
this print for content only—size & color not accurate 7.5 x 9.25 spine = 1.4375" 744 page count

Solis
Illustrated C# 2010

THE EXPERT’S VOICE® IN .NET

Illustrated
C# 2010

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

Written and Illustrated by

Daniel M. Solis

Companion
eBook Available

C# illustrated clearly, concisely, and visually

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Illustrated C# 2010
This book presents the C# language in a uniquely succinct and visual format.
Often in programming books, the information can be hidden in a vast sea of
words. As a programmer who has over the years used a dozen programming
languages, I sometimes find it difficult to slog through another 1,000-page book
of dense text to learn a new language. I’m sure there are many other program-
mers who feel the same way. To address this situation, in this book I explain
C# using figures; short, focused code samples; and clear, concise explanations.

Figures are of prime importance in this book. When I was teaching program-
ming seminars, I found that I could almost watch the lightbulbs going on over
the students’ heads as I drew the figures on the whiteboard. In this text, I have
distilled each important concept into simple but accurate illustrations. The
visual presentation of the content will give you an understanding of C# that’s
not possible with text alone.

For something as intricate and precise as a programming language, how-
ever, there must be text as well as figures. But rather than long, wordy expla-
nations, I’ve used short, concise descriptions and bulleted lists to make each
important piece of information visually distinct.

By the end of this book, you’ll have a thorough working knowledge of all
aspects of the C# language, whether you’re a novice programmer or a seasoned
veteran of other languages. If you want a long, leisurely, verbose explanation of
the language, this is not the book for you. But if you want a concise, thorough,
visual presentation of C#, this is just what you’re looking for.

Daniel M. Solis, Author of

Illustrated C# 2008

Illustrated WPF

US $49.99

Shelve in:
Programming Languages/C#

User level:
Beginning–Intermediate

Pro
DLR in .NET 4

Visual C# 2010 Recipes:
A Problem-Solution

Approach

Pro LINQ:
Language Integrated
Query in C# 2010

THE APRESS ROADMAP

Pro C# 2010 and
the .NET 4 Platform,

Fifth Edition

Accelerated
C# 2010

Illustrated
C# 2010

Pro WPF in C# 2010:
Windows Presentation
Foundation with .NET 4

Pro ASP.NET 4
in C# 2010,

Fourth Edition

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-3282-7

9 781430 232827

54999

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Illustrated C# 2010

Daniel M. Solis

Illustrated C# 2010

Copyright © 2010 by Daniel M. Solis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN-13 (pbk): 978-1-4302-3282-7

ISBN-13 (electronic): 978-1-4302-3283-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Development Editor: Matthew Moodie
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editor: Kim Wimpsett
Compositor: Mary Sudul
Indexer: BIM Indexing & Proofreading Services
Artist: Daniel Solis
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

I would like to dedicate this book to

Sian; to my parents, Sal and Amy;

and to Sue.

iv

Contents at a Glance

Contents..v
About the Author ... xxi
Acknowledgments ... xxvi
Introduction .. xxvii

 Chapter 1: C# and the .NET Framework ...1
 Chapter 2: Overview of C# Programming...15
 Chapter 3: Types, Storage, and Variables..31
 Chapter 4: Classes: The Basics ..49
 Chapter 5: Methods..67
 Chapter 6: More About Classes..109
 Chapter 7: Classes and Inheritance ...161
 Chapter 8: Expressions and Operators...201
 Chapter 9: Statements ...239
 Chapter 10: Namespaces and Assemblies ...269
 Chapter 11: Exceptions ..297
 Chapter 12: Structs ..317
 Chapter 13: Enumerations ...327
 Chapter 14: Arrays...341
 Chapter 15: Delegates..369
 Chapter 16: Events...391
 Chapter 17: Interfaces ...409
 Chapter 18: Conversions..435
 Chapter 19: Generics..465
 Chapter 20: Enumerators and Iterators ...505
 Chapter 21: Introduction to LINQ ...537
 Chapter 22: Introduction to Asynchronous Programming595
 Chapter 23: Preprocessor Directives ...627
 Chapter 24: Reflection and Attributes..639
 Chapter 25: Other Topics ...663
 Index ..693

 CONTENTS

v

Contents

Contents at a Glance.. iv

About the Author ... xxi
Acknowledgments ... xxvi
Introduction .. xxvii

 Chapter 1: C# and the .NET Framework ...1
Before .NET..2

Windows Programming in the Late 1990s..2

Goals for the Next-Generation Platform Services ...2

Enter Microsoft .NET..2
Components of the .NET Framework..3

An Improved Programming Environment..4

Compiling to the Common Intermediate Language ...7
Compiling to Native Code and Execution ...8

Overview of Compilation and Execution ...9

The Common Language Runtime...10
The Common Language Infrastructure ..11

Important Parts of the CLI...12

Review of the Acronyms..13

 Chapter 2: Overview of C# Programming...15
A Simple C# Program...16
More About SimpleProgram...17
Identifiers and Keywords ...18

 CONTENTS

vi

Naming Conventions..19
Keywords...20
Main: The Starting Point of a Program...21
Whitespace ..21
Statements ..22
Simple Statements ..22
Blocks ..22
Text Output from a Program ..23
Write ..23
WriteLine..24
The Format String..25
Multiple Markers and Values ...26
Comments: Annotating the Code ...27
More About Comments ..28
Documentation Comments ..28
Summary of Comment Types ..29

 Chapter 3: Types, Storage, and Variables..31
A C# Program Is a Set of Type Declarations ..32
A Type Is a Template ...33
Instantiating a Type ...33
Data Members and Function Members..34

Types of Members ..34

Predefined Types ...35
More About the Predefined Types ..36

User-Defined Types ...38
The Stack and the Heap...39

The Stack..39

The Heap ..40

 CONTENTS

vii

Value Types and Reference Types...41
Storing Members of a Reference Type Object..41

Categorizing the C# Types..42

Variables ..43
Variable Declarations..43

Multiple-Variable Declarations ...45

Using the Value of a Variable..45

Static Typing and the dynamic Keyword ...45
Nullable Types ...46

Creating a Nullable Type ..46

Assigning to a Nullable Type ..48

 Chapter 4: Classes: The Basics ..49
Overview of Classes ..50

A Class Is an Active Data Structure ..50

Programs and Classes: A Quick Example ..51
Declaring a Class ...52
Class Members ..53

Fields ..53

Methods..55

Creating Variables and Instances of a Class..56
Allocating Memory for the Data ...57

Combining the Steps ..58

Instance Members ...59
Access Modifiers ...60

Private and Public Access ..60

Accessing Members from Inside the Class..63
Accessing Members from Outside the Class ...64
Putting It All Together ..65

 CONTENTS

viii

 Chapter 5: Methods..67
The Structure of a Method...68

Code Execution in the Method Body ...69

Local Variables ..70
Type Inference and the var Keyword..71

Local Variables Inside Nested Blocks ...72

Local Constants ...73
Flow of Control ...74

Method Invocations ...75
Return Values ..76

The Return Statement and Void Methods...78

Parameters ..80
Formal Parameters ...80

Actual Parameters ..81

Value Parameters ..83
Reference Parameters ...86
Output Parameters...89
Parameter Arrays...92

Method Invocation ..93

Arrays As Actual Parameters..96

Summary of Parameter Types ...96
Method Overloading...97
Named Parameters..98
Optional Parameters ..100
Stack Frames...104
Recursion...106

 Chapter 6: More About Classes..109
Class Members ..110

Order of Member Modifiers ..110

 CONTENTS

ix

Instance Class Members ...112
Static Fields ...113
Accessing Static Members from Outside the Class...114

Example of a Static Field ..114
Lifetimes of Static Members ..115

Static Function Members...116
Other Static Class Member Types..117
Member Constants...118

Constants Are Like Statics..119

Properties ..121
Property Declarations and Accessors...122
A Property Example ..123
Using a Property ...124
Properties and Associated Fields ...125
Performing Other Calculations..127
Read-Only and Write-Only Properties...128
An Example of a Computed, Read-Only Property ...129
Example of Properties and Databases..130
Properties vs. Public Fields ..130
Automatically Implemented Properties ..131
Static Properties ...132

Instance Constructors..133
Constructors with Parameters..134
Default Constructors...135

Static Constructors ..136
Example of a Static Constructor ...137
Accessibility of Constructors ..137

Object Initializers ...138
Destructors ..140

Calling the Destructor...141

The Standard Dispose Pattern ..143

CONTENTS

x

Comparing Constructors and Destructors144
The readonly Modifier. ..145
The this Keyword147
Indexers ...148

What Is an Indexer? ..149

Indexers and Properties..149

Declaring an Indexer ..150

The Indexer set Accessor ...151

The Indexer get Accessor ...152

More About Indexers ..152

Declaring the Indexer for the Employee Example. ...153

Another Indexer Example ...154

Indexer Overloading..155

Access Modifiers on Accessors156
Partial Classes and Partial Types. ...157

Partial Methods ..159

Chapter 7: Classes and Inheritance ...161
Class Inheritance162
Accessing the Inherited Members163

All Classes Are Derived from Class object. ..164

Hiding Members of a Base Class165
Base Access . ..167
Using References to a Base Class168

Virtual and Override Methods170

Overriding a Method Marked override. ..172

Overriding Other Member Types. ...175

Constructor Execution176
Constructor Initializers ...178

Class Access Modifiers...181

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 CONTENTS

xi

Inheritance Between Assemblies ..182
Member Access Modifiers ...184

Regions Accessing a Member ..185

Public Member Accessibility ..186

Private Member Accessibility ...186

Protected Member Accessibility ...187

Internal Member Accessibility ..187

Protected Internal Member Accessibility..188

Summary of Member Access Modifiers ...188

Abstract Members ...190
Abstract Classes ..192

Example of an Abstract Class and an Abstract Method..193

Another Example of an Abstract Class ...194

Sealed Classes...195
Static Classes ..196
Extension Methods ..197

 Chapter 8: Expressions and Operators...201
Expressions ...202
Literals...203
Integer Literals...204

Real Literals..205

Character Literals ..206
String Literals ..207
Order of Evaluation ..209

Precedence...209

Associativity ...210

Simple Arithmetic Operators ...212
The Remainder Operator..213

 CONTENTS

xii

Relational and Equality Comparison Operators ...214
Comparison and Equality Operations ...215

Increment and Decrement Operators ..217
Conditional Logical Operators..219
Logical Operators...221
Shift Operators...223
Assignment Operators ...225

Compound Assignment...226

The Conditional Operator ...227
Unary Arithmetic Operators ...229
User-Defined Type Conversions...230

Explicit Conversion and the Cast Operator ...232

Operator Overloading...233
Restrictions on Operator Overloading...234

Example of Operator Overloading...235

The typeof Operator ...236
Other Operators ...238

 Chapter 9: Statements ...239
What Are Statements?...240
Expression Statements ..241
Flow-of-Control Statements ..242
The if Statement ..243
The if . . . else Statement...244
The switch Statement..245

A Switch Example...247

More on the switch Statement ...248

Switch Labels ...249

The while Loop ..250

 CONTENTS

xiii

The do Loop ...251
The for Loop...253

The Scope of Variables in a for Statement ...255

Multiple Expressions in the Initializer and Iteration Expression ...256

Jump Statements ..257
The break Statement ...257
The continue Statement ..258
Labeled Statements...259

Labels ...259

The Scope of Labeled Statements..260

The goto Statement ...261
The goto Statement Inside a switch Statement..261

The using Statement..262
Packaging Use of the Resource..263

Example of the using Statement ..264

Multiple Resources and Nesting...265

Another Form of the using Statement ..266

Other Statements...267

 Chapter 10: Namespaces and Assemblies ...269
Referencing Other Assemblies ..270

The mscorlib Library...273

Namespaces ..275
Namespace Names...279

More About Namespaces ...280

Namespaces Spread Across Files ..281

Nesting Namespaces..282

The using Directives ..283
The using Namespace Directive ...283

The using Alias Directive ..284

 CONTENTS

xiv

The Structure of an Assembly ...285
The Identity of an Assembly ..287
Strongly Named Assemblies..289

Creating a Strongly Named Assembly ..290

Private Deployment of an Assembly ..291
Shared Assemblies and the GAC ...292

Installing Assemblies into the GAC ...292

Side-by-Side Execution in the GAC...293

Configuration Files...294
Delayed Signing...295

 Chapter 11: Exceptions ..297
What Are Exceptions?..298
The try Statement ..299

Handling the Exception...300

The Exception Classes ...301
The catch Clause ...303
Examples Using Specific catch Clauses ..304
The catch Clauses Section...305
The finally Block ..306
Finding a Handler for an Exception..307
Searching Further ..308

General Algorithm...309

Example of Searching Down the Call Stack ...310

Throwing Exceptions ...313
Throwing Without an Exception Object..314

 Chapter 12: Structs ..317
What Are Structs?..318
Structs Are Value Types...319

 CONTENTS

xv

Assigning to a Struct ...320
Constructors and Destructors..321

Instance Constructors...321

Static Constructors ...323

Summary of Constructors and Destructors ..323

Field Initializers Are Not Allowed...324
Structs Are Sealed ...324
Boxing and Unboxing ...324
Structs As Return Values and Parameters...325
Additional Information About Structs...325

 Chapter 13: Enumerations ...327
Enumerations...328

Setting the Underlying Type and Explicit Values ..330

Implicit Member Numbering...331

Bit Flags...332
The Flags Attribute ...335

Example Using Bit Flags ...337

More About Enums ..339

 Chapter 14: Arrays...341
Arrays ..342

Definitions ..342

Important Details ..342

Types of Arrays..343
An Array As an Object ..344
One-Dimensional and Rectangular Arrays...345

Declaring a One-Dimensional Array or a Rectangular Array ..345

Instantiating a One-Dimensional or Rectangular Array ...346
Accessing Array Elements ...347

 CONTENTS

xvi

Initializing an Array..348
Explicit Initialization of One-Dimensional Arrays..348

Explicit Initialization of Rectangular Arrays ..349

Syntax Points for Initializing Rectangular Arrays..349

Shortcut Syntax ..350

Implicitly Typed Arrays ...351

Putting It All Together ...352

Jagged Arrays..353
Declaring a Jagged Array ...354

Shortcut Instantiation ...354

Instantiating a Jagged Array ..355

Subarrays in Jagged Arrays ...356

Comparing Rectangular and Jagged Arrays ..357
The foreach Statement ..358

The Iteration Variable Is Read-Only ..360

The foreach Statement with Multidimensional Arrays ...361

Array Covariance ...363
Useful Inherited Array Members..364

The Clone Method...366

Comparing Array Types ...368

 Chapter 15: Delegates..369
What Is a Delegate?...370
Declaring the Delegate Type..372
Creating the Delegate Object...373
Assigning Delegates ..375
Combining Delegates...376
Adding Methods to Delegates..377
Removing Methods from a Delegate ...378
Invoking a Delegate ...379

 CONTENTS

xvii

Delegate Example..380
Invoking Delegates with Return Values ...381
Invoking Delegates with Reference Parameters..382
Anonymous Methods ...383

Using Anonymous Methods ..383

Syntax of Anonymous Methods ..384

Scope of Variables and Parameters ...386

Lambda Expressions..388

 Chapter 16: Events...391
Events Are Like Delegates ...392

An Event Has a Private Delegate ..393

Overview of Source Code Components..394
Declaring an Event...395

An Event Is a Member...396

The Delegate Type and EventHandler...396

Raising an Event ..397
Subscribing to an Event...398

Removing Event Handlers...400

Standard Event Usage ...401
Using the EventArgs Class..401

Passing Data by Extending EventArgs ..402

Using the Custom Delegate ..403

The MyTimerClass Code ..406
Event Accessors ..408

 Chapter 17: Interfaces ...409
What Is an Interface?...410

Example Using the IComparable Interface ...411

Declaring an Interface ...414

 CONTENTS

xviii

Implementing an Interface...416
Example with a Simple Interface..417

An Interface Is a Reference Type...418
Using the as Operator with Interfaces ...420
Implementing Multiple Interfaces..421
Implementing Interfaces with Duplicate Members..422
References to Multiple Interfaces..424
An Inherited Member As an Implementation ...426
Explicit Interface Member Implementations..427

Accessing Explicit Interface Member Implementations ...430

Interfaces Can Inherit Interfaces ...431
Example of Different Classes Implementing an Interface ..432

 Chapter 18: Conversions..435
What Are Conversions?..436
Implicit Conversions ..437
Explicit Conversions and Casting...438

Casting..439

Types of Conversions...440
Numeric Conversions...440

Implicit Numeric Conversions...441

Overflow Checking Context ..442

Explicit Numeric Conversions ...444

Reference Conversions..448
Implicit Reference Conversions ..449

Explicit Reference Conversions ..451

Valid Explicit Reference Conversions ...452

Boxing Conversions ...454
Boxing Creates a Copy...455

 CONTENTS

xix

Unboxing Conversions ...456
The Unboxing Conversions ..457
User-Defined Conversions ...458

Constraints on User-Defined Conversions ..458

Example of a User-Defined Conversion ..459

Evaluating User-Defined Conversions ..461

Example of a Multistep User-Defined Conversion ..461

The is Operator ..463
The as Operator ...464

 Chapter 19: Generics..465
What Are Generics? ...466

A Stack Example...466

Generics in C#..468
Continuing with the Stack Example..469

Generic Classes ...470
Declaring a Generic Class..471
Creating a Constructed Type ...472
Creating Variables and Instances ..473

The Stack Example Using Generics ..475

Comparing the Generic and Nongeneric Stack...477

Constraints on Type Parameters..478
Where Clauses..479

Constraint Types and Order ..480

Generic Methods..481
Declaring a Generic Method ...482

Invoking a Generic Method...483

Example of a Generic Method...485

Extension Methods with Generic Classes ..486
Generic Structs ..487

CONTENTS

xx

Generic Delegates..488
Another Generic Delegate Example . ..490

Generic Interfaces. ..491
An Example Using Generic Interfaces. ...492

Generic Interface Implementations Must Be Unique . ..493

Covariance and Contravariance in Generics . ..494
Covariance and Contravariance in Interfaces. ...500

More About Variance ..502

Chapter 20: Enumerators and Iterators ...505
Enumerators and Enumerable Types. ...506

Using the foreach Statement. ..506

Types of Enumerators...507

Using the IEnumerator Interface. ..508
Declaring an IEnumerator Enumerator511

The IEnumerable Interface...513
Example Using IEnumerable and IEnumerator514

The Noninterface Enumerator..516
The Generic Enumeration Interfaces518
The IEnumerator<T> Interface . ..519
The IEnumerable<T> Interface..522
Iterators524

Iterator Blocks525

Using an Iterator to Create an Enumerator526

Using an Iterator to Create an Enumerable . ..528

Common Iterator Patterns530
Producing Enumerables and Enumerators . ..531
Producing Multiple Enumerables. ...532
Producing Multiple Enumerators534
Behind the Scenes with Iterators ..536

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 CONTENTS

xxi

 Chapter 21: Introduction to LINQ ...537
What Is LINQ? ..538
LINQ Providers ...539

Anonymous Types ..540

Query Syntax and Method Syntax..542
Query Variables..544
The Structure of Query Expressions ..546

The from Clause ...547

The join Clause ...549

What Is a Join? ...550

The from . . . let . . . where Section in the Query Body...553

The orderby Clause...557

The select . . . group Clause ...558

Anonymous Types in Queries ...560

The group Clause..561

Query Continuation ...563

The Standard Query Operators ..564
Signatures of the Standard Query Operators..567

Delegates As Parameters ...569

The LINQ Predefined Delegate Types ...571

Example Using a Delegate Parameter ..572

Example Using a Lambda Expression Parameter ...573

LINQ to XML ...575
Markup Languages...575

XML Basics ...576

The XML Classes ..578

Using Values from the XML Tree ..581

Working with XML Attributes..586

Other Types of Nodes ...590

Using LINQ Queries with LINQ to XML ..592

 CONTENTS

xxii

 Chapter 22: Introduction to Asynchronous Programming595
Processes, Threads, and Asynchronous Programming ...596

Multithreading Considerations ...597

The Complexity of Multithreading...598

Parallel Loops ..599
The BackgroundWorker Class..602

Example Code Using the BackgroundWorker Class..606

Example of the BackgroundWorker Class in a WPF Program...610

Asynchronous Programming Patterns ...613
BeginInvoke and EndInvoke...614

The Wait-Until-Done Pattern...616

The AsyncResult Class ...617

The Polling Pattern ...618

The Callback Pattern ..620

Timers..624

 Chapter 23: Preprocessor Directives ...627
What Are Preprocessor Directives? ...628
General Rules...628
The #define and #undef Directives ..630
Conditional Compilation...631
The Conditional Compilation Constructs..632
Diagnostic Directives ...635
Line Number Directives ...636
Region Directives...637
The #pragma warning Directive ..638

 Chapter 24: Reflection and Attributes..639
Metadata and Reflection..640
The Type Class...640

 CONTENTS

xxiii

Getting a Type Object ..642
What Is an Attribute? ...645
Applying an Attribute ...646
Predefined, Reserved Attributes..647

The Obsolete Attribute..647

The Conditional Attribute ..648

Predefined Attributes..650

More About Applying Attributes...651
Multiple Attributes ..651

Other Types of Targets ...652

Global Attributes ...653

Custom Attributes ..654
Declaring a Custom Attribute ...654

Using Attribute Constructors ..655

Specifying the Constructor ...655

Using the Constructor ...656

Positional and Named Parameters in Constructors ..657

Restricting the Usage of an Attribute ...658

Suggested Practices for Custom Attributes..660

Accessing an Attribute...661
Using the IsDefined Method ...661

Using the GetCustomAttributes Method ...662

 Chapter 25: Other Topics ...663
Overview..664
Strings ...664

Using Class StringBuilder ...666

Formatting Numeric Strings ...667

Parsing Strings to Data Values ..672

 CONTENTS

xxiv

More About the Nullable Types..674
The Null Coalescing Operator ...676

Using Nullable User-Defined Types ..677

Method Main..679
Accessibility of Main...680

Documentation Comments ..681
Inserting Documentation Comments ..682

Using Other XML Tags ..683

Nested Types ...684
Example of a Nested Class ...685

Visibility and Nested Types...686

Interoperating with COM..689

Index...693

 CONTENTS

xxv

About the Author

 Dan Solis holds a Bachelor of Arts degree with majors in biology and English.
He initially worked in research on the structure of bi- and tri-metal crystals, until
he found that he enjoyed programming much more than working in a lab. He also
holds a Master of Science degree in computer science from the University of
California at Santa Barbara, where he concentrated on programming languages
and compiler design.

Dan has been programming professionally for more than 20 years, with more
than half that time working as a consultant and contract programmer, including
several projects for Microsoft Consulting Services. His consulting projects have
ranged from programs for mutual fund analysis and supply chain management to
systems for missile tracking. He has also taught courses on various programming
languages, Windows programming, UNIX internals, and a number of other topics,

in both the United States and Europe.
Dan’s first programming language was C, but he soon became intrigued by the journal articles

about a new language being developed called “C with Classes.” Eventually that language was renamed
C++ and released to the world. He began using C++ as soon as he could get access to a compiler, and he
eventually started teaching training seminars on the language as well as continuing to code.

With the advent of C#, .NET, and WPF, he has moved on to enjoying the myriad advantages of the new
platform and has been working with them enthusiastically ever since.

 CONTENTS

xxvi

Acknowledgments

I want to thank Sian for supporting and encouraging me on a daily basis, and I want to thank my parents
and brothers and sisters for their continued love and support.

I also want to express my gratitude to the people at Apress who have worked with me to bring this
book to fruition. I really appreciate that they understood and appreciated what I was trying to do and
worked with me to achieve it. Thanks to all of you.

 INTRODUCTION

xxvii

Introduction

The purpose of this book is to teach you the fundamentals and mechanics of the C# programming
language. Most books teach programming primarily using text. That’s great for novels, but many of the
important concepts of programming languages can best be understood through a combination of
words, figures, and tables.

Many of us think visually, and figures and tables can help clarify and crystallize our understanding
of a concept. In several years of teaching programming languages, I have found that the pictures I drew
on the whiteboards were the things that most quickly helped the students understand the concepts I was
trying to convey. Illustrations alone, however, are not sufficient to explain a programming language and
platform. The goal of this book is to find the best combination of words and illustrations to give you a
thorough understanding of the language and to allow the book to serve as a reference resource as well.

This book is written for anyone who wants an introduction to the C# programming language—from
the novice to the seasoned programmer. For those just getting started in programming, I’ve included the
basics. For seasoned programmers, the content is laid out succinctly, in a form that allows you to go
directly to the information required without having to wade through oceans of words. For both sets of
programmers, the content itself is presented graphically, in a form that should make the language easy
to learn.

You can download the source code for all the book’s example programs from the Apress web site—
apress.com. And although I can’t answer specific questions about your code, you can contact me with
suggestions or feedback at dansolis@sbcglobal.net. You can also visit my web site—
illustratedcsharp.com. Finally, if you’re interested in learning to program using Windows Presentation
Foundation, please take a look at my book—Illustrated WPF, which uses the same style and approach as
this book.

I hope this book makes learning C# an enjoyable experience for you! Take care.

Dan Solis

mailto:dansolis@sbcglobal.net

C H A P T E R 1

1

C# and the .NET Framework

 Before .NET

 Enter Microsoft .NET

 Compiling to the Common Intermediate Language

 Compiling to Native Code and Execution

 The Common Language Runtime

 The Common Language Infrastructure

 Review of the Acronyms

CHAPTER 1 C# AND THE .NET FRAMEWORK

2

Before .NET
The C# programming language was designed for developing programs for Microsoft’s .NET Framework.
This chapter gives a brief look at where .NET came from and its basic architecture. To start off, let’s get
the name right: C# is pronounced “see sharp.”1

Windows Programming in the Late 1990s
In the late 1990s, Windows programming using the Microsoft platform had fractured into a number of
branches. Most programmers were using Visual Basic (VB), C, or C++. Some C and C++ programmers
were using the raw Win32 API, but most were using the Microsoft Foundation Classes (MFC). Others had
moved to the Component Object Model (COM).

All these technologies had their own problems. The raw Win32 API was not object-oriented, and
using it required a lot more work than MFC. MFC was object-oriented but was inconsistent and getting
old. COM, although conceptually simple, was complex in its actual coding and required lots of ugly,
inelegant plumbing.

Another shortcoming of all these programming technologies was that they were aimed primarily at
developing code for the desktop rather than the Internet. At the time, programming for the Web was an
afterthought and seemed very different from coding for the desktop.

Goals for the Next-Generation Platform Services
What we really needed was a new start—an integrated, object-oriented development framework that
would bring consistency and elegance back to programming. To meet this need, Microsoft set out to
develop a code execution environment and a code development environment that met these goals.
Figure 1-1 lists these goals.

Figure 1-1. Goals for the next-generation platform

Enter Microsoft .NET
In 2002, Microsoft released the first version of the .NET Framework, which promised to address the old
problems and meet the goals for the next-generation systems. The .NET Framework is a much more
consistent and object-oriented environment than either the MFC or COM programming technology.
Some of its features include the following:

1 I was once interviewed for a contract C# position when the Human Resources interviewer asked me how
much experience I’d had programming in “see pound” (instead of “see sharp”)! It took me a moment to realize
what he was talking about.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1 C# AND THE .NET FRAMEWORK

3

• Multiple platforms: The system runs on a broad range of computers, from servers and desktop

machines to PDAs and cell phones.

• Industry standards: The system uses industry-standard communication protocols, such as XML,

HTTP, SOAP, and WSDL.

• Security: The system can provide a much safer execution environment, even in the presence of

code obtained from suspect sources.

Components of the .NET Framework
The .NET Framework consists of three components, as shown in Figure 1-2. The execution environment
is called the Common Language Runtime (CLR). The CLR manages program execution at run time,
including the following:

• Memory management

• Code safety verification

• Code execution, thread management, and exception handling

• Garbage collection

The programming tools include everything you need for coding and debugging, including the
following:

• The Visual Studio integrated development environment

• .NET-compliant compilers (e.g., C#, VB .NET, JScript, F#, IronRuby, and managed C++)

• Debuggers

• Web development server-side technologies, such as ASP.NET or WCF

The Base Class Library (BCL) is a large class library used by the .NET Framework and available for
you to use in your programs as well.

Figure 1-2. Components of the .NET Framework

CHAPTER 1 C# AND THE .NET FRAMEWORK

4

An Improved Programming Environment
The .NET Framework offers programmers considerable improvements over previous Windows
programming environments. The following sections give a brief overview of its features and their benefits.

Object-Oriented Development Environment
The CLR, the BCL, and C# are designed to be thoroughly object-oriented and act as a well-integrated
environment.

The system provides a consistent, object-oriented model of programming for both local programs
and distributed systems. It also provides a software development interface for desktop application
programming, mobile application programming, and web development, consistent across a broad range
of targets, from servers to cell phones.

Automatic Garbage Collection
The CLR has a service called the garbage collector (GC), which automatically manages memory for you.

• The GC automatically removes objects from memory that your program will no longer access.

• The GC relieves programmers of tasks they have traditionally had to perform, such as

deallocating memory and hunting for memory leaks. This is a huge improvement, since hunting

for memory leaks can be difficult and time-consuming.

Interoperability
The .NET Framework was designed for interoperability between different .NET languages, the operating
system or Win32 DLLs, and COM.

• .NET language interoperability allows software modules written using different .NET languages to

interact seamlessly.

— A program written in one .NET language can use and even inherit from a class written in
another .NET language, as long as certain rules are followed.

— Because of its ability to easily integrate modules produced in different programming
languages, the .NET Framework is sometimes described as language-agnostic.

CHAPTER 1 C# AND THE .NET FRAMEWORK

5

• .NET provides a feature called platform invoke (P/Invoke), which allows code written for .NET to

call and use code not written for .NET. It can use raw C functions imported from standard Win32

DLLs, such as the Windows APIs.

• The .NET Framework also allows interoperability with COM. The .NET Framework software

components can call COM components and COM components can call .NET components as if

they were COM components themselves.

No COM Required
The .NET Framework frees the programmer from the COM legacy. As a C# programmer, you don’t need
to use COM and therefore don’t need any of the following:

• The IUnknown interface: In COM, all objects must implement interface IUnknown. In contrast, all

.NET objects derive from a single class called object. Interface programming is still an important

part of .NET, but it’s no longer the central theme.

• Type libraries: In COM, type information is kept in type libraries as .tlb files, which are separate

from the executable code. In .NET, a program’s type information is kept bundled with the code in

the program file.

• Reference counting: In COM, the programmer had to keep track of the number of references to an

object to make sure it wasn’t deleted at the wrong time. In .NET, the GC keeps track of references

and removes objects only when appropriate.

• HRESULT: COM used the HRESULT data type to return runtime error codes. .NET doesn’t use

HRESULTs. Instead, all unexpected runtime errors produce exceptions.

• The registry: COM applications had to be registered in the system registry, which holds

information about the configurations of the operating system and applications. .NET

applications don’t need to use the registry. This simplifies the installation and removal of

programs. (However, there is something similar called the global assembly cache, which I’ll cover

in Chapter 10.)

Although the amount of COM code that’s currently being written is fairly small, there’s still quite a
number of COM components in systems currently being used, and C# programmers sometimes need to
write code that interfaces with those components. C# 4.0 introduces several new features that make that
task easier.

CHAPTER 1 C# AND THE .NET FRAMEWORK

6

Simplified Deployment
Deploying programs written for the .NET Framework can be much easier than it was before, for the
following reasons:

• The fact that .NET programs don’t need to be registered with the registry means that in the

simplest case, a program just needs to be copied to the target machine and it’s ready to run.

• .NET offers a feature called side-by-side execution, which allows different versions of a DLL to

exist on the same machine. This means that every executable can have access to the version of

the DLL for which it was built.

Type Safety
The CLR checks and ensures the type safety of parameters and other data objects—even between
components written in different programming languages.

The Base Class Library
The .NET Framework supplies an extensive base class library, called, not surprisingly, the Base Class
Library (BCL). (It’s also sometimes called the Framework Class Library—FCL). You can use this extensive
set of available code when writing your own programs. Some of the categories are the following:

• General base classes: Classes that provide you with an extremely powerful set of tools for a wide

range of programming tasks, such as file manipulation, string manipulation, security, and

encryption

• Collection classes: Classes that implement lists, dictionaries, hash tables, and bit arrays

• Threading and synchronization classes: Classes for building multithreaded programs

• XML classes: Classes for creating, reading, and manipulating XML documents

CHAPTER 1 C# AND THE .NET FRAMEWORK

7

Compiling to the Common Intermediate Language
The compiler for a .NET language takes a source code file and produces an output file called an
assembly. Figure 1-3 illustrates the process.

• An assembly is either an executable or a DLL.

• The code in an assembly isn’t native machine code but an intermediate language called the

Common Intermediate Language (CIL).

• An assembly, among other things, contains the following items:

— The program’s CIL

— Metadata about the types used in the program

— Metadata about references to other assemblies

Figure 1-3. The compilation process

The acronym for the intermediate language has changed over time, and different references use
different terms. Two other terms for the CIL that you might encounter are Intermediate Language (IL)
and Microsoft Intermediate Language (MSIL). These terms were frequently used during .NET’s initial
development and early documentation.

CHAPTER 1 C# AND THE .NET FRAMEWORK

8

Compiling to Native Code and Execution
The program’s CIL isn’t compiled to native machine code until it’s called to run. At run time, the CLR
performs the following steps, as shown in Figure 1-4:

• It checks the assembly’s security characteristics.

• It allocates space in memory.

• It sends the assembly’s executable code to the just-in-time (JIT) compiler, which compiles

portions of it to native code.

The executable code in the assembly is compiled by the JIT compiler only as it’s needed. It’s then
cached in case it’s needed for execution again later in the program. Using this process means that code
that isn’t called during execution isn’t compiled to native code, and code that is called need only be
compiled once.

Figure 1-4. Compilation to native code occurs at run time

Once the CIL is compiled to native code, the CLR manages it as it runs, performing such tasks as
releasing orphaned memory, checking array bounds, checking parameter types, and managing
exceptions. This brings up two important terms:

• Managed code: Code written for the .NET Framework is called managed code and needs the CLR.

• Unmanaged code: Code that doesn’t run under the control of the CLR, such as Win32 C/C++

DLLs, is called unmanaged code.

Microsoft also supplies a tool called the Native Image Generator, or Ngen, which takes an assembly
and produces native code for the current processor. Code that’s been run through Ngen avoids the JIT
compilation process at run time.

CHAPTER 1 C# AND THE .NET FRAMEWORK

9

Overview of Compilation and Execution
The same compilation and execution process is followed regardless of the language of the original
source files. Figure 1-5 illustrates the entire compilation and run-time processes for three programs
written in different languages.

Figure 1-5. Overview of the compile-time and runtime processes

3

CHAPTER 1 C# AND THE .NET FRAMEWORK

10

The Common Language Runtime
The core component of the .NET Framework is the CLR, which sits on top of the operating system and
manages program execution, as shown in Figure 1-6. The CLR also provides the following services:

• Automatic garbage collection

• Security and authentication

• Extensive programming functionality through access to the BCL—including functionality such as

web services and data services

Figure 1-6. Overview of the CLR

CHAPTER 1 C# AND THE .NET FRAMEWORK

11

The Common Language Infrastructure
Every programming language has a set of intrinsic types representing such objects as integers, floating-
point numbers, characters, and so on. Historically, the characteristics of these types have varied from
one programming language to another and from platform to platform. For example, the number of bits
constituting an integer has varied widely depending on the language and platform.

This lack of uniformity, however, makes it difficult if we want programs to play well with other
programs and libraries written in different languages. To have order and cooperation, there must be a
set of standards.

The Common Language Infrastructure (CLI) is a set of standards that ties all the components of the
.NET Framework into a cohesive, consistent system. It lays out the concepts and architecture of the
system and specifies the rules and conventions to which all the software must adhere. Figure 1-7 shows
the components of the CLI.

Figure 1-7. Components of the CLI

Both the CLI and C# have been approved as open international standard specifications by Ecma
International. (The name “Ecma” used to be an acronym for the European Computer Manufacturers
Association, but it’s now just a word in itself.) Ecma members include Microsoft, IBM, Hewlett-Packard,
Adobe, and many other corporations associated with computers and consumer electronics.

CHAPTER 1 C# AND THE .NET FRAMEWORK

12

Important Parts of the CLI
Although most programmers don’t need to know the details of the CLI specifications, you should at least
be familiar with the meaning and purpose of the Common Type System and the Common Language
Specification.

Common Type System (CTS)
The Common Type System (CTS) defines the characteristics of the types that must be used in managed
code. Some important aspects of the CTS are the following:

• The CTS defines a rich set of intrinsic types, with fixed, specific characteristics for each type.

• The types provided by a .NET-compliant programming language generally map to some specific

subset of this defined set of intrinsic types.

• One of the most important characteristics of the CTS is that all types are derived from a common

base class—called object.

Common Language Specification (CLS)
The Common Language Specification (CLS) specifies the rules, properties, and behaviors of a .NET-
compliant programming language. The topics include data types, class construction, and
parameter passing.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1 C# AND THE .NET FRAMEWORK

13

Review of the Acronyms
This chapter has covered a lot of .NET acronyms, so Figure 1-8 will help you keep them straight.

Figure 1-8. The .NET acronyms

C H A P T E R 2

15

Overview of C# Programming

 A Simple C# Program

 Identifiers and Keywords

 Main: The Starting Point of a Program

 Whitespace

 Statements

 Text Output from a Program

 Comments: Annotating the Code

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

16

A Simple C# Program
This chapter lays the groundwork for studying C#. Since I’ll use code samples extensively throughout the
text, I first need to show you what a C# program looks like and what its various parts mean.

I’ll start by demonstrating a simple program and explaining its components one by one. This will
introduce a range of topics, from the structure of a C# program to the method of producing program
output to the screen.

With these source code preliminaries out of the way, I can then use code samples freely throughout
the rest of the text. So, unlike the following chapters, where one or two topics are covered in detail, this
chapter touches on many topics with only a minimum of explanation.

Let’s start by looking at a simple C# program. The complete program source is shown in the top,
shaded area in Figure 2-1. As shown, the code is contained in a text file called SimpleProgram.cs. As you
read through it, don’t worry about understanding all the details. Table 2-1 gives a line-by-line
description of the code.

• When the code is compiled and executed, it displays the string “Hi there!” in a window on

the screen.

• Line 5 contains two contiguous slash characters. These characters—and everything following

them on the line—are ignored by the compiler. This is called a single-line comment.

Figure 2-1. The SimpleProgram program

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

17

Table 2-1. The SimpleProgram Program, Line by Line

Line Number Description

Line 1 Tells the compiler that this program uses types from the System namespace.

Line 3 Declares a new namespace, called Simple.

• The new namespace starts at the open curly brace on line 4 and extends

through the matching curly brace on line 12.

• Any types declared within this section are members of the namespace.

Line 5 Declares a new class type, called Program.

• Any members declared between the matching curly braces on lines 6 and

11 are members that make up this class.

Line 7

Declares a method called Main as a member of class Program.

• In this program, Main is the only member of the Program class.

• Main is a special function used by the compiler as the starting point of the

program

Line 9 Contains only a single, simple statement; this line constitutes the body of Main.

• Simple statements are terminated by a semicolon.

• This statement uses a class called Console, in namespace System, to print

out the message to a window on the screen

• Without the using statement in line 1, the compiler wouldn’t have known

where to look for class Console.

More About SimpleProgram
A C# program consists of one or more type declarations. Much of this book is spent explaining the
different types that you can create and use in your programs. The types in a program can be declared in
any order. In the SimpleProgram example, only a class type is declared.

A namespace is a set of type declarations associated with a name. SimpleProgram uses two
namespaces. It creates a new namespace called Simple, in which it declares its type (class Program), and
uses the Console class defined in a namespace called System.

To compile the program, you can use Visual Studio or the command-line compiler. To use the
command-line compiler, in its simplest form, use the following command in a command window:

 csc SimpleProgram.cs

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

18

In this command, csc is the name of the command-line compiler, and SimpleProgram.cs is the name
of the source file.

Identifiers and Keywords
Identifiers are character strings used to name things such as variables, methods, parameters, and a host
of other programming constructs that will be covered later.

You can create self-documenting identifiers by concatenating meaningful words into a single
descriptive name, using uppercase and lowercase letters (e.g., CardDeck, PlayersHand, FirstName,
SocialSecurityNum). Certain characters are allowed or disallowed at certain positions in an identifier.
Figure 2-2 illustrates these rules.

• The alphabetic and underscore characters (a through z, A through Z, and _) are allowed at any

position.

• Digits are not allowed in the first position but are allowed everywhere else.

• The @ character is allowed in the first position of an identifier but not anywhere else. The use of

the @ character, although allowed, is discouraged for general use.

Figure 2-2. Characters allowed in identifiers

Identifiers are case-sensitive. For instance, the variable names myVar and MyVar are different
identifiers. It’s generally a bad idea, however, to have identifiers that differ only in the case of some of
the letters, because they’re easily confused.

As an example, in the following code snippet, the variable declarations are all valid and declare
different integer variables. But using such similar names will make coding more error-prone and
debugging more difficult. Those debugging your code at some later time will not be pleased.

 // Valid syntactically, but don't do this!
 int totalCycleCount;
 int TotalCycleCount;
 int TotalcycleCount;

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

19

Naming Conventions
The C# Language Specification suggests that certain casing conventions be used in creating identifiers.
Table 2-2 summarizes the suggested guidelines for casing.

For most type identifiers, the Pascal casing style is recommended. In this style, each of the words
combined to make an identifier is capitalized—for example, FirstName and LastName.

Table 2-2. Recommended Identifier Naming Styles

Style Name Description Recommended Use Examples

Pascal casing Each word in the
identifier is capitalized.

Use for type names and
member names.

CardDeck, DealersHand

Camel casing Each word in the
identifier, except the
first, is capitalized.

Use for local variables and
method parameters.

totalCycleCount,
randomSeedParam

Uppercase The identifier is
composed of all
uppercase letters.

Use only for abbreviations. IO, DMA, XML

Although these are the suggested guidelines, many organizations use other conventions—

particularly in the naming of member fields, which I’ll introduce in the next chapter. Two of the
common conventions are the following:

• Begin a field name with an underscore: _highTemp, _lowTemp

• Begin a field name with m_: m_highTemp, m_lowTemp

Both of these methods have the advantage of showing you immediately that these identifiers are
field names. These forms also allow Visual Studio’s IntelliSense feature to group all the fields together in
the pop-ups.

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

20

Keywords
Keywords are the character string tokens used to define the C# language. Table 2-3 gives a complete list
of the C# keywords.

Some important things to know about keywords are the following:

• Keywords cannot be used as variable names or any other form of identifier, unless prefaced with

the @ character.

• All C# keywords consist entirely of lowercase letters. (.NET type names, however, use Pascal

casing.)

Table 2-3. The C# Keywords

abstract const extern int out short typeof

as continue false interface override sizeof uint

base decimal finally internal params stackalloc ulong

bool default fixed is private static unchecked

break delegate float lock protected string unsafe

Byte do for long public struct ushort

case double foreach namespace readonly switch using

catch else goto new ref this virtual

char enum if null return throw void

checked event implicit object sbyte true volatile

class explicit in operator sealed try while

Contextual keywords are identifiers that act as keywords only in certain language constructs. In

those positions, they have particular meanings; but unlike keywords, which cannot ever be used as
identifiers, contextual keywords can be used as identifiers in other parts of the code. Table 2-4 contains
the list of contextual keywords.

Table 2-4. The C# Contextual Keywords

add ascending by descending dynamic equals from

get global group into join let on

orderby partial remove select set value var

where yield

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

21

Main: The Starting Point of a Program
Every C# program must have one class with a method (function) called Main. In the SimpleProgram
program shown previously, it was declared in a class called Program.

• The starting point of execution of every C# program is at the first instruction in Main.

• The name Main must be capitalized.

• The simplest form of Main is the following:

 static void Main()
 {
 Statements
 }

Whitespace
Whitespace in a program refers to characters that do not have a visible output character. Whitespace in
source code is ignored by the compiler, but is used by the programmer to make the code clearer and
easier to read. Some of the whitespace characters include the following:

• Space

• Tab

• New line

• Carriage return

For example, the following code fragments are treated exactly the same by the compiler in spite of
their differences in appearance.

 // Nicely formatted
 Main()
 {
 Console.WriteLine("Hi, there!");
 }

 // Just concatenated
 Main(){Console.WriteLine("Hi, there!");}

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

22

Statements
The statements in C# are very similar to those of C and C++. This section introduces the general form of
statements; the specific statement forms are covered in Chapter 9.

Simple Statements
A statement is a source code instruction describing a type or telling the program to perform an action.

• A simple statement is terminated by a semicolon.

For example, the following code is a sequence of two simple statements. The first statement defines
an integer variable named var1 and initializes its value to 5. The second statement prints the value of
variable var1 to a window on the screen.

 int var1 = 5;
 System.Console.WriteLine("The value of var1 is {0}", var1);

Blocks
A block is a sequence of zero or more statements enclosed by a matching set of curly braces; it acts as a
single syntactic statement.

You can create a block from the set of two statements in the preceding example by enclosing the
statements in matching curly braces, as shown in the following code:

 {
 int var1 = 5;
 System.Console.WriteLine("The value of var1 is {0}", var1);
 }

Some important things to know about blocks are the following:

• You can use a block whenever the syntax requires a statement but the action you need requires

more than one simple statement.

• Certain program constructs require blocks. In these constructs, you cannot substitute a simple

statement for the block.

• Although a simple statement is terminated by a semicolon, a block is not followed by a

semicolon. (Actually, the compiler will allow it—but it’s not good style.)

 { Terminating semicolon
 ↓ Terminating semicolon
 int var2 = 5; ↓
 System.Console.WriteLine("The value of var1 is {0}", var1);
 }
 ↑ No terminating semicolon

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

23

Text Output from a Program
A console window is a simple command prompt window that allows a program to display text and
receive input from the keyboard. The BCL supplies a class called Console (in the System namespace),
which contains methods for inputting and outputting data to a console window.

Write
Write is a member of the Console class. It sends a text string to the program’s console window. In its
simplest form, Write sends a literal string of text to the window. The string must be enclosed in
quotation marks—double quotes, not single quotes.

The following line of code shows an example of using the Write member:

 Console.Write("This is trivial text.");
 ↑
 Output string

This code produces the following output in the console window:

This is trivial text.

Another example is the following code, which sends three literal strings to the program’s
console window:

 System.Console.Write ("This is text1. ");
 System.Console.Write ("This is text2. ");
 System.Console.Write ("This is text3. ");

This code produces the output that follows. Notice that Write does not append a newline character
after a string, so the output of the three statements runs together on a single line.

This is text1. This is text2. This is text3.
 ↑ ↑ ↑
 First Second Third
 statement statement statement

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

24

WriteLine
WriteLine is another member of Console, which performs the same functions as Write but appends a
newline character to the end of each output string.

For example, if you use the preceding code, substituting WriteLine for Write, the output is on
separate lines:

 System.Console.WriteLine("This is text 1.");
 System.Console.WriteLine("This is text 2.");
 System.Console.WriteLine("This is text 3.");

This code produces the following output in the console window:

This is text 1.
This is text 2.
This is text 3.

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

25

The Format String
The general form of the Write and WriteLine statements takes more than a single parameter.

• If there is more than a single parameter, the parameters are separated by commas.

• The first parameter must always be a string and is called the format string.

• The format string can contain substitution markers.

− A substitution marker marks the position in the format string where a value should be
substituted in the output string.

− It consists of an integer enclosed in a set of matching curly braces. The integer is the numeric
position of the substitution value to be used.

• The parameters following the format string are called substitution values. These substitution

values are numbered, starting at 0.

The syntax is as follows:

 Console.WriteLine(FormatString, SubVal0, SubVal1, SubVal2, ...);

For example, the following statement has two substitution markers, numbered 0 and 1, and two
substitution values, whose values are 3 and 6, respectively.

 Substitution markers
 ↓ ↓
 Console.WriteLine("Two sample integers are {0} and {1}.", 3, 6);
 ↑ ↑
 Format string Substitution values

This code produces the following output on the screen:

Two sample integers are 3 and 6.

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

26

Multiple Markers and Values
In C#, you can use any number of markers and any number of values.

• The values can be used in any order.

• The values can be substituted any number of times in the format string.

For example, the following statement uses three markers and only two values. Notice that value 1 is
used before value 0 and that value 1 is used twice.

 Console.WriteLine("Three integers are {1}, {0} and {1}.", 3, 6);

This code displays the following on the screen:

 Three integers are 6, 3 and 6.

A marker must not attempt to reference a value at a position beyond the length of the list of
substitution values. If it does, it will not produce a compile error but a runtime error (called an exception).

For example, in the following statement there are two substitution values, with positions 0 and 1.
The second marker, however, references position 2—which does not exist. This will produce a
runtime error.

 Position 0 Position 1
 ↓ ↓
 Console.WriteLine("Two integers are {0} and {2}.", 3 6); // Error!
 ↑
 There is no position 2 value.

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

27

Comments: Annotating the Code
You’ve already seen single-line comments, so here I’ll discuss the second type of inline comments—
delimited comments—and mention a third type called documentation comments.

• Delimited comments have a two-character start marker and a two-character end marker.

• Text between the matching markers is ignored by the compiler.

• Delimited comments can span any number of lines.

For example, the following code shows a delimited comment spanning multiple lines.

 ↓ Beginning of comment spanning multiple lines
 /*
 This text is ignored by the compiler.
 Unlike single-line comments, delimited comments
 like this one can span multiple lines.
 */
 ↑ End of comment

A delimited comment can also span just part of a line. For example, the following statement shows
text commented out of the middle of a line. The result is the declaration of a single variable, var2.

 Beginning of comment
 ↓
 int /*var 1,*/ var2;
 ↑
 End of comment

 Note Single-line and delimited comments behave in C# just like they do in C and C++.

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

28

More About Comments
There are several other important things you need to know about comments:

• Nested delimited comments are not allowed. Only one comment can be in effect at a time. If you

attempt to nest comments, the comment that starts first is in effect until the end of its scope.

• The scope for particularly comment types is as follows:

− For single-line comments, the comment is in effect until the end of the current line.

− For delimited comments, the comment is in effect until the first end delimiter is encountered.

The following attempts at comments are incorrect:

 ↓ Opens the comment
 /* This is an attempt at a nested comment.
 /* ← Ignored because it’s inside a comment
 Inner comment
 */ ←Closes the comment because it’s the first end delimiter encountered
 */ ←Syntax error because it has no opening delimiter

 ↓ Opens the comment ↓ Ignored because it’s inside a comment
 // Single-line comment /* Nested comment?
 */ ← Incorrect because it has no opening delimiter

Documentation Comments
C# also provides a third type of comment: the documentation comment. Documentation comments
contain XML text that can be used to produce program documentation. Comments of this type look like
single-line comments, except that they have three contiguous slashes rather than two. I’ll cover
documentation comments in Chapter 25.

The following code shows the form of documentation comments:

 /// <summary>
 /// This class does...
 /// </summary>
 class Program
 {
 ...

CHAPTER 2 OVERVIEW OF C# PROGRAMMING

29

Summary of Comment Types
Inline comments are sections of text that are ignored by the compiler but are included in the code to
document it. Programmers insert comments into their code to explain and document it. Table 2-5
summarizes the comment types.

Table 2-5. Comment Types

Type Start End Description

Single-line // The text from the beginning marker to the end of the current line is
ignored by the compiler.

Delimited /* */ The text between the start and end markers is ignored by the
compiler.

Documentation /// Comments of this type contain XML text that is meant to be used
by a tool to produce program documentation.

C H A P T E R 3

31

Types, Storage, and Variables

 A C# Program Is a Set of Type Declarations

 A Type Is a Template

 Instantiating a Type

 Data Members and Function Members

 Predefined Types

 User-Defined Types

 The Stack and the Heap

 Value Types and Reference Types

 Variables

 Static Typing and the dynamic Keyword

 Nullable Types

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

32

A C# Program Is a Set of Type Declarations
If you were to broadly characterize the source code of C and C++ programs, you might say that a C
program is a set of functions and data types and that a C++ program is a set of functions and classes. A
C# program, however, is a set of type declarations.

• The source code of a C# program or DLL is a set of one or more type declarations.

• For an executable, one of the types declared must be a class that includes a method called Main.

• A namespace is a way of grouping a related set of type declarations and giving the group a name.

Since your program is a related set of type declarations, you will generally declare your program

type inside a namespace you create.

For example, the following code shows a program that consists of three type declarations. The three
types are declared inside a new namespace called MyProgram.

 namespace MyProgram // Create a new namespace.
 {
 DeclarationOfTypeA // Declare a type.

 DeclarationOfTypeB // Declare a type.

 class C // Declare a type.
 {
 static void Main()
 {
 ...
 }
 }
 }

Namespaces are covered in more detail in Chapter 10.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

33

A Type Is a Template
Since a C# program is just a set of type declarations, learning C# consists of learning how to create and
use types. So, the first thing you need to do is to look at what a type is.

You can start by thinking of a type as a template for creating data structures. It isn’t the data
structure itself, but it specifies the characteristics of objects constructed from the template.

A type is defined by the following elements:

• A name

• A data structure to contain its data members

• Behaviors and constraints

For example, Figure 3-1 illustrates the components of two types: short and int.

Figure 3-1. A type is a template.

Instantiating a Type
Creating an actual object from the type’s template is called instantiating the type.

• The object created by instantiating a type is called either an object of the type or an instance of the

type. The terms are interchangeable.

• Every data item in a C# program is an instance of some type—a type either provided by the

language, provided by the BCL or another library, or defined by the programmer.

Figure 3-2 illustrates the instantiation of objects of two predefined types.

Figure 3-2. Instantiating a type creates an instance.

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

34

Data Members and Function Members
Some types, such as short, int, and long, are called simple types and can store only a single data item.

Other types can store multiple data items. An array, for example, is a type that can store multiple
items of the same type. The individual items are called elements and are referenced by a number, called
an index. Chapter 14 describes arrays in detail.

Types of Members
Other types, however, can contain data items of many different types. The individual elements in these
types are called members, and, unlike arrays, in which each member is referred to by a number, these
members have distinct names.

There are two types of members: data members and function members.

• Data members store data that is relevant to the object of the class or to the class as a whole.

• Function members execute code. Function members define how the type can act.

For example, Figure 3-3 shows some of the data members and function members of type XYZ. It
contains two data members and two function members.

Figure 3-3. Types specify data members and function members.

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

35

Predefined Types
C# provides 16 predefined types, which are shown in Figure 3-4 and listed in Tables 3-1 and 3-2. They
include 13 simple types and 3 nonsimple types.

The names of all the predefined types consist of all lowercase characters. The predefined simple
types include the following:

• Eleven numeric types, including the following:

— Various lengths of signed and unsigned integer types.

— Floating-point types—float and double.

— A high-precision decimal type called decimal. Unlike float and double, type decimal can
represent decimal fractional numbers exactly. It’s often used for monetary calculations.

• A Unicode character type, called char.

• A Boolean type, called bool. Type bool represents Boolean values and must be one of two

values—either true or false.

 Note Unlike C and C++, numeric values do not have a Boolean interpretation in C#.

The three nonsimple types are the following:

• Type string, which is an array of Unicode characters

• Type object, which is the type on which all other types are based

• Type dynamic, which is used when using assemblies written in dynamic languages

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

36

Figure 3-4. The predefined types

More About the Predefined Types
All the predefined types are mapped directly to underlying .NET types. The C# type names are just
aliases for the .NET types, so using the .NET names works fine syntactically, although this is discouraged.
Within a C# program, you should use the C# names rather than the .NET names.

The predefined simple types represent a single item of data. They’re listed in Table 3-1, along with
the ranges of values they can represent and the underlying .NET types to which they map.

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

37

Table 3-1. The Predefined Simple Types

Name Meaning Range .NET Framework
Type

Default
Value

sbyte 8-bit signed integer -128–127 System.SByte 0

byte 8-bit unsigned integer 0–255 System.Byte 0

short 16-bit signed integer -32,768–32,767 System.Int16 0

ushort 16-bit unsigned integer 0–65,535 System.UInt16 0

int 32-bit signed integer -2,147,483,648–2,147,483,647 System.Int32 0

uint 32-bit unsigned integer 0–4,294,967,295 System.UInt32 0

long 64-bit signed integer -9,223,372,036,854,775,808–
9,223,372,036,854,775,807

System.Int64 0

ulong 64-bit unsigned integer 0–18,446,744,073,709,551,615 System.UInt64 0

float Single-precision float 1.5×10-45–3.4×1038 System.Single 0.0f

double Double-precision float 5×10-324–1.7×10308 System.Double 0.0d

bool Boolean true, false System.Boolean false

char Unicode character U+0000–U+ffff System.Char \x0000

decimal Decimal value with 28-
significant-digit precision

± 1.0×1028–±7.9×1028 System.Decimal 0m

The nonsimple predefined types are somewhat more complex. Values of type string contain zero or

more Unicode characters. The object type is the base class for all other types in the system, including
the predefined, simple types. Table 3-2 shows the predefined nonsimple types.

Table 3-2. The Predefined Nonsimple Types

Name Meaning .NET Framework Type

object The base class from which all other types are derived System.Object

string A sequence of Unicode characters System.String

dynamic A type designed to be used with assemblies written in
dynamic languages

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

38

User-Defined Types
Besides the 15 predefined types provided by C#, you can also create your own user-defined types. There
are six kinds of types you can create. They are the following:

• class types

• struct types

• array types

• enum types

• delegate types

• interface types

You create a type using a type declaration, which includes the following information:

• The kind of type you are creating

• The name of the new type

• A declaration (name and specification) of each of the type’s members—except for array and

delegate types, which don’t have named members

Once you’ve declared a type, you can create and use objects of the type just as if they were
predefined types. Figure 3-5 summarizes the use of predefined and user-defined types. Using predefined
types is a one-step process in which you simply instantiate the objects of that type. Using user-defined
types is a two-step process. You must first declare the type and then instantiate objects of the type.

Figure 3-5. The predefined types require instantiation only. The user-defined types require two steps:

declaration and instantiation.

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

39

The Stack and the Heap
While a program is running, its data must be stored in memory. How much memory is required for an
item, and where and how it’s stored, depends on its type.

A running program uses two regions of memory to store data: the stack and the heap.

The Stack
The system takes care of all stack manipulation. You, as the programmer, don’t need to do anything
with it explicitly. But understanding its basic functions will give you a better understanding of what
your program is doing when it’s running and allow you to better understand the C# documentation
and literature.

The stack is an array of memory that acts as a last-in, first-out (LIFO) data structure. It stores several
types of data:

• The values of certain types of variables

• The program’s current execution environment

• Parameters passed to methods

Facts About Stacks
The general characteristics of stacks are the following:

• Data can be added to and deleted only from the top of the stack.

• Placing a data item at the top of the stack is called pushing the item onto the stack.

• Deleting an item from the top of the stack is called popping the item from the stack.

Figure 3-6 illustrates the functions and terminology of the stack.

Figure 3-6. Pushing and popping on the stack

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

40

The Heap
The heap is an area where chunks of memory are allocated to store certain kinds of data objects. Unlike
the stack, memory can be stored and removed from the heap in any order. Figure 3-7 shows a program
that has stored four items in the heap.

Figure 3-7. The memory heap

Although your program can store items in the heap, it cannot explicitly delete them. Instead, the
CLR’s garbage collector (GC) automatically cleans up orphaned heap objects when it determines that
your code is no longer accessing them. This frees you from what in other programming languages can be
an error-prone task. Figure 3-8 illustrates the garbage collection process.

Figure 3-8. Automatic garbage collection in the heap

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

41

Value Types and Reference Types
The type of a data item defines how much memory is required to store it and the data members that
comprise it. The type also determines where an object is stored in memory—the stack or the heap.

Types are divided into two categories: value types and reference types. Objects of these types are
stored differently in memory.

• Value types require only a single segment of memory, which stores the actual data.

• Reference types require two segments of memory:

— The first contains the actual data—and is always located in the heap.

— The second is a reference that points to where in the heap the data is stored.

Data that is not a member of another type is stored as shown in Figure 3-9. For value types, data is
stored on the stack. For reference types, the actual data is stored in the heap, and the reference is stored
on the stack.

Figure 3-9. Storing data that is not part of another type

Storing Members of a Reference Type Object
Figure 3-9 shows how data is stored when it isn’t a member of another type. When it’s a member of
another type, data might be stored a little differently.

• The data portion of a reference type object is always stored in the heap, as shown in Figure 3-9.

• A value type object, or the reference part of a reference type, can be stored in either the stack or

the heap, depending on the circumstances.

Suppose, for example, that you have an instance of a reference type, called MyType, that has two
members—a value type member and a reference type member. How is it stored? Is the value type
member stored on the stack and the reference type split between the stack and the heap, as shown in
Figure 3-9? The answer is no.

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

42

Remember that for a reference type, the data of an instance is always stored in the heap. Since both
members are part of the object’s data, they’re both stored in the heap, regardless of whether they are
value or reference types. Figure 3-10 illustrates the case of type MyType.

• Even though member A is a value type, it’s part of the data of the instance of MyType and is

therefore stored with the object’s data in the heap.

• Member B is a reference type, and therefore its data portion will always be stored in the heap, as

shown by the small box marked “Data.” What’s different is that its reference is also stored in the

heap, inside the data portion of the enclosing MyType object.

Figure 3-10. Storage of data as part of a reference type

Note For any object of a reference type, all its data members are stored in the heap, regardless of whether

they are of value type or reference type.

Categorizing the C# Types
Table 3-3 shows all the types available in C# and what kinds of types they are—value types or reference
types. Each reference type is covered later in the text.

Table 3-3. Value Types and Reference Types in C#

Value Types Reference Types

Predefined types sbyte byte float object
short
int
long
bool

ushort
uint
ulong

double
char
decimal

string
dynamic

User-defined types struct
enum

class
interface
delegate
array

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

43

Variables
A general-purpose programming language must allow a program to store and retrieve data.

• A variable is a name that represents data stored in memory during program execution.

• C# provides four categories of variables, each of which will be discussed in detail. These kinds are

listed in Table 3-4.

Table 3-4. The Four Kinds of Variables

Name Member of a Type Description

Local variable No Holds temporary data within the scope of a method

Field Yes Holds data associated with a type or an instance of a type

Parameter No A temporary variable used to pass data from one method to
another method

Array element Yes One member of a sequenced collection of (usually)
homogeneous data items

Variable Declarations
A variable must be declared before it can be used. The variable declaration defines the variable and
accomplishes two things:

• It gives the variable a name and associates a type with it.

• It allows the compiler to allocate memory for it.

A simple variable declaration requires at least a type and a name. The following declaration defines
a variable named var2, of type int:

 Type
 ↓
 int var2;
 ↑
 Name

For example, Figure 3-11 represents the declaration of four variables and their places on the stack.

Figure 3-11. Value type and reference type variable declarations

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

44

Variable Initializers
Besides declaring a variable’s name and type, you can optionally use the declaration to initialize its
memory to a specific value.

A variable initializer consists of an equals sign followed by the initializing value, as shown here:

 Initializer
 ↓
 int var2 = 17;

Local variables without initializers have an undefined value and cannot be used until they have
been assigned a value. Attempting to use an undefined local variable causes the compiler to produce an
error message.

Figure 3-12 shows a number of local variable declarations on the left and the resulting stack
configuration on the right. Some of the variables have initializers, and others do not.

Figure 3-12. Variable initializers

Automatic Initialization
Some kinds of variables are automatically set to default values if they are declared without an initializer,
and others are not. Variables that are not automatically initialized to default values contain undefined
values until the program assigns them a value. Table 3-5 shows which types of variables are
automatically initialized and which are not. I’ll cover each of the five variable types later in the text.

Table 3-5. Types of Variables

Variable Type Stored In Auto-initialized Use

Local variables Stack or stack and heap No Used for local computation inside a
function member

Class fields Heap Yes Members of a class

Struct fields Stack or heap Yes Members of a struct

Parameters Stack No Used for passing values into and out
of a method

Array elements Heap Yes Members of an array

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

45

Multiple-Variable Declarations
You can declare multiple variables in a single declaration statement.

• The variables in a multiple-variable declaration must all be of the same type.

• The variable names must be separated with commas. Initializers can be included with the

variable names.

For example, the following code shows two valid declaration statements with multiple variables.
Notice that the initialized variables can be mixed with uninitialized variables as long as they’re separated
by commas. The last declaration statement shown is invalid because it attempts to declare different
types of variables in a single statement.

 // Variable declarations--some with initializers, some without
 int var3 = 7, var4, var5 = 3;
 double var6, var7 = 6.52;

 Type Different type
 ↓ ↓
 int var8, float var9; // Error! Can't mix types (int and float)

Using the Value of a Variable
A variable name represents the value stored by the variable. You can use the value by using the variable
name.

For example, in the following statement, the value of var2 is retrieved from memory and placed at
the position of the variable.

 Console.WriteLine("{0}", var2);

Static Typing and the dynamic Keyword
One thing you’ll have noticed is that every variable includes the type of the variable, allowing the
compiler to determine the amount of memory it will require at runtime and which parts should be
stored in the stack and which in the heap. The type of the variable is determined at compile time and
cannot be changed at runtime. This is called static typing.

Not all languages, though, are statically typed. Many, including such scripting languages as
IronPython and IronRuby, are dynamically typed. That is, the type of a variable might not be resolved
until runtime. Since these are .NET languages, C# programs need to be able to use assemblies written in
these languages.

To solve the problem that C# needs to be able to resolve at compile time a type referenced in an
assembly that doesn’t resolve its types until runtime, the C# language designers added the keyword
dynamic to the language. The dynamic keyword represents a specific, actual C# type that knows how to
resolve itself at runtime. That is, it’s statically typed as dynamic!

This satisfies both constraints. The C# compiler can resolve the keyword to an actual type, and the
type object can resolve itself to the target assembly’s type at runtime.

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

46

Nullable Types
There are situations, particularly when working with databases, where you want to indicate that a
variable does not currently hold a valid value. For reference types, you can do this easily, by setting the
variable to null. When you define a variable of a value type, however, its memory is allocated whether or
not its contents have any valid meaning.

What you would like in this situation is to have a Boolean indicator associated with the variable, so
that when the value is valid, the indicator is true, and when the value is not valid, the indicator is false.

Nullable types allow you to create a value type variable that can be marked as valid or invalid so that
you can make sure a variable is valid before using it. Regular value types are called non-nullable types.

Creating a Nullable Type
A nullable type is always based on another type, called the underlying type, that has already been
declared.

• You can create a nullable type from any value type, including the predefined, simple types.

• You cannot create a nullable type from a reference type or from another nullable type.

• You do not explicitly declare a nullable type in your code. Instead, you declare a variable of a

nullable type. The compiler implicitly creates the nullable type for you.

To create a variable of a nullable type, simply add a question mark to the end of the name of the
underlying type, in the variable declaration. Unfortunately, this syntax makes it appear that you have a
lot of questions about your code.

For example, the following code declares a variable of the nullable int type. Notice that the suffix is
attached to the type name—not the variable name.

 Suffix
 ↓
 int? myNInt = 28;
 ↑
 The name of the nullable type includes the suffix.

With this declaration statement, the compiler takes care of both producing the nullable type and
creating the variable of that type.

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

47

Using a nullable type is almost the same as using a variable of any other type. Reading a variable of a
nullable type returns its value. You must, however, make sure that the variable is not null. Attempting to
read the value of a null variable produces an exception.

• Like any variable, to retrieve its value, you just use its name.

• To check whether a nullable type has a value, you can compare it to null.

 Compare to null
 ↓
 if (myInt1 != null)
 Console.WriteLine("{0}", myInt1);
 ↑
 Use variable name

Both sets of code produce the following output:

15

You can easily convert between a nullable type and its corresponding non-nullable type. We’ll go
into conversions in detail in Chapter 18, but the important points for nullable types are the following:

• There is an implicit conversion between a non-nullable type and its nullable version. That is, no

cast is needed.

• There is an explicit conversion between a nullable type and its non-nullable version.

For example, the following lines show conversion in both directions. In the first line, a literal of type
int is implicitly converted to a value of type int? and is used to initialize the variable of the nullable type.
In the second line, the variable is explicitly converted to its non-nullable version.

 int? myInt1 = 15; // Implicitly convert int to int?
 int regInt = (int) myInt1; // Explicitly convert int? to int

CHAPTER 3 TYPES, STORAGE, AND VARIABLES

48

Assigning to a Nullable Type
You can assign three kinds of values to a variable of a nullable type:

• A value of the underlying type

• A value of the same nullable type

• The value null

The following code shows an example of each of the three types of assignment:

 int? myI1, myI2, myI3;

 myI1 = 28; // Value of underlying type
 myI2 = myI1; // Value of nullable type
 myI3 = null; // Null

 Console.WriteLine("myI1: {0}, myI2: {1}", myI1, myI2);

This code produces the following output:

myI1: 28, myI2: 28

In Chapter 25, when you have a clearer understanding of C#, I'll explain the finer points of
nullable types.

C H A P T E R 4

49

Classes: The Basics

 Overview of Classes

 Programs and Classes: A Quick Example

 Declaring a Class

 Class Members

 Creating Variables and Instances of a Class

 Allocating Memory for the Data

 Instance Members

 Access Modifiers

 Accessing Members from Inside the Class

 Accessing Members from Outside the Class

 Putting It All Together

CHAPTER 4 CLASSES: THE BASICS

50

Overview of Classes
In the previous chapter, you saw that C# provides six user-defined types. The most important of these,
and the one I’ll cover first, is the class. Since the topic of classes in C# is a large one, its discussion will be
spread over the next several chapters.

A Class Is an Active Data Structure
Before the days of object-oriented analysis and design, programmers thought of a program as just a
sequence of instructions. The focus at that time was on structuring and optimizing those instructions.
With the advent of the object-oriented paradigm, the focus changed from optimizing instructions to
organizing a program’s data and functions into encapsulated sets of logically related data items and
functions, called classes.

A class is a data structure that can store data and execute code. It contains the following:

• Data members, which store data associated with the class or an instance of the class. Data

members generally model the attributes of the real-world object the class represents.

• Function members, which execute code. Function members generally model the functions and

actions of the real-world object the class represents.

A C# class can have any number of data and function members. The members can be any
combination of nine possible member types. Table 4-1 shows these member types. The ones I’ll cover in
this chapter—fields and methods—are checked in the table.

Table 4-1. Types of Class Members

Data Members Store Data Function Members Execute Code

 Fields

 Constants

 Methods

 Properties

 Constructors

 Destructors

 Operators

 Indexers

 Events

 Note Classes are encapsulated sets of logically related data items and functions that generally represent

objects in the real world or a conceptual world.

CHAPTER 4 CLASSES: THE BASICS

51

Programs and Classes: A Quick Example
A running C# program is a group of interacting type objects, most of which are instances of classes. For
example, suppose you have a program simulating a poker game. When it’s running, it might have an
instance of a class called Dealer, whose job is to run the game, and several instances of a class called
Player, which represent the players of the game.

The Dealer object stores such information as the current state of the card deck and the number of
players. Its actions include shuffling the deck and dealing the cards.

The Player class is very different. It stores such information as the player’s name and the amount of
money left to bet, and it performs such actions as analyzing the player’s current hand and placing bets.
Figure 4-1 illustrates the running program.

Figure 4-1. The objects in a running program

A real program would undoubtedly contain dozens of other classes besides Dealer and Player.
These would include classes such as Card and Deck. Each class models some thing that is a component of
the poker game.

 Note A running program is a set of objects interacting with each other.

CHAPTER 4 CLASSES: THE BASICS

52

Declaring a Class
Although types int, double, and char are defined in the C# language, classes such as Dealer and Player,
as you can probably guess, are not defined by the language. If you want to use them in a program, you’ll
have to define them yourself. You do this by writing a class declaration.

A class declaration defines the characteristics and members of a new class. It does not create an
instance of the class but creates the template from which class instances will be created. The class
declaration provides the following:

• The class name

• The members of the class

• The characteristics of the class

The following is an example of the minimum syntax for a class declaration. The curly braces contain
the member declarations that make up the class body. Class members can be declared in any order
inside the class body. This means it’s perfectly fine for the declaration of a member to refer to another
member that is not yet defined until further down in the class declaration.

 Keyword Class name
 ↓ ↓
 class MyExcellentClass
 {
 MemberDeclarations
 }

For example, the following code shows the outlines of two class declarations:

 class Dealer // Class declaration
 {
 ...
 }

 class Player // Class declaration
 {
 ...
 }

Note Since a class declaration “defines” a new class, you will often see a class declaration referred to as a

class definition both in the literature and in common usage among programmers.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 CLASSES: THE BASICS

53

Class Members
Fields and methods are the most important of the class member types. Fields are data members, and
methods are function members.

Fields
A field is a variable that belongs to a class.

• It can be of any type, either predefined or user-defined.

• Like all variables, fields store data and have the following characteristics:

— They can be written to.

— They can be read from.

The minimum syntax for declaring a field is the following:

 Type
 ↓
 Type Identifier;
 ↑
 Field name

For example, the following class contains the declaration of field MyField, which can store an
int value:

 class MyClass
 { Type
 ↓
 int MyField;
 ↑
 } Field name

 Note Unlike C and C++, there are no global variables (that is, variables or fields) declared outside of a type. All

fields belong to a type and must be declared within the type declaration.

CHAPTER 4 CLASSES: THE BASICS

54

Explicit and Implicit Field Initialization
Since a field is a kind of variable, the syntax for a field initializer is the same as that of the variable
initializer shown in the previous chapter.

• A field initializer is part of the field declaration and consists of an equals sign followed by an

expression that evaluates to a value.

• The initialization value must be determinable at compile time.

 class MyClass
 {
 int F1 = 17;
 } ↑
 Field initializer

• If no initializer is used, the value of a field is set by the compiler to a default value, determined by

the type of the field. Table 3-1 (in Chapter 3) gives the default values for the simple types. To

summarize them, though, the default value for each type is 0, and false for bool. The default for

reference types is null.

For example, the following code declares four fields. The first two fields are initialized implicitly. The
second two fields are initialized explicitly with initializers.

 class MyClass
 {
 int F1; // Initialized to 0 - value type
 string F2; // Initialized to null - reference type

 int F3 = 25; // Initialized to 25
 string F4 = "abcd"; // Initialized to "abcd"
 }

Declarations with Multiple Fields
You can declare multiple fields of the same type in the same statement by separating the names with
commas. You cannot mix different types in a single declaration. For example, you can combine the four
preceding field declarations into two statements, with the exact same semantic result:

 int F1, F3 = 25;
 string F2, F4 = "abcd";

CHAPTER 4 CLASSES: THE BASICS

55

Methods
A method is a named block of executable code that can be executed from many different parts of the
program, and even from other programs. (There are also anonymous methods, which aren’t named—
but I’ll cover those in Chapter 15.)

When a method is called, or invoked, it executes its code and then returns to the code that called it.
Some methods return a value to the position from which they were called. Methods correspond to
member functions in C++.

The minimum syntax for declaring a method includes the following components:

• Return type: This states the type of value the method returns. If a method doesn’t return a value,

the return type is specified as void.

• Name: This is the name of the method.

• Parameter list: This consists of at least an empty set of matching parentheses. If there are

parameters (which I’ll cover in the next chapter), they are listed between the parentheses.

• Method body: This consists of a matching set of curly braces, containing the executable code.

For example, the following code declares a class with a simple method called PrintNums. From the
declaration, you can tell the following about PrintNums:

• It returns no value; hence, the return type is specified as void.

• It has an empty parameter list.

• It contains two lines of code in its method body.

 class SimpleClass
 {
 Return type Parameter list
 ↓ ↓
 void PrintNums()
 {
 Console.WriteLine("1");
 Console.WriteLine("2");
 }
 }

 Note Unlike C and C++, there are no global functions (that is, methods or functions) declared outside of a type

declaration. Also, unlike C and C++, there is no “default” return type for a method. All methods must include a

return type or list it as void.

CHAPTER 4 CLASSES: THE BASICS

56

Creating Variables and Instances of a Class
The class declaration is just the blueprint from which instances of the class are created. Once a class is
declared, you can create instances of the class.

• Classes are reference types, which, as you will remember from the previous chapter, means that

they require memory both for the reference to the data and for the actual data.

• The reference to the data is stored in a variable of the class type. So, to create an instance of the

class, you need to start by declaring a variable of the class type. If the variable isn’t initialized, its

value is undefined.

Figure 4-2 illustrates how to define the variable to hold the reference. At the top of the code on the
left is a declaration for class Dealer. Below that is a declaration for class Program, which contains method
Main. Main declares variable theDealer of type Dealer. Since the variable is uninitialized, its value is
undefined, as shown on the right in the figure.

Figure 4-2. Allocating memory for the reference of a class variable

CHAPTER 4 CLASSES: THE BASICS

57

Allocating Memory for the Data
Declaring the variable of the class type allocates the memory to hold the reference, but not the
memory to hold the actual data of the class object. To allocate memory for the actual data, you use the
new operator.

• The new operator allocates and initializes memory for an instance of any specified type. It

allocates the memory from either the stack or the heap, depending on the type.

• Use the new operator to form an object-creation expression, which consists of the following:

— The keyword new.

— The name of the type of the instance for which memory is to be allocated.

— Matching parentheses, which might or might not include parameters. I’ll discuss more about
the possible parameters later.

 Keyword Parentheses are required.
 ↓ ↓
 new TypeName ()
 ↑
 Type

• If the memory allocated is for a reference type, the object-creation expression returns a reference

to the allocated and initialized instance of the object in the heap.

This is exactly what you need to allocate and initialize the memory to hold the class instance data.
Use the new operator to create an object-creation expression, and assign the value returned by it to the
class variable. Here’s an example:

 Dealer theDealer; // Declare variable for the reference.
 theDealer = new Dealer(); // Allocate memory for the class object.
 ↑
 Object-creation expression

The code on the left in Figure 4-3 shows the new operator used to allocate memory and create an
instance of class Dealer, which is then assigned to the class variable. The memory structure is illustrated
in the figure, to the right of the code.

Figure 4-3. Allocating memory for the data of a class variable

CHAPTER 4 CLASSES: THE BASICS

58

Combining the Steps
You can combine the two steps by initializing the variable with the object-creation expression.

 Declare variable.
 ↓
 Dealer theDealer = new Dealer(); // Declare and initialize.
 ↑

 Initialize with an object-creation expression.

In the case of local variables, but not fields, you can simplify the syntax a bit more by having the
compiler infer the type in the declaration part on the left. But I’ll cover that in the section on local
variables in the next chapter.

CHAPTER 4 CLASSES: THE BASICS

59

Instance Members
A class declaration acts as a blueprint from which you can create as many instances of the class as
you like.

• Instance members: Each instance of a class is a separate entity that has its own set of data

members, distinct from the other instances of the same class. These are called instance members

since they are associated with an instance of the class.

• Static members: Instance members are the default, but you can also declare members called static

members that are associated with the class, rather than the instance. I’ll cover these in Chapter 6.

As an example of instance members, the following code shows the poker program with three
instances of class Player. Figure 4-4 shows that each instance has a different value for the Name field.

 class Dealer { ... } // Declare class
 class Player { // Declare class
 string Name; // Field
 ...
 }

 class Program {
 static void Main()
 {
 Dealer theDealer = new Dealer();
 Player player1 = new Player();
 Player player2 = new Player();
 Player player3 = new Player();
 ...
 }
 }

Figure 4-4. Instance members have distinct values between class objects.

CHAPTER 4 CLASSES: THE BASICS

60

Access Modifiers
From within a class, any function member can access any other member of the class by simply using
that member’s name.

The access modifier is an optional part of a member declaration that specifies what other parts of the
program have access to the member. The access modifier is placed before the simple declaration forms.
The following is the syntax for fields and methods:

 Fields
 AccessModifier Type Identifier

 Methods
 AccessModifier ReturnType MethodName ()
 {
 ...
 }

The five categories of member access are the following. I’ll describe the first two in this chapter and
the others in Chapter 7.

• private

• public

• protected

• internal

• protected internal

Private and Public Access
Private members are accessible only from within the class in which they are declared—other classes
cannot see or access them.

• Private access is the default access level, so if a member is declared without an access modifier, it

is a private member.

• You can also use the private access modifier to explicitly declare a member as private.

• There is no semantic difference between declaring a private member implicitly as opposed to

explicitly. The forms are equivalent.

For example, the following two declarations both specify private int members:

 int MyInt1; // Implicitly declared private
 private int MyInt2; // Explicitly declared private
 ↑
 Access modifier

CHAPTER 4 CLASSES: THE BASICS

61

Public members are accessible to other objects in the program. You must use the public access
modifier to specify public access.

 Access modifier
 ↓
 public int MyInt;

Depicting Public and Private Access
The figures in this text represent classes as labeled boxes, as shown in Figure 4-5.

• The class members are represented as smaller labeled boxes inside the class boxes.

• Private members are represented enclosed entirely within their class box.

• Public members are represented sticking partially outside their class box.

Figure 4-5. Representing classes and members

CHAPTER 4 CLASSES: THE BASICS

62

Example of Member Access
Class C1 in the following code declares both public and private fields and methods. Figure 4-6 illustrates
the visibility of the members of class C1.

 class C1
 {
 int F1; // Implicit private field
 private int F2; // Explicit private field
 public int F3; // Public field

 void DoCalc() // Implicit private method
 {
 ...
 }

 public int GetVal() // Public method
 {
 ...
 }
 }

Figure 4-6. Private and public class members

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 CLASSES: THE BASICS

63

Accessing Members from Inside the Class
As mentioned, members of a class can access the other class members by just using their names.

For example, the following class declaration shows the methods of the class accessing the fields
and other methods. Even though the fields and two of the methods are declared private, all the
members of a class can be accessed by any method (or any function member) of the class. Figure 4-7
illustrates the code.

 class DaysTemp
 {
 // Fields
 private int High = 75;
 private int Low = 45;

 // Methods
 private int GetHigh()
 {
 return High; // Access private field
 }

 private int GetLow()
 {
 return Low; // Access private field
 }

 public float Average ()
 {
 return (GetHigh() + GetLow()) / 2; // Access private methods
 } ↑ ↑
 } Accessing the private methods

Figure 4-7. Members within a class can freely access each other.

CHAPTER 4 CLASSES: THE BASICS

64

Accessing Members from Outside the Class
To access a public instance member from outside the class, you must include the variable name and the
member name, separated by a period (dot). This is called dot-syntax notation; it will be discussed in
more detail later.

For example, the second line of the following code shows an example of accessing a method from
outside the class:

 DaysTemp myDt = new DaysTemp(); // Create an object of the class.
 float fValue = myDt.Average(); // Access it from outside.
 ↑ ↑
 Variable name Member name

As an example, the following code declares two classes: DaysTemp and Program.

• The two fields in DaysTemp are declared public, so they can be accessed from outside the class.

• Method Main is a member of class Program. It creates a variable and object of class DaysTemp, and it

assigns values to the fields of the object. It then reads the values of the fields and prints them out.

 class DaysTemp // Declare class DaysTemp
 {
 public int High = 75;
 public int Low = 45;
 }

 class Program // Declare class Program.
 {
 static void Main()
 { Variable name
 ↓
 DaysTemp temp = new DaysTemp(); // Create the object.
 Variable name and field
 ↓
 temp.High = 85; // Assign to the fields.
 temp.Low = 60; Variable name and field
 ↓
 Console.WriteLine("High: {0}", temp.High); // Read from fields.
 Console.WriteLine("Low: {0}", temp.Low);
 }
 }

This code produces the following output:

High: 85
Low: 60

CHAPTER 4 CLASSES: THE BASICS

65

Putting It All Together
The following code creates two instances and stores their references in variables named t1 and t2.
Figure 4-8 illustrates t1 and t2 in memory. The code demonstrates the following three actions discussed
so far in the use of a class:

• Declaring a class

• Creating instances of the class

• Accessing the class members (that is, writing to a field and reading from a field)

 class DaysTemp // Declare the class.
 {
 public int High, Low; // Declare the instance fields.
 public int Average() // Declare the instance method.
 {
 return (High + Low) / 2;
 }
 }

 class Program
 {
 static void Main()
 {
 // Create two instances of DaysTemp.
 DaysTemp t1 = new DaysTemp();
 DaysTemp t2 = new DaysTemp();

 // Write to the fields of each instance.
 t1.High = 76; t1.Low = 57;
 t2.High = 75; t2.Low = 53;

 // Read from the fields of each instance and call a method of
 // each instance.
 Console.WriteLine("t1: {0}, {1}, {2}",
 t1.High, t1.Low, t1.Average());
 Console.WriteLine("t2: {0}, {1}, {2}",
 t2.High, t2.Low, t2.Average());
 ↑ ↑ ↑
 } Field Field Method
 }

CHAPTER 4 CLASSES: THE BASICS

66

This code produces the following output:

t1: 76, 57, 66
t2: 75, 53, 64

Figure 4-8. Memory layout of instances t1 and t2

C H A P T E R 5

67

Methods

 The Structure of a Method

 Local Variables

 Method Invocations

 Return Values

 Parameters

 Value Parameters

 Reference Parameters

 Output Parameters

 Parameter Arrays

 Summary of Parameter Types

 Stack Frames

 Recursion

 Method Overloading

CHAPTER 5 METHODS

68

The Structure of a Method
A method is a block of code with a name. You can execute the code from somewhere else in the program
by using the method’s name. You can also pass data into a method and receive data back as output.

As you saw in the previous chapter, a method is a function member of a class. Methods have two
major sections, as shown in Figure 5-1—the method header and the method body.

• The method header specifies the method’s characteristics, including the following:

— Whether the method returns data and, if so, what type

— The name of the method

— What types of data can be passed to and from the method and how that data should be
treated

• The method body contains the sequence of executable code statements. Execution starts at the

first statement in the method body and continues sequentially through the method.

Figure 5-1. The structure of a method

The following example shows the form of the method header. I’ll cover each part in the following
pages.

 int MyMethod (int par1, string par2)
 ↑ ↑ ↑
 Return Method Parameter
 type name list

CHAPTER 5 METHODS

69

For example, the following code shows a simple method called MyMethod that, in turn, calls the
WriteLine method several times:

 void MyMethod()
 {
 Console.WriteLine("First");
 Console.WriteLine("Last");
 }

Although these first few chapters describe classes, there’s another user-defined type called a struct,
which I’ll cover in Chapter 12. Most of what this chapter covers about class methods is also true for
struct methods.

Code Execution in the Method Body
The method body is a block, which (as you will recall from Chapter 2) is a sequence of statements
between curly braces. A block can contain the following items:

• Local variables

• Flow-of-control constructs

• Method invocations

• Blocks nested within it

Figure 5-2 shows an example of a method body and some of its components.

Figure 5-2. Method body example

CHAPTER 5 METHODS

70

Local Variables
Like fields, local variables store data. While fields usually store data about the state of the object, local
variables are usually created to store data for local, or transitory, computations. Table 5-1 compares and
contrasts local variables and instance fields.

The following line of code shows the syntax of local variable declarations. The optional initializer
consists of the equals sign followed by a value to be used to initialize the variable.

 Variable name
 ↓
 Type Identifier = Value;
 ↑
 Optional initializer

• The existence of a local variable is limited to the block in which it is created and the blocks nested

within it.

— The variable comes into existence at the point at which it is declared.

— It goes out of existence when the block completes execution.

• You can declare local variables at any position in the method body, but they must be declared

before they’re used.

The following example shows the declaration and use of two local variables. The first is of type int,
and the second is of type SomeClass.

 static void Main()
 {
 int myInt = 15;
 SomeClass sc = new SomeClass();
 ...
 }

Table 5-1. Instance Fields vs. Local Variables

 Instance Field Local Variable

Lifetime Starts when the class instance is
created. Ends when the class
instance is no longer accessible.

Starts at the point in the block where
it is declared. Ends when the block
completes execution.

Implicit initialization Initialized to a default value for the
type.

No implicit initialization. The
compiler produces an error message
if the variable isn’t assigned to before
use.

Storage area All the fields of a class are stored in
the heap, regardless of whether
they’re value types or reference
types.

Value type: Stored on the stack.
Reference type: Reference stored on
the stack and data stored in the
heap.

CHAPTER 5 METHODS

71

Type Inference and the var Keyword
If you look at the following code, you’ll see that when you supply the type name at the beginning of the
declaration, you are supplying information that the compiler should already be able to infer from the
right side of the initialization.

• In the first variable declaration, the compiler can infer that 15 is an int.

• In the second declaration, the object-creation expression on the right side returns an object of

type MyExcellentClass.

So in both cases, including the explicit type name at the beginning of the declaration is redundant.

 static void Main()
 {
 int total = 15;
 MyExcellentClass mec = new MyExcellentClass();
 ...
 }

Starting with C# 3.0 you can use the new keyword var in place of the explicit type name at the
beginning of the variable declaration, as follows:

 static void Main()
 { Keyword
 ↓
 var total = 15;
 var mec = new MyExcellentClass();
 ...
 }

The var keyword does not signal a special kind of variable. It’s just syntactic shorthand for whatever
type can be inferred from the initialization on the right side of the statement. In the first declaration, it is
shorthand for int. In the second, it is shorthand for MyExcellentClass. The preceding code segment with
the explicit type names and the code segment with the var keywords are semantically equivalent.

Some important conditions on using the var keyword are the following:

• You can use it only with local variables—not with fields.

• You can use it only when the variable declaration includes an initialization.

• Once the compiler infers the type of a variable, it is fixed and unchangeable.

 Note The var keyword is not like the JavaScript var that can reference different types. It’s shorthand for the
actual type inferred from the right side of the equals sign. The var keyword does not change the strongly typed

nature of C#.

CHAPTER 5 METHODS

72

Local Variables Inside Nested Blocks
Method bodies can have other blocks nested inside them.

• There can be any number of blocks, and they can be sequential or nested further. Blocks can be

nested to any level.

• Local variables can be declared inside nested blocks, and like all local variables, their lifetimes

and visibility are limited to the block in which they’re declared and the blocks nested within it.

Figure 5-3 illustrates the lifetimes of two local variables, showing the code and the state of the stack.
The arrows indicate the line that has just been executed.

• Variable var1 is declared in the body of the method, before the nested block.

• Variable var2 is declared inside the nested block. It exists from the time it’s declared, until the end

of the block in which it was declared.

• When control passes out of the nested block, its local variables are popped from the stack.

Figure 5-3. The lifetime of a local variable

Note In C and C++ you can declare a local variable, and then within a nested block you can declare another
local variable with the same name. The inner name masks the outer name while within the inner scope. In C#,
however, you cannot declare another local variable with the same name within the scope of the first name
regardless of the level of nesting.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 METHODS

73

Local Constants
A local constant is much like a local variable, except that once it is initialized, its value can’t be changed.
Like a local variable, a local constant must be declared inside a block.

The two most important characteristics of a constant are the following:

• A constant must be initialized at its declaration.

• A constant cannot be changed after its declaration.

The core declaration for a constant is shown following. The syntax is the same as that of a field or
variable declaration, except for the following:

• The addition of the keyword const before the type.

• The mandatory initializer. The initializer value must be determinable at compile time and is

usually one of the predefined simple types or an expression made up of them. It can also be the

null reference, but it cannot be a reference to an object, because references to objects are

determined at run time.

 Note The keyword const is not a modifier but part of the core declaration. It must be placed immediately

before the type.

 Keyword
 ↓
 const Type Identifier = Value;
 ↑
 Initializer required

A local constant, like a local variable, is declared in a method body or code block, and it goes out of scope
at the end of the block in which it is declared. For example, in the following code, local constant PI goes
out of scope at the end of method DisplayRadii.

 void DisplayRadii()
 {
 const double PI = 3.1416; // Declare local constant

 for (int radius = 1; radius <= 5; radius++)
 {
 double area = radius * radius * PI; // Read from local constant
 Console.WriteLine
 ("Radius: {0}, Area: {1}" radius, area);
 }
 }

CHAPTER 5 METHODS

74

Flow of Control
Methods contain most of the code for the actions that comprise a program. The remainder is in other
function members, such as properties and operators—but the bulk is in methods.

The term flow of control refers to the flow of execution through your program. By default, program
execution moves sequentially from one statement to the next. The control statements allow you to
modify the order of execution.

In this section, I’ll just mention some of the available control statements you can use in your code.
Chapter 9 covers them in detail.

• Selection statements: These statements allow you to select which statement, or block of

statements, to execute.

— if: Conditional execution of a statement

— if...else: Conditional execution of one statement or another

— switch: Conditional execution of one statement from a set

• Iteration statements: These statements allow you to loop, or iterate, on a block of statements.

— for: Loop—testing at the top

— while: Loop—testing at the top

— do: Loop—testing at the bottom

— foreach: Execute once for each member of a set

• Jump statements: These statements allow you to jump from one place in the block or method to

another.

— break: Exit the current loop.

— continue: Go to the bottom of the current loop.

— goto: Go to a named statement.

— return: Return execution to the calling method.

For example, the following method shows two of the flow-of-control statements. Don’t worry about
the details.

 void SomeMethod()
 {
 int intVal = 3;
 Equality comparison operator
 ↓
 if(intVal == 3) // if statement
 Console.WriteLine("Value is 3. ");

 for(int i=0; i<5; i++) // for statement
 Console.WriteLine("Value of i: {0}", i);
 }

CHAPTER 5 METHODS

75

Method Invocations
You can call other methods from inside a method body.

• The phrases call a method and invoke a method are synonymous.

• You call a method by using its name, along with the parameter list, which I’ll discuss shortly.

For example, the following class declares a method called PrintDateAndTime, which is called from
inside method Main:

 class MyClass
 {
 void PrintDateAndTime() // Declare the method.
 {
 DateTime dt = DateTime.Now; // Get the current date and time.
 Console.WriteLine("{0}", dt); // Write it out.
 }

 static void Main() // Declare the method.
 {
 MyClass mc = new MyClass();
 mc.PrintDateAndTime(); // Invoke the method.
 } ↑ ↑
 } Method Empty
 name parameter list

Figure 5-4 illustrates the sequence of actions when a method is called:

1. Execution of the current method suspends at that point of the invocation.

2. Control transfers to the beginning of the invoked method.

3. The invoked method executes until it completes.

4. Control returns to the calling method.

Figure 5-4. Flow of control when calling a method

CHAPTER 5 METHODS

76

Return Values
A method can return a value to the calling code. The returned value is inserted into the calling code at
the position in the expression where the invocation occurred.

• To return a value, the method must declare a return type before the method name.

• If a method doesn’t return a value, it must declare a return type of void.

The following code shows two method declarations. The first returns a value of type int. The second
doesn’t return a value.

 Return type
 ↓
 int GetHour() { ... }
 void DisplayHour() { ... }
 ↑
 No value is returned.

A method that declares a return type must return a value from the method by using the following
form of the return statement, which includes an expression after the keyword return. Every path through
the method must end with a return statement of this form.

 return Expression; // Return a value.
 ↑
 Evaluates to a value of the return type

For example, the following code shows a method called GetHour, which returns a value of type int.

 Return type
 ↓
 int GetHour()
 {
 DateTime dt = DateTime.Now; // Get the current date and time.
 int hour = dt.Hour; // Get the hour.

 return hour; // Return an int.
 } ↑
 Return statement

CHAPTER 5 METHODS

77

You can also return objects of user-defined types. For example, the following code returns an object
of type MyClass:

 Return type -- MyClass
 ↓
 MyClass method3()
 {
 MyClass mc = new MyClass();
 ...
 return mc; // Return a MyClass object.
 }

As another example, in the following code, method GetHour is called in the WriteLine statement in
Main and returns an int value to that position in the WriteLine statement.

 class MyClass
 { ↓ Return type
 public int GetHour()
 {
 DateTime dt = DateTime.Now; // Get the current date and time.
 int hour = dt.Hour; // Get the hour.

 return hour; // Return an int.
 } ↑
 } Return value

 class Program
 {
 static void Main()
 { Method invocation
 MyClass mc = new MyClass(); ↓
 Console.WriteLine("Hour: {0}", mc.GetHour());
 } ↑ ↑
 } Instance Method
 name name

CHAPTER 5 METHODS

78

The Return Statement and Void Methods
In the previous section, you saw that methods that return a value must contain return statements. Void
methods do not require return statements. When the flow of control reaches the closing curly brace of
the method body, control returns to the calling code, and no value is inserted back into the calling code.

