a generic term for transporting data by physically delivering a stor-
age device rather than sending it over a wire. Sneakernets are attractive when data
volume is so large that electronic transport will take a long time or be too expen-
sive, and the latency until the first byte arrives is less important. Early sneakernets
exchanged programs and data using floppy disks. More recently, people have
exchanged data by burning CDs and carrying them. This paper proposes to build
a sneakernet by sending hard disks, encapsulated in a small, low-cost computer
called a storage brick. This approach allows one to transfer by mail terabytes of
data across the planet in a few days. By virtue of including a computer and operat-
ing system, it minimizes compatibility problems that arise when transferring the
data to another computer.

Several other papers listed under specific topics also provide sweeping new looks
or have changed the way people think about systems: Simon, The architecture of
complexity, reading 1.4.3; Thompson, Reflections on trusting trust, reading 11.3.3;

http://arxiv.org/pdf/cs/0208011

393Suggestions for Further Reading

Lampson, Hints for computer system design, reading 1.5.4; and Creasy’s VM/370 paper,
reading 5.6.1.

1.9 Keeping Big Systems Under Control
1.9.1 F[ernando] J. Corbató and C[harles] T. Clingen. A managerial view of the
Multics system development. In Peter Wegner, Research Directions in Software
Technology, M.I.T. Press, Cambridge, Massachusetts, 1979, pages 139–158. ISBN:
0–262–23096–8.

1.9.2 W[illiam A.] Wulf, R[oy] Levin, and C. Pierson. Overview of the Hydra
operating system development. Proceedings of the Fifth ACM Symposium on
Operating Systems Principles, in Operating Systems Review 9, 5 (November
1975), pages 122–131.

1.9.3 Thomas R. Horsley and William C. Lynch. Pilot: A software engineering case
study. Fourth International Conference on Software Engineering (September
1979), pages 94–99.

These three papers are early descriptions of the challenges of managing and
developing large systems. They are still relevant and easy to read, and provide
complementary insights.

1.9.4 Effy Oz. When professional standards are lax: The CONFIRM failure and its
lessons. Communications of the ACM 37, 10 (October 1994), pages 30–36.

CONFIRM is an airline/hotel/rental-car reservation system that never saw the
light of day despite four years of work and an investment of more than $100M.
It is one of many computer system developments that went out of control and
finally were discarded without ever having been placed in service. One sees
news reports of software disasters of similar magnitude a few times each year.
It is difficult to obtain solid facts about system development failures because no
one wants to accept the blame, especially when lawsuits are pending. This paper
suffers from a shortage of facts and an oversimplistic recommendation that bet-
ter ethics are all that are needed to solve the problem. (It seems likely that the
ethics and management problems simply delayed recognition of the inevitable.)
Nevertheless, it provides a sobering view of how badly things can go wrong.

1.9.5 Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25
 accidents. Computer 26, 7 (July 1993), pages 18–41. (Reprinted in reading 1.3.6.)

This is another sobering view of how badly things can go wrong. In this case, the
software controller for a high-energy medical device was inadequately designed;
the device was placed in service, and lethal injuries ensued. This paper manages
to inquire quite deeply into the source of the problems. Unfortunately, similar mis-
takes have been made since; see, for example, United States Nuclear Regulatory
Commission Information Notice 2001–8s1 (June 2001), which describes radia-
tion therapy overexposures in Panama.

394 Suggestions for Further Reading

1.9.6 Joe Morgenstern. City perils: The fifty-nine-story crisis. The New Yorker 71,
14 (May 29, 1995), pages 45–53.

This article discusses how an engineer responded to the realization that a sky-
scraper he had designed was in danger of collapsing in a hurricane.

1.9.7 Eric S. Raymond. The cathedral and the bazaar. In The Cathedral and The
Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary,
pages 19–64. O’Reilly Media Inc., 2001. ISBN: 978–0596001087, 241 pages.

The book is based on a white paper of the same title that compares two styles of
software development: the Cathedral model, which is used mostly by commercial
software companies and some open-source projects such as the BSD operating
system; and the Bazaar model, which is exemplified by development of the GNU/
Linux operating system. The work argues that the Bazaar model leads to better
software because the openness and independence of Bazaar allow anyone to
become a participant and to look at anything in the system that seems of interest:
“Given enough eyeballs, all bugs are shallow”.

1.9.8 Philip M Boffey. Investigators agree N. Y. blackout of 1977 could have been
avoided. Science 201, 4360 (September 15, 1978), pages 994–996.

This is a fascinating description of how the electrical generation and distribution
system of New York’s Consolidated Edison fell apart when two supposedly toler-
able faults occurred in close succession, recovery mechanisms did not work as
expected, attempts to recover manually got bogged down by the system’s com-
plexity, and finally things cascaded out of control.

2 Elements of computer System organization

To learn more about the basic abstractions of memory and interpreters, the book
Computer Architecture by Patterson and Hennessy (reading 1.1.1) is one of the best
sources. Further information about the third basic abstraction, communication links,
can be found in readings section 7.

2.1 Naming Systems
2.1.1 Bruce [G.] Lindsay. Object naming and catalog management for a distrib-
uted database manager. Proceedings of the Second International Conference on
Distributed Computing Systems, Paris, France (April 1981), pages 31–40. Also IBM
San Jose Research Laboratory Technical Report RJ2914 (August 1980). 17 pages.

This paper, a tutorial treatment of names as used in database systems, begins with
a better-than-average statement of requirements and then demonstrates how
those requirements were met in the R* distributed database management system.

2.1.2 Yogen K. Dalal and Robert S. Printis. 48–bit absolute Internet and Ethernet
host numbers. Proceedings of the Seventh Data Communications Symposium,

395Suggestions for Further Reading

Mexico City, Mexico, (October 1981), pages 240–245. Also Xerox Office Products
Division Technical Report OPD–T8101 (July 1981), 14 pages.

This paper describes how hardware addresses are handled in the Ethernet local
area network.

2.1.3 Theodor Holm Nelson. Literary Machines, Ed. 87.1. Project Xanadu, San
Antonio, Texas, 1987. ISBN: 0–89347–056–2 (paperback). Various pagings.

Project Xanadu is an ambitious vision of a future in which books are replaced by
information organized in the form of a naming network, in the form that today is
called “hypertext”. The book, being somewhat non-linear, is a primitive example
of what Nelson advocates.

2.2 The unix® System
The following readings and the book by Marshall McKusick et al., reading 1.3.4,
are excellent sources on the unix system to follow up the case study in Section 2.5.
A good, compact summary of its main features can be found in Tanenbaum’s operating
systems book [reading 1.2.1], which also covers Linux.

2.2.1 Dennis M. Ritchie and Ken [L.] Thompson. The unix time-sharing system.
Bell System Technical Journal 57, 6, part 2 (1978), pages 1905–1930.

This paper describes an influential operating system with very low-key, but care-
fully chosen and hard-to-discover, objectives. The system provides a hierarchical
catalog structure and succeeds in keeping naming completely distinct from file
management. An earlier version of this paper appeared in the Communications
of the ACM 17, 7 (July, 1974), pages 365–375, after being presented at the Fourth
ACM Symposium on Operating Systems Principles. The unix system evolved rap-
idly between 1973 and 1978, so the BSTJ version, though harder to find, contains
significant additions, both in insight and in technical content.

2.2.2 John Lions. Lions’ Commentary on UNIX 6th Edition with Source Code.
Peer-to-peer communications, 1977. ISBN: 978–1–57398–013–7, 254 pages.

This book contains the source code for unix Version 6, with comments to explain
how it works. Although Version 6 is old, the book remains an excellent starting
point for understanding how the system works from the inside, because both the
source code and the comments are short and succinct. For decades, this book
was part of the underground literature from which designers learned about the
unix system, but now it is available to the public.

3 the design of naming Schemes

Almost any system has a naming plan, and many of the interesting naming plans can
be found in papers that describe a larger system. Any reader interested in naming
should study the Domain Name System, reading 4.3, and the topic of Section 4.4.

396 Suggestions for Further Reading

3.1 Addressing Architectures
Several early sources still contain some of the most accessible explanations of designs
that incorporate advanced naming features directly in hardware.

3.1.1 Jack B. Dennis. Segmentation and the design of multiprogrammed computer
systems. Journal of the ACM 12, 4 (October 1965), pages 589–602.

This is the original paper outlining the advantages of providing naming support
in hardware architecture.

3.1.2 R[obert] S. Fabry. Capability-based addressing. Communications of the ACM
17, 7 (July 1974), pages 403–412.

This is the first comprehensive treatment of capabilities, a mechanism introduced
to enforce modularity but actually more of a naming feature.

3.1.3 Elliott I. Organick. Computer System Organization, The B5700/B6700
Series. Academic Press, 1973. ISBN: 0–12–528250–8. 132 pages.

The Burroughs Descriptor system explained in this book is apparently the only
example of a hardware-supported naming system actually implemented before
the advent of microprogramming.

3.1.4 Elliott I. Organick. The Multics System: an Examination of its Structure.
M.I.T. Press, Cambridge, Massachusetts, 1972. ISBN: 0–262–15012–3. 392 pages.

This book explores every detail and ramification of the extensive naming mech-
anisms of Multics, both in the addressing architecture and in the file system.

3.1.5 R[oger] M. Needham and A[ndrew] D. Birrell. The CAP filing system.
Proceedings of the Sixth ACM Symposium on Operating Systems Principles, in
Operating Systems Review 11, 5 (November 1977), pages 11–16.

The CAP file system is one of the few implemented examples of a genuine nam-
ing network.

3.2 Examples
3.2.1 Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, and Paul H. Levine. UIDs
as internal names in a distributed file system. In ACM SIGACT–SIGOPS Symposium
on Principles of Distributed Computing, Ottawa, Ontario (August 18–20, 1982),
pages 34–41.

The Apollo domain system supports a different model for distributed function. It
provides a shared primary memory called the Single Level Store, which extends
transparently across the network. It is also one of the few systems to make sub-
stantial use of unstructured unique identifiers from a compact set as object
names. This paper focuses on this latter issue.

3.2.2 Rob Pike et al. Plan 9 from Bell Labs. Computing Systems 8, 3 (Summer 1995),
pages 221–254. An earlier version by Rob Pike, Dave Presotto, Ken Thompson,

397Suggestions for Further Reading

and Howard Trickey appeared in Proceedings of the Summer 1990 UKUUG
Conference (1990), London, pages 1–9.

This paper describes a distributed operating system that takes the unix system
idea that every resource is a file one step further by using it also for network and
window system interactions. It also extends the file idea to a distributed system
by defining a single file system protocol for access to all resources, whether they
are local or remote. Processes can mount any remote resources into their name
space, and to the user these remote resources behave just like local resources. This
design makes users perceive the system as an easy-to-use time-sharing system
that behaves like a single powerful computer, instead of a collection of separate
computers.

3.2.3 Tim Berners–Lee et al. The World Wide Web. Communications of the ACM
37, 8 (August 1994), pages 76–82.

Many of the publications about the World Wide Web are available only on the
Web, with a good starting point being the home page of the World Wide Web
Consortium at <http://w3c.org/>.

3.2.4 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Proceedings of the 7th WWW Conference, Brisbane, Australia
(April 1998). Also in Computer Networks 30 (1998), pages 107–117.

This paper describes an early version of Google’s search engine. It also intro-
duces the idea of page rank to sort the results to a query in order of importance.
Search is a dominant way in which users “name” Web pages.

3.2.5 Bryan Ford et al. Persistent personal names for globally connected mobile
devices. Proceedings of the Seventh USENIX Symposium on Operating Systems
Design and Implementation (November 2006), pages 233–248.

This paper describes a naming system for personal devices. Each device is a
root of its own naming network and can use short, convenient names for other
devices belonging to the same user or belonging to people in the user’s social
network. The implementation of the naming system allows devices to be dis-
connected from the Internet and resolve names of devices that are reachable.
The first five pages lay out the basic naming plan. Later sections explain secu-
rity properties and a security-based implementation, which involves material of
Chapter 11 [on-line].

4 Enforcing Modularity with clients and Services

Many systems are organized in a client/service style. A system that provides a good
case study is the Network File System (see Section 4.5). The following papers provide
some other examples.

http://w3c.org/

398 Suggestions for Further Reading

4.1 Remote Procedure Call
4.1.1 Andrew D. Birrell and Bruce Jay Nelson. Implementing remote proce-
dure calls. ACM Transactions on Computer Systems 2, 1 (February 1984), pages
39–59.

A well-written paper that shows first, the simplicity of the basic idea, second,
the complexity required to deal with real implementations, and third, the refine-
ments needed for high effectiveness.

4.1.2 Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network
objects. Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 27, 5 (December 1993), pages 217–230.

This paper describes a programming language for distributed applications
based on remote procedure calls, which hide most “distributedness” from the
programmer.

4.1.3 Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for
the Java™ system. Computing Systems 9, 4 (1996), pages 265–290. Originally
published in Proceedings of the Second USENIX Conference on Object-Oriented
Technologies Volume 2 (1996).

This paper presents a remote procedure call system for the Java programming
language. It provides a clear description of how an RPC system can be integrated
with an object-oriented programming language and the new exception types
RPC introduces.

4.2 Client/Service Systems
4.2.1 Daniel Swinehart, Gene McDaniel, and David [R.] Boggs. WFS: A simple
shared file system for a distributed environment. Proceedings of the Seventh ACM
Symposium on Operating Systems Principles, in Operating Systems Review 13, 5
(December 1979), pages 9–17.

This early version of a remote file system opens the door to the topic of distribu-
tion of function across connected cooperating computers. The authors’ specific
goal was to keep things simple; thus, the relationship between mechanism and
goal is much clearer than in more modern, but more elaborate, systems.

4.2.2 Robert Scheifler and James Gettys. The X Window System. ACM Trans-
actions on Graphics 5, 2 (April 1986), pages 79–109.

The X Window System is the window system of choice on practically every engi-
neering workstation in the world. It provides a good example of using the client/
service model to achieve modularity. One of the main contributions of the X
Window System is that it remedied a defect that had crept into the unix sys-
tem when displays replaced typewriters: the display and keyboard were the only
hardware-dependent parts of the unix application programming interface. The
X Window System allowed display-oriented unix applications to be completely

399Suggestions for Further Reading

independent of the underlying hardware. In addition, the X Window System inter-
poses an efficient network connection between the application and the display,
allowing configuration flexibility in a distributed system.

4.2.3 John H. Howard et al. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems 6, 1 (February 1988), pages 51–81.

This paper describes experience with a prototype of the Andrew network file
system for a campus network and shows how the experience motivated changes
in the design. The Andrew file system had strong influence on version 4 of NFS.

4.3 Domain Name System (DNS)
The domain name system is one of the most interesting distributed systems in opera-
tion. It is not only a building block in many distributed applications, but is itself an
interesting case study, offering many insights for anyone wanting to build a distributed
system or a naming system.

4.3.1 Paul V. Mockapetris and Kevin J. Dunlap. Development of the Domain Name
System. Proceedings of the SIGCOMM 1988 Symposium, pages 123–133. Also
published in ACM Computer Communications Review 18, 4 (August 1988), pages
123–133, and republished in ACM Computer Communications Review 25, 1
(January 1995), pages 112–122.

4.3.2 Paul [V.] Mockapetris. Domain names—Concepts and facilities. Request for
Comments RFC 1034, Internet Engineering Task Force (November 1987).

4.3.3 Paul [V.] Mockapetris. Domain names—Implementation and specification.
Request for Comments RFC 1035, Internet Engineering Task Force (November
1987).

These three documents explain the DNS protocol.

4.3.4 Paul Vixie. DNS Complexity. ACM Queue 5, 3 (April 2007), pages 24–29.

This paper uncovers many of the complexities of how DNS, described in the
case study in Section 4.4, works in practice. The protocol for DNS is simple, and
no complete, precise specification of the system exists. The author argues that
the current descriptive specification of DNS is an advantage because it allows
various implementations to evolve to include new features as needed. The paper
describes many of these features and shows that DNS is one of the most interest-
ing distributed systems in use today.

5 Enforcing Modularity with Virtualization

5.1 Kernels
The readings on the unix system (see readings section 2.2) are a good starting point
for studying kernels.

400 Suggestions for Further Reading

5.1.1 Per Brinch Hansen. The nucleus of a multiprogramming system.
Communications of the ACM 13, 4 (April 1970), pages 238–241.

The RC–4000 was the first, and may still be the best explained, system to use mes-
sages as the primary concurrency coordination mechanism. It is also what would
today be called a microkernel design.

5.1.2 M. Frans Kaashoek et al. Application performance and flexibility on exokernel
systems. In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 31, 5 (December 1997), pages 52–65.

The exokernel provides an extreme version of separation of policy from mecha-
nism, sacrificing abstraction to expose (within protection constraints) all possible
aspects of the physical environment to the next higher layer, giving that higher
layer maximum flexibility in creating abstractions for its preferred programming
environment, or tailored to its preferred application.

5.2 Type Extension as a Modularity Enforcement Tool
5.2.1 Butler W. Lampson and Howard E. Sturgis. Reflections on an operating
 system design. Communications of the ACM 19, 5 (May 1976), pages 251–265.

An operating system named CAL, designed at the University of California at
Berkeley, appears to be the first system to make explicit use of types in the inter-
face to the operating system. In addition to introducing this idea, Lampson and
Sturgis also give good insight into the pros and cons of various design decisions.
Documented late, the system was actually implemented in 1969.

5.2.2 Michael D. Schroeder, David D. Clark, and Jerome H. Saltzer. The Multics kernel
design project. Proceedings of the Sixth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 11, 5 (November 1977), pages 43–56.

This paper addresses a wide range of issues encountered in applying type
 extension (as well as microkernel thinking, though it wasn’t called that at
the time) to Multics in order to simplify its internal organization and reduce
the size of its trusted base. Many of these ideas were explored in even more
depth in Philippe Janson’s Ph.D. Thesis, Using Type Extension to Organize
Virtual Memory Mechanisms, M.I.T. Department of Electrical Engineering and
Computer Science, August 1976. That thesis is also available as M.I.T. Laboratory
for Computer Science Technical Report TR–167, September 1976.

5.2.3 Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack.
Operating Systems Review 41, 2 (April 2007), pages 37–49.

Singularity is an operating system that uses type-safe languages to enforce modu-
larity between different software modules, instead of relying on virtual-memory
hardware. The kernel and all applications are written in a strongly typed pro-
gramming language with automatic garbage collection. They run in a single
address space and are isolated from each other by the language runtime. They

401Suggestions for Further Reading

can interact with each other only through communication channels that carry
type-checked messages.

5.3 Virtual Processors: Threads
5.3.1 Andrew D. Birrell. An introduction to programming with threads. Digital
Equipment Corporation Systems Research Center Technical Report #35, January
1989. 33 pages. (Also appears as Chapter 4 of Greg Nelson, editor, Systems
Programming with Modula–3, Prentice-Hall, 1991, pages 88–118.) A ver-
sion for the C# programming language appeared as Microsoft Research Report
MSR-TR-2005–68.

This is an excellent tutorial, explaining the fundamental issues clearly and going on
to show the subtleties involved in exploiting threads correctly and effectively.

5.3.2 Thomas E. Anderson et al. Scheduler activations: Effective kernel support
for the user-level management of parallelism. ACM Transactions on Computer
Systems 10, 1 (February 1992), pages 53–79. Originally published in Proceedings
of the Thirteenth ACM Symposium on Operating Systems Principles, in Operating
Systems Review 25, 5 (December 1991), pages 95–109.

The distinction between user threads and kernel threads comes to the fore in this
paper, which offers a way of getting the advantages of both by having the right
kind of user/kernel thread interface. The paper also revisits the idea of a virtual
processor, but in a multiprocessor context.

5.3.3 David D. Clark. The structuring of systems using upcalls. Proceedings of the
Tenth ACM Symposium on Operating Systems Principles, in Operating Systems
Review 19, 5 (December 1985), pages 171–180.

Attempts to impose modular structure by strict layering sometimes manage to
overlook the essence of what structure is most appropriate. This paper describes
a rather different intermodule organization that seems to be especially effective
when dealing with network implementations.

5.3.4 Jerome H. Saltzer. Traffic Control in a Multiplexed Computer System. Ph.D.
Thesis, Massachusetts Institute of Technology, Department of Electrical Engineer-
ing, June 1966. Also available as Project MAC Technical Report TR–30, 1966.

This work describes what is probably the first systematic virtual processor design
and thread package, the multiprocessor multiplexing scheme used in the Multics
system. It defines the coordination primitives block and wakeup, which are exam-
ples of binary semaphores assigned one per thread.

5.3.5 Rob Pike et al. Processor sleep and wakeup on a shared-memory multiproces-
sor. Proceedings of the EurOpen Conference (1991), pages 161–166.

This well-written paper does an excellent job of explaining how difficult it
is to get preemptive multiplexing, handling interrupts, and implementing
 coordination primitives correct on shared-memory multiprocessor.

402 Suggestions for Further Reading

5.4 Virtual Memory
There are few examples of papers that describe a simple, clean design. The older
papers (some can be found in reading section 3.1) get bogged down in technol-
ogy constraints; the more recent papers (some of the them can be found in reading
 section 6.1 on multilevel memory management) often get bogged down in perfor-
mance optimizations. The case study on the evolution of enforcing modularity with
the Intel x86 (see Section 5.7 of Chapter 5) describes virtual memory support in the
most widely used processor and shows how it evolved over time.

5.4.1 A[ndre] Bensoussan, C[harles] T. Clingen, and R[obert] C. Daley. The Multics
virtual memory: Concepts and design. Communications of the ACM 15, 5 (May
1972), pages 308–318.

This is a good description of a system that pioneered the use of high-powered
addressing architectures to support a sophisticated virtual memory system,
including memory-mapped files. The design was constrained and shaped by
the available hardware technology (0.3 MIPS processor with an 18–bit address
space), but the paper is a classic and easy to read.

5.5 Coordination
Every modern textbook covers the topic of coordination but typically brushes past the
subtleties and also typically gives the various mechanisms more emphasis than they
deserve. These readings either explain the issues much more carefully or extend
the basic concepts in various directions.

5.5.1 E[dsger] W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages, NATO Advanced Study Institute, Villard-de-Lans, 1966.
Academic Press, 1968, pages 43–112.

This paper introduces semaphores, the synchronizing primitive most often used
in academic exercises, and is notable for its very careful, step-by-step develop-
ment of the requirements for mutual exclusion and its implementation. Many
modern treatments ignore the subtleties discussed here as if they were obvious.
They aren’t, and if you want to understand synchronization you should read
this paper.

5.5.2 E[dsger] W. Dijkstra. Solution of a problem in concurrent programming con-
trol. Communications of the ACM 8, 9 (September 1965), page 569.

In this very brief paper, Dijkstra first reports Dekker’s observation that multi-
processor locks can be implemented entirely in software, relying on the hard-
ware to guarantee only that read and write operations have before-or-after
atomicity.

5.5.3 Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems 5, 1 (February 1987), pages 1–11.

403Suggestions for Further Reading

This paper presents a fast version of a software-only implementation of locks and
gives an argument as to why this version is optimal.

5.5.4 David P. Reed and Rajendra K. Kanodia. Synchronization with eventcounts
and sequencers. Communications of the ACM 22, 2 (February 1979), pages
115–123.

This paper introduces an extremely simple coordination system that uses less
powerful primitives for sequencing than for mutual exclusion; a consequence is
simple correctness arguments.

5.5.5 Butler W. Lampson and David D. Redell. Experience with processes and
 monitors in Mesa. Communications of the ACM 23, 2 (February 1980), pages
105–117.

This is a nice discussion of the pitfalls involved in integrating concurrent activity
coordination into a programming language.

5.5.6 Stefan Savage et al. Eraser: A dynamic data race detector for multi-threaded
programs. ACM Transactions on Computer Systems 15, 4 (November 1997), pages
391–411. Also in the Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles (October 1997).

This paper describes an interesting strategy for locating certain classes of lock-
ing mistakes: instrument the program by patching its binary data references;
then watch those data references to see if the program violates the locking
protocol.

5.5.7 Paul E. McKenney et al. Read-copy update. Proceedings of the Ottawa Linux
Symposium, 2002, pages 338–367.

This paper observes that locks can be an expensive mechanism for before-or-
after atomicity for data structures that are mostly read and infrequently modified.
The authors propose a new technique, read-copy update (RCU), which improves
performance and scalability. The Linux kernel uses this mechanism for many of
its data structures that processors mostly read.

5.5.8 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Program-
ming Languages and Systems 11, 1 (January 1991), pages 124–149.

This paper introduces the goal of wait-free synchronization, now often called
non-blocking coordination, and gives non-blocking, concurrent implementations
of common data structures such as sets, lists, and queues.

5.5.9 Timothy L. Harris. A pragmatic implementation of non-blocking linked
lists. Proceedings of the fifteenth International Symposium on Distributed
Computing, (October 2001), pages 300–314.

This paper describes a practical implementation of a linked list in which threads
can insert concurrently without blocking.

404 Suggestions for Further Reading

See also reading 5.1.1, by Brinch Hansen, which uses messages as a coordination
technique, and reading 5.3.1 by Birrell, which describes a complete set of coordi-
nation primitives for programming with threads.

5.6 Virtualization
5.6.1 Robert J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal
of Research and Development 25, 5 (1981), pages 483–490.

This paper is an insightful retrospective about a mid-1960s project to virtualize
the IBM 360 computer architecture and the development that led to VM/370,
which in the 1970s became a popular virtual machine system. At the time, the
unusual feature of VM/370 was its creation of a strict, by-the-book, hardware
virtual machine, thus providing the ability to run any system/370 program in a
controlled environment. Because it was a pioneer project, the author explained
things particularly well, thus providing a good introduction to the concepts and
problems in implementing virtual machines.

5.6.2 Edouard Bugnion et al. Disco: running commodity operating systems
on scalable multiprocessors. ACM Transactions on Computer Systems 15, 14
(November 1997), pages 412–447.

This paper brought virtual machines back as a mainstream way of building
systems.

5.6.3 Carl Waldspurger. Memory resource management in VMware ESX server.
Proceedings of the Fifth USENIX Symposium on Operating Systems Design and
Implementation (December 2002), pages 181–194.

This well-written paper introduces a nice trick (a balloon driver) to decide how
much physical memory to give to guest operating systems.

5.6.4 Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. Proceedings of the Twelfth Symposium on
Architectural Support for Programming Languages and Operating Systems
(October 2006). ISBN: 1–59593–451–0. Also in Operating Systems Review 40, 5
(December 2006), pages 2–13.

This paper describes how one can virtualize the Intel x86 instruction set to build
a high-performance virtual machine. It compares two implementation strategies:
one that uses software techniques, such as binary rewriting, to virtualize the
instruction set, and one that uses recent hardware additions to the x86 proces-
sor to make virtualizing easier. The comparison provides insights about imple-
menting modern virtual machines and operating system support in modern x86
processors.

Also see the paper on the secure virtual machine monitor for the VAX machine,
reading 11.3.5.

405Suggestions for Further Reading

6 Performance

6.1 Multilevel Memory Management
An excellent discussion of memory hierarchies, with special attention paid to the
design space for caches, can be found in Chapter 5 of the book by Patterson and
Hennessy, reading 1.1.1. A lighter-weight treatment focused more on virtual mem-
ory, and including a discussion of stack algorithms, can be found in Chapter 3 of
Tanenbaum’s computer systems book, reading 1.2.1.

6.1.1 R[obert] A. Frieburghouse. Register allocation via usage counts.
Communications of the ACM 17, 11 (November 1974), pages 638–642.

This paper shows that compiler code generators must do multilevel memory man-
agement and that they have the same problems as do caches and paging systems.

6.1.2 R[ichard] L. Mattson, J. Gecsei, D[onald] R. Slutz, and I[rving] L. Traiger.
Evaluation techniques for storage hierarchies. IBM Systems Journal 9, 2 (1970),
pages 78–117.

The original reference on stack algorithms and their analysis, this paper is well
written and presents considerably more in-depth observations than the brief
summaries that appear in modern textbooks.

6.1.3 Richard Rashid et al. Machine-independent virtual memory management
for paged uniprocessor and multiprocessor architectures. IEEE Transactions
on Computers 37, 8 (August 1988), pages 896–908. Originally published in
Proceedings of the Second International Conference on Architectural Support
for Programming Languages and Operating Systems (November 1987), pages
31–39.

This paper describes a design for a sophisticated virtual memory system that has
been adopted by several operating systems, including several BSD operating sys-
tems and Apple’s OS X. The system supports large, sparse virtual address spaces,
copy-on-write copying of pages, and memory-mapped files.

6.1.4 Ted Kaehler and Glenn Krasner. LOOM: Large object-oriented memory for
Smalltalk–80 systems. In Glenn Krasner, editor, Smalltalk–80: Bits of History,
Words of Advice. Addison-Wesley, 1983, pages 251–271. ISBN: 0–201–11669–3.

This paper describes the memory-management system used in Smalltalk, an inter-
active programming system for desktop computers. A coherent virtual memory
language support system provides for lots of small objects while taking into
account address space allocation, multilevel memory management, and naming
in an integrated way.

The paper on the Woodstock File System, by Swinehart et al., reading 4.2.1,
describes a file system that is organized as a multilevel memory management
system. Also see reading 10.1.8 for an interesting application (shared virtual
 memory) using multilevel memory management.

406 Suggestions for Further Reading

6.2 Remote Procedure Call
6.2.1 Michael D. Schroeder and Michael Burrows. Performance of Firefly RPC. ACM
Transactions on Computer Systems 8, 1 (February 1990), pages 1–17. Originally
published in Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 23, 5 (December 1989), pages 102–113.

As a complement to the abstract discussion of remote procedure call in reading
4.1.1, this paper gives a concrete, blow-by-blow accounting of the steps required
in a particular implementation and then compares this accounting with overall
time measurements. In addition to providing insight into the intrinsic costs of
remote procedures, this work demonstrates that it is possible to do bottom-up
performance analysis that correlates well with top-down measurements.

6.2.2 Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. Lightweight remote procedure call. ACM Transactions on Computer
Systems 8, 1 (February 1990), pages 37–55. Originally published in Proceedings
of the Twelfth ACM Symposium on Operating Systems Principles, in Operating
Systems Review 23, 5 (December 1989), pages 102–113.

6.2.3 Jochen Liedtke. Improving IPC by kernel design. Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles, in Operating
Systems Review 27, 5 (December 1993), pages 175–187.

These two papers develop techniques to allow local kernel-based client/service
modularity to look just like remote client/service modularity to the application
designer, while at the same time capturing the performance advantage that can
come from being local.

6.3 Storage
6.3.1 Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.
Computer 27, 3 (March 1994), pages 17–28.

This paper is really two papers in one. The first five pages provide a wonderfully
accessible explanation of how disk drives and controllers actually work. The rest
of the paper, of interest primarily to performance modeling specialists, explores
the problem of accurately simulating a complex disk drive, with measurement
data to show the size of errors that arise from various modeling simplifications
(or oversimplifications).

6.3.2 Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry.
A fast file system for unix. ACM Transactions on Computer Systems 2, 3 (August
1984), pages 181–197.

The “fast file system” nicely demonstrates the trade-offs between performance
and complexity in adding several well-known performance enhancement tech-
niques, such as multiple block sizes and sector allocation based on adjacency, to
a file system that was originally designed as the epitome of simplicity.

407Suggestions for Further Reading

6.3.3 Gregory R. Ganger and Yale N. Patt. Metadata update performance in file
 systems. Proceedings of the First USENIX Symposium on Operating Systems
Design and Implementation (November 1994), pages 49–60.

This paper is an application to file systems of some recovery and consistency
concepts originally developed for database systems. It describes a few simple
rules (e.g., an inode should be written to the disk after writing the disk blocks
to which it points) that allow a system designer to implement a file system that
is high performance and always keeps its on-disk data structures consistent in
the presence of failures. As applications perform file operations, the rules create
dependencies between data blocks in the write-behind cache. A disk driver that
knows about these dependencies can write the cached blocks to disk in an order
that maintains consistency of on-disk data structures despite system crashes.

6.3.4 Andrew Birrell et al. A design for high-performance flash disks. ACM
Operating Systems Review 41, 2 (April 2007), pages 88–93. (Also appeared as
Microsoft Corporation technical report TR-2005–176.)

Flash (non-volatile) electronic memory organized to appear as a disk has emerged
as a more expensive but very low-latency alternative to magnetic disks for dura-
ble storage. This short paper describes, in an easy-to-understand way, the chal-
lenges associated with building a high-performance file system using flash disks
and proposes a design to address the challenges. This paper is a good start for
readers who want to explore flash-based storage systems.

6.4 Other Performance-Related Topics
6.4.1 Sharon E. Perl and Richard L. Sites. Studies of Windows NT performance
using dynamic execution traces. Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation (October 1996). Also in
Operating System Review 30, SI (October 1996), pages 169–184.

This paper shows by example that any performance issue in computer sys-
tems can be explained. The authors created a tool to collect complete traces of
instructions executed by the Windows NT operating system and applications.
The authors conclude that pin bandwidth limits the achievable execution speed
of applications and that locks inside the operating system can limit applications
to scale to more than a moderate number of processors. The paper also discusses
the impact of cache-coherence hardware (see Chapter 10 [on-line]) on applica-
tion performance. All of these issues are increasingly important for multiproces-
sors on a single chip.

6.4.2 Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. Transactions on Computer Systems 15, 3 (August 1997),
pages 217–252.

This paper introduces the problem of receive livelock (described in Sidebar 6.7)
and presents a solution. Receive livelock is a possible undesirable situation when a

408 Suggestions for Further Reading

system is temporarily overloaded. It can arise if the server spends too much of its time
saying “I’m too busy” and as a result has no time left to serve any of the requests.

6.4.3 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. Proceedings of the Sixth USENIX Symposium on Operating
Systems Design and Implementation (December 2004), pages 137–150. Also in
Communications of the ACM 51, 1 (January 2008), pages 1–10.

This paper is a case study of aggregating arrays (reaching into the thousands)
of computers to perform parallel computations on large data sets (e.g., all the
pages of the Web). It uses a model that applies when a composition of two serial
functions (Map and Reduce) has no side-effects on the data sets. The charm of
MapReduce is that for computations that fit the model, the runtime uses concur-
rency but hides it completely from the programmer. The runtime partitions the
input data set, executes the functions in parallel on different parts of the data set,
and handles the failures of individual computers.

7 the network as a System and as a System component

Proceedings of the IEEE 66, 11 (November 1978), a special issue of that journal
devoted to packet switching, contains several papers mentioned under various top-
ics here. Collectively, they provide an extensive early bibliography on computer
communications.

7.1 Networks
The book by Perlman on bridges and routers, reading 1.2.5, explains how the network
layer really works.

7.1.1 David D. Clark, Kenneth T. Pogran, and David P. Reed. An introduction to local
area networks. Proceedings of the IEEE 66, 11 (November 1978), pages 1497–1517.

This basic tutorial on local area network communications characterizes the vari-
ous modular components of a local area network, both interface and protocols,
gives specific examples, and explains how local area networks relate to larger,
interconnected networks. The specific examples are now out of date, but the rest
of the material is timeless.

7.1.2 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switch-
ing for local computer networks. Communications of the ACM 19, 7 (July 1976),
pages 395–404.

This paper provides the design of what has proven to be the most popular local
area network technology.

7.2 Protocols
7.2.1 Louis Pouzin and Hubert Zimmerman. A tutorial on protocols. Proceedings
of the IEEE 66, 11 (November 1978), pages 1346–1370.

409Suggestions for Further Reading

This paper is well written and provides perspective along with the details. The
fact that it was written a long time ago turns out to be its major appeal. Because
networks were not widely understood at the time, it was necessary to fully
explain all of the assumptions and offer extensive analogies. This paper does an
excellent job of both, and as a consequence it provides a useful complement to
modern texts. While reading this paper, anyone familiar with current network
technology will frequently exclaim, “So that’s why the Internet works that way.”

7.2.2 Vinton G. Cerf and Peter T. Kirstein. Issues in packet-network interconnec-
tion. Proceedings of the IEEE 66, 11 (November 1978), pages 1386–1408.

At the time this paper was written, an emerging problem was the interconnec-
tion of independently administered data communication networks. This paper
explores the issues in both breadth and depth, a combination that more recent
papers do not provide.

