THE EXPERT’S VOICE® IN .NET

lllustrated

C# 2010

C# illustrated clearly, concisely, and visually

Written and lllustrated by

Daniel M. Solis

Apress:

<W02°}00GaMOM MMM> 00ga iMOAN WO} PEOJUMO]

lllustrated C# 2010

Daniel M. Solis

Apress-

Ilustrated C# 2010
Copyright © 2010 by Daniel M. Solis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and

the publisher.

ISBN-13 (pbk): 978-1-4302-3282-7
ISBN-13 (electronic): 978-1-4302-3283-4
Printed and bound in the United States of America987654321

President and Publisher: Paul Manning

Lead Editor: Ewan Buckingham

Development Editor: Matthew Moodie

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan
Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell

Copy Editor: Kim Wimpsett

Compositor: Mary Sudul

Indexer: BIM Indexing & Proofreading Services

Artist: Daniel Solis

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waww.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales—-eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Twould like to dedicate this book to
Sian; to my parents, Sal and Amy;

and to Sue.

Contents at a Glance

CoNtents.......ccovvemrimsmismnm s s ——————————————————————————_— v
About the AUROFcccnimmniemnmisssnss s n s n s XXi
Acknowledgments..........ccccumummmmmsnnmmsnsmsssnsmssssssssssssssssssssssnsssssnsssssnssnssnnsnssnnnnnsns XXVi
INtroduction.........ccccciiiiemmmimnmnnesnnss s XXVii
Chapter 1: Gi# and the .NET Frameworkcccusemmssssnsssssnsssssssssssnsssssnsssssnsssssnnss 1
Chapter 2: Overview of C# Programming......ccccusseeemsmssssssnssssssssnssssssssnssssssnsnssssss 15
Chapter 3: Types, Storage, and Variables........ccouemmmmmsssmnmmmssssnssmssssssssssssssssnnssns 31
Chapter 4: Classes: The BaSiCScuusrmmsmsssmsssmmsssmssssmssssmssssssssssssssssssssssnsassnsnss 49
Chapter 5: Methods..........ccucmmnnmmmismmmssmmmsmms s s s s s s e 67
Chapter 6: More About ClassSes.......cuusmussmsssmmsssmssssmsssssssssssssssssssssssssnsssnssnsnsnsns 109
Chapter 7: Classes and Inheritanceccccummissmssmmsmsmmssmssssmsssss s s 161
Chapter 8: Expressions and Operators.........cccsummssssmmmssssssnmsssssssnssssssssnssssssnsnnns 201
Chapter 9: Statementsccccvmnmmism s ———— 239
Chapter 10: Namespaces and ASSemDbIIesccccuusseemmmssssnnnsmsssssnssssssssnsssssssnnnnss 269
Chapter 11: EXCEPLiONS ...ccvviieememmnnnnssssssssssssssnnsssssssssssssssssssssssssssssssssnnsssnsssssnns 297
Chapter 12: STruCtS........cccmmsmmmismsmmsnsmssssmssssssssssssssnsssssnsssssnsssssnnssssnssnssnnsnsns 317
Chapter 13: EnUMerationscccccurrimmssssssssssmmmmmmssssssssssssssssssssssssssssssssssesssssnns 327
Chapter 14: Arrays.....ccccccrmsssssssnmmmmmmssssssssssssssseesssssssssssssnssesssssssssnnsnnnssessssssns 341
Chapter 15: Delegates........cciuummmmmmmssssnnnmmssssnsnmsssssnsnssssssnsnssssssnnsssssssnnnnsssssnnnnss 369
Chapter 16: Events..........ccccusmmmissmsmmssmsmmssssmsssssmsssssssssssssssssssssasssssssssssnssnssansnnsns 391
Chapter 17: INterfacescccuursemmmmmmmmmmssssssssssssnnmsssssssssssssssssnssesssssssssnnsnnnssessssnnns 409
Chapter 18: CONVEIrSIONS.......uuuusseenmsssssnsnmsssssnssssssssnsnssssssnsnssssssnnnssssssnnnnsssssnnnnss 435
Chapter 19: GENeriCS......ccxmmsmmsssmssmmssssssssmsassssmsssssssnsssnssssssssnssssnsnsansnsnssnsnsnnas 465
Chapter 20: Enumerators and lteratorscccccsumsmmmsssmsmssnsssssssssssssssssnssnnns 505
Chapter 21: Introduction to LINQcccoussmmmmsmmmmsmsmsssssmsssssssssssssssssssssnssnnsns 537
Chapter 22: Introduction to Asynchronous Programmingccccsssssssssssssssnnnss 595
Chapter 23: Preprocessor DireCtivesccueemmmmssssmmmmssssssnsmssssssssssssssssssssssnnnnns 627
Chapter 24: Reflection and Attributes..........cccoumsmmmmsmsssssnsssssnsssssssssssssssssnssnssns 639
Chapter 25: Other TOPICS ...ccuuuuusmenmmssssnnnmmssssnsnmsssssnsnssssssnsnssssssnnnssssssnnnnsssssnnnnss 663
INA@X ..ocueeeisisensssnnssisanssssansssssnsssssnsssssnsasssnnnsssnnnsasannnssannnssnnnnnsnnnnnssnnsnssnnnnssnnnnsns 693

Contents

Contents at @ GIANCE...........ccvvermrsmmsmsmiss s ————— iv
About the AUROFcccsismmmiennmsensnss s XXi
Acknowledgments..........cccccummsemmmssnsmsssnsmsssnsssssssssssassssssnsssssnsssssnssssanssnssnnsnssnnnnnsns XXVi
INtroduction.........ccccciiiiemmmimnmnnesnnss s XXVii
Chapter 1: Gi# and the .NET Frameworkcccusemmssssnsssssnsssssssssssnsssssnsssssnsssssnnss 1
BEfOre .NET ...ttt 2
Windows Programming in the Late 1990S...........ccoeurriirernecrereee e se s seseens 2
Goals for the Next-Generation Platform Services ... 2
Enter MicroSoft .NET ... s s 2
Components of the .NET FrameWOrK..........cccuiss s 3
An Improved Programming ENVIFONMENT.........ccoicoiriccrererecner e se s 4
Compiling to the Common Intermediate Languagecccceeeeerereeseeseessssessesssesessensennns 7
Compiling to Native Code and EXECULION..........cccoeeeeerereese e se e sne e e 8
Overview of Compilation and EXECULIONccceeerire i s s sa e sa e nn 9
The Common Language RUNtIME.........ccecrercersrcrcr s 10
The Common Language INfrastructurecccvevercersrsssessesses s 11
Important Parts 0f the CLL.........ccceceiriese ettt s s s s s s s e s sn e nnennennen 12
Review of the ACTONYMS ... 13
Chapter 2: Overview of C# Programming......ccccuusseemsmssssssnmsssssssnssssssssnssssssnsnssssss 15
A Simple CH# Program.........c.ccocverensnsmnsssesssssessssssssesssssssssssesssssssssssssssssssssssssssssssssssssnes 16
More About SIMPIEPrOgram...........cceceercersessessessesse s se s s snssnssnsnnnnns 17
Identifiers and KEYWOIdS.........ccocvervriernenseris s sn s s snsnnanns 1

CONTENTS

Naming ConVENtioNS..........ccocverimnmminirs s 19
KEYWOIUSceicerisce et s s 20
Main: The Starting Point of @ Program..........ccccocriririrsrcscsses s 21
WRITESPACEcovivcrceriecrs s 21
Statements ... —————————— 22
Simple Statements ... ——————— 22
5] 0T 22
Text Output from @ Programcccocvcrcrsnsrser s 23
LSRR 23
WITEBLINE....ciecce sttt 24
The Format String.......cccvrin s ————— 25
Multiple Markers and ValUEs ... s 26
Comments: Annotating the Code ... 27
More About COMMENTS ... ——— 28
Documentation COmMMENtS ..o ——— 28
Summary of COMMENT TYPEScoveeeeeerreeerre e sre e sre s s snesnssnesnesnssnesnssnennanans 29
Chapter 3: Types, Storage, and Variables........ccouemmmmsssssnmmsssssnssmssssssssssssssnsnnsans 31
A C# Program Is a Set of Type Declarations...........cccocvvrercersssssesss s 32
AType IS @ TEMPIALEccocercercerr s 33
Instantiating @ TYPEccvcevercrcrc s 33
Data Members and Function Members............ccocvinninnnn s 34

TYPES OF MEIMDELS ...t e e s e 34
Predefined TYPESc.cvcicrrirrrr s r e e nn e nn e n e nnnnn 35

More About the Predefined TYPES ..o s 36
USEr-DefiNned TYPESccueeeeererrerreerersessesses e ssessessesssssesaessesnssassnssresrssrssnssnssnesassnssnesnannnnnnns 38
The Stack and the Heap.......c.cccvnnnnnss s 39

THE STACK......c.ceeeeeee ettt E R e e e e R e Ranea 39

THE HBAP ...t 40

CONTENTS

Value Types and Reference TYPES.......ccvcvrrrerrersersessesssssss s s s s ses s e e s snssessnnnes 41
Storing Members of a Reference Type ODJECT ... s 41
Categorizing the CH TYPES ..ot se s e e se s e r e enep s en s 42

VarADIEScececcir e —————————————— 43
Variable DECIArAtiONS..........coorceerereeeerene e se e e se s se s e e s e p e nnnnanns 43
Multiple-Variable DECIAratioNnsccoceerereeerererecresiee e re s e s sn s 45
Using the Value of a Variable............c.covrinini s 45

Static Typing and the dynamic KEYWOrdcoeeeeececesesc e sns e e e 45

T 10 Lo 0T 46
Creating @ NUIADIE TYPER ..ottt 46
Assigning t0 @ NUADIE TYPEcevrerereriiiririririssss s 48

Chapter 4: Classes: The BasiCS ..., 49

OVErvieW Of CIASSESccccrieiricirsi s 50
A Class Is an Active Data StrUCTUNE ... s 50

Programs and Classes: A Quick EXample ... 51

Declaring @ Class ..o 52

Class MEMDEIS ... 53
][0 TP S 53
MELNOGS.......c e 55

Creating Variables and Instances of @ Class..........ccormnnmnnn e 56

Allocating Memory for the Data...........cccecverrerrrsnss s s 57
Combining the SIEPS ..o ————————— 58

Instance MemMDErS ... ————————— 59

ACCESS MOTITIEIS ...covrveucrrrrcerisei i 60
Private and PUDIIC ACCESS ... 60

Accessing Members from Inside the Class............cmn 63

Accessing Members from Qutside the Class..........coumnnnnnnnees 64

Putting It All TOQELNETccceecerere s sn e n e 65

vii

CONTENTS

viii

Chapter 5: Methods..........ccuccsmnsmmismmssmmmsmms s s s s 67
The Structure of @ Method..........c.cocccriinnn s ————— 68
Code Execution in the Method Body ... 69
LoCal VArIADIEScocereriirisni s 70
Type Inference and the Var KEYWOIT. ..o se s se s se s sesnanens n
Local Variables Inside Nested BIOCKS ... 72
Local ConStants ... —————— 73
FIOW OF CONTIOLcvveitcrrrn s 74
Method INVOCALIONScccceiieierriir 75
Return Values ... 76
The Return Statement and Void Methods............cccissss s 78
Parameters ... ————————— 80
FOrmal Parameters..........ocuiiininiii s 80
ACtu@l Parameterscccviiiiniiiini i 81
Value Parameters ... s 83
Reference Parameters...... ..o 86
Output Parameters.........ccvrinrnn s ————————— 89
Parameter ArTayS..... ..o 92
Method INVOCALION ... 93
Arrays As Actual Parameters.........c.coucermiiniisn s 96
Summary of Parameter TYPEScoeveeeeererrerre e e e ssessessessessssnesnssnssnesnssnssnssnssnsnnnns 96
Method OVerloading...........ouvceerienerneninnen 97
Named Parameters........c.cornmn s 98
Optional Parameterso s 100
STACK Frames......ccccuiiiniiiii s 104
RECUISION......ccuciiicii et 106
Chapter 6: More About Classes.........cummmmmmmmsmmsmsmsmssssssssssaam. 109
Class MEMDEIS ... 110
Order of Member MOGIfIers ... 110

CONTENTS

Instance Class MEMDEIS ... 112
SHAtIC FIRldS ..o —————— 113
Accessing Static Members from Qutside the Class..........c.corvnnnnnnnnsnnennn 114
Example of @ Static Field..........cu i 114
Lifetimes of Static MEMDEIS ..o 115
Static Function MemDbErs...........cvnin s ————— 116
Other Static Class Member TYPES.......ccccerrerrerese e 117
Member ConStants.........cocuceniini e ——————— 118
Constants Are Like STatiCS..........cvrrrmnnn s 119
PrOPEIIES ...ceeciiecce it 121
Property Declarations @and ACCESSOIS.........cuururerererersrsmsssssssssssss s 122
A Property EXAMPIEcccceceeiiiiisiesiesesese e s n s snesna s sne s s seasnasnesnennis 123
USING @ PIOPEBILYceueiiceriire et e s e st s e s e b s e e s b s b e e b e n e e nennne 124
Properties and ASSOCIated Fielts ... 125
Performing Other CalCUIALIONS...........cccoereieiciri et 127
Read-0nly and Write-0nly Properties........ccuerrennenne s sesssss s ssssessssessssessssessessssessenesns 128
An Example of a Computed, Read-0nly Propertyccccovcrevnrrenniennse s s sessesessessens 129
Example of Properties and Databases..........cccuvererererenenesene s sesese s s sessesses e ssessessessssssses 130
Properties VS. PUDIIC FIEIASccco it 130
Automatically Implemented Propertiescccvvriennicnnsinessc s sse e sss s sesnas 131
LT E o (0] 1] T OO 132
Instance CONSIIUCTONS.........ccviiirrir 133
Constructors With Parameters...........cvvnni s 134
Default CONSITUCTONS ... 135
Static CoNSIrUCTONS ..o ————————— 136
Example of @ Static CONSIIUCTON ..o 137
Accessibility 0f CONSIFUCTONScouvvieiir 137
Object INIHANZErSoceeercci e —————————— 138
DY 111 (0] £ 140
Calling the DESIIUCION ... e 141
The Standard DiSP0oSe Pattern ... 143