Often, however, you can simplify your program logic by exiting the method early when certain
conditions apply.

• You can exit from a void method at any time by using the following form of the return statement,

with no parameters:

 return;

• This form of the return statement can be used only with methods declared void.

For example, the following code shows the declaration of a void method called SomeMethod, which
has three possible places it might return to the calling code. The first two places are in branches called if
statements, which are covered in Chapter 9. The last place is the end of the method body.

 Void return type
 ↓
 void SomeMethod()
 {
 ...
 if (SomeCondition) // If ...
 return; // return to the calling code.
 ...

 if (OtherCondition) // If ...
 return; // return to the calling code.

 ...
 } // Default return to the calling code.

CHAPTER 5 METHODS

79

The following code shows an example of a void method with a return statement. The method writes
out a message only if the time is after noon. The process, which is illustrated in Figure 5-5, is as follows:

• First the method gets the current date and time. (Don’t worry about understanding the details of

this right now.)

• If the hour is less than 12 (that is, before noon), the return statement is executed, and control

immediately returns to the calling method without writing anything to the screen.

• If the hour is 12 or greater, the return statement is skipped, and the code executes the WriteLine

statement, which writes an informative message to the screen.

 class MyClass
 { ↓ Void return type
 void TimeUpdate()
 {
 DateTime dt = DateTime.Now; // Get the current date and time.
 if (dt.Hour < 12) // If the hour is less than 12,
 return; // then return.
 ↑
 Return to calling method.
 Console.WriteLine("It's afternoon!"); // Otherwise, print message.
 }

 static void Main()
 {
 MyClass mc = new MyClass(); // Create an instance of the class.
 mc.TimeUpdate(); // Invoke the method.
 }
 }

Figure 5-5. Using a return statement with a void return type

CHAPTER 5 METHODS

80

Parameters
So far, you’ve seen that methods are named units of code that can be called from many places in a
program and can return a single value to the calling code. Returning a single value is certainly valuable,
but what if you need to return multiple values? Also, it would be useful to be able to pass data into a
method when it starts execution. Parameters are special variables that allow you to do both these things.

Formal Parameters
Formal parameters are local variables that are declared in the method declaration’s parameter list,
rather than in the body of the method.

The following method header shows the syntax of parameter declarations. It declares two formal
parameters—one of type int and the other of type float.

 public void PrintSum(int x, float y)
 { ↑
 ... Formal parameter declarations
 }

• Because formal parameters are variables, they have a data type and a name, and they can be

written to and read from.

• Unlike a method’s other local variables, the parameters are defined outside the method body and

are initialized before the method starts, except for one type, called output parameters, which I’ll

cover shortly.

• The parameter list can have any number of formal parameter declarations, and the declarations

must be separated by commas.

The formal parameters are used throughout the method body, for the most part, just like other local
variables. For example, the following declaration of method PrintSum uses two formal parameters, x and
y, and a local variable, sum, all of which are of type int.

 public void PrintSum(int x, int y)
 {
 int sum = x + y;
 Console.WriteLine("Newsflash: {0} + {1} is {2}", x, y, sum);
 }

CHAPTER 5 METHODS

81

Actual Parameters
When your code calls a method, the values of the formal parameters must be initialized before the code
in the method begins execution.

• The expressions or variables used to initialize the formal parameters are called the actual

parameters. They are also sometimes called arguments.

• The actual parameters are placed in the parameter list of the method invocation.

• Each actual parameter must match the type of the corresponding formal parameter, or the

compiler must be able to implicitly convert the actual parameter to that type. I’ll explain the

details of conversion from one type to another in Chapter 18.

For example, the following code shows the invocation of method PrintSum, which has two actual
parameters of data type int:

 PrintSum(5, someInt);
 ↑ ↑
 Expression Variable of type int

When the method is called, the value of each actual parameter is used to initialize the
corresponding formal parameter. The method body is then executed. Figure 5-6 illustrates the
relationship between the actual parameters and the formal parameters.

Figure 5-6. Actual parameters initialize the corresponding formal parameters.

Notice that in the previous example code, and in Figure 5-6, the number of actual parameters must
be the same as the number of formal parameters (with the exception of params parameters, which I’ll
discuss later). Parameters that follow this pattern are called positional parameters. We’ll look at some
other options shortly.

CHAPTER 5 METHODS

82

An Example of Methods with Positional Input Parameters
In the following code, class MyClass declares two methods—one that takes two integers and returns their
sum and another that takes two floats and returns their average. In the second invocation, notice that
the compiler has implicitly converted the two int values—5 and someInt—to the float type.

 class MyClass Formal parameters
 { ↓
 public int Sum(int x, int y) // Declare the method.
 {
 return x + y; // Return the sum.
 } Formal parameters
 ↓
 public float Avg(float input1, float input2) // Declare the method.
 {
 return (input1 + input2) / 2.0F; // Return the average.
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass myT = new MyClass();
 int someInt = 6;

 Console.WriteLine
 ("Newsflash: Sum: {0} and {1} is {2}",
 5, someInt, myT.Sum(5, someInt)); // Invoke the method.
 ↑
 Console.WriteLine Actual parameters
 ("Newsflash: Avg: {0} and {1} is {2}",
 5, someInt, myT.Avg(5, someInt)); // Invoke the method.
 } ↑
 } Actual parameters

This code produces the following output:

Newsflash: Sum: 5 and 6 is 11
Newsflash: Avg: 5 and 6 is 5.5

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 METHODS

83

Value Parameters
There are several kinds of parameters, which pass data to and from the method in slightly different ways.
The kind we’ve looked at so far is the default type and is called a value parameter.

When you use value parameters, data is passed to the method by copying the value of the actual
parameter to the formal parameter. When a method is called, the system does the following:

• It allocates space on the stack for the formal parameters.

• It copies the values of the actual parameters to the formal parameters.

An actual parameter for a value parameter doesn’t have to be a variable. It can be any expression
evaluating to the matching data type. For example, the following code shows two method calls. In the
first, the actual parameter is a variable of type float. In the second, it’s an expression that evaluates
to float.

 float func1(float val) // Declare the method.
 { ↑
 Float data type
 float j = 2.6F;
 float k = 5.1F; Variable of type float
 ↓
 float fValue1 = func1(k); // Method call
 float fValue2 = func1((k + j) / 3); // Method call
 ... ↑
 Expression that evaluates to a float

Before you can use a variable as an actual parameter, that variable must have been assigned a value
(except in the case of output parameters, which I’ll cover shortly). For reference types, the variable can
be assigned either an actual reference or null.

 Note Chapter 3 covered value types, which, as you will remember, are types that contain their own data. Don’t
be confused that I’m now talking about value parameters. They’re entirely different. Value parameters are

parameters where the value of the actual parameter is copied to the formal parameter.

CHAPTER 5 METHODS

84

For example, the following code shows a method called MyMethod, which takes two parameters—a
variable of type MyClass and an int.

• The method adds 5 to both the int type field belonging to the class and to the int.

• You might also notice that MyMethod uses the modifier static, which I haven’t explained yet. You

can ignore it for now. I’ll explain static methods in Chapter 6.

 class MyClass
 {
 public int Val = 20; // Initialize the field to 20.
 }

 class Program Formal parameters
 { ↓
 static void MyMethod(MyClass f1, int f2)
 {
 f1.Val = f1.Val + 5; // Add 5 to field of f1 param.
 f2 = f2 + 5; // Add 5 to second param.
 }

 static void Main()
 {
 MyClass a1 = new MyClass();
 int a2 = 10;

 MyMethod(a1, a2); // Call the method.
 } ↑
 } Actual parameters

CHAPTER 5 METHODS

85

Figure 5-7 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method:

• Before the method call, variables a1 and a2, which will be used as the actual parameters, are

already on the stack.

• By the beginning of the method, the system has allocated space on the stack for the formal

parameters and copied the values from the actual parameters.

— Since a1 is a reference type, the reference is copied, resulting in both the actual and formal
parameters referring to the same object in the heap.

— Since a2 is a value type, the value is copied, producing an independent data item.

• At the end of the method, both f2 and the field of object f1 have been incremented by 5.

— After method execution, the formal parameters are popped off the stack.

— The value of a2, the value type, is unaffected by the activity in the method.

— The value of a1, the reference type, however, has been changed by the activity in the method.

Figure 5-7. Value parameters

CHAPTER 5 METHODS

86

Reference Parameters
The second type of parameter is called a reference parameter.

• When using a reference parameter, you must use the ref modifier in both the declaration and the

invocation of the method.

• The actual parameter must be a variable, and it must have been assigned to before being used as

the actual parameter. If it’s a reference type variable, it can be assigned either an actual reference

or the value null.

For example, the following code illustrates the syntax of the declaration and invocation:

 Include the ref modifier.
 ↓
 void MyMethod(ref int val) // Method declaration
 { ... }

 int y = 1; // Variable for the actual parameter
 MyMethod (ref y); // Method call
 ↑
 Include the ref modifier.

 MyMethod (ref 3+5); // Error!
 ↑
 Must use a variable

In the previous section you saw that for value parameters, the system allocates memory on the stack
for the formal parameters. In contrast, for reference parameters:

• The formal parameter name acts as if it were an alias for the actual parameter variable; that is, it

acts as if it referred to the same memory location.

Since the formal parameter name and the actual parameter name are acting as if they reference the
same memory location, clearly any changes made to the formal parameter during method execution are
visible after the method is completed, through the actual parameter variable.

 Note Remember to use the ref keyword in both the method declaration and the invocation.

CHAPTER 5 METHODS

87

For example, the following code shows method MyMethod again, but this time the parameters are
reference parameters rather than value parameters:

 class MyClass
 {
 public int Val = 20; // Initialize field to 20.
 }

 class Program ref modifier ref modifier
 { ↓ ↓
 static void MyMethod(ref MyClass f1, ref int f2)
 {
 f1.Val = f1.Val + 5; // Add 5 to field of f1 param.
 f2 = f2 + 5; // Add 5 to second param.
 }

 static void Main()
 {
 MyClass a1 = new MyClass();
 int a2 = 10;

 MyMethod(ref a1, ref a2); // Call the method.
 } ↑ ↑
 } ref modifiers

CHAPTER 5 METHODS

88

Figure 5-8 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method:

• Before the method call, variables a1 and a2, which will be used as the actual parameters, are

already on the stack.

• By the beginning of the method, the names of the formal parameters have been set as if they were

aliases for the actual parameters. You can think of variables a1 and f1 as if they referred to the

same memory location and a2 and f2 as if they referred to the same memory location.

• At the end of the method, both f2 and the field of the object of f1 have been incremented by 5.

• After method execution, the names of the formal parameters are gone (“out of scope”), but both

the value of a2, which is the value type, and the value of the object pointed at by a1, which is the

reference type, have been changed by the activity in the method.

Figure 5-8. With a reference parameter, the formal parameter behaves as if it were an alias for the actual

parameter.

CHAPTER 5 METHODS

89

Output Parameters
Output parameters are used to pass data from inside the method back out to the calling code. Their
behavior is very similar to reference parameters. Like reference parameters, output parameters have the
following requirements:

• You must use a modifier in both the method declaration and the invocation. With output

parameters, the modifier is out, rather than ref.

• Like reference parameters, the actual parameter must be a variable—it cannot be another type

of expression. This makes sense, since the method needs a memory location to store the value

it’s returning.

For example, the following code declares a method called MyMethod, which takes a single output
parameter.

 out modifier
 ↓
 void MyMethod(out int val) // Method declaration
 { ... }

 ...
 int y = 1; // Variable for the actual parameter
 MyMethod (out y); // Method call
 ↑
 out modifier

Like reference parameters, the formal parameters of output parameters act as if they were aliases for
the actual parameters. Any changes made to a formal parameter inside the method are visible through
the actual parameter variable after the method completes execution.

Unlike reference parameters, output parameters require the following:

• Inside the method, an output parameter must be assigned to before it can be read from. This

means that the initial values of the parameters are irrelevant and that you don’t have to assign

values to the actual parameters before the method call.

• Inside the method, every possible path through the code must assign a value to every output

parameter before the method exits.

CHAPTER 5 METHODS

90

Since the code inside the method must write to an output parameter before it can read from it, it is
impossible to send data into a method using output parameters. In fact, if there is any execution path
through the method that attempts to read the value of an output parameter before the method has
assigned it a value, the compiler produces an error message.

 public void Add2(out int outValue)
 {
 int var1 = outValue + 2; // Error! Can't read from an output parameter
 } // before it has been assigned to by the method.

 For example, the following code again shows method MyMethod, but this time using output
parameters:

 class MyClass
 {
 public int Val = 20; // Initialize field to 20.
 }

 class Program out modifier out modifier
 { ↓ ↓
 static void MyMethod(out MyClass f1, out int f2)
 {
 f1 = new MyClass(); // Create an object of the class.
 f1.Val = 25; // Assign to the class field.
 f2 = 15; // Assign to the int param.
 }

 static void Main()
 {
 MyClass a1 = null;
 int a2;

 MyMethod(out a1, out a2); // Call the method.
 } ↑ ↑
 } out modifiers

CHAPTER 5 METHODS

91

Figure 5-9 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method.

• Before the method call, variables a1 and a2, which will be used as the actual parameters, are

already on the stack.

• At the beginning of the method, the names of the formal parameters are set as aliases for the

actual parameters. You can think of variables a1 and f1 as if they referred to the same memory

location, and you can think of a2 and f2 as if they referred to the same memory location. The

names a1 and a2 are out of scope and cannot be accessed from inside MyMethod.

• Inside the method, the code creates an object of type MyClass and assigns it to f1. It then assigns a

value to f1’s field and also assigns a value to f2. The assignments to f1 and f2 are both required,

since they’re output parameters.

• After method execution, the names of the formal parameters are out of scope, but the values

of both a1, the reference type, and a2, the value type, have been changed by the activity in

the method.

Figure 5-9. With an output parameter, the formal parameter behaves as if it were an alias for the actual

parameter, but with the additional requirement that it must be assigned to inside the method.

CHAPTER 5 METHODS

92

Parameter Arrays
In the parameter types I’ve covered so far, there must be exactly one actual parameter for each formal
parameter. Parameter arrays are different in that they allow zero or more actual parameters for a
particular formal parameter. Important points about parameter arrays are the following:

• There can be only one parameter array in a parameter list.

• If there is one, it must be the last parameter in the list.

To declare a parameter array, you must do the following:

• Use the params modifier before the data type.

• Place a set of empty square brackets after the data type.

The following method header shows the syntax for the declaration of a parameter array of type int.
In this example, formal parameter inVals can represent zero or more actual int parameters.

 Array of ints
 ↓
 void ListInts(params int[] inVals)
 { ... ↑ ↑
 Modifier Parameter name

The empty set of square brackets after the type name specifies that the parameter will be an array of
ints. You don’t need to worry about the details of arrays here. They’re covered in detail in Chapter 14.
For our purposes here, though, all you need to know is the following:

• An array is an ordered set of data items of the same type.

• An array is accessed by using a numerical index.

• An array is a reference type and therefore stores all its data items in the heap.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 METHODS

93

Method Invocation
You can supply the actual parameters for a parameter array in two ways. The forms you can use are
the following:

• A comma-separated list of elements of the data type. All the elements must be of the type

specified in the method declaration.

 ListInts(10, 20, 30); // Three ints

• A one-dimensional array of elements of the data type.

 int[] intArray = {1, 2, 3};
 ListInts(intArray); // An array variable

Notice in these examples that you do not use the params modifier in the invocation. The usage of the

modifier in parameter arrays doesn’t fit the pattern of the other parameter types.

• The other parameter types are consistent in that they either use a modifier or do not use a

modifier.

— Value parameters take no modifier in either the declaration or the invocation.

— Reference and output parameters require the modifier in both places.

• The summary for the usage of the params modifier is the following:

— It is required in the declaration.

— It is not allowed in the invocation.

Expanded Form
The first form of method invocation, where you use separate actual parameters in the invocation, is
sometimes called the expanded form.

For example, the declaration of method ListInts in the following code matches all the method
invocations below it, even though they have different numbers of actual parameters.

 void ListInts(params int[] inVals) { ... } // Method declaration

 ...
 ListInts(); // 0 actual parameters
 ListInts(1, 2, 3); // 3 actual parameters
 ListInts(4, 5, 6, 7); // 4 actual parameters
 ListInts(8, 9, 10, 11, 12); // 5 actual parameters

CHAPTER 5 METHODS

94

When you use an invocation with separate actual parameters for a parameter array, the compiler
does the following:

• It takes the list of actual parameters and uses them to create and initialize an array in the heap.

• It stores the reference to the array in the formal parameter on the stack.

• If there are no actual parameters at the position corresponding to the formal parameter array, the

compiler creates an array with zero elements and uses that.

For example, the following code declares a method called ListInts, which takes a parameter array.
Main declares three ints and passes them to the array.

 class MyClass Parameter array
 { ↓
 public void ListInts(params int[] inVals)
 {
 if ((inVals != null) && (inVals.Length != 0))
 for (int i = 0; i < inVals.Length; i++) // Process the array.
 {
 inVals[i] = inVals[i] * 10;
 Console.WriteLine("{0}", inVals[i]); // Display new value.
 }
 }
 }

 class Program
 {
 static void Main()
 {
 int first = 5, second = 6, third = 7; // Declare three ints.

 MyClass mc = new MyClass();
 mc.ListInts(first, second, third); // Call the method.
 ↑
 Actual parameters
 Console.WriteLine("{0}, {1}, {2}", first, second, third);
 }
 }

This code produces the following output:

50
60
70
5, 6, 7

CHAPTER 5 METHODS

95

Figure 5-10 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method:

• Before the method call, the three actual parameters are already on the stack.

• By the beginning of the method, the three actual parameters have been used to initialize an array

in the heap, and the reference to the array has been assigned to formal parameter inVals.

• Inside the method, the code first checks to make sure the array reference is not null and then

processes the array by multiplying each element in the array by 10 and storing it back.

• After method execution, the formal parameter, inVals, is out of scope.

Figure 5-10. Parameter array

An important thing to remember about parameter arrays is that when an array is created in the
heap, the values of the actual parameters are copied to the array. In this way, they’re like value
parameters.

• If the array parameter is a value type, the values are copied, and the actual parameters cannot be

affected inside the method.

• If the array parameter is a reference type, the references are copied, and the objects referenced by

the actual parameters can be affected inside the method.

CHAPTER 5 METHODS

96

Arrays As Actual Parameters
You can also create and populate an array before the method call and pass the single array variable as
the actual parameter. In this case, the compiler uses your array, rather than creating one.

For example, the following code uses method ListInts, declared in the previous example. In this
code, Main creates an array and uses the array variable as the actual parameter, rather than using
separate integers.

 static void Main()
 {
 int[] myArr = new int[] { 5, 6, 7 }; // Create and initialize array.

 MyClass mc = new MyClass();
 mc.ListInts(myArr); // Call method to print the values.

 foreach (int x in myArr)
 Console.WriteLine("{0}", x); // Print out each element.
 }

This code produces the following output:

50
60
70
50
60
70

Summary of Parameter Types
Since there are four parameter types, it’s sometimes difficult to remember their various characteristics.
Table 5-2 summarizes them, making it easier to compare and contrast them.

Table 5-2. Summary of Parameter Type Syntactic Usage

Parameter
Type

Modifier Used at
Declaration?

Used at
Invocation?

Implementation

Value None The system copies the value of the actual
parameter to the formal parameter.

Reference ref Yes Yes The formal parameter aliases the actual
parameter.

Output out Yes Yes The formal parameter aliases the actual
parameter.

Array params Yes No This allows passing a variable number of
actual parameters to a method.

CHAPTER 5 METHODS

97

Method Overloading
A class can have more than one method with the same name. This is called method overloading. Each
method with the same name must have a different signature than the others.

• The signature of a method consists of the following information from the method header of the

method declaration:

— The name of the method

— The number of parameters

— The data types and order of the parameters

— The parameter modifiers

• The return type is not part of the signature—although it’s a common mistake to believe that it is.

• Notice that the names of the formal parameters are not part of the signature.

 Not part of signature
 ↓
 long AddValues(int a, out int b) { ... }
 ↑
 Signature

For example, the following four methods are overloads of the method name AddValues:

 class A
 {
 long AddValues(int a, int b) { return a + b; }
 long AddValues(int c, int d, int e) { return c + d + e; }
 long AddValues(float f, float g) { return (long)(f + g); }
 long AddValues(long h, long m) { return h + m; }
 }

The following code shows an illegal attempt at overloading the method name AddValues. The two
methods differ only on the return types and the names of the formal parameters. But they still have the
same signature, because they have the same method name; and the number, types, and order of their
parameters are the same. The compiler would produce an error message for this code.

 class B Signature
 { ↓
 long AddValues(long a, long b) { return a+b; }
 int AddValues(long c, long d) { return c+d; } // Error, same signature
 } ↑
 Signature

CHAPTER 5 METHODS

98

Named Parameters
So far in our discussion of parameters we’ve used positional parameters, which, as you’ll remember,
means that the position of each actual parameter matches the position of the corresponding formal
parameter.

Starting with C# 4.0, you can list the actual parameters in your method invocation in any order, as
long as you explicitly specify the names of the parameters. The details are the following:

• Nothing changes in the declaration of the method. The formal parameters already have names.

• In the method invocation, however, you use the formal parameter name, followed by a colon, in

front of the actual parameter value or expression, as shown in the following method invocation.

Here a, b, and c are the names of the three formal parameters of method Calc:

 Actual parameter values
 ↓ ↓ ↓
 c.Calc (c: 2, a: 4, b: 3);

 ↑ ↑ ↑
 Named parameters

Figure 5-11 illustrates the structure of using named parameters.

Figure 5-11. When using named parameters, include the parameter name in the method invocation. No

changes are needed in the method declaration.

CHAPTER 5 METHODS

99

You can use both positional and named parameters in an invocation, but all the positional
parameters must be listed first. For example, the following code shows the declaration of a method
called Calc, along with five different calls to the method using different combinations of positional and
named parameters:

 class MyClass
 {
 public int Calc(int a, int b, int c)
 { return (a + b) * c; }

 static void Main()
 {
 MyClass mc = new MyClass();

 int r0 = mc.Calc(4, 3, 2); // Positional Parameters
 int r1 = mc.Calc(4, b: 3, c: 2); // Positional and Named Parameters
 int r2 = mc.Calc(4, c: 2, b: 3); // Switch order
 int r3 = mc.Calc(c: 2, b: 3, a: 4); // All named parameters
 int r4 = mc.Calc(c: 2, b: 1 + 2, a: 3 + 1); // Named parameter expressions

 Console.WriteLine("{0}, {1}, {2}, {3}, {4}", r0, r1, r2, r3, r4);
 }
 }

This code produces the following output:

14, 14, 14, 14, 14

Named parameters are useful as a means of self-documenting a program, in that they can show, at
the position of the method call, what values are being assigned to which formal parameters. For
example, in the following two calls to method GetCylinderVolume, the second call is a bit more
informative and less prone to error.

 class MyClass
 {
 double GetCylinderVolume(double radius, double height)
 {
 return 3.1416 * radius * radius * height;
 }

 static void Main(string[] args)
 {
 MyClass mc = new MyClass();
 double volume;
 ↓ ↓
 volume = mc.GetCylinderVolume(3.0, 4.0);
 ...
 volume = mc.GetCylinderVolume(radius: 3.0, height: 4.0);
 ... ↑ ↑

 } More informative
 }

CHAPTER 5 METHODS

100

Optional Parameters
Another feature introduced in C# 4.0, is called optional parameters. An optional parameter is a
parameter that you can either include or omit when invoking the method.

To specify that a parameter is optional, you need to include a default value for that parameter in the
method declaration. The syntax for specifying the default value is the same as that of initializing a local
variable, as shown in the method declaration of the following code. In this example:

• Formal parameter b is assigned the default value 3.

• Therefore, if the method is called with only a single parameter, the method will use the value 3 as

the initial value of the second parameter.

 class MyClass Optional Parameter
 { ↓
 public int Calc(int a, int b = 3)
 { ↑

 return a + b; Default Value Assignment
 }

 static void Main()
 {
 MyClass mc = new MyClass();

 int r0 = mc.Calc(5, 6); // Use explicit values.
 int r1 = mc.Calc(5); // Use default for b.

 Console.WriteLine("{0}, {1}", r0, r1);
 }
 }

This code produces the following output:

11, 8

CHAPTER 5 METHODS

101

There are several important things to know about declaring optional parameters:

• Not all types of parameters can be used as optional parameters.

— You can use value types as optional parameters as long as the default value is determinable
at compile time.

— You can only use a reference type as an optional parameter if the default value is null.

Figure 5-12. Optional parameters can only be value parameter types.

• All required parameters must be declared before any optional parameters are declared. If there is

a params parameter, it must be declared after all the optional parameters. Figure 5-13 illustrates

the required syntactic order.

Figure 5-13. In the method declaration, optional parameters must be declared after all the required

parameters and before the params parameter, if one exists.

CHAPTER 5 METHODS

102

As you saw in the previous example, you use the default value of an optional parameter by leaving
out the corresponding actual parameter from the method invocation. You can’t, however, omit just any
combination of optional parameters because in many situations it would be ambiguous as to which
optional parameters to use. The rules are the following:

• You must omit parameters starting from the end of the list of optional parameters and work

toward the beginning.

• That is, you can omit the last optional parameter, or the last n optional parameters, but you can’t

pick and choose to omit any arbitrary optional parameters; they must be taken off the end.

 class MyClass
 {
 public int Calc(int a = 2, int b = 3, int c = 4)
 {
 return (a + b) * c;
 }

 static void Main()
 {
 MyClass mc = new MyClass();
 int r0 = mc.Calc(5, 6, 7); // Use all explicit values.
 int r1 = mc.Calc(5, 6); // Use default for c.
 int r2 = mc.Calc(5); // Use default for b and c.
 int r3 = mc.Calc(); // Use all defaults.

 Console.WriteLine("{0}, {1}, {2}, {3}", r0, r1, r2, r3);
 }
 }

This code produces the following output:

77, 44, 32, 20

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 METHODS

103

To omit optional parameters from arbitrary positions within the list of optional parameters, rather
than from the end of the list, you must use the names of the optional parameters to disambiguate the
assignments. You are therefore using both the named parameters and optional parameters features, as
illustrated in the following code:

 class MyClass
 {
 double GetCylinderVolume(double radius = 3.0, double height = 4.0)
 {
 return 3.1416 * radius * radius * height;
 }

 static void Main()
 {
 MyClass mc = new MyClass();
 double volume;

 volume = mc.GetCylinderVolume(3.0, 4.0); // Positional
 Console.WriteLine("Volume = " + volume);

 volume = mc.GetCylinderVolume(radius: 2.0); // Use default height
 Console.WriteLine("Volume = " + volume);

 volume = mc.GetCylinderVolume(height: 2.0); // Use default radius
 Console.WriteLine("Volume = " + volume);

 volume = mc.GetCylinderVolume(); // Use both defaults
 Console.WriteLine("Volume = " + volume);
 }
 }

This code produces the following output:

Volume = 113.0976
Volume = 50.2656
Volume = 56.5488
Volume = 113.0976

CHAPTER 5 METHODS

104

Stack Frames
So far, you know that local variables and parameters are kept on the stack. Let’s look at that organization
a little further.

When a method is called, memory is allocated at the top of the stack to hold a number of data items
associated with the method. This chunk of memory is called the stack frame for the method.

• The stack frame contains memory to hold the following:

— The return address—that is, where to resume execution when the method exits

— Those parameters that allocate memory—that is, the value parameters of the method, and
the parameter array if there is one

— Various other administrative data items relevant to the method call

• When a method is called, its entire stack frame is pushed onto the stack.

• When the method exits, its entire stack frame is popped from the stack. Popping a stack frame is

sometimes called unwinding the stack.

For example, the following code declares three methods. Main calls MethodA, which calls MethodB,
creating three stack frames. As the methods exit, the stack unwinds.

 class Program
 {
 static void MethodA(int par1, int par2)
 {
 Console.WriteLine("Enter MethodA: {0}, {1}", par1, par2);
 MethodB(11, 18); // Call MethodB.
 Console.WriteLine("Exit MethodA");
 }

 static void MethodB(int par1, int par2)
 {
 Console.WriteLine("Enter MethodB: {0}, {1}", par1, par2);
 Console.WriteLine("Exit MethodB");
 }

 static void Main()
 {
 Console.WriteLine("Enter Main");
 MethodA(15, 30); // Call MethodA.
 Console.WriteLine("Exit Main");
 }
 }

CHAPTER 5 METHODS

105

This code produces the following output:

Enter Main
Enter MethodA: 15, 30
Enter MethodB: 11, 18
Exit MethodB
Exit MethodA
Exit Main

Figure 5-14 shows how the stack frames of each method are placed on the stack when the method is
called and how the stack is unwound as the methods complete.

Figure 5-14. Stack frames in a simple program

CHAPTER 5 METHODS

106

Recursion
Besides calling other methods, a method can also call itself. This is called recursion.

Recursion can produce some very elegant code, such as the following method for computing the
factorial of a number. Notice that inside the method, the method calls itself with an actual parameter of
one less than its input parameter.

 int Factorial(int inValue)
 {
 if (inValue <= 1)
 return inValue;
 else
 return inValue * Factorial(inValue - 1); // Call Factorial again.
 } ↑
 Calls itself

The mechanics of a method calling itself are exactly the same as if it had called another, different
method. A new stack frame is pushed onto the stack for each call to the method.

For example, in the following code, method Count calls itself with one less than its input parameter
and then prints out its input parameter. As the recursion gets deeper, the stack gets larger.

 class Program
 {
 public void Count(int inVal)
 {
 if (inVal == 0)
 return;
 Count(inVal - 1); // Invoke this method again.
 ↑
 Calls itself
 Console.WriteLine("{0}", inVal);
 }

 static void Main()
 {
 Program pr = new Program();
 pr.Count(3);
 }
 }

This code produces the following output:

1
2
3

CHAPTER 5 METHODS

107

Figure 5-15 illustrates the code. Notice that with an input value of 3, there are four different,
independent stack frames for method Count. Each has its own value for input parameter inVal.

Figure 5-15. Example of recursion

C H A P T E R 6

109

More About Classes

 Class Members

 Instance Class Members

 Static Fields

 Static Function Members

 Other Static Class Member Types

 Constants

 Properties

 Instance Constructors

 Static Constructors

 Accessibility of Constructors

 Destructors

 Comparison of Constructors and Destructors

 The readonly Modifier

 The this Keyword

 Indexers

 Access Modifiers on Accessors

 Partial Classes

CHAPTER 6 MORE ABOUT CLASSES

110

Class Members
The previous two chapters covered two of the nine types of class members: fields and methods. In this
chapter, I’ll introduce more types of class members, and explain their features.

Table 6-1 shows a list of the class member types. Those that have already been introduced are
marked with diamonds. Those that are covered in this chapter are marked with a check. Those that will
be covered later in the text are marked with empty check boxes.

Table 6-1. Types of Class Members

Data Members
(Store Data)

Function Members
(Execute Code)

♦ Fields

 Constants

♦ Methods

 Properties

 Constructors

 Destructors

 Operators

 Indexers

 Events

Order of Member Modifiers
Previously, you saw that the declarations of fields and methods can include modifiers such as public and
private. In this chapter, I’ll discuss a number of additional modifiers. Since many of these modifiers can
be used together, the question that arises is, what order do they need to be in?

Class member declaration statements consist of the following: the core declaration, an optional set
of modifiers, and an optional set of attributes. The syntax used to describe this structure is the following.
The square brackets indicate that the enclosed set of components is optional.

 [attributes] [modifiers] CoreDeclaration

The optional components are the following:

• Modifiers

— If there are any modifiers, they must be placed before the core declaration.

— If there are multiple modifiers, they can be in an order.

• Attributes

— If there are any attributes, they must be placed before the modifiers and core declaration.

— If there are multiple attributes, they can be in any order.

So far, I’ve explained only two modifiers: public and private, and I’ll cover attributes in Chapter 24.

CHAPTER 6 MORE ABOUT CLASSES

111

For example, public and static are both modifiers that can be used together to modify certain
declarations. Since they’re both modifiers, they can be placed in either order. The following two lines are
semantically equivalent:

 public static int MaxVal;

 static public int MaxVal;

Figure 6-1 shows the order of the components as applied to the member types shown so far: fields
and methods. Notice that the type of the field and the return type of the method are not modifiers—
they’re part of the core declaration.

Figure 6-1. The order of attributes, modifiers, and core declarations

CHAPTER 6 MORE ABOUT CLASSES

112

Instance Class Members
Class members can be associated with an instance of the class or with the class as a whole. By default,
members are associated with an instance. You can think of each instance of a class as having its own
copy of each class member. These members are called instance members.

Changes to the value of one instance field do not affect the values of the members in any other
instance. So far, the fields and methods you’ve seen have all been instance fields and instance methods.

For example, the following code declares a class D with a single integer field Mem1. Main creates two
instances of the class. Each instance has its own copy of field Mem1. Changing the value of one instance’s
copy of the field doesn’t affect the value of the other instance’s copy. Figure 6-2 shows the two instances
of class D.

 class D
 {
 public int Mem1;
 }

 class Program
 {
 static void Main()
 {
 D d1 = new D();
 D d2 = new D();
 d1.Mem1 = 10; d2.Mem1 = 28;

 Console.WriteLine("d1 = {0}, d2 = {1}", d1.Mem1, d2.Mem1);
 }
 }

This code produces the following output:

d1 = 10, d2 = 28

Figure 6-2. Each instance of class D has its own copy of field Mem1.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 MORE ABOUT CLASSES

113

Static Fields
Besides instance fields, classes can have what are called static fields.

• A static field is shared by all the instances of the class, and all the instances access the same

memory location. Hence, if the value of the memory location is changed by one instance, the

change is visible to all the instances.

• Use the static modifier to declare a field static, as follows:

 class D
 {
 int Mem1; // Instance field
 static int Mem2; // Static field
 ↑
 } Keyword

For example, the code on the left in Figure 6-3 declares class D with static field Mem2 and instance
field Mem1. Main defines two instances of class D. The figure shows that static field Mem2 is stored separately
from the storage of any of the instances. The gray fields inside the instances represent the fact that, from
inside an instance method, the syntax to access or update the static field is the same as for any other
member field.

• Because Mem2 is static, both instances of class D share a single Mem2 field. If Mem2 is changed, that

change is seen from both.

• Member Mem1 is not declared static, so each instance has its own distinct copy.

Figure 6-3. Static and instance data members

CHAPTER 6 MORE ABOUT CLASSES

114

Accessing Static Members from Outside the Class
In the previous chapter, you saw that dot-syntax notation is used to access instance members from
outside the class. Dot-syntax notation consists of listing the instance name, followed by a dot, followed
by the member name.

Static members, like instance members, are also accessed from outside the class using dot-syntax
notation. But since there is no instance, you must use the class name, as shown here:

 Class name
 ↓
 D.Mem2 = 5; // Accessing the static class member
 ↑
 Member name

Example of a Static Field
The following code expands the preceding class D by adding two methods:

• One method sets the values of the two data members.

• The other method displays the values of the two data members.

 class D {
 int Mem1;
 static int Mem2;

 public void SetVars(int v1, int v2) // Set the values
 { Mem1 = v1; Mem2 = v2; }
 ↑ Access as if it were an instance field

 public void Display(string str)
 { Console.WriteLine("{0}: Mem1= {1}, Mem2= {2}", str, Mem1, Mem2); }
 } ↑
 Access as if it were an instance field
 class Program {
 static void Main()
 {
 D d1 = new D(), d2 = new D(); // Create two instances.

 d1.SetVars(2, 4); // Set d1's values.
 d1.Display("d1");

 d2.SetVars(15, 17); // Set d2's values.
 d2.Display("d2");

 d1.Display("d1"); // Display d1 again and notice that the
 } // value of static member Mem2 has changed!
 }

CHAPTER 6 MORE ABOUT CLASSES

115

This code produces the following output:

d1: Mem1= 2, Mem2= 4
d2: Mem1= 15, Mem2= 17
d1: Mem1= 2, Mem2= 17

Lifetimes of Static Members
The lifetimes for static members are different from those of instance members.

• As you saw previously, instance members come into existence when the instance is created and

go out of existence when the instance is destroyed.

• Static members, however, exist and are accessible even if there are no instances of the class.

Figure 6-4 illustrates a class D, with a static field, Mem2. Even though Main doesn’t define any
instances of the class, it assigns the value 5 to the static field and prints it out with no problem.

Figure 6-4. Static fields with no class instances can still be assigned to and read from, because the field is

associated with the class, and not an instance.

The code in Figure 6-4 produces the following output:

Mem2 = 5

 Note Static members exist even if there are no instances of the class. If a static field has an initializer, the
field is initialized before the use of any of the class’s static fields but not necessarily at the beginning of

program execution.

CHAPTER 6 MORE ABOUT CLASSES

116

Static Function Members
Besides static fields, there are also static function members.

• Static function members, like static fields, are independent of any class instance. Even if there are

no instances of a class, you can still call a static method.

• Static function members cannot access instance members. They can, however, access other

static members.

For example, the following class contains a static field and a static method. Notice that the body of
the static method accesses the static field.

 class X
 {
 static public int A; // Static field
 static public void PrintValA() // Static method
 {
 Console.WriteLine("Value of A: {0}", A);
 } ↑
 } Accessing the static field

The following code uses class X, defined in the preceding code:

 class Program
 {
 static void Main()
 {
 X.A = 10; // Use dot-syntax notation
 X.PrintValA(); // Use dot-syntax notation
 } ↑
 } Class name

This code produces the following output:

Value of A: 10

CHAPTER 6 MORE ABOUT CLASSES

117

Figure 6-5 illustrates the preceding code.

Figure 6-5. Static methods of a class can be called even if there are no instances of the class.

Other Static Class Member Types
The types of class members that can be declared static are shown checked in Table 6-2. The other
member types cannot be declared static.

Table 6-2. Class Member Types That Can Be Declared Static

Data Members (Store Data) Function Members (Execute Code)

 Fields

 Constants

 Methods

 Properties

 Constructors

 Operators

 Indexers

 Events

CHAPTER 6 MORE ABOUT CLASSES

118

Member Constants
Member constants are like the local constants covered in the previous chapter, except that they’re
declared in the class declaration, as shown in the following example:

 class MyClass
 {
 const int IntVal = 100; // Defines a constant of type int
 ↑ ↑ // with a value of 100.
 } Type Initializer

 const double PI = 3.1416; // Error: cannot be declared outside a type
 // declaration

Like local constants, the value used to initialize a member constant must be computable at compile
time and is usually one of the predefined simple types or an expression composed of them.

 class MyClass
 {
 const int IntVal1 = 100;
 const int IntVal2 = 2 * IntVal1; // Fine, since the value of IntVal1
 } // was set in the previous line.

Like local constants, you cannot assign to a member constant after its declaration.

 class MyClass
 {
 const int IntVal; // Error: initialization is required.
 IntVal = 100; // Error: assignment is not allowed.
 }

 Note Unlike C and C++, in C# there are no global constants. Every constant must be declared within a type.

CHAPTER 6 MORE ABOUT CLASSES

119

Constants Are Like Statics
Member constants, however, are more interesting than local constants, in that they act like static
values. They’re “visible” to every instance of the class, and they’re available even if there are no
instances of the class.

For example, the following code declares class X with constant field PI. Main doesn’t create any
instances of X, and yet it can use field PI and print its value.

 class X
 {
 public const double PI = 3.1416;
 }

 class Program
 {
 static void Main()
 {
 Console.WriteLine("pi = {0}", X.PI); // Use static field PI
 }
 }

This code produces the following output:

pi = 3.1416

CHAPTER 6 MORE ABOUT CLASSES

120

Unlike actual statics, however, constants do not have their own storage locations and are
substituted in by the compiler at compile time in a manner similar to #define values in C and C++. This
is shown in Figure 6-6, which illustrates the preceding code. Hence, although a constant member acts
like a static, you cannot declare a constant as static.

 static const double PI = 3.14;

 Error: can't declare a constant as static

Figure 6-6. Constant fields act like static fields but do not have a storage location in memory.

CHAPTER 6 MORE ABOUT CLASSES

121

Properties
A property is a member that represents an item of data in a class or class instance. Using a property
appears very much like writing to, or reading from, a field. The syntax is the same.

For example, the following code shows the use of a class called MyClass that has both a public field
and a public property. From their usage, you cannot tell them apart.

 MyClass mc = new MyClass();

 mc.MyField = 5; // Assigning to a field
 mc.MyProperty = 10; // Assigning to a property

 WriteLine("{0} {1}", mc.MyField, mc.MyProperty); // Read field and property

A property, like a field, has the following characteristics:

• It is a named class member.

• It has a type.

• It can be assigned to and read from.

Unlike a field, however, a property is a function member.

• It does not necessarily allocate memory for data storage.

• It executes code.

A property is a named set of two matching methods called accessors.

• The set accessor is used for assigning a value to the property.

• The get accessor is used for retrieving a value from the property.

Figure 6-7 shows the representation of a property. The code on the left shows the syntax of declaring
a property named MyValue, of type int. The image on the right shows how properties will be represented
visually in this text. Notice that the accessors are shown sticking out the back, because, as you will soon
see, they’re not directly callable.

Figure 6-7. An example property of type int, named MyValue

CHAPTER 6 MORE ABOUT CLASSES

122

Property Declarations and Accessors
The set and get accessors have predefined syntax and semantics. You can think of the set accessor as a
method with a single parameter that “sets” the value of the property. The get accessor has no
parameters and returns the value the property.

• The set accessor always has the following:

— A single, implicit value parameter named value, of the same type as the property

— A return type of void

• The get accessor always has the following:

— No parameters

— A return type of the same type as the property

Figure 6-8 shows the structure of a property declaration. Notice in the figure that neither accessor
declaration has explicit parameter or return type declarations. They don’t need them, because they’re
implicit in the type of the property.

Figure 6-8. The syntax and structure of a property declaration

The implicit parameter value in the set accessor is a normal value parameter. Like other value
parameters, you can use it to send data into a method body—or in this case, the accessor block. Once
inside the block, you can use value like a normal variable, including assigning values to it.

Other important points about accessors are the following:

• All paths through the implementation of a get accessor must include a return statement that

returns a value of the property type.

• The set and get accessors can be declared in either order, and no methods other than the two

accessors are allowed on a property.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 MORE ABOUT CLASSES

123

A Property Example
The following code shows an example of the declaration of a class called C1 that contains a property
named MyValue.

• Notice that the property itself doesn’t have any storage. Instead, the accessors determine what

should be done with data sent in and what data should be sent out. In this case, the property uses

a field called TheRealValue for storage.

• The set accessor takes its input parameter, value, and assigns that value to field TheRealValue.

• The get accessor just returns the value of field TheRealValue.

Figure 6-9 illustrates the code.

 class C1
 {
 private int TheRealValue; // Field: memory allocated

 public int MyValue // Property: no memory allocated
 {
 set
 {
 TheRealValue = value;
 }

 get
 {
 return TheRealValue;
 }
 }
 }

Figure 6-9. Property accessors often use fields for storage

CHAPTER 6 MORE ABOUT CLASSES

124

Using a Property
As you saw previously, you write to and read from a property in the same way you access a field. The
accessors are called implicitly.

• To write to a property, use the property’s name on the left side of an assignment statement.

• To read from a property, use the property’s name in an expression.

For example, the following code contains an outline of the declaration of a property named MyValue.
You write to and read from the property using just the property name, as if it were a field name.

 int MyValue // Property declaration
 {
 set{ ... }
 get{ ... }
 }
 ...
 Property name
 ↓
 MyValue = 5; // Assignment: the set method is implicitly called
 z = MyValue; // Expression: the get method is implicitly called
 ↑
 Property name

The appropriate accessor is called implicitly depending on whether you are writing to or
reading from the property. You cannot explicitly call the accessors. Attempting to do so produces a
compile error.

 y = MyValue.get(); // Error! Can't explicitly call get accessor.
 MyValue.set(5); // Error! Can't explicitly call set accessor.

CHAPTER 6 MORE ABOUT CLASSES

125

Properties and Associated Fields
A property is often associated with a field, as shown in the previous two sections. A common practice is
to encapsulate a field in a class by declaring it private and declaring a public property to give controlled
access to the field from outside the class. The field associated with a property is called the backing field
or backing store.

For example, the following code uses the public property MyValue to give controlled access to private
field TheRealValue:

 class C1
 {
 private int TheRealValue = 10; // Backing Field: memory allocated
 public int MyValue // Property: no memory allocated
 {
 set{ TheRealValue = value; } // Sets the value of field TheRealValue
 get{ return TheRealValue; } // Gets the value of the field
 }
 }

 class Program
 {
 static void Main()
 {
 Read from the property as if it were a field.
 C1 c = new C1(); ↓
 Console.WriteLine("MyValue: {0}", c.MyValue);

 c.MyValue = 20; ← Use assignment to set the value of a property.
 Console.WriteLine("MyValue: {0}", c.MyValue);
 }
 }

CHAPTER 6 MORE ABOUT CLASSES

126

There are several conventions for naming properties and their backing fields. One convention is to
use the same string for both names but use camel casing (in which the first letter is lowercase) for the
field and Pascal casing for the property. Although this violates the general rule that it is bad practice to
have different identifiers that differ only in casing, it has the advantage of tying the two identifiers
together in a meaningful way.

Another convention is to use Pascal casing for the property, and then for the field, use the camel
case version of the same identifier, with an underscore in front.

The following code shows both conventions:

 private int firstField; // Camel casing
 public int FirstField // Pascal casing
 {
 get { return firstField; }
 set { firstField = value; }
 }

 private int _secondField; // Underscore and camel casing
 public int SecondField
 {
 get { return _secondField; }
 set { _secondField = value; }
 }

CHAPTER 6 MORE ABOUT CLASSES

127

Performing Other Calculations
Property accessors are not limited to just passing values back and forth from an associated backing field;
the get and set accessors can perform any, or no, computations. The only action required is that the get
accessor return a value of the property type.

For instance, the following example shows a valid (but probably useless) property that just returns
the value 5 when its get accessor is called. When the set accessor is called, it doesn’t do anything. The
value of implicit parameter value is ignored.

 public int Useless
 {
 set{ /* I'm not setting anything. */ }
 get{ /* I'm just returning the value 5. */
 return 5;
 }
 }

The following code shows a more realistic and useful property, where the set accessor performs
filtering before setting the associated field. The set accessor sets field TheRealValue to the input value—
unless the input value is greater than 100. In that case, it sets TheRealValue to 100.

 int TheRealValue = 10; // The field
 int MyValue // The property
 {
 set // Sets the value of the field
 {
 TheRealValue = value > 100 // but makes sure it's not > 100
 ? 100
 : value;
 }
 get // Gets the value of the field
 {
 return TheRealValue;
 }
 }

 Note In the preceding code sample, the syntax between the equals sign and the end of the statement might

look somewhat strange. That expression uses the conditional operator, which will be covered in greater detail in
Chapter 8. The conditional operator is a ternary operator that evaluates the expression in front of the question

mark, and if the expression evaluates to true, it returns the expression after the question mark. Otherwise, it

returns the expression after the colon.

CHAPTER 6 MORE ABOUT CLASSES

128

Read-Only and Write-Only Properties
You can leave one or the other (but not both) of a property’s accessors undefined by omitting its
declaration.

• A property with only a get accessor is called a read-only property. A read-only property is a

safe way of passing an item of data out from a class or class instance without allowing too

much access.

• A property with only a set accessor is called a write-only property. A write-only property is a

safe way of passing an item of data from outside the class to the class without allowing too

much access.

• At least one of the two accessors must be defined, or the compiler will produce an error message.

Figure 6-10 illustrates read-only and write-only properties.

Figure 6-10. A property can have one or the other of its accessors undefined.

CHAPTER 6 MORE ABOUT CLASSES

129

An Example of a Computed, Read-Only Property
In most of the examples so far, the property has been associated with a field, and the get and set
accessors have referenced that field. However, a property does not have to be associated with a field. In
the following example, the get accessor computes the return value.

In the following example code, class RightTriangle represents, not surprisingly, a right triangle.

• It has two public fields that represent the lengths of the two right-angle sides of the triangle.

These fields can be written to and read from.

• The third side is represented by property Hypotenuse, which is a read-only property whose return

value is based on the lengths of the other two sides. It isn’t stored in a field. Instead, it computes

the correct value, on demand, for the current values of A and B.

Figure 6-11 illustrates read-only property Hypotenuse.

 class RightTriangle
 {
 public double A = 3;
 public double B = 4;
 public double Hypotenuse // Read-only property
 {
 get{ return Math.Sqrt((A*A)+(B*B)); } // Calculate return value
 }
 }

 class Program
 {
 static void Main()
 {
 RightTriangle c = new RightTriangle();
 Console.WriteLine("Hypotenuse: {0}", c.Hypotenuse);
 }
 }

Figure 6-11. Read-only property Hypotenuse

CHAPTER 6 MORE ABOUT CLASSES

130

Example of Properties and Databases
Another example in which a property is not associated with a field is when the property is associated
with a value in a database. In that case, the get accessor makes the appropriate database calls to get the
value from the database. The set accessor makes the corresponding calls to the database to set the new
value in the database.

For example, the following property is associated with a particular value in some database. The code
assumes that there are two other methods in the class to handle the details of the database transactions:

• SetValueInDatabase takes an integer parameter and uses it to set a particular field in a record in

some database.

• GetValueFromDatabase retrieves and returns a particular integer field value from a particular

record in some database.

 int MyDatabaseValue
 {
 set // Sets integer value in the database
 {
 SetValueInDatabase(value);
 }
 get // Gets integer value from the database
 {
 return GetValueFromDatabase();
 }
 }

Properties vs. Public Fields
As a matter of preferred coding practice, properties are preferred over public fields for several reasons:

• Since properties are functional members as opposed to data members, they allow you to process

the input and output, which you can’t do with public fields.

• The semantics of a compiled variable and a compiled property are different.

The second point has implications when you release an assembly that is accessed by other code. For
example, sometimes there’s the temptation is to use a public field rather than a property, with the
reasoning that if you ever need to add processing to the data held in the field, you can always change it
to a property at a later time. This is true, but if you make that change, you will also have to recompile any
other assemblies accessing that field, because the compiled semantics of fields and properties are
different. On the other hand, if you had implemented it as a property and just changed its
implementation, you wouldn’t need to recompile the other assemblies accessing it.

CHAPTER 6 MORE ABOUT CLASSES

131

Automatically Implemented Properties
Because properties are so often associated with backing fields, C# 3.0 added automatically implemented
properties, or auto-implemented properties, which allow you to just declare the property, without
declaring a backing field. The compiler creates a hidden backing field for you and automatically hooks
up the get and set accessors to it.

The important points about auto-implemented properties are the following:

• You do not declare the backing field—the compiler allocates the storage for you, based on the

type of the property.

• You cannot supply the bodies of the accessors—they must be declared simply as semicolons. The

get acts as a simple read of the memory, and the set as a simple write.

• You cannot access the backing field other than through the accessors. Since you can’t access it

any other way, it wouldn’t make sense to have read-only or write-only auto-implemented

properties—so they’re not allowed.

The following code shows an example of an automatically implemented property:

 class C1
 { ← No declared backing field
 public int MyValue // Allocates memory
 {
 set; get;
 } ↑ ↑
 } The bodies of the accessors are declared as semicolons.

 class Program
 {
 static void Main()
 { Use auto-implemented properties as regular properties.
 C1 c = new C1(); ↓
 Console.WriteLine("MyValue: {0}", c.MyValue);

 c.MyValue = 20;
 Console.WriteLine("MyValue: {0}", c.MyValue);
 }
 }

This code produces the following output:

MyValue: 0
MyValue: 20

Besides being convenient, auto-implemented properties allow you to easily insert a property where
you might be tempted to declare a public field.

CHAPTER 6 MORE ABOUT CLASSES

132

Static Properties
Properties can also be declared static. Accessors of static properties, like all static members

• Cannot access instance members of a class—although they can be accessed by them

• Exist regardless of whether there are instances of the class

• Must be referenced by the class name, rather than an instance name, when being accessed from

outside the class

For example, the following code shows a class with an auto-implemented static property called
MyValue. In the first three lines of Main, the property is accessed, even though there are no instances of
the class. The last line of Main calls an instance method that accesses the property from inside the class.

 class Trivial
 {
 public static int MyValue { get; set; }

 public void PrintValue() Accessed from inside the class
 { ↓
 Console.WriteLine("Value from inside: {0}", MyValue);
 }
 }

 class Program
 {
 static void Main() Accessed from outside the class
 { ↓
 Console.WriteLine("Init Value: {0}", Trivial.MyValue);
 Trivial.MyValue = 10; ← Accessed from outside the class
 Console.WriteLine("New Value : {0}", Trivial.MyValue);

 Trivial tr = new Trivial();
 tr.PrintValue();
 }
 }

Init Value: 0
New Value : 10
Value from inside: 10

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 MORE ABOUT CLASSES

133

Instance Constructors
An instance constructor is a special method that is executed whenever a new instance of a class
is created.

• A constructor is used to initialize the state of the class instance.

• If you want to be able to create instances of your class from outside the class, you need to declare

the constructor public.

Figure 6-12 shows the syntax of a constructor. A constructor looks like the other methods in a class
declaration, with the following exceptions:

• The name of the constructor is the same as the name of the class.

• A constructor cannot have a return value.

Figure 6-12. Constructor declaration

For example, the following class uses its constructor to initialize its fields. In this case, it has a field
called TimeOfInstantiation that is initialized with the current date and time.

 class MyClass
 {
 DateTime TimeOfInstantiation; // Field
 ...
 public MyClass() // Constructor
 {
 TimeOfInstantiation = DateTime.Now; // Initialize field
 }
 ...
 }

 Note Having finished the section on static properties, take a closer look at the line that initializes

TimeOfInstantiation. The DateTime class is from the BCL, and Now is a static property of the DateTime class.

The Now property creates a new instance of the DateTime class, initializes it with the current date and time from

the system clock, and returns a reference to the new DateTime instance.

CHAPTER 6 MORE ABOUT CLASSES

134

Constructors with Parameters
Constructors are like other methods in the following ways:

• A constructor can have parameters. The syntax for the parameters is exactly the same as for other

methods.

• A constructor can be overloaded.

When you use an object-creation expression to create a new instance of a class, you use the new
operator followed by one of the class’s constructors. The new operator uses that constructor to create the
instance of the class.

For example, in the following code, Class1 has three constructors: one that takes no parameters, one
that takes an int, and another that takes a string. Main creates an instance using each one.

 class Class1
 {
 int Id;
 string Name;

 public Class1() { Id=28; Name="Nemo"; } // Constructor 0
 public Class1(int val) { Id=val; Name="Nemo"; } // Constructor 1
 public Class1(String name) { Name=name; } // Constructor 2

 public void SoundOff()
 { Console.WriteLine("Name {0}, Id {1}", Name, Id); }
 }

 class Program
 {
 static void Main()
 {
 Class1 a = new Class1(), // Call constructor 0.
 b = new Class1(7), // Call constructor 1.
 c = new Class1("Bill"); // Call constructor 2.

 a.SoundOff();
 b.SoundOff();
 c.SoundOff();
 }
 }

This code produces the following output:

Name Nemo, Id 28
Name Nemo, Id 7
Name Bill, Id 0

CHAPTER 6 MORE ABOUT CLASSES

135

Default Constructors
If no instance constructor is explicitly supplied in the class declaration, then the compiler supplies an
implicit, default constructor, which has the following characteristics:

• It takes no parameters.

• It has an empty body.

If you declare any constructors at all for a class, then the compiler does not define a default
constructor for the class.

For example, Class2 declares two constructors.

• Because there is at least one explicitly defined constructor, the compiler does not create any

additional constructors.

• In Main, there is an attempt to create a new instance using a constructor with no parameters.

Since there is no constructor with zero parameters, the compiler produces an error message.

 class Class2
 {
 public Class2(int Value) { ... } // Constructor 0
 public Class2(String Value) { ... } // Constructor 1
 }

 class Program
 {
 static void Main()
 {
 Class2 a = new Class2(); // Error! No constructor with 0 parameters
 ...
 }
 }

CHAPTER 6 MORE ABOUT CLASSES

136

Static Constructors
Constructors can also be declared static. While an instance constructor initializes each new instance of
a class, a static constructor initializes items at the class level. Generally, static constructors initialize the
static fields of the class.

• Class-level items need to be initialized:

— Before any static member is referenced

— Before any instance of the class is created

• Static constructors are like instance constructors in the following ways:

— The name of the static constructor must be the same as the name of the class.

— The constructor cannot return a value.

• Static constructors are unlike instance constructors in the following ways:

— Static constructors use the static keyword in the declaration.

— There can only be a single static constructor for a class, and it cannot have parameters.

— Static constructors cannot have accessibility modifiers.

The following is an example of a static constructor. Notice that its form is the same as that of an
instance constructor, but with the addition of the static keyword.

 class Class1
 {
 static Class1 ()
 {
 ... // Do all the static initializations.
 }
 ...

Other important things you should know about static constructors are the following:

• A class can have both a static constructor and instance constructors.

• Like static methods, a static constructor cannot access instance members of its class and cannot

use the this accessor, which we’ll cover shortly.

• You cannot explicitly call static constructors from your program. They’re called automatically by

the system, at some time:

— Before any instance of the class is created

— Before any static member of the class is referenced

CHAPTER 6 MORE ABOUT CLASSES

137

Example of a Static Constructor
The following code uses a static constructor to initialize a private static field named RandomKey, of type
Random. Random is a class provided by the BCL to produce random numbers. It is in the System namespace.

 class RandomNumberClass
 {
 private static Random RandomKey; // Private static field

 static RandomNumberClass() // Static constructor
 {
 RandomKey = new Random(); // Initialize RandomKey
 }

 public int GetRandomNumber()
 {
 return RandomKey.Next();
 }
 }

 class Program
 {
 static void Main()
 {
 RandomNumberClass a = new RandomNumberClass();
 RandomNumberClass b = new RandomNumberClass();

 Console.WriteLine("Next Random #: {0}", a.GetRandomNumber());
 Console.WriteLine("Next Random #: {0}", b.GetRandomNumber());
 }
 }

One execution of this code produced the following output:

Next Random #: 47857058
Next Random #: 1124842041

Accessibility of Constructors
You can assign access modifiers to instance constructors just as you can to other members. Notice that
in the examples, the constructors have been declared public so that you can create instances from
outside the class.

You can also create private constructors, which cannot be called from outside the class, but can be
used from within the class, as you’ll see in the next chapter.

CHAPTER 6 MORE ABOUT CLASSES

138

Object Initializers
So far in the text, you’ve seen that an object-creation expression consists of the keyword new followed by
a class constructor and its parameter list. An object initializer extends that syntax by placing a list of
member initializations at the end of the expression. This allows you to set the values of fields and
properties when creating a new instance of an object.

The syntax has two forms, as shown here. One form includes the constructor’s argument list, and
the other doesn’t. Notice that the first form doesn’t even use the parentheses that would enclose the
argument list.

 Object initializer
 ↓
 new TypeName { FieldOrProp = InitExpr, FieldOrProp = InitExpr, ...}
 new TypeName(ArgList) { FieldOrProp = InitExpr, FieldOrProp = InitExpr, ...}
 ↑ ↑

 Member initializer Member initializer

For example, for a class named Point with two public integer fields X and Y, you could use the
following expression to create a new object:

 new Point { X = 5, Y = 6 };
 ↑ ↑
 Init X Init Y

Important things to know about object initializers are the following:

• The fields and properties being initialized must be accessible to the code creating the object. For

example, in the previous code, X and Y must be public.

• The initialization occurs after the constructor has finished execution, so the values might have

been set in the constructor and then reset to the same or different value in the object initialize.

CHAPTER 6 MORE ABOUT CLASSES

139

The following code shows an example of using an object initializer. In Main, pt1 calls just the
constructor, which sets the values of its two fields. For pt2, however, the constructor sets the fields’
values to 1 and 2, and the initializer changes them to 5 and 6.

 public class Point
 {
 public int X = 1;
 public int Y = 2;
 }

 class Program
 {
 static void Main()
 { Object initializer
 Point pt1 = new Point(); _______↓__ ____
 Point pt2 = new Point { X = 5, Y = 6 };
 Console.WriteLine("pt1: {0}, {1}", pt1.X, pt1.Y);
 Console.WriteLine("pt2: {0}, {1}", pt2.X, pt2.Y);
 }
 }

This code produces the following output:

pt1: 1, 2
pt2: 5, 6

CHAPTER 6 MORE ABOUT CLASSES

140

Destructors
Destructors perform actions required to clean up or release unmanaged resources after an instance
of a class is no longer referenced. The important things to know about destructors are the following:

• You can have only a single destructor per class.

• A destructor cannot have parameters.

• A destructor cannot have accessibility modifiers.

• A destructor has the same name as the class but is preceded by a tilde character (pronounced

TIL-duh).

• A destructor only acts on instances of classes; hence, there are no static destructors.

• You cannot call a destructor explicitly in your code. Instead, it is called during the garbage

collection process, when the garbage collector analyzes your code and determines that there is no

longer any path through your code that references the object.

For example, the following code illustrates the syntax for a destructor of a class called Class1:

 Class1
 {
 ~Class1() // The destructor
 {
 CleanupCode
 }
 ...
 }

Some important guidelines for using destructors are the following:

• Don’t implement a destructor if you don’t need one. They can incur performance costs.

• A destructor should only release external resources that the object owns.

• A destructor should not access other objects because you can’t assume that those objects haven’t

already been destroyed.

 Note Before the release of version 3.0 of C#, destructors were sometimes called finalizers. You might

sometimes still run across this term in the literature and in the .NET API method names.

CHAPTER 6 MORE ABOUT CLASSES

141

Calling the Destructor
Unlike a C++ destructor, a C# destructor is not called immediately when an instance goes out of scope.
In fact, there is no way of knowing when the destructor will be called. Furthermore, as previously
mentioned, you cannot explicitly call a destructor. If your code needs a destructor, you must provide it
for the system, which will call it at some point before the object is removed from the managed heap.

If your code contains unmanaged resources that need to be released in a timely manner, you
shouldn’t leave that task for the destructor, since there is no guarantee that the destructor will run any
time soon. Instead, you should adopt the standard pattern where your classes implement what is called
the IDisposable interface. (I’ll cover interfaces in Chapter 17.) This consists of encapsulating the cleanup
code for these resources in a void, parameterless method, which you should call Dispose.

When you’re done with the resources and want them released, you need to call Dispose. Notice that
it is you who needs to call Dispose—not the destructor. The system won’t call it for you automatically.

Some guidelines for your Dispose method are the following:

• Implement the code in Dispose in such a way that it is safe for the method to be called more than

once. If it has already been called, then on any subsequent invocations it should not raise an

exception or do any additional work. (Exceptions are covered in Chapter 11.)

• Write your Dispose method and destructor such that, if for some reason your code doesn’t get to

call Dispose, your destructor will call it and release the resources.

• Since Dispose is doing the cleanup rather than the destructor, it should call the

GC.SuppressFinalize method, which tells the CLR not to call this object’s destructor, because it

has already been taken care of.

The following code describes the safe disposal process. First, the class needs to declare a Boolean
disposed field to keep track of whether the cleanup has occurred. This is initialized to false when the
object is created.

Inside the Dispose method, do the following:

• Check the flag to see whether the resources have already been released. If not, then do the

following:

— Call the Dispose methods on any managed resources that require it.

— Release any unmanaged resources held by the object.

• Now that the disposal has occurred, set the disposed flag to true.

• Finally, call the garbage collector’s SuppressFinalize method to tell the garbage collector not to

call the class’s destructor.

CHAPTER 6 MORE ABOUT CLASSES

142

The process in the destructor is similar to but shorter than that in the Dispose method. Just check to
see whether the object has already been cleaned up, and if not, then release the unmanaged resources.
Notice that in this case you do not call the Dispose methods of any managed resources, because the
garbage collector might have already deleted those objects.

 class MyClass
 {
 bool disposed = false; // Flag indicating disposal status

 //
 public void Dispose() // Public Dispose
 {
 if (disposed == false) // Check the flag.
 {
 // Call Dispose on managed resources.
 ...

 // Release any unmanaged resources.
 ...
 }
 disposed = true; // Set the flag to show disposal.
 GC.SuppressFinalize(this); // Tell GC not to call Finalize.
 }

 //
 ~MyClass() // Destructor
 {
 if (disposed == false) // Check the flag.
 {
 // Release any unmanaged resources.
 ...
 }
 }

 ...
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 MORE ABOUT CLASSES

143

The Standard Dispose Pattern
In the previous section, you saw that the destructor code is essentially a subset of the Dispose code. The
standard pattern factors out most of the common code of these two methods into another method
called Dispose, which I’ll call the factored Dispose. It takes a single Boolean parameter that is used to
indicate whether the method is being called from the public Dispose method (true) or from the
destructor (false).

This standard dispose pattern is shown following and illustrated in Figure 6-13. I’ll cover the
protected and virtual modifiers in the next chapter.

 class MyClass : IDisposable
 {
 bool disposed = false; // Disposal status

 public void Dispose()
 {
 Dispose(true); Public Dispose
 GC.SuppressFinalize(this);
 }

 ~MyClass()
 { Destructor
 Dispose(false);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposed == false)
 {
 if (disposing == true)
 {
 // Dispose the managed resources. Factored Dispose
 ...
 }

 // Dispose the unmanaged resources.
 ...
 }
 disposed = true;
 }
 }

CHAPTER 6 MORE ABOUT CLASSES

144

Figure 6-13. The standard dispose pattern

Comparing Constructors and Destructors
Table 6-3 provides a summary of when constructors and destructors are called.

Table 6-3. Constructors and Destructors

 When and How Often Called

Constructor Called once on the creation of each new instance of the class. Instance

Destructor Called for each instance of the class, at some point after the program flow
can no longer access the instance.

Constructor Called only once—either before the first access of any static member of
the class or before any instances of the class are created, whichever is first.

Static

Destructor Does not exist—destructors work only on instances.

CHAPTER 6 MORE ABOUT CLASSES

145

The readonly Modifier
A field can be declared with the readonly modifier. The effect is similar to declaring a field as const, in
that once the value is set, it cannot be changed.

• While a const field can only be initialized in the field’s declaration statement, a readonly field can

have its value set in any of the following places:

— The field declaration statement—like a const.

— Any of the class constructors. If it’s a static field, then it must be done in the static
constructor.

• While the value of a const field must be determinable at compile time, the value of a readonly

field can be determined at run time. This additional freedom allows you to set different values

under different circumstances or in different constructors!

• Unlike a const, which always acts like a static, the following is true of a readonly field:

— It can be either an instance field or a static field.

— It has a storage location in memory.

CHAPTER 6 MORE ABOUT CLASSES

146

For example, the following code declares a class called Shape, with two readonly fields.

• Field PI is initialized in its declaration.

• Field NumberOfSides is set to either 3 or 4, depending on which constructor is called.

 class Shape
 { Keyword Initialized
 ↓ ↓
 readonly double PI = 3.1416;
 readonly int NumberOfSides;
 ↑ ↑
 Keyword Not initialized

 public Shape(double side1, double side2) // Constructor
 {
 // Shape is a rectangle
 NumberOfSides = 4;
 ↑
 ... Set in constructor
 }

 public Shape(double side1, double side2, double side3) // Constructor
 {
 // Shape is a triangle
 NumberOfSides = 3;
 ↑
 ... Set in constructor
 }
 }

CHAPTER 6 MORE ABOUT CLASSES

147

The this Keyword
The this keyword, used in a class, is a reference to the current instance. It can be used only in the blocks
of the following class members:

• Instance constructors.

• Instance methods.

• Instance accessors of properties and indexers. (Indexers are covered in the next section.)

Clearly, since static members are not part of an instance, you cannot use the this keyword inside
the code of any static function member. Rather, it is used for the following:

• To distinguish between class members and local variables or parameters

• As an actual parameter when calling a method

For example, the following code declares class MyClass, with an int field and a method that takes a
single int parameter. The method compares the values of the parameter and the field and returns the
greater value. The only complicating factor is that the names of the field and the formal parameter are
the same: Var1. The two names are distinguished inside the method by using the this access keyword to
reference the field.

 class MyClass
 {
 int Var1 = 10;
 ↑ Both are called “Var1” ↓
 public int ReturnMaxSum(int Var1)
 { Parameter Field
 ↓ ↓
 return Var1 > this.Var1
 ? Var1 // Parameter
 : this.Var1; // Field
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();

 Console.WriteLine("Max: {0}", mc.ReturnMaxSum(30));
 Console.WriteLine("Max: {0}", mc.ReturnMaxSum(5));
 }
 }

CHAPTER 6 MORE ABOUT CLASSES

148

Indexers
Suppose you were to define class Employee, with three fields of type string (as shown in Figure 6-14).
You could then access the fields using their names, as shown in the code in Main.

Figure 6-14. Simple class without indexers

There are times, however, when it would be convenient to be able to access them with an index,
as if the instance were an array of fields. This is exactly what indexers allow you to do. If you were to
write an indexer for class Employee, method Main might look like the code in Figure 6-15. Notice that
instead of using dot-syntax notation, indexers use index notation, which consists of an index between
square brackets.

Figure 6-15. Using indexed fields

CHAPTER 6 MORE ABOUT CLASSES

149

What Is an Indexer?
An indexer is a pair of get and set accessors, similar to those of properties. Figure 6-16 shows the
representation of an indexer for a class that can get and set values of type string.

Figure 6-16. Representations of an indexer

Indexers and Properties
Indexers and properties are similar in many ways.

• Like a property, an indexer does not allocate memory for storage.

• Both indexers and properties are used primarily for giving access to other data members with

which they’re associated and for which they provide get and set access.

— A property usually represents a single data member.

— An indexer usually represents multiple data members.

 Note You can think of an indexer as a property that gives get and set access to multiple data members of the

class. You select which of the many possible data members by supplying an index, which itself can be of any

type—not just numeric.

Some additional points you should know when working with indexers are the following:

• Like a property, an indexer can have either one or both of the accessors.

• Indexers are always instance members; hence, an indexer cannot be declared static.

• Like properties, the code implementing the get and set accessors does not have to be associated

with any fields or properties. The code can do anything, or nothing, as long as the get accessor

returns some value of the specified type.

CHAPTER 6 MORE ABOUT CLASSES

150

Declaring an Indexer
The syntax for declaring an indexer is shown next. Notice the following about indexers:

• An indexer does not have a name. In place of the name is the keyword this.

• The parameter list is between square brackets.

• There must be at least one parameter declaration in the parameter list.

 Keyword Parameter list
 ↓ ↓
 ReturnType this [Type param1, ...]
 { ↑ ↑
 get Square bracket Square bracket
 {
 ...
 }
 set
 {
 ...
 }
 }

Declaring an indexer is similar to declaring a property. Figure 6-17 shows the syntactic similarities
and differences.

Figure 6-17. Comparing an indexer declaration to a property declaration

CHAPTER 6 MORE ABOUT CLASSES

151

The Indexer set Accessor
When the indexer is the target of an assignment, the set accessor is called and receives two items of data,
as follows:

• An implicit parameter, named value, which holds the data to be stored

• One or more index parameters that represent where it should be stored

 emp[0] = "Doe";
 ↑ ↑
 Index Value
 Parameter

Your code in the set accessor must examine the index parameters, determine where the data should
be stored, and then store it.

Figure 6-18 shows the syntax and meaning of the set accessor. The left side of the figure shows the
actual syntax of the accessor declaration. The right side shows the semantics of the accessor if it were
written using the syntax of a normal method. The figure on the right shows that the set accessor has the
following semantics:

• It has a void return type.

• It uses the same parameter list as that in the indexer declaration.

• It has an implicit value parameter named value, of the same type as the indexer.

Figure 6-18. The syntax and meaning of the set accessor declaration

CHAPTER 6 MORE ABOUT CLASSES

152

The Indexer get Accessor
When the indexer is used to retrieve a value, the get accessor is called with one or more index
parameters. The index parameters represent which value to retrieve.

 string s = emp[0];
 ↑

 Index parameter

The code in the get accessor body must examine the index parameters, determine which field they
represent, and return the value of that field.

Figure 6-19 shows the syntax and meaning of the get accessor. The left side of the figure shows the
actual syntax of the accessor declaration. The right side shows the semantics of the accessor if it were
written using the syntax of a normal method. The semantics of the get accessor are as follows:

• It has the same parameter list as in the indexer declaration.

• It returns a value of the same type as the indexer.

Figure 6-19. The syntax and meaning of the get accessor declaration

More About Indexers
As with properties, the get and set accessors cannot be called explicitly. Instead, the get accessor is
called automatically when the indexer is used in an expression for a value. The set accessor is called
automatically when the indexer is assigned a value with the assignment statement.

When an indexer is “called,” the parameters are supplied between the square brackets.

 Index Value
 ↓ ↓
 emp[0] = "Doe"; // Calls set accessor
 string NewName = emp[0]; // Calls get accessor
 ↑

 Index

Declaring the Indexer for the Employee Example
The following code declares an indexer for the earlier example: class Employee.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 MORE ABOUT CLASSES

153

• The indexer must read and write values of type string—so string must be declared as the
indexer’s type. It must be declared public so that it can be accessed from outside the class.

• The three fields in the example have been arbitrarily indexed as integers 0 through 2, so the
formal parameter between the square brackets, named index in this case, must be of type int.

• In the body of the set accessor, the code determines which field the index refers to and assigns
the value of implicit variable value to it. In the body of the get accessor, the code determines

which field the index refers to and returns that field’s value.

 class Employee
 {
 public string LastName; // Call this field 0.
 public string FirstName; // Call this field 1.
 public string CityOfBirth; // Call this field 2.

 public string this[int index] // Indexer declaration
 {
 set // Set accessor declaration
 {
 switch (index)
 {
 case 0: LastName = value;
 break;
 case 1: FirstName = value;
 break;
 case 2: CityOfBirth = value;
 break;

 default: // (Exceptions in Ch. 11)
 throw new ArgumentOutOfRangeException("index");
 }
 }

 get // Get accessor declaration
 {
 switch (index)
 {
 case 0: return LastName;
 case 1: return FirstName;
 case 2: return CityOfBirth;

 default: // (Exceptions in Ch. 11)
 throw new ArgumentOutOfRangeException("index");
 }
 }
 }
 }

CHAPTER 6 MORE ABOUT CLASSES

154

Another Indexer Example
The following is an additional example that indexes the two int fields of class Class1:

 class Class1
 {
 int Temp0; // Private field
 int Temp1; // Private field
 public int this [int index] // The indexer
 {
 get
 {
 return (0 == index) // Return value of either Temp0 or Temp1
 ? Temp0
 : Temp1;
 }

 set
 {
 if(0 == index)
 Temp0 = value; // Note the implicit variable "value".
 else
 Temp1 = value; // Note the implicit variable "value".
 }
 }
 }

 class Example
 {
 static void Main()
 {
 Class1 a = new Class1();

 Console.WriteLine("Values -- T0: {0}, T1: {1}", a[0], a[1]);
 a[0] = 15;
 a[1] = 20;
 Console.WriteLine("Values -- T0: {0}, T1: {1}", a[0], a[1]);
 }
 }

This code produces the following output:

Values -- T0: 0, T1: 0
Values -- T0: 15, T1: 20

CHAPTER 6 MORE ABOUT CLASSES

155

Indexer Overloading
A class can have any number of indexers, as long as the parameter lists are different; it isn’t sufficient for
the indexer type to be different. This is called indexer overloading, because all the indexers have the same
“name”—the this access reference.

For example, the following class has three indexers: two of type string and one of type int. Of the
two indexers of type string, one has a single int parameter, and the other has two int parameters.

 class MyClass
 {
 public string this [int index]
 {
 get { ... }
 set { ... }
 }

 public string this [int index1, int index2]
 {
 get { ... }
 set { ... }
 }

 public int this [float index1]
 {
 get { ... }
 set { ... }
 }

 ...
 }

 Note Remember that the overloaded indexers of a class must have different parameter lists.

CHAPTER 6 MORE ABOUT CLASSES

156

Access Modifiers on Accessors
In this chapter, you’ve seen two types of function members that have get and set accessors: properties
and indexers. By default, both a member’s accessors have the same access level as the member itself.
That is, if a property has an access level of public, then both its accessors have that same access level.
The same is true of indexers.

You can, however, assign different access levels to the two accessors. For example, the following
code shows a common and important paradigm of declaring a private set accessor and a public get
accessor. The get is public because the access level of the property is public.

Notice in this code that although the property can be read from outside the class, it can only be set
from inside the class itself, in this case by the constructor. This is an important tool for encapsulation.

 class Person
 { ↓ ↓
 public string Name { get; private set; }
 public Person(string name)
 {
 Name = name;
 }
 }

 class Program
 {
 static public void Main()
 {
 Person p = new Person("Capt. Ernest Evans");
 Console.WriteLine("Person's name is {0}", p.Name);
 }
 }

There are several restrictions on the access modifiers of accessors. The most important ones are
the following:

• An accessor can have an access modifier only if the member (property or indexer) has both a get

accessor and a set accessor.

• Although both accessors must be present, only one of them can have an access modifier.

• The access modifier of the accessor must be strictly more restrictive than the access level of

the member.

Figure 6-20 shows the hierarchy of access levels. The access level of an accessor must be strictly
lower in the chart than the access level of the member.

For example, if a property has an access level of public, you can give any of the four lower access
levels on the chart to one of the accessors. But if the property has an access level of protected, the only
access modifier you can use on one of the accessors is private.

CHAPTER 6 MORE ABOUT CLASSES

157

Figure 6-20. Hierarchy of strictly restrictive accessor levels

Partial Classes and Partial Types
The declaration of a class can be partitioned among several partial class declarations.

• Each of the partial class declarations contains the declarations of some of the class members.

• The partial class declarations of a class can be in the same file or in different files.

Each partial declaration must be labeled as partial class, in contrast to the single keyword class.
The declaration of a partial class looks the same as the declaration of a normal class, other than the
addition of the type modifier partial.

 Type modifier
 ↓
 partial class MyPartClass // Same class name as following
 {
 member1 declaration
 member2 declaration
 ...
 }

 Type modifier
 ↓
 partial class MyPartClass // Same class name as preceding
 {
 member3 declaration
 member4 declaration
 ...
 }

 Note The type modifier partial is not a keyword, so in other contexts you can use it as an identifier in your

program. But when used immediately before the keywords class, struct, or interface, it signals the use of a

partial type.

CHAPTER 6 MORE ABOUT CLASSES

158

For example, the box on the left of Figure 6-21 represents a file with a class declaration. The boxes
on the right of the figure represent that same class declaration split into two files.

Figure 6-21. Class split using partial types

All the partial class declarations comprising a class must be compiled together. A class using partial
class declarations has the same meaning as if all the class members were declared within a single class
declaration body.

Visual Studio uses this feature in its standard Windows program templates. When you create an
ASP.NET project or a Windows Forms project from the standard templates, the templates create two
class files for each web page or form:

• One file contains the partial class containing the code generated by Visual Studio, declaring the

components on the page. You shouldn’t modify the partial class in this file, since it’s regenerated

by the Visual Studio when you modify the components on the page.

• The other file contains the partial class you use to implement the look and behavior of the

components of the page or form.

Besides partial classes, you can also create two other partial types, which are the following:

• Partial structs. (Structs are covered in Chapter 12.)

• Partial interfaces. (Interfaces are covered in Chapter 17.)

CHAPTER 6 MORE ABOUT CLASSES

159

Partial Methods
Partial methods are methods that are declared in two parts of a partial class. The two parts of the partial
method can be declared in different parts of the partial class or in the same part. The two parts of the
partial method are the following:

• The defining partial method declaration:

— Gives the signature and return type.

— The implementation part of the declaration consists of only a semicolon.

• The implementing partial method declaration:

— Gives the signature and return type.

— The implementation is in the normal format, which, as you know, is a statement block.

The important things to know about partial methods are the following:

• Both the defining and implementing declaration must match in signature and return type. The

signature and return type have the following characteristics:

— The contextual keyword partial must be included in both the defining and implementing
declarations immediately before the keyword void.

— The signature cannot include access modifiers, making partial methods implicitly private.

— The return type must be void.

— The parameter list cannot contain out parameters.

• You can have a defining partial method without an implementing partial method. In this case, the

compiler removes the declaration and any calls to the method made inside the class. If, however,

the class has an implementing partial method, it must also have a defining partial method.

CHAPTER 6 MORE ABOUT CLASSES

160

The following code shows an example of a partial method called PrintSum.

• PrintSum is declared in different parts of partial class Myclass: the defining declaration in the first

part and the implementing declaration in the second part. The implementation prints out the

sum of its two integer parameters.

• Since partial methods are implicitly private, PrintSum cannot be called from outside the class.

Method Add is a public method that calls PrintSum.

• Main creates an object of class MyClass and calls public method Add, which calls method PrintSum,

which prints out the sum of the input parameters.

 partial class MyClass
 { Must be void
 ↓
 partial void PrintSum(int x, int y); // Defining partial method
 ↑ ↑
 Contextual keyword No implementation

 public void Add(int x, int y)
 {
 PrintSum(x, y);
 }
 }

 partial class MyClass
 {
 partial void PrintSum(int x, int y) // Implementing partial method
 {
 Console.WriteLine("Sum is {0}", x + y); ← Implementation
 }
 }

 class Program
 {
 static void Main()
 {
 var mc = new MyClass();
 mc.Add(5, 6);
 }
 }

This code produces the following output:

Sum is 11

C H A P T E R 7

161

Classes and Inheritance

 Class Inheritance

 Accessing the Inherited Members

 Hiding Members of a Base Class

 Base Access

 Using References to a Base Class

 Constructor Execution

 Inheritance Between Assemblies

 Member Access Modifiers

 Abstract Members

 Abstract Classes

 Sealed Classes

 External Methods

CHAPTER 7 CLASSES AND INHERITANCE

162

Class Inheritance
Inheritance allows you to define a new class that incorporates and extends an already declared class.

• You can use an existing class, called the base class, as the basis for a new class, called the derived

class. The members of the derived class consist of the following:

— The members in its own declaration

— The members of the base class

• To declare a derived class, you add a class-base specification after the class name. The class-base

specification consists of a colon, followed by the name of the class to be used as the base class.

The derived class is said to directly inherit from the base class listed.

• A derived class is said to extend its base class, because it includes the members of the base class

plus any additional functionality provided in its own declaration.

• A derived class cannot delete any of the members it has inherited.

For example, the following shows the declaration of a class called OtherClass, which is derived from
a class called SomeClass:

 Class-base specification
 ↓
 class OtherClass : SomeClass
 { ↑ ↑
 ... Colon Base class
 }

Figure 7-1 shows an instance of each of the classes. Class SomeClass, on the left, has one field and
one method. Class OtherClass, on the right, is derived from SomeClass and contains an additional field
and an additional method.

Figure 7-1. Base class and derived class

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 CLASSES AND INHERITANCE

163

Accessing the Inherited Members
Inherited members are accessed just as if they had been declared in the derived class itself. (Inherited
constructors are a bit different—I’ll cover them later in the chapter.) For example, the following code
declares classes SomeClass and OtherClass, which were shown in Figure 7-1. The code shows that all
four members of OtherClass can be seamlessly accessed, regardless of whether they’re declared in the
base class or the derived class.

• Main creates an object of derived class OtherClass.

• The next two lines in Main call Method1 in the base class, using Field1 from the base class and then

Field2 from the derived class.

• The subsequent two lines in Main call Method2 in the derived class, again using Field1 from the

base class and then Field2 from the derived class.

 class SomeClass // Base class
 {
 public string Field1 = "base class field ";
 public void Method1(string value) {
 Console.WriteLine("Base class -- Method1: {0}", value);
 }
 }

 class OtherClass: SomeClass // Derived class
 {
 public string Field2 = "derived class field";
 public void Method2(string value) {
 Console.WriteLine("Derived class -- Method2: {0}", value);
 }
 }

 class Program
 {
 static void Main() {
 OtherClass oc = new OtherClass();

 oc.Method1(oc.Field1); // Base method with base field
 oc.Method1(oc.Field2); // Base method with derived field
 oc.Method2(oc.Field1); // Derived method with base field
 oc.Method2(oc.Field2); // Derived method with derived field
 }
 }

This code produces the following output:

Base class -- Method1: base class field
Base class -- Method1: derived class field
Derived class -- Method2: base class field
Derived class -- Method2: derived class field

CHAPTER 7 CLASSES AND INHERITANCE

164

All Classes Are Derived from Class object
All classes, except special class object, are derived classes, even if they don’t have a class-base
specification. Class object is the only class that is not derived, since it is the base of the inheritance
hierarchy.

Classes without a class-base specification are implicitly derived directly from class object. Leaving
off the class-base specification is just shorthand for specifying that object is the base class. The two
forms are semantically equivalent, as shown in Figure 7-2.

Figure 7-2. The class declaration on the left implicitly derives from class object, while the one on the right

explicitly derives from object. The two forms are semantically equivalent.

Other important facts about class derivation are the following:

• A class declaration can have only a single class listed in its class-base specification. This is called

single inheritance.

• Although a class can directly inherit from only a single base class, there is no limit to the level of

derivation. That is, the class listed as the base class might be derived from another class, which is

derived from another class, and so forth, until you eventually reach object.

Base class and derived class are relative terms. All classes are derived classes, either from object or
from another class—so generally when we call a class a derived class, we mean that it is immediately
derived from some class other than object. Figure 7-3 shows a simple class hierarchy. After this, I won’t
show object in the figures, since all classes are ultimately derived from it.

Figure 7-3. A class hierarchy

CHAPTER 7 CLASSES AND INHERITANCE

165

Hiding Members of a Base Class
Although a derived class cannot delete any of the members it has inherited, it can hide them.

• To hide an inherited data member, declare a new member of the same type and with the

same name.

• You can hide, or mask, an inherited function member by declaring in the derived class a new

function member with the same signature. Remember that the signature consists of the name

and parameter list but does not include the return type.

• To let the compiler know that you are purposely hiding an inherited member, use the new

modifier. Without it, the program will compile successfully, but the compiler will warn you that

you are hiding an inherited member.

• You can also hide static members.

The following code declares a base class and a derived class, each with a string member called
Field1. The keyword new is used to explicitly tell the compiler to mask the base class member. Figure 7-4
illustrates an instance of each class.

 class SomeClass // Base class
 {
 public string Field1;
 ...
 }

 class OtherClass : SomeClass // Derived class
 {
 new public string Field1; // Mask base member with same name
 ↑
 Keyword

Figure 7-4. Hiding a member of a base class

CHAPTER 7 CLASSES AND INHERITANCE

166

In the following code, OtherClass derives from SomeClass but hides both its inherited members.
Note the use of the new modifier. The code is illustrated in Figure 7-5.

 class SomeClass // Base class
 {
 public string Field1 = "SomeClass Field1";
 public void Method1(string value)
 { Console.WriteLine("SomeClass.Method1: {0}", value); }
 }

 class OtherClass : SomeClass // Derived class
 { Keyword
 ↓
 new public string Field1 = "OtherClass Field1"; // Mask the base member.
 new public void Method1(string value) // Mask the base member.
 ↑ { Console.WriteLine("OtherClass.Method1: {0}", value); }
 } Keyword

 class Program
 {
 static void Main()
 {
 OtherClass oc = new OtherClass(); // Use the masking member.
 oc.Method1(oc.Field1); // Use the masking member.
 }
 }

This code produces the following output:

OtherClass.Method1: OtherClass Field1

Figure 7-5. Hiding a field and a method of the base class

CHAPTER 7 CLASSES AND INHERITANCE

167

Base Access
If your derived class absolutely must access a hidden inherited member, you can access it by using a
base access expression. This expression consists of the keyword base, followed immediately by a period
and the name of the member, as shown here:

 Console.WriteLine("{0}", base.Field1);
 ↑
 Base access

For example, in the following code, derived class OtherClass hides Field1 in its base class but
accesses it by using a base access expression.

 class SomeClass { // Base class
 public string Field1 = "Field1 -- In the base class";
 }

 class OtherClass : SomeClass { // Derived class

 new public string Field1 = "Field1 -- In the derived class";
 ↑ ↑
 Hides the field in the base class
 public void PrintField1()
 {
 Console.WriteLine(Field1); // Access the derived class.
 Console.WriteLine(base.Field1); // Access the base class.
 } ↑
 } Base access

 class Program {
 static void Main()
 {
 OtherClass oc = new OtherClass();
 oc.PrintField1();
 }
 }

This code produces the following output:

Field1 -- In the derived class
Field1 -- In the base class

If you use this feature frequently, you might want to revaluate the design of your classes. Generally
there are more elegant designs, but the feature is there if there’s a situation where nothing else will do.

CHAPTER 7 CLASSES AND INHERITANCE

168

Using References to a Base Class
An instance of a derived class consists of an instance of the base class, plus the additional members of
the derived class. A reference to the derived class points to the whole class object, including the base
class part.

If you have a reference to a derived class object, you can get a reference to just the base class part of
the object by casting the reference to the type of the base class by using the cast operator. The cast
operator is placed in front of the object reference and consists of a set of parentheses containing the
name of the class being cast to. Casting is covered in detail in Chapter 18.

The next few sections cover accessing an object by using a reference to the base class part of the
object. We’ll start by looking at the two lines of code that follow, which declare references to objects.
Figure 7-6 illustrates the code and shows the parts of the object seen by the different variables.

• The first line declares and initializes variable derived, which then contains a reference to an

object of type MyDerivedClass.

• The second line declares a variable of the base class type, MyBaseClass, and casts the reference in

derived to that type, giving a reference to the base class part of the object.

— The reference to the base class part is stored in variable mybc, on the left side of the
assignment operator.

— The reference to the base class part cannot “see” the rest of the derived class object, because
it’s “looking” at it through a reference to the base type.

 MyDerivedClass derived = new MyDerivedClass(); // Create an object.
 MyBaseClass mybc = (MyBaseClass) derived; // Cast the reference.

Figure 7-6. Reference derived can see the entire MyDerivedClass object, while mybc can only see the

MyBaseClass part of the object.

CHAPTER 7 CLASSES AND INHERITANCE

169

The following code shows the declaration and use of these two classes. Figure 7-7 illustrates the
object and references in memory.

Main creates an object of type MyDerivedClass and stores its reference in variable derived. Main also
creates a variable of type MyBaseClass and uses it to store a reference to the base class portion of the
object. When the Print method is called on each reference, the call invokes the implementation of the
method that the reference can see, producing different output strings.

 class MyBaseClass
 {
 public void Print()
 {
 Console.WriteLine("This is the base class.");
 }
 }

 class MyDerivedClass : MyBaseClass
 {
 new public void Print()
 {
 Console.WriteLine("This is the derived class.");
 }
 }

 class Program
 {
 static void Main()
 {
 MyDerivedClass derived = new MyDerivedClass();
 MyBaseClass mybc = (MyBaseClass)derived;
 ↑
 Cast to base class
 derived.Print(); // Call Print from derived portion.
 mybc.Print(); // Call Print from base portion.
 }
 }

This code produces the following output:

This is the derived class.
This is the base class.

Figure 7-7. A reference to the derived class and the base class

CHAPTER 7 CLASSES AND INHERITANCE

170

Virtual and Override Methods
In the previous section, you saw that when you access an object of a derived class by using a reference to
the base class, you get the members from the base class. Virtual methods allow a reference to the base
class to access “up into” the derived class.

You can use a reference to a base class to call a method in the derived class, if the following are true:

• The method in the derived class and the method in the base class each have the same signature

and return type.

• The method in the base class is labeled virtual.

• The method in the derived class is labeled override.

For example, the following code shows the virtual and override modifiers on the methods in the
base class and derived class:

 class MyBaseClass // Base class
 {
 virtual public void Print()
 ↑
 ...
 class MyDerivedClass : MyBaseClass // Derived class
 {
 override public void Print()
 ↑

Figure 7-8 illustrates this set of virtual and override methods. Notice how the behavior differs from
the previous case, where I used new to hide the base class members.

• When the Print method is called by using the reference to the base class (mybc), the method call is

passed up to the derived class and executed, because

— The method in the base class is marked as virtual.

— There is a matching override method in the derived class.

• Figure 7-8 illustrates this by showing the arrow coming out the back of the virtual Print method

and pointing at the override Print method.

Figure 7-8. A virtual method and an override method

CHAPTER 7 CLASSES AND INHERITANCE

171

The following code is the same as in the previous section, but this time, the methods are labeled
virtual and override. This produces a result that is very different from that of the previous example. In
this version, calling the method through the base class invokes the method in the derived class.

 class MyBaseClass
 {
 virtual public void Print()
 {
 Console.WriteLine("This is the base class.");
 }
 }

 class MyDerivedClass : MyBaseClass
 {
 override public void Print()
 {
 Console.WriteLine("This is the derived class.");
 }
 }

 class Program
 {
 static void Main()
 {
 MyDerivedClass derived = new MyDerivedClass();
 MyBaseClass mybc = (MyBaseClass)derived;
 ↑
 derived.Print(); Cast to base class
 mybc.Print();
 }
 }

This code produces the following output:

This is the derived class.
This is the derived class.

Other important things to know about the virtual and override modifiers are the following:

• The overriding and overridden methods must have the same accessibility. In other words, the

overridden method cannot be, for example, private, and the overriding method public.

• You cannot override a method that is static or is nonvirtual.

• Methods, properties, and indexers (which I covered in the preceding chapter), and another

member type, called events (which I’ll cover later in the text), can all be declared virtual

and override.

CHAPTER 7 CLASSES AND INHERITANCE

172

Overriding a Method Marked override
Overriding methods can occur between any levels of inheritance.

• When you use a reference to the base class part of an object to call an overridden method, the

method call is passed up the derivation hierarchy for execution to the most-derived version of the

method marked as override.

• If there are other declarations of the method at higher levels of derivation that are not marked as

override—they are not invoked.

For example, the following code shows three classes that form an inheritance hierarchy:
MyBaseClass, MyDerivedClass, and SecondDerived. All three classes contain a method named Print, with
the same signature. In MyBaseClass, Print is labeled virtual. In MyDerivedClass, it’s labeled override. In
class SecondDerived, you can declare method Print with either override or new. Let’s look at what
happens in each case.

 class MyBaseClass // Base class
 {
 virtual public void Print()
 { Console.WriteLine("This is the base class."); }
 }

 class MyDerivedClass : MyBaseClass // Derived class
 {
 override public void Print()
 { Console.WriteLine("This is the derived class."); }
 }

 class SecondDerived : MyDerivedClass // Most-derived class
 {
 ... // Given in the following pages
 }

Case 1: Declaring Print with override
If you declare the Print method of SecondDerived as override, then it will override both the less-derived
versions of the method, as shown in Figure 7-9. If a reference to the base class is used to call Print, it gets
passed all the way up the chain to the implementation in class SecondDerived.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 CLASSES AND INHERITANCE

173

The following code implements this case. Notice the code in the last two lines of method Main.

• The first of the two statements calls the Print method by using a reference to the most-derived

class—SecondDerived. This is not calling through a reference to the base class portion, so it will

call the method implemented in SecondDerived.

• The second statement, however, calls the Print method by using a reference to the base class—

MyBaseClass.

 class SecondDerived : MyDerivedClass
 {
 override public void Print() {
 ↑ Console.WriteLine("This is the second derived class.");
 }
 }

 class Program
 {
 static void Main()
 {
 SecondDerived derived = new SecondDerived(); // Use SecondDerived.
 MyBaseClass mybc = (MyBaseClass)derived; // Use MyBaseClass.

 derived.Print();
 mybc.Print();
 }
 }

The result is that regardless of whether Print is called through the derived class or the base class, the
method in the most-derived class is called. When called through the base class, it’s passed up the
inheritance hierarchy. This code produces the following output:

This is the second derived class.
This is the second derived class.

Figure 7-9. Execution is passed to the top of the chain of multiple levels of override.