7.2.3 David D. Clark and David L. Tennenhouse. Architectural considerations for
a new generation of protocols. ACM SIGCOMM ’91 Conference: Communications
Architectures and Protocols, in Computer Communication Review 20, 4
(September 1990), pages 200–208.

This paper captures 20 years of experience in protocol design and implementa-
tion and lays out the requirements for the next few rounds of protocol design.
The basic observation is that the performance requirements of future high-
speed networks and applications will require that the layers used for protocol
description not constrain implementations to be similarly layered. This paper
is required reading for anyone who is developing a new protocol or protocol
suite.

7.2.4 Danny Cohen. On holy wars and a plea for peace. IEEE Computer 14, 10
(October 1981), pages 48–54.

This is an entertaining discussion of big-endian and little-endian arguments in
protocol design.

7.2.5 Danny Cohen. Flow control for real-time communication. Computer
Communication Review 10, 1–2 (January/April 1980), pages 41–47.

This brief item is the source of the “servant’s dilemma”, a parable that provides
helpful insight into why flow control decisions must involve the application.

7.2.6 Geoff Huston. Anatomy: A look inside network address translators. The
Internet Protocol Journal 7, 3 (September 2004), pages 2–32.

Network address translators (NATs) break down the universal connectivity prop-
erty of the Internet: when NATs are in use, one can no longer assume that every
computer in the Internet can communicate with every other computer in the
Internet. This paper discusses the motivation for NATs, how they work, and in
what ways they create havoc for some Internet applications.

410 Suggestions for Further Reading

7.2.7 Van Jacobson. Congestion avoidance and control. Proceedings of the
 Symposium on Communications Architectures and Protocols (SIGCOMM ‘88),
pages 314–329. Also in Computer Communication Review 18, 4 (August 1988).

Sidebar 7.9 gives a simplified description of the congestion avoidance and control
mechanism of TCP, the most commonly used transport protocol in the Internet.
This paper explains those mechanisms in full detail. They are surprisingly simple
but have proven to be effective.

7.2.8 Jordan Ritter. Why Gnutella can’t scale. No, really. Unpublished grey litera-
ture. <http://www.darkridge.com/~jpr5/doc/gnutella.html>

This paper offers a simple performance model to explain why the Gnutella pro-
tocol (see problem set 20) cannot support large networks of Gnutella peers. The
problem is incommensurate scaling of its bandwidth requirements.

7.2.9 David B. Johnson. Scalable support for transparent mobile host internet-
working. Wireless Networks 1, 3 (1995), pages 311–321.

Addressing a laptop computer that is connected to a network by a radio link
and that can move from place to place without disrupting network connections
can be a challenge. This paper proposes a systematic approach based on main-
taining a tunnel between the laptop computer’s current location and an agent
located at its usual home location. Variations of this paper (based on the author’s
1993 Ph.D. Thesis at Carnegie-Mellon University and available as CMU Computer
Science Technical Report CS–93–128) have appeared in several 1993 and 1994
workshops and conferences, as well as in the book Mobile Computing, Tomasz
Imielinski and Henry F. Korth, editors, Kluwer Academic Publishers, c. 1996. ISBN:
079239697–9.

One popular protocol, remote procedure call, is covered in depth in reading 4.1.1
by Birrell and Nelson, as well as Section 10.3 of Tanenbaum’s Modern Operating
Systems, reading 1.2.1.

7.3 Organization for Communication
7.3.1 Leonard Kleinrock. Principles and lessons in packet communications.
Proceedings of the IEEE 66, 11 (November 1978), pages 1320–1329.

7.3.2 Lawrence G. Roberts. The evolution of packet switching. Proceedings of
the IEEE 66, 11 (November 1978), pages 1307–1313.

These two papers discuss experience with the ARPANET. Anyone faced with the
need to design a network should look over these two papers, which focus on les-
sons learned and the sources of surprise.

7.3.3 J[erome] H. Saltzer, D[avid]. P. Reed, and D[avid]. D. Clark. End-to-end
 arguments in system design. ACM Transactions on Computer Systems 2, 4
(November 1984), pages 277–288. An earlier version appears in the Proceedings

http://www.darkridge.com/~jpr5/doc/gnutella.html

411Suggestions for Further Reading

of the Second International Conference on Distributed Computing Systems
(April 1981), pages 504–512.

This paper proposes a design rationale for deciding which functions belong in
which layers of a layered network implementation. It is one of the few papers
available that provides a system design principle.

7.3.4 Leonard Kleinrock. The latency/bandwidth trade-off in gigabit networks.
IEEE Communications Magazine 30, 4 (April 1992), pages 36–40.

Technology has made gigabit/second data rates economically feasible over long
distances. But long distances and high data rates conspire to change some fun-
damental properties of a packet network—latency becomes the dominant fac-
tor that limits applications. This paper provides a very good explanation of the
problem.

7.4 Practical Aspects
For the complete word on the Internet protocols, check out the following series of
books.

7.4.1 W. Richard Stevens. TCP/IP illustrated. Addison-Wesley; v. 1, 1994, ISBN:
0–201–63346–9, 576 pages; v. 2 (with co-author Gary R. Wright,) 1995, ISBN:
0–201–63354–x, 1174 pages.; v. 3, 1996, ISBN: 0–201–63495–3, 328 pages. Volume 1:
The Protocols. Volume 2: The Implementation. Volume 3: TCP for Transactions,
HTTP, NNTP, and the unix® Domain Protocols.

These three volumes will tell you more than you wanted to know about how TCP/
IP is implemented, using the network implementation of the Berkeley System
Distribution for reference. The word “illustrated” refers more to computer print-
outs—listings of packet traces and programs—than to diagrams. If you want to
know how some aspect of the Internet protocol suite is actually implemented,
this is the place to look—though it does not often explain why particular imple-
mentation choices were made.

8 Fault tolerance: reliable Systems from unreliable components

A plan for some degree of fault tolerance shows up in many systems. For an example
of fault tolerance in distributed file systems, see the paper on Coda by Kistler and
Satyanarayanan, reading 10.1.2. See also the paper on RAID by Katz et al., reading 10.2.2.

8.1 Fault Tolerance
Chapter 3 of the book by Gray and Reuter, reading 1.1.5, provides a bedrock text on
this subject.

8.1.1 Jim [N.] Gray and Daniel P. Siewiorek. High-availability computer systems.
Computer 24, 9 (September 1991), pages 39–48.

412 Suggestions for Further Reading

This is a very nice, easy-to-read overview of how high availability can be
achieved.

8.1.2 Daniel P. Siewiorek. Architecture of fault-tolerant computers. Computer 17,
8 (August 1984), pages 9–18.

This paper provides an excellent taxonomy, as well as a good overview of several
architectural approaches to designing computers that continue running even
when a single hardware component fails.

8.2 Software Errors
8.2.1 Dawson Engler et al. Bugs as deviant behavior: A general approach to infer-
ring errors in systems code. Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, 2001, in Operating Systems Review 35, 5 (December
2001), pages 57–72.

This paper describes a method for finding possible programming faults in large
systems by looking for inconsistencies. For example, if in most cases an invoca-
tion of a certain function is preceded by disabling interrupts but in a few cases it
is not, there is a good chance that a programming fault is present. The paper uses
this insight to create a tool for finding potential faults in large systems.

8.2.2 Michael M. Swift et al. Recovering device drivers. Proceedings of the Sixth
Symposium on Operating Systems Design and Implementation (December
2004), pages 1–16.

This paper observes that software faults in device drivers often lead to fatal errors
that cause operating systems to fail and thus require a reboot. It then describes
how virtual memory techniques can be used to enforce modularity between
device drivers and the rest of the operating system kernel, and how the operat-
ing system can recover device drivers when they fail, reducing the number of
reboots.

8.3 Disk Failures
8.3.1 Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you? Proceedings of the Fifth USENIX
Conference on File and Storage Technologies (2007), pages 1–16.

As explained in Section 8.2, it is not uncommon that data sheets for disk drives
specify MTTFs of one hundred years or more, many times the actual observed
lifetimes of those drives in the field. This paper looks at disk replacement
data for 100,000 disk drives and discusses what MTTF means for those disk
drives.

8.3.2 Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso. Failure
trends in a large disk drive population. Proceedings of the Fifth USENIX Confer-
ence on File and Storage Technologies (2007), pages 17–28.

413Suggestions for Further Reading

Recently, outfits such as Google have deployed large enough numbers of off-the-
shelf disk drives for a long enough time that they can make their own evaluations of
disk drive failure rates and lifetimes, for comparison with the a priori reliability mod-
els of the disk vendors. This paper reports data collected from such observations. It
analyzes the correlation between failures and several parameters that are generally
believed to impact the lifetime of disk and finds some surprises. For example, it
reports that temperature is less correlated with disk drive failure than was previ-
ously reported, as long as the temperature is within a certain range and stable.

9 Atomicity: All-or-nothing and Before-or-After

9.1 Atomicity, Coordination, and Recovery
The best source on this topic is reading 1.1.5, but Gray and Reuter’s thousand-page
book can be a bit overwhelming.

9.1.1 Warren A. Montgomery. Robust Concurrency Control for a Distributed
Information System. Ph.D. Thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, December 1978.
Also available as M.I.T. Laboratory for Computer Science Technical Report TR–207,
January 1979. 197 pages.

This work describes alternative strategies that maximize concurrent activity
while achieving atomicity: maintaining multiple values for some variables, atomic
broadcast of messages to achieve proper sequence.

9.1.2 D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. Proceedings of an ACM Conference on Language Design for Reliable
Software (March 1977), pages 128–137. Published as ACM SIGPLAN Notices 12,
3 (March 1977); Operating Systems Review 11, 2 (April 1977); and Software
Engineering Notes 2, 2 (March 1977).

This is one of the first attempts to link atomicity to both recovery and coordina-
tion. It is written from a language, rather than an implementation, perspective.

9.2 Databases
9.2.1 Jim [N.] Gray et al. The recovery manager of the system R database manager.
ACM Computing Surveys 13, 2 (June 1981), pages 223–242.

This paper is a case study of a sophisticated, real, high-performance logging and
locking system. It is one of the most interesting case studies of its type because
it shows the number of different, interacting mechanisms needed to construct a
system that performs well.

9.2.2 C. Mohan et al. ARIES: A transaction recovery method supporting fine-
 granularity locking and partial rollbacks using write-ahead logging. ACM
Transactions on Database Systems 17, 1 (1992), pages 94–162.

414 Suggestions for Further Reading

This paper describes all the intricate design details of a fully featured,
 commercial-quality database transaction system that uses write-ahead logging.

9.2.3 C. Mohan, Bruce Lindsey, and Ron Obermarck. transaction management in
the R* distributed database management system. ACM Transactions on Database
Systems (TODS) 11, 4 (December 1986), pages 378–396.

This paper deals with transaction management for distributed databases, and
introduces two new protocols (Presumed Abort and Presumed Commit) that
optimize two-phase commit (see Section 9.6), resulting in fewer messages and
log writes. Presumed Abort is optimized for transactions that perform only read
operations, and Presumed Commit is optimized for transactions with updates
that involve several distributed databases.

9.2.4 Tom Barclay, Jim Gray, and Don Slutz. Microsoft TerraServer: A spatial data
warehouse. Microsoft Technical Report MS-TR-99–29. June 1999.

The authors report on building a popular Web site that hosts aerial, satellite, and
topographic images of Earth using a off-the-shelf components, including a stan-
dard database system for storing the terabytes of data.

9.2.5 Ben Vandiver et al. Tolerating byzantine faults in transaction processing
 systems using commit barrier scheduling. Proceedings of the Twenty-first ACM
Symposium on Operating Systems Principles, in Operating Systems Review 41, 6
(December 2005), pages 59–79.

This paper describes a replication scheme for handling Byzantine faults in database
systems. It issues queries and updates to multiple replicas of unmodified, off-the-shelf
database systems, and it compares their responses, thus creating a single database
that is Byzantine fault tolerant (see Section 8.6 for the definition of Byzantine).

9.3 Atomicity-Related Topics
9.3.1 Mendel Rosenblum and John K. Ousterhout. The design and implementation
of a log-structured file system. ACM Transactions on Computer Systems 10,
1 (February 1992), pages 26–52. Originally published in Proceedings of the
Thirteenth ACM Symposium on Operating Systems Principles, in Operating
Systems Review 25, 5 (December 1991), pages 1–15.

Although it has long been suggested that one could in principle store the con-
tents of a file system on disk in the form of a finite log, this design is one of the
few that demonstrates the full implications of that design strategy. The paper also
presents a fine example of how to approach a system problem by carefully defin-
ing the objective, measuring previous systems to obtain a benchmark, and then
comparing performance as well as functional aspects that cannot be measured.

9.3.2 H. T. Kung and John T. Robinson. On optimistic methods for concurrency con-
trol. ACM Transactions on Database Systems 9, 4 (June 1981), pages 213–226.

415Suggestions for Further Reading

This early paper introduced the idea of using optimistic approaches to control-
ling updates to shared data. An optimistic scheme is one in which a transaction
proceeds in the hope that its updates are not conflicting with concurrent updates
of another transaction. At commit time, the transaction checks to see if the hope
was justified. If so, the transaction commits. If not, the transaction aborts and tries
again. Applications that use a database in which contention for particular records
is infrequent may run more efficiently with this optimistic scheme than with a
scheme that always acquires locks to coordinate updates.

See also the paper by Lampson and Sturgis, reading 1.8.7 and the paper by Ganger
and Patt, reading 6.3.3.

10 consistency and durable Storage

10.1 Consistency
10.1.1 J. R. Goodman. Using cache memory to reduce processor-memory traffic.
Proceedings of the 10th Annual International Symposium on Computer
Architecture, pages 124–132 (1983).

The paper that introduced a protocol for cache-coherent shared memory using
snoopy caches. The paper also sparked much research in more scalable designs
for cache-coherent shared memory.

10.1.2 James J. Kistler and M[ahadarev] Satyanarayanan. Disconnected opera-
tion in the Coda file system. Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, in Operating Systems Review 25, 5 (December
1991), pages 213–225.

Coda is a variation of the Andrew File System (AFS) that provides extra fault
tolerance features. It is notable for using the same underlying mechanism to
deal both with accidental disconnection due to network partition and the inten-
tional disconnection associated with portable computers. This paper is very
well written.

10.1.3 Jim Gray et al. The dangers of replication and a solution. Proceedings of
the 1996 ACM SIGMOD International Conference on Management of Data, in
ACM SIGMOD Record 25, 2 (June 1996), pages 173–182.

This paper describes the challenges for replication protocols in situations where
the replicas are stored on mobile computers that are frequently disconnected.
The paper argues that trying to provide transactional semantics for an optimistic
replication protocol in this setting is unstable because there will be too many
reconciliation conflicts. It proposes a new two-tier protocol for reconciling dis-
connected replicas that addresses this problem.

10.1.4 Leslie Lamport. Paxos made simple. Distributed computing (column), ACM
SIGACT News 32, 4 (Whole Number 121, December 2001), pages 51–58.

416 Suggestions for Further Reading

This paper describes an intricate protocol, Paxos, in a simple way. The Paxos
protocol allows several computers to agree on a value (e.g., the list of available
computers in a replicated service) in the face of network and computer failures.
It is an important building block in building fault tolerant services.

10.1.5 Fred Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys 22, 4 (1990), pages
299–319.

This paper provides a clear description of one of the most popular approaches
for building fault tolerant services, the replicated-state machine approach.

10.1.6 Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (1978), pages 558–565.

This paper introduces an idea that is now known as Lamport clocks. A Lamport
clock provides a global, logical clock for a distributed system that respects the
physical clocks of the computers comprising the distributed system and the
communication between them. The paper also introduces the idea of replicated
state machines.

10.1.7 David K. Gifford. Weighted voting for replicated data. Proceedings of the
Seventh ACM Symposium on Operating Systems Principles, in Operating Systems
Review 13, 5 (December 1979), pages 150–162. Also available as Xerox Palo Alto
Research Center Technical Report CSL–79–14 (September 1979).

The work discusses a replicated data algorithm that allows the trade-off between
reliability and performance to be adjusted by assigning weights to each data
copy and requiring transactions to collect a quorum of those weights before
reading or writing.

10.1.8 Kai Li and Paul Hudak. Memory coherence in shared virtual memory
 systems. ACM Transactions on Computer Systems 7, 4 (November 1989), pages
321–359.

This paper describes a method to create a shared virtual memory across several
separated computers that can communicate only with messages. It uses hard-
ware support for virtual memory to cause the results of a write to a page to
be observed by readers of that page on other computers. The goal is to allow
programmers to write parallel applications on a distributed computer system in
shared-memory style instead of a message-passing style.

10.1.9 Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
file system. Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (October 2003), pages 29–43. Also in Operating Systems Review 37, 5
(December 2003).

This paper introduces a file system used in many of Google’s applications.
It aggregates the disks of thousands of computers in a cluster into a single

417Suggestions for Further Reading

storage system with a simple file system interface. Its design is optimized
for large files and replicates files for fault tolerance. The Google File System
is used in the storage back-end of many of Google’s applications, including
search.

10.1.10 F[ay] Chang et al. Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems 26, 2 article 4 (2008), pages
1–26.

This paper describes a database-like system for storing petabytes of structured
data on thousands of commodity servers.

10.2 Durable Storage
10.2.1 Raymond A. Lorie. The long-term preservation of digital information.
Proceedings of the First ACM/IEEE Joint Conference on Digital Libraries (2001),
pages 346–352.

This is a thoughtful discussion of the problems of archiving digital information
despite medium and technology obsolescence.

10.2.2 Randy H. Katz, Garth A. Gibson, and David A. Patterson. Disk system
 architectures for high performance computing. Proceedings of the IEEE 77, 12
(December 1989), pages 1842–1857.

The first part of this reference paper on Redundant Arrays of Independent Disks
(RAID) reviews disk technology; the important material is the catalog of six vari-
eties of RAID organization.

10.2.3 Petros Maniatis et al. LOCKSS: A Peer-to-peer digital preservation system
ACM Transactions on Computer Systems 23, 1 (February 2005), pages 2–50.

This paper describes a peer-to-peer system for preserving access to journals and
other archival information published on the Web. Its design is based on the man-
tra “lots of copies keep stuff safe” (LOCKSS). A large number of persistent Web
caches keep copies and cooperate to detect and repair damage to their copies
using a new voting scheme.

10.2.4 A[lan J.] Demers et al. Epidemic algorithms for replicated database main-
tenance. Proceedings of the Sixth Symposium on Principles of Distributed
Computing (August 1987), pages 1–12. Also in Operating Systems Review 22, 1
(January 1988), pages 8–32.

This paper describes an epidemic protocol to update data that is replicated on
many machines. The essence of an epidemic protocol is that each computer
periodically gossips with some other, randomly chosen computer and exchanges
information; multiple computers thus learn about all updates in a viral fashion.
Epidemic protocols can be simple and robust, yet can spread updates relatively
quickly.

418 Suggestions for Further Reading

10.3 Reconciliation
10.3.1 Douglas B. Terry et al. Managing update conflicts in Bayou, a weakly
 connected replicated storage system. In Proceedings of the 15th Symposium on
Operating Systems Principles (December 1995), in Operating Systems Review 29,
5 (December 1995), pages 172–183.

This paper introduces a replication scheme for computers that share data but
are not always connected. For example, each computer may have a copy of a
calendar, which it can update optimistically. Bayou will propagate these updates,
detect conflicts, and attempt to resolve conflicts, if possible.

10.3.2 Trevor Jim, Benjamin C. Pierce, and Jérôme Vouillon. How to build a file
synchronizer. (A widely circulated piece of grey literature—dated February 22,
2002 but never published.)

This paper describes the nuts and bolts of Unison, a tool that efficiently synchro-
nizes the files stored on two computers. Unison is targeted to users who have
their files stored in several places (e.g., on a server at work, a laptop to carry
while traveling, and a desktop at home) and would like to have all the files on
the different computers be the same.

11 Information Security

11.1 Privacy
The fundamental book about privacy is reading 1.1.6 by Alan Westin.

11.1.1 Arthur R. Miller. The Assault on Privacy. University of Michigan Press, Ann
Arbor, Michigan, 1971. ISBN: 0–47265500–0. 333 pages. (Out of print.)

This book articulately spells out the potential effect of computerized data-
 gathering systems on privacy, and of possible approaches to improving legal
protection. Part of the latter is now out of date because of advances in legislation,
but most of this book is still of much interest.

11.1.2 Daniel J. Weitzner et al. Information accountability. Communications of
the ACM 51, 6 (June 2008), pages 82–87.

The paper suggests that in the modern world Westin’s definition covers only
a subset of privacy. See Sidebar 11.1 for a discussion of the paper’s proposed
extended definition.

11.2 Protection Architectures
11.2.1 Jerome H. Saltzer and Michael D. Schroeder. The protection of informa-
tion in computer systems. Proceedings of the IEEE 63, 9 (September 1975), pages
1278–1308.

After 30 years, this paper (an early version of the current Chapter 11) still pro-
vides an effective treatment of protection mechanics in multiuser systems. Its

419Suggestions for Further Reading

emphasis on protection inside a single system, rather than between systems
connected to a network, is one of its chief shortcomings, along with antique
examples and omission of newer techniques of certification such as authentica-
tion logic.

11.2.2 R[oger] M. Needham. Protection systems and protection implementations.
AFIPS Fall Joint Conference 41, Part I (December 1972), pages 571–578.

This paper is probably as clear an explanation of capability systems as one is likely
to find. For another important paper on capabilities, see Fabry, reading 3.1.2.

11.3 Certification, Trusted Computer Systems, and Security Kernels
11.3.1 Butler [W.] Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: Theory and practice. ACM Transactions on
Computer Systems 10, 4 (November 1992), pages 265–310.

This paper, one of a series on a logic that can be used to reason systematically
about authentication, provides a relatively complete explication of the theory
and shows how to apply it to the protocols of a distributed system.

11.3.2 Edward Wobber, Martín Abadi, Michael Burrows, and Butler W. Lampson.
Authentication in the Taos operating system. Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, in Operating Systems Review 27, 5
(December 1993), pages 256–269.

This paper applies the authentication logic developed in reading 11.3.1 to an
experimental operating system. In addition to providing a concrete example, the
explanation of the authentication logic itself is a little more accessible than that
in the other paper.

11.3.3 Ken L. Thompson. Reflections on trusting trust. Communications of the
ACM 27, 8 (August 1984), pages 761–763.

Anyone seriously interested in developing trusted computer systems should think
hard about the implications for verification that this paper raises. Thompson dem-
onstrates the ease with which a compiler expert can insert undetectable Trojan
Horses into a system. Reading 11.3.4 describes a way to detect a Trojan horse.
[The original idea that Thompson describes came from a paper whose identity
he could not recall at the time, and which is credited with a footnote asking for
help locating it. The paper was a technical report of the United States Air Force
Electronic Systems Division at Hanscom Air Force Base. Paul A. Karger and Roger
R. Schell. Multics Security Evaluation: Vulnerability Analysis. ESD–TR–74–193,
Volume II (June 1974), page 52.]

11.3.4 David A. Wheeler. Countering trusting trust through diverse double-
Compiling. Proceedings of the 21st Annual Computer Security Applications
Conference (2005), pages 28–40.

420 Suggestions for Further Reading

This paper proposes a solution that the author calls “diverse double compiling”,
to detect the attack discussed in Thompson’s paper on trusting trust (see reading
11.3.3). The idea is to recompile a new, untrusted compiler’s source code twice:
first, using a trusted compiler, and second, using the result of this compilation. If
the resulting binary for the compiler is bit-for-bit identical with the untrusted com-
piler’s original binary, then the source code accurately represents the untrusted
binary, which is the first step in developing trust in the new compiler.

11.3.5 Paul A. Karger et al. A VMM security kernel for the VAX architecture. 1990
IEEE Computer Society Symposium on Security and Privacy (May 1990), pages
2–19.

In the 1970’s, the U.S. Department of Defense undertook a research effort to cre-
ate trusted computer systems for defense purposes and in the process created
a large body of literature on the subject. This paper distills most of the relevant
ideas from that literature into a single, readable case study, and it also provides
pointers to other key papers for those seeking more details on these ideas.

11.3.6 David D. Clark and David. R. Wilson. A Comparison of commercial and mil-
itary computer security policies. 1987 IEEE Symposium on Security and Privacy
(April 1987), pages 184–194.

This thought-provoking paper outlines the requirements for security policy in
commercial settings and argues that the lattice model is often not applicable. It
suggests that these applications require a more object-oriented model in which
data may be modified only by trusted programs.

11.3.7 Jaap-Henk Hoepman and Bart Jacobs. Increased security through open
source. Communications of the ACM 50, 1 (January 2007), pages 79–83.

It has long been argued that the open design principle (see Section 11.1.4) is
important to designing secure systems. This paper extends that argument by
making the case that the availability of source code for a system is important in
ensuring the security of its implementation.

See also reading 1.3.15 by Garfinkel and Spafford, reading 5.2.1 by Lampson and
Sturgis, and reading 5.2.2 by Schroeder, Clark, and Saltzer.

11.4 Authentication
11.4.1 Robert [H.] Morris and Ken [L.] Thompson. Password security: A case
 history. Communications of the ACM 22, 11 (November 1979), pages 594–597.

This paper is a model of how to explain something in an accessible way. With a
minimum of jargon and an historical development designed to simplify things for
the reader, it describes the unix password security mechanism.

11.4.2 Frank Stajano and Ross J. Anderson. The resurrecting duckling: Security issues
for ad-hoc wireless networks. Security Protocols Workshop 1999, pages 172–194.

421Suggestions for Further Reading

This paper discusses the problem of how a new device (e.g., a surveillance cam-
era) can establish a secure relationship with the remote controller of the device’s
owner, instead of its neighbor’s or adversary’s. The paper’s solution is that a
device will recognize as its owner the first principal that sends it an authentica-
tion key. As soon as the device receives a key, its status changes from newborn to
imprinted, and it stays faithful to that key until its death. The paper illustrates the
problem and solution, using a vivid analogy of how ducklings authenticate their
mother (see Sidebar 11.5).

11.4.3 David Mazières. Self-certifying File System. Ph.D. Thesis, Massachusetts
Institute of Technology Department of Electrical Engineering and Computer
Science (May 2000).

This thesis proposes a design for a cross-administrative domain file system that
separates the file system from the security mechanism using an idea called self-cer-
tifying path names. Self-certifying names can be found in several other systems.

See also Sidebar 11.6 on Kerberos and reading 3.2.5, which uses cryptographic tech-
niques to secure a personal naming system.

11.5 Cryptographic Techniques
The fundamental books about cryptography applied to computer systems are reading
1.2.4, by Bruce Schneier, and reading 1.3.13, by Alfred Menezes et al. In light of these
two books, the first few papers from the 1970’s listed below are primarily of historical
interest. There is also a good, more elementary, treatment of cryptography in the book
by Simson Garfinkel, reading 1.3.15. Note that all of these books and papers focus on
the application of cryptography, not on crypto-mathematics, which is a distinct area
of specialization not covered in this reading list. An accessible crypto-mathematics
reference is reading 1.3.14.

11.5.1 R[onald] L. Rivest, A[di] Shamir, and L[en] Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM 21,
2 (February 1978), pages 120–126.

This paper was the first to suggest a possibly workable public key system.

11.5.2 Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of the NBS
Data Encryption Standard. Computer 10, 6 (June 1977), pages 74–84.

This is the unofficial analysis of how to break the DES by brute force—by build-
ing special-purpose chips and arraying them in parallel. Twenty-five years later,
brute force still seems to be the only promising attack on DES, but the interven-
ing improvements in hardware technology make special chips unnecessary—an
array of personal computers on the Internet can do the job. The Advanced
Encryption Standard (AES) is DES’s successor (see Section 11.9.3.1).

11.5.3 Ross J. Anderson. Why cryptosystems fail. Communications of the ACM
37, 11 (November 1994), pages 32–40.

422 Suggestions for Further Reading

Anderson presents a very nice analysis of what goes wrong in real-world cryp-
tosystems—secure modules don’t necessary lead to secure systems—and the
applicability of systems thinking in their design. He points out that merely doing
the best possible design isn’t enough; a feedback loop that corrects errors in the
design following experience in the field is an equally important component that
is sometimes forgotten.

11.5.4 David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol.
Proceedings of the Second USENIX Workshop on Electronic Commerce, Volume 2
(November 1996), pages 29–40.

This paper is useful not only because it provides a careful analysis of the security
of the subject protocol, but it also explains how the protocol works in a form
that is more accessible than the protocol specification documents. The originally
published version was almost immediately revised with corrections. The revised
version is available on the World Wide Web at <http://www.counterpane
.com/ssl.html>.

11.5.5 M[ihir] Bellare, R[an] Canetti, and H[ugo] Krawczyk. Keying hash functions
for message authentication. Proceedings of the 16th International Cryptography
Conference (August 1996), pages 1–15. (Also see H. Krawczyk, M. Bellare, and
R. Canetti, HMAC: Keyed-hashing for message authentication, Request For
Comments RFC 2104, Internet Engineering Task Force (February 1997).

This paper and the RFC introduce and define HMAC, a hash function used in
widely deployed protocols.

11.5.6 David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24, 2 (February 1981), pages 84–88.

This paper introduces a system design, named mixnet, that allows a sender of a
message to hide its true identity from a receiver but still allow the receiver to
respond.

11.6 Adversaries (The Dark Side)
Section 11.11 on war stories gives a wide range of examples of how adversaries can
break a system’s security. This section lists a few papers that provide a longer and
more detailed descriptions of attacks. This is a fast-moving area; as soon as designers
fend off new attacks, adversaries try to find new attacks. This arms race is reflected
in some of the following readings, and although some of the attacks described have
become ineffective (or will over time), these papers provide valuable insights. The
proceedings of Usenix Security and Computer and Communication Security often
contain papers explaining current attacks, and conferences run by the so-called “black
hat” community document the “progress” on the dark side.

11.6.1 Eugene Spafford, Crisis and aftermath. Communications of the ACM 32, 6
(June 1989), pages 678–687.

http://www.counterpane .com/ssl.html
http://www.counterpane .com/ssl.html

423Suggestions for Further Reading

This paper documents how the Morris worm works. It was one of the first worms,
as well as one of the most sophisticated.

11.6.2 Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent
advances in exploiting buffer overruns. IEEE Security and Privacy 2, 4 (August
2004), pages 20–27.

This paper describes how buffer overrun attacks have evolved since the Morris
worm.

11.6.3 Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting underlying
structure for detailed reconstruction of an Internet scale event. Proceedings of the
ACM Internet Measurement Conference (October 2005), pages 351–364.

This paper describes the Witty worm and how the authors were able to track
down its source. The work contains many interesting nuggets of information.

11.6.4 Vern Paxson. An analysis of using reflectors for distributed denial-of-
 service attacks. Computer Communications Review 31, 3 (July 2001), pages
38–47.

This paper describes how an adversary can trick a large set of Internet servers to
send their combined replies to a victim and in that way launch a denial-of-service
attack on the victim. It speculates on several possible directions for defending
against such attacks.

11.6.5 Chris Kanich et al. Spamalytics: An empirical analysis of spam marketing
conversion. Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS) (October 2008), pages 3–14.

This paper describes the infrastructure that spammers use to send unsolicited
e-mail and tries to establish what the financial reward system is for spammers.
This paper has its shortcomings, but it is one of the few papers that tries to
understand the economics behind spam.

11.6.6 Tom Jagatic, Nathaniel Johnson, Markus Jakobsson, and Filippo Menczer.
Social phishing. Communications of the ACM 50, 10 (October 2007), pages
94–100.

This study investigates the success rate of individual phishing attacks.

425

Problem Sets

Table of ConTenTs
PART I
Introduction ���426
 1 bigger files ���427
 2 ben’s stickr ���428
 3 Jill’s file system for Dummies ���430
 4 eZ-Park ���432
 5 Goomble ��436
 6 Course swap ��438
 7 banking on local Remote Procedure Call ��443
 8 The bitdiddler ��446
 9 ben’s Kernel ��448
10 a Picokernel-based stock-Ticker system ��453
11 ben’s Web service ��458
12 a bounded buffer with semaphores ���462
13 The single-Chip nC ��464
14 Toastac-25 ��465
15 booZe: ben’s object-oriented Zoned environment ��466
16 outofMoney�com ��469

PaRT II [on-line]
17 Quarria
18 Pigeonexpress!�com I
19 Monitoring ants
20 Gnutella: Peer-to-Peer networking
21 The ottonet
22 The Wireless energynet
23 sureThing
24 sliding Window
25 Geographic Routing
26 Carl’s satellite
27 RaidCo
28 Coldfusion
29 atomicPigeon!�com
30 sick Transit
31 The bank of Central Peoria, limited
32 Whisks

426 Problem Sets

33 anTs: advanced “nonce-ensical” Transaction system
34 KeyDb
35 alice’s Reliable block store
36 establishing serializability
37 Improved bitdiddler
38 speedy Taxi Company
39 locking for Transactions
40 “log”-ical Calendaring
41 ben’s Calendar
42 alice’s Replicas
43 Jailnet
44 Pigeonexpress!�com II
45 WebTrust�com (outofMoney�com, part II)
46 More bytestream Products
47 stamp out spam
48 Confidential bitdiddler
49 beyond stack smashing

InTRoducTIon
These problem sets seek to make the student think carefully about how to apply the
concepts of the text to new problems. These problems are derived from examinations
given over the years while teaching the material in this textbook. Many of the prob-
lems are multiple choice with several right answers. The reader should try to identify
all right options.

Some significant and interesting system concepts that are not mentioned in the
main text, and therefore at first read seem to be missing from the book, are actually to
be found within the exercises and problem sets. Definitions and discussion of these
concepts can be found in the text of the exercise or problem set in which they appear.
Here is a list of concepts that the exercises and problem sets introduce:

 ■ action graph (Problem set 36)
 ■ ad hoc wireless network (Problem sets 19 and 21)
 ■ bang-bang protocol (Exercise 7.13)
 ■ blast protocol (Exercise 7.25)
 ■ commutative cryptographic transformation (Exercise 11.4)
 ■ condition variable (Problem set 13)
 ■ consistent hashing (Problem set 23)
 ■ convergent encryption (Problem set 48)
 ■ cookie (Problem set 45)
 ■ delayed authentication (Exercise 11.9)
 ■ delegation forwarding (Exercise 2.1)
 ■ event variable (Problem set 11)

4271 Bigger Files

 ■ fast start (Exercise 7.12)
 ■ flooding (Problem set 20)
 ■ follow-me forwarding (Exercise 2.1)
 ■ Information Management System atomicity (Exercise 9.5)
 ■ mobile host (Exercise 7.24)
 ■ lightweight remote procedure call (Problem set 7)
 ■ multiple register set processor (Problem set 9)
 ■ object-oriented virtual memory (Problem set 15)
 ■ overlay network (Problem set 20)
 ■ pacing (Exercise 7.16)
 ■ peer-to-peer network (Problem set 20)
 ■ RAID 5, with rotating parity (Exercise 8.8)
 ■ restartable atomic region (Problem set 9)
 ■ self-describing storage (Exercise 6.8)
 ■ serializability (Problem set 36)
 ■ timed capability (Exercise 11.7)

Exercises for Chapter 7 and above are in on-line chapters, and problem sets numbered
17 and higher are in the on-line book of problem sets.

Some of these problem sets span the topics of several different chapters. A par-
enthetical note at the beginning of each set indicates the primary chapters that it
involves. Following each exercise or problem set question is an identifier of the form
“1978–3–14”. This identifier reports the year, examination number, and problem num-
ber of the examination in which some version of that problem first appeared. For
those problem sets not developed by one of the authors, a credit line appears in a
footnote on the first page of the problem set.

1 Bigger Files*

(Chapter 2)

For his many past sins on previous exams, Ben Bitdiddle is assigned to spend eter-
nity maintaining a PDP-11 running version 7 of the unix® operating system. Recently,
one of his user’s database applications failed after reaching the file size limit of
1,082,201,088 bytes (approximately 1 gigabyte). In an effort to solve the problem,
he upgraded the computer with an old 4-gigabyte (232 byte) drive; the disk controller
hardware supports 32-bit sector addresses, and can address disks up to 2 terabytes
in size. Unfortunately, Ben is disappointed to find the file size limit unchanged after
installing the new disk.