Download from Wow! eBook <www.wowebook.com>

CONTENTS

Comparing Constructors and Destructorscocevevesscececs s 144
The readonly MOIfier. ... 145
The this KEYWOrd. ... 147
INABXEIS ...ttt ——————— 148
WHat IS @N INABXEI? ... s 149
INAEXErS AN PrOPEITIES.ccecerererereresereesssssse e se e sa e e et e se e e e s s nanan 149
DECIArNG AN INABXEN ...ttt e e e e p s bR n s s s 150
THE INAEXET SET ACCESSOLuerueeeeeirercirir st see et s st s e s e s e e s e e b e se s e st e e s sn e aesaesae s st e e s nnnannns 151
THE INAEXET BE ACCESSONc.vucererucerrseer s sa s e e s h e a e s e s s s 152
MOre ADOUL INABXEIScvieeerescire e s p s s sa e srnnen 152
Declaring the Indexer for the Employee EXample.ccooereeererrernessecscseeseesesee e 153
Another INdeXer EXAMPIEccoceeeeeiirernssnessse e ss s sn e ss s s n s s sn s snesn s snen s 154
INAEXEr OVEIIOAUING.cuceceeirerererere e se s e e e e s R a s nanan 125
Access Modifiers 0N ACCESSOIS.c.ccverrrierersmsesessesssssssssessesssssssssesssssssesssssssssssssssesns 156
Partial Classes and Partial TYPes.cccccvvrrrrnrnnnrnssse s 157
Partial MEENOGS ...t e e e e ne s s 139

Chapter 7: Classes and Inheritanceccoccunemmmmmnsssnnmmnssssssmsssssssssssssssssnnnnsns 161

Class INNEHTANCEcccereeereeeece e r e r s sr e sn e n e sn e e n e n e n s 162
Accessing the Inherited MemDbErs. ... 163
All Classes Are Derived from Class ODJECL.cccococvercrrererererere e 164
Hiding Members of @ Base Class.c.ccocrvrrrnrsnrinninssseres s ses e e 165
BASE ACCESSceuerueruereriris s st s st s st e s e e e e e e e e e n e e 167
Using References t0 @ Base Class.cccccoeeererenesesseeses s ses s s s e s e sennes 168
Virtual and Override MEthOUS. ... e 170
Overriding a Method Marked OVEITIE.c.ccceeecrcccrcere e ennas 172
Overriding Other MemDBEr TYPES. ..ocoveurerereeeceeeseeece e ss s s 175
CoNSLructor EXECULIONccecoeeeeeeeccececsrecse s s s sn s sn s sn s sn s sn s sn s 176
CONSIUCLON INIHANZELS ...c.coeeeeeerererererire et e 178

ClaSS ACCESS MOUIfIBIS.cceieriririiecirciiie s ss e sa b e s s s b e b ae s e s e s b e be s be s an s bn s e s b snis 181

CONTENTS

Inheritance Between ASSEMDIIES ... 182
Member ACCESS MOTIfIErScceruirrirrieirisir s 184
Regions ACCeSSING @ MEMDET ..ot 185
Public Member ACCESSIDIlitYcovririii i ——————— 186
Private Member ACCESSIDIlILYovvrerieiinri s ————— 186
Protected Member ACCESSIDIlItYcovriinin i ———————— 187
Internal Member ACCESSIDIITYcoereriee et 187
Protected Internal Member ACCeSSIDility.........coocoerrreinere s 188
Summary of Member ACCESS MOUIfIEISccocoeeerrecre e s 188
Abstract MEMDErS ... ———————— 190
ADSTract ClASSESccvereieiriree s 192
Example of an Abstract Class and an Abstract Method...........c.cocovvnnnnnnnnnnnn s 193
Another Example of an ADSEract Class ... 194
SEAIBH CIASSES......coeruiuirerrisie st 195
SHALC ClASSEScvcerrciirinis i ————— 196
Extension Methods ... 197
Chapter 8: Expressions and Operators........ccccsuumssssmmmssssssnmsssssssnssssssssnssssssnsnnns 201
(T [0 3L 202
I 203
Integer LIterals........c.coriinninn s 204
REAI LITBIAIS......ecuceeerieccresece e se e s e e ee s e e e e e e e e e ne e e e nnan 205
Character LItEralSccoeeeeeierece e sss e ss s s s snesresnssnssnssnssnssnssnssrs s snnnns 206
O] (410 =T 207
Order of Evaluation ... s 209
Lo (T o< 0 o 209
ASSOCTALIVILY ..vuvvrrsesesssessssess e 210
Simple Arithmetic OPerators ... s 212
The Remainder Operator ... s 213

[Bs.

CONTENTS

Relational and Equality Comparison Operatorscccverrrsersensessessessessessesssssessennns 214

Comparison and Equality Operationscccccrerrenniennnnssese s s ses e ssssessssens 215
Increment and Decrement OPerators ... 217
Conditional Logical OPerators..........cccceoeeeeresersessessessessnnes 219
0T ez L0 TC] (0] SRS 221
Shift OPEIAtOrS......couiuiirrrieiri i 223
Assignment OPeratorscccvcvcrcerserssses s 225

CompPOoUNd ASSIGNMENL........cooouieerereeee et se e se s sesae et se s s e e s ne e e e s ne e e enan 226
The Conditional OPErator ... 227
Unary Arithmetic OPeratorsoccoeeeeercrese e sre e sresn e snssnssnesresn e nnenns 229
User-Defined Type CONVEISIONS.........ccccceeeeeeeesessesssessssssssssessssssssesssssssssssessessessesssssennes 230

Explicit Conversion and the Cast OPerator ..o s eens 232
Operator OVerloading........ccccceeeeerrersessessessessessessessessesssssessssssssesssssssssssssssssssssssssssssnnes 233

Restrictions on Operator OVerloading...........ccvcerernnninnie s ss s ssesens 234

Example of Operator OVerloading.........cccccvernernrniennesne s s ss s se s 235
The typeof OPErator........ccccvcrcrcrsrsrs s n s n s 236
Other OPerators ... ———— 238
Chapter 9: Statementsccccvcmnmmism s ————— 239
What Are Statements?..........ccrinnn s ———— 240
Expression Statements ... ————— 241
Flow-of-Control Statements ..., 242
The if Statement ... ———— 243
The if ... else Statement..........cccvvrin i ——— 244
The switch Statement..........ccccnnn s ——— 245

A SWItCh EXAMPIE.....ceeiccicricii s 247

More on the SWitCh STateMEeNt ..o 248

R e T I TN 249
The While LOOPcccvieirmicirsi s 250

CONTENTS

T30 (0T T o 251
T {0 0T o 253
The Scope of Variables in a for Statement ... 255
Multiple Expressions in the Initializer and Iteration EXpressionccccovvececnenniencseneseseseseseseseenas 256
JUMDP STALEMENTS ... —————————— 257
The break Statement ... ————— 257
The continue Statement ... ———— 258
Labeled Statements..........ccoinin s ————— 259
LADEIS ...ovsceert sttt 259
The Scope of Labeled STatements.........coonnnnnnn s 260
The goto Statement ... ——————— 261
The goto Statement Inside a switch Statement..............co e 261
The using Statement..........cccni i ————— 262
Packaging USe 0Of the RESOUICE.........cccou it se s 263
Example of the using Statement ... —————— 264
Multiple Resources and NESHING..........coeeererrenererereese s enas 265
Another Form of the using Statement ... 266
Other Statements.........covin s —————— 267
Chapter 10: Namespaces and Assemblies...........cvmmimmimmmmsmsnsmssaem. 269
Referencing Other ASSEMDBIIEScocceiirienensinnnie s 270
The MSCOID LIDFATY.......ccoeeeeeeeeee e s e e s 273
T LTS 0 T 275
NamesPaCce NAMES.........ccuviniiii 279
More About NamMESPACESccrreriimsiiicir e 280
Namespaces SPread ACI0SS FilES ...t 281
NESHING NAMESPACES.......couiecrerercere e se s r s e r e e s s e e s e npsne e nrnnan 282
The uSing DIreClIVES ... ———— 283
The using Namespace DIr€CIVE ... s 283
The usSing Alias DIFECHIVEcvviinins s 284

CONTENTS

The Structure of an ASSEMDBIY ... ———— 285
The Identity of an ASSEMDIY ..o ———— 287
Strongly Named ASSEMDIIES........ccccceeeererere e sre s sr e sn e sn e sassn e sn e nnees 289

Creating a Strongly Named ASSEMDBIYc.occeceerrencnerereese e e se e e e s sss s sesasneneseseas 290
Private Deployment of an ASSEMDIYccccocrcrrrcrrr s s 291
Shared Assemblies and the GAC ... 292

Installing AsSembIlies iNt0 the GAC ... 292

Side-by-Side Execution in the GAC............coviirnni 293
Configuration FileS.......couriiniii 294
Delayed Signing......ccccvcrrriiinnsserssse s 295
Chapter 11: EXCEPLiONS ...cccvvieeeemmmnnnrsssssssssssssnsssssssssssssssssssssssssssssssnssnnsssesssssnns 297
What Are EXCEPLIONS?.......cccriciriiirs s 298
The try Statement ... ——————— 299

Handling the EXCEPLION.......cccuciiiicircrn sttt b e e s a et s e p e nn e 300
The EXCeption ClassSes.......c.ccucvvrreriersersersessessesses s se s sn e s sns e snnnnas 301
The CatCh ClaUSEcccvcererirr et 303
Examples Using Specific catch CIauSESc.ccocvercrcercssessss e 304
The catch Clauses SECHION..........ccvrini i ————— 305
The finally BIOCKccoerieiriiirni s 306
Finding a Handler for an EXCEPLioN.......c.ccocvcrcrcrcescs s 307
Searching FUMNEr ... 308

GENEral AIGOMTNM.....c.ci e e s s b e e e e e p e e nnne 309

Example of Searching Down the Call STack ... 310
Throwing EXCEPLIONScccevcercererirce s 313
Throwing Without an Exception Object.........ccccverrrrrcscscrcr e 314
Chapter 12: STruCtS........cccimmsmmmismsmmsnsmsssssmsssssssssssssssssssssnsssssnsssssnsssssnsssssnnsnnsns 317
What Are STrUCES?.......coe v 318
SrUCES Are ValUe TYPES....cccoeeeereerrerrerrerse e ssessessessessesnssnesnssnsssssnssnssnssnssnssnssnssnssnnnes 319

CONTENTS

AsSIgNINg 10 @ SEIUCEceecerrr s 320
Constructors and Destructors..........cuvvnmnnnin s ——— 321
INSTANCE CONSIIUCIONS.....cocirererere e 321
STALIC CONSIIUCTONScuecececcciccei bbb 323
Summary of Constructors and DESIIUCIONSccoceceereicrereree e 323
Field Initializers Are Not AHOWEd.........ccocvcereercmrrerrerren e 324
STrUCES Are SEAIBM......cceeceeeeeeeeeecerre e r e r e n e sn e r e nn e n s 324
Boxing and UNDOXINGccccveervernmnrersessessessesses s s sesssssesssssessnssssssssssssssnssnssssssssennns 324
Structs As Return Values and Parameters.........cccoeeeeevenesececsssssss s ses s 325
Additional Information About STrUCES.........cccceercrcrrr s 325
Chapter 13: ENUMErationscccouusmmmmssmsmssssmsssssssssssssssssssssnsssssssssssnsssssnnsnssns 327
ENUMErations..........covininin s —————— 328
Setting the Underlying Type and EXPIICit VAIUESccccccvverrierirnennie s s e s e e sessssesnens 330
Implicit Member NUMDEING ... 331
Bit FIAGScv ittt —————— 332
The FIags ALHDULEcovieeiicc e e e 335
Example USING Bit FIAQSccoueeerirece e sa e s 337
More ADOUL ENUMS ... 339
Chapter 14: Arrays.....ccccccrmsssssssssnmmmmmmsssssssssssssssessssssssssssssnssesssssssssnnsnnnssesssssnns 341
4 USSR 342
DEFINILIONS ..vueieciiecir e e e e e s e e e AR ne e AR e e R neene 342
IMPOrtANT DELAIIScovieeeccceirer e ne e 342
TYPES OF AITAYS ...cceiererersesesse s s e e e e e e e e e n e np e e e nnennennnnnnnan 343
An Array As @n ODJECL.........cocrercrcrerrr s 344
One-Dimensional and Rectangular Arrays...........ccoceeeeeeesesesssssssssssssssssssssssssssssssenses 345
Declaring a One-Dimensional Array or a Rectangular Arrayccccvevniernnennsnsesnsessesessessssesenns 345
Instantiating a One-Dimensional or Rectangular Arraycccccveverersessessessessensennns 346
Accessing Array EIEMentS ... 347

CONTENTS

xvi

INILIAlIZING AN AFTAY ..ot s 348
Explicit Initialization of One-DimenSional ArTAYS..........cccoeerererererenererrsesese e e se s sessseesnns 348
Explicit Initialization of ReCtanguIar ArTaYSccoerrecrererenererinese e s 349
Syntax Points for Initializing Rectangular Arrays..........c.oococoeerenenernesesesnsee s sessenes 349
S 1T (e T 31 O GRS 350
IMPLCIHIY TYPEA AITAYS ...t e s bbb e e s pe e p e e nennns 351
PUtting It All TOGEINETceceecirectr et s p e s e p e nnne 352

JAGOEA AITAYS....ccceeeeeceecer e s s e s e s e s e s e s r s n s s s srssn e n e e s sn e nn e e e e e nnennannennenrnnnnn 353
Declaring @ JAGGEA AITAYcccoceereecrerrreereresesesesssseseses s e e e e s e se e s s e e ss s e s sesse e e sesesnssssnsnan 354
Shortcut INSTANTIALION ... ————————— 354
Instantiating @ JAgOEM AITAYccccoerreeeierereee e e e e ne s 355
Subarrays in JAGUEM AITAYS ...ccccceueerreieresesesesst st s s s sss s sss e s e st s e ss s se st s e ss s e sse e ssesessesessessssesenens 356

Comparing Rectangular and Jagged Arraysccccceeeeeressessssssssssssssssssssssssssssssssnnes 357

The foreach Statement ... ———— 358
The Iteration Variable IS Read-0nly ... 360
The foreach Statement with Multidimensional Arrays ... 361