CHAPTER 7 CLASSES AND INHERITANCE

174

Case 2: Declaring Print with new
If instead you declare the Print method of SecondDerived as new, the result is as shown in Figure 7-10.
Main is the same as in the previous case.

 class SecondDerived : MyDerivedClass
 {
 new public void Print()
 {
 Console.WriteLine("This is the second derived class.");
 }
 }

 class Program
 {
 static void Main() // Main
 {
 SecondDerived derived = new SecondDerived(); // Use SecondDerived.
 MyBaseClass mybc = (MyBaseClass)derived; // Use MyBaseClass.

 derived.Print();
 mybc.Print();
 }
 }

The result is that when method Print is called through the reference to SecondDerived, the method
in SecondDerived is executed, as you would expect. When the method is called through a reference to
MyBaseClass, however, the method call is passed up only one level, to class MyDerived, where it is
executed. The only difference between the two cases is whether the method in SecondDerived is declared
with modifier override or modifier new.

This code produces the following output:

This is the second derived class.
This is the derived class.

Figure 7-10. Hiding the overridden methods

CHAPTER 7 CLASSES AND INHERITANCE

175

Overriding Other Member Types
In the previous few sections, you’ve seen how the virtual/override designations work on methods.
These work exactly the same way with properties, events, and indexers. For example, the following code
shows a read-only property named MyProperty using virtual/override.

 class MyBaseClass
 {
 private int _myInt = 5;
 virtual public int MyProperty
 {
 get { return _myInt; }
 }
 }

 class MyDerivedClass : MyBaseClass
 {
 private int _myInt = 10;
 override public int MyProperty
 {
 get { return _myInt; }
 }
 }

 class Program
 {
 static void Main()
 {
 MyDerivedClass derived = new MyDerivedClass();
 MyBaseClass mybc = (MyBaseClass)derived;

 Console.WriteLine(derived.MyProperty);
 Console.WriteLine(mybc.MyProperty);
 }
 }

This code produces the following output:

10
10

CHAPTER 7 CLASSES AND INHERITANCE

176

Constructor Execution
In the preceding chapter, you saw that a constructor executes code that prepares a class for use. This
includes initializing both the static and instance members of the class. In this chapter, you saw that part
of a derived class object is an object of the base class.

• To create the base class part of an object, a constructor for the base class is implicitly called as

part of the process of creating the instance.

• Each class in the inheritance hierarchy chain executes its base class constructor before it executes

its own constructor body.

For example, the following code shows a declaration of class MyDerivedClass and its constructor.
When the constructor is called, it calls the parameterless constructor MyBaseClass() before executing its
own body.

 class MyDerivedClass : MyBaseClass
 {
 MyDerivedClass() // Constructor uses base constructor MyBaseClass().
 {
 ...
 }

Figure 7-11 shows the order of construction. When an instance is being created, one of the first
things that is done is the initialization of all the instance members of the object. After that, the base class
constructor is called. Only then is the body of the constructor of the class itself executed.

Figure 7-11. Order of object construction

CHAPTER 7 CLASSES AND INHERITANCE

177

For example, in the following code, the values of MyField1 and MyField2 would be set to 5 and 0,
respectively, before the base class constructor is called.

 class MyDerivedClass : MyBaseClass
 {
 int MyField1 = 5; // 1. Member initialized
 int MyField2; // Member initialized

 public MyDerivedClass() // 3. Body of constructor executed
 {
 ...
 }
 }

 class MyBaseClass
 {
 public MyBaseClass() // 2. Base class constructor called
 {
 ...
 }
 }

 Caution Calling a virtual method in a constructor is strongly discouraged. The virtual method in the base class

would call the override method in the derived class while the base class constructor is being executed. But that
would be before the derived constructor’s body is executed. It would, therefore, be calling up into the derived class

before the class is completely initialized.

CHAPTER 7 CLASSES AND INHERITANCE

178

Constructor Initializers
By default, the parameterless constructor of the base class is called when an object is being constructed.
But constructors can be overloaded, so a base class might have more than one. If you want your derived
class to use a specific base class constructor other than the parameterless constructor, you must specify
it in a constructor initializer.

There are two forms of constructor initializer:

• The first form uses the keyword base and specifies which base class constructor to use.

• The second form uses the keyword this and specifies which other constructor from this class

should be used.

A base class constructor initializer is placed after a colon following the parameter list in a class’s
constructor declaration. The constructor initializer consists of the keyword base and the parameter list
of the base constructor to call.

For example, the following code shows a constructor for class MyDerivedClass.

• The constructor initializer specifies that the construction process should call the base class

constructor with two parameters, where the first parameter is a string and the second parameter

is an int.

• The parameters in the base parameter list must match the intended base constructor’s parameter

list, in type and order.

 Constructor initializer
 ↓
 public MyDerivedClass(int x, string s) : base(s, x)
 { ↑
 ... Keyword

When you declare a constructor without a constructor initializer, it’s a shortcut for the form with
a constructor initializer consisting of base(), as illustrated in Figure 7-12. The two forms are
semantically equivalent.

Figure 7-12. Equivalent forms of a constructor

CHAPTER 7 CLASSES AND INHERITANCE

179

The other form of constructor initializer instructs the construction process (actually, the compiler)
to use a different constructor from the same class. For example, the following shows a constructor with a
single parameter for class MyClass. That single-parameter constructor, however, uses a constructor from
the same class, but with two parameters, supplying a default parameter as the second one.

 Constructor initializer
 ↓
 public MyClass(int x): this(x, "Using Default String")
 { ↑
 ... Keyword
 }

Another situation where this comes in particularly handy is where you have several constructors for
a class, and they have common code that should always be performed at the beginning of the object
construction process. In this case, you can factor out that common code and place it in a constructor
that is used as a constructor initializer by all the other constructors. As a matter of fact, this is a
suggested practice since it reduces code duplication.

You might think that you could just declare another method that performs those common
initializations and have all the constructors call that method. This isn’t as good for several reasons. The
first is that the compiler can optimize certain things when it knows a method is a constructor. The
second is that there are some things that can be done only in a constructor and not elsewhere. For
example, in the previous chapter you learned that readonly fields can be initialized only inside a
constructor. You will get a compiler error if you attempt to initialize a readonly field in any other
method, even if that method is called by a constructor only.

CHAPTER 7 CLASSES AND INHERITANCE

180

Going back to that common constructor, if it can stand on its own as a valid constructor that
initializes everything in the class that needs to be initialized, then it’s perfectly fine to leave it as a
public constructor.

What if, however, it doesn’t completely initialize an object? In that case, you mustn’t allow that
constructor to be callable from outside the class, since it would then create incompletely initialized
objects. To avoid that problem, you can declare the constructor private instead of public, as shown in
the following code:

 class MyClass
 {
 readonly int firstVar;
 readonly double secondVar;

 public string UserName;
 public int UserIdNumber;

 private MyClass() // Private constructor performs initializations
 { // common to the other constructors.
 firstVar = 20;
 secondVar = 30.5;
 }

 public MyClass(string firstName) : this() // use constructor initializer
 {
 UserName = firstName;
 UserIdNumber = -1;
 }

 public MyClass(int idNumber) : this() // use constructor initializer
 {
 UserName = "Anonymous";
 UserIdNumber = idNumber;
 }
 }

CHAPTER 7 CLASSES AND INHERITANCE

181

Class Access Modifiers
A class can be seen and accessed by other classes in the system. This section explains the accessibility of
classes. Although I’ll use classes in the explanations and examples since that’s what we’ve covered so far
in the text, the accessibility rules also apply to the other types I’ll cover later.

The term visible is sometimes used for the term accessible. They can be used interchangeably. There
are two levels of class accessibility: public and internal.

• A class marked public can be accessed by code from any assembly in the system. To make a class

visible to other assemblies, use the public access modifier, as shown here:

 Keyword
 ↓
 public class MyBaseClass
 { ...

• A class marked internal can only be seen by classes within its own assembly.

— This is the default accessibility level, so unless you explicitly specify the modifier public in
the class declaration, code outside the assembly cannot access the class.

— You can explicitly declare a class as internal by using the internal access modifier.

 Keyword
 ↓
 internal class MyBaseClass
 { ...

Figure 7-13 illustrates the accessibility of internal and public classes from outside the assembly.

Class MyClass is not visible to the classes in the assembly on the left, because it’s marked internal. Class
OtherClass, however, is visible to the classes on the left, because it’s marked public.

Figure 7-13. Classes from other assemblies can access public classes but cannot access internal classes.

CHAPTER 7 CLASSES AND INHERITANCE

182

Inheritance Between Assemblies
So far, I’ve been declaring derived classes in the same assembly that contains the base class. But C# also
allows you to derive a class from a base class defined in a different assembly. To do this, the following
must be true:

• The base class must be declared public so that it can be accessed from outside its assembly.

• You must include a reference in your Visual Studio project to the assembly containing the

base class.

To make it easier to refer to the classes and types in the other assembly, without using their fully
qualified names, place a using directive at the top of the source file, with the namespace containing the
classes or types you want to access.

Note Adding a reference to the other assembly and adding a using directive are two separate things. Adding
the reference to the other assembly tells the compiler where the required types are defined. Adding the using
directive allows you to reference other classes without having to use their fully qualified names. Chapter 10 covers

this in detail.

For example, the following two code segments, from different assemblies, show how easy it is to
inherit a class from another assembly. The first code listing creates an assembly that contains the
declaration of a class called MyBaseClass, which has the following characteristics:

• It’s declared in a source file called Assembly1.cs and inside a namespace declared as BaseClassNS.

• It’s declared public so that it can be accessed from other assemblies.

• It contains a single member, a method called PrintMe, that just writes out a simple message

identifying the class.

 // Source file name Assembly1.cs
 using System;
 Namespace containing declaration of base class
 ↓
 namespace BaseClassNS
 { Declare the class public so it can be seen outside the assembly.
 ↓
 public class MyBaseClass {
 public void PrintMe() {
 Console.WriteLine("I am MyBaseClass");
 }
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 CLASSES AND INHERITANCE

183

The second assembly contains the declaration of a class called DerivedClass, which inherits from
MyBaseClass, declared in the first assembly. The source file is named Assembly2.cs. Figure 7-14 illustrates
the two assemblies.

• DerivedClass has an empty body but inherits method PrintMe from MyBaseClass.

• Main creates an object of type DerivedClass and calls its inherited method PrintMe.

 // Source file name Assembly2.cs
 using System;
 using BaseClassNS;
 ↑
 Namespace containing declaration of base class
 namespace UsesBaseClass
 { Base class in other assembly
 ↓
 class DerivedClass: MyBaseClass {
 // Empty body
 }

 class Program {
 static void Main()
 {
 DerivedClass mdc = new DerivedClass();
 mdc.PrintMe();
 }
 }
 }

This code produces the following output:

I am MyBaseClass

Figure 7-14. Inheriting across assemblies

CHAPTER 7 CLASSES AND INHERITANCE

184

Member Access Modifiers
The previous two sections explained class accessibility. With class accessibility, there are only two
modifiers—internal and public. This section covers member accessibility. Class accessibility describes
the visibility of a class; member accessibility describes the visibility of the members of a class object.

Each member declared in a class is visible to various parts of the system, depending on the access
modifier assigned to it in its class declaration. You’ve seen that private members are visible only to
other members of the same class, while public members can be visible to classes outside the assembly
as well. In this section, we’ll look again at the public and private access levels, as well as the three other
levels of accessibility.

Before looking at the specifics of member accessibility, there are some general things we need to
cover first:

• All members explicitly declared in a class’s declaration are visible to each other, regardless of

their accessibility specification.

• Inherited members are not explicitly declared in a class’s declaration, so, as you’ll see, inherited

members might or might not be visible to members of a derived class.

• There are five member access levels:

— public

— private

— protected

— internal

— protected internal

• You must specify member access levels on a per-member basis. If you don’t specify an access

level for a member, its implicit access level is private.

• A member cannot be more accessible than its class. That is, if a class has an accessibility level

limiting it to the assembly, individual members of the class cannot be seen outside the assembly,

regardless of their access modifiers, even public.

CHAPTER 7 CLASSES AND INHERITANCE

185

Regions Accessing a Member
The member access modifiers in a class’s declaration specify which other types can and cannot access
which members of the class. For example, the following declaration shows members declared with the
five access levels.

 public class MyClass
 {
 public int Member1;
 private int Member2;
 protected int Member3;
 internal int Member4;
 protected internal int Member5;
 ...

The access levels are based on two characteristics with regard to the class being declared:

• Whether the class is derived from the class being declared

• Whether a class is in the same assembly as the class being declared

These two characteristics yield four groups, as illustrated in Figure 7-15. In relation to the class
being declared, another class can be any of the following:

• In the same assembly and derived from it (bottom right)

• In the same assembly but not derived from it (bottom left)

• In a different assembly and derived from it (top right)

• In a different assembly and not derived from it (top left)

These characteristics are used to define the five access levels.

Figure 7-15. Areas of accessibility

CHAPTER 7 CLASSES AND INHERITANCE

186

Public Member Accessibility
The public access level is the least restrictive. All classes both inside and outside the assembly have free
access to the member. Figure 7-16 illustrates the accessibility of a public class member of MyClass.

To declare a member public, use the public access modifier, as shown.

 Keyword
 ↓
 public int Member1;

Figure 7-16. A public member of a public class is visible to all classes in the same assembly or other

assemblies.

Private Member Accessibility
The private access level is the most restrictive.

• A private class member can be accessed only by members of its own class. It cannot be accessed

by other classes, including classes that are derived from it.

• A private member can, however, be accessed by members of classes nested in its class. Nested

classes are covered in Chapter 25.

Figure 7-17 illustrates the accessibility of a private member.

Figure 7-17. A private member of any class is visible only to members of its own class (or nested classes).

CHAPTER 7 CLASSES AND INHERITANCE

187

Protected Member Accessibility
The protected access level is like the private access level, except that it also allows classes derived from
the class to access the member. Figure 7-18 illustrates protected accessibility. Notice that even classes
outside the assembly that are derived from the class have access to the member.

Figure 7-18. A protected member of a public class is visible to members of its own class or classes derived

from it. The derived classes can even be in other assemblies.

Internal Member Accessibility
Members marked internal are visible to all the classes in the assembly but not to classes outside the
assembly, as illustrated in Figure 7-19.

Figure 7-19. An internal member of a public class is visible to members of any class in the same assembly

but not to classes outside the assembly.

CHAPTER 7 CLASSES AND INHERITANCE

188

Protected Internal Member Accessibility
Members marked protected internal are visible to all the classes that inherit from the class and also to
all classes inside the assembly, as shown in Figure 7-20. Notice that the set of classes allowed access is
the combined set of classes allowed by the protected modifier plus the set of classes allowed by the
internal modifier. Notice that this is the union of protected and internal—not the intersection.

Figure 7-20. A protected internal member of a public class is visible to members of classes in the same

assembly or to members of classes derived from that class. It’s not visible to classes in other assemblies that

are not derived from the class.

Summary of Member Access Modifiers
The following two tables summarize the characteristics of the five member access levels. Table 7-1 lists
the modifiers and gives an intuitive summary of the effects of the modifier.

Table 7-1. Member Access Modifiers

Modifier Meaning

private Accessible only within the class

internal Accessible to all classes within this assembly

protected Accessible to all classes derived from this class

protected internal Accessible to all classes that are either derived from this class or declared
within this assembly

public Accessible to any class

CHAPTER 7 CLASSES AND INHERITANCE

189

Figure 7-21 shows the relative accessibility of the five member access modifiers.

Figure 7-21. Relative accessibility of the various member access modifiers

Table 7-2 lists the access modifiers down the left side of the table and the categories of classes across
the top. Derived refers to classes derived from the class declaring the member. Nonderived means classes
not derived from the class declaring the member. A check in a cell means that the category of class can
access members with the corresponding modifier.

Table 7-2. Summary of Member Accessibility

 Classes in Same Assembly Classes in Different Assembly

 Non-Derived Derived Non-Derived Derived

private

internal

protected

protected internal

public

CHAPTER 7 CLASSES AND INHERITANCE

190

Abstract Members
An abstract member is a function member that is designed to be overridden. An abstract member has the
following characteristics:

• It is marked with the abstract modifier.

• It doesn’t have an implementation code block. The code blocks of abstract members are

represented by semicolons.

For example, the following code from inside a class definition declares two abstract members: an
abstract method called PrintStuff and an abstract property called MyProperty. Notice the semicolons in
place of the implementation blocks.

 Keyword Semicolon in place of implementation
 ↓ ↓
 abstract public void PrintStuff(string s);

 abstract public int MyProperty
 {
 get; ← Semicolon in place of implementation
 set; ← Semicolon in place of implementation
 }

Abstract members can be declared only in abstract classes, which we’ll look at in the next section.
Four type of member can be declared as abstract:

• Methods

• Properties

• Events

• Indexers

CHAPTER 7 CLASSES AND INHERITANCE

191

Other important facts about abstract members are the following:

• Abstract members, although they must be overridden by a corresponding member in a derived

class, cannot use the virtual modifier in addition to the abstract modifier.

• As with virtual members, the implementation of an abstract member in a derived class must

specify the override modifier.

Table 7-3 compares and contrasts virtual members and abstract members.

Table 7-3. Comparing Virtual and Abstract Members

 Virtual Member Abstract Member

Keyword virtual abstract

Implementation body Has an implementation body No implementation body—
semicolon instead

Overridden in a derived class Can be overridden—
using override

Must be overridden—
using override

Types of members Methods
Properties
Events
Indexers

Methods
Properties
Events
Indexers

CHAPTER 7 CLASSES AND INHERITANCE

192

Abstract Classes
Abstract classes are designed to be inherited from. An abstract class can be used only as the base class of
another class.

• You cannot create instances of an abstract class.

• An abstract class is declared using the abstract modifier.

 Keyword
 ↓
 abstract class MyClass
 {
 ...
 }

• An abstract class can contain abstract members or regular, nonabstract members. The members

of an abstract class can be any combination of abstract members and normal members with

implementations.

• An abstract class can itself be derived from another abstract class. For example, the following

code shows one abstract class derived from another.

 abstract class AbClass // Abstract class
 {
 ...
 }

 abstract class MyAbClass : AbClass // Abstract class derived from
 { // an abstract class
 ...
 }

• Any class derived from an abstract class must implement all the abstract members of the class by

using the override keyword, unless the derived class is itself abstract.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 CLASSES AND INHERITANCE

193

Example of an Abstract Class and an Abstract Method
The following code shows an abstract class called AbClass with two methods.

The first method is a normal method with an implementation that prints out the name of the class.
The second method is an abstract method that must be implemented in a derived class. Class
DerivedClass inherits from AbClass and implements and overrides the abstract method. Main creates an
object of DerivedClass and calls its two methods.

 Keyword
 ↓
 abstract class AbClass // Abstract class
 {
 public void IdentifyBase() // Normal method
 { Console.WriteLine("I am AbClass"); }
 Keyword
 ↓
 abstract public void IdentifyDerived(); // Abstract method
 }

 class DerivedClass : AbClass // Derived class
 { Keyword
 ↓
 override public void IdentifyDerived() // Implementation of
 { Console.WriteLine("I am DerivedClass"); } // abstract method
 }

 class Program
 {
 static void Main()
 {
 // AbClass a = new AbClass(); // Error. Cannot instantiate
 // a.IdentifyDerived(); // an abstract class.

 DerivedClass b = new DerivedClass(); // Instantiate the derived class.
 b.IdentifyBase(); // Call the inherited method.
 b.IdentifyDerived(); // Call the "abstract" method.
 }
 }

This code produces the following output:

I am AbClass
I am DerivedClass

CHAPTER 7 CLASSES AND INHERITANCE

194

Another Example of an Abstract Class
The following code shows the declaration of an abstract class that contains data members as well as
function members. Data members cannot be declared as abstract.

 abstract class MyBase // Combination of abstract and non-abstract members
 {
 public int SideLength = 10; // Data member
 const int TriangleSideCount = 3; // Data member

 abstract public void PrintStuff(string s); // Abstract method
 abstract public int MyInt { get; set; } // Abstract property

 public int PerimeterLength() // Regular, non-abstract method
 { return TriangleSideCount * SideLength; }
 }

 class MyClass : MyBase
 {
 public override void PrintStuff(string s) // Override abstract method
 { Console.WriteLine(s); }

 private int _myInt;
 public override int MyInt // Override abstract property
 {
 get { return _myInt; }
 set { _myInt = value; }
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 MyClass mc = new MyClass();
 mc.PrintStuff("This is a string.");
 mc.MyInt = 28;
 Console.WriteLine(mc.MyInt);
 Console.WriteLine("Perimeter Length: {0}", mc.PerimeterLength());
 }
 }

This code produces the following output:

This is a string.
28
Perimeter Length: 30

CHAPTER 7 CLASSES AND INHERITANCE

195

Sealed Classes
In the previous section, you saw that an abstract class must be used as a base class—it cannot be
instantiated as a stand-alone class object. The opposite is true of a sealed class.

• A sealed class can be instantiated only as a stand-alone class object—it cannot be used as a base

class.

• A sealed class is labeled with the sealed modifier.

For example, the following class is a sealed class. Any attempt to use it as the base class of another
class will produce a compile error.

 Keyword
 ↓
 sealed class MyClass
 {
 ...
 }

CHAPTER 7 CLASSES AND INHERITANCE

196

Static Classes
A static class is a class where all the members are static. Static classes are used to group data and
functions that are not affected by instance data. A common use of a static class might be to create a math
library containing sets of mathematical methods and values.

The important things to know about static classes are the following:

• The class itself must be marked static.

• All the members of the class must be static.

• The class can have a static constructor, but it cannot have an instance constructor, since you

cannot create an instance of the class.

• Static classes are implicitly sealed. That is, you cannot inherit from a static class.

You access the members of a static class just as you would access any static member, by using the
class name and the member name.

The following code shows an example of a static class:

 Class must be marked static
 ↓
 static public class MyMath
 {
 public static float PI = 3.14f;
 public static bool IsOdd(int x)
 ↑ { return x % 2 == 1; }
 Members must be static
 ↓
 public static int Times2(int x)
 { return 2 * x; }
 }

 class Program
 {
 static void Main()
 { Use class name and member name.
 int val = 3; ↓
 Console.WriteLine("{0} is odd is {1}.", val, MyMath.IsOdd(val));
 Console.WriteLine("{0} * 2 = {1}.", val, MyMath.Times2(val));
 }
 }

This code produces the following output:

3 is odd is True.
3 * 2 = 6.

CHAPTER 7 CLASSES AND INHERITANCE

197

Extension Methods
So far in this text, every method you’ve seen has been associated with the class in which it is declared.
The extension method feature introduced in C# 3.0 extends that boundary, allowing you to write
methods associated with classes other than the class in which they are declared.

To see how you might use this feature, take a look at the following code. It contains class MyData,
which stores three values of type double, and contains a constructor and a method called Sum, which
returns the sum of the three stored values.

 class MyData
 {
 private double D1; // Fields
 private double D2;
 private double D3;

 public MyData(double d1, double d2, double d3) // Constructor
 {
 D1 = d1; D2 = d2; D3 = d3;
 }

 public double Sum() // Method Sum
 {
 return D1 + D2 + D3;
 }
 }

This is a pretty limited class, but suppose it would be more useful if it contained another method,
which returned the average of the three data points. With what you know so far about classes, there are
several ways you might implement the additional functionality:

• If you have the source code and can modify the class, you could, of course, just add the new

method to the class.

• If, however, you can’t modify the class—for example, if the class is in a third-party class library—

then, as long as it isn’t sealed, you could use it as a base class and implement the additional

method in a class derived from it.

If, however, you don’t have access to the code or the class is sealed or there is some other design
reason that neither of these solutions will work, then you will have to write a method in another class
that uses the publicly available members of the class.

CHAPTER 7 CLASSES AND INHERITANCE

198

For example, you might write a class like the one in the following code. The code contains a static
class called ExtendMyData, which contains a static method called Average, which implements the
additional functionality. Notice that the method takes an instance of MyData as a parameter.

 static class ExtendMyData Instance of MyData class
 { ↓
 public static double Average(MyData md)
 {
 return md.Sum() / 3;
 } ↑
 } Use the instance of MyData.

 class Program
 {
 static void Main()
 { Instance of MyData
 MyData md = new MyData(3, 4, 5); ↓
 Console.WriteLine("Average: {0}", ExtendMyData.Average(md));
 } ↑
 } Call the static method.

This code produces the following output:

Average: 4

Although this is a perfectly fine solution, it would be more elegant if you could call the method on
the class instance itself, rather than creating an instance of another class to act on it. The following two
lines of code illustrate the difference. The first uses the method just shown—invoking a static method on
an instance of another class. The second shows the form we would like to use—invoking an instance
method on the object itself.

 ExtendMyData.Average(md) // Static invocation form
 md.Average(); // Instance invocation form

Extension methods allow you to use the second form, even though the first form would be the
normal way of writing the invocation.

CHAPTER 7 CLASSES AND INHERITANCE

199

By making a small change in the declaration of method Average, you can use the instance invocation
form. The change you need to make is to add the keyword this before the type name in the parameter
declaration as shown following. Adding the this keyword to the first parameter of the static method of
the static class changes it from a regular method of class ExtendMyData into an extension method of class
MyData. You can now use both invocation forms.

 Must be a static class
 ↓
 static class ExtendMyData
 { Must be public and static Keyword and type
 ↓ ↓
 public static double Average(this MyData md)
 {
 ...
)
 }

The important requirements for an extension method are the following:

• The class in which the extension method is declared must also be declared static.

• The extension method itself must be declared static.

• The extension method must contain as its first parameter type the keyword this, followed by the

name of the class it is extending.

Figure 7-22 illustrates the structure of an extension method.

Figure 7-22. The structure of an extension method

CHAPTER 7 CLASSES AND INHERITANCE

200

The following code shows a full program, including class MyData and extension method Average
declared in class ExtendMyData. Notice that method Average is invoked exactly as if it were an instance
member of MyData! Figure 7-22 illustrates the code. Classes MyData and ExtendMyData together act like the
desired class, with three methods.

 namespace ExtensionMethods
 {
 sealed class MyData
 {
 private double D1, D2, D3;
 public MyData(double d1, double d2, double d3)
 { D1 = d1; D2 = d2; D3 = d3; }

 public double Sum() { return D1 + D2 + D3; }
 }

 static class ExtendMyData Keyword and type
 { ↓
 public static double Average(this MyData md)
 { ↑
 Declared static
 return md.Sum() / 3;
 }
 }

 class Program
 {
 static void Main()
 {
 MyData md = new MyData(3, 4, 5);
 Console.WriteLine("Sum: {0}", md.Sum());
 Console.WriteLine("Average: {0}", md.Average());
 } ↑
 } Invoke as an instance member of the class
 }

This code produces the following output:

Sum: 12
Average: 4

C H A P T E R 8

201

Expressions and Operators

 Expressions

 Literals

 Order of Evaluation

 Simple Arithmetic Operators

 The Remainder Operator

 Relational and Equality Comparison Operators

 Increment and Decrement Operators

 Conditional Logical Operators

 Logical Operators

 Shift Operators

 Assignment Operators

 The Conditional Operator

 Unary Arithmetic Operators

 User-Defined Type Conversions

 Operator Overloading

 The typeof Operator

 Other Operators

CHAPTER 8 EXPRESSIONS AND OPERATORS

202

Expressions
This chapter defines expressions and describes the operators provided by C#. It also explains how you
can define the C# operators to work with your user-defined classes.

An expression is a string of operators and operands. The following are some of the constructs that
can act as operands:

• Literals

• Constants

• Variables

• Method calls

• Element accessors, such as array accessors and indexers

• Other expressions

The C# operators take one, two, or three operands. An operator does the following:

• Takes its operands as input

• Performs an action

• Returns a value, based on the action

Expressions can be combined, using operators, to create other expressions, as shown in this
expression, with three operators and four operands:

Evaluating an expression is the process of applying each operator to its operands, in the proper
sequence, to produce a value.

• The value is returned to the position at which the expression was evaluated. There, it might in

turn be an operand in an enclosing expression.

• Besides the value returned, some expressions also have side effects, such as setting a value

in memory.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 EXPRESSIONS AND OPERATORS

203

Literals
Literals are numbers or strings typed into the source code that represent a specific, set value of a
specific type.

For example, the following code shows literals of six types. Notice, for example, the difference
between the double literal and the float literal.

 static void Main() Literals
 { ↓
 Console.WriteLine("{0}", 1024); // int literal
 Console.WriteLine("{0}", 3.1416); // double literal
 Console.WriteLine("{0}", 3.1416F); // float literal
 Console.WriteLine("{0}", true); // boolean literal
 Console.WriteLine("{0}", 'x'); // character literal
 Console.WriteLine("{0}", "Hi there"); // string literal
 }

The output of this code is the following:

1024
3.1416
3.1416
True
x
Hi there

Because literals are written into the source code, their values must be known at compile time.
Several of the predefined types have their own forms of literal:

• Type bool has two literals: true and false.

• For reference type variables, literal null means that the variable is not set to a reference

in memory.

CHAPTER 8 EXPRESSIONS AND OPERATORS

204

Integer Literals
Integer literals are the most commonly used literals. They are written as a sequence of decimal digits,
with the following:

• No decimal point

• An optional suffix to specify the type of the integer

For example, the following lines show four literals for the integer 236. Each is interpreted by the
compiler as a different type of integer, depending on its suffix.

 236 // int
 236L // long
 236U // unsigned
 236UL // unsigned long

Integer type literals can also be written in hexadecimal (hex) form. The digits must be the hex digits
(0 through F), and the string must be prefaced with either 0x or 0X (numeral 0, letter x).

Figure 8-1 shows the forms of the integer literal formats. Components with names in square
brackets are optional.

Figure 8-1. The integer literal formats

Table 8-1 lists the integer literal suffixes. For a given suffix, the compiler will interpret the string of
digits as the smallest of the corresponding integer types that can represent the value without losing data.

For example, take the literals 236 and 5000000000, neither of which has a suffix. Since 236 can be
represented with 32 bits, it will be interpreted by the compiler as an int. The larger number, however,
won’t fit into 32 bits, so the compiler will represent it as a long.

Table 8-1. Integer Literal Suffixes

Suffix Integer Type Notes

None int, uint, long, ulong

U, u uint, ulong

L, l long, ulong Using the lowercase letter l is not recommended, because
it is easily mistaken for the digit 1.

ul, uL, Ul, UL
lu, Lu, lU, LU

ulong Using the lowercase letter l is not recommended, because
it is easily mistaken for the digit 1

CHAPTER 8 EXPRESSIONS AND OPERATORS

205

Real Literals
Literals for real numbers consist of the following:

• Decimal digits

• An optional decimal point

• An optional exponent part

• An optional suffix

For example, the following code shows various formats of literals of the real types:

 float f1 = 236F;
 double d1 = 236.714;
 double d2 = .35192;
 double d3 = 6.338e-26;

Figure 8-2 shows the valid formats for real literals. Components with names in square brackets are
optional. Table 8-2 shows the real suffixes and their meanings.

Figure 8-2. The real literal formats

Table 8-2. Suffixes for the Real Literals

Suffix Real Type

None double

F, f float

D, d double

M, m decimal

CHAPTER 8 EXPRESSIONS AND OPERATORS

206

 Note Real literals without a suffix are of type double, not float!

Character Literals
A character literal consists of a character representation between two single quote marks. A character
representation can be any of the following: a single character, a simple escape sequence, a hex escape
sequence, or a Unicode escape sequence.

• The type of a character literal is char.

• A simple escape sequence is a backslash followed by a single character.

• A hex escape sequence is a backslash, followed by an uppercase or lowercase x, followed by up to

four hex digits.

• A Unicode escape sequence is a backslash, followed by an uppercase or lowercase u, followed by

up to four hex digits.

For example, the following code shows various formats of character literals:

 char c1 = 'd'; // Single character
 char c2 = '\n'; // Simple escape sequence
 char c3 = '\x0061'; // Hex escape sequence
 char c4 = '\u005a'; // Unicode escape sequence

Table 8-3 shows some of the important special characters and their encodings.

Table 8-3. Important Special Characters

Name Escape Sequence Hex Encoding

Null \0 0x0000

Alert \a 0x0007

Backspace \b 0x0008

Horizontal tab \t 0x0009

New line \n 0x000A

Vertical tab \v 0x000B

Form feed \f 0x000C

CHAPTER 8 EXPRESSIONS AND OPERATORS

207

Name Escape Sequence Hex Encoding

Carriage return \r 0x000D

Double quote \" 0x0022

Single quote \' 0x0027

Backslash \\ 0x005C

String Literals
String literals use double quote marks rather than the single quote marks used in character literals.
There are two types of string literals:

• Regular string literals

• Verbatim string literals

A regular string literal consists of a sequence of characters between a set of double quotes. A regular
string literal can include the following:

• Characters

• Simple escape sequences

• Hex and Unicode escape sequences

Here’s an example:

 string st1 = "Hi there!";
 string st2 = "Val1\t5, Val2\t10";
 string st3 = "Add\x000ASome\u0007Interest";

A verbatim string literal is written like a regular string literal but is prefaced with an @ character. The
important characteristics of verbatim string literals are the following:

• Verbatim literals differ from regular string literals in that escape sequences are not evaluated.

Everything between the set of double quotes—including what would normally be considered

escape sequences—is printed exactly as it is listed in the string.

• The only exception with verbatim literals is sets of contiguous double quotes, which are

interpreted as a single double quote character.

CHAPTER 8 EXPRESSIONS AND OPERATORS

208

For example, the following code compares some regular and verbatim string literals:

 string rst1 = "Hi there!";
 string vst1 = @"Hi there!";

 string rst2 = "It started, \"Four score and seven...\"";
 string vst2 = @"It started, ""Four score and seven...""";

 string rst3 = "Value 1 \t 5, Val2 \t 10"; // Interprets tab esc sequence
 string vst3 = @"Value 1 \t 5, Val2 \t 10"; // Does not interpret tab

 string rst4 = "C:\\Program Files\\Microsoft\\";
 string vst4 = @"C:\Program Files\Microsoft\";

 string rst5 = " Print \x000A Multiple \u000A Lines";
 string vst5 = @" Print
 Multiple
 Lines";

Printing these strings produces the following output:

Hi there!
Hi there!

It started, "Four score and seven..."
It started, "Four score and seven..."

Value 1 5, Val2 10
Value 1 \t 5, Val2 \t 10

C:\Program Files\Microsoft\
C:\Program Files\Microsoft\

 Print
 Multiple
 Lines

 Print
 Multiple
 Lines

 Note The compiler saves memory by having identical string literals share the same memory location in

the heap.

CHAPTER 8 EXPRESSIONS AND OPERATORS

209

Order of Evaluation
An expression can be made up of many nested subexpressions. The order in which the subexpressions
are evaluated can make a difference in the final value of the expression.

For example, given the expression 3 * 5 + 2, there are two possible results depending on the order in
which the subexpressions are evaluated, as shown in Figure 8-3.

• If the multiplication is performed first, the result is 17.

• If the 5 and the 2 are added together first, the result is 21.

Figure 8-3. Simple order of evaluation

Precedence
You know from your grade-school days that in the preceding example, the multiplication must be
performed before the addition because multiplication has a higher precedence than addition. But unlike
grade-school days, when you had four operators and two levels of precedence, things are a bit more
complex with C#, which has more than 45 operators and 14 levels of precedence.

Table 8-4 shows the complete list of operators and their precedences. The table lists the highest
precedence operators at the top and continues to the lowest precedence operators at the bottom.

Table 8-4. Operator Precedence: Highest to Lowest

Category Operators

Primary a.x, f(x), a[x], x++, x--, new, typeof, checked, unchecked

Unary +, -, !, ~, ++x, --x, (T)x

Multiplicative *, /, %

Additive +, -

Shift <<, >>

Relational and type <, >, <=, >=, is, as

Equality ==, !=

Logical AND &

Logical XOR ^

CHAPTER 8 EXPRESSIONS AND OPERATORS

210

Category Operators

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment =, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=

Associativity
If all the operators in an expression have different levels of precedence, then evaluate each
subexpression, starting at the one with the highest level, and work down the precedence scale.

But what if two sequential operators have the same level of precedence? For example, given the
expression 2 / 6 * 4, there are two possible evaluation sequences:

(2 / 6) * 4 = 4/3

or

2 / (6 * 4) = 1/12

When sequential operators have the same level of precedence, the order of evaluation is determined
by operator associativity. That is, given two operators of the same level of precedence, one or the other
will have precedence, depending on the operators’ associativity. Some important characteristics of
operator associativity are the following and are summarized in Table 8-5:

• Left-associative operators are evaluated from left to right.

• Right-associative operators are evaluated from right to left.

• Binary operators, except the assignment operators, are left-associative.

• The assignment operators and the conditional operator are right-associative.

Therefore, given these rules, the preceding example expression should be grouped left to right,
giving (2 / 6) * 4, which yields 4/3.

CHAPTER 8 EXPRESSIONS AND OPERATORS

211

Table 8-5. Summary of Operator Associativity

Type of Operator Associativity

Assignment operators Right-associative

Other binary operators Left-associative

The conditional operator Right-associative

You can explicitly set the order of evaluation of the subexpressions of an expression by using

parentheses. Parenthesized subexpressions do the following:

• Override the precedence and associativity rules

• Are evaluated in order from the innermost nested set to the outermost

CHAPTER 8 EXPRESSIONS AND OPERATORS

212

Simple Arithmetic Operators
The simple arithmetic operators perform the four basic arithmetic operations and are listed in Table 8-6.
These operators are binary and left-associative.

Table 8-6. The Simple Arithmetic Operators

Operator Name Description

+ Addition Adds the two operands.

- Subtraction Subtracts the second operand from the first.

* Multiplication Multiplies the two operands.

/ Division Divides the first operand by the second. Integer division rounds
the result toward 0 to the nearest integer.

The arithmetic operators perform the standard arithmetic operations on all the predefined simple
arithmetic types.

The following are examples of the simple arithmetic operators:

 int x1 = 5 + 6; double d1 = 5.0 + 6.0;
 int x2 = 12 - 3; double d2 = 12.0 - 3.0;
 int x3 = 3 * 4; double d3 = 3.0 * 4.0;
 int x4 = 10 / 3; double d4 = 10.0 / 3.0;

 byte b1 = 5 + 6;
 sbyte sb1 = 6 * 5;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 EXPRESSIONS AND OPERATORS

213

The Remainder Operator
The remainder operator (%) divides the first operand by the second operand, ignores the quotient, and
returns the remainder. Table 8-7 gives its description.

The remainder operator is binary and left-associative.

Table 8-7. The Remainder Operator

Operator Name Description

% Remainder Divides the first operand by the second operand and
returns the remainder

The following lines show examples of the integer remainder operator:

• 0 % 3 = 0, because 0 divided by 3 is 0 with a remainder of 0.

• 1 % 3 = 1, because 1 divided by 3 is 0 with a remainder of 1.

• 2 % 3 = 2, because 2 divided by 3 is 0 with a remainder of 2.

• 3 % 3 = 0, because 3 divided by 3 is 1 with a remainder of 0.

• 4 % 3 = 1, because 4 divided by 3 is 1 with a remainder of 1.

The remainder operator can also be used with real numbers to give real remainders.

 Console.WriteLine("0.0f % 1.5f is {0}" , 0.0f % 1.5f);
 Console.WriteLine("0.5f % 1.5f is {0}" , 0.5f % 1.5f);
 Console.WriteLine("1.0f % 1.5f is {0}" , 1.0f % 1.5f);
 Console.WriteLine("1.5f % 1.5f is {0}" , 1.5f % 1.5f);
 Console.WriteLine("2.0f % 1.5f is {0}" , 2.0f % 1.5f);
 Console.WriteLine("2.5f % 1.5f is {0}" , 2.5f % 1.5f);

This code produces the following output:

0.0f % 1.5f is 0 // 0.0 / 1.5 = 0 remainder 0
0.5f % 1.5f is 0.5 // 0.5 / 1.5 = 0 remainder .5
1.0f % 1.5f is 1 // 1.0 / 1.5 = 0 remainder 1
1.5f % 1.5f is 0 // 1.5 / 1.5 = 1 remainder 0
2.0f % 1.5f is 0.5 // 2.0 / 1.5 = 1 remainder .5
2.5f % 1.5f is 1 // 2.5 / 1.5 = 1 remainder 1

CHAPTER 8 EXPRESSIONS AND OPERATORS

214

Relational and Equality Comparison Operators
The relational and equality comparison operators are binary operators that compare their operands and
return a value of type bool. Table 8-8 lists these operators.

The relational and equality operators are binary and left-associative.

Table 8-8. The Relational and Equality Comparison Operators

Operator Name Description

< Less than true if first operand is less than second operand; false
otherwise

> Greater than true if first operand is greater than second operand; false
otherwise

<= Less than or equal to true if first operand is less than or equal to second operand;
false otherwise

>= Greater than or equal to true if first operand is greater than or equal to second
operand; false otherwise

== Equal to true if first operand is equal to second operand; false
otherwise

!= Not equal to true if first operand is not equal to second operand; false
otherwise

A binary expression with a relational or equality operator returns a value of type bool.

 Note Unlike C and C++, numbers in C# do not have a Boolean interpretation.

 int x = 5;
 if(x) // Wrong. x is of type int, not type boolean.
 ...
 if(x == 5) // Fine, since expression returns a value of type boolean
 ...

When printed, the Boolean values true and false are represented by the string output values True
and False.

 int x = 5, y = 4;
 Console.WriteLine("x == x is {0}" , x == x);
 Console.WriteLine("x == y is {0}" , x == y);

CHAPTER 8 EXPRESSIONS AND OPERATORS

215

The output of this code is the following:

x == x is True
x == y is False

Comparison and Equality Operations
When comparing most reference types for equality, only the references are compared.

• If the references are equal—that is, if they point to the same object in memory—the equality

comparison is true; otherwise, it is false, even if the two separate objects in memory are exactly

equivalent in every other respect.

• This is called a shallow comparison.

Figure 8-4 illustrates the comparison of reference types.

• On the left of the figure, the references of both a and b are the same, so a comparison would

return true.

• On the right of the figure, the references are not the same, so even if the contents of the two

AClass objects were exactly the same, the comparison would return false.

Figure 8-4. Comparing reference types for equality

CHAPTER 8 EXPRESSIONS AND OPERATORS

216

Objects of type string are also reference types but are compared differently. When strings are
compared for equality, they are compared in length and case-sensitive content.

• If two strings have the same length and the same case-sensitive content, the equality comparison

returns true, even if they occupy different areas of memory.

• This is called a deep comparison.

Delegates, which are covered in Chapter 15, are also reference types and also use deep comparison.
When delegates are compared for equality, the comparison returns true if both delegates are null or if
both have the same number of members in their invocation lists and the invocation lists match.

When comparing numeric expressions, the types and values are compared. When comparing enum
types, the comparisons are done on the underlying values of the operands. Enums are covered in
Chapter 13.

CHAPTER 8 EXPRESSIONS AND OPERATORS

217

Increment and Decrement Operators
The increment operator adds 1 to the operand. The decrement operator subtracts 1 from the operand.
Table 8-9 lists the operators and their descriptions.

These operators are unary and have two forms, the pre- form and the post- form, which act
differently.

• In the pre-form, the operator is placed before the operand; for example, ++x and --y.

• In the post-form, the operator is placed after the operand; for example, x++ and y--.

Table 8-9. The Increment and Decrement Operators

Operator Name Description

++ Pre-increment ++var Increment the value of the variable by 1 and save it back into
the variable. Return the new value of the variable.

 Post-increment var++ Increment the value of the variable by 1 and save it back into
the variable. Return the old value of the variable before it was
incremented.

-- Pre-decrement--var Decrement the value of the variable by 1 and save it back into
the variable. Return the new value of the variable.

 Post-decrement var-- Decrement the value of the variable by 1 and save it back into
the variable. Return the old value of the variable before it was
decremented.

In comparing the pre- and post-forms of the operators

• The final, stored value of the operand variable after the statement is executed is the same

regardless of whether the pre- or post-form of the operator is used.

• The only difference is the value returned by the operator to the expression.

Table 8-10 shows an example summarizing the behavior.

CHAPTER 8 EXPRESSIONS AND OPERATORS

218

Table 8-10. Behavior of Pre- and Post-Increment and Decrement Operators

Expression: x = 10

Value Returned to the
Expression

Value of Variable
After Evaluation

Pre-increment ++x 11 11

Post-increment x++ 10 11

Pre-decrement --x 9 9

Post-decrement x-- 10 9

For example, the following is a simple demonstration of the four different versions of the operators.

To show the different results on the same input, the value of the operand x is reset to 5 before each
assignment statement.

 int x = 5, y;
 y = x++; // result: y: 5, x: 6
 Console.WriteLine("y: {0}, x: {1}" , y, x);

 x = 5;
 y = ++x; // result: y: 6, x: 6
 Console.WriteLine("y: {0}, x: {1}" , y, x);

 x = 5;
 y = x--; // result: y: 5, x: 4
 Console.WriteLine("y: {0}, x: {1}" , y, x);

 x = 5;
 y = --x; // result: y: 4, x: 4
 Console.WriteLine("y: {0}, x: {1}" , y, x);

This code produces the following output:

y: 5, x: 6
y: 6, x: 6
y: 5, x: 4
y: 4, x: 4

CHAPTER 8 EXPRESSIONS AND OPERATORS

219

Conditional Logical Operators
The logical operators are used for comparing or negating the logical values of their operands and
returning the resulting logical value. Table 8-11 lists the operators.

The logical AND and logical OR operators are binary and left-associative. The logical NOT is unary.

Table 8-11. The Conditional Logical Operators

Operator Name Description

&& Logical AND true if both operands are true; false otherwise

|| Logical OR true if at least one operand is true; false otherwise

! Logical NOT true if the operand is false; false otherwise

The syntax for these operators is the following, where Expr1 and Expr2 evaluate to Boolean values:

 Expr1 && Expr2
 Expr1 || Expr2
 ! Expr

CHAPTER 8 EXPRESSIONS AND OPERATORS

220

The following are some examples:

 bool bVal;
 bVal = (1 == 1) && (2 == 2); // True, both operand expressions are true
 bVal = (1 == 1) && (1 == 2); // False, second operand expression is false

 bVal = (1 == 1) || (2 == 2); // True, both operand expressions are true
 bVal = (1 == 1) || (1 == 2); // True, first operand expression is true
 bVal = (1 == 2) || (2 == 3); // False, both operand expressions are false

 bVal = true; // Set bVal to true.
 bVal = !bVal; // bVal is now false.

The conditional logical operators operate in “short-circuit” mode, meaning that, if after evaluating
Expr1 the result can already be determined, then it skips the evaluation of Expr2. The following code
shows examples of expressions in which the value can be determined after evaluating the first operand:

 bool bVal;
 bVal = (1 == 2) && (2 == 2); // False, after evaluating first expression

 bVal = (1 == 1) || (1 == 2); // True, after evaluating first expression

Because of the short circuit behavior, do not place expressions with side effects (such as changing a
value) in Expr2, since they might not be evaluated. In the following code, the post-increment of variable
iVal would not be executed, because after executing the first subexpression, it can be determined that
the value of the entire expression is false.

 bool bVal; int iVal = 10;

 bVal = (1 == 2) && (9 == iVal++); // result: bVal = False, iVal = 10
 ↑ ↑
 False Never evaluated

CHAPTER 8 EXPRESSIONS AND OPERATORS

221

Logical Operators
The bitwise logical operators are often used to set the bit patterns for parameters to methods. Table 8-12
lists the bitwise logical operators.

These operators, except for bitwise negation, are binary and left-associative. The bitwise negation
operator is unary.

Table 8-12. The Logical Operators

Operator Name Description

& Bitwise AND Produces the bitwise AND of the two operands. The resulting bit is 1
only if both operand bits are 1.

| Bitwise OR Produces the bitwise OR of the two operands. The resulting bit is 1 if
either operand bit is 1.

^ Bitwise XOR Produces the bitwise XOR of the two operands. The resulting bit is 1
only if one, but not both, operand bits are 1.

~ Bitwise
negation

Each bit in the operand is switched to its opposite. This produces the
one’s complement of the operand.

The binary bitwise operators compare the corresponding bits at each position in each of their two

operands, and they set the bit in the return value according to the logical operation.

CHAPTER 8 EXPRESSIONS AND OPERATORS

222

Figure 8-5 shows four examples of the bitwise logical operations.

Figure 8-5. Examples of bitwise logical operators

The following code implements the preceding examples:

 const byte x = 12, y = 10;
 sbyte a;

 a = x & y; // a = 8
 a = x | y; // a = 14
 a = x ^ y; // a = 6
 a = ~x; // a = -13

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 EXPRESSIONS AND OPERATORS

223

Shift Operators
The bitwise shift operators shift the bit pattern either right or left a specified number of positions, with
the vacated bits filled with 0s or 1s. Table 8-13 lists the shift operators.

The shift operators are binary and left-associative. The syntax of the bitwise shift operators is shown
here. The number of positions to shift is given by Count.

 Operand << Count // Left shift
 Operand >> Count // Right shift

Table 8-13. The Shift Operators

Operator Name Description

<< Left shift Shifts the bit pattern left by the given number of positions. The bits shifted
off the left end are lost. Bit positions opening up on the right are filled
with 0s.

>> Right shift Shifts the bit pattern right by the given number of positions. Bits shifted off
the right end are lost.

For the vast majority of programming in C#, you don’t need to know anything about the hardware

underneath. If you’re doing bitwise manipulation of signed numbers, however, it can be helpful to know
about the numeric representation. The underlying hardware represents signed binary numbers in a
form called two’s complement. In two’s-complement representation, positive numbers have their
normal binary form. To negate a number, you take the bitwise negation of the number and add 1 to it.
This process turns a positive number into its negative representation, and vice versa. In two’s
complement, all negative numbers have a 1 in the leftmost bit position. Figure 8-6 shows the negation of
the number 12.

Figure 8-6. To get the negation of a two’s-complement number, take its bitwise negation and add 1.

The underlying representation is important when shifting signed numbers because the result of
shifting an integral value one bit to the left is the same as multiplying it by two. Shifting it to the right is
the same as dividing it by two.

If, however, you were to shift a negative number to the right and the leftmost bit were to be
filled with a 0, it would produce the wrong result. The 0 in the leftmost position would indicate a
positive number. But this is incorrect, because dividing a negative number by 2 doesn’t produce a
positive number.

CHAPTER 8 EXPRESSIONS AND OPERATORS

224

To address this situation, when the operand is a signed integer, if the leftmost bit of the operand is a
1 (indicating a negative number), bit positions opening up on the left are filled with 1s rather than 0s.
This maintains the correct two’s-complement representation. For positive or unsigned numbers, bit
positions opening up on the left are filled with 0s.

Figure 8-7 shows how the expression 14 << 3 would be evaluated in a byte. This operation causes
the following:

• Each of the bits in the operand (14) is shifted three places to the left.

• The three bit positions vacated on the right end are filled with 0s.

• The resulting value is 112.

Figure 8-7. Example of left shift of three bits

Figure 8-8 illustrates bitwise shift operations.

Figure 8-8. Bitwise shifts

The following code implements the preceding examples:

 int a, b, x = 14;

 a = x << 3; // Shift left
 b = x >> 3; // Shift right

 Console.WriteLine("{0} << 3 = {1}" , x, a);
 Console.WriteLine("{0} >> 3 = {1}" , x, b);

This code produces the following output:

14 << 3 = 112
14 >> 3 = 1

CHAPTER 8 EXPRESSIONS AND OPERATORS

225

Assignment Operators
The assignment operators evaluate the expression on the right side of the operator and use that value to
set the variable expression on the left side of the operator. Table 8-14 lists the assignment operators.

The assignment operators are binary and right-associative.

Table 8-14. The Assignment Operators

Operator Description

= Simple assignment; evaluate the expression on the right, and assign the returned value to
the variable or expression on the left.

*= Compound assignment; var *= expr is equal to var = var * (expr).

/= Compound assignment; var /= expr is equal to var = var / (expr).

%= Compound assignment; var %= expr is equal to var= var % (expr).

+= Compound assignment; var += expr is equal to var = var + (expr).

-= Compound assignment; var -= expr is equal to var = var- (expr).

<<= Compound assignment; var <<= expr is equal to var = var << (expr).

>>= Compound assignment; var >>= expr is equal to var = var >> (expr).

&= Compound assignment; var &= expr is equal to var = var & (expr).

^= Compound assignment; var ^= expr is equal to var = var ^ (expr).

|= Compound assignment; var |= expr is equal to var = var | (expr).

The syntax is as follows:

 VariableExpression Operator Expression

CHAPTER 8 EXPRESSIONS AND OPERATORS

226

For simple assignment, the expression to the right of the operator is evaluated, and its value is
assigned to the variable on the left.

 int x;
 x = 5;
 x = y * z;

The types of objects that can be on the left side of an assignment operator are the following. They
are discussed later in the text.

• Variables (local variables, fields, parameters)

• Properties

• Indexers

• Events

Compound Assignment
Frequently, you’ll want to evaluate an expression and add the results to the current value of a variable, as
shown here:

 x = x + expr;

The compound assignment operators allow a shorthand method for avoiding the repetition of the
left-side variable on the right side under certain common circumstances. For example, the following two
statements are semantically equivalent, but the second is shorter and just as easy to understand.

 x = x + (y – z);
 x += y – z;

The other compound assignment statements are analogous:

 Notice the parentheses.
 ↓ ↓
 x *= y – z; // Equivalent to x = x * (y – z)
 x /= y – z; // Equivalent to x = x / (y – z)
 ...

CHAPTER 8 EXPRESSIONS AND OPERATORS

227

The Conditional Operator
The conditional operator is a powerful and succinct way of returning one of two values, based on the
result of a condition. Table 8-15 shows the operator.

The conditional operator is ternary.

Table 8-15. The Conditional Operator

Operator Name Description

? : Conditional operator Evaluates an expression and returns one of two values,
depending on whether the expression returns true or false

The syntax for the conditional operator is shown following. It has a test expression and two result

expressions.

• Condition must return a value of type bool.

• If Condition evaluates to true, then Expression1 is evaluated and returned. Otherwise,

Expression2 is evaluated and returned.

 Condition ? Expression1 : Expression2

The conditional operator can be compared with the if...else construct. For example, the following
if...else construct checks a condition, and if the condition is true, it assigns 5 to variable intVar.
Otherwise, it assigns it the value 10.

 if (x < y) // if...else
 intVar = 5;
 else
 intVar = 10;

The conditional operator can perform the same operation in a less verbose form, as shown in the
following statement:

 intVar = x < y ? 5 : 10; // Conditional operator

Placing the condition and each return expression on separate lines, as in the following code, makes
the intent very easy to understand.

 intVar = x < y
 ? 5
 : 10 ;

CHAPTER 8 EXPRESSIONS AND OPERATORS

228

Figure 8-9 compares the two forms shown in the example.

Figure 8-9. The conditional operator versus if...else

For example, the following code uses the conditional operator three times—once in each of the
WriteLine statements. In the first instance, it returns either the value of x or the value of y. In the second
two instances, it returns either the empty string or the string “ not”.

 int x = 10, y = 9;
 int highVal = x > y // Condition
 ? x // Expression 1
 : y; // Expression 2
 Console.WriteLine("highVal: {0}\n" , highVal);

 Console.WriteLine("x is{0} greater than y" ,
 x > y // Condition
 ? "" // Expression 1
 : " not"); // Expression 2
 y = 11;
 Console.WriteLine("x is{0} greater than y" ,
 x > y // Condition
 ? "" // Expression 1
 : " not"); // Expression 2

This code produces the following output:

highVal: 10

x is greater than y
x is not greater than y

 Note The if...else statement is a flow-of-control statement. It should be used for doing one or the other
of two actions. The conditional operator returns an expression. It should be used for returning one or the other of

two values.

CHAPTER 8 EXPRESSIONS AND OPERATORS

229

Unary Arithmetic Operators
The unary operators set the sign of a numeric value. They are listed in Table 8-16.

• The unary positive operator simply returns the value of the operand.

• The unary negative operator returns the value of the operand subtracted from 0.

Table 8-16. The Unary Operators

Operator Name Description

+ Positive sign Returns the numeric value of the operand

- Negative sign Returns the numeric value of the operand subtracted from 0

For example, the following code shows the use and results of the operators:

 int x = +10; // x = 10
 int y = -x; // y = -10
 int z = -y; // z = 10

CHAPTER 8 EXPRESSIONS AND OPERATORS

230

User-Defined Type Conversions
User-defined conversions are discussed in greater detail in Chapter 18, but I’ll mention them here as
well because they are operators.

• You can define both implicit and explicit conversions for your own classes and structs. This

allows you to convert an object of your user-defined type to some other type, and vice versa.

• C# provides implicit and explicit conversions.

— With an implicit conversion, the compiler automatically makes the conversion, if necessary,
when it is resolving what types to use in a particular context.

— With an explicit conversion, the compiler will make the conversion only when an explicit cast
operator is used.

The syntax for declaring an implicit conversion is the following. The public and static modifiers are
required for all user-defined conversions.

 Required Target Source
 ↓ ↓ ↓
 public static implicit operator TargetType (SourceType Identifier)
 {
 ...
 return ObjectOfTargetType;
 }

The syntax for the explicit conversion is the same, except that explicit is substituted for implicit.
The following code shows an example of declarations for conversion operators that will convert an

object of type LimitedInt to type int, and vice versa.

 class LimitedInt Target Source
 { ↓ ↓
 public static implicit operator int (LimitedInt li) // LimitedInt to int
 {
 return li.TheValue;
 } Target Source
 ↓ ↓
 public static implicit operator LimitedInt (int x) // int to LimitedInt
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x;
 return li;
 }

 private int _theValue = 0;
 public int TheValue{ ... }
 }

For example, the following code reiterates and uses the two type conversion operators just defined.
In Main, an int literal is converted into a LimitedInt object, and in the next line, a LimitedInt object is
converted into an int.

CHAPTER 8 EXPRESSIONS AND OPERATORS

231

 class LimitedInt
 {
 const int MaxValue = 100;
 const int MinValue = 0;

 public static implicit operator int(LimitedInt li) // Convert type
 {
 return li.TheValue;
 }

 public static implicit operator LimitedInt(int x) // Convert type
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x;
 return li;
 }

 private int _theValue = 0;
 public int TheValue // Property
 {
 get { return _theValue; }
 set
 {
 if (value < MinValue)
 _theValue = 0;
 else
 _theValue = value > MaxValue
 ? MaxValue
 : value;
 }
 }
 }

 class Program
 {
 static void Main() // Main
 {
 LimitedInt li = 500; // Convert 500 to LimitedInt
 int value = li; // Convert LimitedInt to int

 Console.WriteLine("li: {0}, value: {1}" , li.TheValue, value);
 }
 }

This code produces the following output:

li: 100, value: 100

CHAPTER 8 EXPRESSIONS AND OPERATORS

232

Explicit Conversion and the Cast Operator
The preceding example code showed the implicit conversion of the int to a LimitedInt type and the
implicit conversion of a LimitedInt type to an int. If, however, you had declared the two conversion
operators as explicit, you would have had to explicitly use cast operators when making the conversions.

A cast operator consists of the name of the type to which you want to convert the expression, inside
a set of parentheses. For example, in the following code, method Main casts the value 500 to a
LimitedInt object.

 Cast operator
 ↓
 LimitedInt li = (LimitedInt) 500;

For example, here is the relevant portion of the code, with the changes marked:

 ↓
 public static explicit operator int(LimitedInt li)
 {
 return li.TheValue;
 }
 ↓
 public static explicit operator LimitedInt(int x)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x;
 return li;
 }

 static void Main()
 { ↓
 LimitedInt li = (LimitedInt) 500;
 int value = (int) li;
 ↑
 Console.WriteLine("li: {0}, value: {1}" , li.TheValue, value);
 }

In both versions of the code, the output is the following:

li: 100, value: 100

There are two other operators that take a value of one type and return a value of a different,
specified type. These are the is operator and the as operator. These are covered at the end of Chapter 18.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 EXPRESSIONS AND OPERATORS

233

Operator Overloading
The C# operators, as you’ve seen, are defined to work using the predefined types as operands. If
confronted with a user-defined type, an operator simply would not know how to process it. Operator
overloading allows you to define how the C# operators should operate on operands of your user-
defined types.

• Operator overloading is available only for classes and structs.

• You can overload an operator x for use with your class or struct by declaring a method named

operator x that implements the behavior (for example, operator +, operator -, and so on).

— The overload methods for unary operators take a single parameter of the class or
struct type.

— The overload methods for binary operators take two parameters, at least one of which must
be of the class or struct type.

 public static LimitedInt operator -(LimitedInt x) // Unary
 public static LimitedInt operator +(LimitedInt x, double y) // Binary

The declaration of an operator overload method requires the following:

• The declaration must use both the static and public modifiers.

• The operator must be a member of the class or struct for which it is an operator.

For example, the following code shows two of the overloaded operators of class LimitedInt: the
addition operator and the negation operator. You can tell that it is negation and not subtraction because
the operator overload method has only a single parameter and is therefore unary; whereas the
subtraction operator is binary.

 class LimitedInt Return
 { Required type Keyword Operator Operand
 ↓ ↓ ↓ ↓ ↓
 public static LimitedInt operator + (LimitedInt x, double y)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x.TheValue + (int)y;
 return li;
 }

 public static LimitedInt operator - (LimitedInt x)
 {
 // In this strange class, negating a value just sets its value to 0.
 LimitedInt li = new LimitedInt();
 li.TheValue = 0;
 return li;
 }
 ...
 }

CHAPTER 8 EXPRESSIONS AND OPERATORS

234

Restrictions on Operator Overloading
Not all operators can be overloaded, and there are restrictions on the types of overloading that can be
done. The important things you should know about the restrictions on operator overloading are
described later in the section.

Only the following operators can be overloaded. Prominently missing from the list is the
assignment operator.

Overloadable unary operators: +, -, !, ~, ++, --, true, false

Overloadable binary operators: +, -, *, /, %, &, |, ^, <<, >>, ==, !=, >, <, >=, <=

The increment and decrement operators are overloadable. But unlike the predefined versions, there

is no distinction between the pre- and post-usage of the overloaded operator.
You cannot do the following things with operator overloading:

• Create a new operator

• Change the syntax of an operator

• Redefine how an operator works on the predefined types

• Change the precedence or associativity of an operator

 Note Your overloaded operators should conform to the intuitive meanings of the operators.

CHAPTER 8 EXPRESSIONS AND OPERATORS

235

Example of Operator Overloading
The following example shows the overloads of three operators for class LimitedInt: negation,
subtraction, and addition.

 class LimitedInt {
 const int MaxValue = 100;
 const int MinValue = 0;

 public static LimitedInt operator -(LimitedInt x)
 {
 // In this strange class, negating a value just sets its value to 0.
 LimitedInt li = new LimitedInt();
 li.TheValue = 0;
 return li;
 }

 public static LimitedInt operator -(LimitedInt x, LimitedInt y)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x.TheValue - y.TheValue;
 return li;
 }

 public static LimitedInt operator +(LimitedInt x, double y)
 {
 LimitedInt li = new LimitedInt();
 li.TheValue = x.TheValue + (int)y;
 return li;
 }

 private int _theValue = 0;
 public int TheValue
 {
 get { return _theValue; }
 set
 {
 if (value < MinValue)
 _theValue = 0;
 else
 _theValue = value > MaxValue
 ? MaxValue
 : value;
 }
 }
 }

CHAPTER 8 EXPRESSIONS AND OPERATORS

236

 class Program {
 static void Main() {
 LimitedInt li1 = new LimitedInt();
 LimitedInt li2 = new LimitedInt();
 LimitedInt li3 = new LimitedInt();
 li1.TheValue = 10; li2.TheValue = 26;
 Console.WriteLine(" li1: {0}, li2: {1}" , li1.TheValue, li2.TheValue);

 li3 = -li1;
 Console.WriteLine("-{0} = {1}" , li1.TheValue, li3.TheValue);

 li3 = li2 - li1;
 Console.WriteLine(" {0} - {1} = {2}" ,
 li2.TheValue, li1.TheValue, li3.TheValue);

 li3 = li1 - li2;
 Console.WriteLine(" {0} - {1} = {2}" ,
 li1.TheValue, li2.TheValue, li3.TheValue);
 }
 }

This code produces the following output:

 li1: 10, li2: 26
-10 = 0
 26 - 10 = 16
 10 - 26 = 0

The typeof Operator
The typeof operator returns the System.Type object of any type given as its parameter. From this object,
you can learn the characteristics of the type. (There is only one System.Type object for any given type.)
You cannot overload the typeof operator. Table 8-17 lists the operator’s characteristics.

The typeof operator is unary.

Table 8-17. The typeof Operator

Operator Description

typeof Returns the System.Type object of a given type

CHAPTER 8 EXPRESSIONS AND OPERATORS

237

The following is an example of the syntax of the typeof operator. Type is a class in the System
namespace.

 Type t = typeof (SomeClass)

For example, the following code uses the typeof operator to get information on a class called
SomeClass and to print the names of its public fields and methods.

 using System.Reflection; // Use the Reflection namespace to take full advantage
 // of determining information about a type.
 class SomeClass
 {
 public int Field1;
 public int Field2;

 public void Method1() { }
 public int Method2() { return 1; }
 }

 class Program
 {
 static void Main()
 {
 Type t = typeof(SomeClass);
 FieldInfo[] fi = t.GetFields();
 MethodInfo[] mi = t.GetMethods();

 foreach (FieldInfo f in fi)
 Console.WriteLine("Field : {0}" , f.Name);
 foreach (MethodInfo m in mi)
 Console.WriteLine("Method: {0}" , m.Name);
 }
 }

CHAPTER 8 EXPRESSIONS AND OPERATORS

238

The output of this code is the following:

Field : Field1
Field : Field2
Method: Method1
Method: Method2
Method: ToString
Method: Equals
Method: GetHashCode
Method: GetType

The typeof operator is also called by the GetType method, which is available for every object of every
type. For example, the following code retrieves the name of the type of the object:

 class SomeClass
 {
 ...
 }

 class Program
 {
 static void Main()
 {
 SomeClass s = new SomeClass();

 Console.WriteLine("Type s: {0}" , s.GetType().Name);
 }
 }

This code produces the following output:

Type s: SomeClass

Other Operators
The operators covered in this chapter are the standard operators for the built-in types. There are other
special usage operators that are dealt with later in the book, along with their operand types. For
example, the nullable types have a special operator called the null coalescing operator, which is
described in Chapter 25 along with a more in-depth description of nullable types.

C H A P T E R 9

239

Statements

 What Are Statements?

 Expression Statements

 Flow-of-Control Statements

 The if Statement

 The if . . . else Statement

 The switch Statement

 The while Loop

 The do Loop

 The for Loop

 Jump Statements

 The break Statement

 The continue Statement

 Labeled Statements

 The goto Statement

 The using Statement

 Other Statements

CHAPTER 9 STATEMENTS

240

What Are Statements?
The statements in C# are very similar to those of C and C++. This chapter covers the characteristics of a
C# statement, as well as the flow-of-control statements provided by the language.

• A statement is a source code instruction describing a type or telling the program to perform

an action.

• There are three major categories of statements:

— Declaration statements: Statements that declare types or variables

— Embedded statements: Statements that perform actions or manage flow of control

— Labeled statements: Statements to which control can jump

Previous chapters have covered a number of different declaration statements, including
declarations of local variables, classes, and class members. This chapter covers the embedded
statements, which do not declare types, variables, or instances. Instead, they use expressions and
flow-of-control constructs to work with the objects and variables that have been declared by the
declaration statements.

• A simple statement consists of an expression followed by a semicolon.

• A block is a sequence of statements enclosed by matching curly braces. The enclosed statements

can include the following:

— Declaration statements

— Embedded statements

— Labeled statements

— Nested blocks

The following code gives examples of each:

 int x = 10; // Simple declaration
 int z; // Simple declaration

 { // Block
 int y = 20; // Simple declaration
 z = x + y; // Embedded statement
 top: y = 30; // Labeled statement
 ...
 { // Nested block
 ...
 }
 }

CHAPTER 9 STATEMENTS

241

 Note A block counts syntactically as a single embedded statement. Anywhere that an embedded statement is

required syntactically, you can use a block.

An empty statement consists of just a semicolon. You can use an empty statement at any position
where the syntax of the language requires an embedded statement but your program logic does not
require any action.

For example, the following code is an example of using the empty statement:

• The second line in the code is an empty statement. It is required because there must be an

embedded statement between the if part and the else part of the construct.

• The fourth line is a simple statement, as shown by the terminating semicolon.

 if(x < y)
 ; // Empty statement
 else
 z = a + b; // Simple statement

Expression Statements
The previous chapter looked at expressions. Expressions return values, but they can also have side
effects.

• A side effect is an action that affects the state of the program.

• Many expressions are evaluated only for their side effects.

You can create a statement from an expression by placing a statement terminator (semicolon) after
it. Any value returned by the expression is discarded. For example, the following code shows an
expression statement. It consists of the assignment expression (an assignment operator and two
operands) followed by a semicolon. This does the following two things:

• The expression assigns the value on the right of the operator to the memory location referenced

by variable x. Although this is probably the main reason for the statement, this is considered the

side effect.

• After setting the value of x, the expression returns with the new value of x. But there is nothing to

receive this return value, so it is ignored.

 x = 10;

The whole reason for evaluating the expression is to achieve the side effect.

CHAPTER 9 STATEMENTS

242

Flow-of-Control Statements
C# provides the flow-of-control constructs common to modern programming languages.

• Conditional execution executes or skips a section of code depending on a condition. The

conditional execution statements are the following:

— if

— if...else

— switch

• Looping statements repeatedly execute a section of code. The looping statements are the

following:

— while

— do

— for

— foreach

• Jump statements change the flow of control from one section of code to a specific statement in

another section of code. The jump statements are the following:

— break

— continue

— return

— goto

— throw

Conditional execution and looping constructs (other than foreach) require a test expression, or
condition, to determine where the program should continue execution.

Note Unlike C and C++, test expressions must return a value of type bool. Numbers do not have a Boolean

interpretation in C#.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 STATEMENTS

243

The if Statement
The if statement implements conditional execution. The syntax for the if statement is shown here and
is illustrated in Figure 9-1.

• TestExpr must evaluate to a value of type bool.

• If TestExpr evaluates to true, Statement is executed.

• If it evaluates to false, Statement is skipped.

 if(TestExpr)
 Statement

Figure 9-1. The if statement

The following code shows examples of if statements:

 // With a simple statement
 if(x <= 10)
 z = x – 1; // Single statement — no curly braces needed

 // With a block
 if(x >= 20)
 {
 x = x – 5; // Block — curly braces needed
 y = x + z;
 }

 int x = 5;
 if(x) // Error: test expression must be a bool, not int
 {
 ...
 }

CHAPTER 9 STATEMENTS

244

The if . . . else Statement
The if...else statement implements a two-way branch. The syntax for the if...else statement is
shown here and is illustrated in Figure 9-2.

• If TestExpr evaluates to true, Statement1 is executed.

• If it evaluates to false, Statement2 is executed instead.

 if(TestExpr)
 Statement1
 else
 Statement2

Figure 9-2. The if . . . else statement

The following is an example of the if...else statement:

 if(x <= 10)
 z = x – 1; // Single statement
 else
 { // Multiple statements--block
 x = x – 5;
 y = x + z;
 }

CHAPTER 9 STATEMENTS

245

The switch Statement
The switch statement implements multiway branching. Figure 9-3 shows the syntax and structure of the
switch statement.

• The switch statement contains zero or more switch sections.

• Each switch section starts with one or more switch labels.

Figure 9-3. Structure of a switch statement

Switch labels have the following form:

 case ConstantExpression:
 ↑ ↑
 Keyword Switch label terminator

The flow of control through the structure in Figure 9-3 is the following:

• The test expression, TestExpr, is evaluated at the top of the construct.

• Each switch section must end with the break statement or one of the other four jump statements.

— The jump statements are break, return, continue, goto, and throw, and they are described
later in this chapter.

— Of the five jump statements, the break statement is the most commonly used for ending a
switch section. The break statement branches execution to the end of the switch statement.
We’ll cover all the jump statements later in this chapter.

• If the value of TestExpr is equal to the value ConstExpr1, the constant expression in the first switch

label and then the statements in the statement list following the switch label are executed, until

the one of the jump statements is encountered.

• The default section is optional, but if it is included, it must end with one of the jump statements.

CHAPTER 9 STATEMENTS

246

Figure 9-4 illustrates the general flow of control through a switch statement. You can modify the
flow through a switch statement with a goto statement or a return statement.

Figure 9-4. The flow of control through a switch statement

CHAPTER 9 STATEMENTS

247

A Switch Example
The following code executes the switch statement five times, with the value of x ranging from 1 to 5.
From the output, you can tell which case section was executed on each cycle through the loop.

 for(int x=1; x<6; x++)
 {
 switch(x) // Evaluate the value of variable x.
 {
 case 2: // If x equals 2
 Console.WriteLine("x is {0} -- In Case 2", x);
 break; // Go to end of switch.

 case 5: // If x equals 5
 Console.WriteLine("x is {0} -- In Case 5", x);
 break; // Go to end of switch.

 default: // If x is neither 2 nor 5
 Console.WriteLine("x is {0} -- In Default case", x);
 break; // Go to end of switch.
 }
 }

This code produces the following output:

x is 1 -- In Default case
x is 2 -- In Case 2
x is 3 -- In Default case
x is 4 -- In Default case
x is 5 -- In Case 5

CHAPTER 9 STATEMENTS

248

More on the switch Statement
A switch statement can have any number of switch sections, including none. The default section is not
required, as shown in the following example. It is, however, generally considered good practice to
include it, since it can catch potential errors.

For example, the switch statement in the following code has no default section. The switch
statement is inside a for loop, which executes the statement five times, with the value of x starting at 1
and ending at 5.

 for(int x=1; x<6; x++)
 {
 switch(x)
 {
 case 5:
 Console.WriteLine("x is {0} -- In Case 5", x);
 break;
 }
 }

This code produces the following output:

x is 5 -- In Case 5

The following code has only the default section:

 for(int x=1; x<4; x++)
 {
 switch(x)
 {
 default:
 Console.WriteLine("x is {0} -- In Default case", x);
 break;
 }
 }

This code produces the following output:

x is 1 -- In Default case
x is 2 -- In Default case
x is 3 -- In Default case

CHAPTER 9 STATEMENTS

249

Switch Labels
The expression following the keyword case in a switch label must be a constant expression and must
therefore be completely evaluable by the compiler at compile time. It must also be of the same type as
the test expression

For example, Figure 9-5 shows three sample switch statements.

Figure 9-5. Switch statements with different types of switch labels

 Note Unlike C and C++, each switch section, including the optional default section, must end with one of the

jump statements. In C#, you cannot execute the code in one switch section and then fall through to the next.

Although C# does not allow falling through from one switch section to another, you can do the
following:

• You can attach multiple switch labels to any switch section.

• Following the statement list associated with a case, there must be one of the jump statements

before the next switch label, unless there are no intervening executable statements between the

switch labels.

For example, in the following code, since there are no executable statements between the first three
switch labels, it’s fine to have one follow the other. Cases 5 and 6, however, have an executable
statement between them, so there must be a jump statement before case 6.

 switch(x)
 {
 case 1: // Acceptable
 case 2:
 case 3:
 ... // Execute this code if x equals 1, 2, or 3.
 break;
 case 5:
 y = x + 1;
 case 6: // Not acceptable because there is no break
 ...

CHAPTER 9 STATEMENTS

250

The while Loop
The while loop is a simple loop construct in which the test expression is performed at the top of the loop.
The syntax of the while loop is shown here and is illustrated in Figure 9-6.

• First, TestExpr is evaluated.

• If TestExpr evaluates to false, then execution continues after the end of the while loop.

• Otherwise, when TestExpr evaluates to true, then Statement is executed, and TestExpr is

evaluated again. Each time TestExpr evaluates to true, Statement is executed another time. The

loop ends when TestExpr evaluates to false.

 while(TestExpr)
 Statement

Figure 9-6. The while loop

The following code shows an example of the while loop, where the test expression variable starts
with a value of 3 and is decremented at each iteration. The loop exits when the value of the variable
becomes 0.

 int x = 3;
 while(x > 0)
 {
 Console.WriteLine("x: {0}", x);
 x--;
 }
 Console.WriteLine("Out of loop");

This code produces the following output:

x: 3
x: 2
x: 1
Out of loop

CHAPTER 9 STATEMENTS

251

The do Loop
The do loop is a simple loop construct in which the test expression is performed at the bottom of the
loop. The syntax for the do loop is shown here and illustrated in Figure 9-7.

• First, Statement is executed.

• Then, TestExpr is evaluated.

• If TestExpr returns true, then Statement is executed again.

• Each time TestExpr returns true, Statement is executed again.

• When TestExpr returns false, control passes to the statement following the end of the

loop construct.

 do
 Statement
 while(TestExpr); // End of do loop

Figure 9-7. The do loop

CHAPTER 9 STATEMENTS

252

The do loop has several characteristics that set it apart from other flow-of-control constructs. They
are the following:

• The body of the loop, Statement, is always executed at least once, even if TestExpr is

initially false.

• The semicolon is required after the closing parenthesis of the test expression.

The following code shows an example of a do loop:

 int x = 0;
 do
 Console.WriteLine("x is {0}", x++);
 while (x<3);
 ↑
 Required

This code produces the following output:

x is 0
x is 1
x is 2

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 STATEMENTS

253

The for Loop
The for loop construct executes the body of the loop as long as the test expression returns true when it is
evaluated at the top of the loop. The syntax of the for loop is shown here and illustrated in Figure 9-8.

• At the beginning of the for loop, Initializer is executed once.

• TestExpr is then evaluated.

• If TestExpr returns true, Statement is executed, followed by IterationExpr.

• Control then returns to the top of the loop, and TestExpr is evaluated again.

• As long as TestExpr returns true, Statement, followed by IterationExpr, is executed.

• As soon as TestExpr returns false, execution continues at the statement following Statement.

 Separated by semicolons
 ↓ ↓
 for(Initializer ; TestExpr ; IterationExpr)
 Statement

Some parts of the statement are optional.

• Initializer, TestExpr, and IterationExpr are all optional. Their positions can be left blank. If the

TestExpr position is left blank, the test is assumed to return true. Therefore, there must be some

other method of exiting the statement if the program is to avoid going into an infinite loop.

• The two semicolons are required as field separators.

Figure 9-8. The for loop

CHAPTER 9 STATEMENTS

254

Figure 9-8 illustrates the flow of control through the for statement. You should also know the
following about its components:

• Initializer is executed only once, before any other part of the for construct. It is usually used to

declare and initialize local values to be used in the loop.

• TestExpr is evaluated to determine whether Statement should be executed or skipped. It must

evaluate to a value of type bool.

• IterationExpr is executed immediately after Statement and before returning to the top of the loop

to TestExpr.

For example, in the following code:

• Before anything else, the initializer (int i=0) defines a variable called i and initializes its value

to 0.

• The condition (i<3) is then evaluated. If it is true, then the body of the loop is executed.

• At the bottom of the loop, after all the loop statements have been executed, the IterationExpr

statement is executed—in this case, incrementing the value of i.

 // The body of this for loop is executed three times.
 for(int i=0 ; i<3 ; i++)
 Console.WriteLine("Inside loop. i: {0}", i);

 Console.WriteLine("Out of Loop");

This code produces the following output:

Inside loop. i: 0
Inside loop. i: 1
Inside loop. i: 2
Out of Loop

CHAPTER 9 STATEMENTS

255

The Scope of Variables in a for Statement
Any variables declared in the initializer are visible only within the for statement.

• This is different from C and C++, where the declaration introduces the variable into the

enclosing block.

• The following code illustrates this point:

 Type is needed here for declaration.
 ↓
 for(int i=0; i<10; i++) // Variable i is in scope here, and also
 Statement; // here within the statement.
 // Here, after the statement, i no longer exists.

 Type is needed here again because the previous variable i has gone out of existence.
 ↓
 for(int i=0; i<10; i++) // We need to define a new variable i here,
 Statement; // the previous one has gone out of existence.

The local variables declared within the body of the loop are known only within the loop.

 Note Unlike C and C++, the scope of variables declared in the initializer lasts only for the length of the loop.

CHAPTER 9 STATEMENTS

256

Multiple Expressions in the Initializer and Iteration Expression
Both the initializer expression and the iteration expression can contain multiple expressions as long as
they are separated by commas.

For example, the following code has two variable declarations in the initializer and two expressions
in the iteration expression:

 static void Main()
 {
 const int MaxI = 5;

 Two declarations Two expressions
 ↓ ↓
 for (int i = 0, j = 10; i < MaxI; i++, j += 10)
 {
 Console.WriteLine("{0}, {1}", i, j);
 }
 }

This code produces the following output:

0, 10
1, 20
2, 30
3, 40
4, 50

CHAPTER 9 STATEMENTS

257

Jump Statements
When the flow of control reaches jump statements, program execution is unconditionally transferred to
another part of the program. The jump statements are the following:

• break

• continue

• return

• goto

• throw

This chapter covers the first four of these statements. The throw statement is explained in
Chapter 11.

The break Statement
Earlier in this chapter you saw the break statement used in the switch statement. It can also be used in
the following statement types:

• for

• foreach

• while

• do

In the body of one of these statements, break causes execution to exit the innermost enclosing loop.
For example, the following while loop would be an infinite loop if it relied only on its test

expression, which is always true. But instead, after three iterations of the loop, the break statement is
encountered, and the loop is exited.

 int x = 0;
 while(true)
 {
 x++;
 if(x >= 3)
 break;
 }

CHAPTER 9 STATEMENTS

258

The continue Statement
The continue statement causes program execution to go to the top of the innermost enclosing loop of the
following types:

• while

• do

• for

• foreach

For example, the following for loop is executed five times. In the first three iterations, it encounters
the continue statement and goes directly back to the top of the loop, missing the WriteLine statement at
the bottom of the loop. Execution only reaches the WriteLine statement during the last two iterations.

 for(int x=0; x<5; x++) // Execute loop five times
 {
 if(x < 3) // The first three times
 continue; // Go directly back to top of loop

 // This line is only reached when x is 3 or greater.
 Console.WriteLine("Value of x is {0}", x);
 }

This code produces the following output:

Value of x is 3
Value of x is 4

The following code shows an example of a continue statement in a while loop. This code produces
the same output as the preceding for loop example.

 int x = 0;
 while(x < 5)
 {
 if(x < 3)
 {
 x++;
 continue; // Go back to top of loop
 }

 // This line is reached only when x is 3 or greater.
 Console.WriteLine("Value of x is {0}", x);
 x++;
 }

CHAPTER 9 STATEMENTS

259

Labeled Statements
A labeled statement consists of an identifier, followed by a colon, followed by a statement. It has the
following form:

 Identifier: Statement

A labeled statement is executed exactly as if the label were not there and consisted of just the
Statement part.

• Adding a label to a statement allows control to be transferred to the statement from another part

of the code.

• Labeled statements are allowed only inside blocks.

Labels
Labels have their own declaration space, so the identifier in a labeled statement can be any valid
identifier—including those that might be declared in an overlapping scope, such as local variables or
parameter names.

For example, the following code shows the valid use of a label with the same identifier as a
local variable:

 {
 int xyz = 0; // Variable xyz
 ...
 xyz: Console.WriteLine("No problem."); // Label xyz
 }

There are restrictions, however. The identifier cannot be either

• The same as another label identifier with an overlapping scope

• A keyword

CHAPTER 9 STATEMENTS

260

The Scope of Labeled Statements
Labeled statements cannot be seen (or accessed) from outside the block in which they are declared. The
scope of a labeled statement is

• The block in which it is declared

• Any blocks nested inside that block

For example, the code on the left of Figure 9-9 contains several nested blocks, with their scopes
marked. There are two labeled statements declared in scope B of the program: increment and end.

• The shaded portions on the right of the figure show the areas of the code in which the labeled

statements are in scope.

• Code in scope B, and all the nested blocks, can see and access the labeled statements.

• Code from any of the inner scopes can jump out to the labeled statements.

• Code from outside (scope A, in this case) cannot jump into a block with a labeled statement.

Figure 9-9. The scope of labels includes nested blocks.

CHAPTER 9 STATEMENTS

261

The goto Statement
The goto statement unconditionally transfers control to a labeled statement. Its general form is the
following, where Identifier is the identifier of a labeled statement:

 goto Identifier ;

For example, the following code shows the simple use of a goto statement:

 bool thingsAreFine;
 while (true)
 {
 thingsAreFine = GetNuclearReactorCondition();

 if (thingsAreFine)
 Console.WriteLine("Things are fine.");
 else
 goto NotSoGood;
 }

 NotSoGood: Console.WriteLine("We have a problem.");

The goto statement must be within the scope of the labeled statement.

• A goto statement can jump to any labeled statement within its own block or can jump out to any

block in which it is nested.

• A goto statement cannot jump into any blocks nested within its own block.

 Caution Using the goto statement is strongly discouraged, because it can lead to code that is poorly
structured and difficult to debug and maintain. Edsger Dijkstra’s 1968 letter to the Communications of the ACM,

entitled “Go To Statement Considered Harmful,” was an important contribution to computer science; it was one of

the first published descriptions of the pitfalls of using the goto statement.

The goto Statement Inside a switch Statement
There are also two other forms of the goto statement, for use inside switch statements. These goto
statements transfer control to the correspondingly named switch label in the switch statement.

 goto case ConstantExpression;
 goto default;

CHAPTER 9 STATEMENTS

262

The using Statement
Certain types of unmanaged objects are limited in number or are expensive with system resources. It's
important that when your code is done with them, they be released as soon as possible. The using
statement helps simplify the process and ensures that these resources are properly disposed of.

A resource is a class or struct that implements the System.IDisposable interface. Interfaces are
covered in detail in Chapter 17—but in short, an interface is a collection of unimplemented function
members that classes and structs can choose to implement. The IDisposable interface contains a single
method named Dispose.

The phases of using a resource are shown in Figure 9-10 and consist of the following:

• Allocating the resource

• Using the resource

• Disposing of the resource

If an unexpected run-time error occurs during the portion of the code using the resource, the code
disposing of the resource might not get executed.

Figure 9-10. Components of using a resource

Note The using statement is different from the using directives. The using directives are covered in

Chapter 10.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 STATEMENTS

263

Packaging Use of the Resource
The using statement helps reduce the potential problem of an unexpected run-time error by neatly
packaging the use of a resource.

There are two forms of the using statement. The first form is the following and is illustrated in
Figure 9-11.

• The code between the parentheses allocates the resource.

• Statement is the code that uses the resource.

• The using statement implicitly generates the code to dispose of the resource.

 using (ResourceType Identifier = Expression) Statement
 ↑ ↑
 Allocates resource Uses resource

Unexpected run-time errors are called exceptions and are covered in Chapter 11. The standard way
of handling the possibility of exceptions is to place the code that might cause an exception in a try block
and place any code that must be executed, whether or not there is an exception, into a finally block.

This form of the using statement does exactly that. It performs the following:

• Allocates the resource

• Places Statement in a try block

• Creates a call to the resource’s Dispose method and places it in a finally block

Figure 9-11. The effect of the using statement

CHAPTER 9 STATEMENTS

264

Example of the using Statement
The following code uses the using statement twice—once with a class called TextWriter and once with a
class called TextReader, both from the System.IO namespace. Both classes implement the IDisposable
interface, as required by the using statement.

• The TextWriter resource opens a text file for writing and writes a line to the file.

• The TextReader resource then opens the same text file and reads and displays the contents, line

by line.

• In both cases, the using statement makes sure that the objects’ Dispose methods are called.

• Notice also the difference between the using statements in Main and the using directives on the

first two lines.

 using System; // using DIRECTIVE; not using statement
 using System.IO; // using DIRECTIVE; not using statement

 namespace UsingStatement
 {
 class Program
 {
 static void Main()
 {
 // using statement
 using (TextWriter tw = File.CreateText("Lincoln.txt"))
 {
 tw.WriteLine("Four score and seven years ago, ...");
 }

 // using statement
 using (TextReader tr = File.OpenText("Lincoln.txt"))
 {
 string InputString;
 while (null != (InputString = tr.ReadLine()))
 Console.WriteLine(InputString);
 }
 }
 }
 }

This code produces the following output:

Four score and seven years ago, ...

CHAPTER 9 STATEMENTS

265

Multiple Resources and Nesting
The using statement can also be used with multiple resources of the same type, with the resource
declarations separated by commas. The syntax is the following:

 Only one type Resource Resource
 ↓ ↓ ↓
 using (ResourceType Id1 = Expr1, Id2 = Expr2, ...) EmbeddedStatement

For example, in the following code, each using statement allocates and uses two resources:

 static void Main()
 {
 using (TextWriter tw1 = File.CreateText("Lincoln.txt"),
 tw2 = File.CreateText("Franklin.txt"))
 {
 tw1.WriteLine("Four score and seven years ago, ...");
 tw2.WriteLine("Early to bed; Early to rise ...");
 }

 using (TextReader tr1 = File.OpenText("Lincoln.txt"),
 tr2 = File.OpenText("Franklin.txt"))
 {
 string InputString;

 while (null != (InputString = tr1.ReadLine()))
 Console.WriteLine(InputString);

 while (null != (InputString = tr2.ReadLine()))
 Console.WriteLine(InputString);
 }
 }

The using statement can also be nested. In the following code, besides the nesting of the using
statements, also note that it is not necessary to use a block with the second using statement because it
consists of only a single, simple statement.

 using (TextWriter tw1 = File.CreateText("Lincoln.txt"))
 {
 tw1.WriteLine("Four score and seven years ago, ...");

 using (TextWriter tw2 = File.CreateText("Franklin.txt")) // Nested
 tw2.WriteLine("Early to bed; Early to rise ..."); // Single
 }

CHAPTER 9 STATEMENTS

266

Another Form of the using Statement
Another form of the using statement is the following:

 Keyword Resource Uses resource
 ↓ ↓ ↓
 using (Expression) EmbeddedStatement

In this form, the resource is declared before the using statement.

 TextWriter tw = File.CreateText("Lincoln.txt"); // Resource declared

 using (tw) // using statement
 tw.WriteLine("Four score and seven years ago, ...");

Although this form still ensures that the Dispose method will always be called after you finish using
the resource, it does not protect you from attempting to use the resource after the using statement has
released its unmanaged resources, leaving it in an inconsistent state. It therefore gives less protection
and is discouraged. This form is illustrated in Figure 9-12.

Figure 9-12. Resource declaration before the using statement

CHAPTER 9 STATEMENTS

267

Other Statements
There are other statements that are associated with particular features of the language. These statements
are covered in the sections dealing with those features. The statements covered in other chapters are
shown in Table 9-1.

Table 9-1. Statements Covered in Other Chapters

Statement Description Relevant Chapter

checked, unchecked These statements control the overflow checking
context.

Chapter 18

foreach This statement iterates through each member of a
collection.

Chapters 14 and 20

try, throw, finally These statements are associated with exceptions. Chapter 11

return This statement returns control to the calling function
member and can also return a value.

Chapter 5

yield This statement is used with iterators. Chapter 20

C H A P T E R 10

269

Namespaces and Assemblies

 Referencing Other Assemblies

 Namespaces

 The using Directives

 The Structure of an Assembly

 The Identity of an Assembly

 Strongly Named Assemblies

 Private Deployment of an Assembly

 Shared Assemblies and the GAC

 Configuration Files

 Delayed Signing

CHAPTER 10 NAMESPACES AND ASSEMBLIES

270

Referencing Other Assemblies
In Chapter 1, we took a high-level look at the compilation process. You saw that the compiler takes the
source code file and produces an output file called an assembly. This chapter takes a closer look at
assemblies and how they are produced and deployed. You will also look at how namespaces help
organize types.

All the programs you’ve seen so far have, for the most part, declared and used their own classes. In
many projects, however, you will want to use classes or types from other assemblies. These other
assemblies might come from the BCL or a third-party vendor, or you might have created them yourself.
These are called class libraries, and the names of their assembly files generally end with the .dll
extension rather than the .exe extension.

Suppose, for example, that you want to create a class library that contains classes and types that can
be used by other assemblies. The source code for a simple library is shown in the following example and
is contained in a file called SuperLib.cs. The library contains a single public class called SquareWidget.
Figure 10-1 illustrates the production of the DLL.

 public class SquareWidget
 {
 public double SideLength = 0;
 public double Area
 {
 get { return SideLength * SideLength; }
 }
 }

Figure 10-1. The SuperLib source code and the resulting assembly

To create a class library using Visual Studio 2010, select the Class Library template from the installed
Windows templates. Specifically, when in Visual Studio, do the following:

1. Select File New Project, and the New Project window will open.

2. In the left pane in the Installed Templates panel, find the Visual C# node under the Other

Languages root, and select the Windows entry.

3. In the right pane, select the Class Library template.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

271

Suppose also that you are writing a program called MyWidgets, and you want to use the SquareWidget
class. The code for the program is in a file called MyWidgets.cs and is shown in the following example.
The code simply creates an object of type SquareWidget and uses the object’s members.

 using System;

 class WidgetsProgram
 {
 static void Main()
 {
 SquareWidget sq = new SquareWidget(); // From class library
 ↑
 Not declared in this assembly
 sq.SideLength = 5.0; // Set the side length.
 Console.WriteLine(sq.Area); // Print out the area.
 } ↑
 } Not declared in this assembly

Notice that the code doesn’t declare class SquareWidget. Instead, you use the class defined in
SuperLib. When you compile the MyWidgets program, however, the compiler must be aware that your
code uses assembly SuperLib so it can get the information about class SquareWidget. To do this, you need
to give the compiler a reference to the assembly, by giving its name and location.

In Visual Studio, you can add references to a project in the following way:

• Select the Solution Explorer, and find the References folder underneath the project name. The

References folder contains a list of the assemblies used by the project.

• Right-click the References folder, and select Add Reference. There are five tabs from which to

choose, allowing you to find the class library in different ways.

• For our program, select the Browse tab, browse to the DLL file containing the SquareWidget class

definition, and select it.

• Click the OK button, and the reference will be added to the project.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

272

After you’ve added the reference, you can compile MyWidgets. Figure 10-2 illustrates the full
compilation process.

Figure 10-2. Referencing another assembly

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 NAMESPACES AND ASSEMBLIES

273

The mscorlib Library
There’s a class library that I’ve been using in every example in the book so far. It is the one that contains
the Console class. The Console class is defined in an assembly called mscorlib in a file called
mscorlib.dll. You won’t find this assembly listed in the References folder, however. Assembly mscorlib
contains the definitions of the C# types and the basic types for most .NET languages. It must always be
referenced when compiling a C# program, so Visual Studio doesn’t bother showing it in the References
folder.

When you take into account mscorlib, the compilation process for MyWidgets looks more like the
representation shown in Figure 10-3. After this, I’ll assume the use of the mscorlib assembly without
representing it again.

Figure 10-3. Referencing class libraries

Now suppose that your program has been working fine with the SquareWidget class, but you want to
expand its capabilities to use a class called CircleWidget, which is defined in a different assembly called
UltraLib. The MyWidgets source code now looks like the following. It creates a SquareWidget object as
defined in SuperLib and a CircleWidget object as defined in UltraLib.

 class WidgetsProgram
 {
 static void Main()
 {
 SquareWidget sq = new SquareWidget(); // From SuperLib
 ...

 CircleWidget circle = new CircleWidget(); // From UltraLib
 ...
 }
 }

CHAPTER 10 NAMESPACES AND ASSEMBLIES

274

The source code for class library UltraLib is shown in the following example. Notice that besides
class CircleWidget, like library SuperLib, it also declares a class called SquareWidget. You can compile
UltraLib to a DLL and add it to the list of references in project MyWidgets.

 public class SquareWidget
 {
 ...
 }

 public class CircleWidget
 {
 public double Radius = 0;
 public double Area
 {
 get { ... }
 }
 }

Since both libraries contain a class called SquareWidget, when you attempt to compile program
MyWidgets, the compiler produces an error message because it doesn’t know which version of class
SquareWidget to use. Figure 10-4 illustrates this name clash.