In this question, the term block number refers to the block pointers stored in
inodes. There are 512 bytes in a block. In addition, Ben’s version 7 unix system has a
file system that has been expanded from the one described in Section 2.5: its inodes

*Credit for developing this problem set goes to Lewis D. Girod.

428 Problem Sets

are designed to support larger disks. Each inode contains 13 block numbers of 4
bytes each; the first 10 block numbers point to the first 10 blocks of the file, and
the remaining 3 are used for the rest of the file. The 11th block number points to
an indirect block, containing 128 block numbers, the 12th block number points to
a double- indirect block, containing 128 indirect block numbers, and the 13th block
number points to a triple-indirect block, containing 128 double-indirect block num-
bers. Finally, the inode contains a four-byte file size field.

Q 1.1 Which of the following adjustments will allow files larger than the current
1-gigabyte limit to be stored?

A. Increase just the file size field in the inode from a 32-bit to a 64-bit value.
B. Increase just the number of bytes per block from 512 to 2048 bytes.
C. Reformat the disk to increase the number of inodes allocated in the inode table.
D. Replace one of the direct block numbers in each inode with an additional

triple-indirect block number.

2008–1–5

Ben observes that there are 52 bytes allocated to block numbers in each inode
(13 block numbers at 4 bytes each), and 512 bytes allocated to block numbers in
each indirect block (128 block numbers at 4 bytes each). He figures that he can
keep the total space allocated to block numbers the same, but change the size
of each block number, to increase the maximum supported file size. While the
number of block numbers in inodes and indirect blocks will change, Ben keeps
exactly one indirect, one double-indirect and one triple-indirect block number in
each inode.

Q 1.2 Which of the following adjustments (without any of the modifications in the
previous question), will allow files larger than the current approximately 1- gigabyte
limit to be stored?

A. Increasing the size of a block number from 4 bytes to 5 bytes.
B. Decreasing the size of a block number from 4 bytes to 3 bytes.
C. Decreasing the size of a block number from 4 bytes to 2 bytes.

2008–1–6

2 Ben’s Stickr*

(Chapter 4)

Ben is in charge of system design for Stickr, a new Web site for posting pictures of
bumper stickers and tagging them. Luckily for him, Alyssa had recently implemented

*Credit for developing this problem set goes to Samuel R. Madden.

4292 Ben's Stickr

a Triplet Storage System (TSS), which stores and retrieves arbitrary triples of the form
{subject, relationship, object} according to the following specification:

procedure find (subject, relationship, object, start, count)
// returns ok 1 array of matching triples

procedure insert (subject, relationship, object)
// adds the triple to the TSS if it is not already there and returns ok

procedure delete (subject, relationship, object)
// removes the triple if it exists, returning true, false otherwise

Ben comes up with the following design:

As shown in the figure, Ben uses an RPC interface to allow the Web server to interact
with the triplet storage system. Ben chooses at-least-once RPC semantics. Assume that
the triplet storage system never crashes, but the network between the Web server and
triplet storage system is unreliable and may drop messages.

Q 2.1 Suppose that only a single thread on Ben’s Web server is using the triplet stor-
age system and that this thread issues just one RPC at a time. What types of incorrect
behavior can the Web server observe?

A. The find RPC stub on the Web server sometimes returns no results, even though
matching triples exist in the triplet storage system.

B. The insert RPC stub on the Web server sometimes returns ok without inserting
the triple into the storage system.

C. The delete RPC stub on the Web server sometimes returns false when it actu-
ally deleted a triple.

D. The find RPC stub on the Web server sometimes returns triples that have been
deleted.

Q 2.2 Suppose Ben switches to at-most-once RPC; if no reply is received after some
time, the RPC stub on the Web server gives up and returns a “timer expired” error
code. Assume again that only a single thread on Ben’s Web server is using the triple
storage system and that this thread issues just one RPC at a time. What types of incor-
rect behavior can the Web server observe?

A. Assuming it does not time out, the find RPC stub on the Web server can some-
times return no results when matching triples exist in the storage system.

B. Assuming it does not time out, the insert RPC stub on the Web server can some-
times return ok without inserting the triple into the storage system.

C. Assuming it does not time out, the delete RPC stub on the Web server can some-
times return false when it actually deleted a triple.

D. Assuming it does not time out, the find RPC stub on the Web server can some-
times return triples that have been deleted.

2007–1–5/6

User Web server Triplet storage system
RPCHTTP

430 Problem Sets

3 Jill’s File System for dummies*

(Chapter 4)

Mystified by the complexity of NFS, Moon Microsystems guru Jill Boy decides to
implement a simple alternative she calls File System for Dummies, or FSD. She imple-
ments FSD in two pieces:

1. An FSD server, implemented as a simple user application, which responds to
FSD requests. Each request corresponds exactly to a unix file system call (e.g.,
read, write, open, close, or create) and returns just the information returned by
that call (status, integer file descriptor, data, etc.).

2. An FSD client library, which can be linked together with various applications to
substitute Jill’s FSD implementations of file system calls like open, read, and write
for their unix counterparts. To avoid confusion, let’s refer to Jill’s FSD versions of
these procedures as fsd_open, and so on.

Jill’s client library uses the standard unix calls to access local files but uses names of
the form

/fsd/hostname/apath

to refer to the file whose absolute path name is /apath on the host named hostname.
Her library procedures recognize operations involving remote files e.g.,

fsd_open("/fsd/cse.pedantic.edu/foobar", read_only)

and translates them to RPC requests to the appropriate host, using the file name on
that host e.g.,

rpc("/fsd/cse.pedantic.edu/foobar", "open", "/foobar", read_only).

The RPC call causes the corresponding unix call e.g.,

open("/foobar", read_only)

to be executed on the remote host and the results (e.g., a file descriptor) to be returned
as the result of the RPC call. Jill’s server code catches errors in the processing of each
request and returns error from the RPC call on remote errors.

Figure 1 describes pseudocode for Version 1 of Jill’s FSD client library. The RPC
calls in the code relay simple RPC commands to the server, using exactly-once seman-
tics. Note that no data caching is done by either the server or the client library.

Q 3.1 What does the above code indicate via an empty string (“”) in an entry of
handle to host table?

A. An unused entry of the table.
B. An open file on the client host machine.
C. An end-of-file condition on an open file.
D. An error condition.

*Credit for developing this problem set goes to Stephen A. Ward.

4313 Jill’s File System for Dummies

Mini Malcode, an intern assigned to Jill, proposes that the above code be simplified by elimi-
nating the handle_to_rhandle_table and simply returning the untranslated handles returned
by open on the remote or local machines. Mini implements her simplified client library,
making appropriate changes to each FSD call, and tries it on several test programs.

Q 3.2 Which of the following test programs will continue to work after Mini’s
simplification?

A. A program that reads a single, local file.
B. A program that reads a single remote file.
C. A program that reads and writes many local files.
D. A program that reads and writes several files from a single remote FSD server.
E. A program that reads many files from different remote FSD servers.
F. A program that reads several local files as well as several files from a single

remote FSD server.

// Map FSD handles to host names, remote handles:
string handle_to_host_table[1000] // initialized to UNUSED
integer handle_to_rhandle_table[1000] // handle translation table

procedure fsd_open (string name, integer mode)
 integer handle ← find_unused_handle ()
 if name begins with "/fsd/" then
 host ← extract_host_name (name)
 filename ← extract_remote_filename (name) // returns remote file handle or error

 rhandle ← rpc (host, "open", filename, mode)
 else
 host ← ""
 rhandle ← open (name, mode)
 if rhandle ← error then return ERROR
 handle_to_rhandle_table[handle] ← rhandle
 handle_to_host_table[handle] ← host
 return handle

procedure fsd_read (integer handle, string buffer, integer nbytes)
 host ← handle_to_host_table[handle]
 rhandle ← handle_to_rhandle_table[handle]
 if host ← "" then return read (rhandle, buffer, nbytes)
 // The following call sets "result" to the return value from
 // the read(...) on the remote host, and copies data read into buffer:
 result, buffer ← rpc (host, "read", rhandle, nbytes)
 return result

procedure fsd_close (integer handle)
 host ← handle_to_host_table[handle]
 rhandle ← handle_to_rhandle_table[handle]
 handle_to_rhandle_table[handle] ← unused

 if host ← "" then return close (rhandle)
 else return rpc (host, "close", rhandle)

FIguRe 1

Pseudocode for FSD client library, Version 1

432 Problem Sets

Jill rejects Mini’s suggestions, insisting on the Version 1 code shown above. Marketing
asks her for a comparison between FSD and NFS (see Section 4.5).

Q 3.3 Complete the following table comparing NFS to FSD by circling yes or no
under each of NFS and FSD for each statement:

Convinced by Moon’s networking experts that a much simpler RPC package promis-
ing at-least-once rather than exactly-once semantics will save money, Jill substitutes
the simpler RPC framework and tries it out. Although the new (Version 2) FSD works
most of the time, Jill finds that an fsd_read sometimes returns the wrong data; she asks
you to help. You trace the problem to multiple executions of a single RPC request by
the server and are considering

A response cache on the client, sufficient to detect identical requests and return- ■

ing a cached result for duplicates without resending the request to the server.
A response cache on the server, sufficient to detect identical requests and return- ■

ing a cached result for duplicates without reexecuting them.
A monotonically increasing ■ sequence number (nonce) added to each RPC
 request, making otherwise identical requests distinct.

Q 3.4 Which of the following changes would you suggest to address the problem
introduced by the at-least-once RPC semantics?

A. Response cache on each client.
B. Response cache on server.
C. Sequence numbers in RPC requests.
D. Response cache on client AND sequence numbers.
E. Response cache on server AND sequence numbers.
F. Response caches on both client and server.

2007–2–7…10

4 eZ-Park*

(Chapter 5 in Chapter 4 setting)

Finding a parking spot at Pedantic University is as hard as it gets. Ben Bitdiddle, decid-
ing that a little technology can help, sets about to design the EZ-Park client/server

*Credit for developing this problem set goes to Hari Balakrishnan.

Statement NFS FSD

Remote handles include inode numbers Yes/No Yes/No

Read and write calls are idempotent Yes/No Yes/No

Can continue reading an open file after deletion (e.g., by program on
remote host)

Yes/No Yes/No

Requires mounting remote file systems prior to use Yes/No Yes/No

4334 EZ-Park

system. He gets a machine to run an EZ-Park server in his dorm room. He manages to
convince Pedantic University parking to equip each car with a tiny computer running
EZ-Park client software. EZ-Park clients communicate with the server using remote
procedure calls (RPCs). A client makes requests to Ben’s server both to find an avail-
able spot (when the car’s driver is looking for one) and to relinquish a spot (when the
car’s driver is leaving a spot). A car driver uses a parking spot if, and only if, EZ-Park
allocates it to him or her.

In Ben’s initial design, the server software runs in one address space and spawns
a new thread for each client request. The server has two procedures: find_spot ()
and relinquish_spot (). Each of these threads is spawned in response to the cor-
responding RPC request sent by a client. The server threads use a shared array,
 available[], of size nspots (the total number of parking spots). available[j] is set to
true if spot j is free, and false otherwise; it is initialized to true, and there are no
cars parked to begin with. The nspots parking spots are numbered from 0 through
nspots - 1. numcars is a global variable that counts the total number of cars parked;
it is initialized to 0.

Ben implements the following pseudocode to run on the server. Each find_spot ()
thread enters a while loop that terminates only when the car is allocated a spot:

 1 procedure find_spot () // Called when a client car arrives
 2 while true do
 3 for i ← 0 to nspots do
 4 if available[i] = true then
 5 available[i] ← false

 6 numcars ← numcars 1 1
 7 return i // Client gets spot i

 8 procedure relinquish_spot (spot) // Called when a client car leaves
 9 available[spot] ← true

 10 numcars ← numcars 2 1

Ben’s intended correct behavior for his server (the “correctness specification”) is as
follows:

A. find_spot () allocates any given spot in [0, …, nspots 2 1] to at most one car at a time,
even when cars are concurrently sending requests to the server requesting spots.

B. numcars must correctly maintain the number of parked cars.
C. If at any time (1) spots are available and no parked car ever leaves in the future,

(2) there are no outstanding find_spot () requests, and (3) exactly one client
makes a find_spot request, then the client should get a spot.

Ben runs the server and finds that when there are no concurrent requests, EZ-Park
works correctly. However, when he deploys the system, he finds that sometimes mul-
tiple cars are assigned the same spot, leading to collisions! His system does not meet
the correctness specification when there are concurrent requests.

434 Problem Sets

Make the following assumptions:

1. The statements to update numcars are not atomic; each involves multiple
instructions.

2. The server runs on a single processor with a preemptive thread scheduler.
3. The network delivers RPC messages reliably, and there are no network, server,

or client failures.
4. Cars arrive and leave at random.
5. acquire and release are as defined in chapter 5.

Q 4.1 Which of these statements is true about the problems with Ben’s design?

A. There is a race condition in accesses to available[], which may violate one of the
correctness specifications when two find_spot () threads run.

B. There is a race condition in accesses to available[], which may violate correct-
ness specification A when one find_spot () thread and one relinquish_spot ()
thread runs.

C. There is a race condition in accesses to numcars, which may violate one of the
correctness specifications when more than one thread updates numcars.

D. There is no race condition as long as the average time between client requests
to find a spot is larger than the average processing delay for a request.

Ben enlists Alyssa’s help to fix the problem with his server, and she tells him that
he needs to set some locks. She suggests adding calls to acquire and release as
follows:

 1 procedure find_spot () // Called when a client car wants a spot
 2 while true do
 !→ acquire (avail_lock)
 3 for i ← 0 to nspots do
 4 if available[i] = true then
 5 available[i] ← false

 6 numcars ← numcars 1 1
 !→		 	 	 	 	 	 release (avail_lock)
 7 return i // Allocate spot i to this client
 !→		 	 	 	 	 release (avail_lock)

 8 procedure relinquish_spot (spot) // Called when a client car is leaving spot
 !→		 	 acquire (avail_lock)
 9 available[spot] ← true

 10 numcars ← numcars 2 1
 !→		 	 release (avail_lock)

Q 4.2 Does Alyssa’s code solve the problem? Why or why not?

Q 4.3 Ben can’t see any good reason for the release (avail_lock) that Alyssa placed
after line 7, so he removes it. Does the program still meet its specifications? Why or
why not?

4354 EZ-Park

Hoping to reduce competition for avail_lock, Ben rewrites the program as follows:

 1 procedure find_spot () // Called when a client car wants a spot
 2 while true do
 3 for i ← 0 to nspots do
 !→		 	 	 	 acquire (avail_lock)
 4 if available[i] = true then
 5 available[i] ← false

 6 numcars ← numcars 1 1
 !→		 	 	 	 	 	 release (avail_lock)
 7 return i // Allocate spot i to this client
 !→ else release (avail_lock)

 8 procedure relinquish_spot (spot) // Called when a client car is leaving spot
 !→ acquire (avail_lock)
 9 available[spot] ← true

 10 numcars ← numcars 2 1
 !→ release (avail_lock)

Q 4.4 Does that program meet the specifications?

Now that Ben feels he understands locks better, he tries one more time, hoping that
by shortening the code he can really speed things up:

 1 procedure find_spot () // Called when a client car wants a spot
 2 while true do
 !→ acquire (avail_lock)
 3 for i ← 0 to nspots do
 4 if available[i] = true then
 5 available[i] ← false

 6 numcars ← numcars 1 1
 7 return i // Allocate spot i to this client

 8 procedure relinquish_spot (spot) // Called when a client car is leaving spot
 9 available[spot] ← true

 10 numcars ← numcars 2 1
 !→ release (avail_lock)

Q 4.5 Does Ben’s slimmed-down program meet the specifications?

Ben now decides to combat parking at a truly crowded location: Pedantic’s stadium,
where there are always cars looking for spots! He updates nspots and deploys the
system during the first home game of the football season. Many clients complain that
his server is slow or unresponsive.

Q 4.6 If a client invokes the find_spot () RPC when the parking lot is full, how quickly
will it get a response, assuming that multiple cars may be making requests?

A. The client will not get a response until at least one car relinquishes a spot.
B. The client may never get a response even when other cars relinquish their

spots.

436 Problem Sets

Alyssa tells Ben to add a client-side timer to his RPC system that expires if the server does
not respond within 4 seconds. Upon a timer expiration, the car’s driver may retry the
request, or instead choose to leave the stadium to watch the game on TV. Alyssa warns
Ben that this change may cause the system to violate the correctness specification.

Q 4.7 When Ben adds the timer to his client, he finds some surprises. Which of the
following statements is true of Ben’s implementation?

A. The server may be running multiple active threads on behalf of the same client
car at any given time.

B. The server may assign the same spot to two cars making requests.
C. numcars may be smaller than the actual number of cars parked in the parking lot.
D. numcars may be larger than the actual number of cars parked in the parking lot.

Q 4.8 Alyssa thinks that the operating system running Ben’s server may be spend-
ing a fair amount of time switching between threads when many RPC requests are
being processed concurrently. Which of these statements about the work required to
perform the switch is correct? Notation: pc 5 program counter; sp 5 stack pointer;
pmar 5 page-map address register. Assume that the operating system behaves accord-
ing to the description in Chapter 5.

A. On any thread switch, the operating system saves the values of the pmar, pc,
sp, and several registers.

B. On any thread switch, the operating system saves the values of the pc, sp, and
several registers.

C. On any thread switch between two relinquish_spot () threads, the operating sys-
tem saves only the value of the pc, since relinquish_spot () has no return value.

D. The number of instructions required to switch from one thread to another is
proportional to the number of bytes currently on the thread’s stack.

5 goomble*

(Chapter 5)

Observing that U.S. legal restrictions have curtailed the booming on-line gambling
industry, a group of laid-off programmers has launched a new venture called Goomble.
Goomble’s Web server allows customers to establish an account, deposit funds using
a credit card, and then play the Goomble game by clicking a button labeled I FEEL
LUCKY. Every such button click debits their account by $1, until it reaches zero.

Goomble lawyers have successfully defended their game against legal challenges
by arguing that there’s no gambling involved: the Goomble “service’’ is entirely
deterministic.

The initial implementation of the Goomble server uses a single thread, which
causes all customer requests to be executed in some serial order. Each click on the
I FEEL LUCKY button results in a procedure call to lucky (account), where account

*Credit for developing this problem set goes to Stephen A. Ward.

4375 Goomble

refers to a data structure representing the user’s Goomble account. Among other data,
the account structure includes an unsigned 32-bit integer balance, representing the
customer’s current balance in dollars.
The lucky procedure is coded as follows:

 1 procedure lucky (account)
 2 if account.balance 0 then
 3 account.balance ← account.balance -1

The Goomble software quality control expert, Nellie Nervous, inspects the single-
threaded Goomble server code to check for race conditions.

Q 5.1 Should Nellie find any potential race conditions? Why or why not?
2007–1–8

The success of the Goomble site quickly swamps their single-threaded server, limiting
Goomble’s profits. Goomble hires a server performance expert, Threads Galore, to
improve server throughput.

Threads modifies the server as follows: Each I FEEL LUCKY click request spawns
a new thread, which calls lucky (account) and then exits. All other requests (e.g., set-
ting up an account, depositing, etc.) are served by a single thread. Threads argues that
the bulk of the server traffic consists of player’s clicking I FEEL LUCKY, so that his
solution addresses the main performance problem.

Unfortunately, Nellie doesn’t have time to inspect the multithreaded version of the
server. She is busy with development of a follow-on product: the Goomba, which simul-
taneously cleans out your bank account and washes your kitchen floor.

Q 5.2 Suppose Nellie had inspected Goomble’s multithreaded server. Should she
have found any potential race conditions? Why or why not?

2007–1–9

Willie Windfall, a compulsive Goomble player, has two computers and plays Goomble
simultaneously on both (using the same Goomble account). He has mortgaged his
house, depleted his retirement fund and the money saved for his kid’s education, and
his Goomble account is nearly at zero. One morning, clicking furiously on I FEEL
LUCKY buttons on both screens, he notices that his Goomble balance has jumped to
something over four billion dollars.

Q 5.3. Explain a possible source of Willie’s good fortune. Give a simple scenario
involving two threads, T1 and T2, with interleaved execution of lines 2 and 3 in calls
to lucky (account), detailing the timing that could result in a huge account.balance. The
first step of the scenario is already filled in; fill as many subsequent steps as needed.

1. T1 evaluates “if account.balance 0”, finds statement is true
2.
3.
4.

2007–1–10

438 Problem Sets

Word of Willie’s big win spreads rapidly, and Goomble billionaires proliferate. In a
state of panic, the Goomble board calls you in as a consultant to review three possible
fixes to the server code to prevent further “gifts” to Goomble customers. Each of the
following proposals involves adding a lock (either global or specific to an account) to
rule out the unfortunate race:

Proposal 1

 procedure lucky (account)
 acquire (global_lock);
 if account.balance > 0 then
 account.balance ← account.balance - 1;
 release (global_lock)

Proposal 2

 procedure lucky (account)
 acquire (account.lock)
 temp ← account.balance
 release (account.lock)
 if temp > 0 then
 acquire (account.lock);
 account.balance ← account.balance - 1;
 release (account.lock);

Proposal 3

 procedure lucky (account)
 acquire (account.lock);
 if account.balance > 0 then
 account.balance ← account.balance - 1
 release (account.lock);

Q 5.4 Which of the three proposals have race conditions?
2007–1–11

Q 5.5 Which proposal would you recommend deploying, considering both correct-
ness and performance goals?

2007–1–12

6 course Swap*

(Chapter 5 in Chapter 4 setting)

The Subliminal Sciences Department, in order to reduce the department head’s
workload, has installed a Web server to help assign lecturers to classes for the

*Credit for developing this problem set goes to Robert T. Morris.

4396 Course Swap

Fall teaching term. There happen to be exactly as many courses as lecturers, and
department policy is that every lecturer teach exactly one course and every
course have exactly one lecturer. For each lecturer in the department, the server
stores the name of the course currently assigned to that lecturer. The server’s
Web interface supports one request: to swap the courses assigned to a pair of
lecturers.

Version One of the server’s code looks like this:

 // CODE VERSION ONE

 assignments[] // an associative array of course names indexed by lecturer

 procedure server ()
 do forever
 m ← wait for a request message
 value ← m.function (m.arguments, …) // execute function in request message
 send value to m.sender

 procedure exchange (lecturer1, lecturer2)
 temp ← assignments[lecturer1]
 assignments[lecturer1] ← assignments[lecturer2]
 assignments[lecturer2] ← temp
 return "OK"

Because there is only one application thread on the server, the server can handle only
one request at a time. Requests comprise a function, and its arguments (in this case
exchange (lecturer1, lecturer2)), which is executed by the m.function (m.arguments, …)
call in the server () procedure.

For all following questions, assume that there are no lost messages and no crashes.
The operating system buffers incoming messages. When the server program asks for
a message of a particular type (e.g., a request), the operating system gives it the oldest
buffered message of that type.

Assume that network transmission times never exceed a fraction of a second and
that computation also takes a fraction of a second. There are no concurrent opera-
tions other than those explicitly mentioned or implied by the pseudocode, and no
other activity on the server computers.

Suppose the server starts out with the following assignments:

 assignments["Herodotus"] 5 "Steganography"
 assignments["Augustine"] 5 "Numerology"

Q 6.1 Lecturers Herodotus and Augustine decide they wish to swap lectures, so that
Herodotus teaches Numerology and Augustine teaches Steganography. They each
send an exchange (“Herodotus”, “Augustine”) request to the server at the same time.

440 Problem Sets

If you look a moment later at the server, which, if any, of the following states are
possible?

A.

 assignments["Herodotus"] 5 "Numerology"
 assignments["Augustine"] 5 "Steganography"

B.

 assignments["Herodotus"] 5 "Steganography"
 assignments["Augustine"] 5 "Numerology"

C.

 assignments["Herodotus"] 5 "Steganography"
 assignments["Augustine"] 5 "Steganography"

D.

 assignments["Herodotus"] 5 "Numerology"
 assignments["Augustine"] 5 "Numerology"

The Department of Dialectic decides it wants its own lecturer assignment server.
Initially, it installs a completely independent server from that of the Subliminal
Sciences Department, with the same rules (an equal number of lecturers and courses,
with a one-to-one matching). Later, the two departments decide that they wish to
allow their lecturers to teach courses in either department, so they extend the server
software in the following way. Lecturers can send either server a crossexchange
request, asking to swap courses between a lecturer in that server’s department and
a lecturer in the other server’s department. In order to implement crossexchange, the
servers can send each other set-and-get requests, which set a lecturer’s course and
return the lecturer’s previous course. Here’s Version Two of the server code, for both
departments:

 // CODE VERSION TWO
 procedure server () // same as in Version One
 procedure exchange () // same as in Version One

 procedure crossexchange (local-lecturer, remote-lecturer)
 temp1 ← assignments[local-lecturer]
 send {set-and-get, remote-lecturer, temp1} to the other server
 temp2 ← wait for response to set-and-get

 assignments[local-lecturer] ← temp2
 return "OK"

 procedure set-and-get (lecturer, course) {
 old ← assignments[lecturer]
 assignments[lecturer] ← course
 return old

4416 Course Swap

 Suppose the starting state on the Subliminal Sciences server is:

 assignments["Herodotus"] 5 "Steganography"
 assignments["Augustine"] 5 "Numerology"

And on the Department of Dialectic server:

 assignments["Socrates"] 5 "Epistemology"
 assignments["Descartes"] 5 "Reductionism"

Q 6.2 At the same time, lecturer Herodotus sends a crossexchange (“Herodotus”,
“Socrates”) request to the Subliminal Sciences server, and lecturer Descartes sends
a crossexchange (“Descartes”, “Augustine”) request to the Department of Dialectic
server. If you look a minute later at the Subliminal Sciences server, which, if any, of the
following states are possible?

A.

 assignments["Herodotus"] 5 "Steganography"
 assignments["Augustine"] 5 "Numerology"

B.

 assignments["Herodotus"] 5 "Epistemology"
 assignments["Augustine"] 5 "Reductionism"

C.

 assignments["Herodotus"] 5 "Epistemology"
 assignments["Augustine"] 5 "Numerology"

In a quest to increase performance, the two departments make their servers mul-
tithreaded: each server serves each request in a separate thread. Thus, if multiple
requests arrive at roughly the same time, the server may process them in parallel. Each
server has multiple processors. Here’s the threaded server code, Version Three:

 // CODE VERSION THREE
 procedure exchange () // same as in Version Two
 procedure crossexchange () // same as in Version Two
 procedure set-and-get () // same as in Version Two

 procedure server ()
 do forever
 m ← wait for a request message
 allocate_thread (doit, m) // create a new thread that runs doit (m)

 procedure doit (m)
 value ← m.function(m.arguments, …)
 send value to m.sender
 exit () // terminate this thread

Q 6.3 With the same starting state as the previous question, but with the new ver-
sion of the code, lecturer Herodotus sends a crossexchange (“Herodotus”, “Socrates”)

442 Problem Sets

request to the Subliminal Sciences server, and lecturer Descartes sends a crossex-
change (“Descartes”, “Augustine”) request to the Department of Dialectic server, at the
same time. If you look a minute later at the Subliminal Sciences server, which, if any, of
the following states are possible?

A.

 assignments["Herodotus"] 5 "Steganography"
 assignments["Augustine"] 5 "Numerology"

B.

 assignments["Herodotus"] 5 "Epistemology"
 assignments["Augustine"] 5 "Reductionism"

C.

 assignments["Herodotus"] 5 "Epistemology"
 assignments["Augustine"] 5 "Numerology"

An alert student notes that Version Three may be subject to race conditions. He changes
the code to have one lock per lecturer, stored in an array called locks[]. He changes
exchange crossexchange, and set-and-get to acquire locks on the lecturer(s) they affect.
Here is the result, Version Four:

 // CODE VERSION FOUR
 procedure server () // same as in Version Three
 procedure doit () // same as in Version Three

 procedure exchange (lecturer1, lecturer2)
 acquire (locks[lecturer1])
 acquire (locks[lecturer2])
 temp ← assignments[lecturer1]
 assignments[lecturer1] ← assignments[lecturer2]
 assignments[lecturer2] ← temp
 release (locks[lecturer1])
 release (locks[lecturer2])
 return "OK"

 procedure crossexchange (local-lecturer, remote-lecturer)
 acquire (locks[local-lecturer])
 temp1 ← assignments[local-lecturer]
 send set-and-get, remote-lecturer, temp1 to other server
 temp2 ← wait for response to set-and-get

 assignments[local-lecturer] ← temp2
 release (locks[local-lecturer])
 return "OK"

 procedure set-and-get (lecturer, course)
 acquire (locks[lecturer])
 old ← assignments[lecturer]
 assignments[lecturer] ← course
 release (locks[lecturer])
 return old

4437 Banking on Local Remote Procedure Call

Q 6.4 This code is subject to deadlock. Why?

Q 6.5 For each of the following situations, indicate whether deadlock can occur. In
each situation, there is no activity other than that mentioned.

A. Client A sends exchange ("Herodotus", "Augustine") at the same time that client B sends
exchange ("Herodotus", "Augustine"), both to the Subliminal Sciences server.

B. Client A sends exchange ("Herodotus", "Augustine") at the same time that client B sends
exchange (“Augustine”, “Herodotus”), both to the Subliminal Sciences server.

C. Client A sends crossexchange ("Augustine", "Socrates") to the Subliminal Sci-
ences server at the same time that client B sends crossexchange ("Descartes",
"Herodotus") to the Department of Dialectic server.

D. Client A sends crossexchange ("Augustine", "Socrates") to the Subliminal Sciences
server at the same time that client B sends crossexchange ("Socrates", "Augustine")
to the Department of Dialectic server.

E. Client A sends crossexchange ("Augustine", "Socrates") to the Subliminal Sci-
ences server at the same time that client B sends crossexchange ("Descartes",
 "Augustine") to the Department of Dialectic server.

7 Banking on Local Remote Procedure call

(Chapter 5)

The bank president has asked Ben Bitdiddle to add enforced modularity to a large
banking application. Ben splits the program into two pieces: a client and a service. He
wants to use remote procedure calls to communicate between the client and service,
which both run on the same physical machine with one processor. Ben explores an
implementation, which the literature calls lightweight remote procedure call (LRPC).
Ben’s version of LRPC uses user-level gates. User gates can be bootstrapped using two
kernel gates—one gate that registers the name of a user gate and a second gate that
performs the actual transfer:

 ■ register_gate (stack, address). It registers address address as an entry point, to be exe-
cuted on the stack stack. The kernel stores these addresses in an internal table.

 ■ transfer_to_gate (address). It transfers control to address address. A client uses
this call to transfer control to a service. The kernel must first check if address
is an address that is registered as a gate. If so, the kernel transfers control;
 otherwise it returns an error to the caller.

We assume that a client and service each run in their own virtual address space. On
initialization, the service registers an entry point with register_gate and allocates a
block, at address transfer. Both the client and service map the transfer block in each
address space with read and write permissions. The client and service use this shared
transfer page to communicate the arguments to and results of a remote procedure
call. The client and service each start with one thread. There are no user programs
other than the client and service running on the machine.

444 Problem Sets

The following pseudocode summarizes the initialization:

 Service Client

 procedure init_service () procedure init_client ()
 register_gate (STACK, receive) map (my_id, transfer, shared_client)
 allocate_block (transfer)
 map (my_id, transfer, shared_server)
 while true do yield ()

When a client performs an LRPC, the client copies the arguments of the LRPC
into the transfer page. Then, it calls transfer_to_gate to transfer control to the service
address space at the registered address receive. The client thread, which is now in the
service’s address space, performs the requested operation (the code for the procedure
at the address receive is not shown because it is not important for the questions). On
returning from the requested operation, the procedure at the address receive writes
the result parameters in the transfer block and transfers control back to the client’s
address space to the procedure return_lrpc. Once back in the client address space in
return_lrpc, the client copies the results back to the caller. The following pseudocode
summarizes the implementation of lrpc:

 1 procedure lrpc (id, request)
 2 copy (request, shared_client)
 3 transfer_to_gate (receive)
 4 return
 5
 6 procedure return_lrpc()
 7 copy (shared_client, reply)
 8 return (reply)

Now that we know how to use the procedures register_gate and transfer_to_gate,
let’s turn our attention to the implementation of transfer_to_gate (entrypoint is the
internal kernel table recording gate information):

 1 procedure transfer_to_gate (address)
 2 if id exists such that entrypoint [id].entry 5 address then
 3 r1 ← user_to_kernel (entrypoint [id].stack)
 4 r2 ← address
 5 store r2, r1 // put address on service’s stack
 6 sp ← entrypoint [id].stack // set SP to service stack
 7 sub 4, sp // adjust stack
 8 pmar ← entrypoint [id].pmar // set page map address
 9 user ← on // switch to user mode
 10 return // returns to address
 11 else
 12 return (error)

The procedure checks whether or not the service has registered address as an entry
point (line 2). Lines 4–7 push the entry address on the service’s stack and set the

4457 Banking on Local Remote Procedure Call

 register sp to point to the service’s stack. To be able to do so, the kernel must translate
the address for the stack in the service address space into an address in the kernel
address space so that the kernel can write the stack (line 3). Finally, the procedure
stores the page-map address register for the service into pmar (line 8), sets the user-
mode bit to on (line 9), and invokes the gate’s procedure by returning from trans-
fer_to_gate (line 10), which loads address from the service’s stack into pc.

The implementation of this procedure is tricky because its switches address
spaces, and thus the implementation must be careful to ensure that it is referring to
the appropriate variable in the appropriate address space. For example, after line 8
transfer_to_gate runs the next instruction (line 9) in the service’s address space. This
works only if the kernel is mapped in both the client and service’s address space at
the same address.

Q 7.1 The procedure init_service calls yield. In which address space or address spaces
is the code that implements the supervisor call yield located?

Q 7.2 For LRPC to work correctly, must the two virtual addresses transfer have the
same value in the client and service address space?

Q 7.3 During the execution of the procedure located at address receive how many
threads are running or are in a call to yield in the service address space?

Q 7.4 How many supervisor calls could the client perform in the procedure lrpc?

Q 7.5 Ben’s goal is to enforce modularity. Which of the following statements are true
statements about Ben’s lrpc implementation?

A. The client thread cannot transfer control to any address in the server address
space.

B. The client thread cannot overwrite any physical memory that is mapped in the
server’s address space.

C. After the client has invoked transfer_to_gate in lrpc, the server is guaranteed to
invoke return_lrpc.

D. The procedure lrpc ought to be modified to check the response message and
process only valid responses.

Q 7.6 Assume that register_gate and transfer_to_gate are also used by other pro-
grams. Which of the following statements is true about the implementations of regis-
ter_gate and transfer_to_gate?

A. The kernel might use an invalid address when writing the value address on the
stack passed in by a user program.

B. A user program might use an invalid address when entering the service address
space.

C. The kernel transfers control to the server address space with the user-mode bit
switched off.

D. The kernel enters the server address space only at the registered address entry
address.

446 Problem Sets

Ben modifies the client to have multiple threads of execution. If one client thread calls
the server and the procedure at address receive calls yield, another client thread can
run on the processor.

Q 7.7 Which of the following statements is true about the implementation of lrpc
with multiple threads?

A. On a single-processor machine, there can be race conditions when multiple client
threads call lrpc, even if the kernel schedules the threads non- preemptively.

B. On a single-processor machine, there can be race conditions when multiple
clients threads call lrpc and the kernel schedules the threads preemptively.

C. On multiprocessor computer, there can be race conditions when multiple
 client threads call lrpc.

D. It is impossible to have multiple threads if the computer doesn’t have multiple
physical processors.

2004–1–4…10

8 The Bitdiddler*

(Chapter 5)

Ben Bitdiddle is designing a file system for a new handheld computer, the Bitdiddler,
which is designed to be especially simple for, as he likes to say, “people who are just
average, like me.”