Array COVAANCEcccvereieerrsee s s 363

Useful Inherited Array MEMDEIS ... 364
The CIone Method.........cvieiiiiiir s 366

ComPAring Array TYPEScceereeerrerrersessessesssssessessessesssssessssssssssssssssssssasssssssssssssssssssssnes 368

Chapter 15: Delegates........ccucumummmmsnsmsssnsmsssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnsnsnns 369

What Is @ Delegate?..........ccornnnn s 370

Declaring the Delegate TYPe.......ccccvvrirrrrmrsersrer s s 372

Creating the Delegate ODJECt.........cccoeeererere e s 373

AsSigning Delegatesccucvvrrrierrersrsrssss s s 375

Combining Delegates.........cocceeeeeeereeere e sr e sn e s 376

Adding Methods to Delegates...........cccvervrrersersensenses s e 377

Removing Methods from a Delegatecccocvvrcrcrcrcsssss e 378

INVOKING @ DEIEGALEc.ceeererererer s 379

CONTENTS

Delegate EXAmPIE........ccccvcrcririrersese s s 380
Invoking Delegates with Return Valuescccoevcercercrcessesses s 381
Invoking Delegates with Reference Parameters..........ccccvvrvrcrcscrcscescesses s ces e 382
Anonymous Methods ... ———— 383
Using ANONymMOUS METHOUSccoeruieieererecee et 383
Syntax of ANONYMOUS MELNOMSccovmieeiiereee et e 384
Scope of Variables and Parameters ... 386
Lambda EXPreSSiONS........cccceimnerinmssnsmss s s s s s e e 388
Chapter 16: Events..........ccccusmmmissmsmmssmsmmssssmsssssmsssssssssssssssssssssasssssssssssnssnssansnnsns 391
Events Are Like Delegates ..o s 392
An Event Has a Private Delegate ... 393
Overview of Source Code COMPONENTS.........cccvrimrernmnimmss e 394
Declaring an EVeNt...........ccviinicnsssssssssssss s 395
An Event IS @ MEMDEK ... ————————— 396
The Delegate Type and EventHandIer ... s 396
RaisSing an EVENt..........cccoiiniin s 397
Subscribing to an EVent..........cccnin 398
Removing EVENt HANGIEKS...........cocoeiuiccee e 400
Standard Event USAge ... s s 401
USiNG the EVENTAIGS ClaSS.....c..ocoeiererecrererccne e s p e e 401
Passing Data by EXtending EVENTAIGSccocomrreineneeeiriee et 402
Using the Custom Delegate ... e 403
The MyTImerClass COde ... s 406
EVENE ACCESSOIScuvieiiiricii s e 408
Chapter 17: Interfacescccvemmismmsssmmsssmsssmmssssss s s sssss s s sssn s snsnsnnns 409
What IS an Interface?.........c.cvrminnn s 410
Example Using the IComparable INterface ... 41
Declaring an INterface ... ————— 414

xvii

CONTENTS

xviii

Implementing an INterface...........cccvcvcrcrcrcrcn s —— 416
Example with @ Simple INTrface..........ccvriirrrcr e 417
An Interface Is @ Reference TYPE......cccvcvvrrerserserses s e 418
Using the as Operator with Interfacesccccoeeeeereccce s 420
Implementing Multiple Interfaces.........c.ccoverrrrrcrss s s 421
Implementing Interfaces with Duplicate Members..........ccccooverevercscrcscs s 422
References to Multiple Interfaces...........ccccinnnnn 424
An Inherited Member As an Implementation ... 426
Explicit Interface Member Implementations..........ccccocvvrerrscrcssec s 427
Accessing Explicit Interface Member Implementationscccovvvvninicnncnnnce e 430
Interfaces Can Inherit INtErfaces ... 431
Example of Different Classes Implementing an Interfaceccouvvvcrrenniennsnennsesnse s 432
Chapter 18: CONVErSiONS........ccsssnsnssssnssssnsnsnssnsnsnsas 435
What Are CONVEISIONS?......cccviemrmseerssess s s 436
IMPIICit CONVEISIONScvieiieriiirinssiss s 437
Explicit Conversions and Casting..........ccccuevrrrrsensensensessessss s s s s sesses e s sssssssennes 438
CASTING....euu e 439
TYPES Of CONVEISIONS......cccercerererirsesse s s e s se s e e sn e e e sn s sn e sn s sn e sr s nnsnnsnnsnnnnnas 440
NUMENIC CONVEISIONS.....couiuiirrireirsissess s s s s 440
Implicit NUMErIC CONVEISIONS........cvvveieiiririiiir e 441
Overflow Checking CONTEXEcccoruieieerieecre et 442
EXplicit NUMEIIC CONVEISIONScocruiecrererece s see s se e e e 444
Reference CONVErSIONS..... ... s sasssnens 448
Implicit Reference CONVEISIONS..... ..o 449
Explicit Reference CONVEISIONSccourueererereenerereese e se s se s e s p s e e 451
Valid Explicit Reference CONVEISIONS ... 452
BOXiNG CONVEISIONSc.covruiirrriiiriississ s s sas s e 454
BoXing Creates @ COPY.....c.ccvvrrerrerrersmssessessessssses s sesssssessessesssssssssssssssssssssssnssnssssssssennes 455

CONTENTS

UnboXing CONVEISIONScccoeiuimrmrsiississens s s sassssasssnens 456
The UnboXing CONVEISIONS ... s sens 457
User-Defined CONVEISIONS ..o s s s s sasssnens 458
Constraints on User-Defined CONVErSIONS..........cu s 458
Example of @ User-Defined CONVErSION ... 459
Evaluating User-Defined CONVEISIONS ... 461
Example of a Multistep User-Defined CONVEISION ... 461
THE IS OPEIALOFcovicereici s 463
The @S OPErator ... ——————— 464
Chapter 19: GENericCS........oummmmmmmmsmsmss s ————————— 465
What Are GENEIICS?ccvreieereieerssee s s 466
A STACK EXAMPI.....cviiieicricicssssssssssss s 466
GENENICS N CH....ece e 468
Continuing with the Stack EXample..........ccocvrrnnn s 469
CTCT LT Tl O T 470
Declaring @ GENeriC Class...........uerminsmsinsssssssee s s sssssnens 471
Creating @ ConStruCted TYPEcoeeeereeererrerrerre e e e e sssssesne s e snssnesrssnssn s snssnssrssnesnnnes 472
Creating Variables and INStANCES ... 473
The Stack Example USING GENEIICS ... sssssssssasaes 475
Comparing the Generic and NONGENEric STACK..........ccovrercrerercicrerereee e 477
Constraints on Type Parameters...........ccoceoeeersresnessssssss s sssses s sesses e e sessessesnes 478
WREIE CIAUSES......cuurriscsesesesssessssssssss s e 479
Constraint TYPES and OFUErcccccuvereriierrre e s b s e e s s a e s nn s 480
Generic Methods...... ..o ——— 481
Declaring a Generic Method ... 482
INVOKiNg @ GENEriC METNO..........coe v 483
Example of @ Generic Method.............covvriiinn s 485
Extension Methods with Generic ClasSes.........cournerminnmnnsnsse s 486
GENENIC SIUCES ... ——————— 487

xix

Download from Wow! eBook <www.wowebook.com>

CONTENTS

GENEriC DElEGALES.........ccoeererere e 488
Another Generic Delegate EXample. ... 490
Generic INerfaces. ... ———————— 491
An Example Using Generic INErfaces. ... 492
Generic Interface Implementations Must Be UNIQUEcccocecrriercnncvcnnnicsesse s ssnaens 493
Covariance and Contravariance in GENEriCS.ccccvvrrierverriersen s see e sseesaees 494
Covariance and Contravariance in INterfaces. ... 500
More ADOUL VAIANCEcucvreeiissie sttt st s 502

Chapter 20: Enumerators and Iteratorscconmmmnnneeenen 909

Enumerators and Enumerable TYPES.cccvcrvrrrrmrrnsensessesses s ses s ses e sennes 506
Using the foreach Statement. ... ————— 506
TyYPEes Of ENUMEIALOFS.cuvvreciisisresiiissss s 507

Using the IEnumerator Interface. ... 508
Declaring an IEnumerator ENUMErator . ..o e 511

The IEnumerable INTerface..........cvvrinrin s ———— 513
Example Using IEnumerable and IENUMErAtorcocvevriernierenesse s e sse e e ssesessesssenns 514

The Noninterface ENUMErator..........c.ccvverininnensis s 516

The Generic Enumeration INterfacescccovecrrrrcnnsncnseserere s 518

The IEnumerator<T> Interface.c.cccvvrciirsncssr e 519

The IEnumerable<T> INtErface.........c.cccvrrrerrrserserss s 522

1 (=] L0) 3 524
1T 21 (0] gl] (012 SRS 525
Using an Iterator to Create an ENUMErAtor. ..o vecrcrns et se e 526
Using an Iterator to Create an ENUMErabIEccccovvevevninninc e 528

Common lterator Patterns 530

Producing Enumerables and Enumeratorsccccocverrrnnsessssessessessesses s ses e e 531

Producing Multiple Enumerables.c.cccvcrirnncssnsersessesses s 532

Producing Multiple ENUMEratorsccccvcvcrcrnssnsessesses s ses e ssenns 534

Behind the Scenes with IEratorsccccveervrrniecns s 536

CONTENTS

Chapter 21: Introduction to LINQcccoussmmmmsmmmmsmsmmsssmsssssssssssssssssssssnssnnsns 537
WHAL IS LINQ?ooveernreeesssssesssssssssessesssssssssseseees 538
LINQ ProViderscoieinernesiisissssssss s s s s sssssss e sasssnens 539
ANONYMOUS TYPES ..eeeieiiirisessss s se s se s e she e s e sa s e R e s b s e R e e e R b e e R e e R e e s R 540
Query Syntax and Method SyntaX..........ccccerirerninnnnness e 542
QUENY VArTADIES.......cvcereccceire e 544
The Structure of QUEry EXPreSsionscccvvvcersnsessesssssssses s s s ses s ssssessssssssessesnas 546
LT (0] U O 547
TNE JOIN ClAUSE ... bbb 549
L L3 T 10T 1 550
The from . . . let. .. where Section in the Query Body.......cccccoeerirnirecnnennsnnsese e 553
THE OFAEIDY CIAUSE......coveuceerercci e se e s a e sa e e s a e e esne s senne et e 557
The Select . . . GrOUP ClAUSEcoerviuieerereccise e e 558
Anonymous TYPES iN QUETIES ..couerruerrrerierire st s s s se s s e s e s s a s s se s b e ne e nenr s 560
TRE GroUP ClAUSE.......ceceeeeeereerte e e s d e e et e s ae s e e s b e saesaesaesae s e e saesaesaenais 561
QUETY CONTINUALION ...ttt ne s 563
The Standard Query Operatorsc.cccvercrsrssssss s 564
Signatures of the Standard QUEry OPErators.........oococeercrcrerererere e s 567
Delegates AS Parameters ... 569
The LINQ Predefined Delegate TYPEScccoereerererenerereseee e e e e s sese e s se s seseans 571
Example Using a Delegate Parameter ... e 572
Example Using a Lambda EXpression Parametercccovvvnvnnnnnesniesssesesesessssessssessesessessssessnns 573
LINQ 0 XML covvvrrrreeeveessesssssssssnans 575
LR I Ty 0 T o - 575
DI T 3 576
THE XIVIL CIASSESecuererueucererueeserssseesesassesssesasssseseses e e ses s e s s s ss s sss e e ssse s sessa e sesbesas i e sssnsseses 578
Using Values from the XML TFBEc.cceerureire et se s s 581
Working With XML ARFDULESc.coeeerccereecse e 586
Other TYPES OF NOUEScccoviereirericesiri e se s se s nr s 590
Using LINQ Queries With LINQ 10 XMLccooiriicerrecrisiseseses s se s e se s sesns e 592

xxi

CONTENTS

xxii

Chapter 22: Introduction to Asynchronous Programmingccccsssssssssssssssssnss 595
Processes, Threads, and Asynchronous Programmingccceeveveersessessessessessessenns 596

Multithreading ConSiderations ... 597

The Complexity of MUIItRrEading.........cccouvureeeeerecrereeeeee e 598
Parallel LOOPS ..o s s s e sasssnens 599
The BackgroundWorker Class..........cuurmmimnmssmssssss s sssssesens 602

Example Code Using the BackgroundWorker Class..........ccocoeeerurrererermenenenesenesesesssese s sessesesesesnas 606

Example of the BackgroundWorker Class in @ WPF Program...........c.coccecermnercnenenneneseseneseseseesesennas 610
Asynchronous Programming Patterns...........ccccecvvncrcrssssssscs s 613
Begininvoke and ENAINVOKE............ccccviinnnnninninsss s 614

The Wait-Until-Done Pattern..........couiiissssss s 616

The ASYNCRESUIL CIASScocvererereririririssssnsss s 617

The PolliNg PAtLErncccvuieieiiicss s 618

The Callback PAttern ... s 620
L] 624
Chapter 23: Preprocessor DireCtivesccueemmmmssssmmmmssssssnmmssssssssssssssssssssssnnnnns 627
What Are Preprocessor DIr€CtIVES? ... 628
GENEral RUIES........cciiierii s 628
The #define and #undef DIreCtIVES ... 630
Conditional Compilation...........ccceveeneiini e ———— 631
The Conditional Compilation CONStruCtS..........ccccnrnninin e 632
DiagnoStiC DIr€CHIVESccvereriireieers s 635
Line Number DireCliVES ... s 636
Region DIr@CtiVES........cuererrerersirinsiss s s 637
The #pragma warning Dir€CLIVEcccvererrrissrser s 638
Chapter 24: Reflection and Attributes...........ccconvimnismnsmmnsmmssmms s 639
Metadata and Reflection............cccovnncnnnn 640
The TYPE ClaSS......ccecercereririrerir e n s nn e nn s n s nn s 640