Figure 10-4. Since assemblies SuperLib and UltraLib both contain declarations for a class called

SquareWidget, the compiler doesn’t know which one to instantiate.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

275

Namespaces
In the MyWidgets example, since you have the source code, you can solve the name clash by just
changing the name of the SquareWidget class in either the SuperLib source code or the UltraLib source
code. But what if these libraries had been developed by separate companies, and you didn’t have the
source code? Suppose that SuperLib was produced by a company called MyCorp, and UltraLib was
produced by the ABCCorp company. In that case, you wouldn’t be able to use them together if you used
any classes or types where there was a clash.

As you can imagine, with your development machine containing assemblies produced by dozens, if
not hundreds, of different companies, there is likely to be a certain amount of duplication in the names
of classes. It would be a shame if you couldn’t use two assemblies in the same program just because they
happened to have type names in common.

Suppose, however, that MyCorp had a policy of prefacing all their classes with a string that
consisted of the company name followed by the product name followed by the descriptive class name.
Suppose further that ABCCorp had the same policy. In that case, the three class names in our example
would be named MyCorpSuperLibSquareWidget, ABCCorpUltraLibSquareWidget, and
ABCCorpUltraLibCircleWidget, as shown in Figure 10-5. These are perfectly valid class names, and
there’s little chance of the classes in one company’s library conflicting with those of another company.

Figure 10-5. With disambiguating strings prefaced to the class names, there is no conflict between the

libraries.

Our example program, however, would need to use these long names and would look like the
following:

 class WidgetsProgram
 {
 static void Main()
 {
 MyCorpSuperLibSquareWidget sq
 = new MyCorpSuperLibSquareWidget(); // From SuperLib
 ...

 ABCCorpUltraLibCircleWidget circle
 = new ABCCorpUltraLibCircleWidget(); // From UltraLib
 ...
 }
 }

CHAPTER 10 NAMESPACES AND ASSEMBLIES

276

Although this solves the conflict problem, these new, disambiguated names are harder to read and
clumsy to work with, even with IntelliSense.

Suppose, however, that in addition to the characters normally allowed in an identifier, you could
also use the period character within the string—although still not at the beginning or at the end of the
class name. In this case, we could make the names more understandable, such as
MyCorp.SuperLib.SquareWidget, ABCCorp.UltraLib.SquareWidget, and ABCCorp.UltraLib.CircleWidget.
Now the code would look like the following:

 class WidgetsProgram
 {
 static void Main()
 {
 MyCorp.SuperLib.SquareWidget sq
 = new MyCorp.SuperLib.SquareWidget(); // From SuperLib
 ...

 ABCCorp.UltraLib.CircleWidget circle
 = new ABCCorp.UltraLib.CircleWidget(); // From UltraLib
 ...
 }
 }

This brings us to the concept of the namespace name and a namespace.

• You can think of a namespace name as a string of characters (that can include periods inside the

string) tacked on to the front of the class or type name and separated by a period.

• The full string including the namespace name, separating period, and the class name is called the

class’s fully qualified name.

• A namespace is the set of classes and types that share that namespace name.

Figure 10-6 illustrates these definitions.

Figure 10-6. A namespace is the set of type definitions that share the same namespace name.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

277

You can use namespaces to group a set of types together and give them a name. Generally, you want
namespace names to be descriptive of the types contained by the namespace and to be distinct from
other namespace names.

You create a namespace by declaring the namespace in the source file that contains your type
declarations. The following shows the syntax for declaring a namespace. You then declare all your
classes and other types between the curly braces of the namespace declaration. These are then the
members of the namespace.

 Keyword Namespace name
 ↓ ↓
 namespace NamespaceName
 {
 TypeDeclarations
 }

The following code shows how the programmers at MyCorp could create the MyCorp.SuperLib
namespace and declare the SquareWidget class inside it.

 Company name Period
 ↓ ↓
 namespace MyCorp.SuperLib
 {
 public class SquareWidget
 {
 public double SideLength = 0;
 public double Area
 {
 get { return SideLength * SideLength; }
 }
 }
 }

CHAPTER 10 NAMESPACES AND ASSEMBLIES

278

Now, when the MyCorp company ships you the new updated assembly, you can use it by modifying
your MyWidgets program, as shown here:

 class WidgetsProgram
 {
 static void Main()
 { Fully qualified name Fully qualified name
 ↓ ↓
 MyCorp.SuperLib.SquareWidget sq = new MyCorp.SuperLib.SquareWidget();
 ↑ ↑
 Namespace name Class name

 CircleWidget circle = new CircleWidget();
 ...

Now that you have explicitly specified the SuperLib version of SquareWidget in your code, the
compiler will no longer have a problem distinguishing the classes. The fully qualified name is a bit long
to type, but at least you can now use both libraries. A little later in the chapter, we’ll cover the using alias
directive to solve the inconvenience of having to repeatedly type in the fully qualified name.

If the UltraLib assembly is also updated with a namespace by the company that produces it
(ABCCorp), then the compile process would be as shown in Figure 10-7.

Figure 10-7. Class libraries with namespaces

CHAPTER 10 NAMESPACES AND ASSEMBLIES

279

Namespace Names
As you saw, the name of a namespace can contain the name of the company that created the assembly.
Besides identifying the company, the name is also used to help programmers get a quick idea of the
kinds of types defined in the namespace.

Some important points about the names of namespaces are the following:

• A namespace name can be any valid identifier, as described in Chapter 2.

• Additionally, a namespace name can include any number of period characters. You can use this

to organize types into hierarchies.

For example, Table 10-1 gives the names of some of the namespaces in the .NET BCL.

Table 10-1. Sample Namespaces from the BCL

System
System.Data
System.Drawing

System.IO
Microsoft.CSharp
Microsoft.VisualBasic

Namespace naming guidelines suggest the following:

• Start namespace names with the company name.

• Follow the company name with the technology name.

• Do not name a namespace with the same name as a class or type.

For example, the software development department of the Acme Widget Company develops
software in the following three namespaces, as shown in the following code:

• AcmeWidgets.SuperWidget

• AcmeWidgets.Media

• AcmeWidgets.Games

 namespace AcmeWidgets.SuperWidget
 {
 class SPDBase ...
 ...
 }

CHAPTER 10 NAMESPACES AND ASSEMBLIES

280

More About Namespaces
There are several other important points you should know about namespaces:

• Every type name in a namespace must be different from all the others.

• The types in a namespace are called members of the namespace.

• A source file can contain any number of namespace declarations, either sequentially or nested.

Figure 10-8 shows a source file on the left that declares two namespaces sequentially, with several
types in each one. Notice that even though the namespaces contain several class names in common,
they are differentiated by their namespace names, as shown in the assembly at the right of the figure.

Figure 10-8. Multiple namespaces in a source file

The .NET Framework BCL offers thousands of defined classes and types to choose from in building
your programs. To help organize this vast array of available functionality, types with related functionality
are declared in the same namespace. The BCL uses more than 100 namespaces to organize its types.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

281

Namespaces Spread Across Files
A namespace is not closed. This means you can add more type declarations to it by declaring it again
either later in the source file or in another source file.

For example, Figure 10-9 shows the declaration of three classes, all in the same namespace but
declared in separate source files. The source files can be compiled into a single assembly, as shown in
Figure 10-9, or into separate assemblies, as shown in Figure 10-10.

Figure 10-9. A namespace can be spread across source files and compiled to a single assembly.

Figure 10-10. A namespace can be spread across source files and compiled to separate assemblies.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

282

Nesting Namespaces
Namespaces can be nested, producing a nested namespace. Nesting namespaces allows you to create a
conceptual hierarchy of types.

There are two ways you can declare a nested namespace:

• Textual nesting: You can create a nested namespace by placing its declaration inside the

declaration body of the enclosing namespace. This is illustrated on the left in Figure 10-11. In this

example, namespace OtherNs is nested in namespace MyNamespace.

• Separate declaration: You can also create a separate declaration for the nested namespace, but

you must use its fully qualified name in the declaration. This is illustrated on the right in Figure

10-11. Notice that in the declaration of nested namespace OtherNs, the fully qualified name

MyNamespace.OtherNS is used.

Figure 10-11. The two forms of declaring a nested namespace are equivalent.

Both forms of the nested namespace declarations shown in Figure 10-11 produce the same
assembly, as illustrated in Figure 10-12. The figure shows the two classes declared in file SomeLib.cs,
with their fully qualified names.

Figure 10-12. Nested namespace structure

Although the nested namespace is inside the enclosing namespace, its members are not members of
the enclosing namespace. A common misconception is that since the nested namespace is inside the
enclosing namespace, the members of the nested namespace must be a subset of the enclosing
namespace. This is not true; the namespaces are separate.

k

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 NAMESPACES AND ASSEMBLIES

283

The using Directives
Fully qualified names can be quite long, and using them throughout your code can become quite
cumbersome. There are two compiler directives, however, that allow you to avoid having to use fully
qualified names—the using namespace directive and the using alias directive.

Two important points about the using directives are the following:

• They must be placed at the top of the source file, before any type declarations.

• They apply for all the namespaces in the current source file.

The using Namespace Directive
You saw in the MyWidgets example several sections back that you can specify a class by using the fully
qualified name. You can avoid having to use the long name by placing using namespace directives at the
top of the source file.

The using namespace directive instructs the compiler that you will be using types from certain
specific namespaces. You can then go ahead and use the simple class names without having to fully
qualify them.

When the compiler encounters a name that is not in the current namespace, it checks the list of
namespaces given in the using namespace directives and appends the unknown name to the first
namespace in the list. If the resulting fully qualified name matches a class in this assembly or a
referenced assembly, the compiler uses that class. If it does not match, it tries the next namespace in
the list.

The using namespace directive consists of the keyword using, followed by a namespace identifier.

 Keyword
 ↓
 using System ;
 ↑
 Name of namespace

One method I have been using throughout the text is the WriteLine method, which is a member of
class Console, in the System namespace. Rather than use its fully qualified name throughout the code, I
simplified our work just a bit, by the use of the using namespace directive at the top of the code.

For example, the following code uses the using namespace directive in the first line to state that the
code uses classes or other types from the System namespace.

 using System; // using namespace directive
 ...
 System.Console.WriteLine("This is text 1"); // Use fully qualified name
 Console.WriteLine("This is text 2"); // Use directive

CHAPTER 10 NAMESPACES AND ASSEMBLIES

284

The using Alias Directive
The using alias directive allows you to assign an alias for either of the following:

• A namespace

• A type in a namespace

For example, the following code shows the use of two using alias directives. The first directive
instructs the compiler that identifier Syst is an alias for namespace System. The second directive says
that identifier SC is an alias for class System.Console.

 Keyword Alias Namespace
 ↓ ↓ ↓
 using Syst = System;
 using SC = System.Console;
 ↑ ↑ ↑
 Keyword Alias Class

The following code uses these aliases. All three lines of code in Main call the
System.Console.WriteLine method.

• The first statement in Main uses the alias for a namespace—System.

• The second statement uses the fully qualified name of the method.

• The third statement uses the alias for a class—Console.

 using Syst = System; // using alias directive
 using SC = System.Console; // using alias directive

 namespace MyNamespace
 {
 class SomeClass
 {
 static void Main()
 { Alias for namespace
 ↓
 Syst.Console.WriteLine ("Using the namespace alias.");
 System.Console.WriteLine("Using fully qualified name.");
 SC.WriteLine ("Using the type alias");
 ↑
 } Alias for class
 }
 }

CHAPTER 10 NAMESPACES AND ASSEMBLIES

285

The Structure of an Assembly
As you saw in Chapter 1, an assembly does not contain native machine code, but Common Intermediate
Language (CIL) code. It also contains everything needed by the Just-in-Time (JIT) compiler to convert
the CIL into native code at run time, including references to other assemblies it references. The file
extension for an assembly is generally .exe or .dll.

Most assemblies are composed of a single file. Figure 10-13 illustrates the four main sections of
an assembly.

• The assembly manifest contains the following:

— The identity of the assembly

— A list of the files that make up the assembly

— A map of where things are in the assembly

— Information about other assemblies that are referenced

• The type metadata section contains the information about all the types defined in the assembly.

This information contains everything there is to know about each type.

• The CIL section contains all the intermediate code for the assembly.

• The resources section is optional but can contain graphics or language resources.

Figure 10-13. The structure of a single-file assembly

CHAPTER 10 NAMESPACES AND ASSEMBLIES

286

Although most assemblies comprise a single file, some have more. For an assembly with multiple
modules, one file is the primary module, and the others are secondary modules.

• The primary module contains the manifest of the assembly and references to the secondary

modules.

• The file names of secondary modules end with the extension .netmodule.

• Multiple-file assemblies are considered a single unit. They are deployed together and versioned

together.

Figure 10-14 illustrates a multifile assembly with secondary modules.

Figure 10-14. A multifile assembly

CHAPTER 10 NAMESPACES AND ASSEMBLIES

287

The Identity of an Assembly
In the .NET Framework, the file names of assemblies are not as important as in other operating systems
and environments. What is much more important is the identity of an assembly.

The identity of an assembly has four components that together should uniquely identify it. These
four components are the following:

• Simple name: This is just the file name without the file extension. Every assembly has a simple

name. It is also called the assembly name or the friendly name.

• Version number: This consists of a string of four period-separated integers, in the form

MajorVersion.MinorVersion.Build.Revision—for example, 2.0.35.9.

• Culture information: This is a string that consists of two to five characters representing a

language, or a language and a country or region. For example, the culture name for English as

used in the United States is en-US. For German as used in Germany, it is de-DE.

• Public key: This 128-byte string should be unique to the company producing the assembly.

The public key is part of a public/private key pair, which is a set of two very large, specially chosen
numbers that can be used to create secure digital signatures. The public key, as its name implies, can be
made public. The private key must be guarded by the owner. The public key is part of the assembly’s
identity. We will look at the use of the private key later in the chapter.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

288

The components of an assembly’s name are embedded in the assembly’s manifest. Figure 10-15
illustrates this section of the manifest.

Figure 10-15. The components of an assembly identity in the manifest

Figure 10-16 shows some of the terms used in the .NET documentation and literature regarding the
identity of an assembly.

Figure 10-16. Terms for an assembly’s identity

CHAPTER 10 NAMESPACES AND ASSEMBLIES

289

Strongly Named Assemblies
A strongly named assembly is one that has a unique digital signature attached to it. Strongly
named assemblies are much more secure than assemblies that do not have strong names, for the
following reasons:

• A strong name uniquely identifies an assembly. No one else can create an assembly with the

same strong name, so the user can be sure that the assembly came from the claimed source.

• The contents of an assembly with a strong name cannot be altered without the security

components of the CLR catching the modification.

A weakly named assembly is one that is not strongly named. Since a weakly named assembly does
not have a digital signature, it is inherently insecure. Because a chain is only as strong as its weakest link,
by default, strongly named assemblies can only access other strongly named assemblies. (There’s also a
way to allow “partially trusted callers,” but I won’t be covering that topic.)

The programmer does not produce the strong name. The compiler produces it by taking
information about the assembly and hashing it to create a unique digital signature that it attaches to the
assembly. The pieces of information it uses in the hash process are the following:

• The sequence of bytes composing the assembly

• The simple name

• The version number

• The culture information

• The public/private key pair

 Note There is some diversity in the nomenclature surrounding strong names. What I’m calling “strongly
named” is often referred to as “strong-named.” What I’m calling “weakly named” is sometimes referred to as “not

strong-named” or “assembly with a simple name.”

CHAPTER 10 NAMESPACES AND ASSEMBLIES

290

Creating a Strongly Named Assembly
To strongly name an assembly using Visual Studio 2010, you must have a copy of the public/private key
pair file. If you don’t have a key file, you can have Visual Studio generate one for you. You can then do
the following:

1. Open the properties of the project.

2. Select the Signing tab.

3. Select the Sign the Assembly check box, and enter the location of the key file or create a

new one.

When you compile the code, the compiler will produce a strongly named assembly. Figure 10-17
illustrates the inputs and output of the compiler.

Figure 10-17. Creating a strongly named assembly

CHAPTER 10 NAMESPACES AND ASSEMBLIES

291

Private Deployment of an Assembly
Deploying a program on a target machine can be as simple as creating a directory on the machine
and copying the application to it. If the application doesn’t need other assemblies (such as DLLs) or
if the required DLLs are in the same directory, the program should work just fine where it is.
Programs deployed this way are called private assemblies, and this method of deployment is called
xcopy deployment.

Private assemblies can be placed in almost any directory and are self-sufficient as long as all the files
on which they depend are in the same directory or a subdirectory. In fact, you could have several
directories in various parts of the file system, each with the identical set of assemblies, and they would
all work fine in their various locations.

Some important things to know about private assembly deployment are the following:

• The directory in which the private assemblies are placed is called the application directory.

• A private assembly can be either strongly named or weakly named.

• There is no need to register components in the registry.

• To uninstall a private assembly, just delete it from the file system.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

292

Shared Assemblies and the GAC
Private assemblies are very useful, but sometimes you’ll want to put a DLL in a central place so that a
single copy can be shared by other assemblies on the system. .NET has such a repository, called the
global assembly cache (GAC). An assembly placed into the GAC is called a shared assembly.

Some important facts about the GAC are the following:

• Only strongly named assemblies can be added to the GAC.

• Although earlier versions of the GAC accepted only files with the .dll extension, you can now add

assemblies with the .exe extension as well.

• The GAC is located in a subdirectory named Assembly, of the Windows system directory.

Installing Assemblies into the GAC
When you attempt to install an assembly into the GAC, the security components of the CLR must first
verify that the digital signature on the assembly is valid. If there is no digital signature or if it is invalid,
the system will not install it into the GAC.

This is a one-time check, however. After an assembly is in the GAC, no further checks are required
when it is referenced by a running program.

The gacutil.exe command-line utility allows you to add and delete assemblies from the GAC and
list the assemblies it contains. The three most useful flags are the following:

• /i: Inserts an assembly into the GAC

• /u: Uninstalls an assembly from the GAC

• /l: Lists the assemblies in the GAC

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 NAMESPACES AND ASSEMBLIES

293

Side-by-Side Execution in the GAC
After an assembly is deployed to the GAC, it can be used by other assemblies in the system.
Remember, however, that an assembly’s identity consists of all four parts of the fully qualified name.
So, if the version number of a library changes or if it has a different public key, these differences
specify different assemblies.

The result is that there can be many different assemblies in the GAC that have the same file
name. Although they have the same file name, they are different assemblies and coexist perfectly fine
together in the GAC. This makes it easy for different applications to use different versions of the same
DLL at the same time, since they are different assemblies with different identities. This is called side-
by-side execution.

Figure 10-18 illustrates four different DLLs in the GAC that all have the same file name—
MyLibrary.dll. Looking at the figure, you can see that the first three come from the same company,
because they have the same public key, and the fourth comes from a different source, since it has a
different public key. These versions differ as follows:

• An English version 1.0.0.0, from company A

• An English version 2.0.0.0, from company A

• A German version 1.0.0.0, from company A

• An English version 1.0.0.0, from company B

Figure 10-18. Four different side-by-side DLLs in the GAC

CHAPTER 10 NAMESPACES AND ASSEMBLIES

294

Configuration Files
Configuration files contain information about the application, for use by the CLR at run time. They can
instruct the CLR to do such things as use a different version of a DLL or to look in additional directories
when searching for a DLL referenced by the program.

Configuration files consist of XML code and don’t contain C# code. The details of writing the XML
code are beyond the scope of this text, but you should understand the purpose of configuration files
and how they are used. One way they are used is to update an application assembly to use the new
version of a DLL.

Suppose, for example, that you have an application that references a DLL in the GAC. The identity of
the reference in the application’s manifest must exactly match the identity of the assembly in the GAC. If
a new version of the DLL is released, it can be added to the GAC, where it can happily coexist with the
old version.

The application, however, still has embedded in its manifest the identity of the old version of the
DLL. Unless you recompile the application and make it reference the new version of the DLL, it will
continue to use the old version. That’s fine, if that’s what you want.

If, however, you do not want to recompile the application but want it to use the new DLL, then you
can create a configuration file telling the CLR to use the new version rather than the old version. The
configuration file is placed in the application directory.

Figure 10-19 illustrates objects in the run-time process. The MyProgram.exe application on the left
calls for version 1.0.0.0 of the MyLibrary.dll, as indicated by the dashed arrow. But the application has a
configuration file, which instructs the CLR to load version 2.0.0.0 instead. Notice that the name of the
configuration file consists of the full name of the executable file including the extension, plus the
additional extension .config.

Figure 10-19. Using a configuration file to bind to a new version

CHAPTER 10 NAMESPACES AND ASSEMBLIES

295

Delayed Signing
It is important that companies carefully guard the private key of their official public/private key pair.
Otherwise, if untrustworthy people were to obtain it, they could publish code masquerading as the
company’s code. To avoid this, companies clearly cannot allow free access to the file containing their
public/private key pair. In large companies, the final strong naming of an assembly is often performed at
the very end of the development process, by a special group with access to the key pair.

This can cause problems, though, in the development and testing processes, for several reasons.
First, since the public key is one of the four components of an assembly’s identity, it can’t be set until the
public key is supplied. Also, a weakly named assembly cannot be deployed to the GAC. Both the
developers and testers need to be able to compile and test the code in the way it will be deployed on
release, including its identity and location in the GAC.

To allow for this, there is a modified form of assigning a strong name, called delayed signing, or
partial signing, that overcomes these problems, but without releasing access to the private key.

In delayed signing, the compiler uses only the public key of the public/private key pair. The public
key can then be placed in the manifest to complete the assembly’s identity. Delayed signing also uses a
block of 0s to reserve space for the digital signature.

To create a delay-signed assembly, you must do two things. First, create a copy of the key file that
has only the public key, rather than the public/private key pair. Next, add an additional attribute called
DelaySignAttribute to the assembly scope of the source code and set its value to true.

CHAPTER 10 NAMESPACES AND ASSEMBLIES

296

Figure 10-20 shows the input and output for producing a delay-signed assembly. Notice the
following in the figure:

• In the input, the DelaySignAttribute is located in the source files, and the key file contains only

the public key.

• In the output, there is space reserved for the digital signature at the bottom of the assembly.

Figure 10-20. Creating a delay-signed assembly

If you try to deploy the delay-signed assembly to the GAC, the CLR will not allow it, because it’s not
strongly named. To deploy it on a particular machine, you must first issue a command-line command
that disables the GAC’s signature verification on that machine, for this assembly only, and allows it to be
installed in the GAC. To do this, issue the following command from the Visual Studio command prompt.

 sn –vr MyAssembly.dll

You’ve now looked at weakly named assemblies, delay-signed assemblies, and strongly named
assemblies. Figure 10-21 summarizes the differences in their structures.

Figure 10-21. The structures of different assembly signing stages

C H A P T E R 11

297

Exceptions

 What Are Exceptions?

 The try Statement

 The Exception Classes

 The catch Clause

 Examples Using Specific catch Clauses

 The catch Clauses Section

 The finally Block

 Finding a Handler for an Exception

 Searching Further

 Throwing Exceptions

 Throwing Without an Exception Object

CHAPTER 11 EXCEPTIONS

298

What Are Exceptions?
An exception is a run-time error in a program that violates a system or application constraint, or a
condition that is not expected to occur during normal operation. Examples are when a program tries to
divide a number by zero or tries to write to a read-only file. When these occur, the system catches the
error and raises an exception.

If the program has not provided code to handle the exception, the system will halt the program. For
example, the following code raises an exception when it attempts to divide by zero:

 static void Main()
 {
 int x = 10, y = 0;
 x /= y; // Attempt to divide by zero--raises an exception
 }

When this code is run, the system displays the following error message:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.
at Exceptions_1.Program.Main() in C:\Progs\Exceptions\Program.cs:line 12

CHAPTER 11 EXCEPTIONS

299

The try Statement
The try statement allows you to designate blocks of code to be guarded for exceptions and to supply
code to handle them if they occur. The try statement consists of three sections, as shown in Figure 11-1.

• The try block contains the code that is being guarded for exceptions.

• The catch clauses section contains one or more catch clauses. These are blocks of code to handle

the exceptions. They are also known as exception handlers.

• The finally block contains code to be executed under all circumstances, whether or not an

exception is raised.

Figure 11-1. Structure of the try statement

CHAPTER 11 EXCEPTIONS

300

Handling the Exception

The previous example showed that attempting to divide by zero causes an exception. You can modify the
program to handle that exception by placing the code inside a try block and supplying a simple catch
clause. When the exception is raised, it is caught and handled in the catch block.

 static void Main()
 {
 int x = 10;

 try
 {
 int y = 0;
 x /= y; // Raises an exception
 }
 catch
 {
 ... // Code to handle the exception

 Console.WriteLine("Handling all exceptions - Keep on Running");
 }
 }

This code produces the following message. Notice that, other than the output message, there is no
indication that an exception has occurred.

Handling all exceptions - Keep on Running

CHAPTER 11 EXCEPTIONS

301

The Exception Classes
There are many different types of exceptions that can occur in a program. The BCL defines a number of
exception classes, each representing a specific type. When one occurs, the CLR does the following:

• It creates an exception object for the type.

• It looks for an appropriate catch clause to handle it.

All exception classes are ultimately derived from the System.Exception class. Figure 11-2 shows a
portion of the exception inheritance hierarchy.

Figure 11-2. Structure of the exception hierarchy

CHAPTER 11 EXCEPTIONS

302

An exception object contains read-only properties with information about the exception that
caused it. Table 11-1 shows some of these properties.

Table 11-1. Selected Properties of an Exception Object

Property Type Description

Message string This property contains an error message explaining the cause of the
exception.

StackTrace string This property contains information describing where the exception
occurred.

InnerException Exception If the current exception was raised by another exception, this property
contains a reference to the previous exception.

HelpLink string This property can be set by application-defined exceptions to give a
URN or URL for information on the cause of the exception.

Source string If not set by an application-defined exception, this property contains
the name of the assembly where the exception originated.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 EXCEPTIONS

303

The catch Clause
The catch clause handles exceptions. There are three forms, allowing different levels of processing.
Figure 11-3 shows the forms.

Figure 11-3. The three forms of the catch clause

The general catch clause can accept any exception but can’t determine the type of exception that
caused it. This allows only general processing and cleanup for whatever exception might occur.

The specific catch clause form takes the name of an exception class as a parameter. It matches
exceptions of the specified class or exception classes derived from it.

The specific catch clause with object form gives you the most information about the exception. It
matches exceptions of the specified class, or exception classes derived from it. It gives you a reference to
the exception object created by the CLR, by assigning it to the exception variable. You can access the
exception variable’s properties within the block of the catch clause to get specific information about the
exception raised.

For example, the following code handles exceptions of type IndexOutOfRangeException. When one
occurs, a reference to the actual exception object is passed into the code with parameter name e. The
three WriteLine statements each read a string field from the exception object.

 Exception type Exception variable
 ↓ ↓
 catch (IndexOutOfRangeException e)
 { Accessing the exception variable
 ↓
 Console.WriteLine("Message: {0}", e.Message);
 Console.WriteLine("Source: {0}", e.Source);
 Console.WriteLine("Stack: {0}", e.StackTrace);

CHAPTER 11 EXCEPTIONS

304

Examples Using Specific catch Clauses
Going back to our divide-by-zero example, the following code modifies the previous catch clause to
specifically handle exceptions of the DivideByZeroException class. While in the previous example, the
catch clause would handle any exception raised in the try block, the current example will only handle
those of the DivideByZeroException class.

 int x = 10;
 try
 {
 int y = 0;
 x /= y; // Raises an exception
 } Exception type
 ↓
 catch (DivideByZeroException)
 {
 ...
 Console.WriteLine("Handling an exception.");
 }

You could further modify the catch clause to use an exception variable. This allows you to access the
exception object inside the catch block.

 int x = 10;
 try
 {
 int y = 0;
 x /= y; // Raises an exception
 } Exception type Exception variable
 ↓ ↓
 catch (DivideByZeroException e)
 { Accessing the exception variable
 ↓
 Console.WriteLine("Message: {0}", e.Message);
 Console.WriteLine("Source: {0}", e.Source);
 Console.WriteLine("Stack: {0}", e.StackTrace);
 }

This code produces the following output:

Message: Attempted to divide by zero.
Source: Exceptions 1
Stack: at Exceptions_1.Program.Main() in C:\Progs\Exceptions 1\
Exceptions 1\Program.cs:line 14

CHAPTER 11 EXCEPTIONS

305

The catch Clauses Section
The purpose of a catch clause is to allow you to handle an exception in an elegant way. If your catch
clause is of the form that takes a parameter, then the system has set that exception variable to a
reference to the exception object, which you can inspect to determine the cause of the exception. If the
exception was the result of a previous exception, you can get a reference to that previous exception’s
exception object from the exception variable’s InnerException property.

The catch clauses section can contain multiple catch clauses. Figure 11-4 shows a summary of the
catch clauses section.

Figure 11-4. Structure of the catch clauses section of a try statement

When an exception is raised, the system searches the list of catch clauses in order, and the first
catch clause that matches the type of the exception object is executed. Because of this, there are two
important rules in ordering the catch clauses. They are the following:

• The specific catch clauses must be ordered with the most specific exception types first,

progressing to the most general. For example, if you declare an exception class derived from

NullReferenceException, the catch clause for your derived exception type should be listed before

the catch clause for NullReferenceException.

• If there is a general catch clause, it must be last, after all specific catch clauses. Using the general

catch clause is discouraged. You should use one of the specific catch clauses if at all possible. The

general catch clause hides bugs by allowing the program to continue execution and can leave the

program in an unknown state.

CHAPTER 11 EXCEPTIONS

306

The finally Block
If a program’s flow of control enters a try statement that has a finally block, the finally block is always
executed. Figure 11-5 shows the flow of control.

• If no exception occurs inside the try block, then at the end of the try block, control skips over any

catch clauses and goes to the finally block.

• If an exception occurs inside the try block, then the appropriate catch clause in the catch clauses

section is executed, followed by execution of the finally block.

Figure 11-5. Execution of the finally block

The finally block will always be executed before returning to the calling code, even if a try block
has a return statement or an exception is thrown in the catch block. For example, in the following code,
there is a return statement in the middle of the try block that is executed under certain conditions. This
does not allow it to bypass the finally statement.

 try
 {
 if (inVal < 10) {
 Console.Write("First Branch - ");
 return;
 }
 else
 Console.Write("Second Branch - ");
 }
 finally
 { Console.WriteLine("In finally statement"); }

This code produces the following output when variable inVal has the value 5:

First Branch - In finally statement

CHAPTER 11 EXCEPTIONS

307

Finding a Handler for an Exception
When a program raises an exception, the system checks to see whether the program has provided a
handler for it. Figure 11-6 shows the flow of control.

• If the exception occurred inside a try block, the system will check to see whether any of the catch

clauses can handle the exception.

• If an appropriate catch clause is found, the one of the following happens:

— The catch clause is executed.

— If there is a finally block, it is executed.

— Execution continues after the end of the try statement (that is, after the finally block, or
after the last catch clause if there is no finally block).

Figure 11-6. Exception with handler in current try statement

CHAPTER 11 EXCEPTIONS

308

Searching Further
If the exception was raised in a section of code that was not guarded by a try statement or if the try
statement does not have a matching exception handler, the system will have to look further for a
matching handler. It will do this by searching down the call stack, in sequence, to see whether there is an
enclosing try block with a matching handler.

Figure 11-7 illustrates the search process. On the left of the figure is the calling structure of the code,
and on the right is the call stack. The figure shows that Method2 is called from inside the try block of
Method1. If an exception occurs inside the try block in Method2, the system does the following:

• First, it checks to see whether Method2 has exception handlers that can handle the exception.

— If so, Method2 handles it, and program execution continues.

— If not, the system continues down the call stack to Method1, searching for an appropriate
handler.

• If Method1 has an appropriate catch clause, the system does the following:

— Goes back to the top of the call stack—which is Method2

— Executes Method2’s finally block and pops Method2 off the stack

— Executes Method1’s catch clause and its finally block

• If Method1 doesn’t have an appropriate catch clause, the system continues searching down the

call stack.

Figure 11-7. Searching down the call stack

CHAPTER 11 EXCEPTIONS

309

General Algorithm

Figure 11-8 shows the general algorithm for handling an exception.

Figure 11-8. The general algorithm for handling an exception

CHAPTER 11 EXCEPTIONS

310

Example of Searching Down the Call Stack

In the following code, Main starts execution and calls method A, which calls method B. A description and
diagram of the process are given after the code and in Figure 11-9.

 class Program
 {
 static void Main()
 {
 MyClass MCls = new MyClass();
 try
 { MCls.A(); }
 catch (DivideByZeroException e)
 { Console.WriteLine("catch clause in Main()"); }
 finally
 { Console.WriteLine("finally clause in Main()"); }
 Console.WriteLine("After try statement in Main.");
 Console.WriteLine(" -- Keep running.");
 }
 }

 class MyClass
 {
 public void A()
 {
 try
 { B(); }
 catch (System.NullReferenceException)
 { Console.WriteLine("catch clause in A()"); }
 finally
 { Console.WriteLine("finally clause in A()"); }
 }

 void B()
 {
 int x = 10, y = 0;
 try
 { x /= y; }
 catch (System.IndexOutOfRangeException)
 { Console.WriteLine("catch clause in B()"); }
 finally
 { Console.WriteLine("finally clause in B()"); }
 }
 }

CHAPTER 11 EXCEPTIONS

311

This code produces the following output:

finally clause in B()
finally clause in A()
catch clause in Main()
finally clause in Main()
After try statement in Main.
 -- Keep running.

1. Main calls A, which calls B, which encounters a DivideByZeroException exception.

2. The system checks B’s catch section for a matching catch clause. Although it has one for

IndexOutOfRangeException, it doesn’t have one for DivideByZeroException.

3. The system then moves down the call stack and checks A’s catch section, where it finds that A

also doesn’t have a matching catch clause.

4. The system continues down the call stack and checks Main’s catch clause section, where it

finds that Main does have a DivideByZeroException catch clause.

5. Although the matching catch clause has now been located, it is not executed yet. Instead, the

system goes back to the top of the stack, executes B’s finally clause, and pops B from the call

stack.

6. The system then moves to A, executes its finally clause, and pops A from the call stack.

7. Finally, Main’s matching catch clause is executed, followed by its finally clause. Execution

then continues after the end of Main’s try statement.

CHAPTER 11 EXCEPTIONS

312

Figure 11-9. Searching the stack for an exception handler

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 EXCEPTIONS

313

Throwing Exceptions
You can make your code explicitly raise an exception by using the throw statement. The syntax for the
throw statement is the following:

 throw ExceptionObject;

For example, the following code defines a method called PrintArg, which takes a string argument
and prints it out. Inside the try block, it first checks to make sure the argument is not null. If it is, it
creates an ArgumentNullException instance and throws it. The exception instance is caught in the catch
statement, and the error message is printed. Main calls the method twice: once with a null argument and
then with a valid argument.

 class MyClass
 {
 public static void PrintArg(string arg)
 {
 try
 {
 if (arg == null) Supply name of null argument
 { ↓
 ArgumentNullException myEx = new ArgumentNullException("arg");
 throw myEx;
 }
 Console.WriteLine(arg);
 }
 catch (ArgumentNullException e)
 {
 Console.WriteLine("Message: {0}", e.Message);
 }
 }
 }
 class Program
 {
 static void Main()
 {
 string s = null;
 MyClass.PrintArg(s);
 MyClass.PrintArg("Hi there!");
 }
 }

This code produces the following output:

Message: Value cannot be null.
Parameter name: arg
Hi there!

CHAPTER 11 EXCEPTIONS

314

Throwing Without an Exception Object
The throw statement can also be used without an exception object, inside a catch block.

• This form rethrows the current exception, and the system continues its search for additional

handlers for it.

• This form can be used only inside a catch statement.

For example, the following code rethrows the exception from inside the first catch clause:

 class MyClass
 {
 public static void PrintArg(string arg)
 {
 try
 {
 try
 {
 if (arg == null) Supply name of null argument
 { ↓
 ArgumentNullException myEx = new ArgumentNullException("arg");
 throw myEx;
 }
 Console.WriteLine(arg);
 }
 catch (ArgumentNullException e)
 {
 Console.WriteLine("Inner Catch: {0}", e.Message);
 throw;
 } ↑
 } Rethrow the exception, with no additional parameters
 catch
 {
 Console.WriteLine("Outer Catch: Handling an Exception.");
 }
 }
 }

 class Program {
 static void Main() {
 string s = null;
 MyClass.PrintArg(s);
 }
 }

CHAPTER 11 EXCEPTIONS

315

This code produces the following output:

Inner Catch: Value cannot be null.
Parameter name: arg
Outer Catch: Handling an Exception.

C H A P T E R 12

317

Structs

 What Are Structs?

 Structs Are Value Types

 Assigning to a Struct

 Constructors and Destructors

 Field Initializers Are Not Allowed

 Structs Are Sealed

 Boxing and Unboxing

 Structs As Return Values and Parameters

 Additional Information About Structs

CHAPTER 12 STRUCTS

318

What Are Structs?
Structs are programmer-defined data types, very similar to classes. They have data members and
function members. Although similar to classes, there are a number of important differences. The most
important ones are the following:

• Classes are reference types, and structs are value types.

• Structs are implicitly sealed, which means they cannot be derived from.

The syntax for declaring a struct is similar to that of declaring a class:

 Keyword
 ↓
 struct StructName
 {
 MemberDeclarations
 }

For example, the following code declares a struct named Point. It has two public fields, named X and
Y. In Main, three variables of struct type Point are declared, and their values are assigned and printed out.

 struct Point
 {
 public int X;
 public int Y;
 }

 class Program
 {
 static void Main()
 {
 Point first, second, third;

 first.X = 10; first.Y = 10;
 second.X = 20; second.Y = 20;
 third.X = first.X + second.X;
 third.Y = first.Y + second.Y;

 Console.WriteLine("first: {0}, {1}", first.X, first.Y);
 Console.WriteLine("second: {0}, {1}", second.X, second.Y);
 Console.WriteLine("third: {0}, {1}", third.X, third.Y);
 }
 }

CHAPTER 12 STRUCTS

319

Structs Are Value Types
As with all value types, a variable of a struct type contains its own data. Consequently:

• A variable of a struct type cannot be null.

• Two structs variables cannot refer to the same object.

For example, the following code declares a class called CSimple, a struct called Simple, and a variable
of each. Figure 12-1 shows how the two would be arranged in memory.

 class CSimple
 {
 public int X;
 public int Y;
 }

 struct Simple
 {
 public int X;
 public int Y;
 }

 class Program
 {
 static void Main()
 {
 CSimple cs = new CSimple();
 Simple ss = new Simple();
 ...

Figure 12-1. Memory arrangement of a class versus a struct

CHAPTER 12 STRUCTS

320

Assigning to a Struct
Assigning one struct to another copies the values from one to the other. This is quite different from
copying from a class variable, where only the reference is copied.

Figure 12-2 shows the difference between the assignment of a class variable and a struct variable.
Notice that after the class assignment, cs2 is pointing at the same object in the heap as cs1. But after the
struct assignment, the values of ss2’s members are copies of those in ss1.

 class CSimple
 { public int X; public int Y; }

 struct Simple
 { public int X; public int Y; }

 class Program
 {
 static void Main()
 {
 CSimple cs1 = new CSimple(), cs2 = null; // Class instances
 Simple ss1 = new Simple(), ss2 = new Simple(); // Struct instances

 cs1.X = ss1.X = 5; // Assign 5 to ss1.X and cs1.X
 cs1.Y = ss1.Y = 10; // Assign 10 to ss1.Y and cs1.Y

 cs2 = cs1; // Assign class instance
 ss2 = ss1; // Assign struct instance
 }
 }

Figure 12-2. Assigning a class variable and a struct variable

CHAPTER 12 STRUCTS

321

Constructors and Destructors
Structs can have instance and static constructors, but destructors are not allowed.

Instance Constructors
The language implicitly supplies a parameterless constructor for every struct. This constructor sets each
of the struct’s members to the default value for that type. Value members are set to their default values.
Reference members are set to null.

The predefined parameterless constructor exists for every struct—and you cannot delete or redefine
it. You can, however, create additional constructors, as long as they have parameters. Notice that this is
different from classes. For classes, the compiler will supply an implicit parameterless constructor only if
no other constructors are declared.

To call a constructor, including the implicit parameterless constructor, use the new operator. Notice
that the new operator is used even though the memory is not allocated from the heap.

For example, the following code declares a simple struct with a constructor that takes two int
parameters. Main creates two instances of the struct—one using the implicit parameterless constructor
and the second with the declared two-parameter constructor.

 struct Simple
 {
 public int X;
 public int Y;

 public Simple(int a, int b) // Constructor with parameters
 {
 X = a;
 Y = b;
 }
 }

 class Program
 {
 static void Main()
 { Call implicit constructor
 ↓
 Simple s1 = new Simple();
 Simple s2 = new Simple(5, 10);
 ↑
 Call constructor
 Console.WriteLine("{0},{1}", s1.X, s1.Y);
 Console.WriteLine("{0},{1}", s2.X, s2.Y);
 }
 }

CHAPTER 12 STRUCTS

322

You can also create an instance of a struct without using the new operator. If you do this, however,
there are some restrictions, which are the following:

• You cannot use the value of a data member until you have explicitly set it.

• You cannot call any function member of the struct until all the data members have been

assigned.

For example, the following code shows two instances of struct Simple created without using the
new operator. When there is an attempt to access s1 without explicitly setting the data member values,
the compiler produces an error message. There are no problems reading from s2 after assigning values
to its members.

 struct Simple
 {
 public int X;
 public int Y;
 }

 class Program
 {
 static void Main()
 { No constructor calls
 ↓ ↓
 Simple s1, s2;
 Console.WriteLine("{0},{1}", s1.X, s1.Y); // Compiler error
 ↑ ↑
 s2.X = 5; Not yet assigned
 s2.Y = 10;
 Console.WriteLine("{0},{1}", s2.X, s2.Y); // OK
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 STRUCTS

323

Static Constructors
As with classes, the static constructors of structs create and initialize the static data members and cannot
reference instance members. Static constructors for structs follow the same rules as those for classes.

A static constructor is called before the first of either of the following two actions:

• A call to an explicitly declared constructor

• A reference to a static member of the struct

Summary of Constructors and Destructors
Table 12-1 summarizes the use of constructors and destructors with structs.

Table 12-1. Summary of Constructors and Destructors

Type Description

Instance constructor (parameterless) Cannot be declared in the program. An implicit
constructor is supplied by the system for all structs. It
cannot be deleted or redefined by the program.

Instance constructor (with parameters) Can be declared in the program.

Static constructor Can be declared in the program.

Destructor Cannot be declared in the program. Destructors are not
allowed.

CHAPTER 12 STRUCTS

324

Field Initializers Are Not Allowed
Field initializers are not allowed in struct declarations, as shown in the following code:

 struct Simple
 { Not allowed
 ↓
 public int x = 0; // Compile error
 public int y = 10; // Compile error
 } ↑
 Not allowed

Structs Are Sealed
Structs are always implicitly sealed, and hence you cannot derive other structs from them.

Since structs do not support inheritance, the use of several of the class member modifiers with
struct members would not make sense; thus, they cannot be used in their declarations. The modifiers
that cannot be used with structs are the following:

• protected

• internal

• abstract

• virtual

Structs themselves are, under the covers, derived from System.ValueType, which is derived
from object.

The two inheritance-associated keywords you can use with struct members are the new and override
modifiers, when creating a member with the same name as a member of base class System.ValueType,
from which all structs are derived.

Boxing and Unboxing
As with other value type data, if you want to use a struct instance as a reference type object, you must
make a boxed copy. Boxing and unboxing are explained in Chapter 18.

CHAPTER 12 STRUCTS

325

Structs As Return Values and Parameters
Structs can be used as return values and parameters.

• Return value: When a struct is a return value, a copy is created and returned from the

function member.

• Value parameter: When a struct is used as a value parameter, a copy of the actual parameter

struct is created. The copy is used in the execution of the method.

• ref and out parameters: If you use a struct as a ref or out parameter, a reference to the struct is

passed into the method so that the data members can be changed.

Additional Information About Structs
Allocating structs requires less overhead than creating instances of a class, so using structs instead of
classes can sometimes improve performance—but beware of the high cost of boxing and unboxing.

Finally, some last things you should know about structs are the following:

• The predefined simple types (int, short, long, and so on), although considered primitives in .NET

and C#, are all actually implemented under the covers in .NET as structs.

• You can declare partial structs in the same way as partial classes, as described in Chapter 6.

Structs, like classes, can implement interfaces, which will be covered in Chapter 17.

C H A P T E R 13

327

Enumerations

 Enumerations

 Bit Flags

 More About Enums

CHAPTER 13 ENUMERATIONS

328

Enumerations
An enumeration, or enum, is a programmer-defined type, like a class or a struct.

• Like structs, enums are value types and therefore store their data directly, rather than separately,

with a reference and data.

• Enums have only one type of member: named constants with integral values.

The following code shows an example of the declaration of a new enum type called TrafficLight,
which contains three members. Notice that the list of member declarations is a comma-separated list;
there are no semicolons in an enum declaration.

 Keyword Enum name
 ↓ ↓
 enum TrafficLight
 {
 Green, ← Comma separated—no semicolons
 Yellow, ← Comma separated—no semicolons
 Red
 }

Every enum type has an underlying integral type, which by default is int.

• Each enum member is assigned a constant value of the underlying type.

• By default, the compiler assigns 0 to the first member and assigns each subsequent member the

value one more than the previous member.

For example, in the TrafficLight type, the compiler assigns the int values 0, 1, and 2 to members
Green, Yellow, and Red, respectively. In the output of the following code, you can see the underlying
member values by casting them to type int. Figure 13-1 illustrates their arrangement on the stack.

 TrafficLight t1 = TrafficLight.Green;
 TrafficLight t2 = TrafficLight.Yellow;
 TrafficLight t3 = TrafficLight.Red;

 Console.WriteLine("{0},\t{1}", t1, (int) t1);
 Console.WriteLine("{0},\t{1}", t2, (int) t2);
 Console.WriteLine("{0},\t{1}\n", t3, (int) t3);
 ↑
 Cast to int

CHAPTER 13 ENUMERATIONS

329

This code produces the following output:

Green, 0
Yellow, 1
Red, 2

Figure 13-1. The member constants of an enum are represented by underlying integral values.

You can assign enum values to variables of the enum type. For example, the following code shows
the declaration of three variables of type TrafficLight. Notice that you can assign member literals to
variables, or you can copy the value from another variable of the same type.

 class Program
 {
 static void Main()
 { Type Variable Member
 ↓ ↓ ↓
 TrafficLight t1 = TrafficLight.Red; // Assign from member
 TrafficLight t2 = TrafficLight.Green; // Assign from member
 TrafficLight t3 = t2; // Assign from variable

 Console.WriteLine(t1);
 Console.WriteLine(t2);
 Console.WriteLine(t3);
 }
 }

This code produces the following output. Notice that the member names are printed as strings.

Red
Green
Green

CHAPTER 13 ENUMERATIONS

330

Setting the Underlying Type and Explicit Values
You can use an integral type other than int by placing a colon and the type name after the enum name.
The type can be any integer type. All the member constants are of the enum’s underlying type.

 Colon
 ↓
 enum TrafficLight : ulong
 { ↑
 ... Underlying type

The values of the member constants can be any values of the underlying type. To explicitly set the
value of a member, use an initializer after its name in the enum declaration. There can be duplicate
values, although not duplicate names, as shown here:

 enum TrafficLight
 {
 Green = 10,
 Yellow = 15, // Duplicate values
 Red = 15 // Duplicate values
 }

For example, the code in Figure 13-2 shows two equivalent declarations of enum TrafficLight.

• The code on the left accepts the default type and numbering.

• The code on the right explicitly sets the underlying type to int and the members to values

corresponding to the default values.

Figure 13-2. Equivalent enum declarations

CHAPTER 13 ENUMERATIONS

331

Implicit Member Numbering
You can explicitly assign the values for any of the member constants. If you don’t initialize a member
constant, the compiler implicitly assigns it a value. Figure 13-3 illustrates the rules the compiler uses for
assigning those values.

• The values associated with the member names do not need to be distinct.

Figure 13-3. The algorithm for assigning member values

For example, the following code declares two enumerations. CardSuit accepts the implicit
numbering of the members, as shown in the comments. FaceCards sets some members explicitly and
accepts implicit numbering of the others.

 enum CardSuit
 {
 Hearts, // 0 - Since this is first
 Clubs, // 1 - One more than the previous one
 Diamonds, // 2 - One more than the previous one
 Spades, // 3 - One more than the previous one
 MaxSuits // 4 - A common way to assign a constant
 } // to the number of listed items.

 enum FaceCards
 {
 // Member // Value assigned
 Jack = 11, // 11 - Explicitly set
 Queen, // 12 - One more than the previous one
 King, // 13 - One more than the previous one
 Ace, // 14 - One more than the previous one
 NumberOfFaceCards = 4, // 4 - Explicitly set
 SomeOtherValue, // 5 - One more than the previous one
 HighestFaceCard = Ace // 14 - Ace is defined above
 }

CHAPTER 13 ENUMERATIONS

332

Bit Flags
Programmers have long used the different bits in a single word as a compact way of representing a set of
on/off flags. Enums offer a convenient way to implement this.

The general steps are the following:

1. Determine how many bit flags you need, and choose an unsigned integral type with enough

bits to hold them.

2. Determine what each bit position represents, and give it a name. Declare an enum of the

chosen integral type, with each member represented by a bit position.

3. Use the bitwise OR operator to set the appropriate bits in a word holding the bit flags.

4. Unpack the bit flags by using the bitwise AND operator, or the HasFlag method.

For example, the following code shows the enum declaration representing the options for a card
deck in a card game. The underlying type, uint, is more than sufficient to hold the four bit flags needed.
Notice the following about the code:

• The members have names that represent binary options.

— Each option is represented by a particular bit position in the word. Bit positions hold either a
0 or a 1.

— Since a bit flag represents a set of bits that are either on or off, you do not want to use 0 as a
member value. It already has a meaning—that all the bit flags are off.

• Hexadecimal representation is often used when working with bit patterns because there is a more

direct correlation between a bit pattern and its hexadecimal representation than with its decimal

representation.

• Decorating the enum with the Flags attribute is not actually necessary but gives some additional

convenience, which I’ll discuss shortly. Attributes are covered in Chapter 24.

 [Flags]
 enum CardDeckSettings : uint
 {
 SingleDeck = 0x01, // Bit 0
 LargePictures = 0x02, // Bit 1
 FancyNumbers = 0x04, // Bit 2
 Animation = 0x08 // Bit 3
 }

Figure 13-4 illustrates this enumeration.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 ENUMERATIONS

333

Figure 13-4. Definition of the flag bits, and their individual representations

To create a word with the appropriate bit flags, declare a variable of the enum type, and use
the bitwise OR operator to set the required bits. For example, the following code sets three of the
four options:

 Enum type Flag word Bit flags ORed together
 ↓ ↓ ↓
 CardDeckSettings ops = CardDeckSettings.SingleDeck
 | CardDeckSettings.FancyNumbers
 | CardDeckSettings.Animation ;

Prior to C# 4.0, to determine whether a particular bit was set, you would use the bitwise AND
operator with the flag word and the bit flag.

For example, the following code checks a value to see whether the FancyNumbers bit flag is set. It
does this by ANDing that value with the bit flag and then comparing that result with the bit flag. If the
bit was set in the original value, then the result of the AND operation will have the same bit pattern as
the bit flag.

 bool useFancyNumbers =
 (ops & CardDeckSettings.FancyNumbers) == CardDeckSettings.FancyNumbers;
 ↑ ↑
 Flag word Bit flag

Figure 13-5 illustrates the process of creating the flag word and then checking whether a particular
bit is set.

Figure 13-5. Producing a flag word and checking it for a particular bit flag

CHAPTER 13 ENUMERATIONS

334

This process of checking a flag word for a particular bit or set of bits is such a common task that C#
4.0 introduced a new instance method to the enum type to do the process for you. The method is called
HasFlag. You use it on an instance of a flag word and pass it the bit flag you want to check for.

For example, the previous check for useFancyNumbers can be significantly shortened and simplified
to the following statement:

 UseFancyNumbers = ops.HasFlag(CardDeckSettings.FancyNumbers);
 ↑ ↑
 Flag word Bit flag

The HasFlag method can also check for multiple bit flags. For example, the following code checks
whether the flag word, ops, has both the Animation and FancyNumbers bits set. The code does the
following:

• The first statement creates a test word instance, called testFlags, with the Animation and

FancyNumbers bits set.

• It then passes testFlags as the parameter to the HasFlags method.

• HasFlags checks whether all the flags that are set in the test word are also set in the flag word, ops.

If they are, then HasFlag returns true. Otherwise, it returns false.

 CardDeckSettings testFlags =
 CardDeckSettings.Animation | CardDeckSettings.FancyNumbers;

 UseAnimationAndFancyNumbers = ops.HasFlag(testFlags);
 ↑ ↑
 Flag word Test word

CHAPTER 13 ENUMERATIONS

335

The Flags Attribute
We’ll cover attributes in Chapter 24, but it’s worth mentioning the Flags attribute here. An attribute
appears as a string between square brackets placed on the line above a class declaration. The Flags
attribute does not change the calculations at all. It does, however, provide several convenient features.

First, it informs the compiler, object browsers, and other tools looking at the code that the members
of the enum are meant to be combined as bit flags, rather than used only as separate values. This allows
the browsers to interpret variables of the enum type more appropriately.

Second, it allows the ToString method of an enum to provide more appropriate formatting for the
values of bit flags. The ToString method takes an enum value and compares it to the values of the
constant members of the enum. If it matches one of the members, ToString returns the string name of
the member.

Suppose, for example, that you have used the enum declaration for CardDeckSettings (given in the
preceding code) and have not used the Flags attribute. The first line of the following code creates a
variable (named ops) of the enum type and sets the value of a single flag bit. The second line uses
ToString to get the string name of the member represented by that value.

 CardDeckSettings ops = CardDeckSettings.FancyNumbers; // Set the bit flag.
 Console.WriteLine(ops.ToString()); // Print its name.

This code produces the following output:

FancyNumbers

CHAPTER 13 ENUMERATIONS

336

That’s all well and good, but suppose you set two bit flags instead of one, as in the following code.
Suppose also that you didn't use the Flags attribute on the enum declaration.

 // Set two bit flags.
 ops = CardDeckSettings.FancyNumbers | CardDeckSettings.Animation;
 Console.WriteLine(ops.ToString()); // Print what?

The resulting value of ops is 12, where 4 is from the FancyNumbers flag and 8 is from the Animation
flag. In the second line, when ToString attempts to look up the value in the list of enum members, it
finds that there is no member with the value 12—so it just returns the string representing 12. The
resulting output is the following:

12

If, however, you change your code to use the Flags attribute before the declaration of the enum, this
tells the ToString method that the bits can be considered separately. In looking up the value, it would
find that 12 corresponds to the two bit flag members FancyNumbers and Animation. It would then return
the string containing their names, separated by a comma and space, as shown here:

FancyNumbers, Animation

CHAPTER 13 ENUMERATIONS

337

Example Using Bit Flags
The following code puts together all the pieces of using bit flags:

 [Flags]
 enum CardDeckSettings : uint
 {
 SingleDeck = 0x01, // bit 0
 LargePictures = 0x02, // bit 1
 FancyNumbers = 0x04, // bit 2
 Animation = 0x08 // bit 3
 }

 class MyClass
 {
 bool UseSingleDeck = false,
 UseBigPics = false,
 UseFancyNumbers = false,
 UseAnimation = false,
 UseAnimationAndFancyNumbers = false;

 public void SetOptions(CardDeckSettings ops)
 {
 UseSingleDeck = ops.HasFlag(CardDeckSettings.SingleDeck);
 UseBigPics = ops.HasFlag(CardDeckSettings.LargePictures);
 UseFancyNumbers = ops.HasFlag(CardDeckSettings.FancyNumbers);
 UseAnimation = ops.HasFlag(CardDeckSettings.Animation);

 CardDeckSettings testFlags =
 CardDeckSettings.Animation | CardDeckSettings.FancyNumbers;
 UseAnimationAndFancyNumbers = ops.HasFlag(testFlags);
 }

 public void PrintOptions()
 {
 Console.WriteLine("Option settings:");
 Console.WriteLine(" Use Single Deck - {0}", UseSingleDeck);
 Console.WriteLine(" Use Large Pictures - {0}", UseBigPics);
 Console.WriteLine(" Use Fancy Numbers - {0}", UseFancyNumbers);
 Console.WriteLine(" Show Animation - {0}", UseAnimation);
 Console.WriteLine(" Show Animation and FancyNumbers - {0}",
 UseAnimationAndFancyNumbers);
 }
 }

CHAPTER 13 ENUMERATIONS

338

 class Program
 {
 static void Main(string[] args)
 {
 MyClass mc = new MyClass();
 CardDeckSettings ops = CardDeckSettings.SingleDeck
 | CardDeckSettings.FancyNumbers
 | CardDeckSettings.Animation;
 mc.SetOptions(ops);
 mc.PrintOptions();
 }
 }

This code produces the following output:

Option settings:
 Use Single Deck - True
 Use Large Pictures - False
 Use Fancy Numbers - True
 Show Animation - True
 Show Animation and FancyNumbers - True

CHAPTER 13 ENUMERATIONS

339

More About Enums
Enums have only a single member type: the declared member constants.

• You cannot use modifiers with the members. They all implicitly have the same accessibility as

the enum.

• Since the members are static, they are accessible even if there are no variables of the enum type.

Use the enum type name, followed by a dot and the member name.

For example, the following code does not create any variables of the enum TrafficLight type, but
the members are accessible and can be printed using WriteLine.

 static void Main()
 {
 Console.WriteLine("{0}", TrafficLight.Green);
 Console.WriteLine("{0}", TrafficLight.Yellow);
 Console.WriteLine("{0}", TrafficLight.Red);
 } ↑ ↑
 Enum name Member name

CHAPTER 13 ENUMERATIONS

340

An enum is a distinct type. Comparing enum members of different enum types results in a compile-
time error. For example, the following code declares two enum types.

• The first if statement is fine because it compares different members from the same enum type.

• The second if statement produces an error because it compares members from different enum

types, even though their structures and member names are exactly the same.

 enum FirstEnum // First enum type
 {
 Mem1,
 Mem2
 }

 enum SecondEnum // Second enum type
 {
 Mem1,
 Mem2
 }

 class Program
 {
 static void Main()
 {
 if (FirstEnum.Mem1 < FirstEnum.Mem2) // OK--members of same enum type
 Console.WriteLine("True");

 if (FirstEnum.Mem1 < SecondEnum.Mem1) // Error--different enum types
 Console.WriteLine("True");
 }
 }

C H A P T E R 14

341

Arrays

 Arrays

 Types of Arrays

 An Array As an Object

 One-Dimensional and Rectangular Arrays

 Instantiating a One-Dimensional or Rectangular Array

 Accessing Array Elements

 Initializing an Array

 Jagged Arrays

 Comparing Rectangular and Jagged Arrays

 The foreach Statement

 Array Covariance

 Useful Inherited Array Members

 Comparing Array Types

CHAPTER 14 ARRAYS

342

Arrays
An array is a set of uniform data elements, represented by a single variable name. The individual
elements are accessed using the variable name together with one or more indexes between square
brackets, as shown here:

 Array name Index
 ↓ ↓
 MyArray[4]

Definitions
Let’s start with some important definitions having to do with arrays in C#.

• Elements: The individual data items of an array are called elements. All elements of an array must

be of the same type or derived from the same type.

• Rank/dimensions: Arrays can have any positive number of dimensions. The number of

dimensions an array has is called its rank.

• Dimension length: Each dimension of an array has a length, which is the number of positions in

that direction.

• Array length: The total number of elements contained in an array, in all dimensions, is called the

length of the array.

Important Details
The following are some important general facts about C# arrays:

• Once an array is created, its size is fixed. C# does not support dynamic arrays.

• Array indexes are 0-based. That is, if the length of a dimension is n, the index values range from 0

to n – 1. For example, Figure 14-1 shows the dimensions and lengths of two example arrays.

Notice that for each dimension, the indexes range from 0 to length – 1.

Figure 14-1. Dimensions and sizes

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 ARRAYS

343

Types of Arrays
C# provides two kinds of arrays:

• One-dimensional arrays can be thought of as a single line, or vector, of elements.

• Multidimensional arrays are composed such that each position in the primary vector is itself an

array, called a subarray. Positions in the subarray vectors can themselves be subarrays.

Additionally, there are two types of multidimensional arrays, rectangular arrays and jagged arrays,
which have the following characteristics:

• Rectangular arrays

— Are multidimensional arrays where all the subarrays in a particular dimension have the same
length

— Always use a single set of square brackets, regardless of the number of dimensions

 int x = myArray2[4, 6, 1] // One set of square brackets

• Jagged arrays

— Are multidimensional arrays where each subarray is an independent array

— Can have subarrays of different lengths

— Use a separate set of square brackets for each dimension of the array

 jagArray1[2][7][4] // Three sets of square brackets

Figure 14-2 shows the kinds of arrays available in C#.

Figure 14-2. One-dimensional, rectangular, and jagged arrays

CHAPTER 14 ARRAYS

344

An Array As an Object
An array instance is an object whose type derives from class System.Array. Since arrays are derived from
this BCL base class, they inherit a number of useful members from it, such as the following:

• Rank: A property that returns the number of dimensions of the array

• Length: A property that returns the length (the total number of elements)of the array

Arrays are reference types, and as with all reference types, they have both a reference to the data and
the data object itself. The reference is in either the stack or the heap, and the data object itself will always
be in the heap. Figure 14-3 shows the memory configuration and components of an array.

Figure 14-3. Structure of an array

Although an array is always a reference type, the elements of the array can be either value types or
reference types.

• An array is called a value type array if the elements stored are value types.

• An array is called a reference type array if the elements stored in the array are references of

reference type objects.

Figure 14-4 shows a value type array and a reference type array.

Figure 14-4. Elements can be values or references.

CHAPTER 14 ARRAYS

345

One-Dimensional and Rectangular Arrays
Syntactically, one-dimensional arrays and rectangular arrays are very similar, so I’ll treat them together.
I’ll then treat jagged arrays separately.

Declaring a One-Dimensional Array or a Rectangular Array
To declare a one-dimensional or rectangular array, use a single set of square brackets between the type
and the variable name.

The rank specifiers are commas between the brackets. They specify the number of dimensions the
array will have. The rank is the number of commas, plus one. For example, no commas indicates a one-
dimensional array, one comma indicates a two-dimensional array, and so forth.

The base type, together with the rank specifiers, is the type of the array. For example, the following
line of code declares a one-dimensional array of longs. The type of the array is long[], which is read as
“an array of longs.”

 Rank specifiers = 1
 ↓
 long[] secondArray;
 ↑
 Array type

The following code shows examples of declarations of rectangular arrays. Notice the following:

• You can have as many rank specifiers as you need.

• You cannot place array dimension lengths in the array type section. The rank is part of the array’s

type, but the lengths of the dimensions are not part of the type.

• When an array is declared, the number of dimensions is fixed. The length of the dimensions,

however, is not determined until the array is instantiated.

 Rank specifiers
 ↓
 int[,,] firstArray; // Array type: 3-D array of int
 int[,] arr1; // Array type: 2-D array of int
 long[,,] arr3; // Array type: 3-D array of long
 ↑
 Array type

 long[3,2,6] SecondArray; // Wrong! Compile error
 ↑ ↑ ↑
 Dimension lengths not allowed!

 Note Unlike C/C++, the brackets follow the base type, not the variable name.

CHAPTER 14 ARRAYS

346

Instantiating a One-Dimensional or Rectangular Array
To instantiate an array, you use an array-creation expression. An array-creation expression consists of
the new operator, followed by the base type, followed by a pair of square brackets. The length of each
dimension is placed in a comma-separated list between the brackets.

The following are examples of one-dimensional array declarations:

• Array arr2 is a one-dimensional array of four ints.

• Array mcArr is a one-dimensional array of four MyClass references.

• Figure 14-5 shows their layouts in memory.

 Four elements
 ↓
 int[] arr2 = new int[4];
 MyClass[] mcArr = new MyClass[4];
 ↑
 Array-creation expression

The following is an example of a rectangular array. Array arr3 is a three-dimensional array.

• The length of the array is 3 * 6 * 2 = 36.

• Figure 14-5 shows its layout in memory.

 Lengths of the dimensions
 ↓
 int[,,] arr3 = new int[3,6,2] ;

Figure 14-5. Declaring and instantiating arrays

 Note Unlike object-creation expressions, array-creation expressions do not contain parentheses—even for

reference type arrays.

CHAPTER 14 ARRAYS

347

Accessing Array Elements
An array element is accessed using an integer value as an index into the array.

• Each dimension uses 0-based indexing.

• The index is placed between square brackets following the array name.

The following code shows examples of declaring, writing to, and reading from a one-dimensional
and a two-dimensional array:

 int[] intArr1 = new int[15]; // Declare 1-D array.
 intArr1[2] = 10; // Write to element 2 of the array.
 int var1 = intArr1[2]; // Read from element 2 of the array.

 int[,] intArr2 = new int[5,10]; // Declare 2-D array.
 intArr2[2,3] = 7; // Write to the array.
 int var2 = intArr2[2,3]; // Read from the array.

The following code shows the full process of creating and accessing a one-dimensional array:

 int[] myIntArray; // Declare the array.

 myIntArray = new int[4]; // Instantiate the array.

 for(int i=0; i<4; i++) // Set the values.
 myIntArray[i] = i*10;

 // Read and display the values of each element.
 for(int i=0; i<4; i++)
 Console.WriteLine("Value of element {0} = {1}", i, myIntArray[i]);

This code produces the following output:

Value of element 0 is 0
Value of element 1 is 10
Value of element 2 is 20
Value of element 3 is 30

CHAPTER 14 ARRAYS

348

Initializing an Array
Whenever an array is created, each of the elements is automatically initialized to the default value for the
type. The default values for the predefined types are 0 for integer types, 0.0 for floating-point types,
false for Booleans, and null for reference types.

For example, the following code creates an array and initializes its four elements to the value 0.
Figure 14-6 illustrates the layout in memory.

 int[] intArr = new int[4];

Figure 14-6. Automatic initialization of a one-dimensional array

Explicit Initialization of One-Dimensional Arrays
For a one-dimensional array, you can set explicit initial values by including an initialization list
immediately after the array-creation expression of an array instantiation.

• The initialization values must be separated by commas and enclosed in a set of curly braces.

• The dimension lengths are optional, since the compiler will infer the lengths from the number of

initializing values.

• Notice that nothing separates the array-creation expression and the initialization list. That is,

there is no equals sign or other connecting operator.

For example, the following code creates an array and initializes its four elements to the values
between the curly braces. Figure 14-7 illustrates the layout in memory.

 Initialization list
 ↓
 int[] intArr = new int[] { 10, 20, 30, 40 };
 ↑
 No connecting operator

Figure 14-7. Explicit initialization of a one-dimensional array

CHAPTER 14 ARRAYS

349

Explicit Initialization of Rectangular Arrays
To explicitly initialize a rectangular array, you need to follow these rules:

• Each vector of initial values must be enclosed in curly braces.

• Each dimension must also be nested and enclosed in curly braces.

• In addition to the initial values, the initialization lists and components of each dimension must

also be separated by commas.

For example, the following code shows the declaration of a two-dimensional array with an
initialization list. Figure 14-8 illustrates the layout in memory.

 Initialization lists separated by commas
 ↓ ↓
 int[,] intArray2 = new int[,] { {10, 1}, {2, 10}, {11, 9} } ;

Figure 14-8. Initializing a rectangular array

Syntax Points for Initializing Rectangular Arrays
Rectangular arrays are initialized with nested, comma-separated initialization lists. The initialization
lists are nested in curly braces. This can sometimes be confusing, so to get the nesting, grouping, and
commas right, the following tips might be helpful:

• Commas are used as separators between all elements and groups.

• Commas are not placed between left curly braces.

• Commas are not placed before a right curly brace.

• Read the rank specifications from left to right, designating the last number as “elements” and all

the others as “groups.”

CHAPTER 14 ARRAYS

350

For example, read the following declaration as “intArray has four groups of three groups of two
elements.”

 Initialization lists, nested and separated by commas
 int[,,] intArray = new int[4,3,2] { ↓ ↓ ↓
 { {8, 6}, {5, 2}, {12, 9} },
 { {6, 4}, {13, 9}, {18, 4} },
 { {7, 2}, {1, 13}, {9, 3} },
 { {4, 6}, {3, 2}, {23, 8} }
 };

Shortcut Syntax
When combining declaration, array creation, and initialization in a single statement, you can omit the
array-creation expression part of the syntax entirely and provide just the initialization portion. Figure
14-9 shows this shortcut syntax.

Figure 14-9. Shortcut for array declaration, creation, and initialization

CHAPTER 14 ARRAYS

351

Implicitly Typed Arrays
So far, we’ve explicitly specified the array types at the beginnings of all our array declarations. But, like
other local variables, your arrays can also be implicitly typed. This means the following:

• When initializing an array, you can let the compiler infer the array’s type from the type of

the initializers. This is allowed as long as all the initializers can be implicitly converted to a

single type.

• Just as with implicitly typed local variables, use the keyword var instead of the array type.

The following code shows explicit and implicit versions of three array declarations. The first set is a
one-dimensional array of ints. The second is a two-dimensional array of ints. The third is an array of
strings. Notice that in the declaration of implicitly typed intArr4 you still need to include the rank
specifier in the initialization.

 Explicit Explicit
 ↓ ↓
 int [] intArr1 = new int[] { 10, 20, 30, 40 };
 var intArr2 = new [] { 10, 20, 30, 40 };
 ↑ ↑
 Keyword Inferred
 int[,] intArr3 = new int[,] { { 10, 1 }, { 2, 10 }, { 11, 9 } };
 var intArr4 = new [,] { { 10, 1 }, { 2, 10 }, { 11, 9 } };
 ↑
 Rank specifier
 string[] sArr1 = new string[] { "life", "liberty", "pursuit of happiness" };
 var sArr2 = new [] { "life", "liberty", "pursuit of happiness" };

CHAPTER 14 ARRAYS

352

Putting It All Together
The following code puts together all the pieces we’ve looked at so far. It creates, initializes, and uses a
rectangular array.

 // Declare, create, and initialize an implicitly typed array.
 var arr = new int[,] {{0, 1, 2}, {10, 11, 12}};

 // Print the values.
 for(int i=0; i<2; i++)
 for(int j=0; j<3; j++)
 Console.WriteLine("Element [{0},{1}] is {2}", i, j, arr[i,j]);

This code produces the following output:

Element [0,0] is 0
Element [0,1] is 1
Element [0,2] is 2
Element [1,0] is 10
Element [1,1] is 11
Element [1,2] is 12

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 ARRAYS

353

Jagged Arrays
A jagged array is an array of arrays. Unlike rectangular arrays, the subarrays of a jagged array can have
different numbers of elements.

For example, the following code declares a two-dimensional jagged array. Figure 14-10 shows the
array’s layout in memory.

• The length of the first dimension is 3.

• The declaration can be read as “jagArr is an array of three arrays of ints.”

• Notice that the figure shows four array objects—one for the top-level array and three for the

subarrays.

int[][] jagArr = new int[3][]; // Declare and create top-level array.
 ... // Declare and create subarrays.

Figure 14-10. A jagged array is an array of arrays.

CHAPTER 14 ARRAYS

354

Declaring a Jagged Array
The declaration syntax for jagged arrays requires a separate set of square brackets for each dimension.
The number of sets of square brackets in the declaration of the array variable determines the rank of
the array.

• A jagged array can be of any number of dimensions greater than one.

• As with rectangular arrays, dimension lengths cannot be included in the array type section of

the declaration.

 Rank specifiers
 ↓
 int[][] SomeArr; // Rank = 2
 int[][][] OtherArr; // Rank = 3
 ↑ ↑
 Array type Array name

Shortcut Instantiation
You can combine the jagged array declaration with the creation of the first-level array using an array-
creation expression, such as in the following declaration. Figure 14-11 shows the result.

 Three subarrays
 ↓
 int[][] jagArr = new int[3][];

Figure 14-11. Shortcut first-level instantiation

You cannot instantiate more than the first-level array in the declaration statement.

 Allowed
 ↓
 int[][] jagArr = new int[3][4]; // Wrong! Compile error
 ↑
 Not allowed

CHAPTER 14 ARRAYS

355

Instantiating a Jagged Array
Unlike other types of arrays, you cannot fully instantiate a jagged array in a single step. Since a jagged
array is an array of independent arrays, each array must be created separately. Instantiating a full jagged
array requires the following steps:

1. Instantiate the top-level array.

2. Instantiate each subarray separately, assigning the reference of the newly created array to the

appropriate element of its containing array.

For example, the following code shows the declaration, instantiation, and initialization of a two-
dimensional jagged array. Notice in the code that the reference to each subarray is assigned to an
element in the top-level array. Steps 1 through 4 in the code correspond to the numbered
representations in Figure 14-12.

 int[][] Arr = new int[3][]; // 1. Instantiate top level

 Arr[0] = new int[] {10, 20, 30}; // 2. Instantiate subarray
 Arr[1] = new int[] {40, 50, 60, 70}; // 3. Instantiate subarray
 Arr[2] = new int[] {80, 90, 100, 110, 120}; // 4. Instantiate subarray

Figure 14-12. Creating a two-dimensional jagged array

CHAPTER 14 ARRAYS

356

Subarrays in Jagged Arrays
Since the subarrays in a jagged array are themselves arrays, It’s possible to have rectangular arrays inside
jagged arrays. For example, the following code creates a jagged array of three two-dimensional
rectangular arrays and initializes them with values. It then displays the values.

• Figure 14-13 illustrates the structure.

• The code uses the GetLength(int n) method of arrays, inherited from System.Array, to get the

length of the specified dimension of the array.

 int[][,] Arr; // An array of 2-D arrays
 Arr = new int[3][,]; // Instantiate an array of three 2-D arrays.

 Arr[0] = new int[,] { { 10, 20 }, { 100, 200 } };
 Arr[1] = new int[,] { { 30, 40, 50 }, { 300, 400, 500 } };
 Arr[2] = new int[,] { { 60, 70, 80, 90 }, { 600, 700, 800, 900 } };

 ↓ Get length of dimension 0 of Arr
 for (int i = 0; i < Arr.GetLength(0); i++)
 { ↓ Get length of dimension 0 of Arr[i]
 for (int j = 0; j < Arr[i].GetLength(0); j++)
 { ↓ Get length of dimension 1 of Arr[i]
 for (int k = 0; k < Arr[i].GetLength(1); k++) {
 Console.WriteLine
 ("[{0}][{1},{2}] = {3}", i, j, k, Arr[i][j, k]);
 }
 Console.WriteLine("");
 }
 Console.WriteLine("");
 }

Figure 14-13. Jagged array of three two-dimensional arrays

CHAPTER 14 ARRAYS

357

Comparing Rectangular and Jagged Arrays
The structure of rectangular and jagged arrays is significantly different. For example, Figure 14-14 shows
the structure of a rectangular three-by-three array, as well as a jagged array of three one-dimensional
arrays of length 3.

• Both arrays hold nine integers, but as you can see, their structures are quite different.

• The rectangular array has a single array object, while the jagged array has four array objects.

Figure 14-14. Comparing the structure of rectangular and jagged arrays

One-dimensional arrays have specific instructions in the CIL that allow them to be optimized for
performance. Rectangular arrays do not have these instructions and are not optimized to the same level.
Because of this, it can sometimes be more efficient to use jagged arrays of one-dimensional arrays—
which can be optimized—than rectangular arrays, which cannot.

On the other hand, the programming complexity can be less for a rectangular array because it can
be treated as a single unit, rather than an array of arrays.

CHAPTER 14 ARRAYS

358

The foreach Statement
The foreach statement allows you to sequentially access each element in an array. It’s actually a more
general construct in that it also works with other collection types as well—but this section only discusses
its use with arrays. Chapter 20 covers its use with other collection types.

The important points of the foreach statement are the following:

• The iteration variable is a temporary variable of the same type as the elements of the array. The

foreach statement uses the iteration variable to sequentially represent each element in the array.

• The syntax of the foreach statement is shown here, where

— Type is the type of the elements of the array. You can explicitly supply its type, or you can let
it be implicitly typed and inferred by the compiler, since the compiler knows the type of the
array.

— Identifier is the name of the iteration variable.

— ArrayName is the name of the array to be processed.

— Statement is a simple statement or a block that is executed once for each element in the
array.

 Explicitly typed iteration variable declaration
 ↓
 foreach(Type Identifier in ArrayName)
 Statement

 Implicitly typed iteration variable declaration
 ↓
 foreach(var Identifier in ArrayName)
 Statement

In the following text, I'll sometimes use implicit typing, and other times I’ll use explicit typing so
that you can see the exact type being used. But the forms are semantically equivalent.

CHAPTER 14 ARRAYS

359

The foreach statement works in the following way:

• It starts with the first element of the array and assigns that value to the iteration variable.

• It then executes the body of the statement. Inside the body, you can use the iteration variable as a

read-only alias for the array element.

• After the body is executed, the foreach statement selects the next element in the array and

repeats the process.

In this way, it cycles through the array, allowing you to access each element one by one. For
example, the following code shows the use of a foreach statement with a one-dimensional array of
four integers:

• The WriteLine statement, which is the body of the foreach statement, is executed once for each of

the elements of the array.

• The first time through the loop, iteration variable item has the value of the first element of the

array. Each successive time, it has the value of the next element in the array.

 int[] arr1 = {10, 11, 12, 13};
 Iteration variable declaration
 ↓ Iteration variable use
 foreach(int item in arr1) ↓
 Console.WriteLine("Item Value: {0}", item);

This code produces the following output:

Item Value: 10
Item Value: 11
Item Value: 12
Item Value: 13

CHAPTER 14 ARRAYS

360

The Iteration Variable Is Read-Only
Since the value of the iteration variable is read-only, clearly it cannot be changed. But this has different
effects on value type arrays and reference type arrays.

For value type arrays, this means you cannot change the data of the array. For example, in the
following code, the attempt to change the data in the iteration variable produces a compile-time
error message:

 int[] arr1 = {10, 11, 12, 13};

 foreach(int item in arr1)
 item++; // Compilation error. Changing variable value is not allowed.

For reference type arrays, you still cannot change the iteration variable, but the iteration variable
only holds the reference to the data, not the data itself. So although you cannot change the reference,
you can change the data through the iteration variable.

The following code creates an array of four MyClass objects and initializes them. In the first foreach
statement, the data in each of the objects is changed. In the second foreach statement, the changed data
is read from the objects.

 class MyClass
 {
 public int MyField = 0;
 }

 class Program {
 static void Main() {
 MyClass[] mcArray = new MyClass[4]; // Create array
 for (int i = 0; i < 4; i++)
 {
 mcArray[i] = new MyClass(); // Create class objects
 mcArray[i].MyField = i; // Set field
 }
 foreach (MyClass item in mcArray)
 item.MyField += 10; // Change the data.

 foreach (MyClass item in mcArray)
 Console.WriteLine("{0}", item.MyField); // Read the changed data.
 }
 }

This code produces the following output:

10
11
12
13

CHAPTER 14 ARRAYS

361

The foreach Statement with Multidimensional Arrays
In a multidimensional array, the elements are processed in the order in which the rightmost index is
incremented fastest. When the index has gone from 0 to length – 1, the next index to the left is
incremented, and the indexes to the right are reset to 0.

Example with a Rectangular Array
The following example shows the foreach statement used with a rectangular array:

 class Program
 {
 static void Main()
 {
 int total = 0;
 int[,] arr1 = { {10, 11}, {12, 13} };

 foreach(var element in arr1)
 {
 total += element;
 Console.WriteLine
 ("Element: {0}, Current Total: {1}", element, total);
 }
 }
 }

This code produces the following output:

Element: 10, Current Total: 10
Element: 11, Current Total: 21
Element: 12, Current Total: 33
Element: 13, Current Total: 46

CHAPTER 14 ARRAYS

362

Example with a Jagged Array
Since jagged arrays are arrays of arrays, you must use separate foreach statements for each dimension in
the jagged array. The foreach statements must be nested properly to make sure that each nested array is
processed properly.

For example, in the following code, the first foreach statement cycles through the top-level array—
arr1—selecting the next subarray to process. The inner foreach statement processes the elements of
that subarray.

 class Program
 {
 static void Main()
 {
 int total = 0;
 int[][] arr1 = new int[2][];
 arr1[0] = new int[] { 10, 11 };
 arr1[1] = new int[] { 12, 13, 14 };

 foreach (int[] array in arr1) // Process the top level.
 {
 Console.WriteLine("Starting new array");
 foreach (int item in array) // Process the second level.
 {
 total += item;
 Console.WriteLine(" Item: {0}, Current Total: {1}", item, total);
 }
 }
 }
 }

This code produces the following output:

Starting new array
 Item: 10, Current Total: 10
 Item: 11, Current Total: 21
Starting new array
 Item: 12, Current Total: 33
 Item: 13, Current Total: 46
 Item: 14, Current Total: 60

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 ARRAYS

363

Array Covariance
Under certain conditions, you can assign an object to an array element even if the object is not of the
array’s base type. This property of arrays is called array covariance. You can use array covariance if the
following are true:

• The array is a reference type array.

• There is an implicit or explicit conversion between the type of the object you are assigning and

the array’s base type.

Since there is always an implicit conversion between a derived class and its base class, you can
always assign an object of a derived class to an array declared for the base class.

For example, the following code declares two classes, A and B, where class B derives from class A. The
last line shows covariance by assigning objects of type B to array elements of type A. Figure 14-15 shows
the memory layout for the code.

 class A { ... } // Base class
 class B : A { ... } // Derived class

 class Program {
 static void Main() {
 // Two arrays of type A[]
 A[] AArray1 = new A[3];
 A[] AArray2 = new A[3];

 // Normal--assigning objects of type A to an array of type A
 AArray1[0] = new A(); AArray1[1] = new A(); AArray1[2] = new A();

 // Covariant--assigning objects of type B to an array of type A
 AArray2[0] = new B(); AArray2[1] = new B(); AArray2[2] = new B();
 }
 }

Figure 14-15. Arrays showing covariance

 Note There is no covariance for value type arrays.

CHAPTER 14 ARRAYS

364

Useful Inherited Array Members
I mentioned earlier that C# arrays are derived from class System.Array. From that base class they inherit
a number of useful properties and methods. Table 14-1 lists some of the most useful ones.

Table 14-1. Some Useful Members Inherited by Arrays

Member Type Lifetime Meaning

Rank Property Instance Gets the number of dimensions of the array

Length Property Instance Gets the total number of elements in all the dimensions
of the array

GetLength Method Instance Returns the length of a particular dimension of the array

Clear Method Static Sets a range of elements to 0 or null

Sort Method Static Sorts the elements in a one-dimensional array

BinarySearch Method Static Searches a one-dimensional array for a value, using
binary search

Clone Method Instance Performs a shallow copy of the array—copying only the
elements, both for arrays of value types and reference
types

IndexOf Method Static Returns the index of the first occurrence of a value in a
one-dimensional array

Reverse Method Static Reverses the order of the elements of a range of a one-
dimensional array

GetUpperBound Method Instance Gets the upper bound at the specified dimension

CHAPTER 14 ARRAYS

365

For example, the following code uses some of these properties and methods:

 public static void PrintArray(int[] a)
 {
 foreach (var x in a)
 Console.Write("{0} ", x);

 Console.WriteLine("");
 }

 static void Main()
 {
 int[] arr = new int[] { 15, 20, 5, 25, 10 };
 PrintArray(arr);

 Array.Sort(arr);
 PrintArray(arr);

 Array.Reverse(arr);
 PrintArray(arr);

 Console.WriteLine();
 Console.WriteLine("Rank = {0}, Length = {1}",arr.Rank, arr.Length);
 Console.WriteLine("GetLength(0) = {0}",arr.GetLength(0));
 Console.WriteLine("GetType() = {0}",arr.GetType());
 }

This code produces the following output:

15 20 5 25 10
5 10 15 20 25
25 20 15 10 5

Rank = 1, Length = 5
GetLength(0) = 5
GetType() = System.Int32[]

CHAPTER 14 ARRAYS

366

The Clone Method
The Clone method performs a shallow copy of an array. This means that it only creates a clone of the
array itself. If it is a reference type array, it does not copy the objects referenced by the elements. This has
different results for value type arrays and reference type arrays.

• Cloning a value type array results in two independent arrays.

• Cloning a reference type array results in two arrays pointing at the same objects.

The Clone method returns a reference of type object, which must be cast to the array type.

 int[] intArr1 = { 1, 2, 3 };
 Array type Returns an object
 ↓ ↓
 int[] intArr2 = (int[]) intArr1.Clone();

For example, the following code shows an example of cloning a value type array, producing two
independent arrays. Figure 14-16 illustrates the steps shown in the code.

 static void Main()
 {
 int[] intArr1 = { 1, 2, 3 }; // Step 1
 int[] intArr2 = (int[]) intArr1.Clone(); // Step 2

 intArr2[0] = 100; intArr2[1] = 200; intArr2[2] = 300; // Step 3
 }

Figure 14-16. Cloning a value type array produces two independent arrays.

CHAPTER 14 ARRAYS

367

Cloning a reference type array results in two arrays pointing at the same objects. The following code
shows an example. Figure 14-17 illustrates the steps shown in the code.

 class A
 {
 public int Value = 5;
 }

 class Program
 {
 static void Main()
 {
 A[] AArray1 = new A[3] { new A(), new A(), new A() }; // Step 1
 A[] AArray2 = (A[]) AArray1.Clone(); // Step 2

 AArray2[0].Value = 100;
 AArray2[1].Value = 200;
 AArray2[2].Value = 300; // Step 3
 }
 }

Figure 14-17. Cloning a reference type array produces two arrays referencing the same objects.

CHAPTER 14 ARRAYS

368

Comparing Array Types
Table 14-2 summarizes some of the important similarities and differences between the three types
of arrays.

Table 14-2. Summary Comparing Array Types

Syntax

Array Type
Array
Objects Brackets Commas Shape

One-dimensional

• Has optimizing
instructions in CIL.

1 Single set No

Rectangular

• Multidimensional.

• All subarrays in a
multidimensional
array must be of the
same length.

1 Single set Yes

Jagged

• Multidimensional.

• Subarrays can be of
different lengths.

Multiple Multiple
sets

No

C H A P T E R 15

■ ■ ■

369

Delegates

■ What Is a Delegate?

■ Declaring the Delegate Type

■ Creating the Delegate Object

■ Assigning Delegates

■ Combining Delegates

■ Adding Methods to Delegates

■ Removing Methods from a Delegate

■ Invoking a Delegate

■ Delegate Example

■ Invoking Delegates with Return Values

■ Invoking Delegates with Reference Parameters

■ Anonymous Methods

■ Lambda Expressions

CHAPTER 15 ■ DELEGATES

370

What Is a Delegate?
A delegate is a user-defined type, like a class. But whereas a class represents a collection of data, a
delegate keeps track of one or more methods. You use a delegate by doing the following. We’ll go
through each of these steps in detail in the following sections.

1. Declare a new delegate type with a particular signature and return type. A delegate

declaration looks like a method declaration, except that it doesn’t have an

implementation block.

2. Declare a delegate variable of the new delegate type.

3. Create an object of the delegate type, and assign it to the delegate variable. The new delegate

object includes a reference to a method with the same signature as defined in the first step.

4. Add additional methods into the delegate object. These methods must have the same

signature and return type as the delegate type defined in the first step.

5. Throughout your code you can then invoke the delegate, just as it if it were a method. When

you invoke the delegate, each of the methods it contains is executed.

In looking at the previous steps, you might have noticed that they’re similar to the steps in creating
and using a class. Figure 15-1 compares the processes of creating and using classes and delegates.

Figure 15-1. A delegate is a user-defined reference type, like a class.

■ Note If you're coming from a C++ background, the fastest way for you to understand delegates is to think of

them as type-safe, object-oriented C++ function pointers on steroids.

CHAPTER 15 ■ DELEGATES

371

You can think of a delegate as an object that contains an ordered list of methods with the same
signature and return type, as illustrated in Figure 15-2.

• The list of methods is called the invocation list.

• Methods held by a delegate can be from any class or struct, as long as they match both the

delegate’s

— Return type

— Signature (including ref and out modifiers)

• Methods in the invocation list can be either instance methods or static methods.

• When a delegate is invoked, each method in its invocation list is executed.

Figure 15-2. A delegate as a list of methods

CHAPTER 15 ■ DELEGATES

372

Declaring the Delegate Type
Delegates are types, just as classes are types. And as with classes, a delegate type must be declared
before you can use it to create variables and objects of the type. The following example code declares a
delegate type.

• Even though the delegate type declaration looks like a method declaration, it does not need to be

declared inside a class because it is a type declaration.

 Keyword Delegate type name
 ↓ ↓
 delegate void MyDel (int x);

The declaration of a delegate type looks much like the declaration of a method, in that it has both a
return type and a signature. The return type and signature specify the form of the methods that the
delegate will accept.

For example, the following code declares delegate type MyDel. This declaration specifies that
delegates of this type will only accept methods that have a single int parameter and that have no
return value. Figure 15-3 shows a representation of the delegate type on the left and the delegate object
on the right.

 Delegate type name
 ↓
 delegate void MyDel(int x);
 ↑ ↑
 Return type Signature

Figure 15-3. Delegate type and object

The delegate type declaration differs from a method declaration in two ways. The delegate type
declaration

• Is prefaced with the keyword delegate

• Does not have a method body

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 ■ DELEGATES

373

Creating the Delegate Object
A delegate is a reference type and therefore has both a reference and an object. After a delegate type is
declared, you can declare variables and create objects of the type. The following code shows the
declaration of a variable of a delegate type:

 Delegate type Variable
 ↓ ↓
 MyDel delVar;

There are two ways you can create a delegate object. The first is to use an object-creation
expression with the new operator, as shown in the following code. The operand of the new operator
consists of the following:

• The delegate type name.

• A set of parentheses containing the name of a method to use as the first member in the

invocation list. The method can be either an instance method or a static method.

 Instance method
 ↓
delVar = new MyDel(myInstObj.MyM1); // Create delegate and save ref.
dVar = new MyDel(SClass.OtherM2); // Create delegate and save ref.

 ↑
 Static method

You can also use the shortcut syntax, which consists of just the method specifier, as shown in the
following code. This code and the preceding code are equivalent. Using the shortcut syntax works
because there is an implicit conversion between a method name and a compatible delegate type.

 delVar = myInstObj.MyM1; // Create delegate and save reference.
 dVar = SClass.OtherM2; // Create delegate and save reference.

CHAPTER 15 ■ DELEGATES

374

For example, the following code creates two delegate objects—one with an instance method and the
other with a static method. Figure 15-4 shows the instantiations of the delegates. This code assumes that
there is an object called myInstObj, which is an instance of a class that has defined a method called MyM1
returning no value and taking an int as a parameter. It also assumes that there is a class called SClass,
which has a static method OtherM2 with a return type and signature matching those of delegate MyDel.

 delegate void MyDel(int x); // Declare delegate type.
 MyDel delVar, dVar; // Create two delegate variables.
 Instance method
 ↓
 delVar = new MyDel(myInstObj.MyM1); // Create delegate and save ref.
 dVar = new MyDel(SClass.OtherM2); // Create delegate and save ref.

 ↑
 Static method

Figure 15-4. Instantiating the delegates

Besides allocating the memory for the delegate, creating a delegate object also places the first
method in the delegate’s invocation list.

You can also create the variable and instantiate the object in the same statement, using the
initializer syntax. For example, the following statements also produce the same configuration shown in
Figure 15-4:

 MyDel delVar = new MyDel(myInstObj.MyM1);
 MyDel dVar = new MyDel(SClass.OtherM2);

The following statements use the shortcut syntax but again produce the results shown in Figure 15-4:

 MyDel delVar = myInstObj.MyM1;
 MyDel dVar = SClass.OtherM2;

CHAPTER 15 ■ DELEGATES

375

Assigning Delegates
Because delegates are reference types, you can change the reference contained in a delegate variable by
assigning to it. The old delegate object will be disposed of by the garbage collector (GC) when it gets
around to it.

For example, the following code sets and then changes the value of delVar. Figure 15-5 illustrates
the code.

 MyDel delVar;
 delVar = myInstObj.MyM1; // Create and assign the delegate object.

 ...
 delVar = SClass.OtherM2; // Create and assign the new delegate object.

Figure 15-5. Assigning to a delegate variable

CHAPTER 15 ■ DELEGATES

376

Combining Delegates
All the delegates you’ve seen so far have had only a single method in their invocation lists. Delegates can
be “combined” by using the addition operator. The result of the operation is the creation of a new
delegate, with an invocation list that is the concatenation of copies of the invocation lists of the two
operand delegates.

For example, the following code creates three delegates. The third delegate is created from the
combination of the first two.

 MyDel delA = myInstObj.MyM1;
 MyDel delB = SClass.OtherM2;

 MyDel delC = delA + delB; // Has combined invocation list

Although the term combining delegates might give the impression that the operand delegates are
modified, they are not changed at all. In fact, delegates are immutable. After a delegate object is created,
it cannot be changed.

Figure 15-6 illustrates the results of the preceding code. Notice that the operand delegates remain
unchanged.

Figure 15-6. Combining delegates

CHAPTER 15 ■ DELEGATES

377

Adding Methods to Delegates
Although you saw in the previous section that delegates are, in reality, immutable, C# provides syntax for
making it appear that you can add a method to a delegate, using the += operator.

For example, the following code “adds” two methods to the invocation list of the delegate. The
methods are added to the bottom of the invocation list. Figure 15-7 shows the result.

 MyDel delVar = inst.MyM1; // Create and initialize.
 delVar += SCl.m3; // Add a method.
 delVar += X.Act; // Add a method.

Figure 15-7. Result of “adding” methods to a delegate. In reality, because delegates are immutable, the

resulting delegate with three methods in its invocation list is an entirely new delegate pointed at by

the variable.

What is actually happening, of course, is that when the += operator is used, a new delegate is
created, with an invocation list that is the combination of the delegate on the left plus the method listed
on the right. This new delegate is then assigned to the delVar variable.

CHAPTER 15 ■ DELEGATES

378

Removing Methods from a Delegate
You can also remove a method from a delegate, using the -= operator. The following code shows the use
of the operator. Figure 15-8 shows the result of this code when applied to the delegate illustrated in
Figure 15-7.

 delVar -= SCl.m3; // Remove the method from the delegate.

Figure 15-8. Result of removing a method from a delegate

As with adding a method to a delegate, the resulting delegate is actually a new delegate. The new
delegate is a copy of the old delegate—but its invocation list no longer contains the reference to the
method that was removed.

The following are some things to remember when removing methods:

• If there are multiple entries for a method in the invocation list, the -= operator starts searching at

the bottom of the list and removes the first instance of the matching method it finds.

• Attempting to delete a method that is not in the delegate has no effect.

• Attempting to invoke an empty delegate throws an exception.

• You can check whether a delegate’s invocation list is empty by comparing the delegate to null. If

the invocation list is empty, the delegate is null.

CHAPTER 15 ■ DELEGATES

379

Invoking a Delegate
You invoke a delegate by calling it, as if it were simply a method. The parameters used to invoke the
delegate are used to invoke each of the methods on the invocation list (unless one of the parameters is
an output parameter, which we’ll cover shortly).

For example, the delegate delVar, as shown in the following code, takes a single integer input value.
Invoking the delegate with a parameter causes it to invoke each of the members in its invocation list with
the same parameter value (55, in this case). Figure 15-9 illustrates the invocation.

 MyDel delVar = inst.MyM1;
 delVar += SCl.m3;
 delVar += X.Act;
 ...
 delVar(55); // Invoke the delegate.
 ...

Figure 15-9. When the delegate is invoked, it executes each of the methods in its invocation list, with the

same parameters with which it was called.

A method can be in the invocation list more than once. If it’s in the list more than once, then when
the delegate is invoked, the method will be called each time it is encountered in the list.

CHAPTER 15 ■ DELEGATES

380

Delegate Example
The following code defines and uses a delegate with no parameters and no return value. Note the
following about the code:

• Class Test defines two print functions.