In keeping with his theme of simplicity and ease of use for average people, Ben
decides to design a file system without directories. The disk is physically partitioned
into three regions: an inode list, a free list, and a collection of 4K data blocks, much
like the unix file system. Unlike in the unix file system, each inode contains the name
of the file it corresponds to, as well as a bit indicating whether or not the inode is in
use. Like the unix file system, the inode also contains a list of blocks that compose the
file, as well as metadata about the file, including permission bits, its length in bytes,
and modification and creation timestamps. The free list is a bitmap, with one bit per
data block indicating whether that block is free or in use. There are no indirect blocks
in Ben’s file system. The following figure illustrates the basic layout of the Bitdiddler
file system:

*Credit for developing this problem set goes to Samuel R. Madden.

Data blocksInodes Free list

4478 The Bitdiddler

The file system provides six primary calls: create, open, read, write, close, and unlink.
Ben implements all six correctly and in a straightforward way, as shown below. All
updates to the disk are synchronous; that is, when a call to write a block of data to
the disk returns, that block is definitely installed on the disk. Individual block writes
are atomic.

 procedure create (filename)
 scan all non-free inodes to ensure filename is not a duplicate (return error if

 duplicate)
 find a free inode in the inode list
 update the inode with 0 data blocks, mark it as in use, write it to disk
 update the free list to indicate the inode is in use, write free list to disk

 procedure open (filename) // returns a file handle
 scan non-free inodes looking for filename
 if found, allocate and return a file handle fh that refers to that inode

 procedure write (fh, buf, len)
 look in file handle fh to determine inode of the file, read inode from disk
 if there is free space in last block of file, write to it
 determine number of new blocks needed, n
 for i ← 1 to n
 use free list to find a free block b
 update free list to show b is in use, write free list to disk
 add b to inode, write inode to disk
 write appropriate data for block b to disk

 procedure read (fh, buf, len)
 look in file handle fh to determine inode of the file, read inode from disk
 read len bytes of data from the current location in file into buf

 procedure close (fh)
 remove fh from the file handle table

 procedure unlink (filename)
 scan non-free inodes looking for filename, mark that inode as free
 write inode to disk
 mark data blocks used by file as free in free list
 write modified free list blocks to disk

Ben writes the following simple application for the Bitdiddler:

 create (filename)
 fh ← open (filename)
 write (fh, app_data, length (app_data)) // app_data is some data to be written
 close (fh)

Q 8.1 Ben notices that if he pulls the batteries out of the Bitdiddler while running
his application and then replaces the batteries and reboots the machine, the file his
application created exists but contains unexpected data that he didn’t write into the

448 Problem Sets

file. Which of the following are possible explanations for this behavior? (Assume that
the disk controller never writes partial blocks.)

A. The free list entry for a data page allocated by the call to write was written to
disk, but neither the inode nor the data page itself was written.

B. The inode allocated to Ben’s application previously contained a (since deleted)
file with the same name. If the system crashed during the call to create, it may
cause the old file to reappear with its previous contents.

C. The free list entry for a data page allocated by the call to write as well as a new
copy of the inode were written to disk, but the data page itself was not.

D. The free list entry for a data page allocated by the call to write as well as the
data page itself were written to disk, but the new inode was not.

Q 8.2 Ben decides to fix inconsistencies in the Bitdiddler’s file system by scanning
its data structures on disk every time the Bitdiddler starts up. Which of the follow-
ing inconsistencies can be identified using this approach (without modifying the
Bitdiddler implementation)?

A. In-use blocks that are also on the free list.
B. Unused blocks that are not on the free list.
C. In-use blocks that contain data from previously unlinked files.
D. Blocks used in multiple files.

2007–3–6 & 7

9 Ben’s Kernel

(Chapter 5)

Ben develops an operating system for a simple computer. The operating system has a
kernel that provides virtual address spaces, threads, and output to a console.

Each application has its own user-level address space and uses one thread. The
kernel program runs in the kernel address space but doesn’t have its own thread. (The
kernel program is described in more detail below.)

The computer has one processor, a memory, a timer chip (which will be intro-
duced later), a console device, and a bus connecting the devices. The processor
has a user-mode bit and is a multiple register set design, which means that it
has two sets of program counter (pc), stack pointer (sp), and page-map address
registers (pmar). One set is for user space (the user-mode bit is set to on): upc,
usp, and upmar. The other set is for kernel space (the user-mode bit is set to off):
kpc, ksp, and kpmar. Only programs in kernel mode are allowed to store to upmar,
kpc, ksp, and kpmar—storing a value in these registers is an illegal instruction in
user mode.

The processor switches from user to kernel mode when one of three events
occurs: an application issues an illegal instruction, an application issues a super-
visor call instruction (with the svc instruction), or the processor receives an

4499 Ben’s Kernel

 interrupt in user mode. The processor switches from user to kernel mode by
setting the user-mode bit off. When that happens, the processor continues opera-
tion but using the current values in the kpc, ksp, and kpmar. The user program
counter, stack pointer, and page-map address values remain in upc, usp, and upmar,
respectively.

To return from kernel to user space, a kernel program executes the rti instruction,
which sets the user-mode bit to on, causing the processor to use upc, usp, and upmar.
The kpc, ksp, and kpmar values remain unchanged, awaiting the next svc. In addition
to these registers, the processor has four general-purpose registers: ur0, ur1, kr0, and
kr1. The ur0 and ur1 pair are active in user mode. The kr0 and kr1 pair are active in
kernel mode.

Ben runs two user applications. Each executes the following set of programs:

 integer t initially 1 // initial value for shared variable t
 procedure main ()
 do forever
 t ← t 1 t
 print (t)
 yield ()
 procedure yield

 svc 0

print prints the value of t on the output console. The output console is an output-only
device and generates no interrupts.

The kernel runs each program in its own user-level address space. Each user
address space has one thread (with its own stack), which is managed by the kernel:

 integer currentthread // index for the current user thread

 structure thread [2] // Storage place for thread state when not running
 integer sp // user stack pointer
 integer pc // user program counter
 integer pmar // user page-map address register
 integer r0 // user register 0
 integer r1 // user register 1

 procedure doyield ()
 thread [currentthread].sp ← usp // save registers
 thread [currentthread].pc ← upc
 thread [currentthread].pmar ← upmar
 thread [currentthread].r0 ← ur0
 thread [currentthread].r1 ← ur1
 currentthread ← (currentthread 1 1) modulo 2 // select new thread
 usp ← thread [currentthread].sp // restore registers
 upc ← thread [currentthread].pc
 upmar ← thread [currentthread].pmar
 ur0 ← thread [currentthread].r0
 ur1 ← thread [currentthread].r1

450 Problem Sets

For simplicity, this non-preemptive thread manager is tailored for just the two user
threads that are running on Ben’s kernel. The system starts by executing the proce-
dure kernel. Here is its code:

 procedure kernel ()
 create_thread (main) // Set up Ben’s two threads
 create_thread (main) //
 usp ← thread [1].sp // initialize user registers for thread 1
 upc ← thread [1].pc
 upmar ← thread [1].pmar
 ur0 ← thread [1].r0
 ur1 ← thread [1].r1
 do forever
 rti // Run a user thread until it issues an SVC
 n ← ??? // See question Q 9.1
 if n 5 0 then doyield()

Since the kernel passes control to the user with the rti instruction, when the user
executes an svc, the processor continues execution in the kernel at the instruction
following the rti.

Ben’s operating system sets up three page maps, one for each user program, and
one for the kernel program. Ben has carefully set up the page maps so that the three
address spaces don’t share any physical memory.

Q 9.1 Describe how the supervisor obtains the value of n, which is the identifier for
the svc that the calling program has invoked.

Q 9.2 How can the current address space be switched?

A. By the kernel writing the kpmar register.
B. By the kernel writing the upmar register.
C. By the processor changing the user-mode bit.
D. By the application writing the kpmar or upmar registers.
E. By doyield saving and restoring upmar.

Q 9.3 Ben runs the system for a while, watching it print several results, and then
halts the processor to examine its state. He finds that it is in the kernel, where it is
just about to execute the rti instruction. In which procedure(s) could the user-level
thread resume when the kernel executes that rti instruction?

A. In the procedure kernel.
B. In the procedure main.
C. In the procedure yield.
D. In the procedure doyield.

4519 Ben’s Kernel

Q 9.4 In Ben’s design, what mechanisms play a role in enforcing modularity?

A. Separate address spaces because wild writes from one application cannot mod-
ify the data of the other application.

B. User-mode bit because it disallows user programs to write to upmar and kpmar.
C. The kernel because it forces threads to give up the processor.
D. The application because it has few lines of code.

Ben reads about the timer chip in his hardware manual and decides to modify the
kernel to take advantage of it. At initialization time, the kernel starts the timer chip,
which will generate an interrupt every 100 milliseconds. (Ben’s computer has no
other sources of interrupts.) Note that the interrupt-enable bit is off when executing
in the kernel address space; the processor checks for interrupts only before executing
a user-mode instruction. Thus, whenever the timer chip generates an interrupt while
the processor is in kernel mode, the interrupt will be delayed until the processor
returns to user mode. An interrupt in user mode causes an svc -1 instruction to be
inserted in the instruction stream. Finally, Ben modifies the kernel by replacing the do
forever loop and adding an interrupt handler, as follows:

 do forever
 rti // Run a user thread until it issues an SVC
 n ← ??? // Assume answer to question Q 9.1
 if n 5 1 then dointerrupt ()
 if n 5 0 then doyield ()

 procedure dointerrupt ()
 doyield ()

Do not make any assumption about the speed of the processor.

Q 9.5 Ben again runs the system for a while, watching it print several results, and
then he halts the processor to examine its state. Once again, he finds that it is in the
kernel, where it is just about to execute the rti instruction. In which procedure(s)
could the user-level thread resume after the kernel executes the rti instruction?

A. In the procedure dointerrupt.
B. In the procedure kernel.
C. In the procedure main.
D. In the procedure yield.
E. In the procedure doyield.

Q 9.6 In Ben’s second design, what mechanisms play a role in enforcing modularity?

A. Separate address spaces because wild writes from one application cannot mod-
ify the data of the other application.

B. User-mode bit because it disallows user programs to write to upmar and kpmar.
C. The timer chip because it, in conjunction with the kernel, forces threads to give

up the processor.
D. The application because it has few lines of code.

452 Problem Sets

Ben modifies the two user programs to share the variable t, by mapping t in the virtual
address space of both user programs at the same place in physical memory. Now both
threads read and write the same t.

Note that registers are not shared between threads: the scheduler saves and
restores the registers on a thread switch. Ben’s simple compiler translates the critical
region of code:

t ← t 1 t

into the processor instructions:

 100 load t, r0 // read t into register 0
 104 load t, r1 // read t into register 1
 108 add r1, r0 // add registers 0 and 1, leave result in register 0
 112 store r0, t // store register 0 into t

The numbers in the leftmost column in this code are the virtual addresses where the
instructions are stored in both virtual address spaces. Ben’s processor executes the
individual instructions atomically.

Q 9.7 What values can the applications print (don’t worry about overflows)?

A. Some odd number.
B. Some even number other than a power of two.
C. Some power of two.
D. 1

In a conference proceedings, Ben reads about an idea called restartable atomic
regions* and implements them. If a thread is interrupted in a critical region, the thread
manager restarts the thread at the beginning of the critical region when it resumes the
thread. Ben recodes the interrupt handler as follows:

 procedure dointerrupt ()
 if upc 100 and upc ≤ 112 then // Were we in the critical region?
 upc ← 100 // yes, restart critical region when resumed!
 doyield ()

The processor increments the program counter after interpreting an instruction and
before processing interrupts.

Q 9.8 Now, what values can the applications print (don’t worry about overflows)?

A. Some odd number.
B. Some even number other than a power of two.
C. Some power of two.
D. 1

*Brian N. Bershad, David D. Redell, and John R. Ellis. Fast mutual exclusion for uniprocessors.
Proceedings of the Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (October 1992), pages 223–233.

45310 A Picokernel-Based Stock-Ticker System

Q 9.9 Can a second thread enter the region from virtual addresses 100 through 112
while the first thread is in it (i.e., the first thread’s upc contains a value in the range
100 through 112)?

A. Yes, because while the first thread is in the region, an interrupt may cause the proces-
sor to switch to the second thread and the second thread might enter the region.

B. Yes, because the processor doesn’t execute the first three lines of code in
 dointerrupt atomically.

C. Yes, because the processor doesn’t execute doyield atomically.
D. Yes, because main calls yield.

Ben is exploring if he can put just any code in a restartable atomic region. He
creates a restartable atomic region that contains three instructions, which swap the
content of two variables a and b using a temporary x:

 100 x ← a
 104 a ← b
 108 b ← x

Ben also modifies dointerrupt, replacing 112 with 108:

 procedure dointerrupt ()
 if upc 100 and upc 108 then // Were we in the critical region?
 upc ← 100; // yes, restart critical region when resumed!
 doyield ()

Variables a and b start out with the values a 5 1 and b 5 2, and the timer chip is
running.

Q 9.10 What are some possible outcomes if a thread executes this restartable atomic
region and variables a, b, and x are not shared?

A. a 5 2 and b 5 1
B. a 5 1 and b 5 2
C. a 5 2 and b 5 2
D. a 5 1 and b 5 1

2003–1–5…13

10 A Picokernel-Based Stock-Ticker System

(Chapter 5)

Ben Bitdiddle decides to design a computer system based on a new kernel architec-
ture he calls picokernels and on a new hardware platform called simplePC. Ben has
paid attention to Section 1.1 and is going for extreme simplicity. The simplePC plat-
form contains one simple processor, a page-based virtual memory manager (which
translates the virtual addresses issued by the processor), a memory module, and an

454 Problem Sets

input and output device. The processor has two special registers, a program counter
(pc) and a stack pointer (sp). The sp points to the value on the top of the stack.

The calling convention for the simplePC processor uses a simple stack model:

A call to a procedure pushes the address of the instruction after the call onto ■

the stack and then jumps to the procedure.
Return from a procedure pops the address from the top of the stack and ■

jumps.

Programs on the simplePC don’t use local variables. Arguments to procedures are
passed in registers, which are not saved and restored automatically. Therefore, the
only values on the stack are return addresses.

Ben develops a simple stock-ticker system to track the stocks of the start-up he
joined. The program reads a message containing a single integer from the input device
and prints it on the output device:

 101. boolean input_available

 1. procedure read_input ()
 2. do forever
 3. while input_available 5 false do nothing // idle loop
 4. print_msg(quote)
 5. input_available ← false

 200. boolean output_done
 201. structure output_buffer at 71FFF2hex // hardware address of output buffer
 202. integer quote

 12. procedure print_msg (m)
 13. output_buffer.quote ← m
 14. while output_done 5 false do nothing // idle loop
 15. output_done ← false

 17. procedure main ()
 18. read_input ()
 19. halt // shutdown computer

In addition to the main program, the program contains two procedures: read_input
and print_msg. The procedure read_input spin-waits until input_available is set to true
by the input device (the stock reader). When the input device receives a stock quote,
it places the quote value into msg and sets input_available to true.

The procedure print_msg prints the message on an output device (a terminal in
this case); it writes the value stored in the message to the device and waits until it is
printed; the output device sets output_done to true when it finishes printing.

The numbers on each line correspond to addresses as issued by the processor to
read and write instructions and data. Assume that each line of pseudocode compiles
into one machine instruction and that there is an implicit return at the end of each
procedure.

45510 A Picokernel-Based Stock-Ticker System

Q 10.1 What do these numbers mentioned on each line of the program represent?

A. Virtual addresses.
B. Physical addresses.
C. Page numbers.
D. Offsets in a virtual page.

Ben runs the program directly on simplePC, starting in main, and at some point he
observes the following values on the stack (remember, only the stock-ticker program
is running):

 stack
 19
 5 ← stack pointer

Q 10.2 What is the meaning of the value 5 on the stack?

A. The return address for the next return instruction.
B. The return address for the previous return instruction.
C. The current value of pc.
D. The current value of sp.

Q 10.3 Which procedure is being executed by the processor?

A. read_input

B. print_msg

C. main

Q 10.4 print_msg writes a value to quote, which is stored at the address 71FFF2hex,
with the expectation that the value will end up on the terminal. What technique is
used to make this work?

A. Memory-mapped I/O.
B. Sequential I/O.
C. Streams.
D. Remote procedure call.

Ben wants to run multiple instances of his stock-ticker program on the simplePC
platform so that he can obtain more frequent updates to track more accurately his
current net worth. Ben buys another input and output device for the system, hooks
them up, and he implements a trivial thread manager:

 300. integer threadtable[2]; // stores stack pointers of threads.
 // first slot is threadtable[0]
 302. integer current_thread initially 0;

 21. procedure yield ()
 22. threadtable [current_thread] ← sp // move value of sp into table
 23. current_thread ← (current_thread 1 1) modulo 2
 24. sp ← threadtable [current_thread] // load value from table into sp

 25. return

456 Problem Sets

Each thread reads from and writes to its own device and has its own stack. Ben also
modifies read_input:

 100. integer msg[2] // CHANGED to use array
 102. boolean input_available[2] // CHANGED to use array
 30. procedure read_input ()
 31. do forever
 32. while input_available[current_thread] 5 false do // CHANGED
 33. yield () // CHANGED
 34. continue // CHANGED
 35. print_msg (msg [current_thread]) // CHANGED to use array
 36. input_available [current_thread] ← false // CHANGED to use array

Ben powers up the simplePC platform and starts each thread running in main. The
two threads switch back and forth correctly. Ben stops the program temporarily and
observes the following stacks:

 stack of thread 0 stack of thread 1
 19 19
 36 ← stack pointer 34 ← stack pointer

Q 10.5 Thread 0 was running (i.e., current_thread 5 0). Which instruction will the
processor be running after thread 0 executes the return instruction in yield the next
time?

A. 34. continue
B. 19. halt
C. 35. print_msg (msg [current_thread]);
D. 36. input_available [current_thread] ← false;

and which thread will be running?

Q 10.6 What address values can be on the stack of each thread?

A. Addresses of any instruction.
B. Addresses to which called procedures return.
C. Addresses of any data location.
D. Addresses of instructions and data locations.

45710 A Picokernel-Based Stock-Ticker System

Ben observes that each thread in the stock-ticker program spends most of its time
polling its input variable. He introduces an explicit procedure that the devices can use
to notify the threads. He also rearranges the code for modularity:

 400. integer state[2];

 40. procedure schedule_and_dispatch ()
 41. threadtable [current_thread] ← sp

 42. while (what should go here?) do // See question Q 10.7.
 43. current_thread ← (current_thread 1 1) modulo 2
 45. sp ← threadtable[current_thread];
 46. return

 50. procedure yield()
 51. state[current_thread] ← waiting

 52. schedule_and_dispatch ()
 53. return

 60. procedure notify (n)
 61. state [n] ← runnable

 62. return

When the input device receives a new stock quote, the device interrupts the pro-
cessor and saves the pc of the currently running thread on the currently running
thread’s stack. Then the processor runs the interrupt procedure. When the interrupt
handler returns, it pops the return address from the current stack, returning control
to a thread. The pseudocode for the interrupt handler is:

 procedure device (n) // interrupt for input device n
 push current thread's pc on stack pointed to by sp;
 while input_available[n] 5 true do nothing; // wait until read_input is done
 // with the last input
 msg [n] ← stock quote
 input_available[n] ← true

 notify (n) // notify thread n
 return // i.e., pop pc

During the execution of the interrupt handler, interrupts are disabled. Thus, an inter-
rupt handler and the procedures that it calls (e.g., notify) cannot be interrupted.
Interrupts are reenabled when device returns.

Using the new thread manager, answer the following questions:

Q 10.7 What expression should be evaluated in the while at address 42 to ensure cor-
rect operation of the thread package?

A. state [current_thread] 5 waiting

B. state [current_thread] 5 runnable

C. threadtable [current_thread] 5 sp

D. false

458 Problem Sets

Q 10.8 Assume thread 0 is running and thread 1 is not running (i.e., it has called
yield). What event or events need to happen before thread 1 will run?

A. Thread 0 calls yield.
B. The interrupt procedure for input device 1 calls notify.
C. The interrupt procedure for input device 0 calls notify.
D. No events are necessary.

Q 10.9 What values can be on the stack of each thread?

A. Addresses of any instruction except those in the device driver interrupt
 procedure.

B. Addresses of all instructions, including those in the device driver interrupt pro-
cedure.

C. Addresses to which procedures return.
D. Addresses of instructions and data locations.

Q 10.10 Under which scenario can thread 0 deadlock?

A. When device 0 interrupts thread 0 just before the first instruction of yield.
B. When device 0 interrupts just after thread 0 completed the first instruction of

yield.
C. When device 0 interrupts thread 0 between instructions 35 and 36 in the read_

input procedure on page 454.
D. When device 0 interrupts when the processor is executing schedule_and_

dispatch and thread 0 is in the waiting state.

2000–1–7…16

11 Ben’s Web Service

(Chapter 5)

Ben Bitdiddle is so excited about Amazing Computer Company’s plans for a new
 segment-based computer architecture that he takes the job the company offered him.

Amazing Computer Company has observed that using one address space per pro-
gram puts the text, data, stack, and system libraries in the same address space. For exam-
ple, a Web server has the program text (i.e., the binary instructions) for the Web server,
its internal data structures such as its cache of recently-accessed Web pages, the stack,
and a system library for sending and receiving messages all in a single address space.
Amazing Computer Company wants to explore how to enforce modularity even fur-
ther by separating the text, data, stack, and system library using a new memory system.

The Amazing Computer Company has asked every designer in the company
to come up with a design to enforce modularity further. In a dusty book about the
PDP-11/70, Ben finds a description of a hardware gadget that sits between the proces-
sor and the physical memory, translating virtual addresses to physical addresses. The
PDP-11/70 used that gadget to allow each program to have its own address space,
starting at address 0.

45911 Ben’s Web Service

The PDP-11/70 did this through having one segment per program. Conceptually,
each segment is a variable-sized, linear array of bytes starting at virtual address 0. Ben
bases his memory system on the PDP-11/70’s scheme with the intention of imple-
menting hard modularity. Ben defines a segment through a segment descriptor:

 structure segmentDescriptor
 physicaladdress physAddr
 integer length

The physAddr f ield records the address in physical memory where the segment is
located. The length f ield records the length of the segment in bytes.

Ben’s processor has addresses consisting of 34 bits: 18 bits to identify a segment
and 16 bits to identify the byte within the segment:

A virtual address that addresses a byte outside a segment (i.e., an index greater than
the length of the segment) is illegal.

Ben’s memory system stores the segment descriptors in a table, segmentTable,
which has one entry for each segment:

 structure segmentDescriptor
 segmentTable[nsegment]

The segment table is indexed by segment_id. It is shared among all programs and
stored at physical address 0.

The processor used by Ben’s computer is a simple RISC processor, which reads
and writes memory using load and store instructions. The load and store instruc-
tions take a virtual address as their argument. Ben’s computer has enough memory
that all programs fit in physical memory.

Ben ports a compiler that translates a source program to generate machine instruc-
tions for his processor. The compiler translates into a position-independent machine
code: jump instructions specify an offset relative to the current value of the program
counter. To make a call into another segment, it supports the longjump instruction,
which takes a virtual address and jumps to it.

Ben’s memory system translates a virtual address to a physical address with
translate:

 1 procedure translate (addr)
 2 segment_id ← addr[0:17]
 3 segment ← segmentTable[segment_id]
 4 index ← addr[18:33]
 5 if index < segment.length then return segment.physAddr 1 index
 6 … // What should the program do here? (see Q 11.4, below)

After successfully computing the physical address, Ben’s memory management
unit retrieves the addressed data from physical memory and delivers it to the

segment_id index

18 bits 16 bits

460 Problem Sets

 processor (on a load instruction) or stores the data in physical memory (on a store
instruction).

Q 11.1 What is the maximum sensible value of nsegment?

Q 11.2 Given the structure of a virtual address, what is the maximum size of a seg-
ment in bytes?

Q 11.3 How many bits wide must a physical address be?

Q 11.4 The missing code on line 6 should

A. signal the processor that the instruction that issued the memory reference has
caused an illegal address fault

B. signal the processor that it should change to user mode
C. return index
D. signal the processor that the instruction that issues the memory reference is an

interrupt handler

Ben modifies his Web server to enforce modularity between the different parts of the
server. He allocates the text of the program in segment 1, a cache for recently used
Web pages in segment 2, the stack in segment 3, and the system library in segment 4.
Segment 4 contains the text of the library program but no variables (i.e., the library
program doesn’t store variables in its own segment).

Q 11.5 To translate the Web server the compiler has to do which of the following?

A. Compute the physical address for each virtual address.
B. Include the appropriate segment ID in the virtual address used by a load

 instruction.
C. Generate longjump instructions for calls to procedures located in different

 segments.
D. Include the appropriate segment ID in the virtual address used by a store

instruction.

Ben runs the segment-based implementation of his Web server and to his surprise
observes that errors in the Web server program can cause the text of the system
library to be overwritten. He studies his design and realizes that the design is bad.

Q 11.6 What aspect of Ben’s design is bad and can cause the observed behavior?

A. A store instruction can overwrite the segment ID of an address.
B. A longjmp instruction in the Web server program may jump to an address in the

library segment that is not the start of a procedure.
C. It doesn’t allow for paging of infrequently used memory to a secondary storage

device.
D. The web server program may get into an endless loop.

46111 Ben’s Web Service

Q 11.7 Which of the following extensions of Ben’s design would address each of the
preceding problems?

A. The processor should have a protected user-mode bit, and there should be a
separate segment table for kernel and user programs.

B. Each segment descriptor should have a protection bit, which specifies whether
the processor can write or only read from this segment.

C. The longjmp instruction should be changed so that it can transfer control only
to designated entry points of a segment.

D. Segments should all be the same size, just like pages in page-based virtual mem-
ory systems.

E. Change the operating system to use a preemptive scheduler.

The system library for Ben’s Web server contains code to send and receive messages.
A separate program, the network manager, manages the network card that sends and
receives messages. The Web server and the network manager each have one thread of
execution. Ben wants to understand why he needs eventcounts for sequence coordina-
tion of the network manager and the Web server, so he decides to implement the coor-
dination twice, once using eventcounts and the second time using event variables.

Here are Ben’s two versions of the Web server:

 Web server using eventcounts Web server using events

 eventcount inCnt event input
 integer doneCnt integer inCnt
 integer doneCnt

 procedure serve () procedure serve ()
 do forever do forever
 await (inCnt, doneCnt); while inCnt doneCnt do //A
 do_request (); waitevent (Input); //B
 doneCnt ← doneCnt 1 1; do_request (); //C

Both versions use a thread manager as described in Chapter 5, except for the changes
to support eventcounts or events. The eventcount version is exactly the one described
in Chapter 5. The await procedure has semantics for eventcounts: when the Web server
thread calls await, the thread manager puts the calling thread into the waiting state
unless inCnt exceeds doneCnt.

The event-based version is almost identical to the eventcount one but has a few
changes. An event variable is a list of threads waiting for the event. The procedure
waitevent puts the current executing thread on the list for the event, records that the
current thread is in the waiting state, and releases the processor by calling yield.

In both versions, when the Web server has completed processing a packet, it
increases doneCnt.

The two corresponding versions of the code for handling each packet arrival in
the network manager are:

 Network manager using eventcounts Network manager using events

 advance (inCnt) inCnt ← inCnt 1 1 //D
 notifyevent (input) //E

462 Problem Sets

The advance procedure wakes up the Web server thread if it is already asleep. The
notifyevent procedure removes all threads from the list of the event and puts them
into the ready state. The shared variables are stored in a segment shared between the
network manager and the Web server.

Ben is a bit worried about writing code that involves coordinating multiple activities,
so he decides to test the code carefully. He buys a computer with one processor to
run both the Web server and the network manager using a preemptive thread sched-
uler. Ben ensures that the two threads (the Web server and the network manager)
never run inside the thread manager at the same time by turning off interrupts when
the processor is running the thread manager’s code (which includes advance, await,
notifyevent, and waitevent).

To test the code, Ben changes the thread manager to preempt threads frequently
(i.e., each thread runs with a short time slice). Ben runs the old code with event-
counts and the program behaves as expected, but the new code using events has the
 problem that the Web server sometimes delays processing a packet until the next
packet arrives.

Q 11.8 The program steps that might be causing the problem are marked with letters
in the code of the event-based solution above. Using those letters, give a sequence of
steps that creates the problem. (Some steps might have to appear more than once, and
some might not be necessary to create the problem.)

2002–1–4…11

12 A Bounded Buffer with Semaphores

(Chapter 5)

Using semaphores, down and up (see Sidebar 5.7), Ben implements an in-kernel bounded
buffer as shown in the pseudocode below. The kernel maintains an array of port_infos.
Each port_info contains a bounded buffer. The content of the message structure is not
important for this problem, other than that it has a field dest_port, which specifies the
destination port. When a message arrives from the network, it generates an interrupt,
and the network interrupt handler (interrupt) puts the message in the bounded buffer
of the port specified in the message. If there is no space in that bounded buffer, the
interrupt handler throws the message away. A thread consumes a message by calling
receive_message, which removes a message from the bounded buffer of the port it is
receiving from.

To coordinate the interrupt handler and a thread calling receive_message, the imple-
mentation uses a semaphore. For each port, the kernel keeps a semaphore n that
counts the number of messages in the port’s bounded buffer. If n reaches 0, the thread
calling down in receive_message will enter the WAITING state. When interrupt adds
a message to the buffer, it calls up on n, which will wake up the thread (i.e., set the
thread’s state to RUNNABLE).

46312 A Bounded Buffer with Semaphores

The kernel schedules threads preemptively.

Q 12.1 Assume that there are no concurrent invocations of interrupt and that there
are no concurrent invocations of receive_message on the same port. Which of the follow-
ing statements is true about the implementation of interrupt and receive_message?

A. There are no race conditions between two threads that invoke receive_ message
concurrently on different ports.

B. The complete execution of up in interrupt will not be interleaved between the
statements labeled 15 and 16 in down in Sidebar 5.7.

C. Because down and up are atomic, the processor instructions necessary for the
subtracting of sem in down and adding to sem in up will not be interleaved incor-
rectly.

D. Because in and out may be shared between the interrupt handler running inter-
rupt and a thread calling receive_message on the same port, it is possible for
interrupt to throw away a message, even though there is space in the bounded
buffer.

Alyssa claims that semaphores can also be used to make operations atomic. She pro-
poses the following addition to a port_info structure:

 semaphore instance mutex initially ???? // see question below

and adds the following line to receive_message, on line 1 in the pseudocode above:

 down(port.mutex) // enter atomic section

structure port_info
 semaphore instance n initially 0
 message instance buffer [nmsg] // an array of messages
 long integer in initially 0
 long integer out initially 0

procedure interrupt (message instance m, port_info reference port)
 // an interrupt announcing the arrival of message m
 if port.in 2 port.out nmsg then // is there space?
 return // No, ignore message
 port.buffer [port.in modulo nmsg] ← m
 port.in ← port.in 1 1
 up (port.in)

procedure receive_message (port_info reference port)
1 ... // another line of code will go here
 down (port.in)
 m ← port.buffer [port.in modulo nmsg]
 port.out ← port.out 1 1
 return m

464 Problem Sets

Alyssa argues that these changes allow threads to concurrently invoke receive
on the same port without race conditions, even if the kernel schedules threads
preemptively.

Q 12.2 To what value can mutex be initialized (by replacing ???? with a number in the
semaphore declaration) to avoid race conditions and deadlocks when multiple threads
call receive_message on the same port?

A. 0
B. 1
C. 2
D. 21

2006–1–11&12

13 The Single-chip nc*

(Chapter 5)

Ben Bitdiddle plans to create a revolution in computing with his just-developed $15
single-chip Network Computer, NC. In the NC network system, the network interface
thread calls the procedure message_arrived when a message arrives. The procedure
wait_for_message can be called by a thread to wait for a message. To coordinate the
sequences in which threads execute, Ben deploys another commonly used coordina-
tion primitive: condition variables.

Part of the code in the NC is as follows:

 1 lock instance m
 2 boolean message_here
 3 condition instance message_present
 4
 5 procedure message_arrived ()
 6 message_here ← true

 7 notify_condition (message_present) // notify threads waiting on this condition
 8
 9 procedure wait_for_message ()
 10 acquire (m)
 11 while not message_here do
 12 wait_condition (message_present, m); // release m and wait
 13 release (m)

The procedures acquire and release are the ones described in Chapter 5. notify_
condition (condition) atomically wakes up all threads waiting for condition to become
true. wait_condition (condition, lock) does several things atomically: it tests condition; if
true it returns; otherwise it puts the calling thread on the waiting queue for condi-
tion and releases lock. When notify_condition wakens a thread, that thread becomes

*Credit for developing this problem set goes to David K. Gifford.

46514 Toastac-25

 runnable, and when the scheduler runs that thread, wait_condition reacquires lock
 (waiting, if necessary, until it is available) before returning to its caller.

Assume there are no errors in the implementation of condition variables.

Q 13.1 It is possible that wait_for_message will wait forever even if a message arrives
while it is spinning in the while loop. Give an execution ordering of the above statements
that would cause this problem. Your answer should be a simple list such as 1, 2, 3, 4.

Q 13.2 Write new version(s) of message_arrived and/or wait_for_message to fix this
problem.

1998–1–3a/b

14 Toastac-25*

(Chapters 5 and 7 [on-line])

Louis P. Hacker bought a used Therac-25 (the medical irradiation machine that was
involved in several fatal accidents—see Suggestions for Further Reading 1.9.5) for
$14.99 at a yard sale. After some slight modifications, he has hooked it up to his home
network as a computer- controllable turbo-toaster, which can toast one slice in under
2 milliseconds. He decides to use RPC to control the Toastac-25. Each toasting request
starts a new thread on the server, which cooks the toast, returns an acknowledgment
(or perhaps a helpful error code, such as “Malfunction 54”), and exits. Each server
thread runs the following procedure:

 procedure server () {
 acquire (message_buffer_lock)
 decode (message)
 acquire (accelerator_buffer_lock)
 release (message_buffer_lock)
 cook_toast ()
 acquire (message_buffer_lock)
 message ← "ack"
 send (message)
 release (accelerator_buffer_lock)
 release (message_buffer_lock)

Q 14.1 To his surprise, the toaster stops cooking toast the first time it is heavily used!
What has gone wrong?

A. Two server threads might deadlock because one has message_buffer_lock and
wants accelerator_buffer_lock, while the other has accelerator_buffer_lock and
wants message_buffer_lock.

B. Two server threads might deadlock because one has accelerator_buffer_lock and
message_buffer_lock.

C. Toastac-25 deadlocks because cook_toast is not an atomic operation.
D. Insufficient locking allows inappropriate interleaving of server threads.

*Credit for developing this problem set goes to Eddie Kohler.

466 Problem Sets

Once Louis fixes the multithreaded server, the Toastac gets more use than ever. However,
when the Toastac has many simultaneous requests (i.e., there are many threads), he
notices that the system performance degrades badly—much more than he expected.
Performance analysis shows that competition for locks is not the problem.

Q 14.2 What is probably going wrong?

A. The Toastac system spends all its time context switching between threads.
B. The Toastac system spends all its time waiting for requests to arrive.
C. The Toastac gets hot, and therefore cooking toast takes longer.
D. The Toastac system spends all its time releasing locks.

Q 14.3 An upgrade to a supercomputer fixes that problem, but it’s too late—Louis
is obsessed with performance. He switches from RPC to an asynchronous protocol,
which groups several requests into a single message if they are made within 2 milli-
seconds of one another. On his network, which has a very high transit time, he notices
that this speeds up some workloads far more than others. Describe a workload that
is sped up and a workload that is not sped up. (An example of a possible workload
would be one request every 10 milliseconds.)

Q 14.4 As a design engineering consultant, you are called in to critique Louis’s deci-
sion to move from RPC to asynchronous client/service. How do you feel about his
decision? Remember that the Toastac software sometimes fails with a “Malfunction
54” instead of toasting properly.

1996–1–5c/d & 1999–1–12/13

15 BooZe: Ben’s object-oriented Zoned environment

(Chapters 5 and 6)

Ben Bitdiddle writes a large number of object-oriented programs. Objects come in
different sizes, but pages come in a fixed size. Ben is inspired to redesign his page-
based virtual memory system (PAGE) into an object memory system. PAGE is a page-
based virtual memory system like the one described in Chapter 5 with the exten-
sions for multilevel memory systems from Chapter 6. BOOZE is Ben’s object-based
virtual memory system.* Of course, he can run his programs on either system.