CONTENTS

Getting @ TYPE ODJECE ... 642
What IS an ARFDULE? ... 645
Applying an AtrDULE ..o —————— 646
Predefined, Reserved AttribULES.........cccce i 647
The 0bsolete ALHDULE ... ————— 647
The Conditional AtriDULEcvrii s ————— 648
Predefined ALHDULES.o i s 650
More About Applying AttriDULES........ccccrcrcrcr s 651
Multiple ALHDULEScvce i —————————————— 651
Other TYPES OF TAFGELSc.coe i 652
GIODAI ALIHDULES ...t 653
Custom ALDULEScceeicitr i ———————— 654
Declaring a Custom AHRFDULEce v 654
Using Attribute CONSIIUCLONScccovereririrerir e 655
SPeCifying the CONSIIUCTON ..ot e 655
USING the CONSIIUCTONcoeieeecce et ne s 656
Positional and Named Parameters in CONSIIUCIOrSovceererecnerernee st 657
Restricting the Usage of an ATRHDULE ..o 658
Suggested Practices for Custom ARFDULES.........cccvvririnininr s nens 660
Accessing an Attribute..........cooinin s ————— 661
Using the IsDefined Method ... 661
Using the GetCustomAttributes Method ... 662
Chapter 25: Other TOPICS ...ccuuuuusmmmmmssssnsnmmssssnnsmmssssnsnssssssnsnssssssnnnsessssnnnnsssssnnnnss 663
0T T 664
SHINGS ot ———————————————— 664
Using Class STHNGBUIILET ..ot e s 666
Formatting NUMEKIC SNGScceeieeeecee et 667
Parsing Strings 10 Data Valuesccccvcrvrcrcnsscescr s 672

xxiii

CONTENTS

More About the NUllable TYPES......cccceeererere e 674
The Null CoaleSCing OPErator ... 676
Using Nullable USer-DefiNed TYPEScccceurueererereenereseese e sesesss e e e se e e e e s s sesss s s sesnssssssnas 677

Method Main........cocveriirii e ———— 679
Accessibility of MaiN.........cccoiii s ———————————— 680

Documentation COMMENTScovvirinnnnn 681
Inserting Documentation COMMENTS ... 682
USING OtNEI XIMIL TAGS -.v.vueuererueuceresueesesssesesesseseseses e e sesseeesesse e e sss e e s ssssssesssssssssssssenssssssssnssssssnas 683

NESEEA TYPESerererererrre s e r e e n s nn e nn e nnnnn e n s 684
Example 0f @ NeSted Classcuvrrerererinrnniniiirs s s 685
Visibility and NeSTEA TYPES....cc i se s e n e s 686

Interoperating With COM..........coocrrcicrcr e 689

INA@X uesiiessiessnmsssm s s s s rn s s s —————— 693

XXiv

About the Author

Dan Solis holds a Bachelor of Arts degree with majors in biology and English.
He initially worked in research on the structure of bi- and tri-metal crystals, until
he found that he enjoyed programming much more than working in a lab. He also
holds a Master of Science degree in computer science from the University of
California at Santa Barbara, where he concentrated on programming languages
and compiler design.

Dan has been programming professionally for more than 20 years, with more
than half that time working as a consultant and contract programmer, including
several projects for Microsoft Consulting Services. His consulting projects have
ranged from programs for mutual fund analysis and supply chain management to
systems for missile tracking. He has also taught courses on various programming
languages, Windows programming, UNIX internals, and a number of other topics,
in both the United States and Europe.

Dan’s first programming language was C, but he soon became intrigued by the journal articles
about a new language being developed called “C with Classes.” Eventually that language was renamed
C++ and released to the world. He began using C++ as soon as he could get access to a compiler, and he
eventually started teaching training seminars on the language as well as continuing to code.

With the advent of C#, .NET, and WPF, he has moved on to enjoying the myriad advantages of the new
platform and has been working with them enthusiastically ever since.

XXVi

Acknowledgments

I want to thank Sian for supporting and encouraging me on a daily basis, and I want to thank my parents
and brothers and sisters for their continued love and support.

I also want to express my gratitude to the people at Apress who have worked with me to bring this
book to fruition. I really appreciate that they understood and appreciated what I was trying to do and
worked with me to achieve it. Thanks to all of you.

Introduction

The purpose of this book is to teach you the fundamentals and mechanics of the C# programming
language. Most books teach programming primarily using text. That’s great for novels, but many of the
important concepts of programming languages can best be understood through a combination of
words, figures, and tables.

Many of us think visually, and figures and tables can help clarify and crystallize our understanding
of a concept. In several years of teaching programming languages, I have found that the pictures I drew
on the whiteboards were the things that most quickly helped the students understand the concepts I was
trying to convey. Illustrations alone, however, are not sufficient to explain a programming language and
platform. The goal of this book is to find the best combination of words and illustrations to give you a
thorough understanding of the language and to allow the book to serve as a reference resource as well.

This book is written for anyone who wants an introduction to the C# programming language—from
the novice to the seasoned programmer. For those just getting started in programming, I've included the
basics. For seasoned programmers, the content is laid out succinctly, in a form that allows you to go
directly to the information required without having to wade through oceans of words. For both sets of
programmers, the content itself is presented graphically, in a form that should make the language easy
to learn.

You can download the source code for all the book’s example programs from the Apress web site—
apress.com. And although I can’t answer specific questions about your code, you can contact me with
suggestions or feedback at dansolis@sbcglobal.net. You can also visit my web site—
illustratedcsharp.com. Finally, if you're interested in learning to program using Windows Presentation
Foundation, please take a look at my book—Illustrated WPF, which uses the same style and approach as
this book.

I'hope this book makes learning C# an enjoyable experience for you! Take care.

Dan Solis

XXVii

mailto:dansolis@sbcglobal.net

CHAPTER 1

C# and the .NET Framework

Before .NET

Enter Microsoft NET

Compiling to the Common Intermediate Language
Compiling to Native Code and Execution

The Common Language Runtime

The Common Language Infrastructure

Review of the Acronyms

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1 M C# AND THE .NET FRAMEWORK

Before .NET

The C# programming language was designed for developing programs for Microsoft’s .NET Framework.
This chapter gives a brief look at where .NET came from and its basic architecture. To start off, let’s get
the name right: C# is pronounced “see sharp.”"

Windows Programming in the Late 1990s

In the late 1990s, Windows programming using the Microsoft platform had fractured into a number of
branches. Most programmers were using Visual Basic (VB), C, or C++. Some C and C++ programmers
were using the raw Win32 API, but most were using the Microsoft Foundation Classes (MFC). Others had
moved to the Component Object Model (COM).

All these technologies had their own problems. The raw Win32 API was not object-oriented, and
using it required a lot more work than MFC. MFC was object-oriented but was inconsistent and getting
old. COM, although conceptually simple, was complex in its actual coding and required lots of ugly,
inelegant plumbing.

Another shortcoming of all these programming technologies was that they were aimed primarily at
developing code for the desktop rather than the Internet. At the time, programming for the Web was an
afterthought and seemed very different from coding for the desktop.

Goals for the Next-Generation Platform Services

What we really needed was a new start—an integrated, object-oriented development framework that
would bring consistency and elegance back to programming. To meet this need, Microsoft set out to
develop a code execution environment and a code development environment that met these goals.
Figure 1-1 lists these goals.

Execution Environment Goals Development Environment Goals

— Security Object-Oriented Development Environment
— Multiple Platforms Consistent Programming Experience

- Performance — Communication Using Industry Standards
Simplified Deployment

Language Independence

- Interoperability

Figure 1-1. Goals for the next-generation platform

Enter Microsoft .NET

In 2002, Microsoft released the first version of the .NET Framework, which promised to address the old
problems and meet the goals for the next-generation systems. The .NET Framework is a much more
consistent and object-oriented environment than either the MFC or COM programming technology.
Some of its features include the following:

' Twas once interviewed for a contract C# position when the Human Resources interviewer asked me how
much experience I'd had programming in “see pound” (instead of “see sharp”)! It took me a moment to realize
what he was talking about.

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

e Multiple platforms: The system runs on a broad range of computers, from servers and desktop
machines to PDAs and cell phones.

e Industry standards: The system uses industry-standard communication protocols, such as XML,
HTTP, SOAP, and WSDL.

e Security: The system can provide a much safer execution environment, even in the presence of
code obtained from suspect sources.

Components of the .NET Framework

The .NET Framework consists of three components, as shown in Figure 1-2. The execution environment
is called the Common Language Runtime (CLR). The CLR manages program execution at run time,
including the following:

e Memory management

e Code safety verification

e Code execution, thread management, and exception handling

e Garbage collection

The programming tools include everything you need for coding and debugging, including the
following:

e The Visual Studio integrated development environment
e .NET-compliant compilers (e.g., C#, VB .NET, JScript, F#, IronRuby, and managed C++)
e Debuggers

e Web development server-side technologies, such as ASP.NET or WCF

The Base Class Library (BCL) is a large class library used by the .NET Framework and available for
you to use in your programs as well.

Programming

Tools
Produces
Y
Compiled Uses Base Class
Code " Library (BCL)
Executed By Executed By
Y Y

Common Language Runtime (CLR)

Figure 1-2. Components of the .NET Framework

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

An Improved Programming Environment

The .NET Framework offers programmers considerable improvements over previous Windows
programming environments. The following sections give a brief overview of its features and their benefits.

Object-Oriented Development Environment

The CLR, the BCL, and C# are designed to be thoroughly object-oriented and act as a well-integrated
environment.

The system provides a consistent, object-oriented model of programming for both local programs
and distributed systems. It also provides a software development interface for desktop application
programming, mobile application programming, and web development, consistent across a broad range
of targets, from servers to cell phones.

Automatic Garbage Collection

The CLR has a service called the garbage collector (GC), which automatically manages memory for you.
e The GC automatically removes objects from memory that your program will no longer access.

e The GCrelieves programmers of tasks they have traditionally had to perform, such as
deallocating memory and hunting for memory leaks. This is a huge improvement, since hunting
for memory leaks can be difficult and time-consuming.

Interoperability
The .NET Framework was designed for interoperability between different .NET languages, the operating
system or Win32 DLLs, and COM.

e .NET language interoperability allows software modules written using different .NET languages to
interact seamlessly.

— A program written in one .NET language can use and even inherit from a class written in
another .NET language, as long as certain rules are followed.

— Because of its ability to easily integrate modules produced in different programming
languages, the .NET Framework is sometimes described as language-agnostic.

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

.NET provides a feature called platform invoke (P/Invoke), which allows code written for .NET to
call and use code not written for .NET. It can use raw C functions imported from standard Win32
DLLs, such as the Windows APIs.

The .NET Framework also allows interoperability with COM. The .NET Framework software
components can call COM components and COM components can call NET components as if
they were COM components themselves.

No COM Required

The .NET Framework frees the programmer from the COM legacy. As a C# programmer, you don’t need
to use COM and therefore don’t need any of the following:

The IUnknown interface: In COM, all objects must implement interface IUnknown. In contrast, all
.NET objects derive from a single class called object. Interface programming is still an important
part of NET, but it’s no longer the central theme.

Type libraries: In COM, type information is kept in type libraries as . t1b files, which are separate
from the executable code. In .NET, a program’s type information is kept bundled with the code in
the program file.

Reference counting: In COM, the programmer had to keep track of the number of references to an
object to make sure it wasn’t deleted at the wrong time. In .NET, the GC keeps track of references
and removes objects only when appropriate.

HRESULT: COM used the HRESULT data type to return runtime error codes. .NET doesn’t use
HRESULTSs. Instead, all unexpected runtime errors produce exceptions.

The registry: COM applications had to be registered in the system registry, which holds
information about the configurations of the operating system and applications. .NET
applications don’t need to use the registry. This simplifies the installation and removal of
programs. (However, there is something similar called the global assembly cache, which I'll cover
in Chapter 10.)

Although the amount of COM code that’s currently being written is fairly small, there’s still quite a

number of COM components in systems currently being used, and C# programmers sometimes need to
write code that interfaces with those components. C# 4.0 introduces several new features that make that
task easier.

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

Simplified Deployment

Deploying programs written for the .NET Framework can be much easier than it was before, for the
following reasons:

e The fact that .NET programs don’t need to be registered with the registry means that in the
simplest case, a program just needs to be copied to the target machine and it’s ready to run.

e .NET offers a feature called side-by-side execution, which allows different versions of a DLL to
exist on the same machine. This means that every executable can have access to the version of
the DLL for which it was built.

Type Safety

The CLR checks and ensures the type safety of parameters and other data objects—even between
components written in different programming languages.

The Base Class Library

The .NET Framework supplies an extensive base class library, called, not surprisingly, the Base Class
Library (BCL). (It’s also sometimes called the Framework Class Library—FCL). You can use this extensive
set of available code when writing your own programs. Some of the categories are the following:

e General base classes: Classes that provide you with an extremely powerful set of tools for a wide
range of programming tasks, such as file manipulation, string manipulation, security, and
encryption

e Collection classes: Classes that implement lists, dictionaries, hash tables, and bit arrays
o Threading and synchronization classes: Classes for building multithreaded programs

e XML classes: Classes for creating, reading, and manipulating XML documents

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

Compiling to the Common Intermediate Language

The compiler for a .NET language takes a source code file and produces an output file called an
assembly. Figure 1-3 illustrates the process.

e Anassembly is either an executable or a DLL.

e The code in an assembly isn’t native machine code but an intermediate language called the
Common Intermediate Language (CIL).

e Anassembly, among other things, contains the following items:
— The program’s CIL
— Metadata about the types used in the program

— Metadata about references to other assemblies

Source File in a .NET- A .NET source code file is a text file
Compliant Language written in a .NET language such as
C# or VB .NET.
¥
.NET-Compliant
Compiler
v
Assembly
— Common Intermediate The compiler produces an output file
Language (CIL) called an assembly, which contains

— Type Information intermediate language code called CIL.
— Security Information

Figure 1-3. The compilation process

The acronym for the intermediate language has changed over time, and different references use
different terms. Two other terms for the CIL that you might encounter are Intermediate Language (IL)
and Microsoft Intermediate Language (MSIL). These terms were frequently used during .NET’s initial
development and early documentation.

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

Compiling to Native Code and Execution

The program’s CIL isn’t compiled to native machine code until it’s called to run. At run time, the CLR
performs the following steps, as shown in Figure 1-4:

e TItchecks the assembly’s security characteristics.
e Itallocates space in memory.

e Itsends the assembly’s executable code to the just-in-time (JIT) compiler, which compiles
portions of it to native code.

The executable code in the assembly is compiled by the JIT compiler only as it’s needed. It’s then
cached in case it’s needed for execution again later in the program. Using this process means that code
that isn’t called during execution isn’t compiled to native code, and code that is called need only be
compiled once.