• Method Main creates an instance of the delegate and then adds three more methods.

• The program then invokes the delegate, which calls its methods. Before invoking the delegate,

however, it checks to make sure it’s not null.

 // Define a delegate type with no return value and no parameters.
 delegate void PrintFunction();

 class Test
 {
 public void Print1()
 { Console.WriteLine("Print1 -- instance"); }

 public static void Print2()
 { Console.WriteLine("Print2 -- static"); }
 }

 class Program
 {
 static void Main()
 {
 Test t = new Test(); // Create a test class instance.
 PrintFunction pf; // Create a null delegate.

 pf = t.Print1; // Instantiate and initialize the delegate.

 // Add three more methods to the delegate.
 pf += Test.Print2;
 pf += t.Print1;
 pf += Test.Print2;
 // The delegate now contains four methods.

 if(null != pf) // Make sure the delegate isn't null.
 pf(); // Invoke the delegate.
 else
 Console.WriteLine("Delegate is empty");
 }
 }

This code produces the following output:

Print1 -- instance
Print2 -- static
Print1 -- instance
Print2 -- static

CHAPTER 15 ■ DELEGATES

381

Invoking Delegates with Return Values
If a delegate has a return value and more than one method in its invocation list, the following occurs:

• The value returned by the last method in the invocation list is the value returned from the

delegate invocation.

• The return values from all the other methods in the invocation list are ignored.

For example, the following code declares a delegate that returns an int value. Main creates an object
of the delegate and adds two additional methods. It then calls the delegate in the WriteLine statement
and prints its return value. Figure 15-10 shows a graphical representation of the code.

 delegate int MyDel(); // Declare method with return value.
 class MyClass {
 int IntValue = 5;
 public int Add2() { IntValue += 2; return IntValue;}
 public int Add3() { IntValue += 3; return IntValue;}
 }

 class Program {
 static void Main() {
 MyClass mc = new MyClass();
 MyDel mDel = mc.Add2; // Create and initialize the delegate.
 mDel += mc.Add3; // Add a method.
 mDel += mc.Add2; // Add a method.
 Console.WriteLine("Value: {0}", mDel());

 } ↑
 } Invoke the delegate and use the return value.

This code produces the following output:

Value: 12

Figure 15-10. The return value of the last method executed is the value returned by the delegate.

CHAPTER 15 ■ DELEGATES

382

Invoking Delegates with Reference Parameters
If a delegate has a reference parameter, the value of the parameter can change upon return from one or
more of the methods in the invocation list.

• When calling the next method in the invocation list, the new value of the parameter—not the

initial value—is the one passed to the next method.

For example, the following code invokes a delegate with a reference parameter. Figure 15-11
illustrates the code.

 delegate void MyDel(ref int X);

 class MyClass
 {
 public void Add2(ref int x) { x += 2; }
 public void Add3(ref int x) { x += 3; }
 static void Main()
 {
 MyClass mc = new MyClass();

 MyDel mDel = mc.Add2;
 mDel += mc.Add3;
 mDel += mc.Add2;

 int x = 5;
 mDel(ref x);

 Console.WriteLine("Value: {0}", x);
 }
 }

This code produces the following output:

Value: 12

Figure 15-11. The value of a reference parameter can change between calls.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 ■ DELEGATES

383

Anonymous Methods
So far, you’ve seen that you can use either static methods or instance methods to instantiate a delegate.
In either case, the method itself can be called explicitly from other parts of the code and, of course, must
be a member of some class or struct.

What if, however, the method is used only one time—to instantiate the delegate? In that case, other
than the syntactic requirement for creating the delegate, there is no real need for a separate, named
method. Anonymous methods allow you to dispense with the separate, named method.

• An anonymous method is a method that is declared inline, at the point of instantiating a delegate.

For example, Figure 15-12 shows two versions of the same class. The version on the left declares and
uses a method named Add20. The version on the right uses an anonymous method instead. The
nonshaded code of both versions is identical.

Figure 15-12. Comparing a named method and an anonymous method

Both sets of code in Figure 15-12 produce the following output:

25
26

Using Anonymous Methods
You can use an anonymous method in the following places:

• As an initializer expression when declaring a delegate variable.

• On the right side of an assignment statement when combining delegates.

• On the right side of an assignment statement adding a delegate to an event. Chapter 16

covers events.

CHAPTER 15 ■ DELEGATES

384

Syntax of Anonymous Methods
The syntax of an anonymous method expression includes the following components:

• The type keyword delegate

• The parameter list, which can be omitted if the statement block doesn’t use any parameters

• The statement block, which contains the code of the anonymous method

 Parameter
 Keyword list Statement block
 ↓ ↓ ↓
 delegate (Parameters) { ImplementationCode }

Return Type
An anonymous method does not explicitly declare a return type. The behavior of the implementation
code itself, however, must match the delegate’s return type by returning a value of that type. If the
delegate has a return type of void, then the anonymous method code cannot return a value.

For example, in the following code, the delegate’s return type is int. The implementation code of
the anonymous method must therefore return an int on all pathways through the code.

 Return type of delegate type
 ↓
 delegate int OtherDel(int InParam);

 static void Main()
 {
 OtherDel del = delegate(int x)
 {
 return x + 20 ; // Returns an int
 };
 ...
 }

CHAPTER 15 ■ DELEGATES

385

Parameters
Except in the case of array parameters, the parameter list of an anonymous method must match that of
the delegate in the following three characteristics:

• Number of parameters

• Types and positions of the parameters

• Modifiers

You can simplify the parameter list of an anonymous method by leaving the parentheses empty or
omitting them altogether, but only if both of the following are true:

• The delegate’s parameter list does not contain any out parameters.

• The anonymous method does not use any parameters.

For example, the following code declares a delegate that does not have any out parameters and an
anonymous method that does not use any parameters. Since both conditions are met, you can omit the
parameter list from the anonymous method.

 delegate void SomeDel (int X); // Declare the delegate type.

 SomeDel SDel = delegate // Parameter list omitted
 {
 PrintMessage();
 Cleanup();
 };

params Parameters
If the delegate declaration’s parameter list contains a params parameter, then the params keyword
is omitted from the parameter list of the anonymous method. For example, in the following code,
this happens:

• The delegate type declaration specifies the last parameter as a params type parameter.

• The anonymous method parameter list, however, must omit the params keyword.

 params keyword used in delegate type declaration
 ↓
 delegate void SomeDel(int X, params int[] Y);

 params keyword omitted in matching anonymous method
 ↓
 SomeDel mDel = delegate (int X, int[] Y)
 {
 ...
 };

CHAPTER 15 ■ DELEGATES

386

Scope of Variables and Parameters
The scopes of parameters and local variables declared inside an anonymous method are limited to the
body of the implementation code, as illustrated in Figure 15-13.

For example, the following anonymous method defines parameter y and local variable z. After the
close of the body of the anonymous method, y and z are no longer in scope. The last line of the code
would produce a compile error.

Figure 15-13. Scope of variables and parameters

Outer Variables
Unlike the named methods of a delegate, anonymous methods have access to the local variables and
environment of the scope surrounding them.

• Variables from the surrounding scope are called outer variables.

• An outer variable used in the implementation code of an anonymous method is said to be

captured by the method.

For example, the code in Figure 15-14 shows variable x defined outside the anonymous method. The
code in the method, however, has access to x and can print its value.

Figure 15-14. Using an outer variable

CHAPTER 15 ■ DELEGATES

387

Extension of Captured Variable’s Lifetime
A captured outer variable remains alive as long as its capturing method is part of the delegate, even if the
variable would have normally gone out of scope.

For example, the code in Figure 15-15 illustrates the extension of a captured variable’s lifetime.

• Local variable x is declared and initialized inside a block.

• Delegate mDel is then instantiated, using an anonymous method that captures outer variable x.

• When the block is closed, x goes out of scope.

• If the WriteLine statement following the close of the block were to be uncommented, it would

cause a compile error, because it references x, which is now out of scope.

• The anonymous method inside delegate mDel, however, maintains x in its environment and prints

its value when mDel is invoked.

Figure 15-15. Variable captured in an anonymous method

The code in the figure produces the following output:

Value of x: 5

CHAPTER 15 ■ DELEGATES

388

Lambda Expressions
C# 2.0 introduced anonymous methods, which allowed you to include short bits of inline code when
creating or adding to delegates. The syntax for anonymous methods, however, is somewhat verbose
and requires information that the compiler itself already knows. Rather than requiring you to include
this redundant information, C# 3.0 introduced lambda expressions, which pare down the syntax of
anonymous methods. You’ll probably want to use lambda expressions instead of anonymous
methods. In fact, if lambda expressions had been introduced first, there never would have been
anonymous methods.

In the anonymous method syntax, the delegate keyword is redundant because the compiler can
already see that you’re assigning the method to a delegate. You can easily transform an anonymous
method into a lambda expression by doing the following:

• Delete the delegate keyword.

• Place the lambda operator, =>, between the parameter list and the body of the anonymous

method. The lambda operator is read as “goes to.”

The following code shows this transformation. The first line shows an anonymous method being
assigned to variable del. The second line shows the same anonymous method after having been
transformed into a lambda expression, being assigned to variable le1.

 MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method
 MyDel le1 = (int x) => { return x + 1; } ; // Lambda expression

■ Note The term lambda expression comes from the lambda calculus, which was developed in the 1920s and

1930s by mathematician Alonzo Church and others. The lambda calculus is a system for representing functions
and uses the Greek letter lambda (λ) to represent a nameless function. More recently, functional programming

languages such as Lisp and its dialects use the term to represent expressions that can be used to directly describe

the definition of a function, rather than using a name for it.

CHAPTER 15 ■ DELEGATES

389

This simple transformation is less verbose and looks cleaner, but it only saves you six characters.
There’s more, however, that the compiler can infer, allowing you to simplify the lambda expression
further, as shown in the following code.

• From the delegate’s declaration, the compiler also knows the types of the delegate’s parameters,

so the lambda expression allows you to leave out the parameter types, as shown in the

assignment to le2.

— Parameters listed with their types are called explicitly typed.

— Those listed without their types are called implicitly typed.

• If there’s only a single, implicitly typed parameter, you can leave off the parentheses surrounding

it, as shown in the assignment to le3.

• Finally, lambda expressions allow the body of the expression to be either a statement block or an

expression. If the statement block contains a single return statement, you can replace the

statement block with just the expression that follows the return keyword, as shown in the

assignment to le4.

 MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method
 MyDel le1 = (int x) => { return x + 1; } ; // Lambda expression
 MyDel le2 = (x) => { return x + 1; } ; // Lambda expression
 MyDel le3 = x => { return x + 1; } ; // Lambda expression
 MyDel le4 = x => x + 1 ; // Lambda expression

The final form of the lambda expression has about one-fourth the characters of the original
anonymous method and is cleaner and easier to understand.

CHAPTER 15 ■ DELEGATES

390

The following code shows the full transformation. The first line of Main shows an anonymous
method being assigned to variable del. The second line shows the same anonymous method, after
having been transformed into a lambda expression, being assigned to variable le1.

 delegate double MyDel(int par);

 static void Main()
 {
 MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method

 MyDel le1 = (int x) => { return x + 1; } ; // Lambda expression
 MyDel le2 = (x) => { return x + 1; } ;
 MyDel le3 = x => { return x + 1; } ;
 MyDel le4 = x => x + 1 ;

 Console.WriteLine("{0}", del (12));
 Console.WriteLine("{0}", le1 (12)); Console.WriteLine("{0}", le2 (12));
 Console.WriteLine("{0}", le3 (12)); Console.WriteLine("{0}", le4 (12));
 }

Some important points about lambda expression parameter lists are the following:

• The parameters in the parameter list of a lambda expression must match that of the delegate in

number, type, and position.

• The parameters in the parameter list of an expression do not have to include the type (that is,

implicitly typed) unless the delegate has either ref or out parameters—in which case the types are

required (that is, explicitly typed).

• If there is only a single parameter and it is implicitly typed, the surrounding parentheses can be

omitted. Otherwise, they are required.

• If there are no parameters, you must use an empty set of parentheses.

Figure 15-16 shows the syntax for lambda expressions.

Figure 15-16. The syntax for lambda expressions consists of the lambda operator with the parameter section

on the left and the lambda body on the right.

C H A P T E R 16

■ ■ ■

391

Events

■ Events Are Like Delegates

■ Overview of Source Code Components

■ Declaring an Event

■ Raising an Event

■ Subscribing to an Event

■ Standard Event Usage

■ The MyTimerClass Code

■ Event Accessors

CHAPTER 16 ■ EVENTS

392

Events Are Like Delegates
The preceding chapter covered delegates. Many aspects of events are similar to those of delegates. In
fact, an event is like a simpler delegate that is specialized for a particular use. Figure 16-1 illustrates that,
like a delegate, an event has methods registered with it and invokes those methods when it is invoked.

The following are some important terms related to events:

• Raising an event: The term for invoking or firing an event. When an event is raised, all the

methods registered with it are invoked—in order.

• Publisher: A class or struct that makes an event available to other classes or structs for their use.

• Subscriber: A class or struct that registers methods with a publisher.

• Event handler: A method that is registered with an event. It can be declared in the same class or

struct as the event or in a different class or struct.

Figure 16-1. Publishers and subscribers

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16 ■ EVENTS

393

An Event Has a Private Delegate
There’s good reason for the similarities in the behaviors of delegates and events. An event contains a
private delegate, as illustrated in Figure 16-2. The important things to know about an event’s private
delegate are the following:

• An event gives structured access to its privately controlled delegate.

• Unlike the many operations available with a delegate, with an event you can only add, remove,

and invoke event handlers.

• When an event is raised, it invokes the delegate, which sequentially calls the methods in the

invocation list.

Notice in Figure 16-2 that only the += and -= operators are sticking out to the left of the event. This is
because they are the only operations allowed on an event.

Figure 16-2. An event has an encapsulated delegate

Figure 16-3 illustrates the runtime view of a publisher class with an event called Elapsed. ClassA and
ClassB, on the right, each has an event handler registered with Elapsed. Inside the event you can see the
delegate referencing the two event handlers. Besides the event, the publisher also contains the code that
raises the event.

Figure 16-3. Structure and terminology of a class with a timer event

CHAPTER 16 ■ EVENTS

394

Overview of Source Code Components
Five components of code need to be in place to use events. I’ll cover each of them in the following
sections, and they are illustrated in Figure 16-4. These components are the following:

• Delegate type declaration: The event and the event handlers must have a common signature and

return type, which is described by the delegate type declaration.

• Event handler declarations: These are the declarations in the subscriber classes of the methods

(event handlers) to be executed when the event is raised. These do not have to be separate

methods. They can be anonymous methods or lambda expressions.

• Event declaration: This is the declaration in the publisher class of the event that holds and

invokes the event handlers.

• Event registration: This is the code that connects the event handlers to the event.

• Code that raises the event: This is the code in the publisher that calls the event, causing it to

invoke its event handlers.

Figure 16-4. The five source code components of using an event

CHAPTER 16 ■ EVENTS

395

Declaring an Event
The publisher must provide the event and often provides the code to raise the event.

Creating an event is simple—it requires only a delegate type and a name. The syntax for an event
declaration is shown in the following code, which declares an event called Elapsed. Notice the following
about event Elapsed:

• It is declared inside a class called MyTimerClass.

• It accepts event handlers with the return type and signature matching the delegate type

EventHandler.

• It is declared public so that other classes and structs can register event handlers with it.

 class MyTimerClass
 { Keyword Name of event
 ↓ ↓
 public event EventHandler Elapsed;

 ↑
 Delegate type

You can declare more than one event in a declaration statement by using a comma-separated list.
For example, the following statement declares three events:

 public event EventHandler MyEvent1, MyEvent2, OtherEvent;

 ↑
 Three events

You can also make events static, by including the static keyword, as shown in the following
declaration:

 public static event EventHandler Elapsed;

 ↑
 Keyword

CHAPTER 16 ■ EVENTS

396

An Event Is a Member
A common error is to think of an event as a type, which it is not. An event is a member, and there are
several important ramifications to this:

• Because a member is not a type, you do not use an object-creation expression (a new expression)

to create its object.

• Because an event is a member

— It must be declared in a class or struct, with the other members.

— You cannot declare an event in a block of executable code.

• An event member is implicitly and automatically initialized to null with the other members.

The Delegate Type and EventHandler
An event declaration requires the name of a delegate type. You can either declare one or use one that
already exists. If you declare a delegate type, it must specify the signature and return type of the methods
that will be stored by the event.

A better idea is to use the EventHandler delegate, which is a predefined delegate type used by the
.NET BCL and designated as the standard for use with events. You are strongly encouraged to use it. The
following code shows what EventHandler’s declaration looks like in the BCL. The EventHandler delegate
is covered in more detail later in this chapter.

 public delegate void EventHandler(object sender, EventArgs e);

CHAPTER 16 ■ EVENTS

397

Raising an Event
The event member itself just holds the event handlers that need to be invoked. Nothing happens
with them unless the event is raised. You need to make sure there is code to do just that, at the
appropriate times.

For example, the following code raises event Elapsed. Notice the following about the code:

• Before raising the event, the code compares it to null, to see whether it contains any event

handlers. If the event is null, it is empty.

• Raising the event itself is like invoking a function.

— Use the name of the event, followed by the parameter list enclosed in parentheses.

— The parameter list must match the delegate type of the event.

 if (Elapsed != null) // Make sure there are methods to execute.
 Elapsed (source, args); // Raise the event.

 ↑ ↑
 Event name Parameter list

Putting together the event declaration and the code to raise the event gives the following class
declaration for the publisher. The code contains two members: the event and a method called
OnOneSecond, which raises the event.

 public class MyTimerClass
 {
 public event EventHandler Elapsed; // Declare the event.

 private void OnOneSecond(object source, EventArgs args)
 {
 if (Elapsed != null) // Make sure there are methods to execute.
 Elapsed(source, args);

 } ↑
 Raise the event.

 // The following code makes sure that method OnOneSecond is called every
 // 1,000 milliseconds.
 ...
 }

For now, I’ll let method OnOneSecond be somehow, mysteriously, called once every second. Later in
the chapter I’ll show you how to make this happen. But for now, remember these important points:

• The publisher class has an event as a member.

• The class contains the code to raise the event.

CHAPTER 16 ■ EVENTS

398

Subscribing to an Event
To add an event handler to an event, the handler must have the same return type and signature as the
event’s delegate.

• Use the += operator to add an event handler to an event, as shown in the following code.

• The method can be any of the following:

— An instance method

— A static method

— An anonymous method

— A lambda expression

For example, the following code adds three methods to event Elapsed. The first is an instance
method using the method form. The second is a static method using the method form. The third is an
instance method using the delegate form.

 Class instance Instance method
 ↓ ↓
 mc.Elapsed += ca.TimerHandlerA; // Method reference form
 mc.Elapsed += ClassB.TimerHandlerB; // Method reference form

 ↑ ↑
 Event member Static method
 mc.Elapsed += new EventHandler(cc.TimerHandlerC); // Delegate form

Just as with delegates, you can use anonymous methods and lambda expressions to add event
handlers. For example, the following code first uses a lambda expression and then uses an
anonymous method.

 mc.Elapsed += (source, args) => // Lambda expression
 {
 Console.WriteLine("Lambda expression.");
 };

 mc.Elapsed += delegate(object source, EventArgs args) // Anonymous method
 {
 Console.WriteLine("Anonymous method.");
 };

CHAPTER 16 ■ EVENTS

399

The following program uses the MyTimerClass class declared in the previous section. The code
performs the following:

• It registers two event handlers from two different class instances.

• After registering the event handlers, it sleeps for two seconds. During that time, the timer class

raises the event two times, and both event handlers are executed each time.

 public class MyTimerClass { ... }

 class ClassA
 {
 public void TimerHandlerA(object source, EventArgs args) // Event handler
 {
 Console.WriteLine("Class A handler called");
 }
 }

 class ClassB
 {
 public static void TimerHandlerB(object source, EventArgs args) // Static
 {
 Console.WriteLine("Class B handler called");
 }
 }

 class Program
 {
 static void Main()
 {
 ClassA ca = new ClassA(); // Create the class object.
 MyTimerClass mc = new MyTimerClass(); // Create the timer object.

 mc.Elapsed += ca.TimerHandlerA; // Add handler A -- instance.
 mc.Elapsed += ClassB.TimerHandlerB; // Add handler B -- static.

 Thread.Sleep(2250);
 }
 }

When supplied with the code for MyTimerClass, this code produces the following output:

Class A handler called
Class B handler called
Class A handler called
Class B handler called

CHAPTER 16 ■ EVENTS

400

Removing Event Handlers
When you’re done with an event handler, you should remove it from the event, to allow the garbage
collector to free up that memory. You remove an event handler from an event by using the -= operator,
as shown here:

 mc.Elapsed -= ca.TimerHandlerA; // Remove handler A.

For example, the following code removes the event handler for ClassB after the first two times the
event is raised and then lets the program run for another two seconds.

 ...
 mc.Elapsed += ca.TimerHandlerA; // Add instance handler A.
 mc.Elapsed += ClassB.TimerHandlerB; // Add static handler B.

 Thread.Sleep(2250); // Sleep more than 2 seconds.

 mc.Elapsed -= ClassB.TimerHandlerB; // Remove static handler B.
 Console.WriteLine("Class B event handler removed");

 Thread.Sleep(2250); // Sleep more than 2 seconds.

This code produces the following output. The first four lines are the result of both handlers being
called twice, in the first two seconds. After the handler for ClassB is removed, only the handler for the
instance of ClassA is called, during the last two seconds.

Class A handler called
Class B handler called
Class A handler called
Class B handler called
Class B event handler removed
Class A handler called
Class A handler called

CHAPTER 16 ■ EVENTS

401

Standard Event Usage
GUI programming is event driven, which means that while the program is running, it can be interrupted
at any time by events such as button clicks, key presses, or system timers. When this happens, the
program needs to handle the event and then continue on its course.

Clearly, this asynchronous handling of program events is the perfect situation to use C# events.
Windows GUI programming uses events so extensively that there is a standard .NET Framework pattern
for using them, which you are strongly encouraged to follow.

The foundation of the standard pattern for event usage is the EventHandler delegate type, which is
declared in the System namespace. The declaration of the EventHandler delegate type is shown in the
following code:

• The first parameter is meant to hold a reference to the object that raised the event. It is of type

object and can, therefore, match any instance of any type.

• The second parameter is meant to hold state information of whatever type is appropriate for the

application.

• The return type is void.

 public delegate void EventHandler(object sender, EventArgs e);

Using the EventArgs Class
The second parameter in the EventHandler delegate type is an object of class EventArgs, which is
declared in the System namespace. You might be tempted to think that, since the second parameter is
meant for passing data, an EventArgs class object would be able to store data of some sort. You would
be wrong.

• The EventArgs class is designed to carry no data. It is used for event handlers that do not need to

pass data—and is generally ignored by them.

• If you want to pass data, you must declare a class derived from EventArgs, with the appropriate

fields to hold the data you want to pass.

Even though the EventArgs class does not actually pass data, it is an important part of the pattern of
using the EventHandler delegate. Class object and class EventArgs are the base classes for whatever
actual types are used as the parameters. This allows EventHandler to provide a signature that is the
lowest common denominator for all events and event handlers, allowing them to have exactly two
parameters, rather than having different signatures for each case.

CHAPTER 16 ■ EVENTS

402

Passing Data by Extending EventArgs
To pass data in the second parameter of your event handler and adhere to the standard conventions,
you need to declare a custom class derived from EventArgs that can store the data you need passed. The
name of the class should end in EventArgs. For example, the following code declares a custom class that
can store a string in a field called Message:

 Custom class name Base class
 ↓ ↓
 public class MyTCEventArgs: EventArgs
 {
 public string Message; // Stores a message
 public MyTCEventArgs(string s) // The constructor sets the message.
 {
 Message = s;
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16 ■ EVENTS

403

Using the Custom Delegate
Now that you have a custom class for passing data in the second parameter of your event handlers, you
need a delegate type that uses the new custom class. There are two ways you can do this:

• The first way is to use a nongeneric delegate. To do this, do the following:

— Create a new custom delegate using your custom class type, as shown in the following code.

— Use the new delegate name throughout the four other sections of the event code.

 Custom delegate name Custom class
 ↓ ↓
 public delegate void MyTCEventHandler (object sender, MyTCEventArgs e);

• The second way was introduced with C# 2.0 and uses the generic delegate EventHandler<>.

Chapter 19 covers C# generics. To use the generic delegate, do the following, as shown in the

code following:

— Place the name of the custom class between the angle brackets.

— Use the entire string wherever you would have used the name of your custom delegate type.
For example, this is what the event declaration would look like:

 Generic delegate using custom class
 ↓
public event EventHandler<MyTCEventArgs> Elapsed;

 ↑
 Event name

Use the custom class and the custom delegate, either nongeneric or generic, in the other four

sections of code dealing with the event.
For example, the following code updates the MyTimerClass code to use a custom EventArgs class

called MyTCEventArgs and the generic EventHandler<> delegate.

CHAPTER 16 ■ EVENTS

404

 public class MyTCEventArgs: EventArgs
 {
 public string Message;
 Declaration of custom class
 public MyTCEventArgs(string s) {
 Message = s;
 }
 }

 public class MyTimerClass Generic delegate
 { ↓
 public event EventHandler<MyTCEventArgs> Elapsed; // Event declaration

 private void OnOneSecond(object source, EventArgs args)
 {
 if (Elapsed != null)
 {
 MyTCEventArgs mtcea =
 new MyTCEventArgs("Message from OnOneSecond"); Code to raise event
 Elapsed(source, mtcea);
 }
 }

 ... // This code is given at the end of the chapter.
 }

 class ClassA
 {
 public void TimerHandlerA(object source, MyTCEventArgs args)
 { Event handler
 Console.WriteLine("Class A Message: {0}", args.Message);
 }
 }

CHAPTER 16 ■ EVENTS

405

 class Program
 {
 static void Main()
 {
 ClassA ca = new ClassA();
 MyTimerClass mc = new MyTimerClass();

 mc.Elapsed += // Register handler.
 new EventHandler<MyTCEventArgs> (ca.TimerHandlerA);

 Thread.Sleep(3250);
 }
 }

This code produces the following output:

Class A Message: Message from OnOneSecond
Class A Message: Message from OnOneSecond
Class A Message: Message from OnOneSecond

CHAPTER 16 ■ EVENTS

406

The MyTimerClass Code
Now that you’ve seen all five components of code that need to be implemented to use an event, I can
show you the full MyTimerClass class that the code has been using.

Most things about the class have been pretty clear—it has an event called Elapsed that can be
subscribed to and a method called OnOneSecond that is called every second and raises the event. The one
question remaining about it is, “What causes OnOneSecond to be called every second?”

The answer is that I’ve created method OnOneSecond and subscribed it as an event handler to an
event in a class called Timer, in the System.Timers namespace. The event in Timer is raised every 1,000
milliseconds and calls event handler OnOneSecond, which in turn raises event Elapsed in class
MyTimerClass. Figure 16-5 shows the structure of the code.

Figure 16-5. The code structure of MyTimerClass

The Timer class is a useful tool, so I’ll mention a little more about it. First, it has a public event called
Elapsed. If that sounds familiar, it’s because I named the event in MyTimerClass after it. The names have
no other connection than that. I could have named the event in MyTimerClass anything.

One of the properties of Timer is Interval, which is of type double, and specifies the number of
milliseconds between raising the event. The other property the code uses is Enabled, which is of type
bool, and starts and stops the timer.

CHAPTER 16 ■ EVENTS

407

The actual code is the following. The only things I haven’t shown previously are the private timer
field, called MyPrivateTimer, and the constructor for the class. The constructor does the work of setting
up the internal timer and attaching it to event handler OnOneSecond.

 public class MyTimerClass
 {
 public event EventHandler Elapsed;

 private void OnOneSecond(object source, EventArgs args)
 {
 if (Elapsed != null)
 Elapsed(source, args);
 }

 //------------
 private System.Timers.Timer MyPrivateTimer; // Private timer

 public MyTimerClass() // Constructor
 {
 MyPrivateTimer = new System.Timers.Timer(); // Create the private timer.

 // The following statement sets our OnOneSecond method above as an event
 // handler to the Elapsed event of class Timer. It is completely
 // unrelated to our event Elapsed, declared above.
 MyPrivateTimer.Elapsed += OnOneSecond; // Attach our event handler.

 // Property Interval is of type double, and specifies the number of
 // milliseconds between when its event is raised.
 MyPrivateTimer.Interval = 1000; // 1 second interval.

 // Property Enabled is of type bool, and turns the timer on and off.
 MyPrivateTimer.Enabled = true; // Start the timer.
 }
 }

CHAPTER 16 ■ EVENTS

408

Event Accessors
The last topic to cover in this chapter is event accessors. I mentioned earlier that the += and -= operators
were the only operators allowed for an event. These operators have the well-defined behavior that
you’ve seen so far in this chapter.

You can, however, change these operators’ behavior and have the event perform whatever custom
code you like when they are used. You can do this by defining event accessors for the event.

• There are two accessors: add and remove.

• The declaration of an event with accessors looks similar to the declaration of a property.

The following example shows the form of an event declaration with accessors. Both accessors
have an implicit value parameter called value that takes a reference to either an instance method or a
static method.

 public event EventHandler Elapsed
 {
 add
 {
 ... // Code to implement the =+ operator
 }
 remove
 {
 ... // Code to implement the -= operator
 }
 }

When event accessors are declared, the event does not contain an embedded delegate object. You
must implement your own storage mechanism for storing and removing the methods registered with
the event.

The event accessors act as void methods, meaning that they cannot use return statements that
return a value.

C H A P T E R 17

■ ■ ■

409

Interfaces

■ What Is an Interface?

■ Declaring an Interface

■ Implementing an Interface

■ An Interface Is a Reference Type

■ Using the as Operator with Interfaces

■ Implementing Multiple Interfaces

■ Implementing Interfaces with Duplicate Members

■ References to Multiple Interfaces

■ An Inherited Member As an Implementation

■ Explicit Interface Member Implementations

■ Interfaces Can Inherit Interfaces

CHAPTER 17 ■ INTERFACES

410

What Is an Interface?
An interface is a reference type that specifies a set of function members but does not implement them.
Other types—classes or structs—can implement interfaces.

To get a feeling for interfaces, I’ll start by showing one that is already defined. The BCL declares an
interface called IComparable, the declaration of which is shown in the following code. Notice that the
interface body contains the declaration of a single method, CompareTo, which takes a single parameter of
type object. Although the method has a name, parameters, and a return type, there is no
implementation. Instead, the implementation is replaced by a semicolon.

 Keyword Interface name
 ↓ ↓
 public interface IComparable
 {
 int CompareTo(object obj);

 } ↑
 Semicolon in place of method implementation

Figure 17-1 illustrates interface IComparable. The CompareTo method is shown in gray to illustrate
that it doesn’t contain an implementation.

Figure 17-1. Representation of interface IComparable

Although the interface declaration doesn't provide an implementation for method CompareTo, the
.NET documentation of interface IComparable describes what the method should do, in case you create a
class or struct that implements the interface. It says that when method CompareTo is called, it should
return one of the following values:

• A negative value, if the current object is less than the parameter object

• A positive value, if the current object is greater than the parameter object

• Zero, if the two objects are considered equal in the comparison

CHAPTER 17 ■ INTERFACES

411

Example Using the IComparable Interface
To understand what this means and why it’s useful, let’s start by taking a look at the following code,
which takes an unsorted array of integers and sorts them in ascending order.

• The first line creates an array of five integers that are in no particular order.

• The second line uses the Array class’s static Sort method to sort the elements.

• The foreach loop prints them out, showing that the integers are now in ascending order.

 var myInt = new [] { 20, 4, 16, 9, 2 }; // Create an array of ints.

 Array.Sort(myInt); // Sort elements by magnitude.

 foreach (var i in myInt) // Print them out.
 Console.Write("{0} ", i);

This code produces the following output:

2 4 9 16 20

The Array class’s Sort method works great on an array of ints, but what would happen if you were
to try to use it on one of your own classes, as shown here?

 class MyClass // Declare a simple class.
 {
 public int TheValue;
 }
 ...
 MyClass[] mc = new MyClass[5]; // Create an array of five elements.
 ... // Create and initialize the elements.

 Array.Sort(mc); // Try to use Sort--raises exception

When you try to run this code, it raises an exception instead of sorting the elements. The reason
Sort doesn’t work with the array of MyClass objects is that it doesn’t know how to compare user-defined
objects and how to rank their order.

The algorithm used by Sort depends on the fact that it can use the element’s CompareTo method to
determine the order of two elements. The int type implements IComparable, but MyClass does not, so
when Sort tries to call the nonexistent CompareTo method of MyClass, it raises an exception.

CHAPTER 17 ■ INTERFACES

412

You can make the Sort method work with objects of type MyClass by making the class implement
IComparable. To implement an interface, a class or struct must do two things:

• It must list the interface name in its base class list.

• It must provide an implementation for each of the interface’s members.

For example, the following code updates MyClass to implement interface IComparable. Notice the
following about the code:

• The name of the interface is listed in the base class list of the class declaration.

• The class implements a method called CompareTo, whose parameter type and return type match

those of the interface member.

• Method CompareTo is implemented to satisfy the definition given in the interface’s

documentation. That is, it returns a negative 1, positive 1, or 0, depending on its value compared

to the object passed into the method.

 Interface name in base class list
 ↓
 class MyClass : IComparable
 {
 public int TheValue;

 public int CompareTo(object obj) // Implementation of interface method
 {
 MyClass mc = (MyClass)obj;
 if (this.TheValue < mc.TheValue) return -1;
 if (this.TheValue > mc.TheValue) return 1;
 return 0;
 }
 }

Figure 17-2 illustrates the updated class. The arrow from the grayed interface method to the class
method indicates that the interface method doesn’t contain code but is implemented by the class-level
method.

Figure 17-2. Implementing IComparable in MyClass

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 17 ■ INTERFACES

413

Now that MyClass implements IComparable, Sort will work on it just fine. It would not, by the way,
have been sufficient to just declare the CompareTo method—it must be part of implementing the
interface, which means placing the interface name in the base class list.

The following shows the complete updated code, which can now use the Sort method to sort an
array of MyClass objects. Main creates and initializes an array of MyClass objects and then prints them out.
It then calls Sort and prints them out again to show that they’ve been sorted.

 class MyClass : IComparable // Class implements interface.
 {
 public int TheValue;
 public int CompareTo(object obj) // Implement the method.
 {
 MyClass mc = (MyClass)obj;
 if (this.TheValue < mc.TheValue) return -1;
 if (this.TheValue > mc.TheValue) return 1;
 return 0;
 }
 }

 class Program
 {
 static void PrintOut(string s, MyClass[] mc)
 {
 Console.Write(s);
 foreach (var m in mc)
 Console.Write("{0} ", m.TheValue);
 Console.WriteLine("");
 }

 static void Main()
 {
 var myInt = new [] { 20, 4, 16, 9, 2 };

 MyClass[] mcArr = new MyClass[5]; // Create array of MyClass objs.
 for (int i = 0; i < 5; i++) // Initialize the array.
 {
 mcArr[i] = new MyClass();
 mcArr[i].TheValue = myInt[i];
 }
 PrintOut("Initial Order: ", mcArr); // Print the initial array.
 Array.Sort(mcArr); // Sort the array.
 PrintOut("Sorted Order: ", mcArr); // Print the sorted array.
 }
 }

This code produces the following output:

Initial Order: 20 4 16 9 2
Sorted Order: 2 4 9 16 20

CHAPTER 17 ■ INTERFACES

414

Declaring an Interface
The previous section used an interface that was already declared in the BCL. In this section, you’ll see
how to declare interfaces.

The important things to know about declaring an interface are the following:

• An interface declaration cannot contain data members.

• An interface declaration can contain only declarations of the following kinds of nonstatic

function members:

— Methods

— Properties

— Events

— Indexers

• The declarations of these function members cannot contain any implementation code. Instead, a

semicolon must be used for the body of each member declaration.

• By convention, interface names begin with an uppercase I (for example, ISaveable).

• Like classes and structs, interface declarations can also be split into partial interface declarations,

as described in the “Partial Classes” section of Chapter 6.

CHAPTER 17 ■ INTERFACES

415

The following code shows an example of declaring an interface with two method members:

 Keyword Interface name
 ↓ ↓
 interface IMyInterface1 Semicolon in place of body
 { ↓
 int DoStuff (int nVar1, long lVar2);
 double DoOtherStuff(string s, long x);
 } ↑
 Semicolon in place of body

There is an important difference between the accessibility of an interface and the accessibility of
interface members:

• An interface declaration can have any of the access modifiers public, protected, internal, or

private.

• Members of an interface, however, are implicitly public, and no access modifiers, including

public, are allowed.

 Access modifiers are allowed on interfaces.
 ↓
 public interface IMyInterface2
 {
 private int Method1(int nVar1, long lVar2); // Error
 } ↑
 Access modifiers are NOT allowed on interface members.

CHAPTER 17 ■ INTERFACES

416

Implementing an Interface
Only classes or structs can implement an interface. As shown in the Sort example, to implement an
interface, a class or struct must

• Include the name of the interface in its base class list

• Supply implementations for each of the interface’s members

For example, the following code shows a new declaration for class MyClass, which implements
interface IMyInterface1, declared in the previous section. Notice that the interface name is listed in the
base class list after the colon and that the class provides the actual implementation code for the interface
members.

 Colon Interface name
 ↓ ↓
 class MyClass: IMyInterface1
 {
 int DoStuff (int nVar1, long lVar2)
 { ... } // Implementation code

 double DoOtherStuff(string s, long x)
 { ... } // Implementation code
 }

Some important things to know about implementing interfaces are the following:

• If a class implements an interface, it must implement all the members of that interface.

• If a class is derived from a base class and also implements interfaces, the name of the base class

must be listed in the base class list before any interfaces, as shown here:

 Base class must be first Interface names
 ↓ ↓
 class Derived : MyBaseClass, IIfc1, IEnumerable, IComparable
 {
 ...
 }

CHAPTER 17 ■ INTERFACES

417

Example with a Simple Interface
The following code declares an interface named IIfc1, which contains a single method named PrintOut.
Class MyClass implements interface IIfc1 by listing it in its base class list and supplying a method
named PrintOut that matches the signature and return type of the interface member. Main creates an
object of the class and calls the method from the object.

 interface IIfc1 Semicolon in place of body // Declare interface
 { ↓
 void PrintOut(string s);
 }
 Implement interface
 ↓
 class MyClass : IIfc1 // Declare class
 {
 public void PrintOut(string s) // Implementation
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create instance
 mc.PrintOut("object"); // Call method
 }
 }

This code produces the following output:

Calling through: object

CHAPTER 17 ■ INTERFACES

418

An Interface Is a Reference Type
An interface is more than just a list of members for a class or struct to implement. It is a reference type.

You cannot access an interface directly through the class object’s members. You can, however, get a
reference to the interface by casting the class object reference to the type of the interface. Once you have
a reference to the interface, you can use dot-syntax notation with the reference to call interface
members.

For example, the following code shows an example of getting an interface reference from a class
object reference.

• In the first statement, variable mc is a reference to a class object that implements interface IIfc1.

The statement casts that reference to a reference to the interface and assigns it to variable ifc.

• The second statement uses the reference to the interface to call the implementation method.

 Interface Cast to interface
 ↓ ↓
 IIfc1 ifc = (IIfc1) mc; // Get ref to interface

 ↑ ↑
 Interface ref Class object ref
 ifc.PrintOut ("interface"); // Use ref to interface to call member

 ↑
 Use dot-syntax notation to call through the interface reference.

For example, the following code declares an interface and a class that implements it. The code in
Main creates an object of the class and calls the implementation method through the class object. It also
creates a variable of the interface type, casts the reference of the class object to the interface type, and
calls the implementation method through the reference to the interface. Figure 17-3 illustrates the class
and the reference to the interface.

CHAPTER 17 ■ INTERFACES

419

 interface IIfc1
 {
 void PrintOut(string s);
 }

 class MyClass: IIfc1
 {
 public void PrintOut(string s)
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create class object
 mc.PrintOut("object"); // Call class object implementation method

 IIfc1 ifc = (IIfc1)mc; // Cast class object ref to interface ref
 ifc.PrintOut("interface"); // Call interface method
 }
 }

This code produces the following output:

Calling through: object
Calling through: interface

Figure 17-3. A reference to the class object and a reference to the interface

CHAPTER 17 ■ INTERFACES

420

Using the as Operator with Interfaces
In the previous section, you saw that you can use the cast operator to get a reference to an object’s
interface. An even better idea is to use the as operator. The as operator is covered in detail in Chapter 18,
but I’ll mention it here as well, since it’s a good choice to use with interfaces.

If you attempt to cast a class object reference to a reference of an interface that the class doesn’t
implement, the cast operation will raise an exception. You can avoid this problem by using the as
operator instead. It works as follows:

• If the class implements the interface, the expression returns a reference to the interface.

• If the class doesn’t implement the interface, the expression returns null rather than raising an

exception.

The following code demonstrates the use of the as operator. The first line uses the as operator to
obtain an interface reference from a class object. The result of the expression sets the value of b either to
null or to a reference to an ILiveBirth interface.

The second line checks the value of b and, if it is not null, executes the command that calls the
interface member method.

 Class object ref Interface name
 ↓ ↓
 ILiveBirth b = a as ILiveBirth; // Acts like cast: (ILiveBirth)a

 ↑ ↑
 Interface Operator
 ref
 if (b != null)
 Console.WriteLine("Baby is called: {0}", b.BabyCalled());

CHAPTER 17 ■ INTERFACES

421

Implementing Multiple Interfaces
In the examples shown so far, the classes have implemented a single interface.

• A class or struct can implement any number of interfaces.

• All the interfaces implemented must be listed in the base class list and separated by commas

(following the base class name, if there is one).

For example, the following code shows class MyData, which implements two interfaces: IDataStore
and IDataRetrieve. Figure 17-4 illustrates the implementation of the multiple interfaces in class MyData.

 interface IDataRetrieve { int GetData(); } // Declare interface
 interface IDataStore { void SetData(int x); } // Declare interface
 Interface Interface
 ↓ ↓
 class MyData: IDataRetrieve, IDataStore // Declare class
 {
 int Mem1; // Declare field
 public int GetData() { return Mem1; }
 public void SetData(int x) { Mem1 = x; }
 }

 class Program
 {
 static void Main() // Main
 {
 MyData data = new MyData();
 data.SetData(5);
 Console.WriteLine("Value = {0}", data.GetData());
 }
 }

This code produces the following output:

Value = 5

Figure 17-4. Class implementing multiple interfaces

CHAPTER 17 ■ INTERFACES

422

Implementing Interfaces with Duplicate Members
Since a class can implement any number of interfaces, it’s possible that two or more of the interface
members might have the same signature and return type. So, how does the compiler handle that
situation?

For example, suppose you had two interfaces—IIfc1 and IIfc2—as shown following. Each interface
has a method named PrintOut, with the same signature and return type. If you were to create a class that
implemented both interfaces, how should you handle these duplicate interface methods?

 interface IIfc1
 {
 void PrintOut(string s);
 }

 interface IIfc2
 {
 void PrintOut(string t);
 }

The answer is that if a class implements multiple interfaces, where several of the interfaces have
members with the same signature and return type, the class can implement a single member that
satisfies all the interfaces containing that duplicated member.

For example, the following code shows the declaration of class MyClass, which implements both
IIfc1 and IIfc2. Its implementation of method PrintOut satisfies the requirement for both interfaces.

 class MyClass : IIfc1, IIfc2 // Implement both interfaces.
 {
 public void PrintOut(string s) // Single implementation for both
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 mc.PrintOut("object");
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 17 ■ INTERFACES

423

This code produces the following output:

Calling through: object

Figure 17-5 illustrates the duplicate interface methods being implemented by a single class-level
method implementation.

Figure 17-5. Multiple interfaces implemented by the same class member

CHAPTER 17 ■ INTERFACES

424

References to Multiple Interfaces
You saw previously that interfaces are reference types and that you can get a reference to an interface by
using the as operator or by casting an object reference to the interface type. If a class implements
multiple interfaces, you can get separate references for each one.

For example, the following class implements two interfaces with the single method PrintOut. The
code in Main calls method PrintOut in three ways:

• Through the class object

• Through a reference to the IIfc1 interface

• Through a reference to the IIfc2 interface

Figure 17-6 illustrates the class object and references to IIfc1 and IIfc2.

 interface IIfc1 // Declare interface
 {
 void PrintOut(string s);
 }

 interface IIfc2 // Declare interface
 {
 void PrintOut(string s);
 }

 class MyClass : IIfc1, IIfc2 // Declare class
 {
 public void PrintOut(string s)
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

CHAPTER 17 ■ INTERFACES

425

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();

 IIfc1 ifc1 = (IIfc1) mc; // Get ref to IIfc1
 IIfc2 ifc2 = (IIfc2) mc; // Get ref to IIfc2

 mc.PrintOut("object"); // Call through class object

 ifc1.PrintOut("interface 1"); // Call through IIfc1
 ifc2.PrintOut("interface 2"); // Call through IIfc2
 }
 }

This code produces the following output:

Calling through: object
Calling through: interface 1
Calling through: interface 2

Figure 17-6. Separate references to different interfaces in the class

CHAPTER 17 ■ INTERFACES

426

An Inherited Member As an Implementation
A class implementing an interface can inherit the code for an implementation from one of its base
classes. For example, the following code illustrates a class inheriting implementation code from a
base class.

• IIfc1 is an interface with a method member called PrintOut.

• MyBaseClass contains a method called PrintOut that matches IIfc1’s method.

• Class Derived has an empty declaration body but derives from class MyBaseClass and contains

IIfc1 in its base class list.

• Even though Derived’s declaration body is empty, the code in the base class satisfies the

requirement to implement the interface method.

 interface IIfc1 { void PrintOut(string s); }

 class MyBaseClass // Declare base class.
 {
 public void PrintOut(string s) // Declare the method.
 {
 Console.WriteLine("Calling through: {0}", s);
 }
 }

 class Derived : MyBaseClass, IIfc1 // Declare class.
 {
 }

 class Program {
 static void Main()
 {
 Derived d = new Derived(); // Create class object
 d.PrintOut("object."); // Call method
 }
 }

Figure 17-7 illustrates the preceding code. Notice that the arrow from IIfc1 goes down to the code
in the base class.

Figure 17-7. Implementation in the base class

CHAPTER 17 ■ INTERFACES

427

Explicit Interface Member Implementations
You saw in a previous section that a single class can implement all the members required by multiple
interfaces, as illustrated in Figures 17-5 and 17-6.

But what if you want separate implementations for each interface? In this case, you can create what
are called explicit interface member implementations. An explicit interface member implementation has
the following characteristics:

• Like all interface implementations, it is placed in the class or struct implementing the interface.

• It is declared using a qualified interface name, which consists of the interface name and member

name, separated by a dot.

The following code shows the syntax for declaring explicit interface member implementations. Each
of the two interfaces implemented by MyClass implements its own version of method PrintOut.

 class MyClass : IIfc1, IIfc2
 { Qualified interface name
 ↓
 void IIfc1.PrintOut (string s) // Explicit implementation
 { ... }

 void IIfc2.PrintOut (string s) // Explicit implementation
 { ... }
 }

Figure 17-8 illustrates the class and interfaces. Notice that the boxes representing the explicit
interface member implementations are not shown in gray, since they now represent actual code.

Figure 17-8. Explicit interface member implementations

CHAPTER 17 ■ INTERFACES

428

For example, in the following code, class MyClass declares explicit interface member
implementations for the members of the two interfaces. Notice that in this example there are only
explicit interface member implementations. There is no class-level implementation.

 interface IIfc1 { void PrintOut(string s); } // Declare interface
 interface IIfc2 { void PrintOut(string t); } // Declare interface

 class MyClass : IIfc1, IIfc2
 { Qualified interface name
 ↓
 void IIfc1.PrintOut(string s) // Explicit interface member
 { // implementation
 Console.WriteLine("IIfc1: {0}", s);
 }
 Qualified interface name
 ↓
 void IIfc2.PrintOut(string s) // Explicit interface member
 { // implementation
 Console.WriteLine("IIfc2: {0}", s);
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create class object

 IIfc1 ifc1 = (IIfc1) mc; // Get reference to IIfc1
 ifc1.PrintOut("interface 1"); // Call explicit implementation

 IIfc2 ifc2 = (IIfc2) mc; // Get reference to IIfc2
 ifc2.PrintOut("interface 2"); // Call explicit implementation
 }
 }

This code produces the following output:

IIfc1: interface 1
IIfc2: interface 2

CHAPTER 17 ■ INTERFACES

429

Figure 17-9 illustrates the code. Notice in the figure that the interface methods are not pointing at
class-level implementations but contain their own code.

Figure 17-9. References to interfaces with explicit interface member implementations

When there is an explicit interface member implementation, a class-level implementation is
allowed but not required. The explicit implementation satisfies the requirement that the class or
struct must implement the method. You can therefore have any of the following three
implementation scenarios:

• A class-level implementation

• An explicit interface member implementation

• Both a class-level and an explicit interface member implementation

CHAPTER 17 ■ INTERFACES

430

Accessing Explicit Interface Member Implementations
An explicit interface member implementation can be accessed only through a reference to the interface.
This means that even other class members can’t directly access them.

For example, the following code shows the declaration of class MyClass, which implements interface
IIfc1 with an explicit implementation. Notice that even Method1, which is also a member of MyClass,
can’t directly access the explicit implementation.

• The first two lines of Method1 produce compile errors because the method is trying to access the

implementation directly.

• Only the last line in Method1 will compile, because it casts the reference to the current object

(this) to a reference to the interface type and uses that reference to the interface to call the

explicit interface implementation.

 class MyClass : IIfc1
 {
 void IIfc1.PrintOut(string s) // Explicit interface implementation
 {
 Console.WriteLine("IIfc1");
 }

 public void Method1()
 {
 PrintOut("..."); // Compile error
 this.PrintOut("..."); // Compile error

 ((IIfc1)this).PrintOut("..."); // OK, call method

 } ↑
 } Cast to a reference to the interface

This restriction has an important ramification for inheritance. Since other fellow class members
can’t directly access explicit interface member implementations, members of classes derived from the
class clearly can’t directly access them either. They must always be accessed through a reference to
the interface.

CHAPTER 17 ■ INTERFACES

431

Interfaces Can Inherit Interfaces
You saw earlier that interface implementations can be inherited from base classes. But an interface itself
can inherit from one or more other interfaces.

• To specify that an interface inherits from other interfaces, place the names of the base interfaces

in a comma-separated list after a colon following the interface name in the interface declaration,

as shown here:
 Colon Base interface list
 ↓ ↓
 interface IDataIO : IDataRetrieve, IDataStore
 { ...

• Unlike a class, which can have only a single class name in its base class list, an interface can have

any number of interfaces in its base interface list.

— The interfaces in the list can themselves have inherited interfaces.

— The resulting interface contains all the members it declares, as well as all those of its base
interfaces.

The code in Figure 17-10 shows the declaration of three interfaces. Interface IDataIO inherits from
the first two. The figure on the right shows IDataIO encompassing the other two interfaces.

Figure 17-10. Class with interface inheriting multiple interfaces

CHAPTER 17 ■ INTERFACES

432

Example of Different Classes Implementing an Interface
The following code illustrates several aspects of interfaces that have been covered. The program declares
a class called Animal, which is used as a base class for several other classes that represent various types of
animals. It also declares an interface named ILiveBirth.

Classes Cat, Dog, and Bird all derive from base class Animal. Cat and Dog both implement the
ILiveBirth interface, but class Bird does not.

In Main, the program creates an array of Animal objects and populates it with a class object of each
of the three types of animal classes. The program then iterates through the array and, using the as
operator, retrieves references to the ILiveBirth interface of each object that has one and calls its
BabyCalled method.

 interface ILiveBirth // Declare interface
 {
 string BabyCalled();
 }

 class Animal { } // Base class Animal

 class Cat : Animal, ILiveBirth // Declare class Cat
 {
 string ILiveBirth.BabyCalled()
 { return "kitten"; }
 }

 class Dog : Animal, ILiveBirth // Declare class Dog
 {
 string ILiveBirth.BabyCalled()
 { return "puppy"; }
 }

 class Bird : Animal // Declare class Bird
 {
 } D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

CHAPTER 17 ■ INTERFACES

433

 class Program
 {
 static void Main()
 {
 Animal[] animalArray = new Animal[3]; // Create Animal array
 animalArray[0] = new Cat(); // Insert Cat class object
 animalArray[1] = new Bird(); // Insert Bird class object
 animalArray[2] = new Dog(); // Insert Dog class object
 foreach(Animal a in animalArray) // Cycle through array
 {
 ILiveBirth b = a as ILiveBirth; // if implements ILiveBirth...
 if (b != null)
 Console.WriteLine("Baby is called: {0}", b.BabyCalled());
 }
 }
 }

This code produces the following output:

Baby is called: kitten
Baby is called: puppy

Figure 17-11 illustrates the array and the objects in memory.

Figure 17-11. Different object types of base class Animal are interspersed in the array.

C H A P T E R 18

■ ■ ■

435

Conversions

■ What Are Conversions?

■ Implicit Conversions

■ Explicit Conversions and Casting

■ Types of Conversions

■ Numeric Conversions

■ Reference Conversions

■ Boxing Conversions

■ Unboxing Conversions

■ User-Defined Conversions

■ The is Operator

■ The as Operator

CHAPTER 18 ■ CONVERSIONS

436

What Are Conversions?
To get an understanding of what conversions are, let’s start by considering the simple case in which you
declare two variables of different types and then assign the value of one (the source) to the other (the
target). Before the assignment can occur, the source value must be converted to a value of the target
type. Figure 18-1 illustrates type conversion.

• Conversion is the process of taking a value of one type and using it as the equivalent value of

another type.

• The value resulting from the conversion should be the same as the source value—but in the

target type.

Figure 18-1. Type conversion

For example, the code in Figure 18-2 shows the declaration of two variables of different types.

• var1 is of type short, a 16-bit signed integer that is initialized to 5. var2 is of type sbyte, an 8-bit

signed integer that is initialized to the value 10.

• The third line of the code assigns the value of var1 to var2. Since these are two different types, the

value of var1 must be converted to a value of the same type as var2 before the assignment can be

performed. This is performed using the cast expression, which you'll see shortly.

• Notice also that the value and type of var1 are unchanged. Although it is called a conversion, this

only means that the source value is used as the target type—not that the source is changed into

the target type.

Figure 18-2. Converting from a short to an sbyte

CHAPTER 18 ■ CONVERSIONS

437

Implicit Conversions
For certain types of conversions, there is no possibility of loss of data or precision. For example, it’s easy
to stuff an 8-bit value into a 16-bit type with no loss of data.

• The language will do these conversions for you automatically. These are called implicit

conversions.

• When converting from a source type with fewer bits to a target type with more bits, the extra bits

in the target need to be filled with either 0s or 1s.

• When converting from a smaller unsigned type to a larger unsigned type, the extra, most

significant bits of the target are filled with 0s. This is called zero extension.

Figure 18-3 shows an example of the zero extension of an 8-bit value of 10 converted to a 16-bit
value of 10.

Figure 18-3. Zero extension in unsigned conversions

For conversion between signed types, the extra most significant bits are filled with the sign bit of the
source expression.

• This maintains the correct sign and magnitude for the converted value.

• This is called sign extension and is illustrated in Figure 18-4, first with 10 and then with –10.

Figure 18-4. Sign extension in signed conversions

CHAPTER 18 ■ CONVERSIONS

438

Explicit Conversions and Casting
When converting from a shorter type to a longer type, it’s easy for the longer type to hold all the bits of
the shorter type. In other situations, however, the target type might not be able to accommodate the
source value without loss of data.

For example, suppose you want to convert a ushort value to a byte.

• A ushort can hold any value between 0 and 65,535.

• A byte can only hold a value between 0 and 255.

• As long as the ushort value you want to convert is less than 256, there won’t be any loss of data. If

it is greater, however, the most significant bits will be lost.

For example, Figure 18-5 shows an attempt to convert a ushort with a value of 1,365 to a byte,
resulting in a loss of data.

Figure 18-5. Attempting to convert a ushort to a byte

Clearly, only a relatively small number (0.4 percent) of the possible unsigned 16-bit ushort values
can be safely converted to an unsigned 8-bit byte type without loss of data. The rest result in data
overflow, yielding different values.

CHAPTER 18 ■ CONVERSIONS

439

Casting
For the predefined types, C# will automatically convert from one data type to another—but only
between those types for which there is no possibility of data loss between the source type and the target
type. That is, the language does not provide automatic conversion between two types if there is any
value of the source type that would lose data if it were converted to the target type. If you want to make a
conversion of this type, you must use an explicit conversion, called a cast expression.

The following code shows an example of a cast expression. It converts the value of var1 to type
sbyte. A cast expression consists of the following:

• A set of matching parentheses containing the name of the target type

• The source expression, following the parentheses

 Target type
 ↓
 (sbyte) var1;
 ↑
 Source expression

When you use a cast expression, you are explicitly taking responsibility for performing the operation
that might lose data. Essentially, you are saying, “In spite of the possibility of data loss, I know what I’m
doing, so make this conversion anyway.” (Make sure, however, that you do know what you’re doing.)

For example, Figure 18-6 shows cast expressions converting two values of type ushort to type byte.
In the first case, there is no loss of data. In the second case, the most significant bits are lost, giving a
value of 85—which is clearly not equivalent to the source value, 1,365.

Figure 18-6. Casting a ushort to a byte

The output of the code in the figure is the following:

sb: 10 = 0xA

sb: 85 = 0x55

CHAPTER 18 ■ CONVERSIONS

440

Types of Conversions
There are a number of standard, predefined conversions for the numeric and reference types. The
categories are illustrated in Figure 18-7.

• Beyond the standard conversions, you can also define both implicit and explicit conversions for

your user-defined types.

• There is also a predefined type of conversion called boxing, which converts any value type to

either of these:

— Type object

— Type System.ValueType

• Unboxing converts a boxed value back to its original type.

Figure 18-7. Types of conversions

Numeric Conversions
Any numeric type can be converted into any other numeric type, as illustrated in Figure 18-8. Some of
the conversions are implicit conversions, and others must be explicit.

Figure 18-8. Numeric conversions

CHAPTER 18 ■ CONVERSIONS

441

Implicit Numeric Conversions
The implicit numeric conversions are shown in Figure 18-9.

• There is an implicit conversion from the source type to the target type if there is a path, following

the arrows, from the source type to the target type.

• Any numeric conversion for which there is not a path following the arrows from the source type

to the target type must be an explicit conversion.

The figure demonstrates that, as you would expect, there is an implicit conversion between numeric
types that occupy fewer bits to those that occupy more bits.

Figure 18-9. The implicit numeric conversions

CHAPTER 18 ■ CONVERSIONS

442

Overflow Checking Context
You’ve seen that explicit conversions have the possibility of losing data and not being able to represent
the source value equivalently in the target type. For integral types, C# provides you with the ability to
choose whether the runtime should check the result for overflow when making these types of
conversions. It does this through the checked operator and the checked statement.

• Whether a segment of code is checked or not is called its overflow checking context.

— If you designate an expression or segment of code as checked, the CLR will raise an
OverflowException exception if the conversion produces an overflow.

— If the code is not checked, the conversion will proceed regardless of whether there is an
overflow.

• The default overflow checking context is not checked.

The checked and unchecked Operators
The checked and unchecked operators control the overflow checking context of an expression, which is
placed between a set of parentheses. The expression cannot be a method. The syntax is the following:

 checked (Expression)
 unchecked (Expression)

For example, the following code executes the same conversion—first in a checked operator and then
in an unchecked operator.

• In the unchecked context, the overflow is ignored, resulting in the value 208.

• In the checked context, an OverflowException exception is raised.

 ushort sh = 2000;
 byte sb;

 sb = unchecked ((byte) sh); // Most significant bits lost
 Console.WriteLine("sb: {0}", sb);

 sb = checked ((byte) sh); // OverflowException raised
 Console.WriteLine("sb: {0}", sb);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 18 ■ CONVERSIONS

443

This code produces the following output:

sb: 208

Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an overflow.
at Test1.Test.Main() in C:\Programs\Test1\Program.cs:line 21

The checked and unchecked Statements
The checked and unchecked operators that you just saw act on the single expression between the
parentheses. The checked and unchecked statements perform the same function but control all the
conversions in a block of code, rather than in a single expression.

The checked and unchecked statements can be nested to any level.
For example, the following code uses checked and unchecked statements and produces the same

results as the previous example, which uses checked and unchecked expressions. In this case, however,
blocks of code are affected, rather than just expressions.

 byte sb;
 ushort sh = 2000;

 unchecked // Set unchecked
 {
 sb = (byte) sh;
 Console.WriteLine("sb: {0}", sb);

 checked // Set checked
 {
 sb = (byte) sh;
 Console.WriteLine("sb: {0}", sh);
 }
 }

CHAPTER 18 ■ CONVERSIONS

444

Explicit Numeric Conversions
You’ve seen that the implicit conversions automatically convert from the source expression to the target
type because there is no possible loss of data. With the explicit conversions, however, there is the
possibility of losing data—so it’s important for you as the programmer to know how a conversion will
handle that loss if it occurs.

In this section, you will look at each of the various types of explicit numeric conversions. Figure
18-10 shows the subset of explicit conversions shown in Figure 18-8.

Figure 18-10. The explicit numeric conversions

Integral to Integral
Figure 18-11 shows the behavior of the integral-to-integral explicit conversions. In the checked case, if
the conversion loses data, the operation raises an OverflowException exception. In the unchecked case,
any lost bits go unreported.

Figure 18-11. Integer type to integer type explicit conversions

CHAPTER 18 ■ CONVERSIONS

445

float or double to Integral
When converting a floating-point type to an integer type, the value is rounded toward 0 to the nearest
integer. Figure 18-12 illustrates the conversion conditions. If the rounded value is not within the range of
the target type, then

• The CLR raises an OverflowException exception if the overflow checking context is checked.

• C# does not define what its value should be if the context is unchecked.

Figure 18-12. Converting a float or a double to an integer type

decimal to Integral
When converting from decimal to the integer types, the CLR raises an OverflowException exception if the
resulting value is not within the target type’s range. Figure 18-13 illustrates the conversion conditions.

Figure 18-13. Converting a decimal to an integer type

CHAPTER 18 ■ CONVERSIONS

446

double to float
Values of type float occupy 32 bits, and values of type double occupy 64 bits. When a double is rounded
to a float, the double type value is rounded to the nearest float type value. Figure 18-14 illustrates the
conversion conditions.

• If the value is too small to be represented by a float, the value is set to either positive or

negative 0.

• If the value is too large to be represented by a float, the value is set to either positive or

negative infinity.

Figure 18-14. Converting a double to a float

float or double to decimal
Figure 18-15 shows the conversion conditions for converting from floating-point types to decimal.

• If the value is too small to be represented by the decimal type, the result is set to 0.

• If the value is too large, the CLR raises an OverflowException exception.

CHAPTER 18 ■ CONVERSIONS

447

Figure 18-15. Converting a float or double to a decimal

decimal to float or double
Conversions from decimal to the floating-point types always succeed. There might, however, be a loss of
precision. Figure 18-16 shows the conversion conditions.

Figure 18-16. Converting a decimal to a float or double

CHAPTER 18 ■ CONVERSIONS

448

Reference Conversions
As you well know by now, reference type objects comprise two parts in memory: the reference and
the data.

• Part of the information held by the reference is the type of the data it is pointing at.

• A reference conversion takes a source reference and returns a reference pointing at the same

place in the heap but “labels” the reference as a different type.

For example, the following code shows two reference variables, myVar1 and myVar2, that point to the
same object in memory. The code is illustrated in Figure 18-17.

• To myVar1, the object it references looks like an object of type B—which it is.

• To myVar2, the same object looks like an object of type A.

— Even though it is actually pointing at an object of type B, it cannot see the parts of B that
extend A and therefore cannot see Field2.

— The second WriteLine statement would therefore cause a compile error.

Notice that the “conversion” does not change myVar1.

 class A { public int Field1; }

 class B: A { public int Field2; }

 class Program
 {
 static void Main()
 {
 B myVar1 = new B();
 Return the reference to myVar1 as a reference to a class A.
 ↓
 A myVar2 = (A) myVar1;

 Console.WriteLine("{0}", myVar2.Field1); // Fine
 Console.WriteLine("{0}", myVar2.Field2); // Compile error!

 } ↑
 } myVar2 can’t see Field2.

CHAPTER 18 ■ CONVERSIONS

449

Figure 18-17. A reference conversion returns a different type associated to the object.

Implicit Reference Conversions
Just as there are implicit numeric conversions that the language will automatically perform for you,
there are also implicit reference conversions. These are illustrated in Figure 18-18.

• All reference types have an implicit conversion to type object.

• Any interface can be implicitly converted to an interface from which it is derived.

• A class can be implicitly converted to

— Any class in the chain from which it is derived

— Any interface that it implements

Figure 18-18. Implicit conversions for classes and interfaces

CHAPTER 18 ■ CONVERSIONS

450

A delegate can be implicitly converted to the .NET BCL classes and interfaces shown in Figure 18-19.
An array, ArrayS, with elements of type Ts, can be implicitly converted to the following:

• The .NET BCL class and interfaces shown in Figure 18-19.

• Another array, ArrayT, with elements of type Tt, if all of the following are true:

— Both arrays have the same number of dimensions.

— The element types, Ts and Tt, are reference types—not value types.

— There is an implicit conversion between types Ts and Tt.

Figure 18-19. Implicit conversions for delegates and arrays

CHAPTER 18 ■ CONVERSIONS

451

Explicit Reference Conversions
Explicit reference conversions are reference conversions from a general type to a more specialized type.

• Explicit conversions include

— Conversions from an object to any reference type

— Conversions from a base class to a class derived from it

• The explicit reference conversions are illustrated by reversing each of the arrows in Figures 18-18

and 18-19.

If this type of conversion were allowed without restriction, you could easily attempt to reference
members of a class that are not actually in memory. The compiler, however, does allow these types of
conversions. But when the system encounters them at run time, it raises an exception.

For example, the code in Figure 18-20 converts the reference of base class A to its derived class B and
assigns it to variable myVar2.

• If myVar2 were to attempt to access Field2, it would be attempting to access a field in the “B part”

of the object, which doesn’t exist—causing a memory fault.

• The runtime will catch this inappropriate cast and raise an InvalidCastException exception.

Notice, however, that it does not cause a compile error.

Figure 18-20. Invalid casts raise runtime exceptions.

CHAPTER 18 ■ CONVERSIONS

452

Valid Explicit Reference Conversions
There are three situations in which an explicit reference conversion will succeed at run time—that is, not
raise an InvalidCastException exception.

The first case is where the explicit conversion is unnecessary—that is, where the language would
have performed an implicit conversion for you anyway. For example, in the code that follows, the
explicit conversion is unnecessary because there is always an implicit conversion from a derived class to
one of its base classes.

 class A { }
 class B: A { }
 ...
 B myVar1 = new B();
 A myVar2 = (A) myVar1; // Cast is unnecessary; A is the base class of B.

The second case is where the source reference is null. For example, in the following code, even
though it would normally be unsafe to convert a reference of a base class to that of a derived class, the
conversion is allowed because the value of the source reference is null.

 class A { }
 class B: A { }
 ...
 A myVar1 = null;
 B myVar2 = (B) myVar1; // Allowed because myVar1 is null

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 18 ■ CONVERSIONS

453

The third case is where the actual data pointed to by the source reference could safely be converted
implicitly. The following code shows an example, and Figure 18-21 illustrates the code.

• The implicit conversion in the second line makes myVar2 “think” that it is pointing to data of type

A, while it is actually pointing to a data object of type B.

• The explicit conversion in the third line is casting a reference of a base class to a reference of one

of its derived classes. Normally this would raise an exception. In this case, however, the object

being pointed to actually is a data item of type B.

 B myVar1 = new B();
 A myVar2 = myVar1; // Implicitly cast myVar1 to type A.
 B myVar3 = (B)myVar2; // This cast is fine because the data is of type B.

Figure 18-21. Casting to a safe type

CHAPTER 18 ■ CONVERSIONS

454

Boxing Conversions
All C# types, including the value types, are derived from type object. Value types, however, are efficient,
lightweight types that do not, by default, include their object component in the heap. When the object
component is needed, however, you can use boxing, which is an implicit conversion that takes a value
type value, creates from it a full reference type object in the heap, and returns a reference to the object.

For example, Figure 18-22 shows three lines of code.

• The first two lines of code declare and initialize value type variable i and reference type

variable oi.

• In the third line of code, you want to assign the value of variable i to oi. But oi is a reference type

variable and must be assigned a reference to an object in the heap. Variable i, however, is a value

type and doesn’t have a reference to an object in the heap.

• The system therefore boxes the value of i by doing the following:

— Creating an object of type int in the heap

— Copying the value of i to the int object

— Returning the reference of the int object to oi to store as its reference

Figure 18-22. Boxing creates a full reference type object from a value type.

CHAPTER 18 ■ CONVERSIONS

455

Boxing Creates a Copy
A common misunderstanding about boxing is that it somehow acts upon the item being boxed. It
doesn’t. It returns a reference type copy of the value. After the boxing procedure, there are two
copies of the value—the value type original and the reference type copy—each of which can be
manipulated separately.

For example, the following code shows the separate manipulation of each copy of the value. Figure
18-23 illustrates the code.

• The first line defines value type variable i and initializes its value to 10.

• The second line creates reference type variable oi and initializes it with the boxed copy of

variable i.

• The last three lines of code show i and oi being manipulated separately.

 int i = 10; // Create and initialize value type
 Box i and assign its reference to oi.
 ↓
 object oi = i; // Create and initialize reference type
 Console.WriteLine("i: {0}, io: {1}", i, oi);

 i = 12;
 oi = 15;
 Console.WriteLine("i: {0}, io: {1}", i, oi);

This code produces the following output:

i: 10, io: 10

i: 12, io: 15

Figure 18-23. Boxing creates a copy that can be manipulated separately.

CHAPTER 18 ■ CONVERSIONS

456

The Boxing Conversions
Figure 18-24 shows the boxing conversions. Any value type ValueTypeS can be implicitly converted to
any of types object, System.ValueType, or InterfaceT, if ValueTypeS implements InterfaceT.

Figure 18-24. Boxing is the implicit conversion of value types to reference types.

Unboxing Conversions
Unboxing is the process of converting a boxed object back to its value type.

• Unboxing is an explicit conversion.

• The system performs the following steps when unboxing a value to ValueTypeT:

— It checks that the object being unboxed is actually a boxed value of type ValueTypeT .

— It copies the value of the object to the variable.

For example, the following code shows an example of unboxing a value.

• Value type variable i is boxed and assigned to reference type variable oi.

• Variable oi is then unboxed, and its value is assigned to value type variable j.

 static void Main()
 {
 int i = 10;
 Box i and assign its reference to oi.
 ↓
 object oi = i;
 Unbox oi and assign its value to j.
 ↓
 int j = (int) oi;
 Console.WriteLine("i: {0}, oi: {1}, j: {2}", i, oi, j);
 }

CHAPTER 18 ■ CONVERSIONS

457

This code produces the following output:

i: 10, oi: 10, j: 10

Attempting to unbox a value to a type other than the original type raises an InvalidCastException
exception.

The Unboxing Conversions
Figure 18-25 shows the unboxing conversions.

Figure 18-25. The unboxing conversions

CHAPTER 18 ■ CONVERSIONS

458

User-Defined Conversions
Besides the standard conversions, you can also define both implicit and explicit conversions for your
own classes and structs.

The syntax for user-defined conversions is shown following.

• The syntax is the same for both implicit and explicit conversion declarations, except for the

keywords implicit and explicit.

• The modifiers public and static are required.

 Required Operator Keyword Source
 ↓ ↓ ↓ ↓
 public static implicit operator TargetType (SourceType Identifier)
 { ↑
 Implicit or explicit
 ...
 return ObjectOfTargetType;
 }

For example, the following shows an example of the syntax of a conversion method that converts an
object of type Person to an int:

 public static implicit operator int(Person p)
 {
 return p.Age;
 }

Constraints on User-Defined Conversions
There are some important constraints on user-defined conversions. The most important are the
following:

• You can only define user-defined conversions for classes and structs.

• You cannot redefine standard implicit or explicit conversions.

• The following is true for source type S and target type T:

— S and T must be different types.

— S and T cannot be related by inheritance. That is, S cannot be derived from T, and T cannot be
derived from S.

— Neither S nor T can be an interface type or the type object.

— The conversion operator must be a member of either S or T.

• You cannot declare two conversions, one implicit and the other explicit, with the same source

and target types.

CHAPTER 18 ■ CONVERSIONS

459

Example of a User-Defined Conversion
The following code defines a class called Person that contains a person’s name and age. The class also
defines two implicit conversions. The first converts a Person object to an int value. The target int value
is the age of the person. The second converts an int to a Person object.

 class Person
 {
 public string Name;
 public int Age;
 public Person(string name, int age)
 {
 Name = name;
 Age = age;
 }

 public static implicit operator int(Person p) // Convert Person to int.
 {
 return p.Age;
 }

 public static implicit operator Person(int i) // Convert int to Person.
 {
 return new Person("Nemo", i);
 }
 }

 class Program
 {
 static void Main()
 {
 Person bill = new Person("bill", 25);

 Convert a Person object to an int.
 ↓
 int age = bill;
 Console.WriteLine("Person Info: {0}, {1}", bill.Name, age);

 Convert an int to a Person object.
 ↓
 Person anon = 35;
 Console.WriteLine("Person Info: {0}, {1}", anon.Name, anon.Age);
 }
 }

CHAPTER 18 ■ CONVERSIONS

460

This code produces the following output:

Person Info: bill, 25
Person Info: Nemo, 35

If you had defined the same conversion operators as explicit rather than implicit, then you would
have needed to use cast expressions to perform the conversions, as shown here:

 Explicit
 ... ↓
 public static explicit operator int(Person p)
 {
 return p.Age;
 }

 ...

 static void Main()
 {
 ... Requires cast expression
 ↓
 int age = (int) bill;
 ...

CHAPTER 18 ■ CONVERSIONS

461

Evaluating User-Defined Conversions
The user-defined conversions discussed so far have directly converted the source type to an object of the
target type in a single step, as shown in Figure 18-26.

Figure 18-26. Single-step user-defined conversion

But user-defined conversions can have up to three steps in the full conversion. Figure 18-27
illustrates these stages, which include the following:

• The preliminary standard conversion

• The user-defined conversion

• The following standard conversion

There is never more than a single user-defined conversion in the chain.

Figure 18-27. Multistep user-defined conversion

Example of a Multistep User-Defined Conversion
The following code declares class Employee, which is derived from class Person.

• Several sections ago, the code sample declared a user-defined conversion from class Person to

int. So if there is a standard conversion from Employee to Person and one from int to float, you

can convert from Employee to float.

— There is a standard conversion from Employee to Person, since Employee is derived from
Person.

— There is a standard conversion from int to float, since that is an implicit numeric
conversion.

• Since all three parts of the chain exist, you can convert from Employee to float. Figure 18-28

illustrates how the compiler performs the conversion.

CHAPTER 18 ■ CONVERSIONS

462

 class Employee : Person { }

 class Person
 {
 public string Name;
 public int Age;

 // Convert a Person object to an int.
 public static implicit operator int(Person p)
 {
 return p.Age;
 }
 }

 class Program
 {
 static void Main()
 {
 Employee bill = new Employee();
 bill.Name = "William";
 bill.Age = 25;
 Convert an Employee to a float.
 ↓
 float fVar = bill;

 Console.WriteLine("Person Info: {0}, {1}", bill.Name, fVar);
 }
 }

This code produces the following output:

Person Info: William, 25

Figure 18-28. Conversion of Employee to float

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 18 ■ CONVERSIONS

463

The is Operator
As shown previously, some conversion attempts are not successful and raise an

InvalidCastException exception at run time. Instead of blindly attempting a conversion, you can use the
is operator to check whether a conversion would complete successfully.

The syntax of the is operator is the following, where Expr is the source expression:

 Returns a bool
 ↓
 Expr is TargetType

The operator returns true if Expr can be successfully converted to the target type through any of
the following:

• A reference conversion

• A boxing conversion

• An unboxing conversion

For example, in the following code, you use the is operator to check whether variable bill of type
Employee can be converted to type Person, and then you take the appropriate action.

 class Employee : Person { }
 class Person
 {
 public string Name = "Anonymous";
 public int Age = 25;
 }

 class Program
 {
 static void Main()
 {
 Employee bill = new Employee();
 Person p;

 // Check if variable bill can be converted to type Person
 if(bill is Person)
 {
 p = bill;
 Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
 }
 }
 }

The is operator can be used only for reference conversions and boxing and unboxing conversions.
It cannot be used for user-defined conversions.

CHAPTER 18 ■ CONVERSIONS

464

The as Operator
The as operator is like the cast operator, except that it does not raise an exception. If the conversion fails,
rather than raising an exception, it returns null.

The syntax of the as operator is the following, where

• Expr is the source expression.

• TargetType is the target type, which must be a reference type.

 Returns a reference
 ↓
 Expr as TargetType

Since the as operator returns a reference expression, it can be used as the source for an assignment.
For example, variable bill of type Employee is converted to type Person, using the as operator, and

assigned to variable p of type Person. You then check to see whether p is null before using it.

 class Employee : Person { }

 class Person
 {
 public string Name = "Anonymous";
 public int Age = 25;
 }

 class Program
 {
 static void Main()
 {
 Employee bill = new Employee();
 Person p;

 p = bill as Person;
 if(p != null)
 {
 Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
 }
 }
 }

Like the is operator, the as operator can be used only for reference conversions and boxing
conversions. It cannot be used for user-defined conversions or conversions to a value type.

C H A P T E R 19

465

Generics

 What Are Generics?

 Generics in C#

 Generic Classes

 Declaring a Generic Class

 Creating a Constructed Type

 Creating Variables and Instances

 Constraints on Type Parameters

 Generic Methods

 Extension Methods with Generic Classes

 Generic Structs

 Generic Delegates

 Generic Interfaces

 Covariance and Contravariance in Generics

CHAPTER 19 GENERICS

466

What Are Generics?
With the language constructs you’ve learned so far, you can build powerful objects of many different
types. You do this mostly by declaring classes that encapsulate the behavior you want and then creating
instances of those classes.

All the types used in the class declarations so far have been specific types—either programmer-
defined or supplied by the language or the BCL. There are times, however, when a class would be more
useful if you could “distill” or “refactor” out its actions and apply them not just to the data types for
which they are coded but for other types as well.

Generics allow you to do just that. You can refactor your code and add an additional layer of
abstraction so that, for certain kinds of code, the data types are not hard-coded. This is particularly
designed for cases in which there are multiple sections of code performing the same instructions, but on
different data types.

That might sound pretty abstract, so we’ll start with an example that should make things clearer.

A Stack Example
Suppose first that you have created the following code, which declares a class called MyIntStack, which
implements a stack of ints. It allows you to push ints onto the stack and pop them off. This, by the way,
isn’t the system stack.

 class MyIntStack // Stack for ints
 {
 int StackPointer = 0;
 int[] StackArray; // Array of int
 ↑ int
 int ↓
 public void Push(int x) // Input type: int
 {
 ...
 } int
 ↓
 public int Pop() // Return type: int
 {
 ...
 }

 ...
 }

CHAPTER 19 GENERICS

467

Suppose now that you would like the same functionality for values of type float. There are several
ways you could achieve this. One way is to perform the following steps to produce the subsequent code:

• Cut and paste the code for class MyIntStack.

• Change the class name to MyFloatStack.

• Change the appropriate int declarations to float declarations throughout the class declaration.

 class MyFloatStack // Stack for floats
 {
 int StackPointer = 0;
 float [] StackArray; // Array of float
 ↑ float
 float ↓
 public void Push(float x) // Input type: float
 {
 ...
 }
 float
 ↓
 public float Pop() // Return type: float
 {
 ...
 }

 ...

 }

This method certainly works, but it’s error-prone, and has the following drawbacks:

• You need to inspect every part of the class carefully to determine which type declarations need to

be changed and which should be left alone.

• You need to repeat the process for each new type of stack class you need (long, double, string,

and so on).

• After the process, you end up with multiple copies of nearly identical code, taking up

additional space.

• Debugging and maintaining the parallel implementations is inelegant and error-prone.

7

CHAPTER 19 GENERICS

468

Generics in C#
With C# 2.0, Microsoft introduced the generics features, which offer more elegant ways of using a set of
code with more than one type. Generics allow you to declare type-parameterized code, which you can
instantiate with different types. This means you can write the code with “placeholders for types” and
then supply the actual types when you create an instance of the class.

By this point in the text, you should be very familiar with the concept that a type is not an object but
a template for an object. In the same way, a generic type is not a type but a template for a type. Figure
19-1 illustrates this point.

Figure 19-1. Generic types are templates for types.

C# provides five kinds of generics: classes, structs, interfaces, delegates, and methods. Notice that
the first four are types, and methods are members.

Figure 19-2 shows how generic types fit in with the other types covered.

Figure 19-2. Generics and user-defined types

CHAPTER 19 GENERICS

469

Continuing with the Stack Example
In the stack example, with classes MyIntStack and MyFloatStack, the bodies of the declarations of the
classes are identical except at the positions dealing with the type of the value held by the stack.

• In MyIntStack, these positions are occupied by type int.

• In MyFloatStack, they are occupied by float.

You can create a generic class from MyIntStack by doing the following:

• Take the MyIntStack class declaration, and instead of substituting float for int, substitute the

type placeholder T.

• Change the class name to MyStack.

• Place the string <T> after the class name.

The result is the following generic class declaration. The string consisting of the angle brackets with
the T means that T is a placeholder for a type. (It doesn’t have to be the letter T—it can be any identifier.)
Everywhere throughout the body of the class declaration where T is located, an actual type will need to
be substituted by the compiler.

 class MyStack <T>
 {
 int StackPointer = 0;
 T [] StackArray;
 ↑
 ↓
 public void Push(T x) {...}

 ↓
 public T Pop() {...}
 ...
 }

CHAPTER 19 GENERICS

470

Generic Classes
Now that you’ve seen a generic class, let’s look at generic classes in more detail and see how they’re
created and used.

As you know, there are two steps for creating and using your own regular, nongeneric classes:
declaring the class and creating instances of the class. But generic classes are not actual classes but
templates for classes—so you must first construct actual class types from them. You can then create
references and instances from these constructed class types.

Figure 19-3 illustrates the process at a high level. If it’s not all completely clear yet, don’t worry—
we’ll cover each part in the following sections.

1. Declare a class, using placeholders for some of the types.

2. Provide actual types to substitute in for the placeholders. This gives you an actual class

definition, with all the “blanks” filled in.

3. Create instances from the “filled-in” class definition.

Figure 19-3. Creating instances from a generic type

CHAPTER 19 GENERICS

471

Declaring a Generic Class
Declaring a simple generic class is much like declaring a regular class, with the following differences:

• Place a matching set of angle brackets after the class name.

• Between the angle brackets, place a comma-separated list of the placeholder strings that

represent the types, to be supplied on demand. These are called type parameters.

• Use the type parameters throughout the body of the declaration of the generic class to represent

the types that should be substituted in.

For example, the following code declares a generic class called SomeClass. The type parameters are
listed between the angle brackets and then used throughout the body of the declaration as if they were
real types.

 Type parameters
 ↓
 class SomeClass < T1, T2 >
 { Normally, types would be used in these positions.
 ↓ ↓
 public T1 SomeVar = new T1();
 public T2 OtherVar = new T2();
 } ↑ ↑
 Normally, types would be used in these positions.

There is no special keyword that flags a generic class declaration. Instead, the presence of the type
parameter list, demarcated with angle brackets, distinguishes a generic class declaration from a regular
class declaration.

CHAPTER 19 GENERICS

472

Creating a Constructed Type
You cannot create class objects directly from a generic class. First, you need to tell the compiler what
actual types should be substituted for the placeholders (the type parameters). The compiler takes those
actual types and creates a template from which it creates actual class objects.

To construct a class type from a generic class, list the class name and supply real types between the
angle brackets, in place of the type parameters. The real types being substituted for the type parameters
are called type arguments.

 Type arguments
 ↓
 SomeClass< short, int >

The compiler takes the type arguments and substitutes them for their corresponding type
parameters throughout the body of the generic class, producing the constructed type—from which actual
class instances are created.

Figure 19-4 shows the declaration of generic class SomeClass on the left. On the right, it shows the
constructed class created by using the type arguments short and int.

Figure 19-4. Supplying type arguments for all the type parameters of a generic class produces a constructed

class from which actual class objects can be created.

Figure 19-5 illustrates the difference between type parameters and type arguments.

• Generic class declarations have type parameters, which act as placeholders for types.

• Type arguments are the actual types you supply when creating a constructed type.

Figure 19-5. Type parameters versus type arguments

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 19 GENERICS

473

Creating Variables and Instances
A constructed class type is used just like a regular type in creating references and instances. For example,
the following code shows the creation of two class objects.

• The first line shows the creation of an object from a regular, nongeneric class. This is a form that

you should be completely familiar with by now.

• The second line of code shows the creation of an object from generic class SomeClass, instantiated

with types short and int. The form is exactly analogous to the line above it, with the constructed

class forms in place of a regular class name.

• The third line is the same semantically as the second line, but rather than listing the constructed

type on both sides of the equals sign, it uses the var keyword to make the compiler use type

inference.

 MyNonGenClass myNGC = new MyNonGenClass ();
 Constructed class Constructed class
 ↓ ↓
 SomeClass<short, int> mySc1 = new SomeClass<short int>();
 var mySc2 = new SomeClass<short, int>();

As with nongeneric classes, the reference and the instance can be created separately, as shown in
Figure 19-6. The figure also shows that what is going on in memory is the same as for a nongeneric class.

• The first line below the generic class declaration allocates a reference in the stack for variable

myInst. Its value is null.

• The second line allocates an instance in the heap and assigns its reference to the variable.

Figure 19-6. Using a constructed type to create a reference and an instance

Many different class types can be constructed from the same generic class. Each one is a separate
class type, just as if it had its own separate nongeneric class declaration.

CHAPTER 19 GENERICS

474

For example, the following code shows the creation of two types from generic class SomeClass. The
code is illustrated in Figure 19-7.

• One type is constructed with types short and int.

• The other is constructed with types int and long.

 class SomeClass< T1, T2 > // Generic class
 {
 ...
 }

 class Program
 {
 static void Main()
 {
 var first = new SomeClass<short, int >(); // Constructed type
 var second = new SomeClass<int, long>(); // Constructed type

 ...

Figure 19-7. Two constructed classes created from a generic class

CHAPTER 19 GENERICS

475

The Stack Example Using Generics
The following code shows the stack example implemented using generics. Method Main defines two
variables: stackInt and stackString. The two constructed types are created using int and string as the
type arguments.

 class MyStack<T>
 {
 T[] StackArray;
 int StackPointer = 0;

 public void Push(T x)
 {
 if (!IsStackFull)
 StackArray[StackPointer++] = x;
 }

 public T Pop()
 {
 return (!IsStackEmpty)
 ? StackArray[--StackPointer]
 : StackArray[0];
 }

 const int MaxStack = 10;
 bool IsStackFull { get{ return StackPointer >= MaxStack; } }
 bool IsStackEmpty { get{ return StackPointer <= 0; } }

 public MyStack()
 {
 StackArray = new T[MaxStack];
 }

 public void Print()
 {
 for (int i = StackPointer -1; i >= 0 ; i--)
 Console.WriteLine(" Value: {0}", StackArray[i]);
 }
 }

CHAPTER 19 GENERICS

476

 class Program
 {
 static void Main()
 {
 var stackInt = new MyStack<int>();
 var stackString = new MyStack<string>();

 stackInt.Push(3);
 stackInt.Push(5);
 stackInt.Push(7);

 stackInt.Print();

 stackString.Push("Generics are great!");
 stackString.Push("Hi there!");

 stackString.Print();
 }
 }

This code produces the following output:

 Value: 7
 Value: 5
 Value: 3
 Value: Hi there!
 Value: Generics are great!

CHAPTER 19 GENERICS

477

Comparing the Generic and Nongeneric Stack
Table 19-1 summarizes some of the differences between the initial nongeneric version of the stack and
the final generic version of the stack. Figure 19-8 illustrates some of these differences.

Table 19-1. Differences Between the Nongeneric and Generic Stacks

 Nongeneric Generic

Source Code Size Larger: You need a new
implementation for each type.

Smaller: You need only one
implementation regardless of the
number of constructed types.

Executable Size The compiled version of each
stack is present, regardless of
whether it is used.

Only types for which there is a
constructed type are present in the
executable.

Ease of Writing Easier to write because it’s more
concrete.

Harder to write because it’s more
abstract.

Difficulty to Maintain More error-prone to maintain,
since all changes need to be
applied for each applicable type.

Easier to maintain, because
modifications are needed in only
one place.

Figure 19-8. Nongeneric stack versus generic stack

CHAPTER 19 GENERICS

478

Constraints on Type Parameters
In the generic stack example, the stack did not do anything with the items it contained other than store
them and pop them. It didn’t try to add them, compare them, or do anything else that would require
using operations of the items themselves. There’s good reason for that. Since the generic stack doesn’t
know the type of the items it will be storing, it can’t know what members these types implement.

All C# objects, however, are ultimately derived from class object, so the one thing the stack can be
sure of about the items it’s storing is that they implement the members of class object. These include
methods ToString, Equals, and GetType. Other than that, it can’t know what members are available.

As long as your code doesn’t access the objects of the types it handles (or as long as it sticks to the
members of type object), your generic class can handle any type. Type parameters that meet this
constraint are called unbounded type parameters. If, however, your code tries to use any other members,
the compiler will produce an error message.

For example, the following code declares a class called Simple with a method called LessThan that
takes two variables of the same generic type. LessThan attempts to return the result of using the less-than
operator. But not all classes implement the less-than operator, so you can’t just substitute any class for T.
The compiler, therefore, produces an error message.

 class Simple<T>
 {
 static public bool LessThan(T i1, T i2)
 {
 return i1 < i2; // Error
 }
 ...
 }

To make generics more useful, therefore, you need to be able to supply additional information to
the compiler about what kinds of types are acceptable as arguments. These additional bits of
information are called constraints. Only types that meet the constraints can be substituted for the given
type parameter.

CHAPTER 19 GENERICS

479

Where Clauses
Constraints are listed as where clauses.

• Each type parameter that has constraints has its own where clause.

• If a parameter has multiple constraints, they are listed in the where clause, separated by commas.

The syntax of a where clause is the following:

 Type parameter Constraint list
 ↓ ↓
 where TypeParam : constraint, constraint, ...
 ↑ ↑
 Keyword Colon

The important points about where clauses are the following:

• They’re listed after the closing angle bracket of the type parameter list.

• They’re not separated by commas or any other token.

• They can be listed in any order.

• The token where is a contextual keyword, so you can use it in other contexts.

For example, the following generic class has three type parameters. T1 is unbounded. For T2, only
classes of type Customer, or classes derived from Customer, can be used as type arguments. For T3, only
classes that implement interface IComparable can be used as type arguments.

 Unbounded With constraints
 ↓ ↓ No separators
 class MyClass < T1, T2, T3 > ↓
 where T2: Customer // Constraint for T2
 where T3: IComparable // Constraint for T3
 { ↑
 ... No separators
 }

CHAPTER 19 GENERICS

480

Constraint Types and Order
There are five types of constraints. These are listed in Table 19-2.

Table 19-2. Types of Constraints

Constraint Type Description

ClassName Only classes of this type, or classes derived from it, can be used as the type
argument.

class Any reference type, including classes, arrays, delegates, and interfaces, can be used
as the type argument.

struct Any value type can be used as the type argument.

InterfaceName Only this interface, or types that implement this interface, can be used as the
type argument.

new() Any type with a parameterless public constructor can be used as the type
argument. This is called the constructor constraint.

The where clauses can be listed in any order. The constraints in a where clause, however, must be

placed in a particular order, as shown in Figure 19-9.

• There can be at most one primary constraint, and if there is one, it must be listed first.

• There can be any number of InterfaceName constraints.

• If the constructor constraint is present, it must be listed last.

Figure 19-9. If a type parameter has multiple constraints, they must be in this order.

The following declarations show examples of where clauses:

 class SortedList<S>
 where S: IComparable<S> { ... }

 class LinkedList<M,N>
 where M : IComparable<M>
 where N : ICloneable { ... }

 class MyDictionary<KeyType, ValueType>
 where KeyType : IEnumerable,
 new() { ... }

CHAPTER 19 GENERICS

481

Generic Methods
Unlike the other generics, a method is not a type but a member. You can declare generic methods in
both generic and nongeneric classes, and in structs and interfaces, as shown in Figure 19-10.

Figure 19-10. Generic methods can be declared in generic and nongeneric types.

CHAPTER 19 GENERICS

482

Declaring a Generic Method
Generic methods have a type parameter list and optional constraints.

• Generic methods have two parameter lists:

— The method parameter list, enclosed in parentheses

— The type parameter list, enclosed in angle brackets

• To declare a generic method, do the following:

— Place the type parameter list immediately after the method name and before the method
parameter list.

— Place any constraint clauses after the method parameter list.

 Type parameter list Constraint clauses
 ↓ ↓
 public void PrintData<S, T> (S p, T t) where S: Person
 { ↑
 ... Method parameter list
 }

Note Remember that the type parameter list goes after the method name and before the method parameter

list.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 19 GENERICS

483

Invoking a Generic Method
To invoke a generic method, supply type arguments with the method invocation, as shown here:

 Type arguments
 ↓
 MyMethod<short, int>();
 MyMethod<int, long >();

Figure 19-11 shows the declaration of a generic method called DoStuff, which takes two type
parameters. Below it are two places where the method is called, each with a different set of type
parameters. Each of these constructed instances produces a different version of the method, as shown
on the right of the figure.

Figure 19-11. A generic method with two instantiations

CHAPTER 19 GENERICS

484

Inferring Types
If you are passing parameters into a method, the compiler can sometimes infer from the types of the
method parameters the types that should be used as the type parameters of the generic method. This can
make the method calls simpler and easier to read.

For example, the following code declares MyMethod, which takes a method parameter of the same
type as the type parameter.

 public void MyMethod <T> (T myVal) { ... }
 ↑ ↑
 Both are of type T

If you invoke MyMethod with a variable of type int, as shown in the following code, the information in
the type parameter of the method invocation is redundant, since the compiler can see from the method
parameter that it’s an int.

 int myInt = 5;
 MyMethod <int> (myInt);
 ↑ ↑
 Both are ints

Since the compiler can infer the type parameter from the method parameter, you can omit the type
parameter and its angle brackets from the invocation, as shown here:

 MyMethod(myInt);

CHAPTER 19 GENERICS

485

Example of a Generic Method
The following code declares a generic method called ReverseAndPrint in a nongeneric class called
Simple. The method takes as its parameter an array of any type. Main declares three different array types.
It then calls the method twice with each array. The first time it calls the method with a particular array, it
explicitly uses the type parameter. The second time, the type is inferred.

 class Simple // Non-generic class
 {
 static public void ReverseAndPrint<T>(T[] arr) // Generic method
 {
 Array.Reverse(arr);
 foreach (T item in arr) // Use type argument T.
 Console.Write("{0}, ", item.ToString());
 Console.WriteLine("");
 }
 }

 class Program
 {
 static void Main()
 {
 // Create arrays of various types.
 var intArray = new int[] { 3, 5, 7, 9, 11 };
 var stringArray = new string[] { "first", "second", "third" };
 var doubleArray = new double[] { 3.567, 7.891, 2.345 };

 Simple.ReverseAndPrint<int>(intArray); // Invoke method
 Simple.ReverseAndPrint(intArray); // Infer type and invoke

 Simple.ReverseAndPrint<string>(stringArray); // Invoke method
 Simple.ReverseAndPrint(stringArray); // Infer type and invoke

 Simple.ReverseAndPrint<double>(doubleArray); // Invoke method
 Simple.ReverseAndPrint(doubleArray); // Infer type and invoke
 }
 }

This code produces the following output:

11, 9, 7, 5, 3,
3, 5, 7, 9, 11,
third, second, first,
first, second, third,
2.345, 7.891, 3.567,
3.567, 7.891, 2.345,

CHAPTER 19 GENERICS

486

Extension Methods with Generic Classes
Extension methods are described in detail in Chapter 7 and work just as well with generic classes. They
allow you to associate a static method in one class with a different generic class and to invoke the
method as if it were an instance method on a constructed instance of the class.