Each BOOZE object has a unique ID called a UID. A UID has three fields: a disk
address for the disk block that contains the object; an offset within that disk block
where the object starts; and the size of the object.

 structure uid
 integer blocknr // disk address for disk block
 integer offset // offset within block blocknr
 integer size // size of object

*Ben chose this name after reading a paper by Ted Kaehler, “Virtual memory for an object-oriented
Language” [Suggestions for Further Reading 6.1.4]. In that paper, Kaehler describes a memory
 management system called the Object-Oriented Zoned Environment, with the acronym OOZE.

46715 BOOZE: Ben’s Object-Oriented Zoned Environment

Applications running on BOOZE and PAGE have similar structure. The only difference
is that on PAGE, program refer to objects by their virtual address, while on BOOZE
programs refer to objects by UIDs.

The two levels of memory in BOOZE and PAGE are main memory and disk. The
disk is a linear array of fixed-size blocks of 4 kilobytes. A disk block is addressed by
its block number. In both systems, the transfer unit between the disk and main mem-
ory is a 4-kilobyte block. Objects don’t cross disk block boundaries, are smaller than
4 kilobytes, and cannot change size. The page size in PAGE is equal to the disk block
size; therefore, when an application refers to an object, PAGE will bring in all objects
on the same page.

BOOZE keeps an object map in main memory. The object map contains entries
that map a UID to the memory address of the corresponding object.

 structure mapentry
 uid instance UID
 integer addr

On all references to an object, BOOZE translates a UID to an address in main memory.
BOOZE uses the following procedure (implemented partly in hardware and partly in
software) for translation:

 procedure objecttoaddress(UID) returns address
 addr ← ispresent(UID) // is UID present in object map?
 if addr 0 then return addr // UID is present, return addr
 addr ← findfreespace(UID.size) // allocate space to hold object
 readobject(addr, UID) // read object from disk & store at addr
 enterintomap(UID, addr) // enter UID in object map
 return addr // return memory address of object

ispresent looks up UID in the object map; if present, it returns the address of the cor-
responding object; otherwise, it returns 1. findfreespace allocates free space for the
object; it might evict another object to make space available for this one. readobject
reads the page that contains the object, and then copies the object to the allocated
address.

Q 15.1 What does addr in the mapentry data structure denote?

A. The memory address at which the object map is located.
B. The disk address at which to find a given object.
C. The memory address at which to find a given object that is currently resident

in memory.
D. The memory address at which a given non-resident object would have to be

loaded, when an access is made to it.

468 Problem Sets

Q 15.2 In what way is BOOZE better than PAGE?

A. Applications running on BOOZE generally use less main memory because
BOOZE stores only objects that are in use.

B. Applications running on BOOZE generally run faster because UIDs are smaller
than virtual addresses.

C. Applications running on BOOZE generally run faster because BOOZE transfers
objects from disk to main memory instead of complete pages.

D. Applications running on BOOZE generally run faster because typical applica-
tions will exhibit better locality of reference.

When findfreespace cannot find enough space to hold the object, it needs to write one
or more objects back to the disk to create free space. findfreespace uses writeobject
to write an object to the disk.

Ben is figuring out how to implement writeobject. He is considering the following
options:

 1. procedure writeobject (addr, UID)
 write(addr, UID.blocknr, 4096)

 2. procedure writeobject(addr, UID)
 read(buffer, UID.blocknr, 4096)
 copy(addr, buffer 1 UID.offset, UID.size)
 write(buffer, UID.blocknr, 4096)

read (mem_addr, disk_addr, 4096) and write (mem_addr, disk_addr, 4096) read and
write a 4-kilobyte page from/to the disk. copy (source, destination, size) copies size
bytes from a source address to a destination address in main memory.

Q 15.3 Which implementation should Ben use?

A. Implementation 2, since implementation 1 is incorrect.
B. Implementation 1, since it is more efficient than implementation 2.
C. Implementation 1, since it is easier to understand.
D. Implementation 2, since it will result in better locality of reference.

Ben now turns his attention to optimizing the performance of BOOZE. In particular,
he wants to reduce the number of writes to the disk.

Q 15.4 Which of the following techniques will reduce the number of writes without
losing correctness?

A. Prefetching objects on a read.
B. Delaying writes to disk until the application finishes its computation.
C. Writing to disk only objects that have been modified.
D. Delaying a write of an object to disk until it is accessed again.

Ben decides that he wants even better performance, so he decides to modify find-
freespace. When findfreespace has to evict an object, it now tries not to write an

46916 OutOfMoney.com

object modified in the last 30 seconds (in the belief that it may be used again soon).
Ben does this by setting the dirty flag when the object is modified. Every 30 seconds,
BOOZE calls a procedure write_behind that walks through the object map and writes
out all objects that are dirty. After an object has been written, write_behind clears its
dirty flag. When findfreespace needs to evict an object to make space for another,
clean objects are the only candidates for replacement.

When running his applications on the latest version of BOOZE, Ben observes once
in a while that BOOZE runs out of physical memory when calling objecttoaddress
for a new object.

Q 15.5 Which of these strategies avoids the above problem?

A. When findfreespace cannot find any clean objects, it calls write_behind and
then tries to find clean objects again.

B. BOOZE could call write_behind every second instead of every 30 seconds.
C. When findfreespace cannot find any clean objects, it picks one dirty object,

writes the block containing the object to the disk, clears the dirty flag, and then
uses that address for the new object.

D. All of the above strategies.

1999–1–7…11

16 outofMoney.com

(Chapter 6, with a bit of Chapter 4)

OutOfMoney.com has decided it needs a real product, so it is laying off most of
its Marketing Department. To replace the marketing folks, and on the advice of
a senior computer expert, OutOfMoney.com hires a crew of 16-year-olds. The
16-year-olds get together and decide to design and implement a video service that
serves MPEG-1 video, so that they can watch Britney Spears on their computers in
living color.

Since time to market is crucial, Mark Bitdiddle—Ben’s 16-year-old kid brother, who
is working for OutOfMoney—surfs the Web to find some code from which they can
start. Mark finds some code that looks relevant, and he modifies it for OutOfMoney’s
video service:

 procedure service ()
 do forever
 request ← receive_message ()
 file ← get_file_from_disk (request)
 reply (file)

The service procedure waits for a message from a client to arrive on the network.
The message contains a request for a particular file. The procedure get_file_from_disk
reads the file from disk into the memory location file. The procedure reply sends the
file from memory in a message back to the client.

470 Problem Sets

(In the pseudocode, undeclared variables are local variables of the procedure in
which they are used, and the variables are thus stored on the stack or in registers.)

Mark and his 16-year-old buddies also write code for a network driver to send and
receive network packets, a simple file system to put and get files on a disk, and a loader
for booting a machine. They run their code on the bare hardware of an off-the-shelf
personal computer with one disk, one processor (a Pentium III), and one network
interface card (1 gigabit per second Ethernet). After the machine has booted, it starts
one thread running service.

The disk has an average seek time of 5 milliseconds, a complete rotation takes
6 milliseconds, and its throughput is 10 megabytes per second when no seeks are
required.

All files are 1 gigabyte (roughly a half hour of MPEG-1 video). The file system in
which the files are stored has no cache, and it allocates data for a file in 8-kilobyte
chunks. It pays no attention to file layout when allocating a chunk; as a result, disk
blocks of the same file can be all over the disk. A 1-gigabyte file contains 131,072
8-kilobyte blocks.

Q 16.1 Assuming that the disk is the main bottleneck, how long does the service take
to serve a file?

Mark is shocked about the performance. Ben suggests that they should add a cache.
Mark, impressed by Ben’s knowledge, follows his advice and adds a 1-gigabyte cache,
which can hold one file completely:

 cache [1073741824] // 1-gigabyte cache

 procedure service ()
 do forever
 request ← receive_message ()
 file ← look_in_cache (request)
 if file 5 null then
 file ← get_file_from_disk (request)
 add_to_cache (request, file)
 reply (file)

The procedure look_in_cache checks whether the file specified in the request is pres-
ent in the cache and returns it if present. The procedure add_to_cache copies a file to
the cache.

Q 16.2 Mark tests the code by asking once for every video stored. Assuming that the
disk is the main bottleneck (serving a file from the cache takes 0 milliseconds), what
now is the average time for the service to serve a file?

Mark is happy that the test actually returns every video. He reports back to the only
person left in the Marketing Department that the prototype is ready to be evaluated.
To keep the investors happy, the marketing person decides to use the prototype to run
OutOfMoney’s Web site. The one-person Marketing Department loads the machine up

47116 OutOfMoney.com

with videos and launches the new Web site with a big PR campaign, blowing their
remaining funding.

Seconds after they launch the Web site, OutOfMoney’s support organization (also
staffed by 16-year-olds) receives e-mail from unhappy users saying that the service is
not responding to their requests. The support department measures the load on the
service CPU and also the service disk. They observe that the CPU load is low and the
disk load is high.

Q 16.3 What is the most likely reason for this observation?

A. The cache is too large.
B. The hit ratio for the cache is low.
C. The hit ratio for the cache is high.
D. The CPU is not fast enough.

The support department beeps Mark, who runs to his brother Ben for help. Ben sug-
gests using the example thread package of Chapter 5. Mark augments the code to
use the thread package and after the system boots, it starts 100 threads, each running
service:

for i from 1 to 100 do create_thread (service)

In addition, mark modifies receive_message and get_file_from_disk to release the pro-
cessor by calling yield when waiting for a new message to arrive or waiting for the
disk to complete a disk read. In no other place does his code release the proces-
sor. The implementation of the thread package is non-preemptive.

To take advantage of the threaded implementation, Mark modifies the code to
read blocks of a file instead of complete files. He also runs to the store and buys
some more memory so he can increase the cache size to 4 gigabytes. Here is his lat-
est effort:

 cache [4 3 1073741824] // The 4-gigabyte cache, shared by all threads.

 procedure service ()
 do forever
 request ← receive_message ()
 file ← null

 for k from 1 to 131072 do
 block ← look_in_cache (request, k)
 if block 5 null then
 block ← get_block_from_disk (request, k)
 add_to_cache (request, block, k)
 file ← file 1 block // 1 concatenates strings
 reply (file)

The procedure look_in_cache (request, k) checks whether block k of the file
 specified in request is present; if the block is present, it returns it. The procedure

472 Problem Sets

get_block_from_disk reads block k of the file specified in request from the disk into
memory. The procedure add_to_cache adds block k from the file specified in request
to the cache.

Mark loads up the service with one video. He retrieves the video successfully.
Happy with this result, Mark sends many requests for the single video in parallel to the
service. He observes no disk activity.

Q 16.4 Based on the information so far, what is the most likely explanation why Mark
observes no disk activity?

Happy with the progress, Mark makes the service ready for running in production
mode. He is worried that he may have to modify the code to deal with concurrency—
his past experience has suggested to him that he needs an education, so he is reading
Chapter 5. He considers protecting add_to_cache with a lock:

 lock instance cachelock // A lock for the cache

 procedure service ()
 do forever
 request ← receive_message ()
 file ← null

 for k from 1 to 131072 do
 block ← look_in_cache (request, k)
 if block 5 null then
 block ← get_block_from_disk (request, k)
 acquire (cachelock) // use the lock
 add_to_cache (request, block, k)
 release (cachelock) // here, too
 file ← file 1 block
 reply (file)

Q 16.5 Ben argues that these modifications are not useful. Is Ben right?

Mark doesn’t like thinking, so he upgrades OutOfMoney’s Web site to use the multi-
threaded code with locks. When the upgraded Web site goes live, Mark observes that
most users watch the same three videos, while a few are watching other videos.

Q 16.6 Mark observes a hit-ratio of 90% for blocks in the cache. Assuming that the
disk is the main bottleneck (serving blocks from the cache takes 0 milliseconds), what
is the average time for service to serve a single movie?

Q 16.7 Mark loads a new Britney Spears video onto the service and observes opera-
tion as the first users start to view it. It is so popular that no users are viewing any
other video. Mark sees that the first batch of viewers all start watching the video at
about the same time. He observes that the service threads all read block 0 at about the

47316 OutOfMoney.com

same time, then all read block 1 at about the same time, and so on. For this workload
what is a good cache replacement policy?

A. Least-recently used.
B. Most-recently used.
C. First-in, first-out.
D. Last-in, first-out.
E. The replacement policy doesn’t matter for this workload.

The Marketing Department is extremely happy with the progress. Ben raises another
round of money by selling his BMW and launches another PR campaign. The num-
ber of users dramatically increases. Unfortunately, under high load the machine
stops serving requests and has to be restarted. As a result, some users have to restart
their videos from the beginning, and they call up the support department to com-
plain. The problem appears to be some interaction between the network driver
and the service threads. The driver and service threads share a fixed-sized input buf-
fer that can hold 1,000 request messages. If the buffer is full and a message arrives,
the driver drops the message. When the card receives data from the network, it
issues an interrupt to the processor. This interrupt causes the network driver to run
 immediately on the stack of the currently running thread. The code for the driver
and receive_message is as follows:

 buffer [1000]
 lock instance bufferlock

 procedure driver ()
 message ← read_from_interface ()
 acquire (bufferlock)
 if space_in_buffer () then add_to_buffer (message)
 else discard_message (message)
 release (bufferlock)

 procedure receive_message ()
 while buffer_is_empty () do yield ()
 acquire (bufferlock)
 message ← remove_from_buffer ()
 release (bufferlock)
 return message

 procedure interrupt ()
 driver ()

Q 16.8 Which of the following could happen under high load?

A. Deadlock when an arriving message interrupts driver.
B. Deadlock when an arriving message interrupts a thread that is in receive_ message.
C. Deadlock when an arriving message interrupts a thread that is in remove_from_buffer.
D. receive_message misses a call to yield when the buffer is not empty, because it

can be interrupted between the buffer_is_empty test and the call to yield.

474 Problem Sets

Q 16.9 What fixes should Mark implement?

A. Delete all the code dealing with locks.
B. driver should run as a separate thread, to be awakened by the interrupt.
C. interrupt and driver should use an eventcount for sequence coordination.
D. driver shouldn’t drop packets when the buffer is full.

Mark eliminates the deadlock problems and, to attract more users, announces the
availability of a new Britney Spears video. The news spreads rapidly, and an enormous
number of requests for this one video start hitting the service. Mark measures the
throughput of the service as more and more clients ask for the video. The resulting
graph is plotted below. The throughput first increases while the number of clients
increases, then reaches a maximum value, and finally drops off.

Q 16.10 Why does the throughput decrease with a large number of clients?

A. The processor spends most of its time taking interrupts.
B. The processor spends most of its time updating the cache.
C. The processor spends most of its time waiting for the disk accesses to

 complete.
D. The processor spends most of its time removing messages from the buffer.

2001–1–6…15

T
ot

al
 s

er
ve

r
th

ro
ug

hp
ut

Number of clients
(in thousands)

0 5 10 15 20 25 30

475

Abort Upon deciding that an all-or-nothing action cannot or should not commit, to
undo all of the changes previously made by that all-or-nothing action. After aborting,
the state of the system, as viewed by anyone above the layer that implements the
all-or-nothing action, is as if the all-or-nothing action never existed. Compare with
commit. [Ch. 9]

Absolute path name In a naming hierarchy, a path name that a name resolver resolves
by using a universal context known as the root context. [Ch. 2]

Abstraction The separation of the interface specification of a module from its internal
implementation so that one can understand and make use of that module with no
need to know how it is implemented internally. [Ch. 1]

Access control list (ACL) A list of principals authorized to have access to some
object. [Ch. 11]

Acknowledgment (ACK) A status report from the recipient of a communication
to the originator. Depending on the protocol, an acknowledgment may imply or
explicitly state any of several things—for example, that the communication was
received, that its checksum verified correctly, that delivery to a higher level was
successful, or that buffer space is available for another communication. Compare
with negative acknowledgment. [Ch. 2]

Action An operation performed by an interpreter. Examples include a microcode step,
a machine instruction, a higher-level language instruction, a procedure invocation,
a shell command line, a response to a gesture at a graphical interface, or a database
update. [Ch. 9]

Active fault A fault that is currently causing an error. Compare with latent fault.
[Ch. 8]

Adaptive routing A method for setting up forwarding tables so that they change auto-
matically when links are added to and deleted from the network or when conges-
tion makes a path less desirable. Compare with static routing. [Ch. 7]

Address A name that is overloaded with information useful for locating the named
object. In a computer system, an address is usually of fixed length and resolved by
hardware into a physical location by mapping to geometric coordinates. Examples
of addresses include the names for a byte of memory and for a disk track. Also see
network address. [Ch. 2]

Address resolution protocol (ARP) A protocol used when a broadcast network is
a component of a packet-forwarding network. The protocol dynamically constructs
tables that map station identifiers of the broadcast network to network attachment
point identifiers of the packet-forwarding network. [Ch. 7]

Address space The name space of a location-addressed memory, usually a set of
contiguous integers (0, 1, 2,…). [Ch. 2]

Glossary

476 Glossary

Adversary An entity that intentionally tries to defeat the security measures of a
computer system. The entity may be malicious, out for profit, or just a hacker.
A friendly adversary is one that tests the security of a computer system. [Ch. 11]

Advertise In a network-layer routing protocol, for a participant to tell other partici-
pants which network addresses it knows how to reach. [Ch. 7]

Alias One of multiple names that map to the same value; another term for synonym.
(Beware: some operating systems define alias to mean an indirect name.) [Ch. 2]

All-or-nothing atomicity A property of a multistep action that if an anticipated
failure occurs during the steps of the action, the effect of the action from the point
of view of its invoker is either never to have started or else to have been accom-
plished completely. Compare with before-or-after atomicity and atomic. [Ch. 9]

Any-to-any connection A desirable property of a communication network, that any
node be able to communicate with any other. [Ch. 7]

Archive A record, usually kept in the form of a log, of old data values, for auditing,
recovery from application mistakes, or historical interest. [Ch. 9]

Asynchronous (From Greek roots meaning “not timed”) 1. Describes concurrent
activities that are not coordinated by a common clock and thus may make prog-
ress at different rates. For example, multiple processors are usually asynchronous,
and I/O operations are typically performed by an I/O channel processor that is
asynchronous with respect to the processor that initiated the I/O. [Ch. 2] 2. In a
communication network, describes a communication link over which data is sent
in frames whose timing relative to other frames is unpredictable and whose lengths
may not be uniform. Compare with isochronous. [Ch. 7]

At-least-once A protocol assurance that the intended operation or message delivery
was performed at least one time. It may have been performed several times.
[Ch. 4]

At-most-once A protocol assurance that the intended operation or message delivery
was performed no more than one time. It may not have been performed at all. [Ch. 4]

Atomic (adj.); Atomicity (n.) A property of a multistep action that there be no
evidence that it is composite above the layer that implements it. An atomic
action can be before-or-after, which means that its effect is as if it occurred either
completely before or completely after any other before-or-after action. An atomic
action can also be all-or-nothing, which means that if an anticipated failure occurs
during the action, the effect of the action as seen by higher layers is either never to
have started or else to have completed successfully. An atomic action that is both
all-or-nothing and before-or-after is known as a transaction. [Ch. 9]

Atomic storage Cell storage for which a multicell put can have only two possible
outcomes: (1) it stores all data successfully, or (2) it does not change the previous
data at all. In consequence, either a concurrent thread or (following a failure) a later
thread doing a get will always read either all old data or all new data. Computer

477Glossary

architectures in which multicell puts are not atomic are said to be subject to write
tearing. [Ch. 9]

Authentication Verifying the identity of a principal or the authenticity of a message.
[Ch. 11]

Authentication tag A cryptographically computed string, associated with a message,
that allows a receiver to verify the authenticity of the message. [Ch. 11]

Automatic rate adaptation A technique by which a sender automatically adjusts the
rate at which it introduces packets into a network to match the maximum rate that
the narrowest bottleneck can handle. [Ch. 7]

Authorization A decision made by an authority to grant a principal permission to
perform some operation, such as reading certain information. [Ch. 11]

Availability A measure of the time that a system was actually usable, as a fraction of
the time that it was intended to be usable. Compare with its complement, down
time. [Ch. 8]

Backup copy Of a set of replicas that is not written or updated synchronously, one
that is written later. Compare with primary copy and mirror. [Ch. 10]

Backward error correction A technique for correcting errors in which the source of
the data or control signal applies enough redundancy to allow errors to be detected
and, if an error does occur, that source is asked to redo the calculation or repeat the
transmission. Compare with forward error correction. [Ch. 8]

Bad-news diode An undesirable tendency of people in organizations that design and
implement systems: good news, for example, that a module is ready for delivery
ahead of schedule, tends to be passed immediately throughout the organization,
but bad news, for example, that a module did not pass its acceptance tests, tends to
be held locally until either the problem can be fixed or it cannot be concealed any
longer. [Ch. 1]

Bandwidth A measure of analog spectrum space for a communication channel. The
bandwidth, the acceptable signal power, and the noise level of a channel together
determine the maximum possible data rate for that channel. In digital systems,
this term is so often misused as a synonym for maximum data rate that it has now
entered the vocabulary of digital designers with that additional meaning. Analog
engineers, however, still cringe at that usage. [Ch. 7]

Batching A technique to improve performance by combining several operations into
a single operation to reduce setup overhead. [Ch. 6]

Before-or-after atomicity A property of concurrent actions: Concurrent actions are
before-or-after actions if their effect from the point of view of their invokers is
the same as if the actions occurred either completely before or completely after
one another. One consequence is that concurrent before-or-after software actions
cannot discover the composite nature of one another (that is, one action cannot
tell that another has multiple steps). A consequence in the case of hardware is that

478 Glossary

concurrent before-or-after writes to the same memory cell will be performed in
some order, so there is no danger that the cell will end up containing, for example,
the or of several write values. The database literature uses the words “isolation” and
“serializable”, the operating system literature uses the words “mutual exclusion”
and “critical section”, and the computer architecture literature uses the unquali-
fied word “atomicity” for this concept. [Ch. 5] Compare with all-or-nothing atom-
icity and atomic. [Ch. 9]

Best-effort contract The promise given by a forwarding network when it accepts a
packet: it will use its best effort to deliver the packet, but the time to delivery is not
fixed, the order of delivery relative to other packets sent to the same destination is
unpredictable, and the packet may be duplicated or lost. [Ch. 7]

Binding (n.); Bind (v.) As used in naming, a mapping from a specified name to a
particular value in a specified context. When a binding exists, the name is said
to be bound. Binding may occur at any time up to and including the instant that
a name is resolved. The term is also used more generally, meaning to choose a
specific lower-layer implementation for some higher-layer feature. [Ch. 2]

Bit error rate In a digital transmission system, the rate at which bits that have incor-
rect values arrive at the receiver, expressed as a fraction of the bits transmitted, for
example, one in 1010. [Ch. 7]

Bit stuffing The technique of inserting a bit pattern as a marker in a stream of bits
and then inserting bits elsewhere in the stream to ensure that payload data never
matches the marker bit pattern. [Ch. 7]

Blind write An update to a data value X by a transaction that did not previously read
X. [Ch. 9]

Bootstrapping A systematic approach to solving a general problem, consisting of a
method for reducing the general problem to a specialized instance of the same
problem and a method for solving the specialized instance. [Ch. 5]

Bottleneck The stage in a multistage pipeline that takes longer to perform its task
than any of the other stages. [Ch. 6]

Broadcast To send a packet that is intended to be received by many (ideally, all) of the
stations of a broadcast link (link-layer broadcast), or all the destination addresses of
a network (network-layer broadcast). [Ch. 7]

Burst A batch of related bits that is irregular in size and timing relative to other such
batches. Bursts of data are the usual content of messages and the usual payload of
packets. One can also have bursts of noise and bursts of packets. [Ch. 7]

Byzantine fault A fault that generates inconsistent errors (perhaps maliciously) that
can confuse or disrupt fault tolerance or security mechanisms. [Ch. 8]

Cache A performance-enhancing module that remembers the result of an expen-
sive computation on the chance that the result may soon be needed again.
[Ch. 2]

479Glossary

Cache coherence Read/write coherence for a multilevel memory system that has a
cache. It is a specification that the cache provide strict consistency at its interface.
[Ch. 10]

Capability In a computer system, an unforgeable ticket, which when presented is
taken as incontestable proof that the presenter is authorized to have access to the
object named in the ticket. [Ch. 11]

Capacity Any consistent measure of the size or amount of a resource. [Ch. 6]

Cell storage Storage in which a write or put operates by overwriting, thus destroying
previously stored information. Many physical storage devices, including magnetic
disk and CMOS random access memory, implement cell storage. Compare with
journal storage. [Ch. 9]

Certif icate A message that attests the binding of a principal identifier to a crypto-
graphic key. [Ch. 11]

Certif icate authority (CA) A principal that issues and signs certificates. [Ch. 11]

Certify To check the accuracy, correctness, and completeness of a security mechanism.
[Ch. 11]

Checkpoint 1. (n.) Information written to non-volatile storage that is intended to
speed up recovery from a crash. 2. (v.) To write a checkpoint. [Ch. 9]

Checksum A stylized error-detection code in which the data is unchanged from its
uncoded form and additional, redundant data is placed in a distinct, separately archi-
tected field. [Ch. 7]

Cipher Synonym for a cryptographic transformation. [Ch. 11]

Ciphertext The result of encryption. Compare with plaintext. [Ch. 11]

Circuit switch A device with many electrical circuits coming in to it that can connect
any circuit to any other circuit; it may be able to perform many such connec-
tions simultaneously. Historically, telephone systems were constructed of circuit
switches. [Ch. 7]

Cleartext Synonym for plaintext. [Ch. 11]

Client A module that initiates actions, such as sending a request to a service. [Ch. 4]
At the end-to-end layer of a network, the end that initiates actions. Compare with
service. [Ch. 7]

Client/service organization An organization that enforces modularity among
modules of a computer system by limiting the interaction among the modules to
messages. [Ch. 4]

Close-to-open consistency A consistency model for file operations. When a thread
opens a file and performs several write operations, all of the modifications will be
visible to concurrent threads only after the first thread closes the file. [Ch. 2]

480 Glossary

Closure In a programming language, an object that consists of a reference to the text
of a procedure and a reference to the context in which the program interpreter is
to resolve the variables of the procedure. [Ch. 2]

Coherence See read/write coherence or cache coherence.

Collision 1. In naming, a particular kind of name conflict in which an algorithmic
name generator accidentally generates the same name more than once in what
is intended to be a unique identifier name space. [Ch. 3] 2. In networks, an event
when two stations attempt to send a message over the same physical medium at the
same time. See also Ethernet. [Ch. 7]

Commit To renounce the ability to abandon an all-or-nothing action unilaterally.
One usually commits an all-or-nothing action before making its results available
to concurrent or later all-or-nothing actions. Before committing, the all-or-nothing
action can be abandoned and one can pretend that it had never been undertaken.
After committing, the all-or-nothing action must be able to complete. A committed
all-or-nothing action cannot be abandoned; if it can be determined precisely how
far its results have propagated, it may be possible to reverse some or all of its
effects by compensation. Commitment also usually includes an expectation that
the results preserve any appropriate invariants and will be durable to the extent
that the application requires those properties. Compare with compensate and
abort. [Ch. 9]

Communication link A data communication path between physically separated
components. [Ch. 2]

Compensate (adj.); Compensation (n.) To perform an action that reverses the
effect of some previously committed action. Compensation is intrinsically applica-
tion dependent; it is easier to reverse an incorrect accounting entry than it is to
undrill an unwanted hole. [Ch. 9]

Complexity A loosely defined notion that a system has so many components, inter-
connections, and irregularities that it is difficult to understand, implement, and
maintain. [Ch. 1]

Confidentiality Limiting information access to authorized principals. Secrecy is a
synonym. [Ch. 11]

Confinement Allowing a potentially untrusted program to have access to data, while
ensuring that the program cannot release information. [Ch. 11]

Congestion Overload of a resource that persists for significantly longer than the
average service time of the resource. (Since significance is in the eye of the beholder,
the concept is not a precise one.) [Ch. 7]

Congestion collapse When an increase in offered load causes a catastrophic decrease
in useful work accomplished. [Ch. 7]

Connection A communication path that requires maintaining state between succes-
sive messages. See set up and tear down. [Ch. 7]

481Glossary

Connectionless Describes a communication path that does not require coordinated
state and can be used without set up or tear down. See connection. [Ch. 7]

Consensus Agreement at separated sites on a data value despite communication
 failures. [Ch. 10]

Consistency A particular constraint on the memory model of a storage system that
allows concurrency and uses replicas: that all readers see the same result. Also used
in some professional literature as a synonym for coherence. [Ch. 10]

Constraint An application-defined invariant on a set of data values or externally
visible actions. Example: a requirement that the balances of all the accounts of a
bank sum to zero, or a requirement that a majority of the copies of a set of data be
identical. [Ch. 10]

Context One of the inputs required by a name-mapping algorithm in order to resolve
a name. A common form for a context is a set of name-to-value bindings. [Ch. 2]

Context reference The name of a context. [Ch. 2]

Continuous operation An availability goal, that a system be capable of running indef-
initely. The primary requirement of continuous operation is that it must be possible
to perform repair and maintenance without stopping the system. [Ch. 8]

Control point An entity that can adjust the capacity of a limited resource or change
the load that a source offers. [Ch. 7]

Cooperative scheduling A style of thread scheduling in which each thread on its
own initiative releases the processor periodically to allow other threads to run.
[Ch. 5]

Covert channel In a flow-control security system, a way of leaking information into
or out of a secure area. For example, a program with access to a secret might touch
several shared but normally unused virtual memory pages in a pattern to bring them
into real memory; a conspirator outside the secure area may be able to detect the
pattern by measuring the time required to read those same shared pages. [Ch. 11]

Cryptographic hash function A cryptographic function that maps messages to
short values in such a way that it is difficult to (1) reconstruct a message from
its hash value; and (2) construct two different messages having the same value.
[Ch. 11]

Cryptographic key The easily changeable component of a key-driven cryptographic
transformation. A cryptographic key is a string of bits. The bits may be generated
randomly, or they may be a transformed version of a password. The cryptographic
key, or at least part of it, usually must be kept secret, while all other components of
the transformation can be made public. [Ch. 11]

Cryptographic transformation Mathematical transformation used as a building
block for implementing security primitives. Such building blocks include functions
for implementing encryption and decryption, creating and verifying authentication
tags, cryptographic hashes, and pseudorandom number generators. [Ch. 11]

482 Glossary

Cryptography A discipline of theoretical computer science that specializes in the
study of cryptographic transformations and protocols. [Ch. 11]

Cut-through A forwarding technique in which transmission of a packet or frame on
an outgoing link begins while the packet or frame is still being received on the
incoming link. [Ch. 7]

Dallying A technique to improve performance by delaying a request on the chance that
the operation won’t be needed, or to create more opportunities for batching. [Ch. 6]

Dangling reference Use of a name that has outlived the binding of that name.
[Ch. 3]

Data integrity Authenticity of the apparent content of a message or file. [Ch. 11] In
a network, a transport protocol assurance that the data delivered to the recipient
is identical to the original data the sender provided. Compare with origin authen-
ticity. [Ch. 7]

Data rate The rate, usually measured in bits per second, at which bits are sent over
a communication link. When talking of the data rate of an asynchronous commu-
nication link, the term is often used to mean the maximum data rate that the link
allows. [Ch. 7]

Deadlock Undesirable interaction among a group of threads in which each thread is
waiting for some other thread in the group to make progress. [Ch. 5]

Decay Unintended loss of stored state with the passage of time. [Ch. 2]

Decay set A set of storage blocks, words, tracks, or other physical groupings, in which
all members of the set may spontaneously fail together, but independently of any
other decay set. [Ch. 8]

Decrypt To perform a reverse cryptographic transformation on a previously encrypted
message to obtain the plaintext. Compare with encrypt. [Ch. 11]

Default context reference A context reference chosen by the name resolver rather
than specified as part of the name or by the object that used the name. Compare
with explicit context reference. [Ch. 2]

Demand paging A class of page-movement algorithm that moves pages into the
primary device only at the instant that they are used. Compare with prepaging.
[Ch. 6]

Destination The network attachment point to which the payload of a packet is to be
delivered. Sometimes used as shorthand for destination address. [Ch. 7]

Destination address An identifier of the destination of a packet, usually carried as a
field in the header of the packet. [Ch. 7]

Detectable error An error or class of errors for which a reliable detection plan can
be devised. An error that is not detectable usually leads to a failure, unless some
mechanism that is intended to mask some other error accidentally happens to mask
the undetectable error. Compare with maskable error and tolerated error. [Ch. 8]

483Glossary

Digital signature An authentication tag computed with public-key cryptography.
[Ch. 11]

Directory In a file system, an object consisting of a table of bindings between
symbolic file names and some description (e.g., a file number or a file map) of the
corresponding file. Other terms used for this concept include catalog and folder.
A directory is an example of a context. [Ch. 2]

Discretionary access control A property of an access control system. In a discre-
tionary access control system, the owner of an object has the authority to decide
which principals have access to that object. Compare with non-discretionary
access control. [Ch. 11]

Do action (n.) Term used in some systems for a redo action. [Ch. 9]

Domain A range of addresses to which a thread has access. It is the abstraction
that enforces modularity within a memory, separating modules and allowing for
controlled sharing. [Ch. 5]

Down time A measure of the time that a system was not usable, as a fraction of the
time that it was intended to be usable. Compare with its complement, availability.
[Ch. 8]

Duplex Describes a link or connection between two stations that can be used in both
directions. Compare with simplex, half-duplex, and full-duplex. [Ch. 7]

Duplicate suppression A transport protocol mechanism for achieving at-most-
once delivery assurance, by identifying and discarding extra copies of packets or
messages. [Ch. 7]

Durability A property of a storage medium that, once written, it can be read for as
long as the application requires. Compare with stability and persistence, terms that
have different technical definitions as explained in Sidebar 2.1. [Ch. 2]

Durable storage Storage with the property that it (ideally) is decay-free, so it never
fails to return on a get the data that was stored by a previously successful put. Since
that ideal is impossibly strict, in practice, storage is considered durable when the
probability of failure is sufficiently low that the application can tolerate it. Durability
is thus an application-defined specification of how long the results of an action,
once completed, must be preserved. Durable is distinct from non-volatile, which
describes storage that maintains its memory while the power is off, but may still
have an intolerable probability of decay. The term persistent is sometimes used as
a synonym for durable, as explained in Sidebar 2.1, but to minimize confusion this
text avoids that usage. [Ch. 8]

Dynamic scope An example of a default context, used to resolve names of program
variables in some programming languages. The name resolver searches backward
in the call stack for a binding, starting with the stack frame of the procedure that
used the name, then the stack frame of its caller, then the caller’s caller, and so on.
Compare with static scope. [Ch. 2]

484 Glossary

Earliest deadline first scheduling policy A scheduling policy for real-time systems
that gives priority to the thread with the earliest deadline. [Ch. 6]

Early drop A predictive strategy for managing an overloaded resource: the system
refuses service to some customers before the queue is full. [Ch. 7]

Emergent property A property of an assemblage of components that would not be
predicted by examining the components individually. Emergent properties are a
surprise when first encountered. [Ch. 1]

Emulation Faithfully simulating some physical hardware so that the simulated hard-
ware can run any software that the physical hardware can. [Ch. 5]

Encrypt To perform a cryptographic transformation on a message with the objec-
tive of achieving confidentiality. The cryptographic transformation is usually
key-driven. Compare with the inverse operation, decrypt, which can recover the
original message. [Ch. 11]

End-to-end Describes communication between network attachment points, as
contrasted with communication between points within the network or across a
single link. [Ch. 7]

End-to-end layer The communication system layer that manages end-to-end commu-
nications. [Ch. 7]

Enforced modularity Modularity that prevents accidental errors from propagating
from one module to another. Compare with soft modularity. [Ch. 4]

Enumerate To generate a list of all the names that can currently be resolved (that is,
that have bindings) in a particular context. [Ch. 2]