Assembly
- Type Info
-CIL

Y
. Common Language
JIT Compiler Runtime (CLR)

Y

Native Code

{

Operating System Services

Figure 1-4. Compilation to native code occurs at run time

Once the CIL is compiled to native code, the CLR manages it as it runs, performing such tasks as
releasing orphaned memory, checking array bounds, checking parameter types, and managing
exceptions. This brings up two important terms:

e Managed code: Code written for the .NET Framework is called managed code and needs the CLR.

. Unmanaged code: Code that doesn’t run under the control of the CLR, such as Win32 C/C++
DLLs, is called unmanaged code.

Microsoft also supplies a tool called the Native Image Generator, or Ngen, which takes an assembly
and produces native code for the current processor. Code that’s been run through Ngen avoids the JIT
compilation process at run time.

Overview of Compilation and Execution

The same compilation and execution process is followed regardless of the language of the original
source files. Figure 1-5 illustrates the entire compilation and run-time processes for three programs

written in different languages.

Compile Time

C#

Visual Basic

CHAPTER 1

Xyz

C# Source File

VB Source File

Xyz.NET Source File

Figure 1-5. Overview of the compile-time and runtime processes

C

¥ ¥ ¥
C# Compiler) CVB .NET Compiler) (Xyz.NET Compiler)
v v v

Assembly Assembly Assembly
-CIL -CIL -CIL
- Type Info - Type Info - Type Info
I
Y Vv v
JIT Combiler Common Language
P Runtime (CLR)
I
[
¢] J
Native Code Native Code Native Code
¢ ¢ ¢

Operating System Services

C# AND THE .NET FRAMEWORK

Run Time

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

The Common Language Runtime

The core component of the .NET Framework is the CLR, which sits on top of the operating system and
manages program execution, as shown in Figure 1-6. The CLR also provides the following services:

e Automatic garbage collection
e Security and authentication

e Extensive programming functionality through access to the BCL—including functionality such as
web services and data services

Unmanaged Managed
Code Code
—_——
Non-.NET
Program Assembly Assembly Assembly
Y Y Y
Common Language Runtime (CLR)
Memory Exception Garbage
Management Handling Collection
Reflef:hon JIT Compiler Class Loader
Services
Security
Services
A Y
Operating System

Figure 1-6. Overview of the CLR

10

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

The Common Language Infrastructure

Every programming language has a set of intrinsic types representing such objects as integers, floating-
point numbers, characters, and so on. Historically, the characteristics of these types have varied from
one programming language to another and from platform to platform. For example, the number of bits
constituting an integer has varied widely depending on the language and platform.

This lack of uniformity, however, makes it difficult if we want programs to play well with other
programs and libraries written in different languages. To have order and cooperation, there must be a
set of standards.

The Common Language Infrastructure (CLI) is a set of standards that ties all the components of the
.NET Framework into a cohesive, consistent system. It lays out the concepts and architecture of the
system and specifies the rules and conventions to which all the software must adhere. Figure 1-7 shows
the components of the CLI.

Common Language

Common Language

Runtime (CLR) Specification (CLS)
Base Class Metadata Definition
Library (BCL) and Semantics

Common Type
System (CTS)

Common Intermediate
Language (CIL)
Instruction Set

The CLlI is a set of specifications
that lays out the architecture, rules,
and conventions of the system.

Figure 1-7. Components of the CLI

Both the CLI and C# have been approved as open international standard specifications by Ecma
International. (The name “Ecma” used to be an acronym for the European Computer Manufacturers
Association, but it’s now just a word in itself.) Ecma members include Microsoft, IBM, Hewlett-Packard,
Adobe, and many other corporations associated with computers and consumer electronics.

11

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1 M C# AND THE .NET FRAMEWORK

12

Important Parts of the CLI

Although most programmers don’t need to know the details of the CLI specifications, you should at least
be familiar with the meaning and purpose of the Common Type System and the Common Language
Specification.

Common Type System (CTS)

The Common Type System (CTS) defines the characteristics of the types that must be used in managed
code. Some important aspects of the CTS are the following:

e The CTS defines a rich set of intrinsic types, with fixed, specific characteristics for each type.

e The types provided by a .NET-compliant programming language generally map to some specific
subset of this defined set of intrinsic types.

e One of the most important characteristics of the CTS is that all types are derived from a common
base class—called object.

Common Language Specification (CLS)

The Common Language Specification (CLS) specifies the rules, properties, and behaviors of a .NET-
compliant programming language. The topics include data types, class construction, and
parameter passing.

CHAPTER 1 1 C# AND THE .NET FRAMEWORK

Review of the Acronyms

This chapter has covered a lot of .NET acronyms, so Figure 1-8 will help you keep them straight.

Assembly
IL
CIL Common Intermediate
MSIL Language Common Language Runtime (CLR)

) Just-in-Time Compiler

Common Language Infrastructure (CLI

Common Type Base Class Library
CTS

System
cLS Common Language

Specification

Figure 1-8. The .NET acronyms

13

CHAPTER 2

Overview of C# Programming

A Simple C# Program

Identifiers and Keywords

Main: The Starting Point of a Program
Whitespace

Statements

Text Output from a Program

Comments: Annotating the Code

15

CHAPTER 2 "/ OVERVIEW OF C# PROGRAMMING

16

A Simple C# Program

This chapter lays the groundwork for studying C#. Since I'll use code samples extensively throughout the
text, I first need to show you what a C# program looks like and what its various parts mean.

I'll start by demonstrating a simple program and explaining its components one by one. This will
introduce a range of topics, from the structure of a C# program to the method of producing program
output to the screen.

With these source code preliminaries out of the way, I can then use code samples freely throughout
the rest of the text. So, unlike the following chapters, where one or two topics are covered in detail, this
chapter touches on many topics with only a minimum of explanation.

Let’s start by looking at a simple C# program. The complete program source is shown in the top,
shaded area in Figure 2-1. As shown, the code is contained in a text file called SimpleProgram.cs. As you
read through it, don’t worry about understanding all the details. Table 2-1 gives a line-by-line
description of the code.

e When the code is compiled and executed, it displays the string “Hi there!” in a window on
the screen.

e Line 5 contains two contiguous slash characters. These characters—and everything following
them on the line—are ignored by the compiler. This is called a single-line comment.

SimpleProgram.cs

1 using System; »| namespace System
2
. class Console
3 namespace Simple N
4 { WriteLine()
5 class Program // declare a class
6 {
7 static void Main() Type LibraryJ
8 {
Console.WriteLine("Hi there!");
10 } The Program
11 } l
12} “——>| namespace Simple
Produces the following output: class Program

Hi there!

Figure 2-1. The SimpleProgram program

CHAPTER 2 " OVERVIEW OF C# PROGRAMMING

Table 2-1. The SimpleProgram Program, Line by Line

Line Number Description
Line 1 Tells the compiler that this program uses types from the System namespace.
Line 3 Declares a new namespace, called Simple.

e The new namespace starts at the open curly brace on line 4 and extends
through the matching curly brace on line 12.

e Any types declared within this section are members of the namespace.

Line 5 Declares a new class type, called Program.

e Anymembers declared between the matching curly braces on lines 6 and
11 are members that make up this class.

Line 7 Declares a method called Main as a member of class Program.
e In this program, Main is the only member of the Program class.

e Mainis a special function used by the compiler as the starting point of the
program

Line 9 Contains only a single, simple statement; this line constitutes the body of Main.
e Simple statements are terminated by a semicolon.

e This statement uses a class called Console, in namespace System, to print
out the message to a window on the screen

e Without the using statement in line 1, the compiler wouldn’t have known
where to look for class Console.

More About SimpleProgram

A C# program consists of one or more type declarations. Much of this book is spent explaining the
different types that you can create and use in your programs. The types in a program can be declared in
any order. In the SimpleProgram example, only a class type is declared.

A namespace is a set of type declarations associated with a name. SimpleProgram uses two
namespaces. It creates a new namespace called Simple, in which it declares its type (class Program), and
uses the Console class defined in a namespace called System.

To compile the program, you can use Visual Studio or the command-line compiler. To use the
command-line compiler, in its simplest form, use the following command in a command window:

csc SimpleProgram.cs

17

CHAPTER 2 "/ OVERVIEW OF C# PROGRAMMING

In this command, csc is the name of the command-line compiler, and SimpleProgram.cs is the name
of the source file.

Identifiers and Keywords

Identifiers are character strings used to name things such as variables, methods, parameters, and a host
of other programming constructs that will be covered later.

You can create self-documenting identifiers by concatenating meaningful words into a single
descriptive name, using uppercase and lowercase letters (e.g., CardDeck, PlayersHand, FirstName,
SocialSecurityNum). Certain characters are allowed or disallowed at certain positions in an identifier.
Figure 2-2 illustrates these rules.

e Thealphabetic and underscore characters (a through z, A through Z, and) are allowed at any
position.

e Digits are not allowed in the first position but are allowed everywhere else.

e The @ character is allowed in the first position of an identifier but not anywhere else. The use of
the @ character, although allowed, is discouraged for general use.

Subsequent Characters

First Character T
Not t Not

Allowed Allowed Allowed Allowed
a-z, A-Z, a-z, A-Z,
e 0-9 09 e

Figure 2-2. Characters allowed in identifiers

Identifiers are case-sensitive. For instance, the variable names myVar and MyVar are different
identifiers. It’s generally a bad idea, however, to have identifiers that differ only in the case of some of
the letters, because they’re easily confused.

As an example, in the following code snippet, the variable declarations are all valid and declare
different integer variables. But using such similar names will make coding more error-prone and
debugging more difficult. Those debugging your code at some later time will not be pleased.

// Valid syntactically, but don't do this!
int totalCycleCount;
int TotalCycleCount;
int TotalcycleCount;

18

CHAPTER 2 " OVERVIEW OF C# PROGRAMMING

Naming Conventions

The C# Language Specification suggests that certain casing conventions be used in creating identifiers.
Table 2-2 summarizes the suggested guidelines for casing.

For most type identifiers, the Pascal casing style is recommended. In this style, each of the words
combined to make an identifier is capitalized—for example, FirstName and LastName.

Table 2-2. Recommended Identifier Naming Styles

Style Name Description Recommended Use Examples

Pascal casing Each word in the Use for type names and CardDeck, DealersHand
identifier is capitalized. member names.

Camel casing Each word in the Use for local variables and ~ totalCycleCount,
identifier, except the method parameters. randomSeedParam

first, is capitalized.

Uppercase The identifier is Use only for abbreviations. 10, DMA, XML
composed of all
uppercase letters.

Although these are the suggested guidelines, many organizations use other conventions—
particularly in the naming of member fields, which I'll introduce in the next chapter. Two of the
common conventions are the following:

e Begin a field name with an underscore: _highTemp, lowTemp

e Beginafield name withm_:m_highTemp, m_lowTemp
Both of these methods have the advantage of showing you immediately that these identifiers are

field names. These forms also allow Visual Studio’s IntelliSense feature to group all the fields together in
the pop-ups.

19

CHAPTER 2 "/ OVERVIEW OF C# PROGRAMMING

Keywords

Keywords are the character string tokens used to define the C# language. Table 2-3 gives a complete list
of the C# keywords.
Some important things to know about keywords are the following:

e Keywords cannot be used as variable names or any other form of identifier, unless prefaced with
the @ character.

o All C# keywords consist entirely of lowercase letters. (NET type names, however, use Pascal
casing.)

Table 2-3. The C# Keywords

abstract const extern int out short typeof
as continue false interface override sizeof uint
base decimal finally internal params stackalloc ulong
bool default fixed is private static unchecked
break delegate float lock protected string unsafe
Byte do for long public struct ushort
case double foreach namespace readonly switch using
catch else goto new ref this virtual
char enum if null return throw void
checked event implicit object sbyte true volatile
class explicit in operator sealed try while

Contextual keywords are identifiers that act as keywords only in certain language constructs. In
those positions, they have particular meanings; but unlike keywords, which cannot ever be used as
identifiers, contextual keywords can be used as identifiers in other parts of the code. Table 2-4 contains
the list of contextual keywords.

Table 2-4. The C# Contextual Keywords

add ascending by descending dynamic equals from
get global group into join let on
orderby partial remove select set value var
where yield

20

CHAPTER 2 " OVERVIEW OF C# PROGRAMMING

Main: The Starting Point of a Program

Every C# program must have one class with a method (function) called Main. In the SimpleProgram
program shown previously, it was declared in a class called Program.

e The starting point of execution of every C# program is at the first instruction in Main.
e The name Main must be capitalized.

e The simplest form of Main is the following:

static void Main()

Statements

}

Whitespace

Whitespace in a program refers to characters that do not have a visible output character. Whitespace in
source code is ignored by the compiler, but is used by the programmer to make the code clearer and
easier to read. Some of the whitespace characters include the following:

e Space

e Tab

¢ Newline

e C(Carriage return

For example, the following code fragments are treated exactly the same by the compiler in spite of
their differences in appearance.

// Nicely formatted
Main()
{

Console.WriteLine("Hi, there!");

}

// Just concatenated
Main(){Console.WriteLine("Hi, there!");}

21

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2 M OVERVIEW OF C# PROGRAMMING

Statements

The statements in C# are very similar to those of C and C++. This section introduces the general form of
statements; the specific statement forms are covered in Chapter 9.

Simple Statements

A statement is a source code instruction describing a type or telling the program to perform an action.

e Asimple statement is terminated by a semicolon.

For example, the following code is a sequence of two simple statements. The first statement defines
an integer variable named var1 and initializes its value to 5. The second statement prints the value of
variable var1 to a window on the screen.

int vari = 5;
System.Console.WriteLine("The value of vari is {o}", vari);

Blocks

A block is a sequence of zero or more statements enclosed by a matching set of curly braces; it acts as a
single syntactic statement.

You can create a block from the set of two statements in the preceding example by enclosing the
statements in matching curly braces, as shown in the following code:

{
int vari = 5;
System.Console.WriteLine("The value of vari is {0}", vari);

}

Some important things to know about blocks are the following:

¢ You can use a block whenever the syntax requires a statement but the action you need requires
more than one simple statement.

e Certain program constructs require blocks. In these constructs, you cannot substitute a simple
statement for the block.

e Although a simple statement is terminated by a semicolon, a block is not followed by a
semicolon. (Actually, the compiler will allow it—but it’s not good style.)