As with nongeneric classes, an extension method for a generic class must satisfy the following
constraints:

• It must be declared static.

• It must be the member of a static class.

• It must contain as its first parameter type the keyword this, followed by the name of the generic

class it extends.

The following code shows an example of an extension method called Print on a generic class called
Holder<T>:

 static class ExtendHolder
 {
 public static void Print<T>(this Holder<T> h)
 {
 T[] vals = h.GetValues();
 Console.WriteLine("{0},\t{1},\t{2}", vals[0], vals[1], vals[2]);
 }
 }

 class Holder<T>
 {
 T[] Vals = new T[3];

 public Holder(T v0, T v1, T v2)
 { Vals[0] = v0; Vals[1] = v1; Vals[2] = v2; }

 public T[] GetValues() { return Vals; }
 }

 class Program
 {
 static void Main(string[] args) {
 var intHolder = new Holder<int>(3, 5, 7);
 var stringHolder = new Holder<string>("a1", "b2", "c3");
 intHolder.Print();
 stringHolder.Print();
 }
 }

This code produces the following output:

3, 5, 7
a1, b2, c3

CHAPTER 19 GENERICS

487

Generic Structs
Like generic classes, generic structs can have type parameters and constraints. The rules and conditions
for generic structs are the same as those for generic classes.

For example, the following code declares a generic struct called PieceOfData, which stores and
retrieves a piece of data, the type of which is determined when the type is constructed. Main creates
objects of two constructed types—one using int and the other using string.

 struct PieceOfData<T> // Generic struct
 {
 public PieceOfData(T value) { _data = value; }
 private T _data;
 public T Data
 {
 get { return _data; }
 set { _data = value; }
 }
 }

 class Program
 {
 static void Main() Constructed type
 { ↓
 var intData = new PieceOfData<int>(10);
 var stringData = new PieceOfData<string>("Hi there.");
 ↑
 Constructed type
 Console.WriteLine("intData = {0}", intData.Data);
 Console.WriteLine("stringData = {0}", stringData.Data);
 }
 }

This code produces the following output:

intData = 10
stringData = Hi there.

CHAPTER 19 GENERICS

488

Generic Delegates
Generic delegates are very much like nongeneric delegates, except that the type parameters determine
the characteristics of what methods will be accepted.

• To declare a generic delegate, place the type parameter list in angle brackets after the delegate

name and before the delegate parameter list.

 Type parameters
 ↓
 delegate R MyDelegate<T, R>(T value);
 ↑ ↑
 Return type Delegate formal parameter

• Notice that there are two parameter lists: the delegate formal parameter list and the type

parameter list.

• The scope of the type parameters includes the following:

— The return type

— The formal parameter list

— The constraint clauses

CHAPTER 19 GENERICS

489

The following code shows an example of a generic delegate. In Main, generic delegate MyDelegate is
instantiated with an argument of type string and initialized with method PrintString.

 delegate void MyDelegate<T>(T value); // Generic delegate

 class Simple
 {
 static public void PrintString(string s) // Method matches delegate
 {
 Console.WriteLine(s);
 }

 static public void PrintUpperString(string s) // Method matches delegate
 {
 Console.WriteLine("{0}", s.ToUpper());
 }
 }

 class Program
 {
 static void Main()
 {
 var myDel = // Create inst of delegate
 new MyDelegate<string>(Simple.PrintString);
 myDel += Simple.PrintUpperString; // Add a method.

 myDel("Hi There."); // Call delegate
 }
 }

This code produces the following output:

Hi There.
HI THERE.

CHAPTER 19 GENERICS

490

Another Generic Delegate Example
Since the LINQ feature of C# 3.0 uses generic delegates extensively, it’s worth showing another example
before we get there. I’ll cover LINQ itself, and more about its generic delegates, in Chapter 21.

The following code declares a generic delegate named Func, which takes methods with two
parameters and that return a value. The method return type is represented as TR, and the method
parameter types are represented as T1 and T2.

 Delegate parameter type
 ↓ ↓ ↓ ↓
 public delegate TR Func<T1, T2, TR>(T1 p1, T2 p2); // Generic delegate
 ↑ ↑
 class Simple Delegate return type
 {
 static public string PrintString(int p1, int p2) // Method matches delegate
 {
 int total = p1 + p2;
 return total.ToString();
 }
 }

 class Program
 {
 static void Main()
 {
 var myDel = // Create inst of delegate
 new Func<int, int, string>(Simple.PrintString);

 Console.WriteLine("Total: {0}", myDel(15, 13)); // Call delegate
 }
 }

This code produces the following output:

Total: 28

CHAPTER 19 GENERICS

491

Generic Interfaces
Generic interfaces allow you to write interfaces where the formal parameters and return types of
interface members are generic type parameters. Generic interface declarations are similar to nongeneric
interface declarations but have the type parameter list in angle brackets after the interface name.

For example, the following code declares a generic interface called IMyIfc.

• Simple is a generic class that implements generic interface IMyIfc.

• Main instantiates two objects of the generic class: one with type int and the other with type

string.

 Type parameter
 ↓
 interface IMyIfc<T> // Generic interface
 {
 T ReturnIt(T inValue);
 }
 Type parameter Generic interface
 ↓ ↓
 class Simple<S> : IMyIfc<S> // Generic class
 {
 public S ReturnIt(S inValue) // Implement generic interface
 { return inValue; }
 }

 class Program
 {
 static void Main()
 {
 var trivInt = new Simple<int>();
 var trivString = new Simple<string>();

 Console.WriteLine("{0}", trivInt.ReturnIt(5));
 Console.WriteLine("{0}", trivString.ReturnIt("Hi there."));
 }
 }

This code produces the following output:

5
Hi there.

CHAPTER 19 GENERICS

492

An Example Using Generic Interfaces
The following example illustrates two additional capabilities of generic interfaces:

• Like other generics, instances of a generic interface instantiated with different type parameters

are different interfaces.

• You can implement a generic interface in a nongeneric type.

For example, the following code is similar to the last example, but in this case, Simple is a nongeneric
class that implements a generic interface. In fact, it implements two instances of IMyIfc. One instance is
instantiated with type int and the other with type string.

 interface IMyIfc<T> // Generic interface
 {
 T ReturnIt(T inValue);
 }
 Two different interfaces from the same generic interface
 ↓ ↓
 class Simple : IMyIfc<int>, IMyIfc<string> // Non-generic class
 {
 public int ReturnIt(int inValue) // Implement interface using int
 { return inValue; }

 public string ReturnIt(string inValue) // Implement interface using string
 { return inValue; }
 }

 class Program
 {
 static void Main()
 {
 Simple trivial = new Simple();

 Console.WriteLine("{0}", trivial.ReturnIt(5));
 Console.WriteLine("{0}", trivial.ReturnIt("Hi there."));
 }
 }

This code produces the following output:

5
Hi there.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 19 GENERICS

493

Generic Interface Implementations Must Be Unique
When implementing an interface in a generic type, there must be no possible combination of type
arguments that would create a duplicate interface in the type.

For example, in the following code, class Simple uses two instantiations of interface IMyIfc.

• The first one is a constructed type, instantiated with type int.

• The second one has a type parameter rather than an argument.

There's nothing wrong in itself with the second interface, since it’s perfectly fine to use a generic
interface. The problem here, though, is that it allows a possible conflict, because if int is used as the type
argument to replace S in the second interface, then Simple would have two interfaces of the same type—
which is not allowed.

 interface IMyIfc<T>
 {
 T ReturnIt(T inValue);
 }
 Two interfaces
 ↓ ↓
 class Simple<S> : IMyIfc<int>, IMyIfc<S> // Error!
 {
 public int ReturnIt(int inValue) // Implement first interface.
 {
 return inValue;
 }

 public S ReturnIt(S inValue) // Implement second interface,
 { // but if it's int, it would be
 return inValue; // the same as the one above.
 }
 }

 Note The names of generic interfaces do not clash with nongeneric interfaces. For example, in the preceding

code, we could have also declared a nongeneric interface named IMyIfc.

CHAPTER 19 GENERICS

494

Covariance and Contravariance in Generics
As you’ve seen throughout this chapter, when you create an instance of a generic type, the compiler
takes the generic type declaration and the type arguments and creates a constructed type. A mistake that
people commonly make, however, is to assume that you can assign a delegate of a derived type to a
variable of a delegate of a base type. In the following sections, we’ll look at this topic, which is called
variance. There are three types of variance—covariance, contravariance, and invariance.

We’ll start by reviewing something you’ve already learned: every variable has a type assigned to it,
and you can assign an object of a more derived type to a variable of one of its base types. This is called
assignment compatibility. The following code demonstrates assignment compatibility with a base class
Animal and a class Dog derived from Animal. In Main, you can see that the code creates an object of type
Dog and assigns it to variable a2 of type Animal.

 class Animal
 {
 public int NumberOfLegs = 4;
 }

 class Dog : Animal
 {
 }

 class Program
 {
 static void Main()
 {
 Animal a1 = new Animal();
 Animal a2 = new Dog();

 Console.WriteLine("Number of dog legs: {0}", a2.NumberOfLegs);
 }
 }

Figure 19-12 illustrates assignment compatibility. In this figure, the boxes showing the Dog and
Animal objects also show their base classes.

Figure 19-12. Assignment compatibility means that you can assign a reference of a more derived type to a

variable of a less derived type.

Now let’s look at a more interesting case by expanding the code in the following ways as shown
following:

• This code adds a generic delegate named Factory, which takes a single type parameter T, takes no

method parameters, and returns an object of type T.

CHAPTER 19 GENERICS

495

• I’ve added a method named MakeDog that takes no parameters and returns a Dog object. This

method, therefore, matches delegate Factory if we use Dog as the type parameter.

• The first line of Main creates a delegate object whose type is delegate Factory<Dog> and assigns

its reference to variable dogMaker, of the same type.

• The second line attempts to assign a delegate of type delegate Factory<Dog> to a delegate type

variable named animalMaker of type delegate Factory<Animal>.

This second line in Main, however, causes a problem, and the compiler produces an error message
saying that it can’t implicitly convert the type on the right to the type on the left.

 class Animal { public int Legs = 4; } // Base class
 class Dog : Animal { } // Derived class

 delegate T Factory<T>(); ← delegate Factory

 class Program
 {
 static Dog MakeDog() ← Method that matches delegate Factory
 {
 return new Dog();
 }

 static void Main()
 {
 Factory<Dog> dogMaker = MakeDog; ← Create delegate object
 Factory<Animal> animalMaker = dogMaker; ← Attempt to assign delegate object

 Console.WriteLine(animalMaker().Legs.ToString());
 }
 }

It seems to make sense that a delegate constructed with the base type should be able to hold a
delegate constructed with the derived type. So why does the compiler give an error message? Doesn’t the
principle of assignment compatibility hold?

The principle does hold, but it doesn’t apply in this situation! The problem is that although Dog
derives from Animal, delegate Factory<Dog> does not derive from delegate Factory<Animal>. Instead,
both delegate objects are peers, deriving from type delegate, which derives from type object, as shown
in Figure 19-13. Neither delegate is derived from the other, so assignment compatibility doesn’t apply.

Figure 19-13. Assignment compatibility doesn’t apply because the two delegates are unrelated by inheritance.

CHAPTER 19 GENERICS

496

Although the mismatch of delegate types doesn’t allow assigning one type to the variable of another
type, it’s too bad in this situation, because in the example code, any time we would execute delegate
animalMaker, the calling code would expect to have a reference to an Animal object returned. If it
returned a reference to a Dog object instead, that would be perfectly fine since a reference to a Dog is a
reference to an Animal, by assignment compatibility.

Looking at the situation more carefully, we can see that for any generic delegate, if a type
parameter is used only as an output value, then the same situation applies. In all such situations, you
would be able to use a constructed delegate type created with a derived class, and it would work fine,
since the invoking code would always be expecting a reference to the base class—which is exactly what
it would get.

This constant relation between the use of a derived type only as an output value, and the validity of
the constructed delegate, is called covariance, and is now explicitly allowed in C# 4.0. To let the compiler
know that this is what you intend, you must mark the type parameter in the delegate declaration with
the out keyword.

For example, if we change the delegate declaration in the example by adding the out keyword, as
shown here, the code compiles and works fine.

 delegate T Factory<out T>();
 ↑
 Keyword specifying covariance
 of the type parameter

Figure 19-14 illustrates the components of covariance in this example:

• The variable on the stack on the left is of type delegate T Factory<out T>(), where type variable T

is of class Animal.

• The actual constructed delegate in the heap, on the right, was declared with a type variable of

class Dog, which is derived from class Animal.

• This is acceptable because when the delegate is called, the calling code receives an object of type

Dog, instead of the expected object of type Animal. The calling code can freely operate on the

Animal part of the object as it expects to do.

Figure 19-14. The covariant relation allows a more derived type to be in return and out positions.

CHAPTER 19 GENERICS

497

The following code illustrates a related situation. In this example, there’s a delegate, named Action1,
which takes a single type parameter, and a single method parameter whose type is that of the type
parameter, and it returns no value.

The code also contains a method called ActOnAnimal, whose signature and void return type match
the delegate declaration.

The first line in Main creates a constructed delegate using type Animal and method ActOnAnimal,
whose signature and void return type match the delegate declaration. In the second line, however, the
code attempts to assign the reference to this delegate to a stack variable named dog1, of type delegate
Action1<Dog>.

 class Animal { public int NumberOfLegs = 4; }
 class Dog : Animal { }

 class Program Keyword for Contravariance
 { ↓
 delegate void Action1<in T>(T a);

 static void ActOnAnimal(Animal a) { Console.WriteLine(a.NumberOfLegs); }

 static void Main()
 {
 Action1<Animal> act1 = ActOnAnimal;
 Action1<Dog> dog1 = act1;
 dog1(new Dog());
 }
 }

This code produces the following output:

4

Like the previous situation, by default, you can’t assign the two incompatible types. But also like the
previous situation, there are situations where the assignment would work perfectly fine.

As a matter of fact, this is true whenever the type parameter is used only as an input parameter to
the method in the delegate. The reason for this is that even though the invoking code passes in a
reference to a more derived class, the method in the delegate is only expecting a reference to a less
derived class—which of course it receives and knows how to manipulate.

This relation, allowing a more derived object where a less derived object is expected, is called
contravariance and is now explicitly allowed in C# 4.0. To use it, you must use the in keyword with the
type parameter, as shown in the code.

CHAPTER 19 GENERICS

498

Figure 19-15 illustrates the components of contravariance in line 2 of Main.

• The variable on the stack on the left is of type delegate void Action1<in T>(T p), where the type

variable is of class Dog.

• The actual constructed delegate, on the right, is declared with a type variable of class Animal,

which is a base class of class Dog.

• This works fine because when the delegate is called, the calling code passes in an object of type

Dog, to method ActOnAnimal, which is expecting an object of type Animal. The method can freely

operate on the Animal part of the object as it expects to do.

Figure 19-15. The contravariant relation allows more derived types to be allowed as input parameters.

CHAPTER 19 GENERICS

499

Figure 19-16 summarizes the differences between covariance and contravariance in a generic
delegate.

• The top figure illustrates covariance.

— The variable on the stack on the left is of type delegate F<out T>() where the type variable is
of a class named Base.

— The actual constructed delegate, on the right, was declared with a type variable of class
Derived, which is derived from class Base.

— This works fine because when the delegate is called, the method returns a reference to an
object of the derived type, which is also a reference to the base class, which is exactly what
the calling code is expecting.

• The bottom figure illustrates contravariance.

— The variable on the stack on the left is of type delegate void F<in T>(T p), where the type
parameter is of class Derived.

— The actual constructed delegate, on the right was declared with a type variable of class Base,
which is a base class of class Derived.

— This works fine because when the delegate is called, the calling code passes in an object of
the derived type, to the method which is expecting an object of the base type. The method
can operate freely on the base part of the object as it expects to do.

Figure 19-16. A comparison of covariance and contravariance

CHAPTER 19 GENERICS

500

Covariance and Contravariance in Interfaces
You should now have an understanding of covariance and contravariance as it applies to delegates.
The same principles apply to interfaces, including the syntax using the out and in keywords in the
interface declaration.

The following code shows an example of using covariance with an interface. The things to note
about the code are the following:

• The code declares a generic interface with type parameter T. The out keyword specifies that the

type parameter is covariant.

• Generic class SimpleReturn implements the generic interface.

• Method DoSomething shows how a method can take an interface as a parameter. This method

takes as its parameter a generic IMyIfc interface constructed with type Animal.

The code works in the following way:

• The first two lines of Main create and initialize a constructed instance of generic class

SimpleReturn, using class Dog.

• The next line assigns that object to a variable on the stack that is declared of constructed interface

type IMyIfc<Animal>. Notice several things about this declaration:

— The type on the left of the assignment is an interface type—not a class.

— Even though the interface types don’t exactly match, the compiler allows them because of
the covariant out specifier in the interface declaration.

• Finally, the code calls method DoSomething with the constructed covariant class that implements

the interface.

CHAPTER 19 GENERICS

501

 class Animal { public string Name; }
 class Dog: Animal{ };
 Keyword for Covariance
 ↓
 interface IMyIfc<out T>
 {
 T GetFirst();
 }

 class SimpleReturn<T>: IMyIfc<T>
 {
 public T[] items = new T[2];
 public T GetFirst() { return items[0]; }
 }

 class Program
 {
 static void DoSomething(IMyIfc<Animal> returner)
 {
 Console.WriteLine(returner.GetFirst().Name);
 }

 static void Main()
 {
 SimpleReturn<Dog> dogReturner = new SimpleReturn<Dog>();
 dogReturner.items[0] = new Dog() { Name = "Avonlea" };

 IMyIfc<Animal> animalReturner = dogReturner;

 DoSomething(dogReturner);
 }
 }

This code produces the following output:

Avonlea

CHAPTER 19 GENERICS

502

More About Variance
The previous two sections explained explicit covariance and contravariance. There is also a situation
where the compiler automatically recognizes that a certain constructed delegate is covariant or
contravariant and makes the type coercion automatically. That happens when the object hasn’t yet had
a type assigned to it. The following code shows an example.

The first line of Main creates a constructed delegate of type Factory<Animal> from a method where
the return type is a Dog object, not an Animal object. In creating this delegate, the method name on the
right side of the assignment operator doesn’t yet have a type, and the compiler can determine that the
method fits the type of the delegate except that its return type is of type Dog rather than type Animal. The
compiler is smart enough to realize that this is a covariant relation and creates the constructed type and
assigns it to the variable.

Compare that with the assignments in the third and fourth lines of Main. In these cases, the
expressions on the right side of the equals sign already have a type and therefore need the out specifier
in the delegate declaration to signal the compiler to allow them to be covariant.

 class Animal { public int Legs = 4; } // Base class
 class Dog : Animal { } // Derived class

 class Program
 {
 delegate T Factory<out T>();

 static Dog MakeDog() { return new Dog(); }

 static void Main()
 {
 Factory<Animal> animalMaker1 = MakeDog; // Coerced implicitly

 Factory<Dog> dogMaker = MakeDog;
 Factory<Animal> animalMaker2 = dogMaker; // Requires the out specifier

 Factory<Animal> animalMaker3
 = new Factory<Dog>(MakeDog); // Requires the out specifier
 }
 }

This implicit coercion implementing covariance and contravariance has been available without the
in/out keywords since before C# 4.0.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 19 GENERICS

503

Other important things you should know about variance are the following:

• As you’ve seen, variance deals with the issue of where it’s safe to substitute a base type for a

derived type, and vice versa. Variance, therefore, applies only to reference types, since value types

can’t be derived from.

• Explicit variance, using the in and out keywords applies only to delegates and interfaces—not

classes, structs, or methods.

• Delegate and interface type parameters that don’t include either the in or out keyword are called

invariant. These types cannot be used covariantly or contravariantly.

 Contravariant
 ↓
 delegate T Factory<out R, in S, T>();
 ↑ ↑
 Covariant Invariant

C H A P T E R 20

■ ■ ■

505

Enumerators and Iterators

■ Enumerators and Enumerable Types

■ Using the IEnumerator Interface

■ The IEnumerable Interface

■ The Noninterface Enumerator

■ The Generic Enumeration Interfaces

■ The IEnumerator<T> Interface

■ The IEnumerable<T> Interface

■ Iterators

■ Common Iterator Patterns

■ Producing Enumerables and Enumerators

■ Producing Multiple Enumerables

■ Producing Multiple Enumerators

■ Behind the Scenes with Iterators

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

506

Enumerators and Enumerable Types
In Chapter 14, you saw that you can use a foreach statement to cycle through the elements of an array.
In this chapter, you’ll take a closer look at arrays and see why they can be processed by foreach
statements. You’ll also look at how you can add this capability to your own user-defined classes. Later in
the chapter, I’ll explain the use of iterators.

Using the foreach Statement
When you use a foreach statement with an array, the statement presents you with each element in the
array, one by one, allowing you to read its value.

For example, the following code declares an array with four elements and then uses a foreach loop
to print out the values of the items:

 int[] arr1 = { 10, 11, 12, 13 }; // Define the array.

 foreach (int item in arr1) // Enumerate the elements.
 Console.WriteLine("Item value: {0}", item);

This code produces the following output:

Item value: 10
Item value: 11
Item value: 12
Item value: 13

Why does this work, apparently magically, with arrays? The reason is that an array can produce,
upon request, an object called an enumerator. The enumerator is an object that can return the elements
of the array, one by one, in order, as they are requested. The enumerator “knows” the order of the items
and keeps track of where it is in the sequence. It then returns the current item when it is requested.

For types that have enumerators, there must be a way of retrieving them. The standard way of
retrieving an object’s enumerator in .NET is to call the object’s GetEnumerator method. Types that
implement a GetEnumerator method are called enumerable types, or just enumerables. Arrays are
enumerables.

Figure 20-1 illustrates the relationship between enumerables and enumerators.

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

507

Figure 20-1. Overview of enumerators and enumerables

The foreach construct is designed to work with enumerables. As long as the object it is given to
iterate over is an enumerable type, such as an array, it will perform the following actions:

• Get the object’s enumerator by calling its GetEnumerator method

• Request each item from the enumerator and make it available to your code as the iteration

variable, which your code can read (but not change).

 Must be enumerable
 ↓
 foreach(Type VarName in EnumerableObject)
 {
 ...
 }

Types of Enumerators
There are three variations on enumerators. They all work essentially the same way, with only slight
differences. I'll discuss all three types. You can implement enumerators using the following:

• The IEnumerator/IEnumerable interfaces—called the nongeneric interface form

• The IEnumerator<T>/IEnumerable<T> interfaces—called the generic interface form

• The form that uses no interfaces

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

508

Using the IEnumerator Interface
This section will start by looking at the first in the preceding list: the nongeneric interface form. This
form of enumerator is a class that implements the IEnumerator interface. It's called nongeneric because it
does not use C# generics.

The IEnumerator interface contains three function members: Current, MoveNext, and Reset.

• Current is a property that returns the item at the current position in the sequence.

— It is a read-only property.

— It returns a reference of type object, so an object of any type can be returned.

• MoveNext is a method that advances the enumerator’s position to the next item in the collection. It

also returns a Boolean value, indicating whether the new position is a valid position or is beyond

the end of the sequence.

— If the new position is valid, the method returns true.

— If the new position isn't valid (that is, it’s beyond the end), the method returns false.

— The initial position of the enumerator is before the first item in the sequence. MoveNext must
be called before the first access of Current.

• Reset is a method that resets the position to the initial state.

Figure 20-2 illustrates a collection of three items, which is shown on the left of the figure, and its
enumerator, which is shown on the right. In the figure, the enumerator is an instance of a class called
ArrEnumerator.

Figure 20-2. The enumerator for a small collection

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

509

The enumerator class is usually declared as a nested class of the class for which it is an enumerator.
A nested class is declared inside the declaration of another class. Nested classes are described in detail in
Chapter 25.

The way the enumerator keeps track of the current item in the sequence is entirely implementation-
dependent. It might be implemented as a reference to an object, an index value, or something else
entirely. In the case of the built-in single-dimensional array type, it’s simply the index of the item.

Figure 20-3 illustrates the states of an enumerator for a collection of three items. The states are
labeled 1 through 5.

• Notice that in state 1, the initial position of the enumerator is -1 (that is, before the first element

of the collection).

• Each transition between states is caused by a call to MoveNext, which advances the position in the

sequence. Each call to MoveNext between states 1 and 4 returns true. In the transition between

states 4 and 5, however, the position ends up beyond the last item in the collection, so the

method returns false.

• In the final state, any further calls to MoveNext return false.

Figure 20-3. The states of an enumerator

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

510

Given a collection’s enumerator, you should be able to simulate a foreach loop by cycling through
the items in the collection using the MoveNext and Current members. For example, you know that arrays
are enumerable, so the following code does manually what the foreach statement does automatically. In
fact, the C# compiler generates exactly this code when you write a foreach loop.

 static void Main()
 {
 int[] MyArray = { 10, 11, 12, 13 }; // Create an array.

 IEnumerator ie = MyArray.GetEnumerator(); // Get its enumerator.
 while (ie.MoveNext()) // Move to the next item.
 {
 int i = (int) ie.Current; // Get the current item.
 Console.WriteLine("{0}", i); // Write it out.
 }
 }

This code produces the following output:

10
11
12
13

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

511

Declaring an IEnumerator Enumerator
To create a nongeneric interface enumerator class, you must declare a class that implements the
IEnumerator interface. The IEnumerator interface has the following characteristics:

• It is a member of the System.Collections namespace.

• It contains the three members Current, MoveNext, and Reset.

The following code shows the outline of a nongeneric enumerator class. It does not show how the
position is maintained. Notice that Current returns a reference to an object.

 using System.Collections; // Include the namespace.

 class MyEnumerator: IEnumerator
 { Returns a reference to an object
 ↓
 public object Current { get; } // Current

 public bool MoveNext() { ... } // MoveNext

 public void Reset() { ... } // Reset
 ...
 }

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

512

For example, the following code implements an enumerator class that lists an array of color names:

 using System.Collections;

 class ColorEnumerator: IEnumerator

 { ↑
 string[] Colors; Implements IEnumerator
 int Position = -1;

 public object Current // Current
 {
 get
 {
 if (Position == -1)
 throw new InvalidOperationException();
 if (Position == Colors.Length)
 throw new InvalidOperationException();

 return Colors[Position];
 }
 }

 public bool MoveNext() // MoveNext
 {
 if (Position < Colors.Length - 1)
 {
 Position++;
 return true;
 }
 else
 return false;
 }

 public void Reset() // Reset
 {
 Position = -1;
 }

 public ColorEnumerator(string[] theColors) // Constructor
 {
 Colors = new string[theColors.Length];
 for (int i = 0; i < theColors.Length; i++)
 Colors[i] = theColors[i];
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

513

The IEnumerable Interface
The IEnumerable interface has only a single member, method GetEnumerator, which returns an
enumerator for the object.

Figure 20-4 shows class MyClass, which has three items to enumerate, and implements the
IEnumerable interface by implementing the GetEnumerator method.

Figure 20-4. The GetEnumerator method returns an enumerator object for the class.

The following code shows the form for the declaration of an enumerable class:

 using System.Collections;
 Implements the IEnumerable interface
 ↓
 class MyClass : IEnumerable
 {
 public IEnumerator GetEnumerator { ... }

 ... ↑
 } Returns an object of type IEnumerator

The following code gives an example of an enumerable class that uses enumerator class
ColorEnumerator from the previous example. Remember that ColorEnumerator implements IEnumerator.

 using System.Collections;

 class MyColors: IEnumerable
 {
 string[] Colors = { "Red", "Yellow", "Blue" };

 public IEnumerator GetEnumerator()
 {
 return new ColorEnumerator(Colors);
 } ↑
 } An instance of the enumerator class

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

514

Example Using IEnumerable and IEnumerator
Putting the MyColors and ColorEnumerator examples together, you can add a class called Program with a
Main method that creates an instance of MyColors and uses it in a foreach loop.

 using System;
 using System.Collections;

 namespace ColorCollectionEnumerator
 {
 class ColorEnumerator: IEnumerator
 {
 string[] Colors;
 int Position = -1;

 public ColorEnumerator(string[] theColors) // Constructor
 {
 Colors = new string[theColors.Length];
 for (int i = 0; i < theColors.Length; i++)
 Colors[i] = theColors[i];
 }

 public object Current // Current
 {
 get
 {
 if (Position == -1)
 {
 throw new InvalidOperationException();
 }
 if (Position == Colors.Length)
 {
 throw new InvalidOperationException();
 }

 return Colors[Position];
 }
 }

 public bool MoveNext() // MoveNext
 {
 if (Position < Colors.Length - 1)
 {
 Position++;
 return true;
 }
 else
 return false;
 }

 public void Reset() // Reset
 { Position = -1; }
 }

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

515

 class MyColors: IEnumerable
 {
 string[] Colors = { "Red", "Yellow", "Blue" };

 public IEnumerator GetEnumerator()
 {
 return new ColorEnumerator(Colors);
 }
 }

 class Program
 {
 static void Main()
 {
 MyColors mc = new MyColors();
 foreach (string color in mc)
 Console.WriteLine(color);
 }
 }
 }

This code produces the following output:

Red
Yellow
Blue

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

516

The Noninterface Enumerator
You’ve just seen how to use the IEnumerable and IEnumerator interfaces to create useful enumerables
and enumerators. But there are several drawbacks to this method.

First, remember that the object returned by Current is of type object. For value types, this means
that before they are returned by Current, they must be boxed to turn them into objects. They must then
be unboxed again after they have been received from Current. This can exact a substantial performance
penalty if it needs to be done on large amounts of data.

Another drawback of the nongeneric interface method is that you’ve lost type safety. The values
being enumerated are being handled as objects and so can be of any type. This eliminates the safety of
compile-time type checking.

You can solve these problems by making the following changes to the enumerator/enumerable
class declarations.

• For the enumerator class

— Do not derive the class from IEnumerator.

— Implement MoveNext just as before.

— Implement Current just as before but have as its return type the type of the items
being enumerated.

— You do not have to implement Reset.

• For the enumerable class

— Do not derive the class from IEnumerable.

— Implement GetEnumerator as before, but have its return type be the type of the
enumerator class.

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

517

Figure 20-5 shows the differences. The nongeneric interface code is on the left, and the noninterface
code is on the right. With these changes, the foreach statement will be perfectly happy to process your
collection, but without the drawbacks just listed.

Figure 20-5. Comparing interface-based and non-interface-based enumerators

One possible problem with the noninterface enumerator implementation is that types from other
assemblies might expect enumeration to be implemented using the interface method. If these objects
attempt to get an enumeration of your class objects using the interface conventions, they won't be able
to find them.

To solve this problem, you can implement both forms in the same classes. That is, you can create
implementations for Current, MoveNext, Reset, and GetEnumerator at the class level and also create
explicit interface implementations for them. With both sets of implementations, the type-safe, more
efficient implementation will be called by foreach and other constructs that can use the noninterface
implementations, while the other constructs will call the explicit interface implementations. An even
better way, however, is to use the generic forms, which I describe next.

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

518

The Generic Enumeration Interfaces
The third form of enumerator uses the generic interfaces IEnumerable<T> and IEnumerator<T>. They are
called generic because they use C# generics. Using them is very similar to using the nongeneric forms.
Essentially, the differences between the two are the following:

• With the nongeneric interface form

— The GetEnumerator method of interface IEnumerable returns an enumerator class instance
that implements IEnumerator.

— The class implementing IEnumerator implements property Current, which returns a
reference of type object, which you must then cast to the actual type of the object.

• With the generic interface form

— The GetEnumerator method of interface IEnumerable<T> returns an instance of a class that
implements IEnumerator<T>.

— The class implementing IEnumerator<T> implements property Current, which returns an
instance of the actual type, rather than a reference to the base class object.

The most important point to notice, though, is that the nongeneric interface implementations are
not type-safe. They return references to type object, which must then be cast to the actual types. With
the generic interfaces, however, the enumerator is type-safe, returning references to the actual types. Of
the three forms of enumerations, this is the one you should implement and use. The others are for legacy
code developed before C# 2.0 when generics were introduced.

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

519

The IEnumerator<T> Interface
The IEnumerator<T> interface uses generics to return an actual derived type, rather than a reference to
an object.

The IEnumerator<T> interface derives from two other interfaces: the nongeneric IEnumerator
interface and the IDisposable interface. It must therefore implement their members.

• You’ve already seen the nongeneric IEnumerator interface and its three members.

• The IDisposable interface has a single, void, parameterless method called Dispose, which can be

used to free unmanaged resources being held by the class. (The Dispose method was described in

Chapter 6.)

• The IEnumerator<T> interface itself has a single property, Current, which returns an instance of

type T or derived from T—rather than a reference of type object.

• Since both IEnumerator<T> and IEnumerator have a member named Current, you should explicitly

implement the IEnumerator version and implement the generic version in the class itself, as

shown in Figure 20-6.

Figure 20-6 illustrates the implementation of the interface.

Figure 20-6. Implementing the IEnumerator<T> interface

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

520

The declaration of the class implementing the interface should look something like the pattern in
the following code, where T is the type returned by the enumerator:

 using System.Collections;
 using System.Collections.Generic;

 class MyGenEnumerator: IEnumerator< T >
 {
 public T Current { get {…} } // IEnumerator<T>--Current
 Explicit implementation
 ↓
 object IEnumerator.Current { get { ... } } // IEnumerator--Current

 public bool MoveNext() { ... } // IEnumerator--MoveNext

 public void Reset() { ... } // IEnumerator--Reset

 public void Dispose() { ... } // IDisposable--Dispose
 ...
 }

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

521

For example, the following code implements the ColorEnumerator example using the generic
enumerator interface:

 using System.Collections;
 using System.Collections.Generic; Substitute type string for T
 ↓
 class ColorEnumerator : IEnumerator<string>
 {
 string[] Colors;
 int Position = -1;
 Returns the type argument type
 ↓
 public string Current // Current--generic
 {
 get { return Colors[Position]; }
 }
 Explicit implementation
 ↓
 object IEnumerator.Current // Current--nongeneric
 {
 get { return Colors[Position]; }
 }

 public bool MoveNext() // MoveNext
 {
 if (Position < Colors.Length - 1)
 {
 Position++;
 return true;
 }
 else
 return false;
 }

 public void Reset() // Reset
 { Position = -1; }

 public void Dispose() { }

 public ColorEnumerator(string[] colors) // Constructor
 {
 Colors = new string[colors.Length];

 for (int i = 0; i < colors.Length; i++)
 Colors[i] = colors[i];
 }
 }

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

522

The IEnumerable<T> Interface
The generic IEnumerable<T> interface is very similar to the nongeneric version, IEnumerable. The generic
version derives from IEnumerable, so it must also implement the IEnumerable interface.

• Like IEnumerable, the generic version also contains a single member, a method called

GetEnumerator. This version of GetEnumerator, however, returns a class object implementing the

generic IEnumerator<T> interface.

• Since the class must implement two GetEnumerator methods, you should explicitly implement the

nongeneric version and implement the generic version at the class level, as shown in Figure 20-7.

Figure 20-7 illustrates the implementation of the interface.

Figure 20-7. Implementing the IEnumerable<T> interface

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

523

The following code shows a pattern for implementing the generic interface. T is the type returned by
the enumerator.

 using System.Collections;
 using System.Collections.Generic;

 class MyGenEnumerable: IEnumerable<T>
 {
 public IEnumerator<T> GetEnumerator() { ... } // IEnumerable<T> version
 Explicit implementation
 ↓
 IEnumerator IEnumerable.GetEnumerator() { ... } // IEnumerable version
 ...
 }

The following code shows the use of the generic enumerable interface:

 using System.Collections;
 using System.Collections.Generic;
 Substitute actual type for T
 ↓
 class MyColors : IEnumerable<string>
 {
 string[] Colors = { "Red", "Yellow", "Blue" };
 Substitute actual type for T
 ↓
 public IEnumerator<string> GetEnumerator() // IEnumerable<T> version
 {
 return new ColorEnumerator(Colors);
 }
 Explicit implementation
 ↓
 IEnumerator IEnumerable.GetEnumerator() // IEnumerable version
 {
 return new ColorEnumerator(Colors);
 }
 }

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

524

Iterators
Enumerable classes and enumerators are used extensively in the .NET collection classes, so it’s important
that you know how they work. But now that you know how to create your own enumerable classes and
enumerators, you might be pleased to learn that, starting with C# 2.0, the language got a much simpler
way of creating enumerators and enumerables. In fact, the compiler will create them for you. The
construct that produces them is called an iterator. You can use the enumerators and enumerables
generated by iterators wherever you would use manually coded enumerators or enumerables.

Before I explain the details, let’s take a look at two examples. The following method declaration
implements an iterator that produces and returns an enumerator.

• The iterator returns a generic enumerator that returns three items of type string.

• The yield return statements declare that this is the next item in the enumeration.

 Return a generic enumerator.
 ↓
 public IEnumerator<string> BlackAndWhite() // Version 1
 {
 yield return "black"; // yield return
 yield return "gray"; // yield return
 yield return "white"; // yield return
 }

The following method declaration is another version that produces the same result:

 Return a generic enumerator.
 ↓
 public IEnumerator<string> BlackAndWhite() // Version 2
 {
 string[] theColors = { "black", "gray", "white" };

 for (int i = 0; i < theColors.Length; i++)
 yield return theColors[i]; // yield return
 }

I haven’t explained the yield return statement yet, but on inspecting these code segments, you
might have the feeling that something is different about this code. It doesn’t seem quite right. What
exactly does the yield return statement do?

For example, in the first version, if the method returns on the first yield return statement, then the
last two statements can never be reached. If it doesn’t return on the first statement but continues
through to the end of the method, then what happens to the values? And in the second version, if the
yield return statement in the body of the loop returns on the first iteration, then the loop will never get
to any subsequent iterations.

And besides all that, an enumerator doesn’t just return all the elements in one shot—it returns a
new value with each access of the Current property. So, how does this give you an enumerator? Clearly
this code is different from anything shown before.

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

525

Iterator Blocks
An iterator block is a code block with one or more yield statements. Any of the following three types of
code blocks can be iterator blocks:

• A method body

• An accessor body

• An operator body

Iterator blocks are treated differently than other blocks. Other blocks contain sequences of
statements that are treated imperatively. That is, the first statement in the block is executed, followed by
the subsequent statements, and eventually control leaves the block.

An iterator block, on the other hand, is not a sequence of imperative commands to be executed at
one time. Instead, it’s declarative; it describes the behavior of the enumerator class you want the
compiler to build for you. The code in the iterator block describes how to enumerate the elements.

Iterator blocks have two special statements:

• The yield return statement specifies the next item in the sequence to return.

• The yield break statement specifies that there are no more items in the sequence.

The compiler takes this description of how to enumerate the items and uses it to build an
enumerator class, including all the required method and property implementations. The resulting class
is nested inside the class where the iterator is declared.

You can have the iterator produce either an enumerator or an enumerable depending on the return
type you use for the iterator block, as shown in Figure 20-8.

Figure 20-8. You can have an iterator block produce either an enumerator or an enumerable depending on

the return type you specify.

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

526

Using an Iterator to Create an Enumerator
The following code illustrates how to use an iterator to create an enumerable class.

• MyClass uses iterator method BlackAndWhite to produce an enumerator for the class.

• MyClass also implements method GetEnumerator, which in turn calls BlackAndWhite, and returns

the enumerator that BlackAndWhite returns to it.

• Notice that in Main, you can use an instance of the class directly in the foreach statement since

the class is enumerable.

 class MyClass
 {
 public IEnumerator<string> GetEnumerator()
 {
 return BlackAndWhite(); // Returns the enumerator.
 }
 Returns an enumerator
 ↓
 public IEnumerator<string> BlackAndWhite() // Iterator
 {
 yield return "black";
 yield return "gray";
 yield return "white";
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 Use the instance of MyClass.
 ↓
 foreach (string shade in mc)
 Console.WriteLine(shade);
 }
 }

This code produces the following output:

black
gray
white

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

527

Figure 20-9 shows the code for MyClass on the left and the resulting objects on the right. Notice how
much is built for you automatically by the compiler.

• The iterator’s code is shown on the left side of the figure and shows that its return type is

IEnumerator<string>.

• On the right side of the figure, the diagram shows that the nested class implements

IEnumerator<string>.

Figure 20-9. An iterator block that produces an enumerator

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

528

Using an Iterator to Create an Enumerable
The previous example created a class comprising two parts: the iterator that produced the enumerator
and the GetEnumerator method that returned that enumerator. In this example, the iterator is used to
create an enumerable rather than an enumerator. There are some important differences between this
example and the last:

• In the previous example, iterator method BlackAndWhite returned an IEnumerator<string>, and

MyClass implemented method GetEnumerator by returning the object created by BlackAndWhite.

• In this example, the iterator method BlackAndWhite returns an IEnumerable<string> rather than

an IEnumerator<string>. MyClass, therefore, implements its GetEnumerator method by first calling

method BlackAndWhite to get the enumerable object and then calling that object’s GetEnumerator

method and returning its results.

• Notice that in the foreach statement in Main, you can either use an instance of the class or call

BlackAndWhite directly, since it returns an enumerable. Both ways are shown.

 class MyClass
 {
 public IEnumerator<string> GetEnumerator()
 {
 IEnumerable<string> myEnumerable = BlackAndWhite(); // Get enumerable
 return myEnumerable.GetEnumerator(); // Get enumerator
 } Returns an enumerable
 ↓
 public IEnumerable<string> BlackAndWhite()
 {
 yield return "black";
 yield return "gray";
 yield return "white";
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 Use the class object.
 ↓
 foreach (string shade in mc)
 Console.Write("{0} ", shade);
 Use the class iterator method.
 ↓
 foreach (string shade in mc.BlackAndWhite())
 Console.Write("{0} ", shade);
 }
 }

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

529

This code produces the following output:

black gray white black gray white

Figure 20-10 illustrates the generic enumerable produced by the enumerable iterator in the code.

• The iterator’s code is shown on the left side of the figure and shows that its return type is

IEnumerable<string>.

• On the right side of the figure, the diagram shows that the nested class implements both

IEnumerator<string> and IEnumerable<string>.

Figure 20-10. The compiler produces a class that is both an enumerable and an enumerator. It also

produces the method, BlackAndWhite, that returns the Enumerable object.

p

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

530

Common Iterator Patterns
The previous two sections showed that you can create an iterator to return either an enumerable or an
enumerator. Figure 20-11 summarizes how to use the common iterator patterns.

• When you implement an iterator that returns an enumerator, you must make the class

enumerable by implementing GetEnumerator so that it returns the enumerator returned by the

iterator. This is shown on the left of the figure.

• In a class, when you implement an iterator that returns an enumerable, you can either make this

class itself enumerable or not by either making it implement GetEnumerator or not.

— If you implement GetEnumerator, make it call the iterator method to get an instance of the
automatically generated class that implements IEnumerable. Next, return the enumerator
built by GetEnumerator from this IEnumerable object, as shown on the right of the figure.

— If you don’t make the class itself enumerable by not implementing GetEnumerator, you can
still use the enumerable returned by the iterator, by calling the iterator method directly, as
shown in the second foreach statement on the right.

Figure 20-11. The common iterator patterns

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

531

Producing Enumerables and Enumerators
The previous examples used iterators that returned either an IEnumerator<T> or an IEnumerable<T>. You
can also create iterators that return the nongeneric versions as well. The return types you can specify are
the following:

• IEnumerator<T> (generic—substitute an actual type for T)

• IEnumerable<T> (generic—substitute an actual type for T)

• IEnumerator (nongeneric)

• IEnumerable (nongeneric)

For the two enumerator types, the compiler generates a nested class that contains the
implementation of either the nongeneric or the generic enumerator, with the behavior specified by the
iterator block.

For the two enumerable types, it does even more. It produces a nested class that is both enumerable
and the enumerator. The class, therefore, implements both the enumerator interface and the
GetEnumerator method. Notice that GetEnumerator is implemented as part of the nested class—not as part
of the enclosing class.

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

532

Producing Multiple Enumerables
In the following example, class ColorCollection has two enumerable iterators—one enumerating
the items in forward order and the other enumerating them in reverse order. Notice that although it
has two methods that return enumerables, the class itself is not enumerable since it doesn’t
implement GetEnumerator.

 using System;
 using System.Collections.Generic; // You need this namespace.

 namespace ColorCollectionIterator
 {
 class ColorCollection
 {
 string[] Colors={"Red", "Orange", "Yellow", "Green", "Blue", "Purple"};

 public IEnumerable<string> Forward() { // Enumerable iterator
 for (int i = 0; i < Colors.Length; i++)
 yield return Colors[i];
 }

 public IEnumerable<string> Reverse() { // Enumerable iterator
 for (int i = Colors.Length - 1; i >= 0; i--)
 yield return Colors[i];
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

533

 class Program
 {
 static void Main()
 {
 ColorCollection cc = new ColorCollection();
 Return enumerable to the foreach statement
 ↓
 foreach (string color in cc.Forward())
 Console.Write("{0} ", color);
 Console.WriteLine();

 Return enumerable to the foreach statement
 ↓
 foreach (string color in cc.Reverse())
 Console.Write("{0} ", color);
 Console.WriteLine();

 // Skip the foreach and manually use the enumerable and enumerator.
 IEnumerable<string> ieable = cc.Reverse();
 IEnumerator<string> ieator = ieable.GetEnumerator();

 while (ieator.MoveNext())
 Console.Write("{0} ", ieator.Current);
 Console.WriteLine();
 }
 }
 }

This code produces the following output:

Red Orange Yellow Green Blue Purple
Purple Blue Green Yellow Orange Red
Purple Blue Green Yellow Orange Red

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

534

Producing Multiple Enumerators
The previous example used iterators to produce a class with two enumerables. This example shows two
things. First, it uses iterators to produce a class with two enumerators. Second, it shows how iterators
can be implemented as properties rather than methods.

The code declares two properties that define two different enumerators. The GetEnumerator method
returns one or the other of the two enumerators, depending on the value of the Boolean variable
ColorFlag. If ColorFlag is true, the Colors enumerator is returned. Otherwise, the BlackAndWhite
enumerator is returned.

 class MyClass: IEnumerable<string>
 {
 bool ColorFlag = true;

 public MyClass(bool flag) // Constructor
 {
 ColorFlag = flag;
 }

 IEnumerator<string> BlackAndWhite // Property--enumerator iterator
 {
 get
 {
 yield return "black";
 yield return "gray";
 yield return "white";
 }
 }

 IEnumerator<string> Colors // Property--enumerator iterator
 {
 get
 {
 string[] theColors = { "blue", "red", "yellow" };
 for (int i = 0; i < theColors.Length; i++)
 yield return theColors[i];
 }
 }

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

535

 public IEnumerator<string> GetEnumerator() // GetEnumerator
 {
 return ColorFlag
 ? Colors // Return Colors enumerator
 : BlackAndWhite; // Return BlackAndWhite enumerator
 }

 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 return ColorFlag
 ? Colors // Return Colors enumerator
 : BlackAndWhite; // Return BlackAndWhite enumerator
 }
 }

 class Program
 {
 static void Main()
 {
 MyClass mc1 = new MyClass(true); // Call constructor with true
 foreach (string s in mc1)
 Console.Write("{0} ", s);
 Console.WriteLine();

 MyClass mc2 = new MyClass(false); // Call constructor with false
 foreach (string s in mc2)
 Console.Write("{0} ", s);
 Console.WriteLine();
 }
 }

This code produces the following output:

blue red yellow
black gray white

CHAPTER 20 ■ ENUMERATORS AND ITERATORS

536

Behind the Scenes with Iterators
The following are some other important things to know about iterators:

• Iterators require the System.Collections.Generic namespace, so you should include it with a

using directive.

• In the compiler-generated enumerators, the Reset method is not supported. It is implemented,

since it is required by the interface, but the implementation throws a

System.NotSupportedException exception if it is called. Notice that the Reset method is shown

grayed out in Figure 20-9.

Behind the scenes, the enumerator class generated by the compiler is a state machine with
four states:

Before: The initial state before the first call to MoveNext.

Running: The state entered when MoveNext is called. While in this state, the enumerator determines
and sets the position for the next item. It exits the state when it encounters a yield return, a yield
break, or the end of the iterator body.

Suspended: The state where the state machine is waiting for the next call to MoveNext.
After: The state where there are no more items to enumerate.

If the state machine is in either the before or suspended states and there is a call to the MoveNext
method, it goes into the running state. In the running state, it determines the next item in the collection
and sets the position.

If there are more items, the state machine goes into the suspended state. If there are no more items,
it goes into the after state, where it remains. Figure 20-12 shows the state machine.

Figure 20-12. An iterator state machine

C H A P T E R 21

537

Introduction to LINQ

 What Is LINQ?

 LINQ Providers

 Query Syntax and Method Syntax

 Query Variables

 The Structure of Query Expressions

 The Standard Query Operators

 LINQ to XML

CHAPTER 21 INTRODUCTION TO LINQ

538

What Is LINQ?
In a relational database system, data is organized into nicely normalized tables and accessed with a very
simple but powerful query language—SQL. SQL can work with any set of data in a database because the
data is organized into tables, following strict rules.

In a program, as opposed to a database, however, data is stored in class objects or structs that are all
vastly different. As a result, there’s been no general query language for retrieving data from data
structures. The method of retrieving data from objects has always been custom-designed as part of the
program. LINQ, however, makes it easy to query collections of objects.

The following are the important high-level characteristics of LINQ:

• LINQ stands for Language Integrated Query and is pronounced link.

• LINQ is an extension of the .NET Framework that allows you to query collections of data in a

manner similar to using SQL to query databases.

• With LINQ you can query data from databases, collections of program objects, XML documents,

and more.

The following code shows a simple example of using LINQ. In this code, the data source being
queried is simply an array of ints. The definition of the query is the statement with the from and select
keywords. Although the query is defined in this statement, it is actually performed and used in the
foreach statement at the bottom.

 static void Main()
 {
 int[] numbers = { 2, 12, 5, 15 }; // Data source

 IEnumerable<int> lowNums = // Define and store the query.
 from n in numbers
 where n < 10
 select n;

 foreach (var x in lowNums) // Execute the query.
 Console.Write("{0}, ", x);
 }

This code produces the following output:

2, 5,

CHAPTER 21 INTRODUCTION TO LINQ

539

LINQ Providers
In the previous example, the data source was simply an array of ints, which is an in-memory object of
the program. LINQ, however, can work with many different types of data sources, such as SQL
databases, XML documents, and a host of others. For every data source type, however, under the
covers there must be a module of code that implements the LINQ queries in terms of that data source
type. These code modules are called LINQ providers. The important points about LINQ providers are
the following:

• Microsoft provides LINQ providers for a number of common data source types, as shown in

Figure 21-1.

• You can use any LINQ-enabled language (C# in our case) to query any data source type for which

there is a LINQ provider.

• New LINQ providers are constantly being produced by third parties for all sorts of data

source types.

Figure 21-1. The architecture of LINQ, the LINQ-enabled languages, and LINQ providers

There are entire books dedicated to LINQ in all its forms and subtleties, but that’s clearly beyond the
scope of this chapter. Instead, this chapter will introduce you to LINQ and explain how to use it with
program objects (LINQ to Objects) and XML (LINQ to XML).

CHAPTER 21 INTRODUCTION TO LINQ

540

Anonymous Types
Before getting into the details of LINQ’s querying features, I’ll start by covering a language feature that
allows you to create unnamed class types. These are called, not surprisingly, anonymous types.

In Chapter 6 we covered object initializers, which is the construct that allows you to initialize the
fields and properties of a new class instance when using an object-creation expression. Just to remind
you, this kind of object-creation expression consists of three components: the keyword new, the class
name or constructor, and the object initializer. The object initializer consists of a comma-separated list
of member initializers between a set of curly braces.

Creating a variable of an anonymous type uses the same form—but without the class name or
constructor. The following line of code shows the object-creation expression form of an anonymous type:

 Object initializer
 ↓
 new { FieldProp = InitExpr, FieldProp = InitExpr, ...}
 ↑ ↑
 Member initializer Member initializer

The following code shows an example of creating and using an anonymous type. It creates a variable
called student, with an anonymous type that has three string properties and one int property. Notice in
the WriteLine statement that the instance’s members are accessed just as if they were members of a
named type.

 static void Main()
 {
 var student = new {LName="Jones", FName="Mary", Age=19, Major="History"};
 ↑ ↑
 Must use var Object initializer
 Console.WriteLine("{0} {1}, Age {2}, Major: {3}",
 student.FName, student.LName, student.Age, student.Major);
 }

This code produces the following output:

Mary Jones, Age 19, Major: History

Important things to know about anonymous types are the following:

• Anonymous types can be used only with local variables—not with class members.

• Since an anonymous type doesn’t have a name, you must use the var keyword as the variable

type.

CHAPTER 21 INTRODUCTION TO LINQ

541

When the compiler encounters the object initializer of an anonymous type, it creates a new class
type with a private name that it constructs. For each member initializer, it infers its type and creates a
private variable of that type in the new class, and it creates a read/write property to access the variable.
The property has the same name as the member initializer. Once the anonymous type is constructed,
the compiler creates an object of that type.

Besides the assignment form of member initializers, anonymous type object initializers also
allow two other forms: simple identifiers and member access expressions. These two forms are
called projection initializers. The following variable declaration shows all three forms. The first
member initializer is in the assignment form. The second is an identifier, and the third is a member
access expression.

 var student = new { Age = 19, Major, Other.Name };

For example, the following code uses all three types. Notice that the projection initializers must be
defined before the declaration of the anonymous type. Major is a local variable, and Name is a static field
of class Other.

 class Other
 {
 static public string Name = "Mary Jones";
 }

 class Program
 {
 static void Main()
 {
 string Major = "History";
 Assignment form Identifier
 ↓ ↓
 var student = new { Age = 19, Other.Name, Major};
 ↑
 Member access
 Console.WriteLine("{0}, Age {1}, Major: {2}",
 student.Name, student.Age, student.Major);
 }
 }

This code produces the following output:

Mary Jones, Age 19, Major: History

The projection initializer form of the object initializer just shown has exactly the same result as the
assignment form shown here:

 var student = new { Age = Age, Name = Other.Name, Major = Major};

Although your code cannot see the anonymous type, it’s visible to object browsers. If the compiler
encounters another anonymous type with the same parameter names, with the same inferred types, and
in the same order, it will reuse the type and create a new instance—not create a new anonymous type.

CHAPTER 21 INTRODUCTION TO LINQ

542

Query Syntax and Method Syntax
There are two syntactic forms you can use when writing LINQ queries—query syntax and method syntax.

• Query syntax is a declarative form that looks very much like an SQL statement. Query syntax is

written in the form of query expressions.

• Method syntax is an imperative form, which uses standard method invocations. The methods are

from a set called the standard query operators, which will be described later in the chapter.

• You can also combine both forms in a single query.

Microsoft recommends using query syntax because it’s more readable, more clearly states your
query intentions, and is therefore less error-prone. There are some operators, however, that can be
written only using method syntax.

Note Queries expressed using query syntax are translated by the C# compiler into method invocation form.

There is no difference in runtime performance between the two forms.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 21 INTRODUCTION TO LINQ

543

The following code shows all three query forms. In the method syntax part, you might find that the
parameter of the Where method looks a bit odd. It’s a lambda expression, as was described in Chapter 15.
I’ll cover its use in LINQ a bit later in the chapter.

 static void Main()
 {
 int[] numbers = { 2, 5, 28, 31, 17, 16, 42 };

 var numsQuery = from n in numbers // Query syntax
 where n < 20
 select n;

 var numsMethod = numbers.Where(x => x < 20); // Method syntax

 int numsCount = (from n in numbers // Combined
 where n < 20
 select n).Count();

 foreach (var x in numsQuery)
 Console.Write("{0}, ", x);
 Console.WriteLine();

 foreach (var x in numsMethod)
 Console.Write("{0}, ", x);
 Console.WriteLine();

 Console.WriteLine(numsCount);
 }

This code produces the following output:

2, 5, 17, 16,
2, 5, 17, 16,
4

CHAPTER 21 INTRODUCTION TO LINQ

544

Query Variables
LINQ queries can return two types of results: an enumeration, which lists the items that satisfy the query
parameters; or a single value, called a scalar, which is some form of summary of the results that satisfied
the query.

In the following example code, the following happens:

• The first statement creates an array of ints and initializes it with three values.

• The second statement returns an IEnumerable object, which can be used to enumerate the results

of the query.

• The third statement executes a query and then calls a method (Count) that returns the count of

the items returned from the query. We’ll cover operators that return scalars, such as Count, later

in the chapter.

 int[] numbers = { 2, 5, 28 };

 IEnumerable<int> lowNums = from n in numbers // Returns an enumerator
 where n < 20
 select n;

 int numsCount = (from n in numbers // Returns an int
 where n < 20
 select n).Count();

The variable on the left of the equals sign is called the query variable. Although the types of the
query variables are given explicitly in the example statements, you could also have had the compiler
infer the types of the query variables by using the var keyword in place of the type names.

It’s important to understand the contents of query variables. After executing the preceding code,
query variable lowNums does not contain the results of the query. Instead, it contains an object of type
IEnumerable<int>, which can perform the query if it’s called upon to do so later in the code. Query
variable numsCount, however, contains an actual integer value, which can have been obtained only by
actually running the query.

CHAPTER 21 INTRODUCTION TO LINQ

545

The differences in the timing of the execution of the queries can be summarized as follows:

• If a query expression returns an enumeration, the query is not executed until the enumeration is

processed.

— If the enumeration is processed multiple times, the query is executed multiple times.

— If the data changes between the time the enumeration is produced and the time the query is
executed, the query is run on the new data.

• If the query expression returns a scalar, the query is executed immediately, and the result is

stored in the query variable.

Figure 21-2 illustrates this for the enumerable query. Variable lowNums contains a reference to the
enumerable that can enumerate the query results from the array.

Figure 21-2. The compiler creates an object that implements IEnumerable<int> and stores the query in

the object.

CHAPTER 21 INTRODUCTION TO LINQ

546

The Structure of Query Expressions
A query expression consists of a from clause followed by a query body, as illustrated in Figure 21-3. Some
of the important things to know about query expressions are the following:

• The clauses must appear in the order shown.

— The two parts that are required are the from clause and the select...group clause.

— The other clauses are optional.

• In a LINQ query expression, the select clause is at the end of the expression. This is different

than SQL, where the SELECT statement is at the beginning of a query. One of the reasons for using

this position in C# is that it allows Visual Studio’s IntelliSense to give you more options while

you’re entering code.

• There can be any number of from...let...where clauses, as illustrated in the figure.

Figure 21-3. The structure of a query statement consists of a from clause followed by a query body.

CHAPTER 21 INTRODUCTION TO LINQ

547

The from Clause
The from clause specifies the data collection that is to be used as the data source. It also introduces the
iteration variable. The important points about the from clause are the following:

• The iteration variable sequentially represents each element in the data source.

• The syntax of the from clause is shown following, where

— Type is the type of the elements in the collection. This is optional, because the compiler can
infer the type from the collection.

— Item is the name of the iteration variable.

— Items is the name of the collection to be queried. The collection must be enumerable, as
described in Chapter 13.

 Iteration variable declaration
 ↓
 from Type Item in Items

The following code shows a query expression used to query an array of four ints. Iteration
variable item will represent each of the four elements in the array and will be either selected or
rejected by the where and select clauses following it. This code leaves out the optional type (int) of
the iteration variable.

 int[] arr1 = {10, 11, 12, 13};
 Iteration variable
 ↓
 var query = from item in arr1
 where item < 13 ← Uses the iteration variable
 select item; ← Uses the iteration variable

 foreach(var item in query)
 Console.Write("{0}, ", item);

This code produces the following output:

10, 11, 12,

CHAPTER 21 INTRODUCTION TO LINQ

548

Figure 21-4 shows the syntax of the from clause. The type specifier is optional, since it can be
inferred by the compiler. There can be any number of optional join clauses.

Figure 21-4. The syntax of the from clause

Although there is a strong similarity between the LINQ from clause and the foreach statement, there
are several major differences:

• The foreach statement executes its body at the point in the code where it is encountered. The

from clause, on the other hand, does not execute anything. It creates an enumerable object that’s

stored in the query variable. The query itself might or might not be executed later in the code.

• The foreach statement imperatively specifies that the items in the collection are to be considered

in order, from the first to the last. The from clause declaratively states that each item in the

collection must be considered but does not assume an order.

CHAPTER 21 INTRODUCTION TO LINQ

549

The join Clause
The join clause in LINQ is much like the JOIN clause in SQL. If you’re familiar with joins from SQL, then
joins in LINQ will be nothing new for you conceptually, except for the fact that you can now perform
them on collections of objects as well as database tables. If you’re new to joins or need a refresher, then
the next section should help clear things up for you.

The first important things to know about a join are the following:

• A join operation takes two collections and creates a new temporary collection of objects, where

each object contains all the fields from an object from both initial collections.

• Use a join to combine data from two or more collections.

The syntax for a join is shown here. It specifies that the second collection is to be joined with the
collection in the previous clause.

 Keyword Keyword Keyword Keyword
 ↓ ↓ ↓ ↓
 join Identifier in Collection2 on Field1 equals Field2
 ↑ ↑
 Specify additional collection The fields to compare
 and ID to reference it for equality

Figure 21-5 illustrates the syntax for the join clause.

Figure 21-5. Syntax for the join clause

The following annotated statement shows an example of the join clause:

 First collection and ID
 ↓ Item from first collection Item from second
 var query = from s in students ↓ ↓
 join c in studentsInCourses on s.StID equals c.StID
 ↑ ↑
 Second collection and ID Fields to compare

CHAPTER 21 INTRODUCTION TO LINQ

550

What Is a Join?
A join in LINQ takes two collections and creates a new collection where each element has members from
the elements of the two original collections.

For example, the following code declares two classes: Student and CourseStudent.

• Objects of type Student contain a student’s last name and student ID number.

• Objects of type CourseStudent represent a student that is enrolled in a course and contain the

course name and a student ID number.

 public class Student
 {
 public int StID;
 public string LastName;
 }

 public class CourseStudent
 {
 public string CourseName;
 public int StID;
 }

Figure 21-6 shows the situation in a program where there are three students and three courses, and
the students are enrolled in various courses. The program has an array called students, of Student
objects, and an array called studentsInCourses, of CourseStudent objects, which contains one object for
every student enrolled in each course.

Figure 21-6. Students enrolled in various courses

CHAPTER 21 INTRODUCTION TO LINQ

551

Suppose now that you want to get the last name of every student in a particular course. The
students array has the last names, and the studentsInCourses array has the course enrollment
information. To get the information, you must combine the information in the arrays, based on the
student ID field, which is common to objects of both types. You can do this with a join on the StID field.

Figure 21-7 shows how the join works. The left column shows the students array, and the right
column shows the studentsInCourses array. If we take the first student record and compare its ID with
the student ID in each studentsInCourses object, we find that two of them match, as shown at the top of
the center column. If we then do the same with the other two students, we find that the second student
is taking one course, and the third student is taking two courses.

The five grayed objects in the middle column represent the join of the two arrays on field StID. Each
object contains three fields: the LastName field from the Students class, the CourseName field from the
CourseStudent class, and the StID field common to both classes.

Figure 21-7. Two arrays of objects and their join on field StId

CHAPTER 21 INTRODUCTION TO LINQ

552

The following code puts the whole example together. The query finds the last names of all the
students taking the history course.

 class Program
 {
 public class Student { // Declare classes.
 public int StID;
 public string LastName;
 }

 public class CourseStudent {
 public string CourseName;
 public int StID;
 }
 // Initialize arrays.
 static CourseStudent[] studentsInCourses = new CourseStudent[] {
 new CourseStudent { CourseName = "Art", StID = 1 },
 new CourseStudent { CourseName = "Art", StID = 2 },
 new CourseStudent { CourseName = "History", StID = 1 },
 new CourseStudent { CourseName = "History", StID = 3 },
 new CourseStudent { CourseName = "Physics", StID = 3 },
 };

 static Student[] students = new Student[] {
 new Student { StID = 1, LastName = "Carson" },
 new Student { StID = 2, LastName = "Klassen" },
 new Student { StID = 3, LastName = "Fleming" },
 };

 static void Main()
 {
 // Find the last names of the students taking history.
 var query = from s in students
 join c in studentsInCourses on s.StID equals c.StID
 where c.CourseName == "History"
 select s.LastName;

 // Display the names of the students taking history.
 foreach (var q in query)
 Console.WriteLine("Student taking History: {0}", q);
 }
 }

This code produces the following output:

Student taking History: Carson
Student taking History: Fleming

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 21 INTRODUCTION TO LINQ

553

The from . . . let . . . where Section in the Query Body
The optional from...let...where section is the first section of the query body. It can have any number of
any of the three clauses that comprise it—the from clause, the let clause, and the where clause. Figure
21-8 summarizes the syntax of the three clauses.

Figure 21-8. The syntax of the from . . . let . . . where clause

CHAPTER 21 INTRODUCTION TO LINQ

554

The from Clause
You saw that a query expression starts with a required from clause, which is followed by the query body.
The body itself can start with any number of additional from clauses, where each subsequent from clause
specifies an additional source data collection and introduces a new iteration variable for use in further
evaluations. The syntax and meanings of all the from clauses are the same.

The following code shows an example of this use.

• The first from clause is the required clause of the query expression.

• The second from clause is the first clause of the query body.

• The select clause creates objects of an anonymous type.

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 6, 7, 8, 9 };

 var someInts = from a in groupA ← Required first from clause
 from b in groupB ← First clause of query body
 where a > 4 && b <= 8
 select new {a, b, sum = a + b}; ← Object of anonymous type

 foreach (var a in someInts)
 Console.WriteLine(a);
 }

This code produces the following output:

{ a = 5, b = 6, sum = 11 }
{ a = 5, b = 7, sum = 12 }
{ a = 5, b = 8, sum = 13 }
{ a = 6, b = 6, sum = 12 }
{ a = 6, b = 7, sum = 13 }
{ a = 6, b = 8, sum = 14 }

CHAPTER 21 INTRODUCTION TO LINQ

555

The let Clause
The let clause takes the evaluation of an expression and assigns it to an identifier to be used in other
evaluations. The syntax of the let clause is the following:

 let Identifier = Expression

For example, the query expression in the following code pairs each member of array groupA with
each element of array groupB. The where clause eliminates each set of integers from the two arrays where
the sum of the two is not equal to 12.

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 6, 7, 8, 9 };

 var someInts = from a in groupA
 from b in groupB
 let sum = a + b ← Store result in new variable
 where sum == 12
 select new {a, b, sum};

 foreach (var a in someInts)
 Console.WriteLine(a);
 }

This code produces the following output:

{ a = 3, b = 9, sum = 12 }
{ a = 4, b = 8, sum = 12 }
{ a = 5, b = 7, sum = 12 }
{ a = 6, b = 6, sum = 12 }

CHAPTER 21 INTRODUCTION TO LINQ

556

The where Clause
The where clause eliminates items from further consideration if they don’t meet the specified condition.
The syntax of the where clause is the following:

 where BooleanExpression

Important things to know about the where clause are the following:

• A query expression can have any number of where clauses, as long as they are in the

from...let...where section.

• An item must satisfy all the where clauses to avoid elimination from further consideration.

The following code shows an example of a query expression that contains two where clauses. The
where clauses eliminate each set of integers from the two arrays where the sum of the two is not greater
than or equal to 11, and the element from groupA is not the value 4. Each set of elements selected must
satisfy the conditions of both where clauses.

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 6, 7, 8, 9 };

 var someInts = from int a in groupA
 from int b in groupB
 let sum = a + b
 where sum >= 11 ← Condition 1
 where a == 4 ← Condition 2
 select new {a, b, sum};

 foreach (var a in someInts)
 Console.WriteLine(a);
 }

This code produces the following output:

{ a = 4, b = 7, sum = 11 }
{ a = 4, b = 8, sum = 12 }
{ a = 4, b = 9, sum = 13 }

CHAPTER 21 INTRODUCTION TO LINQ

557

The orderby Clause
The orderby clause takes an expression and returns the result items in order according to the expression.

Figure 21-9 shows the syntax of the orderby clause. The optional keywords ascending and
descending set the direction of the order. Expression is generally a field of the items.

• The default ordering of an orderby clause is ascending. You can, however, explicitly set the

ordering of the elements to either ascending or descending, using the ascending and

descending keywords.

• There can be any number of orderby clauses, and they must be separated by commas.

Figure 21-9. The syntax of the orderby clause

The following code shows an example of student records ordered by the ages of the students. Notice
that the array of student information is stored in an array of anonymous types.

 static void Main() {
 var students = new [] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from student in students
 orderby student.Age ← Order by Age.
 select student;

 foreach (var s in query) {
 Console.WriteLine("{0}, {1}: {2} - {3}",
 s.LName, s.FName, s.Age, s.Major);
 }
 }

This code produces the following output:

Jones, Mary: 19 - History
Smith, Bob: 20 - CompSci
Fleming, Carol: 21 - History

CHAPTER 21 INTRODUCTION TO LINQ

558

The select . . . group Clause
There are two types of clauses that make up the select...group section—the select clause and the
group...by clause. While the clauses that precede the select...group section specify the data sources
and which objects to choose, the select...group section does the following:

• The select clause specifies which parts of the chosen objects should be selected. It can specify

any of the following:

— The entire data item

— A field from the data item

— A new object comprising several fields from the data item (or any other value, for
that matter).

• The group...by clause is optional and specifies how the chosen items should be grouped. We’ll

cover the group...by clause later in the chapter.

Figure 21-10 shows the syntax for the select...group clause.

Figure 21-10. The syntax of the select . . . group clause

CHAPTER 21 INTRODUCTION TO LINQ

559

The following code shows an example of using the select clause to select the entire data item. First,
the program creates an array of objects of an anonymous type. The query expression then uses the
select statement to select each item in the array.

 using System;
 using System.Linq;
 class Program {
 static void Main() {
 var students = new[] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from s in students
 select s;

 foreach (var q in query)
 Console.WriteLine("{0}, {1}: Age {2}, {3}",
 q.LName, q.FName, q.Age, q.Major);
 }
 }

This code produces the following output:

Jones, Mary: Age 19, History
Smith, Bob: Age 20, CompSci
Fleming, Carol: Age 21, History

You can also use the select clause to choose only particular fields of the object. For example, the
select clause in the following code selects only the last name of the student.

 var query = from s in students
 select s.LName;

 foreach (var q in query)
 Console.WriteLine(q);

When you substitute these two statements for the corresponding two statements in the preceding
full example, the program produces the following output:

Jones
Smith
Fleming

CHAPTER 21 INTRODUCTION TO LINQ

560

Anonymous Types in Queries
The result of a query can consist of items from the source collections, fields from the items in the source
collections, or anonymous types.

You can create an anonymous type in a select clause by placing curly braces around a comma-
separated list of fields you want to include in the type. For example, to make the code in the previous
section select just the names and majors of the students, you could use the following syntax:

 select new { s.LastName, s.FirstName, s.Major };
 ↑
 Anonymous type

The following code creates an anonymous type in the select clause and uses it later in the
WriteLine statement.

 using System;
 using System.Linq;

 class Program {
 static void Main()
 {
 var students = new[] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from s in students
 select new { s.LName, s.FName, s.Major };
 ↑
 Create anonymous type
 foreach (var q in query)
 Console.WriteLine("{0} {1} -- {2}",
 q.FName, q.LName, q.Major);
 } ↑
 } Access fields of anonymous type

This code produces the following output:

Mary Jones -- History
Bob Smith -- CompSci
Carol Fleming -- History

CHAPTER 21 INTRODUCTION TO LINQ

561

The group Clause
The group clause groups the selected objects according to some criterion. For example, with the array of
students in the previous examples, the program could group the students according to their majors.

The important things to know about the group clause are the following:

• When items are included in the result of the query, they’re placed in groups according to the

value of a particular field. The value on which items are grouped is called the key.

• Unlike the select clause, the group clause does not return an enumerable that can enumerate the

items from the original source. Instead, it returns an enumerable that enumerates the groups of

items that have been formed.

• The groups themselves are enumerable and can enumerate the actual items.

An example of the syntax of the group clause is the following:

 group student by student.Major;
 ↑ ↑
 Keyword Keyword

For example, the following code groups the students according to their majors:

 static void Main()
 {
 var students = new[] // Array of objects of an anonymous type
 {
 new { LName="Jones", FName="Mary", Age=19, Major="History" },
 new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
 new { LName="Fleming", FName="Carol", Age=21, Major="History" }
 };

 var query = from student in students
 group student by student.Major;

 foreach (var s in query) // Enumerate the groups.
 {
 Console.WriteLine("{0}", s.Key);
 ↑
 Grouping key
 foreach (var t in s) // Enumerate the items in the group.
 Console.WriteLine(" {0}, {1}", t.LName, t.FName);
 }
 }

CHAPTER 21 INTRODUCTION TO LINQ

562

This code produces the following output:

History
 Jones, Mary
 Fleming, Carol
CompSci
 Smith, Bob

Figure 21-11 illustrates the object that is returned from the query expression and stored in the
query variable.

• The object returned from the query expression is an enumerable that enumerates the groups

resulting from the query.

• Each group is distinguished by a field called Key.

• Each group is itself enumerable and can enumerate its items.

Figure 21-11. The group clause returns a collection of collections of objects rather than a collection

of objects.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 21 INTRODUCTION TO LINQ

563

Query Continuation
A query continuation clause takes the result of one part of a query and assigns it a name so that it can be
used in another part of the query. Figure 21-12 shows the syntax for query continuation.

Figure 21-12. The syntax of the query continuation clause

For example, the following query joins groupA and groupB and names the join groupAandB. It then
performs a simple select from groupAandB.

 static void Main()
 {
 var groupA = new[] { 3, 4, 5, 6 };
 var groupB = new[] { 4, 5, 6, 7 };

 var someInts = from a in groupA
 join b in groupB on a equals b
 into groupAandB ← Query continuation
 from c in groupAandB
 select c;

 foreach (var a in someInts)
 Console.Write("{0} ", a);
 }

This code produces the following output:

4 5 6

CHAPTER 21 INTRODUCTION TO LINQ

564

The Standard Query Operators
The standard query operators comprise a set of methods called an application programming interface
(API) that lets you query any .NET array or collection. Important characteristics of the standard query
operators are the following:

• The collection objects queried are called sequences and must implement the IEnumerable<T>

interface, where T is a type.

• The standard query operators use method syntax.

• Some operators return IEnumerable objects (or other sequences), while others return scalars.

Operators that return scalars execute their queries immediately and return a value instead of an

enumerable object to be iterated over later.

For example, the following code shows the use of operators Sum and Count, which return ints. Notice
the following about the code:

• The operators are used as methods directly on the sequence objects, which in this case is

array numbers.

• The return type is not an IEnumerable object but an int.

 class Program
 {
 static int[] numbers = new int[] {2, 4, 6};

 static void Main()
 {
 int total = numbers.Sum();
 int howMany = numbers.Count();
 ↑ ↑ ↑
 Scalar Sequence Operator
 object
 Console.WriteLine("Total: {0}, Count: {1}", total, howMany);
 }
 }

This code produces the following output:

Total: 12, Count: 3

CHAPTER 21 INTRODUCTION TO LINQ

565

There are 47 standard query operators that fall into 14 different categories. These categories are
shown in Table 21-1.

Table 21-1. Categories of the Standard Query Operators

Name Number of
Operators

Description

Restriction 1 Returns a subset of the objects of the sequence, based on selection
criteria

Projection 2 Selects which parts of the objects of a sequence are finally returned

Partitioning 4 Skips or returns objects from a sequence

Join 2 Returns an IEnumerable object that joins two sequences, based on
some criterion

Concatenation 1 Produces a single sequence from two separate sequences

Ordering 2 Orders a sequence based on supplied criteria

Grouping 1 Groups a sequence based on supplied criteria

Set 4 Performs set operations on a sequence

Conversion 7 Converts sequences to various forms such as arrays, lists, and
dictionaries

Equality 1 Compares two sequences for equality

Element 9 Returns a particular element of a sequence

Generation 3 Generates sequences

Quantifiers 3 Returns Boolean values specifying whether a particular predicate is
true about a sequence

Aggregate 7 Returns a single value representing characteristics of a sequence

CHAPTER 21 INTRODUCTION TO LINQ

566

Query Expressions and the Standard Query Operators

As mentioned at the beginning of the chapter, every query expression can also be written using method
syntax with the standard query operators. The set of standard query operators is a set of methods for
performing queries. The compiler translates every query expression into standard query operator form.

Clearly, since all query expressions are translated into the standard query operators—the operators
can perform everything done by query expressions. But the operators also give additional capabilities
that aren’t available in query expression form. For example, operators Sum and Count, which were used in
the previous example, can be expressed only using the method syntax.

The two forms, query expressions and method syntax, however, can be combined. For example, the
following code shows a query expression that also uses operator Count. Notice that the query expression
part of the statement is inside parentheses, which is followed by a dot and the name of the method.

 static void Main()
 {
 var numbers = new int[] { 2, 6, 4, 8, 10 };

 int howMany = (from n in numbers
 where n < 7
 select n).Count();
 ↑ ↑
 Query expression Operator

 Console.WriteLine("Count: {0}", howMany);
 }

This code produces the following output:

Count: 3

CHAPTER 21 INTRODUCTION TO LINQ

567

Signatures of the Standard Query Operators
The standard query operators are methods declared in class System.Linq.Enumerable. These methods,
however, aren’t just any methods—they are extension methods that extend generic class
IEnumerable<T>.

Extension methods were covered in Chapters 7 and 19, but the most important thing to remember
about them is that they are public, static methods that, although defined in one class, are designed to
add functionality to a different class—the one listed as the first formal parameter. This formal parameter
must be preceded by the keyword this.

For example, the following are the signatures of three of the operators: Count, First, and Where. At
first glance, the signatures of the operators can be somewhat intimidating. Notice the following about
the signatures:

• Since the operators are generic methods, they have a generic parameter (T) associated with

their names.

• Since the operators are extension methods that extend IEnumerable<T>, they must satisfy the

following syntactic requirements:

— They must be declared public and static.

— They must have the this extension indicator before the first parameter.

— They must have IEnumerable<T> as the first parameter type.

 Always Name and First
 public, static generic param parameter
 ↓ ↓ ↓
 public static int Count<T>(this IEnumerable<T> source);
 public static T First<T>(this IEnumerable<T> source);
 public static IEnumerable<T> Where<T>(this IEnumerable<T> source, ...);
 ↑ ↑
 Return Extension
 type indicator

CHAPTER 21 INTRODUCTION TO LINQ

568

For example, the following code shows the use of operators Count and First. Both operators take
only a single parameter—the reference to the IEnumerable<T> object.

• The Count operator returns a single value, which is the count of all the elements in the sequence.

• The First operator returns the first element of the sequence.

The first two times the operators are used in this code, they are called directly, just like normal
methods, passing the name of the array as the first parameter. In the following two lines, however, they
are called using the extension method syntax, as if they were method members of the array, which is
enumerable. Notice that in this case no parameter is supplied. Instead, the array name has been moved
from the parameter list to before the method name. There it is used as if it contained a declaration of
the method.

The direct syntax calls and the extension syntax calls are completely equivalent in effect—only their
syntax is different.

 using System.Linq;
 ...
 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };
 Array as parameter
 ↓
 var count1 = Enumerable.Count(intArray); // Called directly
 var firstNum1 = Enumerable.First(intArray); // Called directly

 var count2 = intArray.Count(); // Called as extension
 var firstNum2 = intArray.First(); // Called as extension
 ↑
 Array as extended object
 Console.WriteLine("Count: {0}, FirstNumber: {1}", count1, firstNum1);
 Console.WriteLine("Count: {0}, FirstNumber: {1}", count2, firstNum2);
 }

This code produces the following output:

Count: 6, FirstNumber: 3
Count: 6, FirstNumber: 3

CHAPTER 21 INTRODUCTION TO LINQ

569

Delegates As Parameters
As you just saw in the previous section, the first parameter of every operator is a reference to an
IEnumerable<T> object. The parameters following it can be of any type. Many operators take generic
delegates as parameters. (Generic delegates were explained in Chapter 19.) The most important thing to
recall about generic delegates as parameters is the following:

• Generic delegates are used to supply user-defined code to the operator.

To explain this, I’ll start with an example showing several ways you might use the Count operator.
The Count operator is overloaded and has two forms. The first form, which was used in the previous
example, has a single parameter, as shown here:

 public static int Count<T>(this IEnumerable<T> source);

Like all extension methods, you can use it in the standard static method form or in the form of an
instance method on an instance of the class it extends, as shown in the following two lines of code:

 var count1 = Linq.Enumerable.Count(intArray); // Static method form

 var count2 = intArray.Count(); // Instance method form

In these two instances, the query counts the number of ints in the given integer array. Suppose,
however, that you only want to count the odd elements of the array. To do that, you must supply the
Count method with code that determines whether an integer is odd.

To do this, you would use the second form of the Count method, which is shown following. It has a
generic delegate as its second parameter. At the point it is invoked, you must supply a delegate object
that takes a single input parameter of type T and returns a Boolean value. The return value of the
delegate code must specify whether the element should be included in the count.

 public static int Count<T>(this IEnumerable<T> source,
 Func<T, bool> predicate);
 ↑
 Generic delegate

CHAPTER 21 INTRODUCTION TO LINQ

570

For example, the following code uses the second form of the Count operator to instruct it to include
only those values that are odd. It does this by supplying a lambda expression that returns true if the
input value is odd and false otherwise. (Lambda expressions were covered in Chapter 15.) At each
iteration through the collection, Count calls this method (represented by the lambda expression) with
the current value as input. If the input is odd, the method returns true, and Count includes the element
in the total.

 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };

 var countOdd = intArray.Count(n => n % 2 == 1);
 ↑
 Lambda expression identifying the odd values
 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }

This code produces the following output:

Count of odd numbers: 4

CHAPTER 21 INTRODUCTION TO LINQ

571

The LINQ Predefined Delegate Types
Like the Count operator from the previous example, many of the LINQ operators require you to
supply code that directs how the operator performs its operation. You can do this by using delegate
objects as parameters.

Remember from Chapter 15 that you can think of a delegate object as an object that contains a
method or list of methods with a particular signature and return type. When the delegate is invoked, the
methods it contains are invoked in sequence.

LINQ defines two families of generic delegate types for use with the standard query operators. These
are the Func delegates and the Action delegates. Each set has 17 members.

• The delegate objects you create for use as actual parameters must be of these delegate types or of

these forms.

• TR represents the return type and is always last in the list of type parameters.

The first four generic Func delegates are listed here. The first form takes no method parameters and
returns an object of the return type. The second takes a single method parameter and returns a value,
and so forth. Notice that the return type parameter has the out keyword, making it covariant. It can
therefore accept the type declared or any type derived from that type. The input parameters have the in
keyword, making them contravariant. They, therefore, can accept the declared type, or any type derived
from that type.

 public delegate TR Func<out TR> ();
 public delegate TR Func<in T1, out TR > (T1 a1);
 public delegate TR Func<in T1, in T2, out TR > (T1 a1, T2 a2);
 public delegate TR Func<in T1, in T2, in T3, out TR>(T1 a1, T2 a2, T3 a3);
 ↑ ↑ ↑
 Return type Type parameters Method parameters

With this in mind, if you look again at the declaration of Count, which follows, you can see that the
second parameter must be a delegate object that takes a single value of some type T as the method
parameter and returns a value of type bool.

 public static int Count<T>(this IEnumerable<T> source,
 Func<T, bool> predicate);
 ↑ ↑
 Parameter type Return type

A parameter delegate that produces a Boolean value is called a predicate.
The first four Action delegates are the following. They’re the same as the Func delegates except

that they have no return value and hence no return value type parameter. All their type parameters
are contravariant.

 public delegate void Action ();
 public delegate void Action<in T1> (T1 a1);
 public delegate void Action<in T1, in T2> (T1 a1, T2 a2);
 public delegate void Action<in T1, in T2, in T3>(T1 a1, T2 a2, T3 a3);

CHAPTER 21 INTRODUCTION TO LINQ

572

Example Using a Delegate Parameter
Now that you better understand Count’s signature and LINQ’s use of generic delegate parameters, you’ll
be better able to understand a full example.

The following code first declares method IsOdd, which takes a single parameter of type int and
returns a bool value stating whether the input parameter was odd. Method Main does the following:

• It declares an array of ints as the data source.

• It creates a delegate object called MyDel of type Func<int, bool>, and it uses method IsOdd to

initialize the delegate object. Notice that you don’t need to declare the Func delegate type

because, as you saw, it’s already predefined by LINQ.

• It calls Count using the delegate object.

 class Program
 {
 static bool IsOdd(int x) // Method to be used by the delegate object
 {
 return x % 2 == 1; // Return true if x is odd.
 }

 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };

 Func<int, bool> myDel = new Func<int, bool>(IsOdd); // Delegate object
 var countOdd = intArray.Count(myDel); // Use delegate

 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }
 }

This code produces the following output:

Count of odd numbers: 4

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 21 INTRODUCTION TO LINQ

573

Example Using a Lambda Expression Parameter
The previous example used a separate method and a delegate to attach the code to the operator. This
required declaring the method, declaring the delegate object, and then passing the delegate object to
the operator. This works fine and is exactly the right approach to take if either of the following
conditions is true:

• If the method must be called from somewhere else in the program than just in the place it’s used

to initialize the delegate object

• If the code in the method body is more than just a statement or two long

If neither of these conditions is true, however, you probably want to use a more compact and
localized method of supplying the code to the operator, using a lambda expression as described in
Chapter 15.

We can modify the previous example to use a lambda expression by first deleting the IsOdd method
entirely and placing the equivalent lambda expression directly at the declaration of the delegate object.
The new code is shorter and cleaner and looks like this:

 class Program
 {
 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };
 Lambda expression
 ↓
 var countOdd = intArray.Count(x => x % 2 == 1);

 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }
 }

Like the previous example, this code produces the following output:

Count of odd numbers: 4

CHAPTER 21 INTRODUCTION TO LINQ

574

We could also have used an anonymous method in place of the lambda expression, as shown
following. This is more verbose, though, and since lambda expressions are equivalent semantically and
are less verbose, there’s little reason to use anonymous methods anymore.

 class Program
 {
 static void Main()
 {
 int[] intArray = new int[] { 3, 4, 5, 6, 7, 9 };
 Anonymous method
 ↓
 Func<int, bool> myDel = delegate(int x)
 {
 return x % 2 == 1;
 };
 var countOdd = intArray.Count(myDel);

 Console.WriteLine("Count of odd numbers: {0}", countOdd);
 }
 }

CHAPTER 21 INTRODUCTION TO LINQ

575

LINQ to XML
Extensible Markup Language (XML) is an important method of storing and exchanging data. LINQ adds
features to the language that make working with XML much easier than previous methods such as XPath
and XSLT. If you’re familiar with these methods, you might be pleased to hear that LINQ to XML
simplifies the creation, traversal, and manipulation of XML in a number of ways, including the following:

• You can create an XML tree in a top-down fashion, with a single statement.

• You can create and manipulate XML in-memory without having an XML document to contain

the tree.

• You can create and manipulate string nodes without having a Text subnode.

Although I won’t give a complete treatment of XML, I will start by giving a very brief introduction to
it before describing some of the XML manipulation features supplied by LINQ.

Markup Languages
A markup language is a set of tags placed in a document to give information about the information in the
document. That is, the markup tags are not the data of the document—they contain data about the data.
Data about data is called metadata.

A markup language is a defined set of tags designed to convey particular types of metadata about
the contents of a document. HTML, for example, is the most widely known markup language. The
metadata in its tags contains information about how a web page should be rendered in a browser and
how to navigate among the pages using the hypertext links.

While most markup languages contain a predefined set of tags, XML contains only a few defined
tags, and the rest are defined by the programmer to represent whatever kinds of metadata are required
by a particular document type. As long as the writer and reader of the data agree on what the tags mean,
the tags can contain whatever useful information the designers want.

CHAPTER 21 INTRODUCTION TO LINQ

576

XML Basics
Data in an XML document is contained in an XML tree, which consists mainly of a set of nested elements.

The element is the fundamental constituent of an XML tree. Every element has a name and can
contain data. Some can also contain other, nested elements. Elements are demarcated by opening and
closing tags. Any data contained by an element must be between its opening and closing tags.

• An opening tag starts with an open angle bracket, followed by the element name, followed

optionally by any attributes, followed by a closing angle bracket.

 <PhoneNumber>

• A closing tag starts with an open angle bracket, followed by a slash character, followed by the

element name, followed by a closing angle bracket.

 </PhoneNumber>

• An element with no content can be represented by a single tag that starts with an open angle

bracket, followed by the name of the element, followed by a slash, and is terminated with a

closing angle bracket.

 <PhoneNumber />

The following XML fragment shows an element named EmployeeName followed by an empty element

named PhoneNumber.

 <EmployeeName>Sally Jones</EmployeeName>
 ↑ ↑ ↑
 Opening tag Content Closing tag
 <PhoneNumber /> ← Element with no content

Other important things to know about XML are the following:

• XML documents must have a single root element that contains all the other elements.

• XML tags must be properly nested.

• Unlike HTML tags, XML tags are case sensitive.

• XML attributes are name/value pairs that contain additional metadata about an element. The

value part of an attribute must always be enclosed in quotation marks, which can be either

double quotation marks or single quotation marks.

• Whitespace within an XML document is maintained. This is unlike HTML, where whitespace is

consolidated to a single space in the output.

CHAPTER 21 INTRODUCTION TO LINQ

577

The following XML document is an example of XML that contains information about two
employees. This XML tree is extremely simple in order to show the elements clearly. The important
things to notice about the XML tree are the following:

• The tree contains a root node of type Employees that contains two child nodes of type Employee.

• Each Employee node contains nodes containing the name and phone numbers of an employee.

 <Employees>
 <Employee>
 <Name>Bob Smith</Name>
 <PhoneNumber>408-555-1000</PhoneNumber>
 <CellPhone />
 </Employee>
 <Employee>
 <Name>Sally Jones</Name>
 <PhoneNumber>415-555-2000</PhoneNumber>
 <PhoneNumber>415-555-2001</PhoneNumber>
 </Employee>
 </Employees>

Figure 21-13 illustrates the hierarchical structure of the sample XML tree.

Figure 21-13. Hierarchical structure of the sample XML tree

CHAPTER 21 INTRODUCTION TO LINQ

578

The XML Classes
LINQ to XML can be used to work with XML in two ways. The first way is as a simplified XML
manipulation API. The second way is to use the LINQ query facilities you’ve seen throughout the earlier
part of this chapter. I’ll start by introducing the LINQ to XML API.

The LINQ to XML API consists of a number of classes that represent the components of an XML tree.
The three most important classes you’ll use are XElement, XAttribute, and XDocument. There are other
classes as well, but these are the main ones.

In Figure 21-13, you saw that an XML tree is a set of nested elements. Figure 21-14 shows the classes
used to build an XML tree and how they can be nested.

For example, the figure shows the following:

• An XDocument node can have the following as its direct child nodes:

— At most, one of each of the following node types: an XDeclaration node, an XDocumentType
node, and an XElement node

— Any number of XProcessingInstruction nodes

• If there is a top-level XElement node under the XDocument, it is the root of the rest of the elements

in the XML tree.

• The root element can in turn contain any number of nested XElement, XComment, or

XProcessingInstruction nodes, nested to any level.

Figure 21-14. The containment structure of XML nodes

Except for the XAttribute class, most of the classes used to create an XML tree are derived from a
class called XNode and are referred to generically in the literature as “XNodes.” Figure 21-14 shows the
XNode classes in white clouds, while the XAttribute class is shown in a gray cloud.

CHAPTER 21 INTRODUCTION TO LINQ

579

Creating, Saving, Loading, and Displaying an XML Document
The best way to demonstrate the simplicity and usage of the XML API is to show simple code samples.
For example, the following code shows how simple it is to perform several of the important tasks
required when working with XML.

It starts by creating a simple XML tree consisting of a node called Employees, with two subnodes
containing the names of two employees. Notice the following about the code:

• The tree is created with a single statement that creates all the nested elements in place in the tree.

This is called functional construction.

• Each element is created in place using an object creation expression, using the constructor of the

type of the node.

After creating the tree, the code saves it to a file called EmployeesFile.xml, using XDocument’s Save
method. It then reads the XML tree back from the file using XDocument’s static Load method and assigns
the tree to a new XDocument object. Finally, it uses WriteLine to display the structure of the tree held by
the new XDocument object.

 using System;
 using System.Xml.Linq; // Required namespace

 class Program {
 static void Main() {
 XDocument employees1 =
 new XDocument(// Create the XML document.
 new XElement("Employees", // Create the root element.
 new XElement("Name", "Bob Smith"), // Create element
 new XElement("Name", "Sally Jones") // Create element
)
);

 employees1.Save("EmployeesFile.xml"); // Save to a file

 // Load the saved document into a new variable.
 XDocument employees2 = XDocument.Load("EmployeesFile.xml");
 ↑
 Static method
 Console.WriteLine(employees2); // Display document
 }
 }

This code produces the following output:

<Employees>
 <Name>Bob Smith</Name>
 <Name>Sally Jones</Name>
</Employees>

CHAPTER 21 INTRODUCTION TO LINQ

580

Creating an XML Tree
In the previous example, you saw that you can create an XML document in-memory by using
constructors for XDocument and XElement. In the case of both constructors

• The first parameter is the name of the object.

• The second and following parameters contain the nodes of the XML tree. The second parameter

of the constructor is a params parameter, and so can have any number of parameters.

For example, the following code produces an XML tree and displays it using the Console.WriteLine
method:

 using System;
 using System.Xml.Linq; // This namespace is required.

 class Program
 {
 static void Main() {
 XDocument employeeDoc =
 new XDocument(// Create the document.
 new XElement("Employees", // Create the root element.

 new XElement("Employee", // First employee element
 new XElement("Name", "Bob Smith"),
 new XElement("PhoneNumber", "408-555-1000")),

 new XElement("Employee", // Second employee element
 new XElement("Name", "Sally Jones"),
 new XElement("PhoneNumber", "415-555-2000"),
 new XElement("PhoneNumber", "415-555-2001"))
)
);
 Console.WriteLine(employeeDoc); // Displays the document
 }
 }

This code produces the following output:

<Employees>
 <Employee>
 <Name>Bob Smith</Name>
 <PhoneNumber>408-555-1000</PhoneNumber>
 </Employee>
 <Employee>
 <Name>Sally Jones</Name>
 <PhoneNumber>415-555-2000</PhoneNumber>
 <PhoneNumber>415-555-2001</PhoneNumber>
 </Employee>
</Employees>

CHAPTER 21 INTRODUCTION TO LINQ

581

Using Values from the XML Tree
The power of XML becomes evident when you traverse an XML tree and retrieve or modify values. Table
21-2 shows the main methods used for retrieving data.

Table 21-2. Methods for Querying XML

Method Name Class Return Type Description

Nodes Xdocument

XElement

IEnumerable<object> Returns all the children of the current
node, regardless of their type

Elements Xdocument

XElement

IEnumerable<XElement> Returns all the current node’s
XElement child nodes or all the child
nodes with a specific name

Element Xdocument

XElement

XElement Returns the current node’s first
XElement child node or the first child
node with a specific name

Descendants XElement IEnumerable<XElement> Returns all the descendant XElement
nodes or all the descendant XElement
nodes with a specific name,
regardless of their level of nesting
below the current node

DescendantsAndSelf XElement IEnumerable<XElement> Same as Descendants but also
includes the current node

Ancestors XElement IEnumerable<XElement> Returns all the ancestor XElement
nodes or all the ancestor XElement
nodes above the current node that
have a specific name

AncestorsAndSelf XElement IEnumerable<XElement> Same as Ancestors but also includes
the current node

Parent XElement XElement Returns the parent node of the
current node

CHAPTER 21 INTRODUCTION TO LINQ

582

Some of the important things to know about the methods in Table 21-2 are the following:

• Nodes: The Nodes method returns an object of type IEnumerable<object>, because the nodes

returned might be of different types, such as XElement, XComment, and so on. You can use the type

parameterized method OfType<type> to specify what type of nodes to return. For example, the

following line of code retrieves only the XComment nodes:

 IEnumerable<XComment> comments = xd.Nodes().OfType<XComment>();

• Elements: Since retrieving XElements is such a common requirement, there is a shortcut for

expression Nodes().OfType<XElement>()—the Elements method.