Environment 1. In a discussion of systems, everything surrounding a system that is
not viewed as part of that system. The distinction between a system and its envi-
ronment is a choice based on the purpose, ease of description, and minimization
of interconnections. [Ch. 1] 2. In an interpreter, the state on which the interpreter
should perform the actions directed by program instructions. [Ch. 2]

Environment reference The component of an interpreter that tells the interpreter
where to find its environment. [Ch. 2]

Erasure An error in a string of bits, bytes, or groups of bits in which an identified bit,
byte, or group of bits is missing or has indeterminate value. [Ch. 8]

Ergodic A property of some time-dependent probabilistic processes: that the (usually
easier to measure) ensemble average of some parameter measured over a set of
elements subject to the process is the same as the time average of that parameter
of any single element of the ensemble. [Ch. 8]

Error Informally, a label for an incorrect data value or control signal caused by an
active fault. If there is a complete formal specification for the internal design of
a module, an error is a violation of some assertion or invariant of the specifica-
tion. An error in a module is not identical to a failure of that module, but if an error
is not masked, it may lead to a failure of the module. [Ch. 8]

485Glossary

Error containment Limiting how far the effects of an error propagate. A module
is normally designed to contain errors in such a way that the effects of an error
appear in a predictable way at the module’s interface. [Ch. 8]

Error correction A scheme to set to the correct value a data value or control signal
that is in error. Compare with error detection. [Ch. 8]

Error-correction code A method of encoding stored or transmitted data with a
modest amount of redundancy, in such a way that any errors during storage or
transmission will, with high probability, lead to a decoding that is identical to the
original data. See also the general definition of error correction. Compare with
error-detection code. [Ch. 7]

Error detection A scheme to discover that a data value or control signal is in error.
Compare with error correction. [Ch. 8]

Error-detection code A method of encoding stored or transmitted data with a small
amount of redundancy, in such a way that any errors during storage or transmis-
sion will, with high probability, lead to a decoding that is obviously wrong. See also
the general definition of error detection. Compare with error-correction code and
checksum. [Ch. 7]

Ethernet A widely used broadcast network in which all participants share a common
wire and can hear one another transmit. Ethernet is characterized by a transmit
protocol in which a station wishing to send data first listens to ensure that no one
else is sending, and then continues to monitor the network during its own trans-
mission to see if some other station has tried to transmit at the same time, an error
known as a collision. This protocol is named Carrier Sense Multiple Access with
Collision Detection, abbreviated CSMA/CD. [Ch. 7]

Eventcount A special type of shared variable used for sequence coordination. It
supports two primary operations: await and advance. An eventcount is a counter that
is incremented atomically, using advance, while other threads wait for the counter to
reach a certain value using await. Eventcounts are often used in combination with
sequencers. [Ch. 5]

Eventual consistency A requirement that at some unspecified time following an
update to a collection of data, if there are no more updates, the memory model for
that collection will hold. [Ch. 10]

Exactly-once A protocol assurance that the intended operation or message delivery
was performed both at-least-once and at-most-once. [Ch. 4]

Exception An interrupt event that pertains to the thread that a processor is currently
running. [Ch. 5]

Explicit context reference For a name or an object, an associated reference to the
context in which that name, or all names contained in that object, are to be resolved.
Compare with default context reference. [Ch. 2]

Explicitness A property of a message in a security protocol: if a message is explicit,
then the message contains all the information necessary for a receiver to reliably

486 Glossary

determine that the message is part of a particular run of the protocol with a specific
function and set of participants. [Ch. 11]

Exponential backoff An adaptive procedure used to set a timer, for example, to
wait for congestion to dissipate. Each time the timer setting proves to be too small,
the action doubles (or, more generally, multiplies by a constant greater than one)
the length of its next timer setting. The intent is to obtain a suitable timer value as
quickly as possible. See also exponential random backoff. [Ch. 7]

Exponential random backoff A form of exponential backoff in which an action that
repeatedly encounters interference repeatedly doubles (or, more generally, multi-
plies by a constant greater than one) the size of an interval from which it randomly
chooses its next delay before retrying. The intent is that by randomly changing the
timing relative to other, interfering actions, the interference will not recur. [Ch. 9]

Export In naming, to provide a name for an object that other objects can use. [Ch. 2]

Fail-fast Describes a system or module design that contains detected errors by reporting
at its interface that its output may be incorrect. Compare with fail-stop. [Ch. 8]

Fail-safe Describes a system design that detects incorrect data values or control
signals and forces them to values that, even if not correct, are known to allow the
system to continue operating safely. [Ch. 8]

Fail-secure Describes an application of fail-safe design to information protection: a
failure is guaranteed not to allow unauthorized access to protected information. In
early work on fault tolerance, this term was also occasionally used as a synonym for
fail-fast. [Ch. 8]

Fail-soft Describes a design in which the system specification allows errors to be
masked by degrading performance or disabling some functions in a predictable
manner. [Ch. 8]

Fail-stop Describes a system or module design that contains detected errors by stop-
ping the system or module as soon as possible. Compare with fail-fast, which does
not require other modules to take additional action, such as setting a timer, to detect
the failure. [Ch. 8]

Fail-vote Describes an N-modular redundancy system with a majority voter. [Ch. 8]

Failure The outcome when a component or system does not produce the intended
result at its interface. Compare with fault. [Ch. 8]

Failure tolerance A measure of a system’s ability to mask active faults and continue
operating correctly. A typical measure counts the number of contained compo-
nents that can fail without causing the system to fail. [Ch. 8]

Fault A defect in materials, design, or implementation that may (or may not) cause an
error and lead to a failure. Compare with failure. [Ch. 8]

Fault avoidance A strategy to design and implement a component with a probability
of faults that is so low that it can be neglected. When applied to software, fault
avoidance is sometimes called valid construction. [Ch. 8]

487Glossary

Fault tolerance A set of techniques that involve noticing active faults and lower-level
subsystem failures and masking them, rather than allowing the resulting errors to
propagate. [Ch. 8]

File A popular memory abstraction to durably store and retrieve data. A typical inter-
face for a file consists of procedures to open the file, to read and write regions of the
file, and to close the file. [Ch. 2]

Fingerprint Another term for a witness. [Ch. 10]

First-come, first-served (FCFS) scheduling policy A scheduling policy in which
requests are processed in the order in which they arrive. [Ch. 6]

First-in, first-out (FIFO) policy A particular page-removal policy for a multilevel
memory system. FIFO chooses to remove the page that has been in the primary
device the longest. [Ch. 6]

Flow control 1. In networks, an end-to-end protocol between a fast sender and a slow
recipient, a mechanism that limits the sender’s data rate so that the recipient does
not receive data faster than it can handle. [Ch. 7] 2. In security, a system that allows
untrusted programs to work with sensitive data but confines all program outputs to
prevent unauthorized disclosure. [Ch. 11]

Force (v.) When output may be buffered, to ensure that a previous output value has
actually been written to durable storage or sent as a message. Caches that are not
write-through usually have a feature that allows the invoker to force some or all of
their contents to the secondary storage medium. [Ch. 9]

Forward error correction A technique for controlling errors in which enough
redundancy to correct anticipated errors is applied before an error occurs. Forward
error correction is particularly applicable when the original source of the data
value or control signal will not be available to recalculate or resend it. Compare
with backward error correction. [Ch. 8]

Forward secrecy A property of a security protocol. A protocol has forward secrecy if
information, such as an encryption key, deduced from a previous transcript, doesn’t
allow an adversary to decrypt future messages. [Ch. 11]

Forwarding table A table that tells the network layer which link to use to forward a
packet, based on its destination address. [Ch. 7]

Fragment 1. (v.) In network protocols, to divide the payload of a packet so that it can
fit into smaller packets for carriage across a link with a small maximum transmis-
sion unit. 2. (n.) The resulting pieces of payload. [Ch. 7]

Frame 1. (n.) The unit of transmission in the link layer. Compare with packet, segment,
and message. 2. (v.) To delimit the beginning and end of a bit, byte, frame (n.),
packet, segment, or message within a stream. [Ch. 7]

Freshness A property of a message in a security protocol: if the message is fresh, it is
assured not to be a replay. [Ch. 11]

488 Glossary

Full-duplex Describes a duplex link or connection between two stations that can be
used in both directions at the same time. Compare with simplex, duplex, and half-
duplex. [Ch. 7]

Gate A predefined protected entry point into a domain. [Ch. 5]

Generated name A name created algorithmically, rather than chosen by a person.
[Ch. 3]

Global name In a layered naming scheme, a name that is bound only in the outermost
context layer and thus has the same meaning to all users. [Ch. 2]

Half-duplex Describes a duplex link or connection between two stations that can be
used in only one direction at a time. Compare with simplex, duplex, and full-duplex.
[Ch. 7]

Hamming distance In an encoding system, the number of bits in an element of a
code that would have to change to transform it into a different element of the code.
The Hamming distance of a code is the minimum Hamming distance between any
pair of elements of the code. [Ch. 8]

Hard real-time scheduling policy A real-time scheduler in which missing a dead-
line may result in a disaster. [Ch. 6]

Hash function A function that algorithmically derives a relatively short, fixed-length
string of bits from an arbitrarily large block of data. The resulting short string is
known as a hash. See also cryptographic hash function. [Ch. 3]

Header Information that a protocol layer adds to the front of a packet. [Ch. 7]

Hierarchical routing A routing system that takes advantage of hierarchically
assigned network destination addresses to reduce the size of its routing tables.
[Ch. 7]

Hierarchy A technique of organizing systems that contain many components: group
small numbers of components into self-contained and stable subsystems that then
become components of larger self-contained and stable subsystems, and so on.
[Ch. 1]

Hit ratio In a multilevel memory, the fraction of references satisfied by the primary
memory device. [Ch. 6]

Hop limit A network-layer protocol field that acts as a safety net to prevent packets
from endlessly circulating in a network that has inconsistent forwarding tables.
[Ch. 7]

Hot swap To replace modules in a system while the system continues to provide
service. [Ch. 8]

Idempotent Describes an action that can be interrupted and restarted from the
beginning any number of times and still produce the same result as if the action
had run to completion without interruption. The essential feature of an idempotent
action is that if there is any question about whether or not it completed, it is safe

489Glossary

to do it again. “Idempotent” is correctly pronounced with the accent on the second
syllable, not on the first and third. [Ch. 4]

Identifier A synonym for name, sometimes used to avoid an implication that the
name might be meaningful to a person rather than to a machine. [Ch. 3]

Illegal instruction An instruction that an interpreter is not equipped to execute
because it is not in the interpreter’s instruction repertoire or it has an out-of-range
operand (for example, an attempt to divide by zero). An illegal instruction typically
causes an interrupt. [Ch. 2]

Incommensurate scaling A property of most systems, that as the system grows (or
shrinks) in size, not all parts grow (or shrink) at the same rate, thus stressing the
system design. [Ch. 1]

Incremental backup A backup copy that contains only data that has changed since
making the previous backup copy. [Ch. 10]

Indirect name A name that is bound to another name in the same name space.
“Symbolic link”, “soft link”, and “shortcut” are other words used for this concept.
Some operating systems also define the term alias to have this meaning rather than
its more general meaning of synonym. [Ch. 2]

Indirection Decoupling a connection from one object to another by interposing a
name with the goal of delaying the choice of (or allowing a later change about) which
object the name refers to. Indirection makes it possible to delay the choice of or
change which object is used without the need to change the object that uses it. Using
a name is sometimes described as “inserting a level of indirection”. [Ch. 1]

Install In a system that uses logs to achieve all-or-nothing atomicity, to write data to
cell storage. [Ch. 9]

Instruction reference A characteristic component of an interpreter: the place from
which it will take its next instruction. [Ch. 2]

Intended load The amount of a shared resource that a set of users would attempt
to utilize if the resource had unlimited capacity. In systems that have no provision
for congestion control, the intended load is equal to the offered load. The goal of
congestion control is to make the offered load smaller than the intended load.
Compare with offered load. [Ch. 7]

Interleaving A technique to improve performance by distributing apparently sequen-
tial requests to several instances of a device, so that the requests may actually be
processed concurrently. [Ch. 6]

Intermittent fault A persistent fault that is active only occasionally. Compare with
transient fault. [Ch. 8]

International Organization for Standardization (ISO) An international non-
governmental body that sets many technical and manufacturing standards, including
the (frequently ignored) Open Systems Interconnect (OSI) reference model for data

490 Glossary

communication networks. The short name ISO is not an acronym; it is the Greek
word for “equal”, chosen to be the same in all languages and always spelled in all
capital letters. [Ch. 7]

Interpreter The abstraction that models the active mechanism performing compu-
tations. An interpreter comprises three components: an instruction reference, a
context reference, and an instruction repertoire. [Ch. 2]

Interrupt An event that causes an interpreter to transfer control to the first instruc-
tion of a different procedure, an interrupt handler, instead of executing the next
instruction. [Ch. 2]

Invalidate In a cache, to mark “do not use” or completely remove a cache entry
because some event has occurred that may make the value associated with that
entry incorrect. [Ch. 10]

Isochronous (From Greek roots meaning “equal” and “time”) Describes a commu-
nication link over which data is sent in frames whose length is fixed in advance
and whose timing relative to other frames is precisely predictable. Compare with
asynchronous. [Ch. 7]

Jitter In real-time applications, variability in the delivery times of successive data
elements. [Ch. 7]

Job The unit of granularity on which threads are scheduled. A job corresponds to the
burst of activity of a thread between two idle periods. [Ch. 6]

Journal storage Storage in which a write or put appends a new value, rather than
overwriting a previously stored value. Compare with cell storage. [Ch. 9]

Kernel A trusted intermediary that virtualizes resources for mutually distrustful
modules running on the same computer. Kernel modules typically run with kernel
mode enabled. [Ch. 5]

Kernel mode A feature of a processor that, when set, allows threads to use special
processor features (e.g., the page-map address register) that are disallowed to
threads that run with kernel mode disabled. Compare with user mode. [Ch. 5]

Key-based cryptographic transformation A cryptographic transformation for
which successfully meeting the cryptographic goals depends on the secrecy of
some component of the transformation. That component is called a cryptographic
key, and a usual design is to make that key a small, modular, separable, and easily
changeable component. [Ch. 11]

Key distribution center (KDC) A principal that authenticates other principals to
one another and also provides one or more temporary cryptographic keys for
communication between other principals. [Ch. 11]

Latency The delay between a change at the input to a system and the corresponding
change at its output. [Ch. 2] As used in reliability, the time between when a fault
becomes active and when the module in which the fault occurred either fails or
detects the resulting error. [Ch. 8]

491Glossary

Latent fault A fault that is not currently causing an error. Compare with active fault.
[Ch. 8]

Layering A technique of organizing systems in which the designer builds on an inter-
face that is already complete (a lower layer) to create a different complete interface
(an upper layer). [Ch. 1]

Least-recently-used (LRU) Policy A popular page-removal policy for a multilevel
memory system. LRU chooses to remove the page that has not been used the
longest. [Ch. 6]

Lexical scope Another term for static scope. [Ch. 2]

Limited name space A name space in which a limited number of names can be
expressed and therefore names must be allocated, deallocated, and reused. [Ch. 3]

Link 1. (n.) Another term for a synonym (usually called a hard link) or an indirect
name (usually called a soft or symbolic link). 2. (v.) Another term for bind. [Ch. 2].
3. (n.) In data communication, a communication path between two points. [Ch. 7]

Link layer The communication system layer that moves data directly from one phys-
ical point to another. [Ch. 7]

List system A design for an access control system in which each protected object is
associated with a list of authorized principals. [Ch. 11]

Livelock An undesirable interaction among a group of threads in which each thread
begins a sequence of actions, discovers that it cannot complete the sequence because
actions of other threads have interfered, and begins again, endlessly. [Ch. 5]

Locality of reference A property of most programs that memory references tend to
be clustered in both time and address space. [Ch. 6]

Lock A flag associated with a data object, set by a thread to warn concurrent threads
that the object is in use and that it may be a mistake for other threads to read or
write it. Locks are one technique used to achieve before-or-after atomicity. [Ch. 5]

Lock point In a system that provides before-or-after atomicity by locking, the first
instant in a before-or-after action when every lock that will ever be in its lock set
has been acquired. [Ch. 9]

Lock set The collection of all locks acquired during the execution of a before-or-after
action. [Ch. 9]

Lock-step protocol In networking, any transport protocol that requires acknowledg-
ment of the previously sent message, segment, packet, or frame before sending
another message, segment, packet, or frame to the same destination. Sometimes
called a stop and wait protocol. Compare with pipeline. [Ch. 7]

Log 1. (n.) A specialized use of journal storage to maintain an append-only record of
some application activity. Logs are used to implement all-or-nothing actions, for
performance enhancement, for archiving, and for reconciliation. 2. (v.) To append a
record to a log. [Ch. 9]

492 Glossary

Logical copy A replica that is organized in a form determined by a higher layer.
An example is a replica of a file system that is made by copying one file at a time.
Analogous to logical locking. Compare with physical copy. [Ch. 10]

Logical locking Locking of higher-layer data objects such as records or fields of a
database. Compare with physical locking. [Ch. 9]

Manchester code A particular type of phase encoding in which each bit is repre-
sented by two bits of opposite value. [Ch. 7]

Margin The amount by which a specification is better than necessary for correct
operation. The purpose of designing with margins is to mask some errors. [Ch. 8]

Mark point 1. (adj.) An atomicity-assuring discipline in which each newly created
action n must wait to begin reading shared data objects until action (n 2 1) has
marked all of the variables it intends to modify. 2. (n.) The instant at which an action
has marked all of the variables it intends to modify. [Ch. 9]

Marshal/unmarshal To marshal is to transform the internal representation of one or
more pieces of data into a form that is more suitable for transmission or storage. The
opposite action, to unmarshal, is to parse marshaled data into its constituent data
pieces and transform those pieces into a suitable internal representation. [Ch. 4]

Maskable error An error or class of errors that is detectable and for which a system-
atic recovery strategy can in principle be devised. Compare with detectable error
and tolerated error. [Ch. 8]

Masking As used in reliability, containing an error within a module in such a way that
the module meets its specifications as if the error had not occurred. [Ch. 8]

Master In a multiple-site replication scheme, the site to which updates are directed.
Compare with slave. [Ch. 10]

Maximum transmission unit (MTU) A limit on the size of a packet, imposed to
control the time commitment involved in transmitting the packet, to control the
amount of loss if congestion causes the packet to be discarded, and to keep low the
probability of a transmission error. [Ch. 7]

Mean time between failures (MTBF) The sum of MTTF and MTTR for the same
component or system. [Ch. 8]

Mean time to failure (MTTF) The expected time that a component or system will
operate continuously without failing. “Time” is sometimes measured in cycles of
operation. [Ch. 8]

Mean time to repair (MTTR) The expected time to replace or repair a component
or system that has failed. The term is sometimes written as “mean time to restore
service”, but it is still abbreviated MTTR. [Ch. 8]

Mediation Before a service performs a requested operation, determining which prin-
cipal is associated with the request and whether the principal is authorized to
request the operation. [Ch. 11]

493Glossary

Memory The abstraction for remembering data values, using read and write oper-
ations. The write operation specifies a value to be remembered and a name by
which that value can be recalled in the future. See also storage. [Ch. 2]

Memoryless A property of some time-dependent probabilistic processes, that
the probability of what happens next does not depend on what has happened
before. [Ch. 8]

Memory manager A device located between a processor and memory that translates
virtual to physical addresses and checks that memory references by the thread
running on the processor are in the thread’s domain(s). [Ch. 5]

Memory-mapped I/O An interface that allows an interpreter to communicate
with an I/O module using load and store instructions that have ordinary memory
addresses. [Ch. 2]

Message The unit of communication at the application level. The length of a
message is determined by the application that sends it. Since a network may have
a maximum size for its unit of transmission, the end-to-end layer divides a message
into one or more segments, each of which is carried in a separate packet. Compare
with frame (n.), segment, and packet. [Ch. 7]

Message authentication The verification of the integrity of the origin and the data
of a message. [Ch. 11]

Message authentication code (MAC) An authentication tag computed with shared-
secret cryptography. MAC is sometimes used as a verb in security jargon, as in “Just
to be careful, let’s MAC the address field of that message.” [Ch. 11]

Metadata Information about an object that is not part of the object itself. Examples
are the name of the object, the identity of its owner, the date it was last modified,
and the location in which it is stored. [Ch. 3]

Microkernel A kernel organization in which most operating system components run
in separate, user-mode address spaces. [Ch. 5]

Mirror (n.) One of a set of replicas that is created or updated synchronously. Compare
with primary copy and backup copy. Sometimes used as a verb, as in “Let’s mirror
that data by making three replicas.” [Ch. 8]

Missing-page exception The event when an addressed page is not present in the
primary device and the virtual memory manager has to move the page in from a
secondary device. The literature also uses the term page fault. [Ch. 6]

Modular sharing Sharing of an object without the need to know details of the imple-
mentation of the shared object. With respect to naming, modular sharing is sharing
without the need to know the names that the shared object uses to refer to its
components. [Ch. 3]

Module A system component that can be separately designed, implemented, managed,
and replaced. [Ch. 1]

494 Glossary

Monolithic kernel A kernel organization in which most operating system proce-
dures run in a single, kernel-mode address space. [Ch. 5]

Most-recently-used (MRU) policy A page-removal policy for a multilevel memory
system. MRU chooses for removal the most recently used page in the primary
device. [Ch. 6]

MTU discovery A procedure that systematically discovers the smallest maximum
transmission unit along the path between two network attachment points.
[Ch. 7]

Multihomed Describes a single physical interface between the network layer and the
end-to-end layer that is associated with more than one network attachment point,
each with its own network-layer address. [Ch. 7]

Multilevel memory Memory built out of two or more different memory devices that
have significantly different latencies and cost per bit. [Ch. 6]

Multiple lookup A name-mapping algorithm that tries several contexts in sequence,
looking for the first one that can successfully resolve a presented name. [Ch. 2]

Multiplexing Sharing a communication link among several, usually independent,
simultaneous communications. The term is also used in layered protocol design
when several different higher-layer protocols share the same lower-layer protocol.
[Ch. 7]

Multipoint Describes communication that involves more than two parties. A multi-
point link is a single physical medium that connects several parties. A multipoint
protocol coordinates the activities of three or more participants. [Ch. 7]

N 1 1 redundancy When a load can be handled by sharing it among N equivalent
modules, the technique of installing N 1 1 or more of the modules, so that if one
fails the remaining modules can continue to handle the full load while the one that
failed is being repaired. [Ch. 8]

N-modular redundancy (NMR) A redundancy technique that involves supplying
identical inputs to N equivalent modules and connecting the outputs to one or
more voters. [Ch. 8]

N-version programming The software version of N-modular redundancy. N different
teams each independently write a program from its specifications. The programs
then run in parallel, and voters compare their outputs. [Ch. 8]

Name A designator or an identifier of an object or value. A name is an element of a
name space. [Ch. 2]

Name conflict An occurrence when, for some reason, it seems necessary to bind the
same name to two different values at the same time in the same context. Usually, a
result of encountering a preexisting name in a naming scheme that does not provide
modular sharing. When names are algorithmically generated, name conflicts are
called collisions. [Ch. 3]

Name-mapping algorithm See naming scheme. [Ch. 2]

495Glossary

Name space The set of all possible names of a particular naming scheme. A name
space is defined by a set of symbols from some alphabet together with a set of
syntax rules that define which names are members of the name space. [Ch. 2]

Name-to-key binding A binding between a principal identifier and a cryptographic
key. [Ch. 11]

Naming hierarchy A naming network that is constrained to a tree-structured form.
The root used for interpretation of absolute path names (which in a naming hier-
archy are sometimes called “tree names”) is normally the base of the tree. [Ch. 2]

Naming network A naming scheme in which contexts are named objects and any
context may contain a binding for any other context, as well as for any non-con-
text object. An object in a naming network is identified by a multicomponent path
name that traces a path through the naming network from some starting point,
which may be either a default context or a root. [Ch. 2]

Naming scheme A particular combination of a name space, a universe of values
(which may include physical objects) that can be named, and a name-mapping
algorithm that provides a partial mapping from the name space to the universe of
values. [Ch. 2]

Negative acknowledgment (NAK or NACK) A status report from a recipient to
a sender asserting that some previous communication was not received or was
received incorrectly. The usual reason for sending a negative acknowledgment is to
avoid the delay that would be incurred by waiting for a timer to expire. Compare
with acknowledgment. [Ch. 7]

Network A communication system that interconnects more than two things. [Ch. 7]

Network address In a network, the identifier of the source or destination of a
packet. [Ch. 7]

Network attachment point The place at which the network layer accepts or delivers
payload data to and from the end-to-end layer. Each network attachment point has
an identifier, its address, that is unique within that network. A network attachment
point is sometimes called an access point, and in ISO terminology, a Network
Services Access Point (NSAP). [Ch. 7]

Network layer The communication system layer that forwards data through interme-
diate links to carry it to its intended destination. [Ch. 7]

Non-discretionary access control A property of an access control system. In a
non-discretionary access control system, some principal other than the owner has
the authority to decide which principals have to access the object. Compare with
discretionary access control. [Ch. 11]

Non-preemptive scheduling A scheduling policy in which threads run until they
explicitly yield or wait. [Ch. 5]

Non-volatile memory A kind of memory that does not require a continuous source
of power, so it retains its content when its power supply is off. The phrase “stable
storage” is a common synonym. Compare with volatile memory. [Ch. 2]

496 Glossary

Nonce A unique identifier that should never be reused. [Ch. 7]

Object As used in naming, any software or hardware structure that can have a distinct
name. [Ch. 2]

Offered load The amount of a shared service that a set of users attempt to utilize.
Presented load is an occasionally encountered synonym. [Ch. 6]

Opaque name In a modular system, a name that, from the point of view of the current
module, carries no overloading that the module knows how to interpret. [Ch. 3]

Operating system A collection of programs that provide services such as abstraction
and management of hardware devices and features such as libraries of commonly
needed procedures, all of which are intended to make it easier to write application
programs. [Ch. 2]

Optimal (OPT) page-removal policy An unrealizable page-removal policy for a
multilevel memory system. The optimal policy removes from primary memory
the page that will not be used for the longest time. Because identifying that page
requires knowing the future, the optimal policy is not implementable in practice. Its
utility is that after any particular reference string has been observed, one can then
simulate the operation of that reference string with the optimal policy, to compare
the number of missing-page exceptions with the number obtained when using
other, realizable policies. [Ch. 6]

Optimistic concurrency control A concurrency control scheme that allows
concurrent threads to proceed even though a risk exists that they will interfere
with each other, with the plan of detecting whether there actually is interference
and, if necessary, forcing one of the threads to abort and retry. Optimistic concur-
rency control is an effective technique in situations where interference is possible
but not likely. Compare with pessimistic concurrency control. [Ch. 9]

Origin authenticity Authenticity of the claimed origin of a message. Compare with
data integrity. [Ch. 11]

Overload When offered load exceeds the capacity of a service for a specified period
of time. [Ch. 6]

Overloaded name A name that does more than simply identify an object; it also
carries other information, such as the type of the object, the date it was modified,
or how to locate it. Overloading is commonly encountered when a system has not
made suitable provision to handle metadata. Contrast with pure name. [Ch. 3]

Packet The unit of transmission of the network layer. A packet consists of a segment
of payload data, accompanied by guidance information that allows the network
to forward it to the network attachment point that is intended to receive the data
carried in the packet. Compare with frame (n.), segment, and message. [Ch. 7]

Packet forwarding In the network layer, upon receiving a packet that is not destined
for the local end layer, to send it out again along some link with the intention of
moving the packet closer to its destination. [Ch. 7]

497Glossary

Packet switch A specialized computer that forwards packets in a data communica-
tion network. Sometimes called a packet forwarder or, if it also implements an
adaptive routing algorithm, a router. [Ch. 7]

Page In a page-based virtual memory system, the unit of translation between virtual
addresses and physical addresses. [Ch. 5]

Page fault See missing-page exception.

Page map Data structure employed by the virtual memory manager to map virtual
addresses to physical addresses. [Ch. 5]

Page-map address register A processor register maintained by the thread manager. It
contains a pointer to the page map used by the currently active thread, and it can
be changed only when the processor is in kernel mode. [Ch. 5]

Page-removal policy A policy for deciding which page to move from the primary to
the secondary device to make a space to bring in a new page. [Ch. 6]

Page table A particular form of a page map, in which the map is organized as an array
indexed by page number. [Ch. 5]

Pair-and-compare A method for constructing fail-fast modules from modules that
do not have that property, by connecting the inputs of two replicas of the module
together and connecting their outputs to a comparator. When one repairs a failed
pair-and-compare module by replacing the entire two-replica module with a spare,
rather than identifying and replacing the replica that failed, the method is called
pair-and-spare. [Ch. 8]

Pair-and-spare See pair-and-compare.

Parallel transmission A scheme for increasing the data rate between two modules
by sending data over several parallel lines that are coordinated by the same
clock. [Ch. 7]

Partition To divide a job up and assign it to different physical devices, with the intent
that a failure of one device does not prevent the entire job from being done. [Ch. 8]

Password A secret character string used to authenticate the claimed identity of an
individual. [Ch. 11]

Path name A name with internal structure that traces a path through a naming
network. Any prefix of a path name can be thought of as the explicit context refer-
ence to use for resolution of the remainder of the path name. See also absolute path
name and relative path name. [Ch. 2]

Path selection In a network-layer routing protocol, when a participant updates its
own routing information with new information learned from an exchange with its
neighbors. [Ch. 7]

Payload In a layered description of a communication system, the data that a higher
layer has asked a lower layer to send; used to distinguish that data from the headers
and trailers that the lower layer adds. (This term seems to have been borrowed

498 Glossary

from the transportation industry, where it is used frequently in aerospace applica-
tions.) [Ch. 7]

Pending A state of an all-or-nothing action, when that action has not yet either
committed or aborted. Also used to describe the value of a variable that was set or
changed by a still-pending all-or-nothing action. [Ch. 9]

Persistence A property of an active agent such as an interpreter that, when
it detects it has failed, it keeps trying until it succeeds. Compare with stability
and durability, terms that have different technical definitions as explained in
Sidebar 2.1. The adjective “persistent” is used in some contexts as a synonym for
stable and sometimes also in the sense of immutable. [Ch. 2]

Persistent fault A fault that cannot be masked by retry. Compare with transient fault
and intermittent fault. [Ch. 8]

Persistent sender A transport protocol participant that, by sending the same
message repeatedly, tries to ensure that at least one copy of the message gets
delivered. [Ch. 7]

Pessimistic concurrency control A concurrency control scheme that forces a
thread to wait if there is any chance that by proceeding it may interfere with another,
concurrent, thread. Pessimistic concurrency control is an effective technique in
situations where interference between concurrent threads has a high probability.
Compare with optimistic concurrency control. [Ch. 9]

Phase encoding A method of encoding data for digital transmission in which at least
one level transition is associated with each transmitted bit, to simplify framing and
recovery of the sender’s clock. [Ch. 7]

Physical address An address that is translated geometrically to read or write data
stored on a device. Compare with virtual address. [Ch. 5]

Physical copy A replica that is organized in a form determined by a lower layer.
An example is a replica of a disk that is made by copying it sector by sector. Analo-
gous to physical locking. Compare with logical copy. [Ch. 10]

Physical locking Locking of lower-layer data objects, typically chunks of data whose
extent is determined by the physical layout of a storage medium. Examples of such
chunks are disk sectors or even an entire disk. Compare with logical locking. [Ch. 9]

Piggybacking In an end-to-end protocol, a technique for reducing the number of
packets sent back and forth by including acknowledgments and other protocol state
information in the header of the next packet that goes to the other end. [Ch. 7]

Pipeline In networking, a transport protocol design that allows sending a packet
before receiving an acknowledgment of the packet previously sent to the same
destination. Contrast with lock-step protocol. [Ch. 7]

Plaintext The result of decryption. Also sometimes used to describe data that has
not been encrypted, as in “The mistake was sending that message as plaintext.”
Compare with ciphertext. [Ch. 11]

499Glossary

Point-to-point Describes a communication link between two stations, as contrasted
with a broadcast or multipoint link. [Ch. 7]

Polling A style of interaction between threads or between a processor and a device
in which one periodically checks whether the other needs attention. [Ch. 5]

Port In an end-to-end transport protocol, the multiplexing identifier that tells which
of several end-to-end applications or application instances should receive the
payload. [Ch. 7]

Preemptive scheduling A scheduling policy in which a thread manager can inter-
rupt and reschedule a running thread at any time. [Ch. 5]

Prepaging An optimization for a multilevel memory manager in which the
manager predicts which pages might be needed and brings them into the
primary memory before the application demands them. Compare with demand
algorithm. [Ch. 6]

Prepared In a layered or multiple-site all-or-nothing action, a state of a component
action that has announced that it can, on command, either commit or abort. Having
reached this state, it awaits a decision from the higher-layer coordinator of the
action. [Ch. 9]

Presentation protocol A protocol that translates semantics and data of the network
to match those of the local programming environment. [Ch. 7]

Presented load See offered load.