{ Terminating semicolon
Terminating semicolon
int var2 = 5; 4
System.Console.WriteLine("The value of vari is {0}", vari);

T No terminating semicolon

22

CHAPTER 2 " OVERVIEW OF C# PROGRAMMING

Text Qutput from a Program

A console window is a simple command prompt window that allows a program to display text and
receive input from the keyboard. The BCL supplies a class called Console (in the System namespace),
which contains methods for inputting and outputting data to a console window.

Write

Write is a member of the Console class. It sends a text string to the program’s console window. In its
simplest form, Write sends a literal string of text to the window. The string must be enclosed in
quotation marks—double quotes, not single quotes.

The following line of code shows an example of using the Write member:

Console.Write("This is trivial text.");

Output string
This code produces the following output in the console window:

This is trivial text.

Another example is the following code, which sends three literal strings to the program’s
console window:

System.Console.Write ("This is texti. ");
System.Console.Write ("This is text2. ");
System.Console.Write ("This is text3. ");

This code produces the output that follows. Notice that Write does not append a newline character
after a string, so the output of the three statements runs together on a single line.

This is texti. This is text2. This is text3.

T T T
First Second Third
statement statement statement

23

CHAPTER 2 "/ OVERVIEW OF C# PROGRAMMING

WriteLine

Writeline is another member of Console, which performs the same functions as Write but appends a
newline character to the end of each output string.

For example, if you use the preceding code, substituting WritelLine for Write, the outputis on
separate lines:

System.Console.WriteLine("This is text 1.");
System.Console.WriteLine("This is text 2.");
System.Console.WriteLine("This is text 3.");

This code produces the following output in the console window:

This is text 1.
This is text 2.
This is text 3.

24

CHAPTER 2 " OVERVIEW OF C# PROGRAMMING

The Format String

The general form of the Write and Writeline statements takes more than a single parameter.
e Ifthere is more than a single parameter, the parameters are separated by commas.
e The first parameter must always be a string and is called the format string.

e The format string can contain substitution markers.

— A substitution marker marks the position in the format string where a value should be
substituted in the output string.

— It consists of an integer enclosed in a set of matching curly braces. The integer is the numeric
position of the substitution value to be used.

e The parameters following the format string are called substitution values. These substitution
values are numbered, starting at 0.

The syntax is as follows:
Console.Writeline(FormatString, SubValo, SubVali, SubVal2, ...);

For example, the following statement has two substitution markers, numbered 0 and 1, and two
substitution values, whose values are 3 and 6, respectively.

Substitution markers

Console.WriteLine("Two sample integers are {T)} and m, 3, 6);
T

Format string Substitution values

This code produces the following output on the screen:

Two sample integers are 3 and 6.

25

CHAPTER 2 "/ OVERVIEW OF C# PROGRAMMING

Multiple Markers and Values

In C#, you can use any number of markers and any number of values.
e The values can be used in any order.

e The values can be substituted any number of times in the format string.

For example, the following statement uses three markers and only two values. Notice that value 1 is
used before value 0 and that value 1 is used twice.

Console.WriteLine("Three integers are {1}, {0} and {1}.", 3, 6);

This code displays the following on the screen:
Three integers are 6, 3 and 6.

A marker must not attempt to reference a value at a position beyond the length of the list of
substitution values. If it does, it will not produce a compile error but a runtime error (called an exception).
For example, in the following statement there are two substitution values, with positions 0 and 1.

The second marker, however, references position 2—which does not exist. This will produce a
runtime error.
Position 0 Position 1
Console.WriteLine("Two integers are {0} and {2}.", 3 6); // Error!
T

There is no position 2 value.

26

CHAPTER 2 " OVERVIEW OF C# PROGRAMMING

Comments: Annotating the Code

You've already seen single-line comments, so here I'll discuss the second type of inline comments—
delimited comments—and mention a third type called documentation comments.

¢ Delimited comments have a two-character start marker and a two-character end marker.
e Text between the matching markers is ignored by the compiler.

e Delimited comments can span any number of lines.

For example, the following code shows a delimited comment spanning multiple lines.

1 Beginning of comment spanning multiple lines

/*
This text is ignored by the compiler.
Unlike single-line comments, delimited comments
like this one can span multiple lines.

*/

T End of comment

A delimited comment can also span just part of a line. For example, the following statement shows
text commented out of the middle of a line. The result is the declaration of a single variable, var2.

Beginﬂing of comment
int /*var 1,*/ var2;

1

End of comment

Note Single-line and delimited comments behave in C# just like they do in C and C++.

27

CHAPTER 2 "/ OVERVIEW OF C# PROGRAMMING

28

More About Comments

There are several other important things you need to know about comments:

e Nested delimited comments are not allowed. Only one comment can be in effect at a time. If you
attempt to nest comments, the comment that starts first is in effect until the end of its scope.

e The scope for particularly comment types is as follows:
— For single-line comments, the comment is in effect until the end of the current line.
— For delimited comments, the comment is in effect until the first end delimiter is encountered.

The following attempts at comments are incorrect:

1 Opens the comment
/* This is an attempt at a nested comment.
/* <« Ignored because it’s inside a comment
Inner comment
*/ «Closes the comment because it’s the first end delimiter encountered
*/ «<Syntax error because it has no opening delimiter

1 Opens the comment 1 Ignored because it’s inside a comment
// Single-line comment /* Nested comment?
*/ <« Incorrect because it has no opening delimiter

Documentation Comments

C# also provides a third type of comment: the documentation comment. Documentation comments
contain XML text that can be used to produce program documentation. Comments of this type look like
single-line comments, except that they have three contiguous slashes rather than two. I'll cover
documentation comments in Chapter 25.

The following code shows the form of documentation comments:

/// <summary>

/// This class does...
/// </summary>

class Program

{

CHAPTER 2 " OVERVIEW OF C# PROGRAMMING

Summary of Comment Types

Inline comments are sections of text that are ignored by the compiler but are included in the code to
document it. Programmers insert comments into their code to explain and document it. Table 2-5
summarizes the comment types.

Table 2-5. Comment Types

Type Start End Description

Single-line // The text from the beginning marker to the end of the current line is
ignored by the compiler.

Delimited /* */ The text between the start and end markers is ignored by the
compiler.
Documentation /// Comments of this type contain XML text that is meant to be used

by a tool to produce program documentation.

29

CHAPTER 3

Types, Storage, and Variables

A C# Program Is a Set of Type Declarations
A Type Is a Template

Instantiating a Type

Data Members and Function Members
Predefined Types

User-Defined Types

The Stack and the Heap

Value Types and Reference Types
Variables

Static Typing and the dynamic Keyword
Nullable Types

31

Download from Wow! eBook <www.wowebook.com>

CHAPTER 3 M TYPES, STORAGE, AND VARIABLES

A C# Program Is a Set of Type Declarations

If you were to broadly characterize the source code of C and C++ programs, you might say thata C
program is a set of functions and data types and that a C++ program is a set of functions and classes. A
C# program, however, is a set of type declarations.

e The source code of a C# program or DLL is a set of one or more type declarations.
e Foran executable, one of the types declared must be a class that includes a method called Main.

e A namespace is a way of grouping a related set of type declarations and giving the group a name.
Since your program is a related set of type declarations, you will generally declare your program
type inside a namespace you create.

For example, the following code shows a program that consists of three type declarations. The three
types are declared inside a new namespace called MyProgram.

namespace MyProgram // Create a new namespace.
DeclarationOfTypeA // Declare a type.
DeclarationOfTypeB // Declare a type.
class C // Declare a type.
{
static void Main()
{
}
}
}

Namespaces are covered in more detail in Chapter 10.

32

CHAPTER 3 " TYPES, STORAGE, AND VARIABLES

A Type Is a Template

Since a C# program is just a set of type declarations, learning C# consists of learning how to create and
use types. So, the first thing you need to do is to look at what a type is.
You can start by thinking of a type as a template for creating data structures. It isn’t the data
structure itself, but it specifies the characteristics of objects constructed from the template.
A type is defined by the following elements:
e Aname
e Adata structure to contain its data members

e Behaviors and constraints

For example, Figure 3-1 illustrates the components of two types: short and int.

Name Structure Name Structure
short 2 Bytes int 4 Bytes
Behavior Behavior
16-Bit Integer 32-Bit Integer

Figure 3-1. A type is a template.

Instantiating a Type

Creating an actual object from the type’s template is called instantiating the type.

e The object created by instantiating a type is called either an object of the type or an instance of the
type. The terms are interchangeable.

e Everydataitem in a C# program is an instance of some type—a type either provided by the
language, provided by the BCL or another library, or defined by the programmer.

Figure 3-2 illustrates the instantiation of objects of two predefined types.

Types are templates.

Instantiating a type creates

Name Structure) .
an instance, or object, of the type.

short 2 Bytes

Behavior
-Bi Two Instances :l
16-Bit Integer
of Type short |:|
Name Structure |:|
int 4 Bytes Three Instances]
Behavior of Type int

32-Bit Integer |:|

Figure 3-2. Instantiating a type creates an instance.

33

CHAPTER 3 I TYPES, STORAGE, AND VARIABLES

34

Data Members and Function Members

Some types, such as short, int, and long, are called simple types and can store only a single data item.

Other types can store multiple data items. An array, for example, is a type that can store multiple
items of the same type. The individual items are called elements and are referenced by a number, called
an index. Chapter 14 describes arrays in detail.

Types of Members

Other types, however, can contain data items of many different types. The individual elements in these
types are called members, and, unlike arrays, in which each member is referred to by a number, these
members have distinct names.

There are two types of members: data members and function members.

e Data members store data that is relevant to the object of the class or to the class as a whole.

e Function members execute code. Function members define how the type can act.

For example, Figure 3-3 shows some of the data members and function members of type XYZ. It
contains two data members and two function members.

XYZ
DataMeml
Data Members DataMem?
F1() {
ExecutableCode
Function Members
F2() {

ExecutableCode
}

Figure 3-3. Types specify data members and function members.

CHAPTER 3 " TYPES, STORAGE, AND VARIABLES

Predefined Types

C# provides 16 predefined types, which are shown in Figure 3-4 and listed in Tables 3-1 and 3-2. They
include 13 simple types and 3 nonsimple types.

The names of all the predefined types consist of all lowercase characters. The predefined simple

types include the following:

Eleven numeric types, including the following:
— Various lengths of signed and unsigned integer types.
— Floating-point types—float and double.

— Ahigh-precision decimal type called decimal. Unlike float and double, type decimal can
represent decimal fractional numbers exactly. It’s often used for monetary calculations.

A Unicode character type, called char.

A Boolean type, called bool. Type bool represents Boolean values and must be one of two
values—either true or false.

Note Unlike C and C++, numeric values do not have a Boolean interpretation in C#.

The three nonsimple types are the following:

Type string, which is an array of Unicode characters
Type object, which is the type on which all other types are based

Type dynamic, which is used when using assemblies written in dynamic languages

35

CHAPTER 3 I TYPES, STORAGE, AND VARIABLES

Predefined
Types

Simple | object | | string | | dynamic |

Non-numeric Numeric

Integer Floating Point

|dec1’ma] || float || double |

8-Bit 16-Bit 32-Bit 64-Bit

| sbyte || byte | | short || ushort| | int || uint | | long || ulong |

Figure 3-4. The predefined types

More About the Predefined Types

All the predefined types are mapped directly to underlying .NET types. The C# type names are just
aliases for the .NET types, so using the .NET names works fine syntactically, although this is discouraged.
Within a C# program, you should use the C# names rather than the .NET names.

The predefined simple types represent a single item of data. They're listed in Table 3-1, along with
the ranges of values they can represent and the underlying .NET types to which they map.

36

Table 3-1. The Predefined Simple Types

CHAPTER 3

TYPES, STORAGE, AND VARIABLES

Name Meaning Range NET Framework Default
Type Value

sbyte 8-bit signed integer -128-127 System.SByte 0

byte 8-bit unsigned integer 0-255 System.Byte 0

short 16-bit signed integer -32,768-32,767 System.Int16 0

ushort 16-bit unsigned integer 0-65,535 System.UInt16 0

int 32-bit signed integer -2,147,483,648-2,147,483,647 System.Int32 0

uint 32-bit unsigned integer 0-4,294,967,295 System.UInt32 0

long 64-bit signed integer -9,223,372,036,854,775,808- System.Int64 0

9,223,372,036,854,775,807

ulong 64-bit unsigned integer 0-18,446,744,073,709,551,615 System.UInt64 0

float Single-precision float 1.5x10-45-3.4x1038 System.Single o0.of

double Double-precision float 5x10-324-1.7x10308 System.Double 0.0d

bool Boolean true, false System.Boolean false

char Unicode character U+0000-U+£ftf System.Char \x0000

decimal Decimal value with 28- +1.0x1028-%7.9x1028 System.Decimal oOm

significant-digit precision

The nonsimple predefined types are somewhat more complex. Values of type string contain zero or
more Unicode characters. The object type is the base class for all other types in the system, including
the predefined, simple types. Table 3-2 shows the predefined nonsimple types.

Table 3-2. The Predefined Nonsimple Types

Name Meaning NET Framework Type
object The base class from which all other types are derived System.Object
string A sequence of Unicode characters System.String
dynamic A type designed to be used with assemblies written in

dynamic languages

37

CHAPTER 3 I TYPES, STORAGE, AND VARIABLES

User-Defined Types

Besides the 15 predefined types provided by C#, you can also create your own user-defined types. There
are six kinds of types you can create. They are the following:

e class types

e struct types

e array types

e enumtypes

e delegate types

e interface types

You create a type using a type declaration, which includes the following information:
e The kind of type you are creating
e The name of the new type

e Adeclaration (name and specification) of each of the type’s members—except for array and
delegate types, which don’t have named members

Once you've declared a type, you can create and use objects of the type just as if they were
predefined types. Figure 3-5 summarizes the use of predefined and user-defined types. Using predefined
types is a one-step process in which you simply instantiate the objects of that type. Using user-defined
types is a two-step process. You must first declare the type and then instantiate objects of the type.

Predefined Types

Instantiate - - -
Objects [[nt] [int] [int

(ot] |[———— | [Awt]

int

User-Defined Types

Abc Abc
Instantiate
Declare Types class Types B Objects [Bed [[Bed [[Bed |
Cde > Cde Cde

struct Types{ Def Def

Figure 3-5. The predefined types require instantiation only. The user-defined types require two steps:
declaration and instantiation.