— Using the Elements method with no parameters returns all the child XElements.

— Using the Elements method with a single name parameter returns only the child XElements
with that name. For example, the following line of code returns all the child XElement nodes
with the name PhoneNumber.

 IEnumerable<XElement> empPhones = emp.Elements("PhoneNumber");

• Element: This method retrieves just the first child XElement of the current node. Like the

Elements method, it can be called with either one or no parameters. With no parameters, it gets

the first child XElement node. With a single name parameter, it gets the first child XElement node

of that name.

• Descendants and Ancestors: These methods work like the Elements and Parent methods, but

instead of returning the immediate child elements or parent element, they include the elements

below or above the current node, regardless of the difference in nesting level.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 21 INTRODUCTION TO LINQ

583

The following code illustrates the Element and Elements methods:

 using System;
 using System.Collections.Generic;
 using System.Xml.Linq;

 class Program {
 static void Main() {
 XDocument employeeDoc =
 new XDocument(
 new XElement("Employees",
 new XElement("Employee",
 new XElement("Name", "Bob Smith"),
 new XElement("PhoneNumber", "408-555-1000")),
 new XElement("Employee",
 new XElement("Name", "Sally Jones"),
 new XElement("PhoneNumber", "415-555-2000"),
 new XElement("PhoneNumber", "415-555-2001"))
)
); Get first child XElement named "Employees"
 ↓
 XElement root = employeeDoc.Element("Employees");
 IEnumerable<XElement> employees = root.Elements();

 foreach (XElement emp in employees)
 { Get first child XElement named "Name"
 ↓
 XElement empNameNode = emp.Element("Name");
 Console.WriteLine(empNameNode.Value);
 Get all child elements named "PhoneNumber"
 ↓
 IEnumerable<XElement> empPhones = emp.Elements("PhoneNumber");
 foreach (XElement phone in empPhones)
 Console.WriteLine(" {0}", phone.Value);
 }
 }
 }

This code produces the following output:

Bob Smith
 408-555-1000
Sally Jones
 415-555-2000
 415-555-2001

CHAPTER 21 INTRODUCTION TO LINQ

584

Adding Nodes and Manipulating XML
You can add a child element to an existing element using the Add method. The Add method allows you to
add as many elements as you like in a single method call, regardless of the node types you are adding.

For example, the following code creates a simple XML tree and displays it. It then uses the Add
method to add a single node to the root element. Following that, it uses the Add method a second time to
add three elements—two XElements and an XComment. Notice the results in the output:

 using System;
 using System.Xml.Linq;

 class Program
 {
 static void Main()
 {
 XDocument xd = new XDocument(// Create XML tree
 new XElement("root",
 new XElement("first")
)
);

 Console.WriteLine("Original tree");
 Console.WriteLine(xd); Console.WriteLine(); // Display the tree.

 XElement rt = xd.Element("root"); // Get the first element.

 rt.Add(new XElement("second")); // Add a child element.

 rt.Add(new XElement("third"), // Add three more children.
 new XComment("Important Comment"),
 new XElement("fourth"));

 Console.WriteLine("Modified tree");
 Console.WriteLine(xd); // Display modified tree
 }
 }

CHAPTER 21 INTRODUCTION TO LINQ

585

This code produces the following output:

<root>
 <first />
</root>

<root>
 <first />
 <second />
 <third />
 <!--Important Comment-->
 <fourth />
</root>

The Add method places the new child nodes after the existing child nodes, but you can place the
nodes before and between the child nodes as well, using the AddFirst, AddBeforeSelf, and
AddAfterSelf methods.

Table 21-3 lists some of the most important methods for manipulating XML. Notice that some of the
methods are applied to the parent node and others to the node itself.

Table 21-3. Methods for Manipulating XML

Method Name Call From Description

Add Parent Adds new child nodes after the existing child nodes of the current
node

AddFirst Parent Adds new child nodes before the existing child nodes of the current
node

AddBeforeSelf Node Adds new nodes before the current node at the same level

AddAfterSelf Node Adds new nodes after the current node at the same level

Remove Node Deletes the currently selected node and its contents

RemoveNodes Node Deletes the currently selected XElement and its contents

SetElement Parent Sets the contents of a node

ReplaceContent Node Replaces the contents of a node

CHAPTER 21 INTRODUCTION TO LINQ

586

Working with XML Attributes
Attributes give additional information about an XElement node. They’re placed in the opening tag of the
XML element.

When you functionally construct an XML tree, you can add attributes by just including
XAttribute constructors within the scope of the XElement constructor. There are two forms of the
XAttribute constructor; one takes a name and a value, and the other takes a reference to an already
existing XAttribute.

The following code adds two attributes to root. Notice that both parameters to the XAttribute
constructor are strings; the first specifies the name of the attribute, and the second gives the value.

 XDocument xd = new XDocument(
 Name Value
 new XElement("root", ↓ ↓
 new XAttribute("color", "red"), // Attribute constructor
 new XAttribute("size", "large"), // Attribute constructor
 new XElement("first"),
 new XElement("second")
)
);

 Console.WriteLine(xd);

This code produces the following output. Notice that the attributes are placed inside the opening
tag of the element.

<root color="red" size="large">
 <first />
 <second />
</root>

CHAPTER 21 INTRODUCTION TO LINQ

587

To retrieve an attribute from an XElement node, use the Attribute method, supplying the name of
the attribute as the parameter. The following code creates an XML tree with a node with two attributes—
color and size. It then retrieves the values of the attributes and displays them.

 static void Main()
 {
 XDocument xd = new XDocument(// Create XML tree
 new XElement("root",
 new XAttribute("color", "red"),
 new XAttribute("size", "large"),
 new XElement("first")
)
);

 Console.WriteLine(xd); Console.WriteLine(); // Display XML tree

 XElement rt = xd.Element("root"); // Get the element.

 XAttribute color = rt.Attribute("color"); // Get the attribute.
 XAttribute size = rt.Attribute("size"); // Get the attribute.

 Console.WriteLine("color is {0}", color.Value); // Display attr. value
 Console.WriteLine("size is {0}", size.Value); // Display attr. value
 }

This code produces the following output:

<root color="red" size="large">
 <first />
</root>

color is red
size is large

CHAPTER 21 INTRODUCTION TO LINQ

588

To remove an attribute, you can select the attribute and use the Remove method or use the
SetAttributeValue method on its parent and set the attribute value to null. The following code
demonstrates both methods:

 static void Main() {
 XDocument xd = new XDocument(
 new XElement("root",
 new XAttribute("color", "red"),
 new XAttribute("size", "large"),
 new XElement("first")
)
);

 XElement rt = xd.Element("root"); // Get the element.

 rt.Attribute("color").Remove(); // Remove the color attribute.
 rt.SetAttributeValue("size", null); // Remove the size attribute.

 Console.WriteLine(xd);
 }

This code produces the following output:

<root>
 <first />
</root>

CHAPTER 21 INTRODUCTION TO LINQ

589

To add an attribute to an XML tree or change the value of an attribute, you can use the
SetAttributeValue method, as shown in the following code:

 static void Main() {
 XDocument xd = new XDocument(
 new XElement("root",
 new XAttribute("color", "red"),
 new XAttribute("size", "large"),
 new XElement("first")));

 XElement rt = xd.Element("root"); // Get the element.

 rt.SetAttributeValue("size", "medium"); // Change attribute value
 rt.SetAttributeValue("width", "narrow"); // Add an attribute.

 Console.WriteLine(xd); Console.WriteLine();
 }

This code produces the following output:

<root color="red" size="medium" width="narrow">
 <first />
</root>

CHAPTER 21 INTRODUCTION TO LINQ

590

Other Types of Nodes
Three other types of nodes used in the previous examples are XComment, XDeclaration, and
XProcessingInstruction. They’re described in the following sections.

XComment
Comments in XML consist of text between the <!-- and --> tokens. The text between the tokens is
ignored by XML parsers. You can insert text in an XML document using the XComment class, as shown in
the following line of code:

 new XComment("This is a comment")

XDeclaration
XML documents start with a line that includes the version of XML used, the type of character encoding
used, and whether the document depends on external references. This is information about the XML, so
it’s actually metadata about the metadata! This is called the XML declaration and is inserted using the
XDeclaration class. The following shows an example of an XDeclaration statement:

 new XDeclaration("1.0", "utf-8", "yes")

XProcessingInstruction
An XML processing instruction is used to supply additional data about how an XML document should be
used or interpreted. Most commonly, processing instructions are used to associate a style sheet with the
XML document.

You can include a processing instruction using the XProcessingInstruction constructor, which
takes two string parameters—a target and a data string. If the processing instruction takes multiple data
parameters, those parameters must be included in the second parameter string of the
XProcessingInstruction constructor, as shown in the following constructor code. Notice that in this
example, the second parameter is a verbatim string, and literal double quotes inside the string are
represented by sets of two contiguous double quote marks.

 new XProcessingInstruction("xml-stylesheet",
 @"href=""stories"", type=""text/css""")

CHAPTER 21 INTRODUCTION TO LINQ

591

The following code uses all three constructs:

 static void Main()
 {
 XDocument xd = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("This is a comment"),
 new XProcessingInstruction("xml-stylesheet",
 @"href=""stories.css"" type=""text/css"""),
 new XElement("root",
 new XElement("first"),
 new XElement("second")
)
);
 }

This code produces the following output in the output file. Using a WriteLine of xd, however, would
not show the declaration statement, even though it is included in the document file.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!--This is a comment-->
<?xml-stylesheet href="stories.css" type="text/css"?>
<root>
 <first />
 <second />
</root>

CHAPTER 21 INTRODUCTION TO LINQ

592

Using LINQ Queries with LINQ to XML
You can combine the LINQ XML API with LINQ query expressions to produce simple yet powerful XML
tree searches.

The following code creates a simple XML tree, displays it to the screen, and then saves it to a file
called SimpleSample.xml. Although there’s nothing new in this code, we’ll use this XML tree in the
following examples.

 static void Main()
 {
 XDocument xd = new XDocument(
 new XElement("MyElements",
 new XElement("first",
 new XAttribute("color", "red"),
 new XAttribute("size", "small")),
 new XElement("second",
 new XAttribute("color", "red"),
 new XAttribute("size", "medium")),
 new XElement("third",
 new XAttribute("color", "blue"),
 new XAttribute("size", "large"))));

 Console.WriteLine(xd); // Display XML tree
 xd.Save("SimpleSample.xml"); // Save XML tree
 }

This code produces the following output:

<MyElements>
 <first color="red" size="small" />
 <second color="red" size="medium" />
 <third color="blue" size="large" />
</MyElements> D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

CHAPTER 21 INTRODUCTION TO LINQ

593

The following example code uses a simple LINQ query to select a subset of the nodes from the XML
tree and then displays them in several ways. This code does the following:

• It selects from the XML tree only those elements whose names have five characters. Since the

names of the elements are first, second, and third, only node names first and third match the

search criterion, and therefore those nodes are selected.

• It displays the names of the selected elements.

• It formats and displays the selected nodes, including the node name and the values of the

attributes. Notice that the attributes are retrieved using the Attribute method, and the values of

the attributes are retrieved with the Value property.

 static void Main()
 {
 XDocument xd = XDocument.Load("SimpleSample.xml"); // Load the document.
 XElement rt = xd.Element("MyElements"); // Get the root element.

 var xyz = from e in rt.Elements() // Select elements whose
 where e.Name.ToString().Length == 5 // names have 5 chars.
 select e;

 foreach (XElement x in xyz) // Display the
 Console.WriteLine(x.Name.ToString()); // selected elements.

 Console.WriteLine();
 foreach (XElement x in xyz)
 Console.WriteLine("Name: {0}, color: {1}, size: {2}",
 x.Name,
 x.Attribute("color").Value,
 x.Attribute("size") .Value);
 ↑ ↑
 } Get the attribute. Get the attribute’s value.

This code produces the following output:

first
third

Name: first, color: red, size: small
Name: third, color: blue, size: large

CHAPTER 21 INTRODUCTION TO LINQ

594

The following code uses a simple query to retrieve all the top-level elements of the XML tree and
creates an object of an anonymous type for each one. The first use of the WriteLine method shows the
default formatting of the anonymous type. The second WriteLine statement explicitly formats the
members of the anonymous type objects.

 using System;
 using System.Linq;
 using System.Xml.Linq;

 static void Main()
 {
 XDocument xd = XDocument.Load("SimpleSample.xml"); // Load the document.
 XElement rt = xd.Element("MyElements"); // Get the root element.

 var xyz = from e in rt.Elements()
 select new { e.Name, color = e.Attribute("color") };
 ↑
 foreach (var x in xyz) Create an anonymous type.
 Console.WriteLine(x); // Default formatting

 Console.WriteLine();
 foreach (var x in xyz)
 Console.WriteLine("{0,-6}, color: {1, -7}", x.Name, x.color.Value);
 }

This code produces the following output. The first three lines show the default formatting of the
anonymous type. The last three lines show the explicit formatting specified in the format string of the
second WriteLine method.

{ Name = first, color = color="red" }
{ Name = second, color = color="red" }
{ Name = third, color = color="blue" }

first , color: red
second, color: red
third , color: blue

From these examples, you can see that you can easily combine the XML API with the LINQ query
facilities to produce powerful XML querying capabilities.

C H A P T E R 22

■ ■ ■

595

Introduction to Asynchronous
Programming

■ Processes, Threads, and Asynchronous Programming

■ Parallel Loops

■ The BackgroundWorker Class

■ Asynchronous Programming Patterns

■ BeginInvoke and EndInvoke

■ Timers

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

596

Processes, Threads, and Asynchronous Programming
In this chapter, we’re going to introduce four methods you can use to add multithreading to your
programs. This chapter is a bit different from the previous chapters in that it goes beyond just the
language features. Instead, we’ll also include classes from the BCL and include some programming
techniques. In spite of the fact that these things are a bit beyond just the language features, I want to do
this because it’s imperative that we as programmers increase our use of multiprocessing in our code—
and I think a first book on C# is a good place to start.

When you start a program, the system creates a new process in memory. A process is the set of
resources that comprise a running program. These include the virtual address space, file handles, and a
host of other things required for the program to run.

Inside the process, the system creates a kernel object, called a thread, which represents the actual
executing program. (Thread is short for “thread of execution.”) Once the process is set up, the system
starts execution of the thread at the first statement in method Main.

Some important things to know about threads are the following:

• By default, a process contains only a single thread, which executes from the beginning of the

program to the end.

• A thread can spawn other threads so that at any time, a process might have multiple threads in

various states, executing different parts of the program.

• If there are multiple threads in a process, they all share the process’s resources.

• It’s threads, not processes, that are the units scheduled by the system for execution on

the processor.

All the sample programs shown so far in this book have used only a single thread and have executed
sequentially from the first statement in the program to the last. This is called synchronous programming.
Asynchronous programming refers to programs that spawn multiple threads, which are, at least
conceptually, executed at the same time. (They might not actually be executed at the same time.)

If the program is running on a multiprocessor system, the different threads might actually be
executing at the same time on different processors. This can considerably improve performance, and
as multicore processors become the norm, we need to write our programs to take advantage of this
opportunity.

On a single-processor system, though, clearly only one instruction can be executed by the processor
at a time. In this case, the operating system coordinates the threads so that the processor is shared
among them. Each thread gets the processor for a short time, called a time slice, before being kicked off
the processor and sent to the back of the line. This round-robin sharing of the processor lets all the
threads work their ways through the code.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

597

Multithreading Considerations
Using multiple threads in a program, called multithreading, or just threading, creates program overhead
and additional program complexity. Here are some examples:

• There are time and resource costs in both creating and destroying threads.

• The time required for scheduling threads, loading them onto the processor, and storing their

states after each time slice is pure overhead.

• Since the threads in a process all share the same resources and heap, it adds additional

programming complexity to ensure that they’re not stepping on each other’s work.

• Debugging multithreaded programs can be quite difficult, since the timing on each run of the

program can be different, producing different results. And the act of running the program in a

debugger blows the timing out of the water.

In spite of these considerations, the benefits of threading can outweigh its costs, as long as it’s used
wisely—and not overused. For example, you’ve already seen that on a multiprocessor system, if the
different threads can be placed on different processors, it can result in a much more efficient execution.

To help alleviate some of the costs associated with creating and destroying threads, the CLR
maintains a thread pool for each process. Initially, a process’s thread pool is empty, but after a thread is
created and used by a process and then the thread completes its execution, it isn’t destroyed but instead
added to the process’s thread pool. Later, if the process needs another thread, the CLR recycles one from
the pool, saving a significant amount of time.

Another common example where multithreading is crucial is in graphical user interface (GUI)
programming, where users expect a quick response any time they click a button or use the keyboard. In
this case, if the program needs to perform an operation that’s going to take any appreciable time, it
should perform that operation on another thread, leaving the main thread available to respond to the
user’s input. It would be totally unacceptable to have the program unresponsive during that time.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

598

The Complexity of Multithreading
Although multithreading is conceptually easy, getting all the details right can be frustratingly difficult on
nontrivial programs. The areas that need to be considered are the following:

• Communicating between the threads: There are few built-in mechanisms for communicating

between threads, so this is often done simply using their shared memory, since the memory

space is visible and accessible by all threads in the same process.

• Coordinating threads: Although it’s easy to create threads, you also need to be able to coordinate

their actions. For example, a thread might need to wait for one or more other threads to complete

before it can continue its execution.

• Synchronization of resource usage: Since all the threads in a process share the same resources and

memory, you need to make sure that the different threads aren’t accessing and changing them at

the same time, causing state inconsistencies.

The System.Threading namespace contains classes and types that you can use to build complex
multithreaded systems. These include the Thread class itself and classes such as Mutex, Semaphore, and
Monitor, which are used to synchronize resource usage. The use, complexities, and nuances of this tricky
subject are beyond the scope of this text, and you’d be better advised to settle down with an in-depth
book on the subject.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

599

Parallel Loops
.NET 4.0 has introduced a new library, called the Task Parallel Library, which greatly simplifies
parallel programming. This is a huge advance and includes a large amount of material—far more than
I can cover in this chapter. So unfortunately, I’ve had to settle by just whetting your appetite by
introducing just two of its very simple constructs that you can learn and use quickly and easily. These
are the Parallel.For loop and the Parallel.ForEach loop. These constructs are in the
System.Threading.Tasks namespace.

By this point in the book I’m sure you’re quite familiar with C#’s standard for and foreach loops.
These are common and tremendously powerful constructs. Many times when using these constructs,
each iteration depends on a calculation or action in the previous iteration. But this isn’t always the case.
When the iterations are independent, it would be a huge advantage if you could put different iterations
on different processors and process them in parallel. This is exactly what the Parallel.For and
Parallel.ForEach constructs do.

These constructs are in the form of methods with input parameters. There are 12 overloads of the
Parallel.For method, but the simplest has the following signature:

• The fromInclusive parameter is the first integer in the iteration series.

• The toExclusive parameter is an integer that is one greater than the last index in the iteration

series. That is, it’s the same as comparing on the expression index < ToExclusive.

• The body is a delegate that takes a single input parameter. The code of body is executed once

per iteration.

 void Parallel.For(int fromInclusive, int toExclusive, Action body);

The following code is an example using the Parallel.For construct. It iterates from 0 to 15 and
prints out the iteration index and the square of the index. Notice that it fits the requirement that each
iteration is independent of any other iteration. Notice also that you must use the
System.Threading.Tasks namespace.

 using System;
 using System.Threading.Tasks; // Must use this namespace

 namespace ExampleParallelFor
 {
 class Program
 {
 static void Main()
 {
 Parallel.For(0, 15, i =>
 Console.WriteLine("The square of {0} is {1}", i, i * i));
 }
 }
 }

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

600

One run of this code on a PC with a two-core processor produced the following output. Notice that
you’re not guaranteed any particular order of the iterations.

The square of 0 is 0
The square of 7 is 49
The square of 8 is 64
The square of 9 is 81
The square of 10 is 100
The square of 11 is 121
The square of 12 is 144
The square of 13 is 169
The square of 3 is 9
The square of 4 is 16
The square of 5 is 25
The square of 6 is 36
The square of 14 is 196
The square of 1 is 1
The square of 2 is 4

Another example is the following code. This program fills an integer array, in parallel, with the
square of the iteration index.

 class Program
 {
 static void Main()
 {
 const int maxValues = 50;
 int[] squares = new int[maxValues];

 Parallel.For(0, maxValues, i => squares[i] = i * i);
 }
 }

Unlike the previous example, even though the iterations might be executed in parallel and in any
order, the end result is an array containing the first 50 squares.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

601

The other parallel loop construct is the Parallel.ForEach method. There are more than a dozen
overloads for this method, but the simplest is the following:

• The TSource is the type of object in the collection.

• The source is the collection of TSource objects.

• The body is the lambda expression to be applied to each element of the collection.

 static ParallelLoopResult ForEach<TSource>(IEnumerable<TSource> source,
 Action<TSource> body)

An example of using the Parallel.ForEach method is the following code. In this case, TSource is
string, and the source is a string[].

 using System;
 using System.Threading.Tasks;

 namespace ParallelForeach1
 {
 class Program
 {
 static void Main()
 {
 string[] squares = new string[]
 { "We", "hold", "these", "truths", "to", "be", "self-evident",
 "that", "all", "men", "are", "created", "equal"};

 Parallel.ForEach(squares,
 i => Console.WriteLine(string.Format("{0} has {1} letters", i, i.Length)));
 }
 }
 }

One run of this code on a PC with a two-core processor produced the following output, but the
order might change each time:

"We" has 2 letters
"equal" has 5 letters
"truths" has 6 letters
"to" has 2 letters
"be" has 2 letters
"that" has 4 letters
"hold" has 4 letters
"these" has 5 letters
"all" has 3 letters
"men" has 3 letters
"are" has 3 letters
"created" has 7 letters
"self-evident" has 12 letters

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

602

The BackgroundWorker Class
Although much of asynchronous programming is complex, the BackgroundWorker class makes it simple
to perform a task in the background on a separate thread. This class was designed primarily for GUI
programming (Windows Forms and WPF) to allow them to offload time-consuming tasks from the main
thread to a background thread. Figure 22-1 illustrates the key members of the class. The following is an
overview of these members:

• The first two properties shown in the figure are used to set whether the background task can

report its progress to the main thread and whether it supports cancellation from the main thread.

You use the third property to find out whether the background task is running.

• The class has three events, which are used to signal different program events and states. You

need to write event handlers for these events to take whatever actions are appropriate for

your program.

— The DoWork event is raised when the background thread starts.

— The ProgressChanged event is raised when the background task reports progress.

— The RunWorkerCompleted event is raised when the background worker exits.

• The three methods are used to initiate actions or change state.

— Calling the RunWorkerAsync method retrieves a background thread that executes the DoWork
event handler.

— Calling the CancelAsync method sets the CancellationPending property to true, potentially,
although not necessarily, canceling the thread. It is the responsibility of the DoWork event
handler to inspect this property to determine whether it should stop its processing.

— The ReportProgress method can be called by the DoWork event handler (from the background
thread) when it wants to report its progress to the main thread.

Figure 22-1. The key members of the BackgroundWorker class

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

603

To use a BackgroundWorker class object, you need to write the following event handlers. The first is
required since it contains the code you want to be executed by the background thread, but the other two
are optional, depending on the needs of your program.

• The handler attached to the DoWork event contains the code you want executed in the background

on a separate thread.

— In Figure 22-2, this handler is named DoTheWork and is in a gradient-shaded box to illustrate
that it’s executed in the separate thread.

— The DoWork event is raised when the main thread calls the RunWorkerAsync method.

• The handler attached to the ProgressChanged event should contain the code to be executed on the

main thread when the background task reports its progress.

— The ProgressChanged event is raised when the background process calls the ReportProgress
method.

— Calling the ReportProgress method is how the background thread communicates with the
main thread.

• The handler attached to the RunWorkerCompleted event should contain the code to be

executed on the main thread after the background thread completes the execution of the

DoWork event handler.

Figure 22-2 shows the structure of your program, with the event handlers attached to the events of
the BackgroundWorker object.

Figure 22-2. Your code supplies event handlers for the events that control the flow through execution of

the tasks.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

604

The delegates for these event handlers are the following. Each takes an object reference as the first
parameter and a specialized subclass of the EventArgs class as the second parameter.

 void DoWorkEventHandler (object sender, DoWorkEventArgs e)

 void ProgressChangedEventHandler (object sender, ProgressChangedEventArgs e)

 void RunWorkerCompletedEventHandler (object sender, RunWorkerCompletedEventArgs e)

Figure 22-3 illustrates the structure of the EventArg classes used by these event handlers.

Figure 22-3. The EventArg classes used by the BackgroundWorker event handlers

When you have the event handlers written and attached to their events, you can use the class by
doing the following:

• Start by creating an object of the BackgroundWorker class and configuring it.

— If you want the worker thread to communicate progression to the main thread, then set the
WorkerReportsProgress property to true.

— If you want to be able to cancel the worker thread from the main thread, then set the
WorkerSupportsCancellation property to true.

• Now that the object is configured, you can start it by calling the object’s RunWorkerAsync method.

This retrieves a background thread that raises the DoWork event and executes the event’s handler

in the background.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

605

Now you have both the main thread and the background thread running. While the background
thread is running, you can continue processing on the main thread.

• In the main thread, if you’ve enabled the WorkerSupportsCancellation property, then you can call

the object’s CancelAsync method. This does not cancel the background thread! Instead, it sets the

object’s CancellationPending property to true that needs to be checked by the DoWork event

handler code running on the background thread.

• The background thread, in the meantime, continues to perform its computational tasks, as well

as doing the following:

— If the WorkerReportsProgress property is true and the background thread has progress to
report to the main thread, then it must call the BackgroundWorker object’s ReportProgress
method. When the background thread calls the ReportProgress method, this raises the
ProgressChanged event in the main thread, which runs the corresponding event handler.

— If the WorkerSupportsCancellation property is enabled, then the DoWork event handler code
should regularly check the CancellationPending property to determine whether it has been
canceled. If so, it should exit.

— If the background thread finishes its processing without being canceled, it can return a result
to the main thread by setting the Result field in the DoWorkEventArgs parameter shown
previously, in Figure 22-3.

• When the background thread exits, the RunWorkerCompleted event is raised, and its handler is

executed on the main thread. The RunWorkerCompletedEventArgs parameter can contain

information from the now completed background thread, such as the return value and whether

the thread was canceled.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

606

Example Code Using the BackgroundWorker Class
Although the BackgroundWorker class was designed for GUI programming, I’ll start by showing its use
with a console program since that’s what we’ve used throughout the book. In the next section, I’ll show
an example with a GUI program.

This program creates a background thread that sums a sequence of numbers. Several times during
the process it checks to see whether it has been canceled. If it finds it’s been canceled, it cleans up and
exits. Otherwise, if it goes to completion, it stores the total in the Result field and exits.

Meanwhile, the main thread sums its own sequence of numbers and reports its total, along with the
result from the background thread.

 using System;
 using System.ComponentModel; // Must have this namespace
 using System.Threading; // Must have this namespace

 namespace ConsoleBackgroundWorker
 {
 class DoBackgroundwork
 {
 BackgroundWorker bgWorker = new BackgroundWorker();

 public long BackgroundTotal { get; private set; }
 public bool CompletedNormally { get; private set; }

 // Constructor
 public DoBackgroundwork()
 {
 // Set BackgroundWorker properties
 bgWorker.WorkerReportsProgress = true;
 bgWorker.WorkerSupportsCancellation = true;

 // Connect handlers to BackgroundWorker object.
 bgWorker.DoWork += DoWork_Handler;
 bgWorker.ProgressChanged += ProgressChanged_Handler;
 bgWorker.RunWorkerCompleted += RunWorkerCompleted_Handler;
 }

 public void StartWorker()
 {
 if (!bgWorker.IsBusy)
 bgWorker.RunWorkerAsync();
 }

 // This just calculates the sum of the integers from 0 to the input value.
 public static long CalculateTheSequence(long value)
 {
 long total = 0;
 for (int i=0; i < value; i++)
 total += i;
 return total;
 }

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

607

 public void DoWork_Handler(object sender, DoWorkEventArgs args)
 {
 BackgroundWorker worker = sender as BackgroundWorker;

 // Do the background calculation
 long total = 0;
 for (int i = 1; i <= 5; i++)
 {
 // Each time through the loop, check to see if we've been cancelled
 if (worker.CancellationPending)
 {
 args.Cancel = true;
 worker.ReportProgress(-1);
 break;
 }
 else
 {
 // If we haven't been cancelled, then continue the calculation.
 total += CalculateTheSequence(i * 10000000);
 worker.ReportProgress(i * 20);

 // Slow the program down to a more comfortable output rate
 // just for this demo.
 Thread.Sleep(300);
 }
 }

 args.Result = total; // Store the result and exit.
 }

 // Handle input from background thread.
 private void ProgressChanged_Handler
 (object sender, ProgressChangedEventArgs args)
 {
 string output
 = args.ProgressPercentage == -1
 ? " Cancelled"
 : string.Format(" {0}%", args.ProgressPercentage);

 Console.WriteLine(output);
 }

 // On completion of background thread, summarize and store the result.
 private void RunWorkerCompleted_Handler
 (object sender, RunWorkerCompletedEventArgs args)
 {
 CompletedNormally = !args.Cancelled;
 BackgroundTotal = args.Cancelled
 ? 0
 : (long) args.Result; // Cast from object
 }

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

608

 public void Cancel()
 {
 if(bgWorker.IsBusy)
 bgWorker.CancelAsync();
 }
 }

 class Program
 {
 static void Main()
 {
 GiveInstructionsToTheUser();
 OutputTheSummaryHeaders();

 // Create and Start the background worker
 DoBackgroundwork bgw = new DoBackgroundwork();
 bgw.StartWorker();

 // Start the computation on the main thread. Each time through the loop,
 // check to see whether the user has cancelled the background thread.
 // After the calculation, add a short sleep, just to slow the program
 // down enough so the main thread doesn't run faster than the background.
 long mainTotal = 0;
 for (int i = 0; i < 5; i++)
 {
 if (Program.CheckForCancelInput())
 bgw.Cancel();

 mainTotal += DoBackgroundwork.CalculateTheSequence(100000000);
 Thread.Sleep(200);
 Console.WriteLine(" {0}%", (i+1) * 20);
 }

 SummarizeResults(bgw, mainTotal);
 Console.ReadLine();
 }

 private static void GiveInstructionsToTheUser()
 {
 Console.WriteLine("Press <Enter> to start background worker.");
 Console.WriteLine("Press <Enter> again to cancel background worker.");
 Console.ReadLine();
 }

 private static void OutputTheSummaryHeaders()
 {
 Console.WriteLine(" Main Background");
 Console.WriteLine("---------------------");
 }

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

609

 private static void SummarizeResults(DoBackgroundwork bgw, long mainTotal)
 {
 if (bgw.CompletedNormally)
 {
 Console.WriteLine("\nBackground completed Normally");
 Console.WriteLine("Background total = {0}", bgw.BackgroundTotal);
 }
 else
 {
 Console.WriteLine("\nBackground Cancelled");
 }

 Console.WriteLine("Main total = {0}", mainTotal);
 }

 private static bool CheckForCancelInput()
 {
 bool doCancel = Console.KeyAvailable;
 if (doCancel)
 Console.ReadKey();
 return doCancel;
 }
 }
 }

This code produces the following results when allowed to run to completion.

Press <Enter> to start background worker.
Press <Enter> again to cancel background worker.

 Main Background

 20%
 40%
 20%
 60%
 40%
 80%
 60%
 100%
 80%
 100%

Background completed Normally
Background total = 2749999925000000
Main total = 24999999750000000

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

610

Example of the BackgroundWorker Class in a WPF Program
Since the BackgroundWorker class is primarily used with GUI programming, the following program shows
its use in a simple WPF program rather than the console programs we’ve used throughout the text. WPF
is Microsoft’s replacement for the Windows Forms GUI programming framework. For further
information about WPF programming, please see my book Illustrated WPF, also published by Apress.

This program produces the window shown on the left in Figure 22-4. When you click the Process
button, it starts the background thread, which reports to the main thread every half second and
increments the progress bar at the top by 10 percent. At completion, it shows the dialog box on the right
of Figure 22-4.

Figure 22-4. The example WPF program using the BackgroundWorker class

To create this WPF program in Visual Studio 2010, do the following:

1. Select the File ➤ New ➤ Project menu item, which pops up the New Project window.

2. In the pane on the left of the window, open the Installed Templates section, if it’s not

already open.

3. Under the C# category, click the Windows entry. This populates the center pane with the

installed Windows program templates.

4. Click WPF Application, and then at the bottom of the window enter SimpleWorker in the

Name text box. Below that, select a location, and click the OK button.

There are only two files you’ll modify—MainWindow.xaml and MainWindow.xaml.cs. Modify your
MainWindow.xaml file to match the following listing:

 <Window x:Class="SimpleWorker.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="150 " Width="250">
 <StackPanel>
 <ProgressBar Name="progressBar" Height="20" Width="200" Margin="10"/>
 <Button Name="btnProcess" Width="100" Click="btnProcess_Click"
 Margin="5">Process</Button>
 <Button Name="btnCancel" Width="100" Click="btnCancel_Click"
 Margin="5">Cancel</Button>
 </StackPanel>
 </Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

611

Modify your MainWindow.xaml.cs file to match the following listing:

 using System.Windows;
 using System.ComponentModel;
 using System.Threading;

 namespace SimpleWorker
 {
 public partial class MainWindow : Window
 {
 BackgroundWorker bgWorker = new BackgroundWorker();

 public MainWindow()
 {
 InitializeComponent();

 // Set BackgroundWorker properties
 bgWorker.WorkerReportsProgress = true;
 bgWorker.WorkerSupportsCancellation = true;

 // Connect handlers to BackgroundWorker object.
 bgWorker.DoWork += DoWork_Handler;
 bgWorker.ProgressChanged += ProgressChanged_Handler;
 bgWorker.RunWorkerCompleted += RunWorkerCompleted_Handler;
 }

 private void btnProcess_Click(object sender, RoutedEventArgs e)
 {
 if (!bgWorker.IsBusy)
 bgWorker.RunWorkerAsync();
 }

 private void ProgressChanged_Handler(object sender,
 ProgressChangedEventArgs args)
 {
 progressBar.Value = args.ProgressPercentage;
 }

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

612

 private void DoWork_Handler(object sender, DoWorkEventArgs args)
 {
 BackgroundWorker worker = sender as BackgroundWorker;

 for (int i = 1; i <= 10; i++)
 {
 if (worker.CancellationPending)
 {
 args.Cancel = true;
 break;
 }
 else
 {
 worker.ReportProgress(i * 10);
 Thread.Sleep(500);
 }
 }
 }

 private void RunWorkerCompleted_Handler(object sender,
 RunWorkerCompletedEventArgs args)
 {
 progressBar.Value = 0;

 if (args.Cancelled)
 MessageBox.Show("Process was cancelled.", "Process Cancelled");
 else
 MessageBox.Show("Process completed normally.", "Process Completed");
 }

 private void btnCancel_Click(object sender, RoutedEventArgs e)
 {
 bgWorker.CancelAsync();
 }
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

613

Asynchronous Programming Patterns
In Chapter 15, we covered the topic of delegates, and you saw that when a delegate object is invoked, it
invokes the methods contained in its invocation list. This is done synchronously, just as if the methods
had been called by the program.

If a delegate object has only a single method (which I’ll call the referenced method) in its invocation
list, it can execute that method asynchronously. The delegate class has two methods, called BeginInvoke
and EndInvoke, that are used to do this. You use these methods in the following way:

• When you call the delegate’s BeginInvoke method, it starts its referenced method executing on a

separate thread from the thread pool and then returns immediately to the initial thread. The

initial thread then continues on while the referenced method executes in parallel.

• When your program wants to retrieve the results of the completed asynchronous method, it

either checks the IsCompleted property of the IAsyncResult returned by BeginInvoke or calls the

delegate’s EndInvoke method to wait for the delegate to finish.

Figure 22-5 shows the three standard patterns for using this process. In all three patterns, the initial
thread initiates an asynchronous method call and then does some additional processing. The patterns
differ, however, in the ways in which the initial thread receives the information that the spawned thread
has completed.

• In the wait-until-done pattern, after spawning the asynchronous method and doing some

additional processing, the initial thread halts and waits for the spawned thread to finish

before continuing.

• In the polling pattern, the initial thread checks periodically whether the spawned thread has

completed, and if not, it continues additional processing.

• In the callback pattern, the initial thread continues execution without waiting or checking

whether the spawned thread has completed. Instead, when the referenced method in the

spawned thread finishes, it calls a callback method, which handles the results of the

asynchronous method before calling EndInvoke.

Figure 22-5. The standard patterns for asynchronous method calls

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

614

BeginInvoke and EndInvoke
Before we look at examples of these asynchronous programming patterns, let’s take a closer look at
the BeginInvoke and EndInvoke methods. Some of the important things to know about BeginInvoke are
the following:

• When calling BeginInvoke, the actual parameters in the parameter list consist of the following:

— The parameters required by the referenced method

— Two additional parameters, called the callback parameter and the state parameter

• BeginInvoke retrieves a thread from the thread pool and starts the referenced method running on

the new thread.

• BeginInvoke returns to the calling thread a reference to an object implementing the IAsyncResult

interface. This interface reference contains information about the current state of the

asynchronous method. The initial thread then continues execution.

The following code shows an example of calling a delegate’s BeginInvoke method. The first line
declares a delegate type called MyDel. The next line declares a method called Sum, which matches
the delegate.

• The following line declares a delegate object called del, of the delegate type MyDel, and initializes

its invocation list with the Sum method.

• Finally, the last line of code calls the BeginInvoke method of the delegate object and supplies it

with the two delegate parameters 3 and 5 and the two BeginInvoke parameters callback and

state, which are set to null in this example. When executed, the BeginInvoke method performs

two actions:

— It gets a thread from the thread pool and starts method Sum running on the new thread,
supplying it with 3 and 5 as its actual parameters.

— It collects information about the state of the new thread and makes it available through a
reference to an interface of type IAsyncResult, which it returns to the calling thread. The
calling thread, in this example, stores it in a variable called iar.

 delegate long MyDel(int first, int second); // Delegate declaration
 ...
 static long Sum(int x, int y){ ... } // Method matching delegate
 ...
 MyDel del = new MyDel(Sum); // Create delegate object
 IAsyncResult iar = del.BeginInvoke(3, 5, null, null);

 ↑ ↑ ↑ ↑
 Information about Invoke delegate Delegate Extra
 new thread asynchronously params params

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

615

You use the EndInvoke method to retrieve the values returned by the asynchronous method call and
to release resources used by the thread. EndInvoke has the following characteristics:

• It takes as a parameter the reference to the IAsyncResult returned by the BeginInvoke method

and finds the thread it refers to.

• If the thread pool thread has exited, EndInvoke does the following:

— It cleans up the exited thread’s loose ends and disposes of its resources.

— It finds the value returned by the referenced method and returns that value as its
return value.

• If the thread pool thread is still running when EndInvoke is called, the calling thread stops and

waits for it to finish before cleaning up and returning the value. Because EndInvoke cleans up after

the spawned thread, you must make sure that an EndInvoke is called for each BeginInvoke.

• If the asynchronous method triggers an exception, the exception is raised when EndInvoke

is called.

The following line of code shows an example of calling EndInvoke to retrieve the value from an
asynchronous method. You must always include the reference to the IAsyncResult object as a parameter.

 Delegate object
 ↓
 long result = del.EndInvoke(iar);

 ↑ ↑
 Return value IAsyncResult
 from async method object

EndInvoke supplies all the output from the asynchronous method call, including ref and out
parameters. If a delegate’s referenced method has ref or out parameters, they must be included in
EndInvoke’s parameter list before the reference to the IAsyncResult object, as shown here:

 long result = del.EndInvoke(out someInt, iar);

 ↑ ↑ ↑
 Return value Out IAsyncResult
 from async method parameter object

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

616

The Wait-Until-Done Pattern
Now that you understand the BeginInvoke and EndInvoke delegate methods, we can look at the
asynchronous programming patterns. The first one we’ll look at is the wait-until-done pattern. In this
pattern, the initial thread initiates an asynchronous method call, does some additional processing, and
then stops and waits until the spawned thread finishes. It’s summarized as follows:

 IAsyncResult iar = del.BeginInvoke(3, 5, null, null);
 // Do additional work in the calling thread, while the method
 // is being executed asynchronously in the spawned thread.
 ...
 long result = del.EndInvoke(iar);

The following code shows a full example of this pattern. This code uses the Sleep method of the
Thread class to suspend itself for 100 milliseconds (1/10 of a second). The Thread class is in the
System.Threading namespace.

 using System;
 using System.Threading; // For Thread.Sleep()

 delegate long MyDel(int first, int second); // Declare delegate type

 class Program {
 static long Sum(int x, int y) // Declare method for async
 {
 Console.WriteLine(" Inside Sum");
 Thread.Sleep(100);

 return x + y;
 }

 static void Main() {
 MyDel del = new MyDel(Sum);

 Console.WriteLine("Before BeginInvoke");
 IAsyncResult iar = del.BeginInvoke(3, 5, null, null); // Start async
 Console.WriteLine("After BeginInvoke");

 Console.WriteLine("Doing stuff");

 long result = del.EndInvoke(iar); // Wait for end and get result
 Console.WriteLine("After EndInvoke: {0}", result);
 }
 }

This code produces the following output:

Before BeginInvoke
After BeginInvoke
Doing stuff
 Inside Sum
After EndInvoke: 8

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

617

The AsyncResult Class
Now that you’ve seen BeginInvoke and EndInvoke in action in their simplest forms, it’s time to take a
closer look at IAsyncResult, which is an integral part of using these methods.

BeginInvoke returns a reference to an IAsyncResult interface that is inside a class object of type
AsyncResult. The AsyncResult class represents the state of the asynchronous method. Figure 22-6 shows
a representation of some of the important parts of the class. The important things to know about the
class are the following:

• When you call a delegate object’s BeginInvoke method, the system creates an object of the class

AsyncResult. It doesn’t, however, return a reference to the class object. Instead, it returns a

reference to the interface contained in the object—IAsyncResult.

• An AsyncResult object contains a property called AsyncDelegate, which returns a reference to the

delegate that was invoked to start the asynchronous method. This property, however, is part of

the class object but not part of the interface.

• The IsCompleted property returns a Boolean value indicating whether the asynchronous method

has completed.

• The AsyncState property returns a reference to the object that was listed as the state parameter

in the BeginInvoke method invocation. It returns a reference of type object. I'll explain this in the

section on the callback pattern.

Figure 22-6. An AsyncResult class object

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

618

The Polling Pattern
In the polling pattern, the initial thread initiates an asynchronous method call, does some additional
processing, and then uses the IsCompleted method of the IAsyncResult object to check periodically
whether the spawned thread has completed. If the asynchronous method has completed, the initial
thread calls EndInvoke and continues. Otherwise, it does some additional processing and checks again
later. The “processing” in this example just consists of counting from 0 to 10,000,000.

 delegate long MyDel(int first, int second);

 class Program
 {
 static long Sum(int x, int y)
 {
 Console.WriteLine(" Inside Sum");
 Thread.Sleep(100);

 return x + y;
 }

 static void Main()
 {
 MyDel del = new MyDel(Sum); Spawn async method
 ↓
 IAsyncResult iar = del.BeginInvoke(3, 5, null, null); // Start async.
 Console.WriteLine("After BeginInvoke");
 Check whether the async method is done.
 ↓
 while (!iar.IsCompleted)
 {
 Console.WriteLine("Not Done");

 // Continue processing, even though in this case it's just busywork.
 for (long i = 0; i < 10000000; i++)
 ; // Empty statement
 }
 Console.WriteLine("Done");
 Call EndInvoke to get result and clean up.
 ↓
 long result = del.EndInvoke(iar);
 Console.WriteLine("Result: {0}", result);
 }
 }

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

619

This code produces the following output:

After BeginInvoke
Not Done
 Inside Sum
Not Done
Not Done
Done
Result: 8

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

620

The Callback Pattern
In the previous two patterns, wait-until-done and polling, the initial thread continues with its flow
of control only after it knows that the spawned thread has completed. It then retrieves the results
and continues.

The callback pattern is different in that once the initial thread spawns the asynchronous method, it
goes on its way without synchronizing with it again. When the asynchronous method call completes, the
system invokes a user-supplied method to handle its results and to call the delegate’s EndInvoke method.
This user-defined method is called a callback method, or just a callback.

The two extra parameters at the end of the BeginInvoke parameter list are used with the callback
method as follows:

• The first of the two parameters, the callback parameter, is the name of the callback method.

• The second parameter, the state parameter, can be either null or a reference to an object you

want passed into the callback method. You’ll be able to access this object through the method’s

IAsyncResult parameter using its AsyncState property. The type of this parameter is object.

The Callback Method
The signature and return type of the callback method must be of the form described by the
AsyncCallback delegate type. This form requires that the method take a single parameter of type
IAsyncResult and have a void return type, as shown here:

 void AsyncCallback(IAsyncResult iar)

There are several ways you can supply the callback method to the BeginInvoke method. Since the
callback parameter in BeginInvoke is a delegate of type AsyncCallback, you can supply it as a delegate, as
shown in the first code statement that follows. Or you can just supply the name of the callback method
and let the compiler create the delegate for you. Both forms are semantically equivalent.

 Create a delegate with the callback method.
 IAsyncResult iar1 = ↓
 del.BeginInvoke(3, 5, new AsyncCallback(CallWhenDone), null);
 Just use the callback method’s name.
 ↓
 IAsyncResult iar2 = del.BeginInvoke(3, 5, CallWhenDone, null);

The second BeginInvoke parameter is used to send an object to the callback method. It can be an
object of any type, but the parameter is of type object, so inside the callback method you’ll have to cast
it to the correct type.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

621

Calling EndInvoke Inside the Callback Method
Inside the callback method, your code should call the delegate’s EndInvoke method and take care of
handling the output results of the asynchronous method execution. To call the delegate’s EndInvoke
method, though, you need a reference to the delegate object, which is in the initial thread—not here in
the spawned thread.

If you’re not using BeginInvoke’s state parameter for anything else, you can use it to send the
delegate reference to the callback method, as shown here:

 Delegate object Send delegate object as state param
 ↓ ↓
 IAsyncResult iar = del.BeginInvoke(3, 5, CallWhenDone, del);

Otherwise, you can extract the delegate’s reference from the IAsyncResult object sent into the
method as the parameter. This is shown in the following code and illustrated in Figure 22-7.

• The single parameter to the callback method is a reference to the IAsyncResult interface of the

asynchronous method that has just completed. Remember that the IAsyncResult interface object

is inside the AsyncResult class object.

• Although the IAsyncResult interface doesn’t have a reference to the delegate object, the

AsyncResult class object enclosing it does have a reference to the delegate object. So, the first line

inside the example method body gets a reference to the class object by casting the interface

reference to the class type. Variable ar now has a reference to the class object.

• With the reference to the class object, you can now use the AsyncDelegate property of the class

object and cast it to the appropriate delegate type. This gives you the delegate reference, which

you can then use to call EndInvoke.

 using System.Runtime.Remoting.Messaging; // Contains AsyncResult class

 void CallWhenDone(IAsyncResult iar)
 {
 AsyncResult ar = (AsyncResult) iar; // Get class object reference
 MyDel del = (MyDel) ar.AsyncDelegate; // Get reference to delegate

 long Sum = del.EndInvoke(iar); // Call EndInvoke
 ...
 }

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

622

Figure 22-7. Extracting the delegate’s reference inside the callback method

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

623

The following code puts it all together and is an example of using the callback pattern.

 using System;
 using System.Runtime.Remoting.Messaging; // To access the AsyncResult type
 using System.Threading;

 delegate long MyDel(int first, int second);

 class Program
 {
 static long Sum(int x, int y)
 {
 Console.WriteLine(" Inside Sum");
 Thread.Sleep(100);
 return x + y;
 }

 static void CallWhenDone(IAsyncResult iar)
 {
 Console.WriteLine(" Inside CallWhenDone.");
 AsyncResult ar = (AsyncResult) iar;
 MyDel del = (MyDel)ar.AsyncDelegate;

 long result = del.EndInvoke(iar);
 Console.WriteLine
 (" The result is: {0}.", result);
 }

 static void Main()
 {
 MyDel del = new MyDel(Sum);

 Console.WriteLine("Before BeginInvoke");
 IAsyncResult iar =
 del.BeginInvoke(3, 5, new AsyncCallback(CallWhenDone), null);

 Console.WriteLine("Doing more work in Main.");
 Thread.Sleep(500);
 Console.WriteLine("Done with Main. Exiting.");
 }
 }

This code produces the following output:

Before BeginInvoke
Doing more work in Main.
 Inside Sum
 Inside CallWhenDone.
 The result is: 8.
Done with Main. Exiting.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

624

Timers
Timers provide another way to run an asynchronous method on a regular, recurring basis. Although
there are several Timer classes available in the .NET BCL, I’ll describe the one in the System.Threading
namespace.

The important things to know about this timer class are the following:

• The timer uses a callback method that is called each time the timer expires. The callback method

must be in the form of the TimerCallback delegate, which has the following form. It takes a single

parameter of type object and has a void return type.

 void TimerCallback(object state)

• When the timer expires, the system sets up the callback method on a thread from the thread pool,

supplies the state object as its parameter, and starts it running.

• You can set a number of the timer’s characteristics, including the following:

— The dueTime is the amount of time before the first call of the callback method. If dueTime is set
to the special value Timeout.Infinite, the timer will not start. If it’s set to 0, the callback is
called immediately.

— The period is the amount of time between each successive call of the callback method. If it’s
value is set to Timeout.Infinite, the callback won’t be called after the first time.

— The state is either null or a reference to an object to be passed to the callback method each
time it’s executed.

The constructor for the Timer class takes as parameters the name of the callback method, the
dueTime, the period, and the state. There are several constructors for Timer; the one that’s probably the
most commonly used has the following form:

 Timer(TimerCallback callback, object state, uint dueTime, uint period)

The following code statement shows an example of the creation of a Timer object:

 Name of Call first time after
 the callback 2000 milliseconds
 ↓ ↓
 Timer myTimer = new Timer (MyCallback, someObject, 2000, 1000);

 ↑ ↑
 Object to pass Call every
 to the callback 1000 milliseconds

Once a Timer object is created, you can change its dueTime or period using the Change method.

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

625

The following code shows an example of using a timer. The Main method creates the timer so that it
will call the callback for the first time after two seconds and once every second after that. The callback
method simply prints out a message, including the number of times it's been called.

 using System;
 using System.Threading;

 namespace Timers
 {
 class Program
 {
 int TimesCalled = 0;

 void Display (object state)
 {
 Console.WriteLine("{0} {1}",(string)state, ++TimesCalled);
 }

 static void Main()
 {
 Program p = new Program(); First callback at
 2 seconds
 Timer myTimer = new Timer ↓
 (p.Display, "Processing timer event", 2000, 1000);
 Console.WriteLine("Timer started."); ↑
 Repeat every
 Console.ReadLine(); second
 }
 }
 }

This code produces the following output before being terminated after about five seconds:

Timer started.
Processing timer event 1
Processing timer event 2
Processing timer event 3
Processing timer event 4

CHAPTER 22 ■ INTRODUCTION TO ASYNCHRONOUS PROGRAMMING

626

There are several other timer classes supplied by the .NET BCL, each having its own uses. The other
timer classes are the following:

• System.Windows.Forms.Timer: This class is used in Windows Forms applications to periodically

place WM_TIMER messages into the program’s message queue. When the program gets the message

from the queue, it processes the handler synchronously on the main user interface thread. This is

extremely important in Windows Forms applications.

• System.Timers.Timer: This class is more extensive and contains a number of members for

manipulating the timer through properties and methods. It also has a member event called

Elapsed, which is raised when each period expires. This timer can run on either a user interface

thread or a worker thread.

C H A P T E R 23

■ ■ ■

627

Preprocessor Directives

■ What Are Preprocessor Directives?

■ General Rules

■ The #define and #undef Directives

■ Conditional Compilation

■ The Conditional Compilation Constructs

■ Diagnostic Directives

■ Line Number Directives

■ Region Directives

■ The #pragma warning Directive

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

628

What Are Preprocessor Directives?
The source code specifies the definition of a program. The preprocessor directives instruct the compiler
how to treat the source code. For example, under certain conditions, you might want the compiler to
ignore portions of the code, and under other conditions, you might want that code compiled. The
preprocessor directives give you those options and several others.

In C and C++ there is an actual preprocessor phase, in which the preprocessor goes through the
source code and prepares an output stream of text to be processed by the subsequent compilation
phase. In C# there is no actual preprocessor. The “preprocessor” directives are handled by the compiler.
The term, however, remains.

General Rules
Some of the most important syntactic rules for preprocessor directives are the following:

• Preprocessor directives must be on lines separate from C# code.

• Unlike C# statements, preprocessor directives are not terminated with a semicolon.

• Every line containing a preprocessor directive must start with the # character.

— There can be space before the # character.

— There can be space between the # character and the directive.

• End-of-line comments are allowed.

• Delimited comments are not allowed in a preprocessor directive line.

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

629

Here are some examples illustrating the rules:

 No semicolon
 ↓
 #define PremiumVersion // OK

 Space before
 ↓
 #define BudgetVersion // OK
 # define MediumVersion // OK

 ↑
 Space between Delimited comments are not allowed.
 ↓
 #define PremiumVersion /* all bells & whistles */
 End-of-line comments are fine.
 ↓
 #define BudgetVersion // Stripped-down version

The preprocessor directives are listed in Table 23-1.

Table 23-1. Preprocessor Directives

Directive Summary of Meaning

#define identifier Defines a compilation symbol

#undef identifier Undefines a compilation symbol

#if expression If the expression is true, compiles the following section

#elif expression If the expression is true, compiles the following section

#else If the previous #if or #elif expression is false, compiles the following section

#endif Marks the end of an #if construct

#region name Marks the beginning of a region of code; has no compilation effect

#endregion name Marks the end of a region of code; has no compilation effect

#warning message Displays a compile-time warning message

#error message Displays a compile-time error message

#line indicator Changes the line numbers displayed in compiler messages

#pragma text Specifies information about the program context

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

630

The #define and #undef Directives
A compilation symbol is an identifier that has only two possible states. It is either defined or undefined. A
compilation symbol has the following characteristics:

• It can be any identifier except true or false. This includes C# keywords and identifiers declared

in your C# code—both of which are fine.

• It has no value. Unlike in C and C++, it does not represent a string.

As shown in Table 23-1:

• The #define directive declares a compilation symbol.

• The #undef directive undefines a compilation symbol.

 #define PremiumVersion
 #define EconomyVersion
 ...
 #undef PremiumVersion

The #define and #undef directives can be used only at the top of a source file, before any C# code is
listed. After the C# code has started, the #define and #undef directives can no longer be used.

 using System; // First line of C# code
 #define PremiumVersion // Error

 namespace Eagle
 {
 #define PremiumVersion // Error
 ...

The scope of a compilation symbol is limited to a single source file. Redefining a symbol that is
already defined is perfectly fine—as long as it’s before any C# code, of course.

 #define AValue
 #define BValue

 #define AValue // Redefinition is fine.

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

631

Conditional Compilation
Conditional compilation allows you to mark a section of source code to be either compiled or skipped,
depending on whether a particular compilation symbol is defined.

There are four directives for specifying conditional compilation:

• #if

• #else

• #elif

• #endif

A condition is a simple expression that returns either true or false.

• A condition can consist of a single compilation symbol or an expression of symbols and

operators, as summarized in Table 23-2. Subexpressions can be grouped with parentheses.

• The literals true and false can also be used in conditional expressions.

Table 23-2. Conditions Used in the #if and #elif Directives

Parameter Type Meaning Evaluation

Compilation symbol Identifier, defined (or not) using
the #define directive

True: If the symbol has been defined
using a #define directive
False: Otherwise

Expression Constructed using symbols and
the operators !, ==, !=, &&, ||

True: If the expression evaluates to true
False: Otherwise

The following are examples of conditional compilation conditions:

 Expression
 ↓
 #if !DemoVersion
 ...
 #endif Expression
 ↓
 #if (LeftHanded && OemVersion) || FullVersion
 ...
 #endif

 #if true // The following code segment will always be compiled.
 ...
 #endif

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

632

The Conditional Compilation Constructs
The #if and #endif directives are the matching demarcations of a conditional compilation construct.
Whenever there is an #if directive, there must also be a matching #endif.

Figure 23-1 illustrates the #if and #if...#else constructs.

• If the condition in the #if construct evaluates to true, the code section following it is compiled.

Otherwise, it is skipped.

• In the #if...#else construct, if the condition evaluates to true, CodeSection1 is compiled.

Otherwise, CodeSection2 is compiled.

Figure 23-1. The #if and #else constructs

For example, the following code illustrates a simple #if...#else construct. If the symbol
RightHanded is defined, the code between the #if and the #else will be compiled. Otherwise, the code
between the #else and the #endif will be compiled.

 ...
 #if RightHanded
 // Code implementing right-handed functionality
 ...
 #else
 // Code implementing left-handed functionality
 ...
 #endif

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

633

Figure 23-2 illustrates the #if...#elif and #if...#elif...#else constructs.

• In the #if...#elif construct, if Cond1 evaluates to true, CodeSection1 is compiled, and

compilation continues after the #endif.

— Otherwise, if Cond2 evaluates to true, CodeSection2 is compiled, and compilation continues
after the #endif.

— This continues until either a condition evaluates to true or all the conditions have returned
false. If that’s the case, none of the code sections in the construct are compiled, and
compilation continues after the #endif.

• The #if...#elif...#else construct works the same way, except that if no condition is true, then

the code section after the #else is then compiled, and compilation continues after the #endif.

Figure 23-2. The #elif construct

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

634

The following code demonstrates the #if...#elif...#else construct. The string containing the
description of the version of the program is set to various values, depending on which compilation
symbol is defined.

 #define DemoVersionWithoutTimeLimit
 ...
 const int intExpireLength = 30;
 string strVersionDesc = null;
 int intExpireCount = 0;

 #if DemoVersionWithTimeLimit
 intExpireCount = intExpireLength;
 strVersionDesc = "This version of Supergame Plus will expire in 30 days";

 #elif DemoVersionWithoutTimeLimit
 strVersionDesc = "Demo Version of Supergame Plus";

 #elif OEMVersion
 strVersionDesc = "Supergame Plus, distributed under license";

 #else
 strVersionDesc = "The original Supergame Plus!!";

 #endif

 Console.WriteLine(strVersionDesc);
 ...

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

635

Diagnostic Directives
Diagnostic directives produce user-defined compile-time warning and error messages.

The following is the syntax of the diagnostic directives. The messages are strings, but notice that
unlike normal C# strings, they do not have to be enclosed in quotation marks.

 #warning Message

 #error Message

When the compiler reaches a diagnostic directive, it writes out the associated message. The
diagnostic directive messages are listed by the compiler along with any compiler-generated warning and
error messages.

For example, the following code shows an #error directive and a #warning directive.

• The #error directive is inside an #if construct so that it will be generated only if the conditions on

the #if directive are met.

• The #warning directive is a reminder to the programmer to come back and clean up a section

of code.

#define RightHanded
#define LeftHanded

#if RightHanded && LeftHanded
#error Can't build for both RightHanded and LeftHanded
#endif

#warning Remember to come back and clean up this code!

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

636

Line Number Directives
Line number directives can do several things, including the following:

• Change the apparent line numbers reported by the compiler’s warning and error messages

• Change the apparent file name of the source file being compiled

• Hide a sequence of lines from the interactive debugger

The syntax for the #line directives is the following:

 #line integer // Sets line number of next line to value of integer
 #line "filename" // Sets the apparent filename
 #line default // Restores real line number and filename

 #line hidden // Hides the following code from stepping debugger
 #line // Stops hiding from debugger

The #line directive with an integer parameter causes the compiler to consider that value to be the
line number of the following line of code. Numbering of the subsequent lines continues, based on that
line number.

• To change the apparent file name, use the file name, inside double quotes, as the parameter. The

double quotes are required.

• To return to true line numbering and the true file name, use default as the parameter.

• To hide a segment of code from the step-through-code feature of the interactive debugger, use

hidden as the parameter. To stop hiding, use the directive with no parameter. This feature has, so

far, mostly been used in ASP.NET and WPF for hiding compiler-generated code.

The following code shows examples of the line number directives:

 #line 226
 x = y + z; // Now considered by the compiler to be line 226
 ...

 #line 330 "SourceFile.cs" // Changes the reported line number and filename
 var1 = var2 + var3;
 ...

 #line default // Restores true line numbers and filename

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

637

Region Directives
The region directive allows you to mark, and optionally name, a section of code. The characteristics of
the #region directive are the following:

• It is placed on the line above the section of code you want to mark.

• It can take an optional string of text following it on the line, which serves as its name.

• It must be terminated by an #endregion directive, further down in the code.

Although region directives are ignored by the compiler, they can be used by source code tools.
Visual Studio, for example, allows you to easily hide or display regions.

As an example, the following code has a region called Constructors, which encloses the two
constructors of class MyClass. In Visual Studio, you could collapse this region to a single line when you
didn’t want to see it in the code and then expand it again when you needed to work on it or add
another constructor.

 #region Constructors
 MyClass()
 {
 ...
 }

 MyClass(string s)
 {
 ...
 }
 #endregion

Regions can be nested, as shown in Figure 23-3.

Figure 23-3. Nested regions

CHAPTER 23 ■ PREPROCESSOR DIRECTIVES

638

The #pragma warning Directive
The #pragma warning directive allows you to turn off warning messages and to turn them back on.

• To turn off warning messages, use the disable form with a comma-separated list of warning

numbers you want to turn off.

• To turn warning messages back on, use the restore form with a list of the warning numbers you

want to turn back on.

For example, the following code turns off two warning messages: 618 and 414. Further down in the
code, it turns on messages for 618 but leaves the messages for 414 turned off.

 Warning messages to turn off
 ↓
 #pragma warning disable 618, 414
 ... Messages for the listed warnings are off in this section of code.
 #pragma warning restore 618

If you use either form without a warning number list, the command then applies to all warnings. For
example, the following code turns off, and then restores, all warning messages.

 #pragma warning disable
 ... All warning messages are turned off in this section of code.

 #pragma warning restore
 ... All warning messages are turned back on in this section of code.

C H A P T E R 24

639

Reflection and Attributes

 Metadata and Reflection

 The Type Class

 Getting a Type Object

 What Is an Attribute?

 Applying an Attribute

 Predefined, Reserved Attributes

 More About Applying Attributes

 Custom Attributes

 Accessing an Attribute

CHAPTER 24 REFLECTION AND ATTRIBUTES

640

Metadata and Reflection
Most programs are written to work on data. They read, write, manipulate, and display data. (Graphics
are a form of data.) The types that you as the programmer create and use are designed for these
purposes, and it is you, at design time, who must understand the characteristics of the types you use.

For some types of programs, however, the data they manipulate is not numbers, text, or graphics
but information about programs and program types.

• Data about programs and their types is called metadata and is stored in the programs’

assemblies.

• A program can look at the metadata of other assemblies or of itself, while it’s running. When a

running program looks at its own metadata, or that of other programs, it’s called reflection.

An object browser is an example of a program that displays metadata. It can read assemblies and
display the types they contain, along with all the characteristics and members.

This chapter will look at how your programs can reflect on data using the Type class and how you
can add metadata to your types using attributes.

 Note To use reflection, you must use the System.Reflection namespace.

The Type Class
Throughout this text I’ve described how to declare and use the types available in C#. These include the
predefined types (int, long, string, and so on), types from the BCL (Console, IEnumerable, and so on),
and user-defined types (MyClass, MyDel, and so on). Every type has its own members and characteristics.

The BCL declares an abstract class called Type, which is designed to contain the characteristics of a
type. Using objects of this class allows you to get information about the types your program is using.

Since Type is an abstract class, it cannot have actual instances. Instead, at run time, the CLR creates
instances of a class derived from Type (RuntimeType) that contains the type information. When you access
one of these instances, the CLR returns a reference, not of the derived type but of the base class Type. For
simplicity’s sake, though, throughout the rest of the chapter, I’ll call the object pointed at by the
reference an object of type Type, although technically it’s an object of a derived type that is internal to
the BCL.

Important things to know about Type are the following:

• For every type used in a program, the CLR creates a Type object that contains the information

about the type.

• Every type used in a program is associated with a separate Type object.

• Regardless of the number of instances of a type that are created, there is only a single Type object

associated with all the instances.

CHAPTER 24 REFLECTION AND ATTRIBUTES

641

Figure 24-1 shows a running program with two MyClass objects and an OtherClass object. Notice
that although there are two instances of MyClass, there is only a single Type object representing it.

Figure 24-1. The CLR instantiates objects of type Type for every type used in a program.

You can get almost anything you need to know about a type from its Type object. Table 24-1 lists
some of the more useful members of the class.

Table 24-1. Selected Members of Class System.Type

Member Member Type Description

Name Property Returns the name of the type.

Namespace Property Returns the namespace containing the type declaration.

Assembly Property Returns the assembly in which the type is declared. If the type is
generic, it returns the assembly in which the type is defined.

GetFields Method Returns a list of the type’s fields.

GetProperties Method Returns a list of the type’s properties.

GetMethods Method Returns a list of the type’s methods.

CHAPTER 24 REFLECTION AND ATTRIBUTES

642

Getting a Type Object
There are several ways to get a Type object. We'll look at using the GetType method and using the
typeof operator.

Type object contains a method called GetType, which returns a reference to an instance’s Type
object. Since every type is ultimately derived from object, you can call the GetType method on an object
of any type to get its Type object, as shown here:

 Type t = myInstance.GetType();

The following code shows the declarations of a base class and a class derived from it. Method Main
creates an instance of each class and places the references in an array called bca for easy processing.
Inside the outer foreach loop, the code gets the Type object and prints out the name of the class. It then
gets the fields of the class and prints them out. Figure 24-2 illustrates the objects in memory.

 using System;
 using System.Reflection; // Must use this namespace

 class BaseClass
 { public int BaseField = 0; }

 class DerivedClass : BaseClass
 { public int DerivedField = 0; }

 class Program
 {
 static void Main()
 {
 var bc = new BaseClass();
 var dc = new DerivedClass();
 BaseClass[] bca = new BaseClass[] { bc, dc };

 foreach (var v in bca)
 {
 Type t = v.GetType(); // Get the type.

 Console.WriteLine("Object type : {0}", t.Name);

 FieldInfo[] fi = t.GetFields(); // Get the field info.
 foreach (var f in fi)
 Console.WriteLine(" Field : {0}", f.Name);
 Console.WriteLine();
 }
 }
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 24 REFLECTION AND ATTRIBUTES

643

This code produces the following output:

Object type : BaseClass
 Field : BaseField

Object type : DerivedClass
 Field : DerivedField
 Field : BaseField

Figure 24-2. The base class and derived class objects along with their Type objects

CHAPTER 24 REFLECTION AND ATTRIBUTES

644

You can also use the typeof operator to get a Type object. Just supply the name of the type as the
operand, and it returns a reference to the Type object, as shown here:

 Type t = typeof(DerivedClass);
 ↑ ↑
 Operator Type you want the Type object for

The following code shows a simple example of using the typeof operator:

 using System;
 using System.Reflection; // Must use this namespace

 namespace SimpleReflection
 {
 class BaseClass
 { public int MyFieldBase; }

 class DerivedClass : BaseClass
 { public int MyFieldDerived; }

 class Program
 {
 static void Main()
 {
 Type tbc = typeof(DerivedClass); // Get the type.
 Console.WriteLine("Result is {0}.", tbc.Name);

 Console.WriteLine("It has the following fields:"); // Use the type.
 FieldInfo[] fi = tbc.GetFields();
 foreach (var f in fi)
 Console.WriteLine(" {0}", f.Name);
 }
 }
 }

This code produces the following output:

Result is DerivedClass.
It has the following fields:
 MyFieldDerived
 MyFieldBase

CHAPTER 24 REFLECTION AND ATTRIBUTES

645

What Is an Attribute?
An attribute is a language construct that allows you to add metadata to a program’s assembly. It’s a
special type of class for storing information about program constructs.

• The program construct to which you apply an attribute is called its target.

• Programs designed to retrieve and use metadata, such as object browsers, are said to be

consumers of the attributes.

• There are attributes that are predefined in .NET, and you can also declare custom attributes.

Figure 24-3 is an overview of the components involved in using attributes and illustrates the
following points about them:

• You apply attributes to program constructs in the source code.

• The compiler takes the source code and produces metadata from the attributes and places that

metadata in the assembly.

• Consumer programs can access the metadata of the attributes along with the metadata for the

rest of the components of the program. Notice that the compiler both produces and

consumes attributes.

Figure 24-3. The components involved with creating and using attributes

By convention, attribute names use Pascal casing and end with the suffix Attribute. When applying
an attribute to a target, you can leave off the suffix. For example, for attributes SerializableAttribute
and MyAttributeAttribute, you can use the short names Serializable and MyAttribute when applying
them to a construct.

CHAPTER 24 REFLECTION AND ATTRIBUTES

646

Applying an Attribute
The purpose of an attribute is to tell the compiler to emit a certain set of metadata about a program
construct to the assembly. You do this by applying the attribute to the construct.

• You apply an attribute by placing an attribute section immediately before the construct.

• An attribute section consists of square brackets enclosing an attribute name and sometimes a

parameter list.

For example, the following code shows the headings of two classes. The first few lines of code show
an attribute named Serializable applied to class MyClass. Notice that Serializable has no parameter
list. The second class declaration has an attribute called MyAttribute, which has a parameter list with
two string parameters.

 [Serializable] // Attribute
 public class MyClass
 { ...

 [MyAttribute("Simple class", "Version 3.57")] // Attribute with parameters
 public class MyOtherClass
 { ...

Some important things to know about attributes are the following:

• Most attributes apply only to the construct immediately following the attribute section or sections.

• A construct with an attribute applied to it is said to be decorated, or adorned, with the attribute.

Both terms are common.

CHAPTER 24 REFLECTION AND ATTRIBUTES

647

Predefined, Reserved Attributes
Before looking at how you can define your own attributes, this section describes two attributes
predefined and reserved by .NET: the Obsolete and Conditional attributes.

The Obsolete Attribute
The Obsolete attribute allows you to mark a program construct as obsolete and to display a helpful
warning message when the code is compiled. The following code shows an example of its use:

 class Program Apply attribute
 { ↓
 [Obsolete("Use method SuperPrintOut")] // Apply attribute to method
 static void PrintOut(string str)
 {
 Console.WriteLine(str);
 }

 static void Main(string[] args)
 {
 PrintOut("Start of Main"); // Invoke obsolete method
 }
 }

Notice that method Main calls PrintOut even though it’s marked as obsolete. In spite of this, the code
compiles and runs fine and produces the following output:

Start of Main

During compilation, though, the compiler produces the following CS0618 warning message to
inform you that you’re using an obsolete construct:

'AttrObs.Program.PrintOut(string)' is obsolete: 'Use method SuperPrintOut'

Another overload of the Obsolete attribute takes a second parameter of type bool. This parameter
specifies whether use of the target should be flagged as an error instead of just a warning. The following
code specifies that it should be flagged as an error:

 Flag as an error
 ↓
 [Obsolete("Use method SuperPrintOut", true)] // Apply attribute to method
 static void PrintOut(string str)
 { ...

CHAPTER 24 REFLECTION AND ATTRIBUTES

648

The Conditional Attribute
The Conditional attribute allows you to either include or exclude all the invocations of a particular
method. To use the Conditional attribute, apply it to the method declaration, along with a compilation
symbol as a parameter.

• If the compilation symbol is defined, the compiler includes the code for all the invocations of the

method, the way it would for any normal method.

• If the compilation symbol is not defined, the compiler omits all the method invocations

throughout the code.

The CIL code defining the method itself is always included in the assembly. It’s just the invocations
that are either inserted or omitted.

For example, in the following code, the Conditional attribute is applied to the declaration of a
method called TraceMessage. The attribute has a single parameter, which in this case is the string DoTrace.

• When the compiler is compiling the code, it checks whether there is a compilation symbol named

DoTrace defined.

• If DoTrace is defined, the compiler includes all the calls to method TraceMessage, as usual.

• If there is no DoTrace compilation symbol defined, it doesn’t output code for any of the calls to

TraceMessage.

 Compilation symbol
 ↓
 [Conditional("DoTrace")]
 static void TraceMessage(string str)
 {
 Console.WriteLine(str);
 }

CHAPTER 24 REFLECTION AND ATTRIBUTES

649

Example of the Conditional Attribute
The following code shows a full example of using the Conditional attribute.

• Method Main contains two calls to method TraceMessage.

• The declaration for method TraceMessage is decorated with the Conditional attribute, which has

the compilation symbol DoTrace as its parameter. So if DoTrace is defined, the compiler will

include the code for all the calls to TraceMessage.

• Since the first line of code defines a compilation symbol named DoTrace, the compiler will

include the code for both calls to TraceMessage.

 #define DoTrace
 using System;
 using System.Diagnostics;

 namespace AttributesConditional
 {
 class Program
 {
 [Conditional("DoTrace")]
 static void TraceMessage(string str)
 { Console.WriteLine(str); }

 static void Main()
 {
 TraceMessage("Start of Main");
 Console.WriteLine("Doing work in Main.");
 TraceMessage("End of Main");
 }
 }
 }

This code produces the following output:

Start of Main
Doing work in Main.
End of Main

If you comment out the first line so that DoTrace is not defined, the compiler will not insert the code
for the two calls to TraceMessage. This time, when you run the program, it produces the following output:

Doing work in Main.

CHAPTER 24 REFLECTION AND ATTRIBUTES

650

Predefined Attributes
The .NET Framework predefines a number of attributes that are understood and interpreted by the
compiler and the CLR. Table 24-2 lists some of these. The table uses the short names, without the
“Attribute” suffix. For example, the full name of CLSCompliant is CLSCompliantAttribute.

Table 24-2. Important Attributes Defined in .NET

Attribute Meaning

CLSCompliant Declares that the publicly exposed members should be checked by the compiler
for compliance with the CLS. Compliant assemblies can be used by any .NET-
compliant language.

Serializable Declares that the construct can be serialized.

NonSerialized Declares that the construct cannot be serialized.

Obsolete Declares that the construct should not be used. The compiler also produces a
compile-time warning or error message, if the construct is used.

DLLImport Declares that the implementation is unmanaged code.

WebMethod Declares that the method should be exposed as part of an XML web service.

AttributeUsage Declares what types of program constructs the attribute can be applied to. This
attribute is applied to attribute declarations.

CHAPTER 24 REFLECTION AND ATTRIBUTES

651

More About Applying Attributes
The simple attributes shown so far have used a single attribute applied to a method. This section
describes other types of attribute usage.

Multiple Attributes
You can apply multiple attributes to a single construct.

• Multiple attributes can be listed in either of the following formats:

— Separate attribute sections stacked on top of each other

— A single attribute section, with the attributes separated by commas

• You can list the attributes in any order.

For example, the following two sections of code show the two ways of applying multiple attributes.
The sections of code are equivalent.

 [Serializable] // Stacked
 [MyAttribute("Simple class", "Version 3.57")]

 [MyAttribute("Simple class", "Version 3.57"), Serializable] // Commas
 ↑ ↑
 Attribute Attribute

CHAPTER 24 REFLECTION AND ATTRIBUTES

652

Other Types of Targets
Besides classes, you can also apply attributes to other program constructs such as fields and properties.
The following declaration shows an attribute on a field, and multiple attributes on a method:

 [MyAttribute("Holds a value", "Version 3.2")] // On a field
 public int MyField;

 [Obsolete] // On a method
 [MyAttribute("Prints out a message.", "Version 3.6")]
 public void PrintOut()
 {
 ...

You can also explicitly label attributes to apply to a particular target construct. To use an explicit
target, place the target type, followed by a colon, at the beginning of the attribute section. For
example, the following code decorates the method with an attribute and also applies an attribute to
the return value.

 Explicit target
 ↓
 [method: MyAttribute("Prints out a message.", "Version 3.6")]
 [return: MyAttribute("This value represents ...", "Version 2.3")]
 public long ReturnSetting()
 {
 ...

The C# language defines ten standard attribute targets, which are listed in Table 24-3. Most of the
target names are self-explanatory, but type covers classes, structs, delegates, enums, and interfaces. The
typevar target name specifies type parameters to constructs that use generics.

Table 24-3. Attribute Targets

event field
method param
property return
type typevar
assembly module

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 24 REFLECTION AND ATTRIBUTES

653

Global Attributes
You can also use an explicit target to set attributes at the assembly and module level, by using the
assembly and module target names. (Assemblies and modules were explained in Chapter 10.) Some
important points about assembly-level attributes are the following:

• Assembly-level attributes must be placed outside any namespace scope and are usually placed in

the AssemblyInfo.cs file.

• The AssembyInfo.cs file usually contains metadata about the company, product, and copyright

information.

The following are lines from an AssemblyInfo.cs file:

 [assembly: AssemblyTitle("SuperWidget")]
 [assembly: AssemblyDescription("Implements the SuperWidget product.")]
 [assembly: AssemblyConfiguration("")]
 [assembly: AssemblyCompany("McArthur Widgets, Inc.")]
 [assembly: AssemblyProduct("Super Widget Deluxe")]
 [assembly: AssemblyCopyright("Copyright © McArthur Widgets 2010")]
 [assembly: AssemblyTrademark("")]
 [assembly: AssemblyCulture("")]

CHAPTER 24 REFLECTION AND ATTRIBUTES

654

Custom Attributes
You’ve probably noticed that the syntax for applying an attribute is very different from anything you’ve
seen so far. From that, you might get the impression that attributes are an entirely different type of
construct. They’re not—they’re just a special kind of class.

Some important points about attribute classes are the following:

• User-defined attribute classes are called custom attributes.

• All attribute classes are derived from class System.Attribute.

Declaring a Custom Attribute
Declaring an attribute class is, for the most part, the same as declaring any other class. There are,
however, several things to be aware of:

• To declare a custom attribute, do the following:

— Declare a class derived from System.Attribute.

— Give it a name ending with the suffix Attribute.

• For security, it’s generally suggested that you declare your attribute classes as sealed.

For example, the following code shows the beginning of the declaration of attribute
MyAttributeAttribute:

 Attribute name
 ↓
 public sealed class MyAttributeAttribute : System.Attribute
 { ↑ ↑
 ... Suffix Base class

Since an attribute holds information about the target, the public members of an attribute class
generally consist only of the following:

• Fields

• Properties

• Constructors

CHAPTER 24 REFLECTION AND ATTRIBUTES

655

Using Attribute Constructors
Attributes, like other classes, have constructors. Every attribute must have at least one public constructor.

• As with other classes, if you don’t declare a constructor, the compiler will produce an implicit,

public, parameterless constructor for you.

• Attribute constructors, like other constructors, can be overloaded.

• When declaring the constructor, you must use the full class name, including the suffix. You can

use the shortened name only when applying an attribute.

For example, with the following constructor, the compiler would produce an error message if the
name did not include the suffix:

 Suffix
 ↓
 public MyAttributeAttribute(string desc, string ver)
 {
 Description = desc;
 VersionNumber = ver;
 }

Specifying the Constructor
When you apply an attribute to a target, you are specifying which constructor should be used to create
the instance of the attribute. The parameters listed in the attribute application are the actual parameters
for the constructor.

For example, in the following code, MyAttribute is applied to a field and to a method. For the field,
the declaration specifies a constructor with a single string parameter. For the method, it specifies a
constructor with two string parameters.

 [MyAttribute("Holds a value")] // Constructor with one string
 public int MyField;

 [MyAttribute("Version 1.3", "Sal Martin")] // Constructor with two strings
 public void MyMethod()
 { ...

CHAPTER 24 REFLECTION AND ATTRIBUTES

656

Other important points about attribute constructors are the following:

• When applying an attribute, the actual parameters for the constructor must be constant

expressions whose values can be determined at compile time.

• If you apply an attribute constructor with no parameters, you can leave off the parentheses. For

example, both classes in the following code use the parameterless constructor for the attribute

MyAttr. The meanings of the two forms are the same.

 [MyAttr]
 class SomeClass ...

 [MyAttr()]
 class OtherClass ...

Using the Constructor
You cannot call the constructor explicitly. An instance of an attribute is created, and a constructor
called, only when an attribute consumer accesses the attribute. This is very different from other class
instances, which are created at the position where you use an object-creation expression. Applying an
attribute is a declarative statement that does not determine when an object of the attribute class should
be constructed.

Figure 24-4 compares the use of a constructor for a regular class and the use of a constructor with
attributes.

• The imperative statement says, in effect, “Create a new class object here.”

• The declarative statement says, “This attribute is associated with this target, and in case the

attribute needs to be constructed, use this constructor.”

Figure 24-4. Comparing the use of constructors

CHAPTER 24 REFLECTION AND ATTRIBUTES

657

Positional and Named Parameters in Constructors
Like the methods and constructors of regular classes, the attribute constructors can also use positional
and named parameters.

The following code shows the application of an attribute using a positional parameter and two
named parameters:

 Positional parameter Named parameter Named parameter
 ↓ ↓ ↓
 [MyAttribute("An excellent class", Reviewer="Amy McArthur", Ver="0.7.15.33")]
 ↑ ↑
 Equals sign Equals sign

The following code shows the declaration of the attribute class, as well as its application on class
MyClass. Notice that the constructor declaration lists only a single formal parameter. And yet, by using
named parameters, you can give the constructor three actual parameters. The two named parameters
set the values of fields Ver and Reviewer.

 public sealed class MyAttributeAttribute : System.Attribute
 {
 public string Description;
 public string Ver;
 public string Reviewer;

 public MyAttributeAttribute(string desc) // Single formal parameters
 { Description = desc; }
 } Three actual parameters
 ↓
 [MyAttribute("An excellent class", Reviewer="Amy McArthur", Ver="7.15.33")]
 class MyClass
 { ... }

 Note If the constructor requires any positional parameters, they must be placed before any named parameters.

CHAPTER 24 REFLECTION AND ATTRIBUTES

658

Restricting the Usage of an Attribute
You’ve seen that you can apply attributes to classes. But attributes themselves are classes, and there is
one important predefined attribute that you can apply to your custom attributes. It's the AttributeUsage
attribute. You can use it to restrict the usage of an attribute to a specific set of target types.

For example, if you want your custom attribute MyAttribute to be applied only to methods, you
could use the following form of AttributeUsage:

 Only to methods
 ↓
 [AttributeUsage(AttributeTarget.Method)]
 public sealed class MyAttributeAttribute : System.Attribute
 { ...

AttributeUsage has three important public properties, which are listed in Table 24-4. The table
shows the names of the properties and their meanings. For the second two properties, it also shows their
default values.

Table 24-4. Public Properties of AttributeUsage

Name Meaning Default

ValidOn Stores a list of the types of targets to which the attribute can be
applied. The first parameter of the constructor must be an enum
value of type AttributeTarget.

Inherited A Boolean value that specifies whether the attribute can be
inherited by derived classes of the decorated type.

true

AllowMultiple A Boolean value that specifies whether the target can have
multiple instances of the attribute applied to it.

false

CHAPTER 24 REFLECTION AND ATTRIBUTES

659

The Constructor for AttributeUsage
The constructor for AttributeUsage takes a single, positional parameter that specifies which target types
are allowed for the attribute. It uses this parameter to set the ValidOn property. The acceptable target
types are members of the AttributeTarget enumeration. Table 24-5 shows the complete set of the
members of the AttributeTarget enumeration.

You can combine the usage types by using the bitwise OR operator. For example, the attribute
declared in the following code can be applied only to methods and constructors.

 Targets
 ↓
 [AttributeUsage(AttributeTarget.Method | AttributeTarget.Constructor)]
 public sealed class MyAttributeAttribute : System.Attribute
 { ...

Table 24-5. Members of Enum AttributeTarget

All Assembly Class Constructor
Delegate Enum Event Field
GenericParameter Interface Method Module
Parameter Property ReturnValue Struct

When you apply AttributeUsage to an attribute declaration, the constructor will have at least the

one required parameter, which contains the target types to be stored in ValidOn. You can also optionally
set the Inherited and AllowMultiple properties by using named parameters. If you don't set them,
they'll have their default values, as shown in Table 24-4.

As an example, the next code block specifies the following about MyAttribute:

• MyAttribute must be applied only to classes.

• MyAttribute is not inherited by classes derived from classes to which it is applied.

• There cannot be multiple instances of MyAttribute applied to the same target.

 [AttributeUsage(AttributeTarget.Class, // Required, positional
 Inherited = false, // Optional, named
 AllowMultiple = false)] // Optional, named
 public sealed class MyAttributeAttribute : System.Attribute
 { ...

e

CHAPTER 24 REFLECTION AND ATTRIBUTES

660

Suggested Practices for Custom Attributes
The following practices are strongly suggested when writing custom attributes:

• The attribute class should represent some state of the target construct.

• If the attribute requires certain fields, include a constructor with positional parameters to collect

that data, and let optional fields be initialized with named parameters, as needed.

• Don’t implement public methods or other function members other than properties.

• For additional security, declare the attribute class as sealed.

• Use the AttributeUsage attribute on your attribute declaration to explicitly specify the set of

attribute targets.

The following code illustrates these guidelines:

 [AttributeUsage(AttributeTargets.Class)]
 public sealed class ReviewCommentAttribute : System.Attribute
 {
 public string Description { get; set; }
 public string VersionNumber { get; set; }
 public string ReviewerID { get; set; }

 public ReviewCommentAttribute(string desc, string ver)
 {
 Description = desc;
 VersionNumber = ver;
 }
 }

CHAPTER 24 REFLECTION AND ATTRIBUTES

661

Accessing an Attribute
At the beginning of the chapter, you saw that you can access information about a type using its Type
object. You can access custom attributes in the same way. There are two methods of Type that are
particularly useful in this: IsDefined and GetCustomAttributes.

Using the IsDefined Method
You can use the IsDefined method of the Type object to determine whether a particular attribute is
applied to a particular class.

For example, the following code declares an attributed class called MyClass and also acts as its own
attribute consumer by accessing an attribute declared and applied in the program itself. At the top of the
code are declarations of the attribute ReviewComment and the class MyClass, to which it is applied. The
code does the following:

• First, Main creates an object of the class. It then retrieves a reference to the Type object by using

the GetType method, which it inherited from its base class, object.

• With the reference to the Type object, it can call the IsDefined method to find out whether

attribute ReviewComment is applied to this class.

— The first parameter takes a Type object of the attribute you are checking for.

— The second parameter is of type bool and specifies whether to search the inheritance tree of
MyClass to find the attribute.

 [AttributeUsage(AttributeTargets.Class)]
 public sealed class ReviewCommentAttribute : System.Attribute
 { ... }

 [ReviewComment("Check it out", "2.4")]
 class MyClass { }

 class Program {
 static void Main() {
 MyClass mc = new MyClass(); // Create an instance of the class.
 Type t = mc.GetType(); // Get the Type object from the instance.
 bool isDefined = // Check the Type for the attribute.
 t.IsDefined(typeof(ReviewCommentAttribute), false);

 if(isDefined)
 Console.WriteLine("ReviewComment is applied to type {0}", t.Name);
 }
 }

This code produces the following output:

ReviewComment is applied to type MyClass

CHAPTER 24 REFLECTION AND ATTRIBUTES

662

Using the GetCustomAttributes Method
The GetCustomAttributes method returns an array of the attributes applied to a construct.

• The actual object returned is an array of objects, which you must then cast to the correct

attribute type.

• The Boolean parameter specifies whether to search the inheritance tree to find the attribute.

object[] AttArr = t.GetCustomAttributes(false);

• When the GetCustomAttributes method is called, an instance of each attribute associated with the

target is created.

The following code uses the same attribute and class declarations as the previous example. But in
this case, it doesn’t just determine whether an attribute is applied to the class. Instead, it retrieves an
array of the attributes applied to the class and cycles through them, printing out their member values.

 static void Main()
 {
 Type t = typeof(MyClass);
 object[] AttArr = t.GetCustomAttributes(false);

 foreach (Attribute a in AttArr)
 {
 ReviewCommentAttribute attr = a as ReviewCommentAttribute;
 if (null != attr)
 {
 Console.WriteLine("Description : {0}", attr.Description);
 Console.WriteLine("Version Number : {0}", attr.VersionNumber);
 Console.WriteLine("Reviewer ID : {0}", attr.ReviewerID);
 }
 }
 }

This code produces the following output:

Description : Check it out
Version Number : 2.4
Reviewer ID :

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 25

■ ■ ■

663

Other Topics

■ Overview

■ Strings

■ Parsing Strings to Data Values

■ More About the Nullable Types

■ Method Main

■ Documentation Comments

■ Nested Types

■ External Methods

■ Interoperating With COM

CHAPTER 25 ■ OTHER TOPICS

664

Overview
In this chapter, I’ll cover a number of other topics that are important in using C# but that don’t fit neatly
into one of the other chapters. These include string handling, nullable types, the Main method,
documentation comments, and nested types.

Strings
0s and 1s are fine for internal computation, but for human-readable input and output, we need strings of
characters. The BCL provides a number of classes that make string handling easy.

The C# predefined type string represents the .NET class System.String. The most important things
to know about strings are the following:

• Strings are arrays of Unicode characters.

• Strings are immutable—they cannot be changed.

The string type has many useful string-manipulation members, including those that allow you to
determine their length, change their case, concatenate strings, and perform many other useful tasks.
Table 25-1 shows some of the most useful members.

Table 25-1. Useful Members of the string Type

Member Type Meaning

Length Property Returns the length of the string

Concat Static method Returns a string that is the concatenation of its argument strings

Contains Method Returns a bool value indicating whether the argument is a substring
of the object string

Format Static method Returns a formatted string

Insert Method Takes as parameters a string and a position and creates and returns a
new copy of the object string, with the parameter string inserted at
the given position.

Remove Method Returns a copy of the object string in which a substring has been
removed

Replace Method Returns a copy of the object string in which a substring has been
replaced

Substring Method Retrieves a substring from the object string

ToUpper Method Returns a copy of the object string in which the alphabetic characters
are all uppercase

ToLower Method Returns a copy of the object string in which the alphabetic characters
are all lowercase

CHAPTER 25 ■ OTHER TOPICS

665

The names of many of the methods in Table 25-1 sound as if they are changing the string object.
Actually, they’re not changing the strings but returning new copies. For a string, any “change” allocates
a new immutable string.

For example, the following code declares and initializes a string called s. The first WriteLine
statement calls the ToUpper method on s, which returns a copy of the string in all uppercase. The last line
prints out the value of s, showing that it is unchanged.

 string s = "Hi there.";

 Console.WriteLine("{0}", s.ToUpper()); // Print uppercase copy
 Console.WriteLine("{0}", s); // String is unchanged

This code produces the following output:

HI THERE.
Hi there.

CHAPTER 25 ■ OTHER TOPICS

666

Using Class StringBuilder
The StringBuilder class helps you dynamically and efficiently produce strings without too many copies
being made.

• The StringBuilder class is a member of the BCL, in namespace System.Text.

• A StringBuilder object is a mutable array of Unicode characters.

For example, the following code declares and initializes a StringBuilder and prints its resulting
string value. The fourth line changes the actual object by replacing part of the internal array of
characters. Now when you print its string value by implicitly calling ToString, you can see that, unlike an
object of type string, the StringBuilder object has actually been changed.

 using System.Text;

 StringBuilder sb = new StringBuilder("Hi there.");
 Console.WriteLine("{0}", sb); // Print string
 sb.Replace("Hi", "Hello"); // Replace a substring
 Console.WriteLine("{0}", sb); // Print changed string

This code produces the following output:

Hi there.
Hello there.

When a StringBuilder object is created based on a given string, the class allocates a buffer longer
than the actual current string length. As long as the changes made to the string can fit in the buffer, no
new memory is allocated. If changes to the string require more space than is available in the buffer, a
new, larger buffer is allocated, and the characters are copied to it. Like the original buffer, this new buffer
also has extra space.

To get the string corresponding to the StringBuilder content, you simply call its ToString method.

CHAPTER 25 OTHER TOPICS

667

Formatting Numeric Strings
Throughout the text, the sample code has used the WriteLine method to display values. Each time, it
used the simple substitution marker consisting of curly braces surrounding an integer. Many times,
however, you’ll want to present the output of a text string in a format more appropriate than just a plain
number. For example, you might want to display a value as currency or as a fixed-point value with a
certain number of decimal places. You can do these things by using format strings.

For example, the following code consists of two statements that print out the value 500. The first line
prints out the number without any additional formatting. In the second line, the format string specifies
that the number should be formatted as currency.

 Console.WriteLine("The value: {0}." , 500); // Print out number
 Console.WriteLine("The value: {0:C}.", 500); // Format as currency
 ↑
 Format as currency

This code produces the following output:

The value: 500.
The value: $500.00.

The difference between the two statements is that the format item includes additional information
in the form of a format specifier. The syntax for a format specifier consists of three fields inside the set of
curly braces: the index, the alignment specifier, and the format specifier. Figure 25-1 shows the syntax.

Figure 25-1. Syntax for a format item

The first thing in the format item is the index. As you well know by now, the index specifies which
item from the list following the format string should be formatted. The index is required, and the
numbering of the list items starts at 0.

CHAPTER 25 ■ OTHER TOPICS

668

The Alignment Specifier
The alignment specifier represents the minimum width of the field in terms of characters. The
alignment specifier has the following characteristics:

• It is optional and separated from the index with a comma.

• It consists of a positive or negative integer.

— The integer represents the minimum number of characters to use for the field.

— The sign represents either right or left alignment. Positive specifies right alignment; negative
specifies left alignment.

 Index—use 0th item in the list
 ↓
 Console.WriteLine("{0, 10}", 500);

 ↑
 Alignment specifier—right-align in a field of ten characters

For example, the following code shows two format items, formatting the value of int variable myInt.
In the first case, the value of myInt is displayed as a right-aligned string of ten characters. In the second
case, it’s left-aligned. The format items are between two vertical bars, just to show in the output their
limits on each side.

 int myInt = 500;
 Console.WriteLine("|{0, 10}|", myInt); // Aligned right
 Console.WriteLine("|{0,-10}|", myInt); // Aligned left

This code produces the following output; there are ten characters between the vertical bars:

| 500|
|500 |

The actual representation of the value might take more or fewer characters than specified in the
alignment specifier:

• If the representation takes fewer characters than specified in the alignment specifier, the

remaining characters are padded with spaces.

• If the representation takes more characters than specified, the alignment specifier is ignored, and

the representation uses as many characters as are needed.

CHAPTER 25 ■ OTHER TOPICS

669

The Format Component
The format component specifies the form that the numeric representation should take. For
example, should it be represented as currency, in decimal format, in hexadecimal format, or in
fixed-point notation?

The format component has two parts, as shown in Figure 25-2:

• The format specifier is a single alphabetic character, from a set of nine built-in character formats.

The character can be uppercase or lowercase. The case is significant for some specifiers but not

for others.

• The precision specifier is optional and consists of one or two digits. Its actual meaning depends on

the format specifier.