Preventive maintenance Active intervention intended to increase the mean
time to failure of a module or system and thus improve its reliability and avail-
ability. [Ch. 8]

Primary copy Of a set of replicas that are not written or updated synchronously, the
one that is considered authoritative and, usually, written or updated first. Compare
with mirror and backup copy. [Ch. 10]

Primary device In a multilevel memory system, the memory device that is faster and
usually more expensive and thus smaller. Compare with secondary device. [Ch. 6]

Principal The representation inside a computer system of an agent (a person,
a computer, a thread) that makes requests to the security system. A principal is the
entity in a computer system to which authorizations are granted; thus, it is the unit
of accountability and responsibility in a computer system. [Ch. 11]

Priority scheduling policy A scheduling policy in which some jobs have priority
over other jobs. [Ch. 6]

Privacy A socially defined ability of an individual (or organization) to determine if,
when, and to whom personal (or organizational) information is to be released and
also what limitations should apply to use of released information. [Ch. 11]

Private key In public-key cryptography, the cryptographic key that must be kept
secret. Compare with public key. [Ch. 11]

500 Glossary

Processing delay In a communication network, that component of the overall delay
contributed by computation that takes place in various protocol layers. [Ch. 7]

Program counter A processor register that holds the reference to the current or next
instruction that the processor is to execute. [Ch. 2]

Progress A desirable guarantee provided by an atomicity-assuring mechanism: that,
despite potential interference from concurrency, some useful work will be done. An
example of such a guarantee is that the atomicity-assuring mechanism will not abort
at least one member of the set of concurrent actions. In practice, lack of a progress
guarantee can sometimes be repaired by using exponential random backoff. In formal
analysis of systems, progress is one component of a property known as “liveness”. Prog-
ress is an assurance that the system will move toward some specified goal, whereas
liveness is an assurance that the system will eventually reach that goal. [Ch. 9]

Propagation delay In a communication network, the component of overall delay
contributed by the velocity of propagation of the physical medium used for commu-
nication. [Ch. 7]

Propagation of effects A property of most systems: a change in one part of the
system causes effects in areas of the system that are far removed from the changed
part. A good system design tends to minimize propagation of effects. [Ch. 1]

Protection 1. Synonym for security. 2. Sometimes used in a narrower sense to denote
mechanisms and techniques that control the access of executing programs to infor-
mation. [Ch. 11]

Protection group A principal that is shared by more than one user. [Ch. 11]

Protocol An agreement between two communicating parties, for example, on the
messages and the format of data that they intend to exchange. [Ch. 7]

Public key In public-key cryptography, the key that can be published (i.e., the one
that doesn’t have to be kept secret). Compare with private key. [Ch. 11]

Public-key cryptography A key-based cryptographic transformation that can provide
both confidentiality and authenticity of messages without the need to share a secret
between sender and recipient. Public-key systems use two cryptographic keys, one
of which must be kept secret, but does not need to be shared. [Ch. 11]

Publish/subscribe A communication style using a trusted intermediary. Clients push
or pull messages to or from an intermediary. The intermediary determines who
actually receives a message and if a message should be fanned out to multiple recip-
ients. [Ch. 4]

Pure name A name that is not overloaded in any way. The only operations that apply
to a pure name are compare, resolve, bind, and unbind. Contrast with overloaded
name. [Ch. 3]

Purging A technique used in some N-modular redundancy designs, in which the voter
ignores the output of any replica that, at some time in the past, disagreed with
several others. [Ch. 8]

501Glossary

Qualified name A name that includes an explicit context reference. [Ch. 2]

Quench (n.) An administrative message sent by a packet forwarder to another
forwarder or to an end-to-end-layer sender asking that the forwarder or sender stop
sending data or reduce its rate of sending data. [Ch. 7]

Queuing delay In a communication network, the component of overall delay that is
caused by waiting for a resource such as a link to become available. [Ch. 7]

Quorum A partial set of replicas intended to improve availability. One defines a read
quorum and a write quorum that intersect, with the goal that for correctness it is
sufficient to read from a read quorum and write to a write quorum. [Ch. 10]

Race condition A timing-dependent error in thread coordination that may result in
threads computing incorrect results (for example, multiple threads simultaneously
try to update a shared variable that they should have updated one at a time). [Ch. 5]

RAID An acronym for Redundant Array of Independent (or Inexpensive) Disks, a set
of techniques that use a controller and multiple disk drives configured to improve
some combination of storage performance or durability. A RAID system usually has
an interface that is electrically and programmatically identical to a single disk, thus
allowing it to transparently replace a single disk. [Ch. 2]

Random access memory A memory device for which the latency for memory cells
chosen at random is approximately the same as the latency obtained by choosing
cells in the pattern best suited for that memory device. [Ch. 2]

Random drop A strategy for managing an overloaded resource: the system refuses
service to a queue member chosen at random. [Ch. 7]

Random early detection (RED) A combination of random drop and early drop.
[Ch. 7]

Rate monotonic scheduling policy A policy that schedules periodic jobs for a real-
time system. Each job receives in advance a priority that is proportional to the
frequency of the occurrence of that job. The scheduler always runs the highest
priority job, preempting a running job, if necessary. [Ch. 6]

Read and set memory (rsm) A hardware or software function used primarily for
implementing locks. rsm loads a value from a memory location into a register and
stores another value in the same memory location. The important property of
rsm is that no other loads and stores by concurrent threads can come between
the load and the store of an rsm. rsm is nearly always implemented as a hardware
instruction. [Ch. 5]

Read/write coherence A property of a memory, that a read always returns the result
of the most recent write. [Ch. 2]

Ready/acknowledge protocol A data transmission protocol in which each transmis-
sion is framed by a ready signal from the sender and an acknowledge signal from
the receiver. [Ch. 7]

502 Glossary

Real time 1. (adj.) Describes a system that requires delivery of results before some
deadline. 2. (n.) The wall-clock sequence that an all-seeing observer would asso-
ciate with a series of actions. [Ch. 6]

Real-time scheduling policy A scheduler that attempts to schedule jobs in such a
way that all jobs complete before their deadlines. [Ch. 6]

Reassembly Reconstructing a message by arranging, in correct order, the segments it
was divided into for transmission. [Ch. 7]

Reconciliation A procedure that compares replicas that are intended to be identical
and repairs any differences. [Ch. 10]

Recursive name resolution A method of resolving path names. The least significant
component of the path name is looked up in the context named by the remainder
of the path name, which must thus be resolved first. [Ch. 2]

Redo action An application-specified action that, when executed during failure
recovery, produces the effect of some committed component action whose effect
may have been lost in the failure. (Some systems call this a “do action”. Compare
with undo action.) [Ch. 9]

Redundancy Extra information added to detect or correct errors in data or control
signals. [Ch. 8]

Reference (n.) Use of a name by an object to refer to another object. In grammatical
English, the corresponding verb is “to refer to”. In computer jargon, the non- standard
verb “to reference” appears frequently, and the coined verb “ dereference” is a
synonym for resolve. [Ch. 2]

Reference string The string of addresses issued by a thread during its execution
(typically, the string of the virtual addresses issued by a thread’s execution of load
and store instructions; it may also include the addresses of the instructions them-
selves). [Ch. 6]

Relative path name A path name that the name resolver resolves in a default context
provided by the environment. [Ch. 2]

Reliability A statistical measure, the probability that a system is still operating at time
t, given that it was operating at some earlier time t0. [Ch. 8]

Reliable delivery A transport protocol assurance: it provides both at-least-once
delivery and data integrity. [Ch. 7]

Remote procedure call (RPC) A stylized form of client/service interaction in which
each request is followed by a response. Usually, remote procedure call systems
also provide marshaling and unmarshaling of the request and the response data.
The word “procedure” in “remote procedure call” is misleading, since RPC seman-
tics are different from those of an ordinary procedure call: for example, RPC specifi-
cally allows for clients and the service to fail independently. [Ch. 4]

503Glossary

Repair An active intervention to fix or replace a module that has been identified as
failing, preferably before the system of which it is a part fails. [Ch. 8]

Repertoire The set of operations or actions an interpreter is prepared to perform.
The repertoire of a general-purpose processor is its instruction set. [Ch. 2]

Replica 1. One of several identical modules that, when presented with the same
inputs, is expected to produce the same output. 2. One of several identical copies
of a set of data. [Ch. 8]

Replicated state machine A method of performing an update to a set of replicas
that involves sending the update request to each replica and performing it indepen-
dently at each replica. [Ch. 10]

Replication The technique of using multiple replicas to achieve fault tolerance. [Ch. 8]

Repudiate To disown an apparently authenticated message. [Ch. 11]

Request The message sent from a client to a service. [Ch. 4]

Resolve To perform a name-mapping algorithm from a name to the corresponding
value. [Ch. 2]

Response The message sent from a service to a client in response to a previous
request. [Ch. 4]

Roll-forward recovery A write-ahead log protocol with the additional require-
ment that the application log its outcome record before it performs any install
actions. If there is a failure before the all-or-nothing action passes its commit
point, the recovery procedure does not need to undo anything; if there is a failure
after commit, the recovery procedure can use the log record to ensure that cell
storage installs are not lost. Also known as redo logging. Compare with rollback
recovery. [Ch. 9]

Rollback recovery Also known as undo logging. A write-ahead log protocol with
the additional requirement that the application perform all install actions before
logging an outcome record. If there is a failure before the all-or-nothing action
commits, a recovery procedure can use the log record to undo the partially
completed all-or-nothing action. Compare with roll-forward recovery. [Ch. 9]

Root The context used for the interpretation of absolute path names. The name for
the root is usually bound to a constant value (typically, a well-known name of a
lower layer), and that binding is normally built in to the name resolver at design
time. [Ch. 2]

Round-robin scheduling A preemptive scheduling policy in which a thread runs for
some maximum time before the next one is scheduled. When all threads have run,
the scheduler starts again with the first thread. [Ch. 6]

Round-trip time In a network, the time between sending a packet and receiving
the corresponding response or acknowledgment. Round-trip time comprises two
(possibly different) network transit times and the time required for the correspon-
dent to process the packet and prepare a response. [Ch. 7]

504 Glossary

Router A packet forwarder that also participates in a routing algorithm. [Ch. 7]

Routing algorithm An algorithm intended to construct consistent, efficient
forwarding tables. A routing algorithm can be either centralized, which means that
one node calculates the forwarding tables for the entire network, or decentralized,
which means that many participants perform the algorithm concurrently. [Ch. 7]

Scheduler The part of the thread manager that implements the policy for deciding
which thread to run. Policies can be preemptive or non-preemptive. [Ch. 5]

Scope In a layered naming scheme, the set of contexts in which a particular name is
bound to the same value. [Ch. 2]

Search As used in naming, a synonym for multiple lookup. This usage of the term is
a highly constrained form of the more general definition of search as used in infor-
mation retrieval and full-text search systems: to locate all instances of records that
match a given query. [Ch. 2]

Search path A default context reference that consists of the identifiers of the contexts
to be used in a multiple lookup name resolution. The word “path” as used here has
no connection with its use in path name, and the word “search” has only a distant
connection with the concept of key word search. [Ch. 2]

Secondary device In a multilevel memory system, the memory device that is larger
but also usually slower. Compare with primary device. [Ch. 6]

Secrecy Synonym for confidentiality. [Ch. 11]

Secure area A physical space or a virtual address space in which confidential informa-
tion can be safely confined. [Ch. 11]

Secure channel A communication channel that can safely send information from one
secure area to another. The channel may provide confidentiality or authenticity or,
more commonly, both. [Ch. 11]

Security The protection of information and information systems against unauthorized
access or modification of information, whether in storage, processing, or transit, and
against denial of service to authorized users. [Ch. 11]

Security protocol A message protocol designed to achieve some security objective
(e.g., authenticating a sender). Designers of security protocols must assume that
some of the communicating parties are adversaries. [Ch. 11]

Segment 1. A numbered block of contiguously addressed virtual memory, the block
having a range of memory addresses starting with address zero and ending at
some specified size. Programs written for a segment-based virtual memory issue
addresses that are really two numbers: the first identifies the segment number, and
the second identifies the address within that segment. The memory manager must
translate the segment number to determine where in real memory the segment is
located. The second address may also require translation using a page map. [Ch. 5]
2. In a communication network, the data that the end-to-end layer gives to the

505Glossary

network layer for forwarding across the network. A segment is the payload of a
packet. Compare with frame (n.), message, and packet. [Ch. 7]

Self-pacing A property of some transmission protocols. A self-pacing protocol auto-
matically adjusts its transmission rate to match the bottleneck data rate of the
network over which it is operating. [Ch. 7]

Semaphore A special type of shared variable for sequence coordination among
several concurrent threads. A semaphore supports two atomic operations: down and
up. If the semaphore’s value is larger than zero, down decrements the semaphore
and returns to its caller; otherwise, down releases its processor until another thread
increases the semaphore using up. When control returns to the thread that origi-
nally issued the down operation, that thread retries the down operation. [Ch. 5]

Sequence coordination A coordination constraint among threads: for correctness,
a certain event in one thread must precede some other certain event in another
thread. [Ch. 5]

Sequencer A special type of shared variable used for sequence coordination. The
primary operation on a sequencer is ticket, which operates likes the “take a number”
machine in a bakery or post office: two threads concurrently calling ticket on the
same sequencer receive different values, and the ordering of the values returned
corresponds to the time ordering of the execution of ticket. [Ch. 5]

Serial transmission A scheme for increasing the data rate between two modules by
sending a series of self-clocking bits over a single transmission line with infrequent
or no acknowledgments. [Ch. 7]

Serializable A property of before-or-after actions, that even if several operate concur-
rently, the result is the same as if they had acted one at a time, in some sequential
(in other words, serial) order. [Ch. 9]

Server A module that implements a service. More than one server might implement
the same service, or collaborate to implement a fault tolerant version of the service
such that even if a server fails, the service is still available. [Ch. 4]

Service A module that responds to actions initiated by clients. [Ch. 4] At the end-
to-end layer of a network, the end that responds to actions initiated by the other
end. Compare with client. [Ch. 7]

Set up The steps required to allocate storage space for and initialize the state of a
connection. [Ch. 7]

Shadow copy A working copy of an object that an all-or-nothing action creates so
that it can make several changes to the object while the original remains unmodi-
fied. When the all-or-nothing action has made all of the changes, it then carefully
exchanges the working copy with the original, thus preserving the appearance that
all of the changes occurred atomically. Depending on the implementation, either
the original or the working copy may be identified as the “shadow” copy, but the
technique is the same in either case. [Ch. 9]

506 Glossary

Shared-secret cryptography A key-based cryptographic transformation in which
the cryptographic key for transforming can be easily determined from the key for
the reverse transformation, and vice versa. In most shared-secret systems, the keys
for a transformation and its reverse transformation are identical. [Ch. 11]

Shared-secret key The key used by a shared-secret cryptography system. [Ch. 11]

Sharing Allowing an object to be used by more than one other object without
requiring multiple copies of the first object. [Ch. 2]

Sign To generate an authentication tag by transforming a message so that a receiver
can use the tag to verify that the message is authentic. The word “sign” is usually
restricted to public-key authentication systems. The corresponding description for
shared-secret authentication systems is “generate a MAC”. [Ch. 11]

Simple locking A locking protocol for creating before-or-after actions requiring that
no data be read or written before reaching the lock point. For the atomic action
to also be all-or-nothing, a further requirement is that no locks be released before
commit (or abort). Compare with two-phase locking. [Ch. 9]

Simple serialization An atomicity protocol requiring that each newly created atomic
action must wait to begin execution until all previously started atomic actions are
no longer pending. [Ch. 9]

Simplex Describes a link between two stations that can be used in only one direction.
Compare with duplex, half-duplex, and full-duplex. [Ch. 7]

Single-acquire protocol A simple protocol for locking: a thread can acquire a lock
only if some other thread has not already acquired it. [Ch. 5]

Single-event upset A synonym for transient fault. [Ch. 8]

Slave In a multiple-site replication scheme, a site that takes update requests from only
the master site. Compare with master. [Ch. 10]

Sliding window In flow control, a technique in which the receiver sends an
additional window allocation before it has fully consumed the data from the
previous allocation, intending that the new allocation arrive at the sender in
time to keep data flowing smoothly, taking into account the transit time of the
network. [Ch. 7]

Snoopy cache In a multiprocessor system with a bus and a cache in each processor,
a cache design in which the cache actively monitors traffic on the bus to watch for
events that invalidate cache entries. [Ch. 10]

Soft modularity Modularity defined by convention but not enforced by physical
constraints. Compare with enforced modularity. [Ch. 4]

Soft real-time scheduler A real-time scheduler in which missing a deadline occa-
sionally is acceptable. [Ch. 6]

Soft state State of a running program that the program can easily reconstruct if it
becomes necessary to abruptly terminate and restart the program. [Ch. 8]

507Glossary

Source The network attachment point that originated the payload of a packet. Some-
times used as shorthand for source address. [Ch. 7]

Source address An identifier of the source of a packet, usually carried as a field in the
header of the packet. [Ch. 7]

Spatial locality A kind of locality of reference in which the reference string contains
clusters of references to adjacent or nearby addresses. [Ch. 6]

Speaks for A phrase used to express delegation relationships between principals.
“A speaks for B” means that B has delegated some authority to A. [Ch. 11]

Speculation A technique to improve performance by performing an operation in
advance of receiving a request on the chance that it will be requested. The hope
is that the result can be delivered with less latency and with less setup over-
head. Examples include demand paging with larger pages than strictly necessary,
pre paging, prefetching, and writing dirty pages before the primary device space
is needed. [Ch. 6]

Spin loop A situation in which a thread waits for an event to happen without releasing
the processor. [Ch. 5]

Stability A property of an object that, once it has a value, it maintains that value indefi-
nitely. Compare with durability and persistence, terms that have different technical
definitions, as explained in Sidebar 2.1. [Ch. 2]

Stable binding A binding that is guaranteed to map a name to the same value for the
lifetime of the name space. One of the features of a unique identifier name space.
[Ch. 2]

Stack algorithm A class of page-removal algorithms in which the set of pages in a
primary device of size m is always a subset of the set of pages in a primary device
of size n, if m is smaller than n. Stack algorithms have the property that increasing
the size of the memory is guaranteed not to result in increased numbers of missing-
page exceptions. [Ch. 6]

Starvation An undesirable situation in which several threads are competing for a
shared resource and because of adverse scheduling one or more of the threads
never receives a share of the resource. [Ch. 6]

Static routing A method for setting up forwarding tables in which, once calculated,
they do not automatically change in response to changes in network topology and
load. Compare with adaptive routing. [Ch. 7]

Static scope An example of an explicit context, used to resolve names of program vari-
ables in some programming languages. The name resolver searches for a binding
starting with the procedure that used the name, then in the procedure in which the
first procedure was defined, and so on. Sometimes called lexical scope. Compare
with dynamic scope. [Ch. 2]

Station A device that can send or receive data over a communication link. [Ch. 7]

508 Glossary

Stop and wait A synonym for lock step. [Ch. 7]

Storage Another term for memory. Memory devices that are non-volatile and are read
and written in large blocks are traditionally called storage devices, but there are
enough exceptions that in practice the words “memory” and “storage” should be
treated as synonyms. [Ch. 2]

Store and forward A forwarding network organization in which transport-layer
messages are buffered in a non-volatile memory such as magnetic disk, with the
goal that they never be lost. Many authors use this term for any forwarding network.
[Ch. 7]

Stream A sequence of data bits or messages that an application intends to flow
between two attachment points of a network. It also usually intends that the data of
a stream be delivered in the order in which it was sent, and that there be no duplica-
tion or omission of data. [Ch. 7]

Strict consistency An interface requirement that temporary violation of a data
invariant during an update never be visible outside of the action doing the update.
One feature of the read/write coherence memory model is strict consistency.
 Sometimes called strong consistency. [Ch. 10]

Stub A procedure that hides from the caller that the callee is not invoked with the
ordinary procedure call conventions. The stub may marshal the arguments into
a message and send the message to a service, where another stub unmarshals the
message and invokes the callee. [Ch. 4]

Supermodule A set of replicated modules interconnected in such a way that it acts
like a single module. [Ch. 8]

Supervisor call instruction (SVC) A processor instruction issued by user modules
to pass control of the processor to the kernel. [Ch. 5]

Swapping A feature of some virtual memory systems in which a multilevel memory
manager removes a complete address space from a primary device and moves in a
complete new one. [Ch. 6]

Synonym One of multiple names that map to the same value. Compare with alias,
a term that usually, but not always, has the same meaning. [Ch. 2]

System A set of interconnected components that has an expected behavior observed
at the interface with its environment. Contrast with environment. [Ch. 1]

Tail drop A strategy for managing an overloaded resource: the system refuses service
to the queue entry that arrived most recently. [Ch. 7]

Tear down The steps required to reset the state of a connection and deallocate the
space that was used for storage of that state. [Ch. 7]

Temporal locality A kind of locality of reference in which the reference string
contains closely spaced references to the same address. [Ch. 6]

509Glossary

Thrashing An undesirable situation in which the primary device is too small to run a
thread or a group of threads, leading to frequent missing-page exceptions. [Ch. 6]

Thread An abstraction that encapsulates the state of a running module. This
abstraction encapsulates enough of the state of the interpreter that executes
the module so that one can stop a thread at any point in time and later resume
it. The ability to stop a thread and resume it later allows virtualization of the
interpreter. [Ch. 5]

Thread manager A module that implements the thread abstraction. It typically
provides calls for creating a thread, destroying it, allowing the thread to yield, and
coordinating with other threads. [Ch. 5]

Threat A potential security violation from either a planned attack by an adversary or
an unintended mistake by a legitimate user. [Ch. 11]

Throughput A measure of the rate of useful work done by a service for a given work-
load. [Ch. 6]

Ticket system A security system in which each principal maintains a list of capa-
bilities, one for each object to which the principal is authorized to have access.
[Ch. 11]

Tolerated error An error or class of errors that is both detectable and maskable, and
for which a systematic recovery procedure has been implemented. Compare with
detectable error, maskable error, and untolerated error. [Ch. 8]

Tombstone A piece of data that will probably never be used again but cannot be
discarded because there is still a small chance that it will be needed. [Ch. 7]

Trailer Information that a protocol layer adds to the end of a packet. [Ch. 7]

Transaction A multistep action that is both atomic in the face of failure and atomic in
the face of concurrency. That is, it is both all-or-nothing and before-or-after. [Ch. 9]

Transactional memory A memory model in which multiple references to primary
memory are both all-or-nothing and before-or-after. [Ch. 9]

Transient fault A fault that is temporary and for which retry of the putatively failed
component has a high probability of finding that it is okay. Sometimes called a
single-event upset. Compare with persistent fault and intermittent fault. [Ch. 8]

Transit time In a forwarding network, the total delay time required for a packet to go
from its source to its destination. In other contexts, this kind of delay is sometimes
called latency. [Ch. 7]

Transmission delay In a communication network, the component of overall delay
contributed by the time spent sending a frame at the available data rate. [Ch. 7]

Transport protocol An end-to-end protocol that moves data between two attach-
ment points of a network while providing a particular set of specified assurances. It
can be thought of as a prepackaged set of improvements on the best-effort specifi-
cation of the network layer. [Ch. 7]

510 Glossary

Triple-modular redundancy (TMR) N-modular redundancy with N 5 3. [Ch. 8]

Trusted computing base (TCB) That part of a system that must work properly to
make the overall system secure. [Ch. 11]

Trusted intermediary A service that acts as the trusted third party on behalf of
multiple, perhaps distrustful, clients. It enforces modularity, thereby allowing
multiple distrustful clients to share resources in a controlled manner. [Ch. 4]

Two generals dilemma An intrinsic problem that no finite protocol can guarantee to
simultaneously coordinate state values at two places that are linked by an unreliable
communication network. [Ch. 9]

Two-phase commit A protocol that creates a higher-layer transaction out of sepa-
rate, lower-layer transactions. The protocol first goes through a preparation
(sometimes called voting) phase, at the end of which each lower-layer transac-
tion reports either that it cannot perform its part or that it is prepared to either
commit or abort. It then enters a commitment phase in which the higher-layer
transaction, acting as a coordinator, makes a final decision—thus the name two-
phase. Two-phase commit has no connection with the similar-sounding term
 two-phase locking. [Ch. 9]

Two-phase locking A locking protocol for before-or-after atomicity that requires that
no locks be released until all locks have been acquired (that is, there must be a
lock point). For the atomic action to also be all-or-nothing, a further requirement
is that no locks for objects to be written be released until the action commits.
Compare with simple locking. Two-phase locking has no connection with the simi-
lar-sounding term two-phase commit. [Ch. 9]

Undo action An application-specified action that, when executed during failure
recovery or an abort procedure, reverses the effect of some previously performed,
but not yet committed, component action. The goal is that neither the original
action nor its reversal be visible above the layer that implements the action.
Compare with redo and compensate. [Ch. 9]

Unique identifier name space A name space in which each name, once it is bound
to a value, can never be reused for a different value. A unique identifier name space
thus provides a stable binding. In a billing system, customer account numbers
usually constitute a unique identifier name space. [Ch. 2]

Universal name space A name space of a naming scheme that has only one context.
A universal name space has the property that no matter who uses a name it has the
same binding. Computer file systems typically provide a universal name space for
absolute path names. [Ch. 2]

Universe of values The set of all possible values that can be named by a particular
naming scheme. [Ch. 2]

Unlimited name space A name space in which names never have to be reused.
[Ch. 3]

511Glossary

Untolerated error An error or class of errors that is undetectable, unmaskable, or
unmasked and therefore can be expected to lead to a failure. Compare with detect-
able error, maskable error, and tolerated error. [Ch. 8]

User-dependent binding A binding for which a name used by a shared object
resolves to different values, depending on the identity of the user of the shared
object. [Ch. 2]

User mode A feature of a processor that, when set, disallows the use of certain
processor features (e.g., changing the page-map address register). Compare with
kernel mode. [Ch. 5]

Utilization The percentage of capacity used for a given workload. [Ch. 6]

Value The thing to which a name is bound. A value may be a real, physical object, or it
may be another name either from the original name space or from a different name
space. [Ch. 2]

Valid construction The term used by software designers for fault avoidance.
[Ch. 8]

Version history The set of all values for an object or variable that have ever existed,
stored in journal storage. [Ch. 9]

Virtual address An address that must be translated to a physical address before using
it to refer to memory. Compare with physical address. [Ch. 5]

Virtual circuit A connection intended to carry a stream through a forwarding network,
in some ways simulating an electrical circuit. [Ch. 7]

Virtual machine A method of emulation in which, to maximize performance, a phys-
ical processor is used as much as possible to implement virtual instances of itself.
[Ch. 5]

Virtual machine monitor The software that implements virtual machines. [Ch. 5]

Virtualization A technique that simulates the interface of a physical object, in some
cases creating several virtual objects using one physical instance, in others creating
one large virtual object by aggregating several smaller physical instances, and in yet
other cases creating a virtual object from a different kind of physical object. [Ch. 5]

Virtual memory manager A memory manager that implements virtual addresses,
resolving them to physical addresses by using, for example, a page map. [Ch. 5]

Volatile memory A kind of memory in which the mechanism of retaining information
actively consumes energy. When one disconnects the power source, it forgets its
information content. Compare with non-volatile memory. [Ch. 2]

Voter A device used in some NMR designs to compare the output of several nominally
identical replicas that all have the same input. [Ch. 8]

well-known name (or address) A name or address that has been advertised so
widely that one can depend on it not changing for the lifetime of the value to

512 Glossary

which it is bound. In the United States, the emergency telephone number “911” is a
well-known name. In some file system designs, sector or block number 1 of every
storage device is reserved as a place to store device data, making “1” a well-known
address in that context. [Ch. 2]

window In flow control, the quantity of data that the receiving side of a transport
protocol is prepared to accept from the sending side. [Ch. 7]

witness A (usually cryptographically strong) hash value that attests to the content of
a file. Another widely used term for this concept is fingerprint. [Ch. 10]

working directory In a file system, a directory used as a default context, for resolu-
tion of relative path names. [Ch. 2]

working set The set of all addresses to which a thread refers in the interval t. If
the application exhibits locality of reference, this set of addresses will be small
compared to the maximum number of possible addresses during t. [Ch. 6]

write-ahead-log (wAL) protocol A recovery protocol that requires appending a log
record in journal storage before installing the corresponding data in cell storage.
[Ch. 9]

write tearing See atomic storage.

write-through A property of a cache: a write operation updates the value in both
the primary device and the secondary device before acknowledging completion
of the write. (A cache without the write-through property is sometimes called a
 write-behind cache.) [Ch. 6]

513

A
abort, 475, Ch. 9
absolute path name, 68, 72, 475
abstraction, 22, 475

leaky, 30
accelerated aging, Ch. 8
access control list, 475, Ch. 11
access time, 48
ACK (see acknowledgment)
acknowledgment, 475, Ch. 7
ACL (see access control list)
acquire, 225, Ch. 9
action, 53, 475, Ch. 9
action graph, Probsets
active fault, 475, Ch. 8
ad hoc wireless network, 425, Probsets
adaptive

routing, 475, Ch. 7
timer, Ch. 7

additive increase, Ch. 7
address

destination, 482
in naming, 51, 122, 475
in networks, 495, Ch. 7
resolution protocol, 475, Ch. 7
source, 507
space, 51, 475
virtual, 206, 243, 511

adopt sweeping simplifications, 40, 149, 160,
Ch. 7, Ch. 8, Ch. 9, Ch. 10, Ch. 11

advance, 276
Advanced Encryption Standard (AES), Ch. 11
adversary, 476, Ch. 11
advertise, 76, 476, Ch. 7
alias, 72, 476

(see also indirect name)
alibi, 228
all-or-nothing atomicity, 89, 476, Ch. 9
any-to-any connection, 476, Ch. 7
application protocol, Ch. 7

arbiter failure, 229
archive, 476, Ch. 9

log, Ch. 9
ARP (see address resolution protocol)
assembly, 9
associative memory, 51
asynchronous, 55, 309, 476, Ch. 7
at-least-once

protocol assurance, 476, Ch. 7
RPC, 170

at-most-once
protocol assurance, 476, Ch. 7
RPC, 170

atomic, 476
action, 89, 220, 476, Ch. 9
storage, 89, 476, Ch.9

atomicity, 476, Ch. 9
all-or-nothing, 89, 476, Ch.9
before-or-after, 46, 89, 477, Ch. 9
log, Ch. 9

attachment point (see network attachment point)
authentication, 477, Ch. 11

key, Ch. 11
logic, Ch. 11
origin, 496, Ch. 11
tag, 477, Ch. 11

authoritative name server, 179
authorization, 477, Ch. 11

matrix, Ch. 11
automatic rate adaptation, 477, Ch. 7
availability, 477, Ch. 8
avoid excessive generality, 16
avoid rarely used components, Ch. 8, Ch. 11
await, 276

B
backoff

exponential, 486, Ch. 7
exponential random, 486, Ch. 9
random, 227

Index of Concepts

Design principles and hints appear in underlined italics. Procedure names appear in small caps. Page
numbers in bold face are in the Glossary. Page numbers that are greyed out are in a section that is
[on-line].

514 Index of Concepts

backup copy, 477, Ch. 10
backward error correction, 477, Ch. 8
bad-news diode, 38, 477
bandwidth, 477, Ch. 7
bang-bang protocol, Ch. 7
base name, 67
batch, 314, 477
bathtub curve, Ch. 8
be explicit, Ch. 8, Ch. 11
before-or-after atomicity, 46, 89, 477, Ch. 9
Belady’s anomaly, 337
best effort, 478, Ch. 7

contract, Ch. 7
big-endian numbering, 158
bind, 63
binding, 27, 61, 478

stable, 507
user-dependent, 74, 511

bit error rate, 478, Ch. 7
bit stuffing, 478, Ch. 7
blast protocol, Ch. 7
blind write, 478, Ch. 9
block, 245

cipher, Ch. 11
in unix, 93

blocking read, Ch. 9
bootstrapping, 223, 478, Ch. 9
bot, Ch. 11
bottleneck, 300, 478

data rate, Ch. 7
bounded buffer, 206
broadcast, 77, 478, Ch. 7
buffer overrun attack, Ch. 11
burn in, burn out, Ch. 8
burst, 478, Ch. 7
bus, 80

address, 81
arbitration, 81

Byzantine fault, 478, Ch. 8

C
CA (see certificate authority)
cache, 51, 332, 478

coherence, 479, Ch. 10
snoopy, 507, Ch. 10

capability, 479, Ch. 11
capacity, 302, 322, 479
careful storage, Ch. 8

carrier sense multiple access, 485, Ch. 7
cascading change propagation, Ch. 11
case-

coercing, 128
preserving, 128
sensitive, 128

CBC (see cipher-block chaining)
cell, 46

storage, 479, Ch. 9
certificate, 479, Ch. 11

authority, 479, Ch. 11
self-signed, Ch. 11

certify, 479, Ch. 11
checkpoint, 479, Ch. 9
checksum, 479, Ch. 7
cipher, 479, Ch. 11
cipher-block chaining, Ch. 11
ciphertext, 479, Ch. 11
circuit

switch, 479, Ch. 7
virtual, 511, Ch. 7

cleartext, 479, Ch. 11
client, 155, 479, Ch. 7
client/service organization, 159, 479
clock algorithm, 344
close, 88
close-to-open consistency, 192, 479
closure, 68, 480
coding, Ch. 8
coherence

cache, 479, Ch. 10
read/write, 46, 502

collision
Ethernet, 485, Ch. 7
hash, Ch. 11
name, 124, 480

commit, 480, Ch. 9
two-phase, 510, Ch. 9

communication link, 59, 480
commutative cryptographic transformation,

Ch. 11
compare, 75
compartment, Ch. 11
compensation, 480, Ch. 10
complete mediation, Ch. 11
complexity, 10, 480

Kolmogorov, 11
component, 8

515Index of Concepts

computationally secure, Ch. 11
condition variable, 276, 463
conditional failure rate function, Ch. 8
confidentiality, 480, Ch. 11
confinement, 480, Ch. 11
conflict, Ch. 10
confusion matrix, 372
congestion, 480, Ch. 7

collapse, 480, Ch. 7
connection, 480, Ch. 7
connectionless, 481, Ch. 7
consensus, 481, Ch. 10

the consensus problem, Ch. 10
consistency, 481

close-to-open, 192, 479
eventual, Ch. 10
external time, Ch. 9
sequential, Ch. 9
strict, 508, Ch. 10
strong (see consistency, strict)

consistent hashing, Probsets
constituent, 9
constraint, 481, Ch. 10
context, 62, 481
context reference, 63, 66, 481
continuous operation, 481, Ch. 8
control point, 481, Ch. 7
convergent encryption, Probsets
cookie, Ch. 11
cooperative multitasking, 269
cooperative scheduling, 269, 481
copy-on-write, 326
covert channel, 481, Ch. 11
critical section, 220
cross-layer cooperation, Ch. 7
cryptographic

hash function, 481, Ch. 11
key, 481, Ch. 11
transformation, 481, Ch. 11
transformation, commutative, Ch. 11

cryptography, 482, Ch. 11
public key, 501, Ch. 11
shared-secret, 506, Ch. 11

CSMA/CD (see carrier sense multiple
access)

cursor, 88
cursor stability, Ch. 10
cut-through, 482, Ch. 7

D
dally, 314
dangling reference, 130, 482
data integrity

in communications, 482, Ch. 7
in security assurance, 482, Ch. 11
in storage, Ch. 10

data rate, 482, Ch. 7
datagram, Ch. 7
deadlock, 221, 482, Ch. 9
decay, 46, 482, Ch. 8

factor, Ch. 7
set, 482, Ch. 8

declassify, Ch. 11
decouple modules with indirection, 27, 106,

123, 173, 243, 286, 325, Ch. 7
decrypt, 482, Ch. 7, Ch. 11
decrypt, Ch. 11
default context reference, 66, 482
defense in depth, Ch. 8, Ch. 11
delay, Ch. 7

processing, 500, Ch. 7
propagation, 500, Ch. 7
queuing, 501, Ch. 7
transmission, 510, Ch. 7

delayed authentication, Ch. 11
delegation forwarding, 112
demand

algorithm, 339
paging, 346, 482

dependent outcome record, Ch. 9
design for iteration, 37, 228, Ch. 8, Ch. 11
design principles, 40, Inside front cover

adopt sweeping simplifications, 40, 149,
160, Ch. 7, Ch. 8, Ch. 9, Ch. 10, Ch. 11

avoid excessive generality, 16
avoid rarely used components, Ch. 8,

Ch. 11
be explicit, Ch. 8, Ch. 11
complete mediation, Ch. 11
decouple modules with indirection, 27, 106,

123, 173, 243, 286, 325, Ch. 7
design for iteration, 37, 228, Ch. 8, Ch. 11
durability mantra, Ch. 10
economy of mechanism, Ch. 11
end-to-end argument, Ch. 7, Ch. 8, Ch. 9,

Ch. 10, Ch. 11
escalating complexity principle, 14

516 Index of Concepts

design principles, (cont’d)
fail-safe defaults, Ch. 11
golden rule of atomicity, Ch. 9
incommensurate scaling rule, 33, 316, Ch. 7
keep digging principle, 37, Ch. 8, Ch. 11
law of diminishing returns, 18, 305, Ch. 9
least privilege principle, Ch. 11
minimize common mechanism, Ch. 11
minimize secrets, Ch. 11
one-writer principle, 212
open design principle, Ch. 11
principle of least astonishment, 85, 89, 128,

205, Ch. 11
robustness principle, 29, Ch. 8
safety margin principle, 24, Ch. 8
unyielding foundations rule, 20, 38, 288

destination, 482, Ch. 7
address, 482

detectable error, 482, Ch. 8
dictionary attack, Ch. 11
digital signature, 483, Ch. 11
dilemma of the two generals, 510, Ch. 9
diminishing returns, law of, 18, 305, Ch. 9
direct

mapping, 346
memory access, 83

directory, 65, 483
in unix, 97

discipline
simple locking, 506, Ch. 9
system-wide locking, Ch. 9
two-phase locking, 510, Ch. 9

discovery
of maximum transmission unit, 494, Ch. 7
of names, 76

discretionary access control, 483, Ch. 11
dispatcher, 262
distance vector, Ch. 7
divide-by-zero exception, 206
DMA (see direct memory access)
do action (see redo action)
domain

name, 175
virtual memory, 230, 483

Domain Name System
design of, 175
eventual consistency in, Ch. 10
fault tolerance of, Ch. 8

down time, 483, Ch. 8
dry run, Ch. 9
duplex, 483, Ch. 7
duplicate suppression, 483, Ch. 7
durability, 46, 483, Ch. 8

log, Ch. 9
durability mantra, Ch. 10
durable storage, 483, Ch. 8
dynamic scope, 68, 483