38

CHAPTER 3 " TYPES, STORAGE, AND VARIABLES

The Stack and the Heap

While a program is running, its data must be stored in memory. How much memory is required for an
item, and where and how it’s stored, depends on its type.
A running program uses two regions of memory to store data: the stack and the heap.

The Stack

The system takes care of all stack manipulation. You, as the programmer, don’t need to do anything
with it explicitly. But understanding its basic functions will give you a better understanding of what
your program is doing when it’s running and allow you to better understand the C# documentation
and literature.
The stack is an array of memory that acts as a last-in, first-out (LIFO) data structure. It stores several

types of data:

e The values of certain types of variables

e The program’s current execution environment

e Parameters passed to methods

Facts About Stacks

The general characteristics of stacks are the following:
e Datacan be added to and deleted only from the top of the stack.
e Placing a data item at the top of the stack is called pushing the item onto the stack.

e Deleting an item from the top of the stack is called popping the item from the stack.

Figure 3-6 illustrates the functions and terminology of the stack.

~N Y

Push Pop Stack Free Stack
\ /" Memory
<«—Top
1,000
Top —>
562 562
13,456 Stored 13,456
L Data N
Data items are pushed onto the top of the stack Pushing an integer (e.g., 1,000) onto
and popped from the top of the stack. the stack moves the top of the stack up.

Figure 3-6. Pushing and popping on the stack

39

CHAPTER 3 I TYPES, STORAGE, AND VARIABLES

40

The Heap

The heap is an area where chunks of memory are allocated to store certain kinds of data objects. Unlike
the stack, memory can be stored and removed from the heap in any order. Figure 3-7 shows a program

that has stored four items in the heap.

Figure 3-7. The memory heap

Although your program can store items in the heap, it cannot explicitly delete them. Instead, the
CLR’s garbage collector (GC) automatically cleans up orphaned heap objects when it determines that
your code is no longer accessing them. This frees you from what in other programming languages can be

Program

Heap
Iltem 1

ltem 3

ltem 2

an error-prone task. Figure 3-8 illustrates the garbage collection process.

Program

1. The program has stored three
objects in the heap.

Program

3. The garbage collector finds the

Heap

||
[|
—

orphaned object and releases it.

Figure 3-8. Automatic garbage collection in the heap

(0]
(9]

Heap

Program

[]

2. Later in the program, one of the objects
is no longer used by the program.

Program

4. After garbage collection, the released
object’s memory is available for reuse.

CHAPTER 3 " TYPES, STORAGE, AND VARIABLES

Value Types and Reference Types

The type of a data item defines how much memory is required to store it and the data members that
comprise it. The type also determines where an object is stored in memory—the stack or the heap.

Types are divided into two categories: value types and reference types. Objects of these types are
stored differently in memory.

e Value types require only a single segment of memory, which stores the actual data.

e Reference types require two segments of memory:
— The first contains the actual data—and is always located in the heap.
— The second is a reference that points to where in the heap the data is stored.

Data that is not a member of another type is stored as shown in Figure 3-9. For value types, data is
stored on the stack. For reference types, the actual data is stored in the heap, and the reference is stored
on the stack.

1
; H

Stack : Stack eap
. o |
! m | Data_|

Data ! Reference —
1
1
1
1

Value Type Data ' Reference Type Data
— The data is stored on — The data is stored in the heap.
the stack. — The reference is stored on the stack.

Figure 3-9. Storing data that is not part of another type

Storing Members of a Reference Type Object

Figure 3-9 shows how data is stored when it isn’t a member of another type. When it’s a member of
another type, data might be stored a little differently.

e The data portion of a reference type object is always stored in the heap, as shown in Figure 3-9.

e Avalue type object, or the reference part of a reference type, can be stored in either the stack or
the heap, depending on the circumstances.

Suppose, for example, that you have an instance of a reference type, called MyType, that has two
members—a value type member and a reference type member. How is it stored? Is the value type
member stored on the stack and the reference type split between the stack and the heap, as shown in
Figure 3-9? The answer is no.

41

Download from Wow! eBook <www.wowebook.com>

CHAPTER 3 M TYPES, STORAGE, AND VARIABLES

42

Remember that for a reference type, the data of an instance is always stored in the heap. Since both
members are part of the object’s data, they’re both stored in the heap, regardless of whether they are
value or reference types. Figure 3-10 illustrates the case of type MyType.

e Even though member A is a value type, it’s part of the data of the instance of MyType and is
therefore stored with the object’s data in the heap.

e Member B is a reference type, and therefore its data portion will always be stored in the heap, as
shown by the small box marked “Data.” What'’s different is that its reference is also stored in the
heap, inside the data portion of the enclosing MyType object.

+
Heap
Stack
MyType
Reference — B Ref
[B: Ref 1 o
+

Figure 3-10. Storage of data as part of a reference type

Note For any object of a reference type, all its data members are stored in the heap, regardless of whether
they are of value type or reference type.

Categorizing the C# Types

Table 3-3 shows all the types available in C# and what kinds of types they are—value types or reference
types. Each reference type is covered later in the text.

Table 3-3. Value Types and Reference Types in C#

Value Types Reference Types
Predefined types sbyte byte float object
short ushort double string
int uint char dynamic
long ulong decimal
bool
User-defined types struct class
enum interface
delegate
array

CHAPTER 3 " TYPES, STORAGE, AND VARIABLES

Variables

A general-purpose programming language must allow a program to store and retrieve data.
e Avariableis a name that represents data stored in memory during program execution.

e C# provides four categories of variables, each of which will be discussed in detail. These kinds are
listed in Table 3-4.

Table 3-4. The Four Kinds of Variables

Name Member of a Type Description

Local variable No Holds temporary data within the scope of a method

Field Yes Holds data associated with a type or an instance of a type
Parameter No A temporary variable used to pass data from one method to

another method

Array element Yes One member of a sequenced collection of (usually)
homogeneous data items

Variable Declarations

A variable must be declared before it can be used. The variable declaration defines the variable and
accomplishes two things:

e Itgives the variable a name and associates a type with it.

e Itallows the compiler to allocate memory for it.

A simple variable declaration requires at least a type and a name. The following declaration defines
a variable named var2, of type int:

Type
4

int var2;
T

Name

For example, Figure 3-11 represents the declaration of four variables and their places on the stack.

varl

1 NS
! Storage for
1.nt varl; // Value Type 1 theDealer <« a Reference
int varz; // Value Type
float var3; // Value Type ! var3 st
Dealer theDealer; // Reference Type ! 2 — ptorage
> , var, for Data
1
I

Figure 3-11. Value type and reference type variable declarations

43

CHAPTER 3 I TYPES, STORAGE, AND VARIABLES

44

Variable Initializers

Besides declaring a variable’s name and type, you can optionally use the declaration to initialize its
memory to a specific value.
A variable initializer consists of an equals sign followed by the initializing value, as shown here:

Initializer

int var2 = 17;

Local variables without initializers have an undefined value and cannot be used until they have
been assigned a value. Attempting to use an undefined local variable causes the compiler to produce an
error message.

Figure 3-12 shows a number of local variable declarations on the left and the resulting stack
configuration on the right. Some of the variables have initializers, and others do not.

+

1

: dealer2 null
int varl; // Value Type ! dealerl ?
int var2 = 17; // Value Type |
float var3 = 26.843F; // Value Type | var3 26.843
Dealer dealerl; // Reference Type 1 var? 17
Dealer dealer2 = null; // Reference Type 1

! varl ?

I

I L N

Figure 3-12. Variable initializers

Automatic Initialization

Some kinds of variables are automatically set to default values if they are declared without an initializer,
and others are not. Variables that are not automatically initialized to default values contain undefined
values until the program assigns them a value. Table 3-5 shows which types of variables are
automatically initialized and which are not. I'll cover each of the five variable types later in the text.

Table 3-5. Types of Variables

Variable Type Stored In Auto-initialized Use

Local variables Stack or stackand heap No Used for local computation inside a
function member

Class fields Heap Yes Members of a class
Struct fields Stack or heap Yes Members of a struct
Parameters Stack No Used for passing values into and out

of a method

Array elements Heap Yes Members of an array

CHAPTER 3 " TYPES, STORAGE, AND VARIABLES

Multiple-Variable Declarations

You can declare multiple variables in a single declaration statement.
e The variables in a multiple-variable declaration must all be of the same type.

e The variable names must be separated with commas. Initializers can be included with the
variable names.

For example, the following code shows two valid declaration statements with multiple variables.
Notice that the initialized variables can be mixed with uninitialized variables as long as they’re separated
by commas. The last declaration statement shown is invalid because it attempts to declare different
types of variables in a single statement.

// Variable declarations--some with initializers, some without
int var3 = 7, var4, var5 = 3;
double var6, var7 = 6.52;

Type Different type
U)

int var8, float var9; // Error! Can't mix types (int and float)

Using the Value of a Variable

A variable name represents the value stored by the variable. You can use the value by using the variable
name.

For example, in the following statement, the value of var2 is retrieved from memory and placed at
the position of the variable.

Console.WriteLine("{0}", var2);

Static Typing and the dynamic Keyword

One thing you'll have noticed is that every variable includes the fype of the variable, allowing the
compiler to determine the amount of memory it will require at runtime and which parts should be
stored in the stack and which in the heap. The type of the variable is determined at compile time and
cannot be changed at runtime. This is called static typing.

Not all languages, though, are statically typed. Many, including such scripting languages as
IronPython and IronRuby, are dynamically typed. That is, the type of a variable might not be resolved
until runtime. Since these are .NET languages, C# programs need to be able to use assemblies written in
these languages.

To solve the problem that C# needs to be able to resolve at compile time a type referenced in an
assembly that doesn’t resolve its types until runtime, the C# language designers added the keyword
dynamic to the language. The dynamic keyword represents a specific, actual C# type that knows how to
resolve itself at runtime. That is, it’s statically typed as dynamic!

This satisfies both constraints. The C# compiler can resolve the keyword to an actual type, and the
type object can resolve itself to the target assembly’s type at runtime.

45

CHAPTER 3 I TYPES, STORAGE, AND VARIABLES

46

Nullable Types

There are situations, particularly when working with databases, where you want to indicate that a
variable does not currently hold a valid value. For reference types, you can do this easily, by setting the
variable to null. When you define a variable of a value type, however, its memory is allocated whether or

not its contents have any valid meaning.
What you would like in this situation is to have a Boolean indicator associated with the variable, so
that when the value is valid, the indicator is true, and when the value is not valid, the indicator is false.
Nullable types allow you to create a value type variable that can be marked as valid or invalid so that
you can make sure a variable is valid before using it. Regular value types are called non-nullable types.

Creating a Nullable Type

A nullable type is always based on another type, called the underlying type, that has already been
declared.

¢ You can create a nullable type from any value type, including the predefined, simple types.
¢ You cannot create a nullable type from a reference type or from another nullable type.

¢ You do not explicitly declare a nullable type in your code. Instead, you declare a variable of a
nullable type. The compiler implicitly creates the nullable type for you.

To create a variable of a nullable type, simply add a question mark to the end of the name of the
underlying type, in the variable declaration. Unfortunately, this syntax makes it appear that you have a

lot of questions about your code.
For example, the following code declares a variable of the nullable int type. Notice that the suffix is

attached to the fype name—not the variable name.
Suffix
\

int? myNInt = 28;
T

The name of the nullable type includes the suffix.

With this declaration statement, the compiler takes care of both producing the nullable type and
creating the variable of that type.

CHAPTER 3 " TYPES, STORAGE, AND VARIABLES

Using a nullable type is almost the same as using a variable of any other type. Reading a variable of a
nullable type returns its value. You must, however, make sure that the variable is not null. Attempting to
read the value of a null variable produces an exception.

e Like any variable, to retrieve its value, you just use its name.

e To check whether a nullable type has a value, you can compare it to null.

Compare to null
4
if (myInt1 != null)
Console.WriteLine("{0}", myInt1);
T

Use variable name

Both sets of code produce the following output:

15
You can easily convert between a nullable type and its corresponding non-nullable type. We’ll go
into conversions in detail in Chapter 18, but the important points for nullable types are the following:

e There is an implicit conversion between a non-nullable type and its nullable version. That is, no

cast is needed.

e There is an explicit conversion between a nullable type and its non-nullable version.

For example, the following lines show conversion in both directions. In the first line, a literal of type

int is implicitly converted to a value of type int? and is used to initialize the variable of the nullable type.

In the second line, the variable is explicitly converted to its non-nullable version.

15; // Implicitly convert int to int?
(int) myInta; // Explicitly convert int? to int

int? myInt1
int regint

47

CHAPTER 3 I TYPES, STORAGE, AND VARIABLES

Assigning to a Nullable Type

You can assign three kinds of values to a variable of a nullable type:
e Avalue of the underlying type
e Avalue of the same nullable type

e Thevalue null

The following code shows an example of each of the three types of assignment:

int? myI1, myI2, myI3;

myIl = 28; // Value of underlying type
myI2 = myI1l; // Value of nullable type
myI3 = null; // Null

Console.WritelLine("myI1: {0}, myI2: {1}", myI1, myI2);

This code produces the following output:

myI1: 28, myI2: 28

In Chapter 25, when you have a clearer understanding of C#, I'll explain the finer points of
nullable types.

48

CHAPTER 4

Classes: The Basics

Overview of Classes

Programs and Classes: A Quick Example
Declaring a Class

Class Members

Creating Variables and Instances of a Class
Allocating Memory for the Data

Instance Members

Access Modifiers

Accessing Members from Inside the Class
Accessing Members from Outside the Class

Putting It All Together

CHAPTER 4 I CLASSES: THE BASICS

50

Overview of Classes

In the previous chapter, you saw that C# provides six user-defined types. The most important of these,
and the one I'll cover first, is the class. Since the topic of classes in C# is a large one, its discussion will be
spread over the next several chapters.

A Class Is an Active Data Structure

Before the days of object-oriented analysis and design, programmers thought of a program as just a
sequence of instructions. The focus at that time was on structuring and optimizing those instructions.
With the advent of the object-oriented paradigm, the focus changed from optimizing instructions to
organizing a program’s data and functions into encapsulated sets of logically related data items and
functions, called classes.