Figure 25-2. Standard format specifier string

The following code shows an example of the syntax of the format string component:

 Index—use 0th item in the list
 ↓
 Console.WriteLine("{0: F4}", 12.345678);

 ↑
 Format component—fixed-point, four decimal places

The following code shows examples of different format strings:

 double myDouble = 12.345678;
 Console.WriteLine("{0,-10:G} -- General", myDouble);
 Console.WriteLine("{0,-10} -- Default, same as General", myDouble);
 Console.WriteLine("{0,-10:F4} -- Fixed Point, 4 dec places", myDouble);
 Console.WriteLine("{0,-10:C} -- Currency", myDouble);
 Console.WriteLine("{0,-10:E3} -- Sci. Notation, 3 dec places", myDouble);
 Console.WriteLine("{0,-10:x} -- Hexadecimal integer", 1194719);

This code produces the following output:

12.345678 -- General
12.345678 -- Default, same as General
12.3457 -- Fixed Point, 4 dec places
$12.35 -- Currency
1.235E+001 -- Sci. Notation, 3 dec places
123adf -- Hexadecimal integer

CHAPTER 25 ■ OTHER TOPICS

670

Standard Numeric Format Specifiers
The Regional and Language Options applet of the Windows Control Panel can affect the resulting
formats of some of the specifiers. For example, the currency symbol of the country or region specified
will be used by the currency format specifier. You can do the same in code by creating a CultureInfo and
assigning it to the Thread.CurrentThread.CurrentCulture property.

Table 25-2 summarizes the nine standard numeric format specifiers. The first column lists the name
of the specifier followed by the specifier characters. If the specifier characters have different output
depending on their case, they are marked case sensitive.

Table 25-2. Standard Numeric Format Specifiers

Name and
Characters

Meaning

Formats the value as a currency, using a currency symbol.
Precision specifier: The number of decimal places.

Currency

C, c

 Sample: Console.WriteLine("{0 :C}", 12.5);
Output: $12.50

A string of decimal digits, with a negative sign, if appropriate. Can be used only with
integral types.
Precision specifier: The minimum number of digits to use in the output string. If the
number has fewer digits, it will be padded with 0s on the left.

Decimal

D, d

Sample: Console.WriteLine("{0 :D4}", 12);
Output: 0012

A string of decimal digits with a decimal point. Can also include a negative sign, if
appropriate.
Precision specifier: The number of decimal places.

Fixed-point

F, f

Sample: Console.WriteLine("{0 :F4}", 12.3456789);
Output: 12.3457

A compact fixed-point representation or a scientific notation representation,
depending on the value. This is the default, if no specifier is listed.
Precision specifier: Depends on the value.

General

G, g

Sample: Console.WriteLine("{0 :G4}", 12.3456789);
Output: 12.35

A string of hexadecimal digits. The hex digits A through F will match the case of the
specifier.
Precision specifier: The minimum number of digits to use in the output string. If the
number has fewer digits, it will be padded with 0s on the left.

Hexadecimal

X, x

Case sensitive

Sample: Console.WriteLine("{0 :x}", 180026);
Output: 2bf3a

CHAPTER 25 ■ OTHER TOPICS

671

Similar to fixed-point representation but includes separators between each group of
three digits, starting at the decimal point and going left.
Precision specifier: The number of decimal places.

Number

N, n

Sample: Console.WriteLine("{0 :N2}", 12345678.54321);
Output: 12,345,678.54

Percent

P, p

A string that represents percent. The number is multiplied by 100.
Precision specifier: The number of decimal places

 Sample: Console.WriteLine("{0 :P2}", 0.1221897);
Output: 12.22 %

The output string is chosen so that if the string is converted back to a numeric value
using a Parse method, the result will be the original value.
Precision specifier: Ignored.

Round-trip

R, r

Sample: Console.WriteLine("{0 :R}", 1234.21897);
Output: 1234.21897

Scientific notation with a mantissa and an exponent. The exponent is preceded by
the letter E. The E will be the same case as the specifier.
Precision specifier: The number of decimal places.

Scientific

E, e

Case sensitive
Sample: Console.WriteLine("{0 :e4}", 12.3456789);
Output: 1.2346e+001

CHAPTER 25 ■ OTHER TOPICS

672

Parsing Strings to Data Values
Strings are arrays of Unicode characters. For example, string "25.873" is six characters long and is not a
number. Although it looks like a number, you cannot perform arithmetic functions on it. “Adding” two
strings produces their concatenation.

• Parsing allows you to take a string that represents a value and convert it into an actual value.

• All the predefined, simple types have a static method called Parse, which takes a string value

representing the type and converts it into an actual value of the type.

• If the string cannot be parsed, the system raises an exception.

The following statement shows an example of the syntax of using a Parse method. Notice that Parse
is static, so you need to invoke it by using the name of the target type.

 double d1 = double.Parse("25.873");

 ↑ ↑
 Target type String to be converted

The following code shows an example of parsing two strings to values of type double and then
adding them:

 static void Main()
 {
 string s1 = "25.873";
 string s2 = "36.240";

 double d1 = double.Parse(s1);
 double d2 = double.Parse(s2);

 double total = d1 + d2;
 Console.WriteLine("Total: {0}", total);
 }

This code produces the following output:

Total: 62.113

■ Note A common misconception about Parse is that since it operates on a string, it is thought of as a member
of the string class. It is not. Parse is not a single method at all but a number of methods implemented by the

target types.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 25 ■ OTHER TOPICS

673

The disadvantage of the Parse methods is that they throw an exception if they can’t successfully
parse the string to the target type. Exceptions are expensive operations, and you should try to
programmatically avoid them if you can. The TryParse method allows you to do that. The important
things to know about TryParse are the following:

• Every built-in type that has a Parse method also has a TryParse method (and you should use the

TryParse).

• The TryParse method takes two parameters and returns a bool.

— The first parameter is the string you’re trying to parse.

— The second is an out parameter of a reference to a variable of the target type.

— If the TryParse succeeds, it returns true. Otherwise, it returns false.

The following code shows an example of using a TryParse method:

 class Program
 {
 static void Main()
 {
 bool success;
 string parseResultSummary;

 string stringFirst = "28";
 int intFirst; Input string Output variable
 ↓ ↓
 success = int.TryParse(stringFirst, out intFirst);

 parseResultSummary = success
 ? "was successfully parsed"
 : "was not successfully parsed";
 Console.WriteLine("String {0} {1}", stringFirst, parseResultSummary);

 string stringSecond = "vt750";
 int intSecond; Input string Output variable
 ↓ ↓
 success = int.TryParse(stringSecond, out intSecond);

 parseResultSummary = success
 ? "was successfully parsed"
 : "was not successfully parsed";
 Console.WriteLine("String {0} {1}", stringSecond, parseResultSummary);
 }
 }

This code produces the following output:

String 28 was successfully parsed
String vt750 was not successfully parsed

CHAPTER 25 ■ OTHER TOPICS

674

More About the Nullable Types
In Chapter 3 you got an introduction to nullable types. As you’ll remember, nullable types allow you to
create a value type variable that can be marked as valid or invalid, effectively letting you set a value type
variable to “null.” I wanted to introduce nullable types in Chapter 3 with the other built-in types, but
now that you know more about C#, it’s a good time to cover their more intricate aspects.

Just to review, a nullable type is always based on another type, called the underlying type, that has
already been declared.

• You can create a nullable type from any value type, including the predefined, simple types.

• You cannot create a nullable type from a reference type or another nullable type.

• You do not explicitly declare a nullable type in your code. Instead, you declare a variable of a

nullable type. The compiler implicitly creates the nullable type for you.

To create a variable of a nullable type, simply add a question mark to the end of the name of the
underlying type, in the variable declaration.

For example, the following code declares a variable of the nullable int type. Notice that the suffix is
attached to the type name—not the variable name.

 Suffix
 ↓
 int? myNInt = 28;

 ↑
 The name of the nullable type includes the suffix.

With this declaration statement, the compiler takes care of both producing the nullable type and the
variable of that type. Figure 25-3 shows the structure of this nullable type. It contains the following:

• An instance of the underlying type

• Several important read-only properties:

— Property HasValue is of type bool and indicates whether the value is valid.

— Property Value is the same type as the underlying type and returns the value of the variable—
if the variable is valid.

Figure 25-3. A nullable type contains an object of the underlying type in a struct, with two read-only

properties.

CHAPTER 25 ■ OTHER TOPICS

675

You can use the two read-only properties explicitly as follows. Reading a variable of a nullable type
returns its value. You must, however, make sure that the variable is not null. Attempting to read the
value of a null variable produces an exception.

 int? myInt1 = 15;
 Explicitly use the property.
 ↓
 if (myInt1.HasValue)
 Console.WriteLine("{0}", myInt1.Value);

 ↑
 Explicitly use the property.

A better method, however, is to use the shortcut forms, as shown in the following code.

• To check whether a nullable type has a value, you can compare it to null.

• Like any variable, to retrieve its value, you can just use its name.

 Compare to null
 ↓
 if (myInt1 != null)
 Console.WriteLine("{0}", myInt1);

 ↑
 Use variable name

Both sets of code produce the following output:

15

CHAPTER 25 ■ OTHER TOPICS

676

The Null Coalescing Operator
The standard arithmetic and comparison operators also handle nullable types. There is also a special
operator called the null coalescing operator, which returns a non-null value to an expression, in case a
nullable type variable is null.

The null coalescing operator consists of two contiguous question marks and has two operands:

• The first operand is a variable of a nullable type.

• The second is a non-nullable value of the same underlying type.

• If, at run time, the first operand evaluates to null, the second operand is returned as the result of

the operation.

 Null coalescing operator
 int? myI4 = null; ↓
 Console.WriteLine("myI4: {0}", myI4 ?? -1);

 myI4 = 10;
 Console.WriteLine("myI4: {0}", myI4 ?? -1);

This code produces the following output:

myI4: -1
myI4: 10

The equality comparison operators, == and !=, have an interesting characteristic you need to be
aware of. If you compare two values of the same nullable type and both are null, the equality
comparison operators consider them equal. For example, in the following code, the two nullable ints are
set to null. The equality comparison operator declares them equal.

 int? i1 = null, i2 = null; // Both are null.

 if (i1 == i2) // Operator returns true.
 Console.WriteLine("Equal");

CHAPTER 25 ■ OTHER TOPICS

677

Using Nullable User-Defined Types
So far, you’ve seen nullable forms of the predefined, simple types. You can also create nullable forms
of user-defined value types. These bring up additional issues that don’t come up when using the
simple types.

The main issue is access to the members of the encapsulated underlying type. A nullable type
doesn’t directly expose any of the members of the underlying type. For example, take a look at the
following code and its representation in Figure 25-4. The code declares a struct (which is a value type)
called MyStruct, with two public fields.

• Since the fields of the struct are public, they can easily be accessed in any instance of the struct,

as shown on the left of the figure.

• The nullable version of the struct, however, exposes the underlying type only through the Value

property and doesn’t directly expose any of its members. Although the members are public to the

struct, they are not public to the nullable type, as shown on the right of the figure.

 struct MyStruct // Declare a struct.
 {
 public int X; // Field
 public int Y; // Field
 public MyStruct(int xVal, int yVal) // Constructor
 { X = xVal; Y = yVal; }
 }

 class Program {
 static void Main()
 {
 MyStruct? mSNull = new MyStruct(5, 10);
 ...

Figure 25-4. The accessibility of the members of a struct is different from that of the nullable type.

CHAPTER 25 ■ OTHER TOPICS

678

For example, the following code uses this struct and creates variables of both the struct and the
corresponding nullable type. In the third and fourth lines of code, the values of the struct’s variables are
read directly. In the fifth and sixth lines, they must be read from the value returned by the nullable’s
Value property.

 MyStruct mSStruct = new MyStruct(6, 11); // Variable of struct
 MyStruct? mSNull = new MyStruct(5, 10); // Variable of nullable type
 Struct access
 ↓
 Console.WriteLine("mSStruct.X: {0}", mSStruct.X);
 Console.WriteLine("mSStruct.Y: {0}", mSStruct.Y);

 Console.WriteLine("mSNull.X: {0}", mSNull.Value.X);
 Console.WriteLine("mSNull.Y: {0}", mSNull.Value.Y);

 ↑
 Nullable type access

Nullable<T>
Nullable types are implemented by using a .NET type called System.Nullable<T>, which uses the C#
generics feature.

The question mark syntax of C# nullable types is just shortcut syntax for creating a variable of type
Nullable<T>, where T is the underlying type. Nullable<T> takes the underlying type, embeds it in a
structure, and provides the structure with the properties, methods, and constructors of the nullable type.

You can use either the generics syntax of Nullable<T> or the C# shortcut syntax. The shortcut syntax
is easier to write and to understand and is less prone to errors.

The following code uses the Nullable<T> syntax with struct MyStruct, declared in the preceding
example, to create a variable called mSNull of type Nullable<MyStruct>:

 Nullable<MyStruct> mSNull = new Nullable<MyStruct>();

The following code uses the question mark syntax but is semantically equivalent to the Nullable<T>
syntax:

 MyStruct? mSNull = new MyStruct();

CHAPTER 25 ■ OTHER TOPICS

679

Method Main
Every C# program must have one entry point—a method that must be called Main.

In the sample code throughout this text, I’ve used a version of Main that takes no parameters and
returns no value. There are, however, four forms of Main that are acceptable as the entry point to a
program. These forms are the following:

• static void Main() {...}

• static void Main(string[] args) {...}

• static int Main() {...}

• static int Main(string[] args) {...}

The first two forms don’t return a value to the execution environment when the program
terminates. The second two forms return an int value. A return value, if one is used, is generally used to
report success or failure of the program, where 0 is generally used to indicate success.

The second and fourth forms allow you to pass actual parameters, also called arguments, from the
command line into the program, when it starts. Some important characteristics of command-line
arguments are the following:

• There can be zero or more command-line arguments. Even if there are no arguments, the args

parameter is not null. Instead, it is an array with no elements.

• The arguments are separated by spaces or tabs.

• Each argument is interpreted by the program as a string, but you don’t need to enclose them in

quotation marks on the command line.

For example, the following program, called CommandLineArgs, accepts command-line arguments and
prints out each argument supplied:

 class Program
 {
 static void Main(string[] args)
 {
 foreach (string s in args)
 Console.WriteLine(s);
 }
 }

The following command line executes program CommandLineArgs with five arguments:

 CommandLineArgs Jon Peter Beth Julia Tammi

 ↑ ↑
 Executable Arguments
 Name

CHAPTER 25 ■ OTHER TOPICS

680

The preceding program and command line produce the following output:

Jon
Peter
Beth
Julia
Tammi

Other important things to know about Main are the following:

• Main must always be declared static.

• Main can be declared in either a class or a struct.

A program can contain only one declaration of the four acceptable entry point forms of Main. You
can, however, legally declare other methods named Main, as long as they don’t have any of the four entry
point forms—but doing this is inviting confusion.

Accessibility of Main
Main can be declared public or private:

• If Main is declared private, other assemblies cannot access it, and only the execution

environment can start the program.

• If Main is declared public, other assemblies can call it.

The execution environment, however, always has access to Main, regardless of its declared access
level or the declared access level of the class or struct in which it is declared.

By default, when Visual Studio creates a project, it creates a program outline where Main is implicitly
private. You can always add the public modifier if you need to do so.

CHAPTER 25 ■ OTHER TOPICS

681

Documentation Comments
The dcumentation comments feature allows you to include documentation of your program in the form
of XML elements. Visual Studio even assists you in inserting the elements and will read them from your
source file and copy them to a separate XML file for you. This section does not cover the topic of XML
but presents the overall process of using documentation comments.

Figure 25-5 gives an overview of using XML comments. This includes the following steps:

• You can use Visual Studio to produce the source file with the embedded XML. Visual Studio can

automatically insert most of the important XML elements.

• Visual Studio reads the XML from the source code file and copies the XML code to a new file.

• Another program, called a documentation compiler, can take the XML file and produce various

types of documentation files from it.

Figure 25-5. The XML comments process

Earlier versions of Visual Studio contained an elementary documentation compiler, but it was
removed before the release of Visual Studio 2005. Microsoft has developed a new documentation
compiler called Sandcastle, which they already use to generate the .NET Framework documentation.
You can learn more about it and download it for free from http://sandcastle.codeplex.com.

http://sandcastle.codeplex.com

CHAPTER 25 ■ OTHER TOPICS

682

Inserting Documentation Comments
Documentation comments start with three consecutive forward slashes.

• The first two slashes indicate to the compiler that this is an end-of-line comment and should be

ignored in the parsing of the program.

• The third slash indicates that it’s a documentation comment.

For example, in the following code, the first four lines show documentation comments about the
class declaration. They use the <summary> XML tag. Above the declaration of the field are three lines
documenting the field—again using the <summary> tag.

 /// <summary> ← Open XML tag for the class
 /// This is class MyClass, which does the following wonderful things, using
 /// the following algorithm. ... Besides those, it does these additional
 /// wonderful things.
 /// </summary> ← Close XML tag
 class MyClass // Class declaration
 {
 /// <summary> ← Open XML tag for the field
 /// Field1 is used to hold the value of ...
 /// </summary> ← Close XML tag
 public int Field1 = 10; // Field declaration
 ...

Each XML element is inserted by Visual Studio automatically when you type three slashes above the
declaration of a language feature, such as a class or a class member.

For example, the following code shows two slashes above the declaration of class MyClass:

 //
 class MyClass
 { ...

As soon as you add the third slash, Visual Studio immediately expands the comment to the following
code, without your having to do anything. You can then type anything you want on the documentation
comment lines between the tags.

 /// <summary> Automatically inserted
 /// Automatically inserted
 /// </summary> Automatically inserted
 class MyClass
 { ...

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 25 ■ OTHER TOPICS

683

Using Other XML Tags
In the preceding examples, you saw the use of the summary XML tag. There are also a number of other
tags that C# recognizes. Table 25-3 lists some of the most important.

Table 25-3. Documentation Code XML Tags

Tag Meaning

<code> Format the enclosing lines in a font that looks like code.

<example> Mark the enclosing lines as an example.

<param> Mark a parameter for a method or constructor and allow a description.

<remarks> Describe a type declaration.

<returns> Describe a return value.

<seealso> Create a See Also entry in the output document.

<summary> Describe a type or a type member.

<value> Describe a property.

CHAPTER 25 ■ OTHER TOPICS

684

Nested Types
Types are usually declared directly inside a namespace. You can, however, also declare types inside a
class or struct declaration.

• Types declared inside another type declaration are called nested types. Like all type declarations,

nested types are templates for an instance of the type.

• A nested type is declared like a member of the enclosing type.

— A nested type can be any type.

— An enclosing type can be either a class or a struct.

For example, the following code shows class MyClass, with a nested class called MyCounter.

 class MyClass // Enclosing class
 {
 class MyCounter // Nested class
 {
 ...
 }
 ...
 }

Declaring a type as a nested type often makes sense if it’s only meant to be used as a helper for the
enclosing type.

Don’t be confused by the term nested. Nested refers to the location of the declaration—not the
location of any instances. Although a nested type’s declaration is inside the enclosing type’s declaration,
objects of the nested type are not necessarily enclosed in objects of the enclosing type. Objects of the
nested type—if any are created at all—are located wherever they would have been located had they not
been declared inside another type.

For example, Figure 25-6 shows objects of types MyClass and MyCounter, as outlined in the preceding
code. The figure additionally shows a field called Counter, in class MyClass, that is a reference to an object
of the nested class, which is located elsewhere in the heap.

Figure 25-6. Nesting refers to the location of the declaration, not the location of the object.

CHAPTER 25 ■ OTHER TOPICS

685

Example of a Nested Class
The following code fleshes out classes MyClass and MyCounter into a full program. MyCounter implements
an integer counter that starts at 0 and can be incremented using the ++ operator. When the constructor
for MyClass is called, it creates an instance of the nested class and assigns the reference to the field.
Figure 25-7 illustrates the structure of the objects in the code.

 class MyClass
 {
 class MyCounter // Nested class
 {
 private int _Count = 0;
 public int Count // Read-only property
 {
 get { return _Count; }
 }

 public static MyCounter operator++(MyCounter current)
 {
 current._Count++;
 return current;
 }
 }

 private MyCounter counter; // Field of nested class

 public MyClass() { counter = new MyCounter(); } // Constructor

 public int Incr() { return (counter++).Count; } // Increment method
 public int GetValue() { return counter.Count; } // Get counter value
 }

 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass(); // Create object

 mc.Incr(); mc.Incr(); mc.Incr(); // Increment it.
 mc.Incr(); mc.Incr(); mc.Incr(); // Increment it.

 Console.WriteLine("Total: {0}", mc.GetValue()); // Print its value.
 }
 }

CHAPTER 25 ■ OTHER TOPICS

686

This code produces the following output:

Total: 6

Figure 25-7. Objects of a nested class and its enclosing class

Visibility and Nested Types
In Chapter 7, you learned that classes, and types in general, can have an access level of either public or
internal. Nested types, however, are different in that they have member accessibility rather than type
accessibility. Therefore, the following are true:

• A nested type declared inside a class can have any of the five class member accessibility levels

public, protected, private, internal, or protected internal.

• A nested type declared inside a struct can have one of the three struct member accessibility levels

public, internal, or private.

In both cases, the default access level of a nested type is private, which means it cannot be seen
outside the enclosing type.

The relationship between the members of the enclosing class and the nested class is a little less
straightforward and is illustrated in Figure 25-8. The nested type has complete access to the members
of the enclosing type, regardless of their declared accessibility, including members that are private
and protected.

The relationship, however, is not symmetrical. Although the members of the enclosing type can
always see the nested type declaration and create variables and instances of it, they do not have
complete access to its members. Instead, their access is limited to the declared access of the nested class
members—just as if the nested type were a separate type. That is, they can access the public and
internal members but cannot access the private or protected members of the nested type.

CHAPTER 25 ■ OTHER TOPICS

687

Figure 25-8. Accessibility between nested type members and enclosing type members

You can summarize this relationship as follows:

• The members of a nested type always have full access rights to members of the enclosing type.

• The members of an enclosing type

— Always have access to the nested type itself

— Only have the declared access rights to members of the nested type

The visibility of nested types can also affect the inheritance of base members. If the enclosing class
is a derived class, a nested type can hide a base class member with the same name. Use the new modifier
with the declaration of the nested class to make the hiding explicit.

A this reference within a nested type refers to the object of the nested type—not the object of the
enclosing type. If an object of the nested type needs access to the enclosing type, it must have a
reference to it. You can have the enclosing object supply its this reference as a parameter to the nested
type’s constructor, as shown in the following code:

CHAPTER 25 ■ OTHER TOPICS

688

 class SomeClass // Enclosing class
 {
 int Field1 = 15, Field2 = 20; // Fields of enclosing class
 MyNested mn = null; // Reference to nested class

 public void PrintMyMembers()
 {
 mn.PrintOuterMembers(); // Call method in nested class
 }

 public SomeClass() // Constructor
 {
 mn = new MyNested(this); // Create instance of nested class

 } ↑
 Pass in the reference to the enclosing class.
 class MyNested // Nested class declaration
 {
 SomeClass sc = null; // Reference to enclosing class

 public MyNested(SomeClass SC) // Constructor of the nested class
 {
 sc = SC; // Store reference to enclosing class
 }

 public void PrintOuterMembers()
 {
 Console.WriteLine("Field1: {0}", sc.Field1); // Enclosing field
 Console.WriteLine("Field2: {0}", sc.Field2); // Enclosing field
 }
 } // End of nested class
 }

 class Program {
 static void Main() {
 SomeClass MySC = new SomeClass();
 MySC.PrintMyMembers();
 }
 }

This code produces the following output:

Field1: 15
Field2: 20

CHAPTER 25 ■ OTHER TOPICS

689

Interoperating with COM
Although this text doesn’t cover COM programming, C# 4.0 added several syntactic changes to the
language specifically to make COM programming easier. One of these changes is called the “omit ref”
feature and allows you to call a COM method without using the ref keyword, when you don’t need to use
the value passed back by the method.

For example, if Microsoft Word is installed on the machine your program is running on, you can use
Word’s spell checker functionality in your own program. The method you would use to do this is the
CheckSpelling method on the Document class, which is in the Microsoft.Office.Tools.Word namespace.
This method has 12 parameters, and all of them are ref parameters. This means previously you would
have had to supply reference variables for each of the parameters, even if you didn’t need to use them to
pass data to the method or to receive data back from the method. Omitting the ref keyword only works
with COM methods—with anything else, you’ll still get a compile error.

This code might look something like the following. Notice the following about this code:

• I’m only using the second and third parameters, which are Booleans, but I have to create two

variables, ignoreCase and alwaysSuggest of type object to hold the values, since the method

requires ref parameters.

• I’ve created an object variable called optional for the other ten parameters.

 object ignoreCase = true;
 object alwaysSuggest = false; Objects to hold Boolean variables
 object optional = Missing.Value; ↓ ↓
 tempDoc.CheckSpelling(ref optional, ref ignoreCase, ref alwaysSuggest,
 ref optional, ref optional, ref optional, ref optional, ref optional,
 ref optional, ref optional, ref optional, ref optional);

With the “omit ref” feature we can clean this up considerably, since we don’t have to use the ref
keyword on those parameters from which we don’t need the output, and we can use inline bools for the
two parameters we care about. The simplified code looks like the following:

 bool bool
 object optional = Missing.Value; ↓ ↓
 tempDoc.CheckSpelling(optional, true, false,
 optional, optional, optional, optional,
 optional, optional, optional, optional, optional);

If, beyond the “omit ref” feature, we add the fact that the parameters are optional, we can use the
option parameters feature of C# 4.0. This looks like the following, which is much less cumbersome than
the original:

 tempDoc.CheckSpelling(Missing.Value, true, false);

CHAPTER 25 ■ OTHER TOPICS

690

The following code includes this method in a complete program. To compile this code, you need to
have Visual Studio Tools for Office installed on your machine, and you must add a reference in your
project to the Microsoft.Office.Interop.Word assembly. For the compiled code to run, you must have
Microsoft Word installed on your machine.

 using System;
 using System.Reflection;
 using Microsoft.Office.Interop.Word;

 class Program
 {
 static void Main()
 {
 Console.WriteLine("Enter a string to spell-check:");
 string stringToSpellCheck = Console.ReadLine();

 string spellingResults;
 int errors = 0;
 if (stringToSpellCheck.Length == 0)
 spellingResults = "No string to check";
 else
 {
 Microsoft.Office.Interop.Word.Application app =
 new Microsoft.Office.Interop.Word.Application();

 Console.WriteLine("\nChecking the string for misspellings ...");
 app.Visible = false;

 Microsoft.Office.Interop.Word._Document tempDoc = app.Documents.Add();

 tempDoc.Words.First.InsertBefore(stringToSpellCheck);
 Microsoft.Office.Interop.Word.ProofreadingErrors
 spellErrorsColl = tempDoc.SpellingErrors;
 errors = spellErrorsColl.Count;

 //1. Before C# 4.0
 //object ignoreCase = true;
 //object alwaysSuggest = false;
 //object optional = Missing.Value;
 //tempDoc.CheckSpelling(ref optional, ref ignoreCase, ref alwaysSuggest,
 // ref optional, ref optional, ref optional, ref optional, ref optional,
 // ref optional, ref optional, ref optional, ref optional);

CHAPTER 25 ■ OTHER TOPICS

691

 //2. Using the "omit ref" feature of C# 4.0
 object optional = Missing.Value;
 tempDoc.CheckSpelling(
 optional, true, false, optional, optional, optional,
 optional, optional, optional, optional, optional, optional);

 //3. Using "omit ref" and optional parameters
 //tempDoc.CheckSpelling(Missing.Value, true, false);

 app.Quit(false);

 spellingResults = errors + " errors found";
 }

 Console.WriteLine(spellingResults);
 Console.WriteLine("\nPress <Enter> to exit program.");
 Console.ReadLine();
 }
 }

CHAPTER 25 ■ OTHER TOPICS

692

When you run this code, it produces a console window, shown in Figure 25-9, that asks you to enter
a string that you want run through the spell checker. When it receives the string, it opens Word and runs
the spell checker on it. When that happens, you’ll see Word’s spell checker window appear, as shown in
Figure 25-10.

Figure 25-9. The console window that asks for the string to send to Word’s spell checker

Figure 25-10. Word’s spell checker created using COM calls from the console program

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

693

Index

 Symbols and Numerics
! operator, 219
#define directive, 629–630
#elif construct, 629, 633
#else construct, 629, 632
#endif directive, 629, 632
#endregion directive, 629, 637
#error directive, 629, 635
#if construct, 629, 632
#if directive, 632, 635
#if.#elif construct, 633, 635
#if.#elif.#else construct, 633–634
#if.#else construct, 632
#line directive, 629, 636
#pragma text directive, 629
#pragma warning directive, 638
#region name directive, 629
#undef directive, 629–630
#warning directive, 629, 635
% operator, 213
%= operator, 225
& operator, 221
&& operator, 219
&= operator, 225
* operator, 212
/ operator, 212
/= operator, 225, 227
| operator, 221
|| operator, 219
|= operator, 225
~ operator, 221
+ operator, 212, 229
++ operator, 217
< operator, 214
<< operator, 223
= operator, 225, 393
== operator, 214
=> operator, 388
> operator, 214
>> operator, 223

 A
A class, 363
a1 variable, 85, 88, 91
a2 variable, 85, 88, 91, 494
AbClass class, 193
abstract classes, 192–194
abstract keyword, 20, 191
abstract members, 190–191
access modifiers, for classes, 60–62

example of, 62
private and public access, 60–62

accessibility
of Main method, 680
of static constructors, 137

accessors
for events, 408
for properties, 122

acronyms, for .NET Framework, 13
Action delegate, 571
Action1 delegate, 497
Action1<Dog> delegate, 497
ActOnAnimal method, 497û98
actual parameters, for methods

example of, 82
overview, 81–82
parameter arrays as, 96

add accessor, 408
add keyword, 20
Add method, 160, 584–585
Add20 method, 383
AddAfterSelf method, 585
AddBeforeSelf method, 585
AddFirst method, 585, 590
Additive operator category, 209
AddValues method, 97
alert character, 206
alignment specifier, for formatting numeric

strings, 668
allocating memory, for classes, 57–58
AllowMultiple property, 658–659

 INDEX

694

alwaysSuggest variable, 689
Ancestors method, 581–582
AncestorsAndSelf method, 581
AND operation, 333
Animal class, 432–433, 494, 496–498, 500, 502
animalMaker delegate, 496
animalMaker variable, 495
Animation bit, 334
Animation flag, 336
anonymous methods, 383–387

scope in, 386–387
extension of captured variable

lifetime, 387
of outer variables, 386

syntax of, 384–385
parameters for, 385
params parameter for, 385
return type for, 384

using, 383
anonymous types, for LINQ, 540–541, 560
API (application programming interface), 566
args parameter, 679
arithmetic operators, 212
Array class, 411
Array type, 42, 96
arrays, 341–368

array covariance, 363
elements in, accessing, 347
facts about, 342
foreach statement, 358–362

iteration variable is read-only, 360
with multidimensional arrays,

361–362
inherited members for, 364–367
initializing, 348–352

example of, 352
implicitly typed, 351
shortcut syntax, 350

jagged, 353–356
declaring, 354
instantiating, 355
vs. rectangular, 357
shortcut instantiation, 354
subarrays in, 356

as object, 344
one-dimensional, 345

declaring, 345
explicit initialization of, 348
instantiating, 346

overview, 342
rectangular, 345

declaring, 345
explicit initialization of, 349
instantiating, 346
syntax points for initializing, 349–350

types of, 343–368

ArrEnumerator class, 508
as keyword, 20
as operator

for conversions, 464
using with interfaces, 420

ascending keyword, 20, 557
assemblies

and configuration files, 294
delayed signing of, 295
GAC, 292–293

installing assemblies into, 292
side-by-side execution in, 293

identity of, 287–288
inheritance between, 182–183
private deployment of, 291
referencing others, 270–274
strongly named, 289–290
structure of, 285–286

Assembly directory, 292
Assembly property, 641
Assembly1.cs file, 182
Assembly2.cs file, 183
AssemblyInfo.cs file, 653
Assignment operator category, 210
assignment operators, 225–226
associated fields, and properties, 125–126
associativity, in expressions, 210–211
AsyncCallback delegate, 620
AsyncDelegate property, 617, 621
asynchronous programming, 595–626

BackgroundWorker class, 602–612
example of, 606–609
example of in WPF program,

610–612
BeginInvoke and EndInvoke delegate

methods, 614–623
and AsyncResult class, 617
callback pattern, 620–623
polling pattern, 618–619
wait-until-done pattern, 616

multithreading
complexity of, 598
considerations, 597

overview, 596
parallel loops, 599–601
patterns for, 613
timers for, 624

AsyncResult class, and BeginInvoke and
EndInvoke delegate methods, 617

AsyncState property, 617, 620
Attribute method, 587, 593
attributes

accessing, 661–662
using GetCustomAttributes method,

662
using IsDefined method, 661

 INDEX

695

applying
to other program constructs, 652–653
overview, 646

custom, 654–660
constructors for, 655–656
declaring, 654
guidelines for using, 660
restricting usage of, 658–659

global, 653
multiple to single construct, 651
overview, 645
predefined, 647–650

Conditional attribute, 648–649
Obsolete attribute, 647
summary of, 650

for XML, 586–589
AttributeTarget enumeration, 659
AttributeTarget type, 658
AttributeUsage attribute, 650, 658–660
automatic initialization, declaring

variables, 44
Average method, 198–200

 B
B class, 363
b parameter, 100
BabyCalled method, 432
BackgroundWorker class, 602–612

example of, 606–609
example of in WPF program, 610–612

backslash character, 207
backspace character, 206
base access expression, 167
Base class, 499
Base Class Library (BCL), 3, 6
base class library, of .NET Framework, 6
base class, references to, 168–175

override methods, 170–174
overriding other member types, 175
virtual methods, 170–171

base keyword, 20, 167, 178
BaseClassNS namespace, 182
BCL (Base Class Library), 3, 6
BeginInvoke and EndInvoke delegate methods,

614–623
and AsyncResult class, 617
callback pattern, 620–623

calling EndInvoke inside callback
method, 621–623

method for, 620
polling pattern, 618–619
wait-until-done pattern, 616

BeginInvoke method, 613
bill variable, 463–464
BinarySearch method, 364

Bird class, 432
bit flags, and enumerations, 332–338

example of, 337–338
Flags attribute for, 335–336

Bitwise AND operator, 221
Bitwise negation operator, 221
Bitwise OR operator, 221
Bitwise XOR operator, 221
BlackAndWhite enumerator, 534
BlackAndWhite method, 526, 528–529
blocks, 22
bool keyword, 20
bool type, 37, 42, 203, 227, 243, 254, 406,

571, 647, 661
boxing

conversions, 454–456
structs, 324

break keyword, 20
break statement, 74, 245, 257
Browse tab, 271
by keyword, 20
Byte keyword, 20
byte type, 37, 42, 438–439

 C
C1 class, 62
Calc method, 99
callback parameter, 614, 620
callback pattern, for BeginInvoke and

EndInvoke delegate methods,
620–623

calling EndInvoke inside callback
method, 621–623

method for, 620
calling indexers, 152
CancelAsync method, 602, 605
CancellationPending property, 602, 605
Card class, 51
CardSuit enumeration, 331
carriage return character, 207
case keyword, 20
cast operator, and explicit conversion, 232
casting and explicit conversions, 439
Cat class, 432
catch block, 300, 304, 314
catch clause, 303–305
catch keyword, 20
catch section, 311
catch statement, 313–314
Change method, 624
char keyword, 20
char type, 37, 42, 206
character literals, 206
checked case, 444

 INDEX

696

checked context, 442, 445
checked expression, 443
checked keyword, 20
checked operators, for numeric

conversions, 442–443
checked statements, for numeric

conversions, 443
CheckSpelling method, 689
Church, Alonzo, 388
CIL (Common Intermediate Language),

compiling .NET Framework to, 7
CircleWidget class, 273–274
class access modifiers, 181
class keyword, 20, 157
Class Library template, 270
class type, 42, 233, 480
Class1 class, 140, 154
ClassA class, 393, 400
ClassB class, 393, 400
classes, 49–66, 109–160

access modifiers for, 60–62
example of, 62
private and public access, 60–62

and access modifiers on accessors, 156
accessing members of

from inside class, 63
from outside class, 64

allocating memory for, 57–58
constructors for, 144
creating instances of, 56
declaring, 52
destructors for, 140–144

calling, 141–142
standard Dispose pattern, 143

example of, 51, 65–66
for exceptions, 301–302
indexers for, 148–155

calling, 152
declaring, 150
example of, 153–154
get accessor for, 152
overloading, 155
overview, 149
and properties, 149
set accessor for, 151

inheritance of, 162
instance constructors in, 133–135

default, 135
with parameters, 134

instance members for, 59
is active data structure, 50
member constants in, 118–120
members of, 53–55, 110–111

fields, 53–54
methods, 55
order of modifiers for, 110–111

members of class instance, 112
object initializers for, 138–139
partial, 157–160
properties in, 121–132

and associated fields, 125–126
automatically implemented, 131
and databases, 130
declarations and accessors for, 122
example of, 123–127
implementing, 124
vs. public fields, 130
read-only, 128
static, 132
write-only, 128

readonly modifier for, 145–146
static constructors in, 136–137

accessibility of, 137
example of, 137

static fields in, 113–115
static function members in, 116–117
static member types in, 117
and this keyword, 147
for XML, 578

ClassName type, 480
Clear method, 364
CLI (Common Language Infrastructure), for

.NET Framework, 11–12
Clone method, 364
CLR (Common Language Runtime), 3, 10
CLS (Common Language Specification), 12
CLSCompliant attribute, 650
code execution, in methods, 69
<code> tag, 683
color attribute, 587
ColorCollection class, 532
ColorEnumerator class, 513
ColorFlag variable, 534
Colors enumerator, 534
COM (Component Object Model)

interoperating with, 689–692
not required for .NET Framework, 5

combining delegates, 376
CommandLineArgs program, 679
comments, 681–683

documentation comments, 28
inserting, 682
overview, 27–28
using other XML tags, 683

Common Intermediate Language (CIL),
compiling .NET Framework to, 7

Common Language Infrastructure. See CLI
Common Language Runtime (CLR), 3, 10
Common Language Specification (CLS), 12
Common Type System (CTS), 12
CompareTo method, 410–413
comparison operators, 214–216

 INDEX

697

compiling .NET Framework
to CIL, 7
to native code and execution, 8–9

Component Object Model. See COM
components, of .NET Framework, 3
compound assignment operators, 226
Concat method, 664
Conditional AND operator category, 210
Conditional attribute, 648–649
conditional compilation, preprocessor

directives for
constructs for, 632–634
overview, 631

Conditional operator category, 210
conditional operators, 219–220, 227–228
Conditional OR operator category, 210
configuration files, and assemblies, 294
Console class, 17, 23–24, 273, 283–284
Console.WriteLine method, 580
const field, 145
const keyword, 20, 73
constraints

on generics, 478–480
types of, 480
where clause for, 479

on user-defined conversions, 458
constructor initializers, 178–180
constructors

for classes, 144
for custom attributes, 655–657
execution of, 176–181

class access modifiers, 181
constructor initializers, 178–180

for structs
instance constructors for, 321–322
static constructors for, 323
summary of constructors and

destructors, 323
Constructors region, 637
constructs, applying attributes to, 651–653
Contains method, 664
continuation clause, for LINQ, 563
continue keyword, 20
continue statement, 74, 258
conversions, 435–464

boxing, 454–456
explicit, 438–439
implicit, 437
is operator, 463
numeric, 440–447

checked and unchecked operators,
442–443

checked and unchecked statements, 443
decimal to double, 447
decimal to float, 447
decimal to integral, 445

double to decimal, 446
double to float, 446
double to integral, 445
explicit, 444
float to decimal, 446
float to integral, 445
implicit, 441
integral to integral, 444

as operator, 464
overview, 436
reference, 448–453

explicit, 451
implicit, 449–450

types of, 440
unboxing, 456–457
user-defined, 458–462

constraints on, 458
evaluating, 461
example of, 459–460
example of multistep, 461–462

Count method, 106–107, 544, 569
Count operator, 564, 567–570, 573
Counter field, 684
CourseName field, 551
CourseStudent class, 550–551
covariance

of arrays, 363
and contravariance, in generics, 494,

502–503
cs1 variable, 320
cs2 variable, 320
csc complier, 18
CSimple class, 319
CTS (Common Type System), 12
Current property, 508, 510, 516, 518–519, 526
custom attributes, 654–660

constructors for, 655–657
declaring, 654
guidelines for using, 660
restricting usage of, 658–659

Customer class, 479

 D
D class, 113–115
data members, of types, 34
databases, and properties, 130
DateTime class, 133
DaysTemp class, 64
Dealer class, 51, 56–57
decimal keyword, 20
decimal type, conversions of

to double, 447
to float, 447
to integral, 445

Deck class, 51

 INDEX

698

declarations, for properties, 122
declaring

classes, 52
custom attributes, 654
events, 395–396

event is member, 396
EventHandler delegate for, 396

generic classes, 471
generic methods, 482
indexers, 150
interfaces, 414–415
jagged arrays, 354
one-dimensional arrays, 345
rectangular arrays, 345
variables, 43–44

automatic initialization, 44
initializers for, 44
multiple, 45

decrement operators, 217–218
default keyword, 20
default parameter, 636
default section, 245, 248
del variable, 388, 390
delayed signing, of assemblies, 295
DelaySignAttribute attribute, 295–296
delegate Factory<Animal> type, 495
delegate Factory<Dog> type, 495
delegate keyword, 20, 372, 384, 388
delegate type, 42, 495, 497
Delegate type declaration, 394
delegates, 369–390

and anonymous methods, 383–387
scope in, 386–387
syntax of, 384–385
using, 383

assigning, 375
combining, 376
creating object, 373–374
declaring type for, 372
example of, 380
invoking, 379

with reference parameters, 382
with return values, 381

and lambda expressions, 388
methods in

adding to, 377
removing from, 378

overview, 370û71
as parameters, 569–570
types of, 571

Delimited comment type, 29
delVar variable, 375, 377, 379
deployment, of .NET Framework, 6
Derived class, 426, 499
derived variable, 168–169
DerivedClass class, 183, 187, 193

Descendants method, 581–582
DescendantsAndSelf method, 581
descending keyword, 20, 557
destructors, for classes, 140–144

calling, 141–142
standard Dispose pattern, 143

diagnostic directives, 635
Dijkstra, Edsger, 261
directives. See also preprocessor directives
DisplayRadii method, 73
Dispose method, 141–143, 262–264,

266, 519
disposed field, 141
disposed flag, 141
DivideByZeroException catch clause, 311
DivideByZeroException class, 304, 311
DLLImport attribute, 650
do keyword, 20
do loop, 251–252
do statement, 74
Document class, 689
documentation. See comments
Documentation comment type, 29
documentation comments, 28
Dog class, 432, 494–496, 498, 500, 502
dog1 variable, 497
dogMaker variable, 495
DoSomething method, 500
DoStuff method, 483
DoTrace symbol, 648–649
double keyword, 20
double quote character, 207
double type, conversions of

to decimal, 446
to float, 446
to integral, 445

DoWork event, 602–604
DoWorkEventArgs parameter, 605
dynamic keyword, 20, 45
dynamic type, 35, 37, 42

 E
e parameter, 303
Elapsed event, 393, 395, 397–398, 406, 626
Element method, 581–583
elements, in arrays, 347
Elements method, 581–583
else keyword, 20
Employee class, 148, 152–153, 461–462
Employee node, 577
Employee type, 463–464, 577
EmployeeName element, 576
EmployeesFile.xml file, 579
Enabled property, 406

 INDEX

699

EndInvoke method, 613. See also
BeginInvoke and EndInvoke
delegate methods

enum keyword, 20
enum type, 42, 216
enumerations, 327–340

and bit flags, 332–338
example of, 337–338
Flags attribute for, 335–336

implicit member numbering in, 331
setting type for, 330

enumerators
foreach statement with, 506–507
generic interfaces, 518
IEnumerable interface, 513–515
IEnumerable<T> interface, 522–523
IEnumerator interface, 508–512

declaring enumerator with,
511–512

example of, 514–515
IEnumerator<T> interface, 519–521
iterators for

common patterns for, 530
considerations for, 536
creating enumerable using, 528–529
creating enumerator using, 526–527
iterator blocks, 525
producing enumerables, 531
producing enumerators, 531
producing multiple enumerables,

532–533
producing multiple enumerators,

534–535
noninterface, 516–517
types of, 507

environment, of .NET Framework, 4–6
automatic garbage collection, 4
base class library, 6
interoperability, 4–5
no COM required, 5
object-oriented, 4
simplified deployment, 6
type safety, 6

Equality operator category, 209
equals keyword, 20
Equals method, 478
evaluating user-defined conversions, 461
evaluation, order of in expressions,

209–211
associativity, 210–211
precedence, 209–210

Event declaration, 394, 403
Event handler declaration, 394
event handlers, removing, 400
event keyword, 20
Event registration, 394

EventArgs class
overview, 401
passing data by extending, 402

EventHandler delegate, for events, 396
events, 391–408

accessors for, 408
declaring, 395–396
have private delegate, 393
MyTimerClass example, 406–407
overview, 392–393
raising, 397
source code components for, 394
subscribing to, 398–400
using, 401–405

custom delegate for, 403–405
EventArgs class, 401
passing data by extending

EventArgs, 402
<example> tag, 683
Exception type, 302
exceptions, 297–315

catch clause, 303–305
classes for, 301–302
finally block, 306
finding handler for, 307–311

example of searching down call
stack, 310–311

general algorithm of, 309
overview, 298
throwing

overview, 313
without exception object, 314

try statement, 299–300
explicit conversions, 438–439

and cast operator, 232
and casting, 439

explicit initialization
of one-dimensional arrays, 348
of rectangular arrays, 349

explicit interface member implementations,
427–430

explicit keyword, 20, 458
explicit numeric conversions, 444
explicit reference conversions, 451–453
expression statements, 241
expressions

literals in, 203–208
character literals, 206
integer literals, 204–205
real literals, 205
string literals, 207–208

order of evaluation in, 209–211
associativity, 210–211
precedence, 209–210

overview, 202
ExtendMyData class, 198–200

 INDEX

700

Extensible Markup Language. See XML,
LINQ to

extension methods, with generic classes,
486

extern keyword, 20

 F
f1 variable, 88, 91
f2 variable, 88, 91
FaceCards enumeration, 331
Factory delegate, 494–495
Factory<Animal> delegate, 495, 502
Factory<Dog> delegate, 495
false keyword, 20
FancyNumbers bit, 334, 336
FancyNumbers flag, 333, 336
FCL (Framework Class Library), 6
field initializers, not allowed for

structs, 324
Field1 field, 163, 165, 167
Field2 field, 163
fields, 53–54
finally block, 299, 306–308
finally clause, 311
finally keyword, 20
First operator, 567–568
fixed keyword, 20
Flags attribute, 332, 335–336
float keyword, 20
float type, conversions of

to decimal, 446
to integral, 445

flow of control
and methods, 74
statements, 242

for keyword, 20
for loop, 253–256

multiple expressions in, 256
scope of variables in, 255

for statement, 74
foreach construct, 507
foreach keyword, 20
foreach loop, 411, 506, 510, 514, 599, 642
foreach statement, 358–362, 506–507

iteration variable is read-only, 360
with multidimensional arrays, 361–362

example with jagged array, 362
example with rectangular array, 361

form feed character, 206
formal parameters, for methods, 80
Format method, 664
format string

multiple markers in, 26
overview, 25

formatting numeric strings, 666–671
alignment specifier for, 668
format specifier for, 669
standard format specifiers for, 670–671

Framework Class Library (FCL), 6
from clause, for LINQ, 547–548, 554
from keyword, 20, 538
fromInclusive parameter, 599
from.let.where clause, 546
Func delegate, 490, 571
Func<int, bool> type, 572
function members, of types, 34

 G
GAC (global assembly cache), 292–293

installing assemblies into, 292
side-by-side execution in, 293

gacutil.exe utility, 292
garbage collection, in .NET Framework, 4
GC (garbage collector), 4, 40, 375
GC.SuppressFinalize method, 141
generic enumeration interfaces, 518
generics, 465–503

in C#, 468–469
classes, 470–471
constraints on, 478–480

types of, 480
where clause for, 479

covariance and contravariance in,
494–503

creating constructed type for, 472
creating instances of, 473–477

generic and nongeneric stacks, 477
stack example, 475–476

delegates, 488–490
interfaces, 491–493

example of, 492
implementations of must be

unique, 493
methods, 481–485

declaring, 482
example of, 485
extension methods with generic

classes, 486
invoking, 483–484

overview, 466–467
structs, 487

get accessor, 122–123, 127–128, 129û30, 131,
149, 152–153, 156

get keyword, 20
GetCustomAttributes method, 662
GetCylinderVolume method, 99
GetEnumerator method, 506–507, 513, 516,

518, 528, 530–532, 534
GetFields method, 641

 INDEX

701

GetHour method, 76–77
GetLength method, 364
GetLength(int n) method, 356
GetMethods method, 641
GetProperties method, 641
GetType method, 238, 478, 642, 661
GetUpperBound method, 364
GetValueFromDatabase method, 130
global assembly cache. See GAC
global attributes, 653
global keyword, 20
goto keyword, 20
goto statement, 261
graphical user interface (GUI), 597
group clause, for LINQ, 561–562
group keyword, 20
group.by clause, 558
GUI (graphical user interface), 597

 H
handlers, finding for exceptions, 307–311

example of searching down call stack,
310–311

general algorithm of, 309
HasFlag method, 334
HasFlags method, 334
HasValue property, 674
HelpLink property, 302
hiding members of base class, 165–166
Holder<T> class, 486
horizontal tab character, 206
HRESULT data type, 5
Hypotenuse property, 129

 I
i flag, gacutil.exe utility, 292
i variable, 455
iar variable, 614
IAsyncResult interface, 614, 617, 621
IAsyncResult parameter, 620
IComparable interface, 410–413, 479
IDataIO interface, 431
IDataRetrieve interface, 421
IDataStore interface, 421
identifiers, 18
identity, of assemblies, 287–288
IDisposable interface, 141, 262, 264, 519
IEnumerable interface, 507, 513–515
IEnumerable<int> type, 544
IEnumerable<object> type, 581–582
IEnumerable<T> interface, 507, 518–519,

522–523
IEnumerable<XElement> type, 581

IEnumerator interface, 508–512
declaring enumerator with, 511–512
example of, 514–515

IEnumerator<T> interface, 507, 519–521
if keyword, 20
if statement, 74, 243
ifc variable, 418
if.else construct, 227–228
if.else statement, 74, 228, 244
ignoreCase variable, 689
IIfc1 interface, 417–418, 422, 424, 426, 430
IIfc2 interface, 422, 424
IL (Intermediate Language), 7
ILiveBirth interface, 420, 432
implementing interfaces, 416–417
implicit conversions, 437

numeric conversions, 441
reference conversions, 449–450

implicit keyword, 20, 458
implicit member numbering, in

enumerations, 331
implicitly typed arrays, 351
IMyIfc interface, 491–493, 500
IMyIfc<Animal> interface, 500
IMyInterface1 interface, 416
in keyword, 20, 500, 502–503, 571
increment operators, 217–218
index parameter, 153
indexers, 148–155

calling, 152
declaring, 150
example of, 153–154
get accessor for, 152
overloading, 155
overview, 149
and properties, 149
set accessor for, 151

IndexOf method, 364
IndexOutOfRangeException class, 303, 311
inheritance

abstract classes, 192–194
abstract members, 190–191
accessing inherited members, 163–164
between assemblies, 182–183
base access expression, 167
of classes, 162
and constructor execution, 176–181

class access modifiers, 181
constructor initializers, 178–180

extension methods, 197
hiding members of base class, 165–166
of interfaces, 431–433
member access modifiers, 184–189

internal members, 187
private members, 186
protected internal members, 188

 INDEX

702

inheritance (continued)
member access modifiers (continued)

protected members, 187
public members, 186
regions accessing, 185
summary of, 188–189

references to base class, 168–175
override methods, 170–174
overriding other member types, 175
virtual methods, 170–171

sealed classes, 195
static classes, 196

inherited members
accessing, 163–164
for arrays, 364–367

Inherited property, 658–659
initialization, of fields, 54
initializers, for declaring variables, 44
initializing, arrays, 348–352

example of, 352
implicitly typed, 351
shortcut syntax, 350

InnerException property, 302, 305
Insert method, 664
instance constructors, 133–135

default, 135
with parameters, 134

instance members, for classes, 59
instances, of classes, 56
instantiating

jagged arrays, 355
one-dimensional arrays, 346
rectangular arrays, 346
types, 33

int field, 147, 154
int keyword, 20
int method, 76
int parameter, 92, 147, 155, 178, 321, 372
int property, 540
integer literals, 204–205
integral type, conversions of, 444
interface keyword, 20, 157
interface type, 42
InterfaceName type, 480
interfaces, 409–433

are reference type, 418–419
covariance and contravariance in,

500–501
declaring, 414–415
explicit interface member

implementations, 427–430
implementing, 416–417

with duplicate members, 422–423
example of, 417
multiple, 421

inheritance of, 431–433

inherited member as, 426
overview, 410–413
references to multiple, 424–425
using as operator with, 420
using IComparable interface, 411–413

Intermediate Language (IL), 7
internal access level, 686
internal access modifier, 181, 184, 188
internal keyword, 20
internal members, member access

modifiers, 187
interoperability, of .NET Framework, 4–5
Interval property, 406
into keyword, 20
intVar variable, 227
inVal parameter, 107
inVal variable, 306
InvalidCastException exception, 451–452,

457, 463
inVals parameter, 92, 95
invoking

delegates, 379–382
with reference parameters, 382
with return values, 381

generic methods, 483–484
methods

overview, 75
with parameter arrays, 93–95

is keyword, 20
is operator, for conversions, 463
IsCompleted method, 618
IsCompleted property, 613, 617
IsDefined method, 661
IsOdd method, 572–573
item variable, 359, 547
iteration variable, foreach statement, 360
iterators

common patterns for, 530
considerations for, 536
creating enumerable using, 528–529
creating enumerator using, 526û27
iterator blocks, 525
producing enumerables, 531
producing enumerators, 531
producing multiple enumerables, 532–533
producing multiple enumerators, 534–535

IUnknown interface, 5
iVal variable, 220

 J
j variable, 456
jagged arrays, 353–356

declaring, 354
foreach statement with, 362
instantiating, 355

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 INDEX

703

vs. rectangular, 357
shortcut instantiation, 354
subarrays in, 356

JIT (Just-in-Time), 8, 285
join clause, for LINQ, 549–552
join keyword, 20
jump statements

break statement, 257
continue statement, 258
overview, 257

Just-in-Time (JIT), 8, 285

 K
Key field, 562
keywords, 20

 L
labeled statements, 259–260

labels, 259
scope of, 260

labels, for switch statement, 249
lambda expressions, and delegates, 388
lambda operator, 388
Language Integrated Query. See LINQ
last-in, first-out (LIFO), 39
LastName field, 551
le1 variable, 388, 390
le3 variable, 389
le4 variable, 389
Left shift operator, 223
Length property, 344, 364, 664
LessThan method, 478
let clause, for LINQ, 555
let keyword, 20
lifetimes, of static members, 115
LIFO (last-in, first-out), 39
LimitedInt class, 233, 235
LimitedInt type, 230, 232
line number directives, 636
LINQ (Language Integrated Query),

537–594
anonymous types, 540–541
method syntax, 542–543
overview, 538
providers for, 539–541
query operators, 564–574

delegate types, 571
delegates as parameters, 569–570
example using delegate

parameter, 572
example using lambda expression

parameter, 573–574
list of, 566
signatures of, 567–568

query syntax, 542–563
anonymous types in, 560
from clause, 547–548, 554
continuation clause in, 563
group clause, 561–562
join clause, 549
let clause, 555
orderby clause, 557
select.group clause, 558–559
where clause, 556

query variables, 544–545
to XML, 575–594

basics of, 576–577
classes for, 578
creating tree, 580
and markup languages, 575
using queries with, 592
using values from tree, 581–589
working with documents, 579
XComment node, 590
XDeclaration node, 590
XProcessingInstruction node,

590–591
ListInts method, 93–94, 96
literals, 203

character literals, 206
integer literals, 204–205
real literals, 205
string literals, 207–208

Load method, XDocument node, 579
local constants, 73
local variables, 70–72

inside nested blocks, 72
and var keyword, 71

lock keyword, 20
Logical AND operator category, 209, 219
logical NOT operator, 219
logical operators, 221–222
logical OR operator, 219
Logical OR operator category, 210
Logical XOR operator category, 210
long keyword, 20
long type, 37, 42, 204, 474
lowNums variable, 544–545

 M
Main method, 21, 679–680
MainWindow.xaml file, 610
MainWindow.xaml.cs file, 610
Major variable, 541
MakeDog method, 495
markers, multiple in format string, 26
markup languages, and XML, 575
mc variable, 418
mDel delegate, 387

 INDEX

704

Mem1 field, 112–113
Mem2 field, 113, 115
member access modifiers, 184–189

internal members, 187
private members, 186
protected internal members, 188
protected members, 187
public members, 186
regions accessing, 185
summary of, 188–189

member constants, 118–120
members

accessing inherited, 163–164
of class instance, 112
of classes, 53–55, 110–111

accessing from inside class, 63
accessing from outside class, 64
fields, 53–54
methods, 55
order of modifiers for, 110–111

hiding of, 165–166
Message field, 402
Message property, 302
metadata. See also attributes
metadata, and reflection, 640
method syntax, for LINQ,

542–543
Method1 method, 163, 430
Method2 method, 163
MethodA method, 104
MethodB method, 104
methods, 55–67, 107

in delegates
adding to, 377
removing from, 378

and flow of control, 74
invoking, 75
local constants for, 73
local variables for, 70–72

inside nested blocks, 72
and var keyword, 71

overloading, 97
parameter arrays for, 92–96

as actual parameters, 96
invoking method with, 93–95

parameters for
actual, 81–82
formal, 80
named, 98–99
optional, 100–103
output, 89–91
reference, 86–88
summary of, 96
value, 83–85

recursion of, 106
return values for, 76–79

stack frames for, 104–105
structure of, 68–69

MFC (Microsoft Foundation Classes), 2
Microsoft Intermediate Language (MSIL), 7
Microsoft.Office.Interop.Word

assembly, 690
Microsoft.Office.Tools.Word

namespace, 689
Monitor class, 598
MoveNext method, 508–510, 516, 536
mscorlib library, 273–274
mscorlib.dll file, 273
MSIL (Microsoft Intermediate Language), 7
mSNull variable, 678
multidimensional arrays, foreach statement

with, 361–362
example with jagged array, 362
example with rectangular array, 361

multiple attributes, applying to single
construct, 651

multiple expressions, in for loop, 256
multiple interfaces, references to, 424–425
Multiplicative operator category, 209
multithreading. See also asynchronous

programming
complexity of, 598
considerations for, 597

Mutex class, 598
MyAttr attribute, 656
MyAttribute attribute, 646, 655, 658–659
MyAttributeAttribute attribute, 654
MyBaseClass() constructor, 176
MyBaseClass class, 168–169, 172–174, 182–

183, 426
mybc variable, 168, 170
MyCorp.SuperLib namespace, 277
MyCounter class, 684–685
MyData class, 197–200, 421
MyDel delegate, 372, 374, 614
MyDelegate delegate, 489
MyDerived class, 174
MyDerivedClass class, 168–169, 172, 176, 178
MyExcellentClass class, 71
MyField field, 53
MyField1 field, 177
MyField2 field, 177
MyFloatStack class, 467, 469
myInst variable, 473
myInt variable, 668
MyIntStack class, 466–467, 469
MyLibrary.dll file, 293–294
MyM1 method, 374
MyMethod method, 69, 84, 87, 89–90, 91, 484
MyNamespace namespace, 282
MyNamespace.OtherNS namespace, 282

 INDEX

705

MyPrivateTimer field, 407
MyProgram.exe application, 294
MyProperty property, 175, 190
MyStack class, 469
MyStruct struct, 677–678
MyTCEventArgs class, 403
MyTimerClass class, 395, 399, 403,

406–407
MyValue property, 121, 123, 125–126, 132
myVar1 variable, 448, 451
myVar2 variable, 448, 451, 453
MyWidgets program, 271–274, 278
MyWidgets.cs file, 271

 N
Name field, 59, 541
Name property, 641
named parameters, for methods, 98–99
namespace keyword, 20
Namespace property, 641
namespaces, 275–282

names for, 279
nesting of, 282
spreading across files, 281
and types in, 280

naming conventions, 19
native code and execution, compiling .NET

Framework to, 8–9
Native Image Generator tool, 8
nested blocks, local variables inside, 72
nested types, 684–688

example of, 685
and visibility, 686–688

nesting
of namespaces, 282
of using statement, 265

.NET Framework, 1–13
acronyms for, 13
CLI, 11–12
CLR, 10
compiling

to CIL, 7
to native code and execution, 8–9

components of, 3
environment for, 4–6

automatic garbage collection, 4
base class library, 6
interoperability, 4–5
no COM required, 5
object-oriented, 4
simplified deployment, 6
type safety, 6

prior to, 2
new() type, 480
new expression, 396

new keyword, 20, 57, 138, 540
new line character, 206
new modifier, 165–166, 174, 324, 687
new operator, 57, 134, 321–322, 346, 373
Ngen tool, 8
nodes, XML, 584–585
Nodes method, 581–582
noninterface enumerators, 516–517
NonSerialized attribute, 650
Now property, 133
null character, 206
null coalescing operator, for nullable

types, 676
null coalesing operator, 48
null keyword, 20
nullable types, 46–48, 674–678

assigning to, 48
creating, 46–47
null coalescing operator for, 676
user-defined, 677–678

Nullable<MyStruct> type, 678
Nullable<T> type, 678
NullReferenceException class, 305
NumberOfSides field, 146
numeric conversions, 440–447

checked and unchecked operators,
442–443

checked and unchecked statements, 443
decimal to double, 447
decimal to float, 447
decimal to integral, 445
double to decimal, 446
double to float, 446
double to integral, 445
explicit, 444
float to decimal, 446
float to integral, 445
implicit, 441
integral to integral, 444

numsCount variable, 544

 O
object class, 5, 12, 324, 401, 478, 518, 661
object initializers, for classes, 138–139
object keyword, 20
object type, 35, 37, 410, 440, 449, 478, 508,

516, 518–519
object variable, 689
object-oriented, .NET Framework, 4
objects, array as, 344
Obsolete attribute, 647, 650
OfType<type> method, 582
oi variable, 455–456
on keyword, 20

 INDEX

706

one-dimensional arrays, 345
declaring, 345
explicit initialization of, 348
instantiating, 346

OnOneSecond method, 397, 406–407
operator keyword, 20
operator x method, 233
operators

assignment, 225–226
comparison, 214–216
conditional logical, 219–220
conditional operator, 227–228
decrement, 217–218
increment, 217–218
for LINQ, 564–574

delegate types, 571
delegates as parameters, 569–570
example using delegate

parameter, 572
example using lambda expression

parameter, 573–574
list of, 566
signatures of, 567–568

logical, 221–222
overloading, 233–236

example of, 235–236
restrictions on, 234

remainder operator, 213
shift, 223–224
simple arithmetic, 212
typeof operator, 236–238
unary arithmetic, 229
and user-defined type conversions,

230–232
ops flag word, 334
ops variable, 335
optional parameters, for methods, 100–103
optional variable, 689
order of evaluation, in expressions, 209–211

associativity, 210–211
precedence, 209–210

order of modifiers, for members of classes,
110–111

orderby clause, for LINQ, 557
orderby keyword, 20
OtherClass class, 162–163, 166–167, 181
OtherM2 method, 374
OtherNs namespace, 282
out keyword, 20, 500, 502–503, 571
out modifier, 89, 96
out parameter, 159, 325, 385, 390, 673
outer variables, of anonymous methods, 386
output parameters, for methods, 89–91
output text, 23
Output type, 96
OverflowException exception, 442, 444–446

overloading
indexers, 155
methods, 97
operators, 233–236

example of, 235–236
restrictions on, 234

override keyword, 20, 192
override methods, 170–174

print with new example, 174
print with override example, 172–173

override modifier, 170–171, 174, 191, 324
override Print method, 170

 P
parallel loops, 599–601
Parallel.For construct, 599
Parallel.For loop, 599
Parallel.For method, 599
Parallel.ForEach construct, 599
Parallel.ForEach loop, 599
Parallel.ForEach method, 601
<param> tag, 683
parameter arrays, for methods, 92–96

as actual parameters, 96
invoking method with, 93–95

parameters
for anonymous methods, 385
in constructors for custom attributes, 657
instance constructors with, 134
for methods

actual, 81–82
formal, 80
named, 98–99
optional, 100–103
output, 89–91
reference, 86–88
summary of, 96
value, 83–85

struct as, 325
params keyword, 20, 385
params modifier, 92–93, 96
params parameter, for anonymous

methods, 385
Parent method, 581
Parse method, 671–673
parsing strings, to data values, 672–673
partial classes, 157–160
partial keyword, 20, 159
partial methods, in partial classes, 159
partial modifier, 157
patterns, for asynchronous programming, 613
Person class, 461
Person type, 458, 463–464
PhoneNumber element, 576
PI constant, 73

 INDEX

707

PI field, 119, 146
PieceOfData struct, 487
P/Invoke (platform invoke), 5
platform invoke (P/Invoke), 5
Player class, 51, 59
Point class, 138
Point struct, 318
polling pattern, for BeginInvoke and

EndInvoke delegate methods,
618–619

precedence, in expressions, 209–210
predefined attributes, 647–650

Conditional attribute, 648–649
Obsolete attribute, 647
summary of, 650

predefined types, 35–37
preprocessor directives, 627–638

#define directive, 630
#pragma warning directive, 638
#undef directive, 630
conditional compilation

constructs for, 632–634
overview, 631

diagnostic directives, 635
line number directives, 636
overview, 628
region directives, 637
syntactic rules for, 628–629

Primary operator category, 209
Print method, 170, 172–174, 176, 486
PrintArg method, 313
PrintDateAndTime method, 75
PrintMe method, 182–183
PrintNums method, 55
PrintOut method, 417, 422, 424, 426–427, 647
PrintString method, 489
PrintStuff method, 190
PrintSum method, 80–81, 160
private access, access modifiers for classes,

60–62
private access level, 186
private access modifier, 60, 188
private deployment, of assemblies, 291
private keyword, 20
private members, member access

modifiers, 186
processes. See also asynchronous

programming
Program class, 17, 56, 64, 514
ProgressChanged event, 602–603, 605
properties, 121–132

and associated fields, 125–126
automatically implemented, 131
and databases, 130
declarations and accessors for, 122

example of, 123–127
implementing, 124
and indexers, 149
vs. public fields, 130
read-only, 128–129
static, 132
write-only, 128

protected access level, 187
protected access modifier, 188
protected internal access modifier, 188
protected internal members, member

access modifiers, 188
protected keyword, 20
protected members, member access

modifiers, 187
protected modifier, 143
providers, for LINQ, 539–541
public access, access modifiers for classes,

60–62
public access level, 190, 686
public access modifier, 61, 181, 184, 188,

230, 233, 415, 680
public constructor, 180
public fields, vs. properties, 130
public keyword, 20
public members, member access

modifiers, 186
public modifier, 461
public property, 125

 Q
query syntax, for LINQ, 542–563

anonymous types in, 560
from clause, 547–554
continuation clause in, 563
group clause, 561–562
join clause, 549
let clause, 555
orderby clause, 557
select.group clause, 558–559
where clause, 556

query variables, for LINQ, 544–545

 R
raising events, 397
Random class, 137
RandomKey field, 137
Rank property, 345, 364
readonly field, 145, 149–150, 179
readonly keyword, 20
readonly modifier, for classes, 145–146
read-only properties

example of, 129
overview, 128

 INDEX

708

real literals, 205
rectangular arrays, 345–350

declaring, 345
explicit initialization of, 349
foreach statement with, 361
instantiating, 346
vs. jagged arrays, 357
syntax points for initializing, 349–350

recursion, of methods, 106
ref keyword, 20, 86
ref modifier, 89, 96
ref parameter, 325, 390
reference conversions, 448–453

explicit
overview, 451
valid conversions for, 452–453

implicit, 449–450
reference parameters

invoking delegates with, 382
for methods, 86–88

reference types, 41–42
categorizing C# types, 42
interfaces are, 418–419
storing members of, 41–42

references, to base class, 168–175
override methods, 170–174
overriding other member types, 175
virtual methods, 170–171

References folder, 271, 273
referencing other assemblies, 270–274
reflection. See also attributes

and metadata, 640
and Type class, 640–641

using GetType method, 642
using typeof operator, 644

region directives, 637
Relational operator category, 209
remainder operator, 213
<remarks> tag, 683
remove accessor, 408
remove keyword, 20
Remove method, 585, 588, 664
RemoveNodes method, 585
removing event handlers, 400
Replace method, 664
ReplaceContent method, 585
ReportProgress method, 602–603, 605
Reset method, 508, 516, 536
resources, with using statement, 263–265
restrictions

on overloading of operators, 234
on usage of custom attributes, 658–659

Result field, 605–606
return keyword, 20, 389
return statement, 74, 76, 122, 246, 306

return type, for anonymous methods, 384
return values

invoking delegates with, 381
for methods, 76–79
struct as, 325

<returns> tag, 683
Reverse method, 364
ReverseAndPrint method, 485
ReviewComment attribute, 661
Reviewer field, 657
Right shift operator, 223
RightTriangle class, 129
RunWorkerAsync method, 602–604
RunWorkerCompleted event, 602–603, 605
RunWorkerCompletedEventArgs

parameter, 605

 S
Save method, XDocument node, 579
sbyte keyword, 20
sbyte type, 37, 42, 436, 439
scope

of anonymous methods, 386–387
extension of captured variable

lifetime, 387
of outer variables, 386

of labeled statements, 260
sealed classes, 195
sealed keyword, 20
sealed modifier, 195
SecondDerived class, 172–174
<seealso> tag, 683
select clause, 546–547, 554, 558–560
select keyword, 20, 538
SELECT statement, 546
select.group clause, for LINQ, 558–559
Semaphore class, 598
Serializable attribute, 646, 650
set accessor, 122, 127–129, 131, 149,

151–153, 156
set keyword, 20
SetAttributeValue method, 588û89
SetElement method, 585
SetValueInDatabase method, 130
Shape class, 146
Shift operator category, 209
shift operators, 223–224
short keyword, 20
short type, 37, 42, 436, 473–474
shortcut instantiation, jagged arrays, 354
shortcut syntax, for arrays, 350
side-by-side execution, in GAC, 293
Sign the Assembly check box, 290
Signing tab, 290

 INDEX

709

Simple class, 478, 485, 491–493
Simple namespace, 17
Simple struct, 319, 322
SimpleProgram example, 16–18
SimpleProgram.cs file, 18
SimpleReturn class, 500
SimpleSample.xml file, 592
single quote character, 207
Single-line comment type, 29
size attribute, 587
sizeof keyword, 20
Sleep method, Thread class, 616
SomeClass class, 70, 162–163, 166, 237, 471–474
SomeMethod method, 78
Sort method, 364, 411, 413
Source property, 302
SquareWidget class, 270–271, 273–275, 277
ss1 variable, 320
ss2 variable, 320
stack, 39
stack frames, for methods, 104–105
stackalloc keyword, 20
stackInt variable, 475
stackString variable, 475
StackTrace property, 302
standard Dispose pattern, for classes, 143
state parameter, 614, 617, 620–621
statements, 22, 239–267

do loop, 251–252
expression statements, 241
flow-of-control statements, 242
goto statement, 261
if statement, 243
if.else statement, 244
jump statements, 257–258

break statement, 257
continue statement, 258

labeled statements, 259–260
labels, 259
scope of, 260

for loop, 253–256
multiple expressions in, 256
scope of variables in, 255

overview, 240–241
switch statement, 245–249

example of, 247
labels for, 249

using statement, 262–266
example of, 264–266
multiple resources in, 265
nesting of, 265
using resource with, 263

while loop, 250
static access modifier, 230, 233
static classes, 196

static constructors, 136–137
accessibility of, 137
example of, 137

static fields
accessing from outside class, 114–115

example of, 114–115
and lifetimes of static members, 115

overview, 113
static function members, 116–117
static keyword, 20, 136, 395
static member types, 117
static modifier, 84, 113, 458
static properties, 132
static typing, 45
StID field, 551
string keyword, 20
string literals, 207–208
string parameter, 178, 655
string property, 540
StringBuilder class, 666
strings, 664–671

formatting numeric, 666–671
alignment specifier for, 668
format specifier for, 669
standard format specifiers for, 670–671

parsing to data values, 672–673
using StringBuilder class, 666

strongly named assemblies, 289–290
struct keyword, 20, 157
struct method, 69
struct type, 42, 233, 480
structs, 317–325

are sealed, 324
are value types, 319
assigning to, 320
boxing and unboxing, 324
constructors and destructors for, 323

instance constructors for, 321–322
static constructors for, 323

field initializers not allowed for, 324
overview, 318
as parameter, 325
as return value, 325

structure
of assemblies, 285–286
of methods, 68–69

Student class, 550
student variable, 540
Students class, 551
subarrays, in jagged arrays, 356
subscribing, to events, 398–400
Substring method, 664
Sum method, 197
Sum operator, 564
sum variable, 80

 INDEX

710

summary tag, 682–683
SuperLib assembly, 271, 273–274
SuperLib.cs file, 270
SuppressFinalize method, 141
switch keyword, 20
switch statement, 245–249

example of, 247
goto statement inside of, 261
labels for, 249

syntactic rules, for preprocessor directives,
628–629

System namespace, 17, 23, 137, 237,
283–284, 401

System.Array class, 345, 356, 364
System.Attribute class, 654
System.Boolean type, 37
System.Byte type, 37
System.Char type, 37
System.Collections namespace, 511
System.Collections.Generic namespace, 536
System.Console class, 284
System.Console.WriteLine method, 284
System.Decimal type, 37
System.Double type, 37
System.Exception class, 301
System.IDisposable interface, 262
System.Int16 type, 37
System.Int32 type, 37
System.Int64 type, 37
System.IO namespace, 264
System.Linq.Enumerable class, 569
System.NotSupportedException exception, 536
System.Nullable<T> type, 678
System.Object type, 37
System.Reflection namespace, 640
System.SByte type, 37
System.Single type, 37
System.String class, 664
System.String type, 37
System.Text namespace, 666
System.Threading namespace, 598, 616, 624
System.Threading.Tasks namespace, 599
System.Timers namespace, 406
System.Timers.Timer class, 626
System.UInt16 type, 37
System.UInt32 type, 37
System.UInt64 type, 37
System.ValueType class, 324
System.ValueType type, 440, 456
System.Windows.Forms.Timer class, 626

 T
T Factory<out T>() delegate, 496
t1 variable, 65

t2 variable, 65
templates, types are, 33
Test class, 380
text output, 23
TextWriter class, 264
theDealer variable, 56
TheRealValue field, 123, 125, 127
this accessor, 136
this keyword, 20, 147, 150, 178, 199, 486, 567
Thread class, 598, 616
Thread.CurrentThread.CurrentCulture

property, 670
threads. See also asynchronous

programming
throw keyword, 20
throw statement, 313–314
throwing exceptions

overview, 313
without exception object, 314

TimeOfInstantiation field, 133
Timer class, 406, 624
TimerCallback delegate, 624
timers, for asynchronous programming, 624
toExclusive parameter, 599
ToLower method, 664
ToString method, 335–336, 478, 666
ToUpper method, 664–665
TraceMessage method, 648–650
TrafficLight enum, 328, 330
TrafficLight type, 328–329, 339
trees, XML

overview, 580
using values from, 581–589

adding nodes, 584–585
attributes for, 586–589
methods for manipulating, 585–589

true keyword, 20
try block, 263, 299–300, 304, 306, 308, 313
try keyword, 20
try statement, 299–300, 311
TryParse method, 673
type, setting for enumerations, 330
Type class, 640–641

using GetType method, 642
using typeof operator, 644

type conversions, 230–232
type operator category, 209
type safety, of .NET Framework, 6
typeof keyword, 20
typeof operator

overview, 236–238
for Type class, 644

types
of arrays, 343–368
C# program as set of type declarations, 32

 INDEX

711

data members, 34
for delegates, 372
function members, 34
instantiating, 33
in namespaces, 280
nullable, 46–48

assigning to, 48
creating, 46–47

predefined, 35–37
reference types, 41–42

categorizing C# types, 42
storing members of, 41–42

as templates, 33
user-defined, 38
value types, 41–42

 U
u flag, gacutil.exe utility, 292
uint keyword, 20
uint type, 37, 42, 204, 332
ulong keyword, 20
ulong type, 37, 42, 204
UltraLib assembly, 273–274, 278
unary arithmetic operators, 229
Unary operator category, 209
unboxing

conversions, 456–457
structs, 324

unchecked case, 444
unchecked context, 442, 445
unchecked expression, 443
unchecked keyword, 20
unchecked operators, for numeric

conversions, 442–443
unchecked statements, for numeric

conversions, 443
unsafe keyword, 20
user-defined conversions, 458–462

constraints on, 458
evaluating, 461
example of, 459–460
example of multistep, 461–462

user-defined nullable types, 677–678
user-defined types, 38
ushort keyword, 20
ushort type, 37, 42, 439
using alias directive, 284
using directive, 182, 283–284, 536
using keyword, 20
using namespace directive, 283
using statement, 262–266

example of, 264–266
multiple resources in, 265
nesting of, 265
using resource with, 263

 V
ValidOn property, 658–659
value keyword, 20
value parameters, 83–85, 122–123, 127, 151,

408
Value property, 593, 674, 677–678
value types, 41–42

categorizing C# types, 42
structs are, 319

<value> tag, 683
values, of variables, 45, 153
var keyword, 20, 71, 351, 473, 540, 544
Var1 parameter, 147
var1 variable, 72, 436
var2 variable, 43, 72, 436
variables, 43–45

declaring, 43–44
automatic initialization, 44
initializers for, 44
multiple, 45

in for loop, scope of, 255
using value of, 45

VB (Visual Basic), 2
Ver field, 657
vertical tab character, 206
virtual keyword, 20, 191
virtual methods, 170–172
virtual modifier, 143, 170–171, 191
virtual Print method, 170
visibility, and nested types, 686–688
Visual Basic (VB), 2
void Action1<in T>(T p) delegate, 498
void F<in T>(T p) delegate, 499
void keyword, 20, 159
void methods, and return values for

methods, 78û79
void type, 76, 122, 151, 159, 384, 401
volatile keyword, 20

 W
wait-until-done pattern, for BeginInvoke

and EndInvoke delegate
methods, 616

WebMethod attribute, 650
where clause

for constraints on generics, 479
for LINQ, 556

where keyword, 20, 479
Where method, 543
Where operator, 567
while keyword, 20
while loop, 250, 258
while statement, 74

 INDEX

712

whitespace, 21
Windows Presentation Foundation (WPF)

program, 610, 612
WorkerReportsProgress property, 604–605
WorkerSupportsCancellation property, 604–

605
WPF (Windows Presentation Foundation)

program, 610–612
Write class, 23
WriteLine class, 24
WriteLine method, 69, 283, 339, 579, 594,

667
WriteLine statement, 77, 79, 228, 303, 359,

381, 387, 540, 560, 594
write-only properties, 128

 X
X class, 116, 119
x variable, 241, 387
XAttribute class, 578
XComment node, 578, 590
XDeclaration node, 578, 590
Xdocument class, 581
XDocument node, 578

XDocumentType node, 578
XElement class, 578, 581
XElement node, 578, 586–587
XElement type, 581
XML, LINQ to, 575–594

basics of, 576–577
classes for, 578
creating tree, 580
and markup languages, 575
using queries with, 592
using values from tree, 581–589
working with documents, 579
XComment node, 590
XDeclaration node, 590
XProcessingInstruction node, 590–591

XML tags, comments using, 683
XNode class, 578
XProcessingInstruction node, 578, 590–591

 Y, Z
yield break statement, 525
yield keyword, 20
yield return statement, 524–525

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

	Prelim
	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Introduction
	C# and the .NET Framework
	Before .NET
	Windows Programming in the Late 1990s
	Goals for the Next-Generation Platform Services

	Enter Microsoft .NET
	Components of the .NET Framework
	An Improved Programming Environment
	Object-Oriented Development Environment
	Automatic Garbage Collection
	Interoperability
	No COM Required
	Simplified Deployment
	Type Safety
	The Base Class Library

	Compiling to the Common Intermediate Language
	Compiling to Native Code and Execution
	Overview of Compilation and Execution

	The Common Language Runtime
	The Common Language Infrastructure
	Important Parts of the CLI
	Common Type System (CTS)
	Common Language Specification (CLS)

	Review of the Acronyms

	Overview of C# Programming
	A Simple C# Program
	More About SimpleProgram
	Identifiers and Keywords
	Naming Conventions
	Keywords
	Main: The Starting Point of a Program
	Whitespace
	Statements
	Simple Statements
	Blocks
	Text Output from a Program
	Write
	WriteLine
	The Format String
	Multiple Markers and Values
	Comments: Annotating the Code
	More About Comments
	Documentation Comments
	Summary of Comment Types

	Types, Storage, and Variables
	A C# Program Is a Set of Type Declarations
	A Type Is a Template
	Instantiating a Type
	Data Members and Function Members
	Types of Members

	Predefined Types
	More About the Predefined Types

	User-Defined Types
	The Stack and the Heap
	The Stack
	Facts About Stacks
	The Heap

	Value Types and Reference Types
	Storing Members of a Reference Type Object
	Categorizing the C# Types

	Variables
	Variable Declarations
	Variable Initializers
	Automatic Initialization
	Multiple-Variable Declarations
	Using the Value of a Variable

	Static Typing and the dynamic Keyword
	Nullable Types
	Creating a Nullable Type
	Assigning to a Nullable Type

	Classes: The Basics
	Overview of Classes
	A Class Is an Active Data Structure

	Programs and Classes: A Quick Example
	Declaring a Class
	Class Members
	Fields
	Explicit and Implicit Field Initialization
	Declarations with Multiple Fields
	Methods

	Creating Variables and Instances of a Class
	Allocating Memory for the Data
	Combining the Steps

	Instance Members
	Access Modifiers
	Private and Public Access
	Depicting Public and Private Access
	Example of Member Access

	Accessing Members from Inside the Class
	Accessing Members from Outside the Class
	Putting It All Together

	Methods
	The Structure of a Method
	Code Execution in the Method Body

	Local Variables
	Type Inference and the var Keyword
	Local Variables Inside Nested Blocks

	Local Constants
	Flow of Control

	Method Invocations
	Return Values
	The Return Statement and Void Methods

	Parameters
	Formal Parameters
	Actual Parameters
	An Example of Methods with Positional Input Parameters

	Value Parameters
	Reference Parameters
	Output Parameters
	Parameter Arrays
	Method Invocation
	Expanded Form
	Arrays As Actual Parameters

	Summary of Parameter Types
	Method Overloading
	Named Parameters
	Optional Parameters
	Stack Frames
	Recursion

	More About Classes
	Class Members
	Order of Member Modifiers

	Instance Class Members
	Static Fields
	Accessing Static Members from Outside the Class
	Example of a Static Field
	Lifetimes of Static Members

	Static Function Members
	Other Static Class Member Types
	Member Constants
	Constants Are Like Statics

	Properties
	Property Declarations and Accessors
	A Property Example
	Using a Property
	Properties and Associated Fields
	Performing Other Calculations
	Read-Only and Write-Only Properties
	An Example of a Computed, Read-Only Property
	Example of Properties and Databases
	Properties vs. Public Fields
	Automatically Implemented Properties
	Static Properties

	Instance Constructors
	Constructors with Parameters
	Default Constructors

	Static Constructors
	Example of a Static Constructor
	Accessibility of Constructors

	Object Initializers
	Destructors
	Calling the Destructor
	The Standard Dispose Pattern

	Comparing Constructors and Destructors
	The readonly Modifier
	The this Keyword
	Indexers
	What Is an Indexer?
	Indexers and Properties
	Declaring an Indexer
	The Indexer set Accessor
	The Indexer get Accessor
	More About Indexers
	Declaring the Indexer for the Employee Example
	Another Indexer Example
	Indexer Overloading

	Access Modifiers on Accessors
	Partial Classes and Partial Types
	Partial Methods

	Classes and Inheritance
	Class Inheritance
	Accessing the Inherited Members
	All Classes Are Derived from Class object

	Hiding Members of a Base Class
	Base Access
	Using References to a Base Class
	Virtual and Override Methods
	Overriding a Method Marked override
	Case 1: Declaring Print with override
	Case 2: Declaring Print with new
	Overriding Other Member Types

	Constructor Execution
	Constructor Initializers
	Class Access Modifiers

	Inheritance Between Assemblies
	Member Access Modifiers
	Regions Accessing a Member
	Public Member Accessibility
	Private Member Accessibility
	Protected Member Accessibility
	Internal Member Accessibility
	Protected Internal Member Accessibility
	Summary of Member Access Modifiers

	Abstract Members
	Abstract Classes
	Example of an Abstract Class and an Abstract Method
	Another Example of an Abstract Class

	Sealed Classes
	Static Classes
	Extension Methods

	Expressions and Operators
	Expressions
	Literals
	Integer Literals
	Real Literals

	Character Literals
	String Literals
	Order of Evaluation
	Precedence
	Associativity

	Simple Arithmetic Operators
	The Remainder Operator
	Relational and Equality Comparison Operators
	Comparison and Equality Operations

	Increment and Decrement Operators
	Conditional Logical Operators
	Logical Operators
	Shift Operators
	Assignment Operators
	Compound Assignment

	The Conditional Operator
	Unary Arithmetic Operators
	User-Defined Type Conversions
	Explicit Conversion and the Cast Operator

	Operator Overloading
	Restrictions on Operator Overloading
	Example of Operator Overloading

	The typeof Operator
	Other Operators

	Statements
	What Are Statements?
	Expression Statements
	Flow-of-Control Statements
	The if Statement
	The if . . . else Statement
	The switch Statement
	A Switch Example
	More on the switch Statement
	Switch Labels

	The while Loop
	The do Loop
	The for Loop
	The Scope of Variables in a for Statement
	Multiple Expressions in the Initializer and Iteration Expression

	Jump Statements
	The break Statement
	The continue Statement
	Labeled Statements
	Labels
	The Scope of Labeled Statements

	The goto Statement
	The goto Statement Inside a switch Statement

	The using Statement
	Packaging Use of the Resource
	Example of the using Statement
	Multiple Resources and Nesting
	Another Form of the using Statement

	Other Statements

	Namespaces and Assemblies
	Referencing Other Assemblies
	The mscorlib Library

	Namespaces
	Namespace Names
	More About Namespaces
	Namespaces Spread Across Files
	Nesting Namespaces

	The using Directives
	The using Namespace Directive
	The using Alias Directive

	The Structure of an Assembly
	The Identity of an Assembly
	Strongly Named Assemblies
	Creating a Strongly Named Assembly

	Private Deployment of an Assembly
	Shared Assemblies and the GAC
	Installing Assemblies into the GAC
	Side-by-Side Execution in the GAC

	Configuration Files
	Delayed Signing

	Exceptions
	What Are Exceptions?
	The try Statement
	Handling the Exception

	The Exception Classes
	The catch Clause
	Examples Using Specific catch Clauses
	The catch Clauses Section
	The finally Block
	Finding a Handler for an Exception
	Searching Further
	General Algorithm
	Example of Searching Down the Call Stack

	Throwing Exceptions
	Throwing Without an Exception Object

	Structs
	What Are Structs?
	Structs Are Value Types
	Assigning to a Struct
	Constructors and Destructors
	Instance Constructors
	Static Constructors
	Summary of Constructors and Destructors

	Field Initializers Are Not Allowed
	Structs Are Sealed
	Boxing and Unboxing
	Structs As Return Values and Parameters
	Additional Information About Structs

	Enumerations
	Enumerations
	Setting the Underlying Type and Explicit Values
	Implicit Member Numbering

	Bit Flags
	The Flags Attribute
	Example Using Bit Flags

	More About Enums

	Arrays
	Arrays
	Definitions
	Important Details

	Types of Arrays
	An Array As an Object
	One-Dimensional and Rectangular Arrays
	Declaring a One-Dimensional Array or a Rectangular Array

	Instantiating a One-Dimensional or Rectangular Array
	Accessing Array Elements
	Initializing an Array
	Explicit Initialization of One-Dimensional Arrays
	Explicit Initialization of Rectangular Arrays
	Syntax Points for Initializing Rectangular Arrays
	Shortcut Syntax
	Implicitly Typed Arrays
	Putting It All Together

	Jagged Arrays
	Declaring a Jagged Array
	Shortcut Instantiation
	Instantiating a Jagged Array
	Subarrays in Jagged Arrays

	Comparing Rectangular and Jagged Arrays
	The foreach Statement
	The Iteration Variable Is Read-Only
	The foreach Statement with Multidimensional Arrays
	Example with a Rectangular Array
	Example with a Jagged Array

	Array Covariance
	Useful Inherited Array Members
	The Clone Method

	Comparing Array Types

	Delegates
	What Is a Delegate?
	Declaring the Delegate Type
	Creating the Delegate Object
	Assigning Delegates
	Combining Delegates
	Adding Methods to Delegates
	Removing Methods from a Delegate
	Invoking a Delegate
	Delegate Example
	Invoking Delegates with Return Values
	Invoking Delegates with Reference Parameters
	Anonymous Methods
	Using Anonymous Methods
	Syntax of Anonymous Methods
	Return Type
	Parameters
	params Parameters
	Scope of Variables and Parameters
	Outer Variables
	Extension of Captured Variable’s Lifetime

	Lambda Expressions

	Events
	Events Are Like Delegates
	An Event Has a Private Delegate

	Overview of Source Code Components
	Declaring an Event
	An Event Is a Member
	The Delegate Type and EventHandler

	Raising an Event
	Subscribing to an Event
	Removing Event Handlers

	Standard Event Usage
	Using the EventArgs Class
	Passing Data by Extending EventArgs
	Using the Custom Delegate

	The MyTimerClass Code
	Event Accessors

	Interfaces
	What Is an Interface?
	Example Using the IComparable Interface

	Declaring an Interface
	Implementing an Interface
	Example with a Simple Interface

	An Interface Is a Reference Type
	Using the as Operator with Interfaces
	Implementing Multiple Interfaces
	Implementing Interfaces with Duplicate Members
	References to Multiple Interfaces
	An Inherited Member As an Implementation
	Explicit Interface Member Implementations
	Accessing Explicit Interface Member Implementations

	Interfaces Can Inherit Interfaces
	Example of Different Classes Implementing an Interface

	Conversions
	What Are Conversions?
	Implicit Conversions
	Explicit Conversions and Casting
	Casting

	Types of Conversions
	Numeric Conversions
	Implicit Numeric Conversions
	Overflow Checking Context
	The checked and unchecked Operators
	The checked and unchecked Statements
	Explicit Numeric Conversions
	Integral to Integral
	float or double to Integral
	decimal to Integral
	double to float
	float or double to decimal
	decimal to float or double

	Reference Conversions
	Implicit Reference Conversions
	Explicit Reference Conversions
	Valid Explicit Reference Conversions

	Boxing Conversions
	Boxing Creates a Copy
	The Boxing Conversions

	Unboxing Conversions
	The Unboxing Conversions

	User-Defined Conversions
	Constraints on User-Defined Conversions
	Example of a User-Defined Conversion
	Evaluating User-Defined Conversions
	Example of a Multistep User-Defined Conversion

	The is Operator
	The as Operator

	Generics
	What Are Generics?
	A Stack Example

	Generics in C#
	Continuing with the Stack Example

	Generic Classes
	Declaring a Generic Class
	Creating a Constructed Type
	Creating Variables and Instances
	The Stack Example Using Generics
	Comparing the Generic and Nongeneric Stack

	Constraints on Type Parameters
	Where Clauses
	Constraint Types and Order

	Generic Methods
	Declaring a Generic Method
	Invoking a Generic Method
	Inferring Types
	Example of a Generic Method

	Extension Methods with Generic Classes
	Generic Structs
	Generic Delegates
	Another Generic Delegate Example

	Generic Interfaces
	An Example Using Generic Interfaces
	Generic Interface Implementations Must Be Unique

	Covariance and Contravariance in Generics
	Covariance and Contravariance in Interfaces
	More About Variance

	Enumerators and Iterators
	Enumerators and Enumerable Types
	Using the foreach Statement
	Types of Enumerators

	Using the IEnumerator Interface
	Declaring an IEnumerator Enumerator

	The IEnumerable Interface
	Example Using IEnumerable and IEnumerator

	The Noninterface Enumerator
	The Generic Enumeration Interfaces
	The IEnumerator<T> Interface
	The IEnumerable<T> Interface
	Iterators
	Iterator Blocks
	Using an Iterator to Create an Enumerator
	Using an Iterator to Create an Enumerable

	Common Iterator Patterns
	Producing Enumerables and Enumerators
	Producing Multiple Enumerables
	Producing Multiple Enumerators
	Behind the Scenes with Iterators

	Introduction to LINQ
	What Is LINQ?
	LINQ Providers
	Anonymous Types

	Query Syntax and Method Syntax
	Query Variables
	The Structure of Query Expressions
	The from Clause
	The join Clause
	What Is a Join?
	The from . . . let . . . where Section in the Query Body
	The from Clause
	The let Clause
	The where Clause
	The orderby Clause
	The select . . . group Clause
	Anonymous Types in Queries
	The group Clause
	Query Continuation

	The Standard Query Operators
	Signatures of the Standard Query Operators
	Delegates As Parameters
	The LINQ Predefined Delegate Types
	Example Using a Delegate Parameter
	Example Using a Lambda Expression Parameter

	LINQ to XML
	Markup Languages
	XML Basics
	The XML Classes
	Creating, Saving, Loading, and Displaying an XML Document
	Creating an XML Tree
	Using Values from the XML Tree
	Adding Nodes and Manipulating XML
	Working with XML Attributes
	Other Types of Nodes
	XComment
	XDeclaration
	XProcessingInstruction
	Using LINQ Queries with LINQ to XML

	Introduction to Asynchronous Programming
	Processes, Threads, and Asynchronous Programming
	Multithreading Considerations
	The Complexity of Multithreading

	Parallel Loops
	The BackgroundWorker Class
	Example Code Using the BackgroundWorker Class
	Example of the BackgroundWorker Class in a WPF Program

	Asynchronous Programming Patterns
	BeginInvoke and EndInvoke
	The Wait-Until-Done Pattern
	The AsyncResult Class
	The Polling Pattern
	The Callback Pattern
	The Callback Method
	Calling EndInvoke Inside the Callback Method

	Timers

	Preprocessor Directives
	What Are Preprocessor Directives?
	General Rules
	The #define and #undef Directives
	Conditional Compilation
	The Conditional Compilation Constructs
	Diagnostic Directives
	Line Number Directives
	Region Directives
	The #pragma warning Directive

	Reflection and Attributes
	Metadata and Reflection
	The Type Class
	Getting a Type Object
	What Is an Attribute?
	Applying an Attribute
	Predefined, Reserved Attributes
	The Obsolete Attribute
	The Conditional Attribute
	Example of the Conditional Attribute
	Predefined Attributes

	More About Applying Attributes
	Multiple Attributes
	Other Types of Targets
	Global Attributes

	Custom Attributes
	Declaring a Custom Attribute
	Using Attribute Constructors
	Specifying the Constructor
	Using the Constructor
	Positional and Named Parameters in Constructors
	Restricting the Usage of an Attribute
	The Constructor for AttributeUsage
	Suggested Practices for Custom Attributes

	Accessing an Attribute
	Using the IsDefined Method
	Using the GetCustomAttributes Method

	Other Topics
	Overview
	Strings
	Using Class StringBuilder
	Formatting Numeric Strings
	The Alignment Specifier
	The Format Component
	Standard Numeric Format Specifiers

	Parsing Strings to Data Values
	More About the Nullable Types
	The Null Coalescing Operator
	Using Nullable User-Defined Types
	Nullable<T>

	Method Main
	Accessibility of Main

	Documentation Comments
	Inserting Documentation Comments
	Using Other XML Tags

	Nested Types
	Example of a Nested Class
	Visibility and Nested Types

	Interoperating with COM

	Index
	Symbols and Numerics A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	U
	W
	X
	Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