E
earliest deadline first scheduling policy, 360, 484
early drop, 484, Ch. 7
echo request, Ch. 7
economy of mechanism, Ch. 11
element, 9
elevator algorithm, 361
emergent property, 4, 484
emulation, 208, 484
encrypt, 484, Ch. 7, Ch. 11
encrypt, Ch. 11
encryption key, Ch. 11
end-to-end, 484

layer, 484, Ch. 7
end-to-end argument, Ch. 7, Ch. 8, Ch. 9, Ch. 10,

Ch. 11
enforced modularity, 153, 484
enumerate, 63
enumerate (in naming), 63, 484
environment, 484

of a system, 8
of an interpreter, 53
reference, 53

erasure, 484, Ch. 8
ergodic, 484, Ch. 8
error, 484, Ch. 8

containment, 485, Ch. 8
correction, 485, Ch. 7, Ch. 8
detection, 485, Ch. 7, Ch. 8

escalating complexity principle, 14
Ethernet, 485, Ch. 7
event variable, 460
eventcount, 276, 485
eventual consistency, 485, Ch. 10
EWMA (see exponentially weighted moving

average)
exactly-once

protocol assurance, 485, Ch. 7

517Index of Concepts

RPC, 171
exception, 57, 205, 235, 485

divide-by-zero, 205
illegal instruction, 235
illegal memory reference, 233
indirect, 325
memory reference, 231
missing-page, 328, 494
permission error, 233
TLB miss, 253

explicit context reference, 66, 485
explicitness, 485, Ch. 11
exploit brute force, 301
exponential

backoff, 486, Ch. 7
random backoff, 486, Ch. 9

exponentially weighted moving average, 355,
Ch. 7

export, 60, 486
external time consistency, Ch. 9

F
fail-

fast, 486, Ch. 8
safe, 486, Ch. 8
secure, 486, Ch. 8
soft, 486, Ch. 8
stop, 486, Ch. 8
vote, 486, Ch. 8

fail-safe defaults, Ch. 11
failure, 486, Ch. 8

tolerance, 486, Ch. 8
false positive/negative, 371
fast start, Ch. 7
fate sharing, 153
fault, 486, Ch. 8

avoidance, 486, Ch. 8
tolerance, 487, Ch. 8
tolerance design process, Ch. 8
tolerance model, Ch. 8

FCFS (see first-come, first-served)
FIFO (see first-in, first-out)
file, 87, 487

in unix, 95
memory-mapped, 325
pointer, 88

fingerprint, 487, Ch. 7
first-come, first-served scheduling policy, 353, 487

first-in, first-out page removal policy,
336, 487

fixed
timer, Ch. 7
window, Ch. 7

flooding, 441, Probsets
flow control, 487, Ch. 7
follow-me forwarding, 112
force, 320, 487, Ch. 9
forward

error correction, 487, Ch. 8
secrecy, 487, Ch. 11

forwarder, Ch. 7
forwarding table, 487, Ch. 7
fragile name, 121
fragment, 487
frame, 487, Ch. 7
freshness, 487, Ch. 11
full-duplex, 488, Ch. 7

G
garbage collection, 131
gate (protected entry), 236, 488
generality, 15
generated name, 124, 488
get, 50
global name, 75, 488
golden rule of atomicity, Ch. 9
granularity, 8, Ch. 9
guaranteed delivery, Ch. 7

H
half-duplex, 488, Ch. 7
Hamming distance, 488, Ch. 8
hard-edged, Ch. 7
hard error, Ch. 8
hard link, 105
hard real-time scheduling policy, 359, 488
hash function, 125, 488
hashed MAC, Ch. 11
hazard function, Ch. 8
header, 488, Ch. 7
heartbeat, Ch. 8
hierarchy, 25, 488

in naming, 73
in routing, 488, Ch. 7

high-water mark, Ch. 9

518 Index of Concepts

hints, 40
exploit brute force, 301
instead of reducing latency, hide it, 309
optimize for the common case, 307, 334,

Ch. 9
separate mechanism from policy, 331, 349,

Ch. 11
hit ratio, 333
HMAC (see hashed MAC)
hop limit, 488, Ch. 7
hot swap, 488, Ch. 8
hyperlink, 133

I
I/O bottleneck, 316
ICMP (see Internet control message protocol)
idempotent, 170, 488, Ch. 7, Ch. 9
identifier, 127, 489
illegal instruction, 489

exception, 235
illegal memory reference exception, 233
IMS (see Information Management System)
in-memory database, Ch. 9
incommensurate scaling, 5, 489
incommensurate scaling rule, 33, 316, Ch. 7
incremental

backup, 489, Ch. 10
redundancy, Ch. 8

indirect
block, 95
name, 73, 104, 489

indirection, 27, 61, 489
exception, 325

infant mortality, Ch. 8
information flow control, Ch. 11
Information Management System, Ch. 9
inode, 95
install, 489, Ch. 9
instead of reducing latency, hide it, 309
instruction

reference, 53, 489
repertoire, 503

integrity (see data integrity)
intended load, 489, Ch. 7
interconnection, 8
interface, 8
interleaving, 310, 489
intermittent fault, 489, Ch. 8

International Organization for Standardization,
489, Ch. 7

Internet, Ch. 7
control message protocol, Ch. 7
protocol, Ch. 7
service provider, 139

interpreter, 53, 490
interrupt, 53, 235, 283, 490
invalidate, 490, Ch. 10
invisible hand, Ch. 7
IP (see Internet protocol)
ISO (see International Organization for

Standardization)
isochronous, 490, Ch. 7
isolation, 220
ISP (see Internet service provider)
iteration, 36

J
jitter 490, Ch. 7
job, 352, 490
journal storage, 490, Ch. 9

K
KDC (see key distribution center)
keep digging principle, 37, Ch. 8, Ch. 11
kernel, 238, 490

mode, 234, 490
key (see cryptographic key)
key distribution center, 490, Ch. 11
key-based cryptographic transformation, 490,

Ch. 11
Kolmogorov complexity, 11

L
latency, 49, 302, 490, Ch. 8
latent fault, 491, Ch. 8
law of diminishing returns, 18, 305, Ch. 9
layer

bypass, 79
end-to-end, 484, Ch. 7
link, 491, Ch. 7
network, 496, Ch. 7

layering, 24, 491
leaky abstraction, 30
least astonishment principle, 85, 89, 128, 205,

Ch. 11
least privilege principle, Ch. 11

519Index of Concepts

least-recently-used page removal policy, 338,
491

least significant component, 71
lexical scope (see static scope)
lightweight remote procedure call, 238, 442
limited change propagation, Ch. 11
limited name space, 129, 491
link

in communications, 59, 480
in naming, 73, 491
in unix, 99
layer, 491, Ch. 7
soft (see indirect name)
symbolic (see indirect name)

list system, 491, Ch. 11
little-endian numbering, 158
livelock, 222, 491, Ch. 9
locality of reference, 334, 491

spatial, 334, 507
temporal, 334, 509

location-addressed memory, 51
lock, 218, 491, Ch. 9

compatibility mode, Ch. 9
manager, Ch. 9
point, 491, Ch. 9
set, 491, Ch. 9

lock-step protocol, 491, Ch. 7
locking discipline

simple, 506, Ch. 9
system-wide, Ch. 9
two-phase, 510, Ch. 9

log, 491, Ch. 9
archive, Ch. 9
atomicity, Ch. 9
durability, Ch. 9
performance, Ch. 9
record, Ch. 9
redo, Ch. 9
sequence number, Ch. 9
undo, Ch. 9
write-ahead, 512, Ch. 9

logical
copy, 492, Ch. 10
locking, 492, Ch. 9

lost object, 130
LRPC (see lightweight remote procedure call)
LRU (see least-recently used)

M
MAC

(see media access control address)
(see message authentication code)

magnetic disk memory, 49
malware, Ch. 11
Manchester code, 492, Ch. 7
margin, 492, Ch. 8
mark point, 492, Ch. 9
marshal/unmarshal, 157, 492
maskable error, 492, Ch. 8
masking, 492, Ch. 8
massive redundancy, Ch. 8
master, 492, Ch. 10
maximum transmission unit, 492, Ch. 7
mean time

between failures, 492, Ch. 8
to failure, 492, Ch. 8
to repair, 492, Ch. 8

media access control address, 126
mediation, 492, Ch. 11
memory, 45

associative, 51
barrier, 47
location-addressed, 51
manager, 230, 493
manager, multilevel, 325
manager, virtual, 206, 243, 512
-mapped file, 325
-mapped I/O, 84, 493
random access, 50, 501
transactional, 510, Ch. 9
volatile/non-volatile, 45, 496, 512

memory reference exception, 231
memoryless, 493, Ch. 8
message, 59, 493, Ch. 7

authentication, 493, Ch. 11
authentication code, 493, Ch. 11
representation, 54

message-sending protocol, Ch. 7
message timing diagram, 155
metadata, 91, 120, 493
microkernel, 240, 493
minimize common mechanism, Ch. 11
minimize secrets, Ch. 11
mirror, 493, Ch. 10
missing-page exception, 328, 494

520 Index of Concepts

mobile host, Ch. 7
modular sharing, 116, 493
modularity, 19

enforced, 153, 484
soft, 153, 507

module, 9, 493, Ch. 8
monolithic kernel, 238, 494
most-recently-used page removal policy, 340, 494
most significant component, 72
MRU (see most-recently-used)
MTBF (see mean time between failures)
MTTF (see mean time to failure)
MTTR (see mean time to repair)
MTU (see maximum transmission unit)
MTU discovery, 494, Ch. 7
multihomed, 494, Ch. 7
multilevel

memory, 324, 494
memory manager, 325

multiple
lookup, 73, 494
-reader, single-writer protocol, Ch. 9
register set processor, 447

multiplexing, 494, Ch. 7
multiplicative decrease, Ch. 7
multipoint, 494, Ch. 7
multiprogramming, 256
multitasking, 256
Murphy’s law, 86
mutual exclusion, 220

N
N + 1 redundancy, 494, Ch. 8
N-modular redundancy, 494, Ch. 8
N-version programming, 494, Ch. 8
NAK (see negative acknowledgment)
name, 44, 494

base, 67
collision, 124
conflict, 116, 494
discovery, 76
fragile, 121
generated, 124, 488
global, 75, 488
indirect, 73, 104, 489
lookup, multiple, 73, 494
opaque, 121, 496
overloaded, 120, 497

path, 498
pure, 120, 501
qualified, 67, 501
resolution, 62
resolution, recursive, 71, 502
well-known, 77, 512

name-mapping algorithm, 62
name space, 61, 495

limited, 129, 491
unique identifier, 64, 511
universal, 62, 511
unlimited, 129, 511

name-to-key binding, 495, Ch. 11
namespace (see name space)
naming

authority, 180
hierarchy, 73, 495
network, 72, 495
scheme, 61, 495

NAT (see network address translation)
negative acknowledgment, 495, Ch. 7
nested outcome record, Ch. 9
network, 495, Ch. 7

address, 495, Ch. 7
address translation, Ch. 7
attachment point, 65, 495, Ch. 7
layer, 495, Ch. 7
services access point, 496

Network File System, 184
NFS (see Network File System)
NMR (see N-modular redundancy)
non-blocking read, Ch. 9
non-discretionary access control, 495, Ch. 11
non-preemptive scheduling, 269, 495
non-volatile memory, 45, 495
nonce, 496, Ch. 7
not-found result, 64
NSAP (see network services access point)

O
object, 9, 60, 496
object-based virtual memory, 465
occasionally connected, Ch. 10
offered load, 311, 496, Ch. 7
on-demand zero-filled page, 326
one-time pad, Ch. 11
one-writer principle, 212
opaque name, 121, 496

521Index of Concepts

open, 88
open design principle, Ch. 11
operating system, 78, 79, 496
OPT (see optimal page-removal policy)
optimal page removal policy, 337, 496
optimistic concurrency control, 496, Ch. 9
optimize for the common case, 307, 334, Ch. 9
origin authenticity, 496, Ch. 11
orphan, 130
OSI (see International Organization for

Standardization)
outcome record, Ch. 9
overhead, 302
overlay network, 425, Ch. 7, Probsets
overload, 311, 496
overloaded name, 120, 496
overprovisioning, Ch. 7

P
pacing, Ch. 7
packet, 496, Ch. 7

forwarding, 496, Ch. 7
forwarding network, Ch. 7
switch, 496, Ch. 7

page, 245, 496
fault (see missing-page exception)
map, 245, 496
on-demand zero-filled, 326
table, 246, 496

page-map address register, 247, 496
page-removal policy, 329, 496

clock algorithm, 344
direct mapping, 346
first-in, first-out, 336, 487
least-recently used, 338, 491
most-recently used, 340, 494
optimal, 337, 496
random, 345

pair-and-compare, 497, Ch. 8
pair-and-spare, 497
parallel transmission, 497, Ch. 7
partition, 497, Ch. 8, Ch. 10
password, 497, Ch. 11
patch, 17
path, Ch. 7

name, 75, 497
name, absolute 68, 72, 475
name, relative, 72, 503

search, 73, 75, 504
selection, 497, Ch. 7
vector, Ch. 7

payload, 497, Ch. 7
peer-to-peer

design, 164
network, 425

pending, 498, Ch. 9
performance log, Ch. 9
permission error exception, 233
persistent, 46, 498

fault, 498, Ch. 8
sender, 498, Ch. 7

pessimistic concurrency control, 498,
Ch. 9

PGP (see protocol, pretty good privacy)
phase encoding, 498, Ch. 7
phase-locked loop, Ch. 7
physical

address, 243, 498
copy, 498, Ch. 10
locking, 498, Ch. 9

piggybacking, 498, Ch. 7
pipeline, 498, Ch. 7
PKI (see public key infrastructure)
plaintext, 498, Ch. 11
point-to-point, 499, Ch. 7
polling, 273, 499
port, 499, Ch. 7
precision (in information retrieval), 373
preemptive scheduling, 269, 499
prepaging, 346
prepared

message, Ch. 9
state, 499

presentation
protocol, 499, Ch. 7
service, Ch. 7

presented load (see offered load)
preservation, Ch. 8
presumed commit, Ch. 9
preventive maintenance, 499, Ch. 8
pricing, Ch. 7
primary

copy, 499, Ch. 10
device, 331, 499

principal, 499, Ch. 11
principle of escalating complexity, 14

522 Index of Concepts

principle of least astonishment, 85, 89, 128,
205, Ch. 11

principles (see design principles)
priority

inversion, 358
scheduling policy, 357, 499

privacy, 499, Ch. 11
private key, 499, Ch. 11
probe, Ch. 7
procedure calling convention, 150
process, 97, 248
processing delay, 500, Ch. 7
processor multiplexing, 256
producer and consumer problem, 211
program counter, 56, 500
progress, 500, Ch. 9
propagation delay, 500, Ch. 7
propagation of effects, 4, 500
protection, 500, Ch. 11

group, 500, Ch. 11
protocol, 500, Ch. 7

address resolution, 475, Ch. 7
application, Ch. 7
bang-bang, Ch. 7
blast, Ch. 7
bus arbitration, 81
carrier sense multiple access, 485, Ch. 7
challenge-response, Ch. 11
Diffie-Hellman key agreement, Ch. 11
Internet, Ch. 7
internet control message, Ch. 7
Kerberos, Ch. 11
lock-step, 491, Ch. 7
message-sending, Ch. 7
multiplexing, Ch. 7
Network File System, 184
presentation, 499, Ch. 7
pretty good privacy, Ch. 11
ready/acknowledge, 501, Ch. 7
real-time transport, Ch. 7
reliable message stream, Ch. 7
request/response, Ch. 7
routing, Ch. 7
secure shell, Ch. 11
secure socket layer, Ch. 11
security, 504, Ch. 11
simple network time service, Ch. 7
stream transport, Ch. 7

transmission control, Ch. 7
transport, 509, Ch. 7
transport layer security, Ch. 11
two-phase commit, 510, Ch. 9
user datagram, Ch. 7

proxy, 7, 371
pseudocode representation, 54
pseudorandom number generator, Ch. 11
public key, 500, Ch. 11

cryptography, 500, Ch. 11
infrastructure, Ch. 11

publish/subscribe, 173, 500
pull, 172
pure name, 120, 500
purging, 500, Ch. 8
push, 172
put, 50

Q
quad component, Ch. 8
qualified name, 67, 501
quantum, 356
quench, 501, Ch. 7
query, 77
queuing delay, 501, Ch. 7
quorum, 501, Ch. 10
quota, 313

R
race condition, 215, 501
RAID, 52, 501

RAID 1, Ch. 8
RAID 4, Ch. 8
RAID 5, Ch. 8

RAM (see random access memory)
random

access memory, 50, 501
backoff, 227
backoff, exponential, 486, Ch. 9
drop 501, Ch. 7
early detection, 501, Ch. 7
number generator, Ch. 11
page-removal policy, 345
pseudorandom number generator, Ch. 11

rate monotonic scheduling policy, 360,
501

raw storage, Ch. 8
RC4 cipher, Ch. 11

523Index of Concepts

read, 45
read and set memory, 224, 501
read-capture, Ch. 9
read/write coherence, 46, 501
ready/acknowledge protocol, 501, Ch. 7
real time, 359, 502, Ch. 7
real-time

scheduling policy, 359, 502
scheduling policy, hard, 359, 488
scheduling policy, soft, 359, 506
transport protocol, Ch. 7

reassembly, 502, Ch. 7
recall (in information retrieval), 373
receive, 59
receive livelock, 350
reconciliation, 502, Ch. 10
recovery, Ch. 8
recursive

name resolution, 71, 502
replication, Ch. 8

RED (see random early detection)
redo

action, 502, Ch. 9
log, Ch. 9

reduced instruction set computer, 55
redundancy, 502, Ch. 8
redundant array of independent disks (see

RAID)
reference, 60, 502

count, 131
monitor, Ch. 11
string, 334, 502

register renaming, Ch. 9
relative path name, 72, 502
release, 225, Ch. 9
reliability, 502, Ch. 8
reliable

delivery, 502, Ch. 7
message stream protocol, Ch. 7

remote procedure call, 167, 502
reorder buffer, Ch. 9
repair, 503, Ch. 8
repertoire, 53, 503
replica, 503, Ch. 8
replicated state machine, 503, Ch. 10
replication, 503

recursive, Ch. 8
reply, 155

representations
bit order numbering, 158
confusion matrix, 372
message, 54
pseudocode, 54
timing diagram, 155
Venn diagram, 372
version history, Ch. 9
wait-for graph, 221

repudiate, 503
request, 155, 503
request/response protocol, Ch. 7
resolution, name, 62
resolve, 503
resolve, 63
response, 155, 503
restartable atomic region, 451
revectoring, Ch. 8
reverse lookup, 64
revocation, Ch. 11
RISC (see reduced instruction set computer)
Rivest, Shamir, and Adleman cipher, Ch. 11
robustness principle, 29, Ch. 8
roll-forward recovery, 503, Ch. 9
rollback recovery, 503, Ch. 9
root, 72, 503

in unix, 102
round-robin scheduling policy, 262, 356,

503
round-trip time, 503, Ch. 7

estimation, Ch. 7
route, Ch. 7
router, 504, Ch. 7
routing, Ch. 7

algorithm, 504, Ch. 7
protocol, Ch. 7

RPC (see remote procedure call)
RSA (see Rivest, Shamir, and Adleman cipher)
RSM (see read and set memory)
RTP (see real-time transport protocol)

S
safety margin principle, 24, Ch. 8
safety-net approach, Ch. 8, Ch. 11
scheduler, 348, 504
scheduling policy

earliest deadline first, 360, 484
first-come, first-served, 353, 487

524 Index of Concepts

scheduling policy (Cont’d)
hard real-time, 359, 488
priority, 357, 499
rate monotonic, 360, 501
real-time, 359, 502
round-robin, 262, 356, 503
shortest-job-first, 354
soft real-time, 359, 506

scope, 75, 504
dynamic, 68, 483
lexical (see scope, static)
static, 68, 507

search, 73, 504
in key word query, 75
in name discovery, 76

search path, 73, 75, 504
second-system effect, 39
secondary device, 331, 504
secrecy, 504
secure area, 504
secure channel, 504, Ch. 11
Secure Socket Layer, Ch. 11
security, 504, Ch. 11

protocol, 504, Ch. 11
seed, Ch. 11
segment

of a message, 504, Ch. 7
virtual memory, 68, 253, 285, 504

self-describing storage, 365
self-pacing, 505, Ch. 7
semaphore, 276, 277, 505
separate mechanism from policy, 331, 349,

Ch. 11
sequence coordination, 211, 273, 505, Ch. 9
sequencer, 276, 505
sequential consistency, Ch. 9
serial transmission, 505, Ch. 7
serializability, Probsets
serializable, 505, Ch. 9
server, 157, 505
service, 155, 505, Ch. 7

time, 311, Ch. 7
session service, Ch. 7
set up, 505, Ch. 7
shadow copy, 505, Ch. 9
Shannon’s capacity theorem, Ch. 7
shared-secret

cryptography, 506, Ch. 11

key, 506, Ch. 11
sharing, 60, 506, Ch. 7
shortcut (see indirect name)
shortest-job-first scheduling policy, 354
sign, 506, Ch. 7, Ch. 11
simple

locking discipline, 506, Ch. 9
network time service protocol, Ch. 7
serialization, 506, Ch. 9

simplex, 506, Ch. 7
simplicity, 39
single

-acquire protocol, 220, 506
-event upset, 506, Ch. 8
point of failure, Ch. 8
state machine, Ch. 10

single-writer, multiple-reader protocol, Ch. 9
Six sigma, Ch. 8
slave, 506, Ch. 10
sliding window, 506, Ch. 7
slow start, Ch. 7
snapshot isolation, Ch. 9
snoopy cache, 506, Ch. 10
SNTP (see protocol, simple network time

service)
soft

error, Ch. 8
link (see indirect name)
modularity, 153, 506
real-time scheduling policy, 359, 507
state, 189, 506

source, 507, Ch. 7
address, 507

spatial locality, 334, 507
speaks for, 507, Ch. 11
speculate, 314, 507
spin loop, 212, 507
SSH (see protocol, secure shell)
SSL (see Secure Socket Layer)
stability, 46, 507

cursor, Ch. 10
stable

binding, 64, 507
storage, 45

stack
algorithm, 341, 507
discipline, 150
pointer, 56

525Index of Concepts

starvation, 355, 507
static

discipline, 29
routing, 507, Ch. 7
scope, 68, 507

station, 507, Ch. 7
identifier Ch. 7

stop and wait (see lock-step protocol)
storage, 50, 508

atomic, 476
careful, Ch. 8
cell, 46, 479, Ch. 9
durable, 483, Ch. 8
fail-fast, Ch. 8
journal, 490, Ch. 9
leak, 130
raw, Ch. 8
stable, 45

store and forward, 508, Ch. 7
stream, 508, Ch. 7

cipher, Ch. 11
transport protocol, Ch. 7

strict consistency, 508, Ch. 10
strong consistency (see strict consistency)
stub, 167, 508
subassembly, 9
submodule, 9
subsystem, 9
supermodule, 508, Ch. 8
supervisor call instruction, 236, 508
SVC (see supervisor call instruction)
swapping, 347, 508
sweeping simplifications

(see adopt sweeping simplifications)
symbolic link (see indirect name)
synonym, 72, 508
system, 8, 508
systemwide lock, Ch. 9

T
Taguchi method, Ch. 8
tail drop, 508, Ch. 7
TCB (see trusted computing base)
TCP (see transmission control protocol)
TDM (see time-division multiplexing)
tear down, 508, Ch. 7
temporal

database, Ch. 10

locality, 334, 508
tentatively committed, Ch. 9
test and set memory (see read and set

memory)
thrashing, 335, 509
thread, 204, 509

manager, 205, 509
threat, 509, Ch. 11

insider, Ch. 11
throughput, 303, 323, 509
ticket system, 509, Ch. 11
tiger team, Ch. 11
time-division multiplexing, Ch. 7
time-domain addressing, Ch. 10
time-sharing, 256
time-to-live, Ch. 10
timed capability, Ch. 11
timer

adaptive, Ch. 7
fixed, Ch. 7

timing diagram, 155, 156
TLB (see translation look-aside buffer)
TLB miss exception, 253
TLS (see Transport Layer Security)
TMR (see triple-modular redundancy)
tolerance, 23
tolerated error, 509, Ch. 8
tombstone, 509, Ch. 7
tracing garbage collection, 131
trade-off, 6

binary classification, 7, 371
tragedy of the commons, Ch. 7
trailer, 509, Ch. 7
transaction, 509, Ch. 9
transactional memory, 509, Ch. 9
transfer operation, Ch. 9
transient fault, 509, Ch. 8
transit time, 509, Ch. 7
translation look-aside buffer, 253
transmission

control protocol, Ch. 7
delay, 509, Ch. 7
parallel, 497, Ch. 7
serial, 505, Ch. 7

transport
protocol, 509, Ch. 7
service, Ch. 7

Transport Layer Security, Ch. 11

526 Index of Concepts

triple-modular redundancy, 510, Ch. 8
trusted

computing base, 510, Ch. 11
intermediary, 163, 510

TTL (see time-to-live)
tunnel (in networks), Ch. 7
two generals dilemma, 510, Ch. 9
two-phase

commit, 510, Ch. 9
locking discipline, 510, Ch. 9

U
UDP (see user datagram protocol)
unbind, 63
undo

action, 510, Ch. 9
log, Ch. 9

Uniform Resource Locator, 133
unique identifier name space, 64, 510
universal name space, 62, 510
universe of values, 62, 510
unlimited name space, 129, 510
untolerated error, 511, Ch. 8
unyielding foundations rule, 20, 38,

288
upcall, Ch. 7
URL (see Uniform Resource Locator)
useful work, 302
user

datagram protocol, Ch. 7
-dependent binding, 74, 511
mode, 234, 511

utilization, 302, 511

V
valid construction, 511, Ch. 8
validation (see valid construction)
value, 62, 511
verify, Ch. 7, Ch. 11
version history, 511, Ch. 9
virtual

address, 206, 243, 511
address space, 206, 248

circuit, 511, Ch. 7
machine, 208, 290, 511
machine monitor, 208, 290, 511
memory, 206, 332
memory manager, 206, 243, 511
memory, object-based, 465
shared memory, 326

virtualization, 201, 511
virus, Ch. 11
volatile memory, 45, 511
voter, 511, Ch. 8

W
wait-for graph, 221
WAL (see write-ahead log)
watchdog, Ch. 8
waterbed effect, 6
well-known

name/address, 77, 511
port, Ch. 7

window, 512, Ch. 7
fixed, Ch. 7
of validity, Ch. 11
sliding, 506, Ch. 7

wired down (page), 331
witness, 512, Ch. 7, Ch. 10, Ch. 11
work factor, Ch. 11
working

directory, 67, 512
set, 335, 512

worm, Ch. 11
write, 45
write-ahead log, 512, Ch. 9
write tearing, 47, 512
write-through, 512

X
X Window System, 162

Y
yield (in manufacturing), Ch. 8
yield (thread primitive), 257

	Copyright
	Copyright

	Dedication
	Dedication

	List of Sidebars
	List of Sidebars

	Preface
	Preface
	Why this Textbook?
	For Whom is this Book Intended?
	How to Use this Book
	How the Book is Organized
	Chapter Content

	Where to find Part II and other On-line Materials
	Where to find Part II and other On-line Materials

	Acknowledgments
	Acknowledgments
	Naming (Section 2.2 and Chapter 3)
	Enforced Modularity and Virtualization (Chapters 4 and 5)
	Networks (Chapter 7 [on-line])
	Fault Tolerance (Chapter 8 [on-line])
	Transactions and Consistency (Chapters 9 [on-line] and 10 [on-line])
	Computer Security (Chapter 11 [on-line])
	Suggested Outside Readings
	The Exercises and Problem Sets

	Chapter 1 - Systems
	1 Systems
	Overview
	Systems and Complexity
	Common Problems of Systems in Many Fields
	Systems, Components, Interfaces, and Environments
	Complexity

	Sources of Complexity
	Cascading and Interacting Requirements
	Maintaining High Utilization

	Coping with Complexity I
	Modularity
	Abstraction
	Layering
	Hierarchy
	Putting it Back Together: Names Make Connections

	Computer Systems are the Same but Different
	Computer Systems have no Nearby Bounds on Composition
	d(technology)/dt is Unprecedented

	Coping with Complexity II
	Why Modularity, Abstraction, Layering, and Hierarchy aren’t Enough
	Iteration
	Keep it Simple

	What the Rest of this Book is About
	Exercises

	Chapter 2 - Elements of Computer System Organization
	2 Elements of Computer System Organization
	Overview
	The Three Fundamental Abstractions
	Memory
	Interpreters
	Communication Links

	Naming in Computer Systems
	The Naming Model
	Default and Explicit Context References
	Path Names, Naming Networks, and Recursive Name Resolution
	Multiple Lookup: Searching through Layered Contexts
	Comparing Names
	Name Discovery

	Organizing Computer Systems with Names and Layers
	A Hardware Layer: The Bus
	A Software Layer: The File Abstraction

	Looking Back and Ahead
	Case Study: UNIX® File System Layering and Naming
	Application Programming Interface for the UNIX File System
	The Block Layer
	The File Layer
	The Inode Number Layer
	The File Name Layer
	The Path Name Layer
	Links
	Renaming
	The Absolute Path Name Layer
	The Symbolic Link Layer
	Implementing the File System API
	The Shell and Implied Contexts, Search Paths, and Name Discovery
	Suggestions for Further Reading

	Exercises

	Chapter 3 - The Design of Naming Schemes
	3 The Design of Naming Schemes
	Overview
	Considerations in the Design of Naming Schemes
	Modular Sharing
	Metadata and Name Overloading
	Addresses: Names that Locate Objects
	Generating Unique Names
	Intended Audience and User-Friendly Names
	Relative Lifetimes of Names, Values, and Bindings
	Looking Back and Ahead: Names are a Basic System Component

	Case Study: The Uniform Resource Locator (URL)
	Surfing as a Referential Experience; Name Discovery
	Interpretation of the URL
	URL Case Sensitivity
	Wrong Context References for a Partial URL
	Overloading of Names in URLs

	War Stories: Pathologies in the Use of Names
	A Name Collision Eliminates Smiling Faces
	Fragile Names from Overloading, and a Market Solution
	More Fragile Names from Overloading, with Market Disruption
	Case-Sensitivity in User-Friendly Names
	Running Out of Telephone Numbers

	Exercises

	Chapter 4 - Enforcing Modularity with Clients and Services
	4 Enforcing Modularity with Clients and Services
	Overview
	Client/Service Organization
	From Soft Modularity to Enforced Modularity
	Client/Service Organization
	Multiple Clients and Services
	Trusted Intermediaries
	A Simple Example Service

	Communication Between Client and Service
	Remote Procedure Call (RPC)
	RPCs are not Identical to Procedure Calls
	Communicating through an Intermediary

	Summary and The Road Ahead
	Case Study: The Internet Domain Name System (DNS)
	Name Resolution in DNS
	Hierarchical Name Management
	Other Features of DNS
	Name Discovery in DNS
	Trustworthiness of DNS Responses

	Case Study: The Network File System (NFS)
	Naming Remote Files and Directories
	The NFS Remote Procedure Calls
	Extending the UNIX File System to Support NFS
	Coherence
	NFS Version 3 and Beyond

	Exercises

	Chapter 5 - Enforcing Modularity with Virtualization
	5 Enforcing Modularity with Virtualization
	Overview
	Client/Server Organization within a Computer Using Virtualization
	Abstractions for Virtualizing Computers
	Emulation and Virtual Machines
	Roadmap: Step-by-Step Virtualization

	Virtual Links Using SEND, RECEIVE, and a Bounded Buffer
	An Interface for SEND and RECEIVE with Bounded Buffers
	Sequence Coordination with a Bounded Buffer
	Race Conditions
	Locks and Before-or-After Actions
	Deadlock
	Implementing ACQUIRE and RELEASE
	Implementing a Before-or-After Action Using the One-Writer Principle
	Coordination between Synchronous Islands with Asynchronous Connections

	Enforcing Modularity in Memory
	Enforcing Modularity with Domains
	Controlled Sharing Using Several Domains
	More Enforced Modularity with Kernel and User Mode
	Gates and Changing Modes
	Enforcing Modularity for Bounded Buffers
	The Kernel

	Virtualizing Memory
	Virtualizing Addresses
	Translating Addresses Using a Page Map
	Virtual Address Spaces
	Hardware versus Software and the Translation Look-Aside Buffer
	Segments (Advanced Topic)

	Virtualizing Processors Using Threads
	Sharing a Processor Among Multiple Threads
	Implementing YIELD
	Creating and Terminating Threads
	Enforcing Modularity with Threads: Preemptive Scheduling
	Enforcing Modularity with Threads and Address Spaces
	Layering Threads

	Thread Primitives for Sequence Coordination
	The Lost Notification Problem
	Avoiding the Lost Notification Problem with Eventcounts and Sequencers
	Implementing AWAIT, ADVANCE, TICKET, and  READ (Advanced Topic)
	Polling, Interrupts, and Sequence Coordination

	Case Study: Evolution of Enforced Modularity in the Intel x86
	The Early Designs: No Support for Enforced Modularity
	Enforcing Modularity Using Segmentation
	Page-Based Virtual Address Spaces
	Summary: More Evolution

	Application: Enforcing Modularity Using Virtual Machines
	Virtual Machine Uses
	Implementing Virtual Machines
	Virtualizing Example

	Exercises

	Chapter 6 - Performance
	6 Performance
	Overview
	Designing for Performance
	Performance Metrics
	A Systems Approach to Designing for Performance
	Reducing Latency by Exploiting Workload Properties
	Reducing Latency using Concurrency
	Improving Throughput: Concurrency
	Queuing and Overload
	Fighting Bottlenecks
	An Example: The I/O Bottleneck

	Multilevel Memories
	Memory Characterization
	Multilevel Memory Management using Virtual Memory
	Adding Multilevel Memory Management to a Virtual Memory
	Analyzing Multilevel Memory Systems
	Locality of Reference and Working Sets
	Multilevel Memory Management Policies
	Comparative Analysis of Different Policies
	Other Page-Removal Algorithms
	Other Aspects of Multilevel Memory Management

	Scheduling
	Scheduling Resources
	Scheduling Metrics
	Scheduling Policies
	Case Study: Scheduling the Disk Arm

	Exercises

	About Part II
	About Part II

	Appendix A - The Binary Classification Trade-off
	The Binary Classification Trade-off

	Suggestions for Further Reading
	Suggestions for Further Reading
	Introduction
	Systems
	Wonderful Books About Systems
	Really Good Books About Systems
	Good Books on Related Subjects Deserving Space on the Systems Bookshelf
	Ways of Thinking About Systems
	Wisdom About System Design
	Changing Technology and its Impact on Systems
	Dramatic Visions
	Sweeping New Looks
	Keeping Big Systems Under Control

	Elements of Computer System Organization
	Naming Systems
	The UNIX® System

	The Design of Naming Schemes
	Addressing Architectures
	Examples

	Enforcing Modularity with Clients and Services
	Remote Procedure Call
	Client/Service Systems
	Domain Name System (DNS)

	Enforcing Modularity with Virtualization
	Kernels
	Type Extension as a Modularity Enforcement Tool
	Virtual Processors: Threads
	Virtual Memory
	Coordination
	Virtualization

	Performance
	Multilevel Memory Management
	Remote Procedure Call
	Storage
	Other Performance-Related Topics

	The Network as a System and as a System Component
	Networks
	Protocols
	Organization for Communication
	Practical Aspects

	Fault Tolerance: Reliable Systems from Unreliable Components
	Fault Tolerance
	Software Errors
	Disk Failures

	Atomicity: All-or-Nothing and Before-or-After
	Atomicity, Coordination, and Recovery
	Databases
	Atomicity-Related Topics

	Consistency and Durable Storage
	Consistency
	Durable Storage
	Reconciliation

	Information Security
	Privacy
	Protection Architectures
	Certification, Trusted Computer Systems, and Security Kernels
	Authentication
	Cryptographic Techniques
	Adversaries (The Dark Side)

	Problem Sets
	Problem Sets
	Introduction
	Bigger Files
	Ben’s Stickr
	Jill’s File System for Dummies
	EZ-Park
	Goomble
	Course Swap
	Banking on Local Remote Procedure Call
	The Bitdiddler
	Ben’s Kernel
	A Picokernel-Based Stock-Ticker System
	Ben’s Web Service
	A Bounded Buffer with Semaphores
	The Single-Chip NC
	Toastac-25
	BOOZE: Ben’s Object-Oriented Zoned Environment
	OutOfMoney.com

	Glossary
	Glossary

	Index of Concepts
	Index of Concepts
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