A class is a data structure that can store data and execute code. It contains the following:

e Data members, which store data associated with the class or an instance of the class. Data
members generally model the attributes of the real-world object the class represents.

e Function members, which execute code. Function members generally model the functions and
actions of the real-world object the class represents.

A C# class can have any number of data and function members. The members can be any
combination of nine possible member types. Table 4-1 shows these member types. The ones I'll cover in
this chapter—fields and methods—are checked in the table.

Table 4-1. Types of Class Members

Data Members Store Data Function Members Execute Code

v' Fields v" Methods Q Operators

Q Constants Q Properties Q Indexers
Q Constructors Qa Events

Q Destructors

Note Classes are encapsulated sets of logically related data items and functions that generally represent
objects in the real world or a conceptual world.

CHAPTER 4 I CLASSES: THE BASICS

Programs and Classes: A Quick Example

A running C# program is a group of interacting type objects, most of which are instances of classes. For
example, suppose you have a program simulating a poker game. When it’s running, it might have an
instance of a class called Dealer, whose job is to run the game, and several instances of a class called
Player, which represent the players of the game.

The Dealer object stores such information as the current state of the card deck and the number of
players. Its actions include shuffling the deck and dealing the cards.

The Player class is very different. It stores such information as the player’s name and the amount of
money left to bet, and it performs such actions as analyzing the player’s current hand and placing bets.
Figure 4-1 illustrates the running program.

Running Poker Program
Dealer
theDealer
Player / \ Player
playerl player2
Player
player3

Figure 4-1. The objects in a running program

A real program would undoubtedly contain dozens of other classes besides Dealer and Player.
These would include classes such as Card and Deck. Each class models some thing that is a component of
the poker game.

Note A running program is a set of objects interacting with each other.

51

Download from Wow! eBook <www.wowebook.com>

CHAPTER 4 M CLASSES: THE BASICS

52

Declaring a Class

Although types int, double, and char are defined in the C# language, classes such as Dealer and Player,
as you can probably guess, are not defined by the language. If you want to use them in a program, you'll
have to define them yourself. You do this by writing a class declaration.

A class declaration defines the characteristics and members of a new class. It does not create an
instance of the class but creates the template from which class instances will be created. The class
declaration provides the following:

e The class name
e The members of the class

e The characteristics of the class

The following is an example of the minimum syntax for a class declaration. The curly braces contain
the member declarations that make up the class body. Class members can be declared in any order
inside the class body. This means it’s perfectly fine for the declaration of a member to refer to another
member that is not yet defined until further down in the class declaration.

Keyword Class name

class MyExcellentClass

MemberDeclarations

For example, the following code shows the outlines of two class declarations:

class Dealer // Class declaration
{
}
class Player // Class declaration
}

Note Since a class declaration “defines” a new class, you will often see a class declaration referred to as a
class definition both in the literature and in common usage among programmers.

CHAPTER 4 I CLASSES: THE BASICS

Class Members

Fields and methods are the most important of the class member types. Fields are data members, and
methods are function members.

Fields
A field is a variable that belongs to a class.
e Itcan be of any type, either predefined or user-defined.
e Like all variables, fields store data and have the following characteristics:
— They can be written to.

— They can be read from.

The minimum syntax for declaring a field is the following:

Tyfe
Type Identifier;
T

Field name

For example, the following class contains the declaration of field MyField, which can store an
int value:

class MyClass
{ Type
U

int MyField;

} Field name

Note Unlike C and C++, there are no global variables (that is, variables or fields) declared outside of a type. All
fields belong to a type and must be declared within the type declaration.

53

CHAPTER 4 I CLASSES: THE BASICS

Explicit and Implicit Field Initialization

Since a field is a kind of variable, the syntax for a field initializer is the same as that of the variable
initializer shown in the previous chapter.

A field initializer is part of the field declaration and consists of an equals sign followed by an
expression that evaluates to a value.

The initialization value must be determinable at compile time.

class MyClass

int F1 = 17;
} T
Field initializer

If no initializer is used, the value of a field is set by the compiler to a default value, determined by
the type of the field. Table 3-1 (in Chapter 3) gives the default values for the simple types. To
summarize them, though, the default value for each type is 0, and false for bool. The default for
reference types is null.

For example, the following code declares four fields. The first two fields are initialized implicitly. The

second two fields are initialized explicitly with initializers.

class MyClass

int F1; // Initialized to 0 - value type
string F2; // Initialized to null - reference type
int F3 = 25; // Initialized to 25

string F4 = "abcd"; // Initialized to "abcd"

Declarations with Multiple Fields

You can declare multiple fields of the same type in the same statement by separating the names with
commas. You cannot mix different types in a single declaration. For example, you can combine the four
preceding field declarations into two statements, with the exact same semantic result:

int

F1, F3 = 25;

string F2, F4 = "abcd";

54

CHAPTER 4 I CLASSES: THE BASICS

Methods

A method is a named block of executable code that can be executed from many different parts of the
program, and even from other programs. (There are also anonymous methods, which aren’t named—
but I'll cover those in Chapter 15.)

When a method is called, or invoked, it executes its code and then returns to the code that called it.
Some methods return a value to the position from which they were called. Methods correspond to
member functions in C++.

The minimum syntax for declaring a method includes the following components:

e Return type: This states the type of value the method returns. If a method doesn’t return a value,
the return type is specified as void.

e Name: This is the name of the method.

e Parameter list: This consists of at least an empty set of matching parentheses. If there are
parameters (which I'll cover in the next chapter), they are listed between the parentheses.

e Method body: This consists of a matching set of curly braces, containing the executable code.

For example, the following code declares a class with a simple method called PrintNums. From the
declaration, you can tell the following about PrintNums:

e Itreturns no value; hence, the return type is specified as void.
e Ithas an empty parameter list.

e Itcontains two lines of code in its method body.

class SimpleClass

Return type Parameter list
A 4
void PrintNums()

Console.WriteLine("1");
Console.WriteLine("2");
}
}

Note Unlike C and C++, there are no global functions (that is, methods or functions) declared outside of a type
declaration. Also, unlike C and C++, there is no “default” return type for a method. All methods must include a
return type or list it as void.

55

CHAPTER 4 I CLASSES: THE BASICS

Creating Variables and Instances of a Class

The class declaration is just the blueprint from which instances of the class are created. Once a class is
declared, you can create instances of the class.

e C(Classes are reference types, which, as you will remember from the previous chapter, means that
they require memory both for the reference to the data and for the actual data.

e Thereference to the data is stored in a variable of the class type. So, to create an instance of the
class, you need to start by declaring a variable of the class type. If the variable isn’t initialized, its
value is undefined.

Figure 4-2 illustrates how to define the variable to hold the reference. At the top of the code on the
left is a declaration for class Dealer. Below that is a declaration for class Program, which contains method
Main. Main declares variable theDealer of type Dealer. Since the variable is uninitialized, its value is
undefined, as shown on the right in the figure.

class Dealer { ... }

1
1 N
class Program I Stack
{ 1
static void Main() I
{ 1
n
Dealer theDealer; : theDealer :
1
} | N
1

Figure 4-2. Allocating memory for the reference of a class variable

56

CHAPTER 4 I CLASSES: THE BASICS

Allocating Memory for the Data

Declaring the variable of the class type allocates the memory to hold the reference, but not the
memory to hold the actual data of the class object. To allocate memory for the actual data, you use the
new operator.

e The new operator allocates and initializes memory for an instance of any specified type. It
allocates the memory from either the stack or the heap, depending on the type.

e Use the new operator to form an object-creation expression, which consists of the following:
— The keyword new.
— The name of the type of the instance for which memory is to be allocated.

— Matching parentheses, which might or might not include parameters. I'll discuss more about
the possible parameters later.

Keyword Parentheses are required.
new TypeName ﬁ
T

Type

e Ifthe memory allocated is for a reference type, the object-creation expression returns a reference
to the allocated and initialized instance of the object in the heap.

This is exactly what you need to allocate and initialize the memory to hold the class instance data.
Use the new operator to create an object-creation expression, and assign the value returned by it to the
class variable. Here’s an example:

Dealer theDealer; // Declare variable for the reference.
theDealer = new Dealer(); // Allocate memory for the class object.
T

Object-creation expression

The code on the left in Figure 4-3 shows the new operator used to allocate memory and create an
instance of class Dealer, which is then assigned to the class variable. The memory structure is illustrated
in the figure, to the right of the code.

class Dealer {...}

I
| +
class App I Stack Heap
{ |
static void Main() [
{ I
Dealer theDealer; ! theDealer —
theDealer = new Dealer(); :
I L A~
} |

Figure 4-3. Allocating memory for the data of a class variable

57

CHAPTER 4 I CLASSES: THE BASICS

Combining the Steps

You can combine the two steps by initializing the variable with the object-creation expression.

Declare variable.

Dealer theDealer = new Dealer(); // Declare and initialize.
T

Initialize with an object-creation expression.

In the case of local variables, but not fields, you can simplify the syntax a bit more by having the
compiler infer the type in the declaration part on the left. But I'll cover that in the section on local
variables in the next chapter.

58

CHAPTER 4 I CLASSES: THE BASICS

Instance Members

A class declaration acts as a blueprint from which you can create as many instances of the class as
you like.

e Instance members: Each instance of a class is a separate entity that has its own set of data
members, distinct from the other instances of the same class. These are called instance members
since they are associated with an instance of the class.

e Static members: Instance members are the default, but you can also declare members called static
members that are associated with the class, rather than the instance. I'll cover these in Chapter 6.

As an example of instance members, the following code shows the poker program with three
instances of class Player. Figure 4-4 shows that each instance has a different value for the Name field.

class Dealer { ... } // Declare class

class Player { // Declare class
string Name; // Field

}

class Program {
static void Main()

Dealer theDealer
Player playeri
Player player2
Player player3

new Dealer();
new Player();
new Player();
new Player();

~
Heap)
~
> | Name: Shelley
player3 ——j
playerl —
theDealer —
U

[

Figure 4-4. Instance members have distinct values between class objects.

59

CHAPTER 4 I CLASSES: THE BASICS

Access Modifiers

From within a class, any function member can access any other member of the class by simply using
that member’s name.

The access modifier is an optional part of a member declaration that specifies what other parts of the
program have access to the member. The access modifier is placed before the simple declaration forms.
The following is the syntax for fields and methods:

Fields
AccessModifier Type Identifier

Methods
AccessModifier ReturnType MethodName ()

}

The five categories of member access are the following. I'll describe the first two in this chapter and
the others in Chapter 7.

e private

e public

e protected
e internal

e protected internal

Private and Public Access

Private members are accessible only from within the class in which they are declared—other classes
cannot see or access them.

e Private access is the default access level, so if a member is declared without an access modifier, it
is a private member.

e You can also use the private access modifier to explicitly declare a member as private.

e There is no semantic difference between declaring a private member implicitly as opposed to
explicitly. The forms are equivalent.

For example, the following two declarations both specify private int members:

int MyInti; // Implicitly declared private
private int MyInt2; // Explicitly declared private
T

Access modifier

60

CHAPTER 4 I CLASSES: THE BASICS

Public members are accessible to other objects in the program. You must use the public access
modifier to specify public access.

Access modifier

i
public int MyInt;

Depicting Public and Private Access

The figures in this text represent classes as labeled boxes, as shown in Figure 4-5.
e The class members are represented as smaller labeled boxes inside the class boxes.
e Private members are represented enclosed entirely within their class box.

e Public members are represented sticking partially outside their class box.

P

class Program rogram
{ Member1l
int Memberl;

|
|
|
|
|
private int Member2; 1 Member2
|
|
|
|

public int Member3;
}

Member3

i

Figure 4-5. Representing classes and members

61

Download from Wow! eBook <www.wowebook.com>

CHAPTER 4 M CLASSES: THE BASICS

Example of Member Access

Class C1 in the following code declares both public and private fields and methods. Figure 4-6 illustrates
the visibility of the members of class C1.

class C1
{
int F1; // Implicit private field
private int F2; // Explicit private field
public int F3; // Public field
void DoCalc() // Implicit private method
{
}
public int GetVal() // Public method
{
}
}
Cl1
Fields
—
—
:I Private class members can
IE only be seen by members
Public class members Methods of the class.
provide unrestricted
Getval()

Figure 4-6. Private and public class members

62

Accessing Members from Inside the Class

CHAPTER 4 I CLASSES: THE BASICS

As mentioned, members of a class can access the other class members by just using their names.

For example, the following class declaration shows the methods of the class accessing the fields

and other methods. Even though the fields and two of the methods are declared private, all the
members of a class can be accessed by any method (or any function member) of the class. Figure 4-7
illustrates the code.

class DaysTemp

{

// Fields
private int High = 75;
private int Low = 45;

// Methods
private int GetHigh()

return High;

}
private int GetLow()

return Low;

// Access private field

// Access private field

}
public float Average ()
{
return (GetHigh() + GetLow()) / 2;
} T T

Accessing the private methods

// Access private methods

DaysTemp

GetHigh()

GetLow()

Average()

Figure 4-7. Members within a class can freely access each other.

63

CHAPTER 4 I CLASSES: THE BASICS

Accessing Members from Outside the Class

To access a public instance member from outside the class, you must include the variable name and the
member name, separated by a period (dot). This is called dot-syntax notation; it will be discussed in
more detail later.

For example, the second line of the following code shows an example of accessing a method from
outside the class:

DaysTemp myDt = new DaysTemp(); // Create an object of the class.
float fValue = myDt.Average(); // Access it from outside.
T T

Variable name Member name
As an example, the following code declares two classes: DaysTemp and Program.
e The two fields in DaysTemp are declared public, so they can be accessed from outside the class.

e Method Main is a member of class Program. It creates a variable and object of class DaysTemp, and it
assigns values to the fields of the object. It then reads the values of the fields and prints them out.

class DaysTemp // Declare class DaysTemp
public int High = 75;
public int Low = 45;
}
class Program // Declare class Program.
{
static void Main()
{ Variable name
DaysTemp temp = new DaysTemp(); // Create the object.
Variable name and field
temp.High = 85; // Assign to the fields.
temp.Low = 60; Variable name and field
Console.WritelLine("High: {0}", temp.High); // Read from fields.
Console.WriteLine("Low: {0}", temp.Low);

}

This code produces the following output:

High: 85
Low: 60

64

CHAPTER 4 I CLASSES: THE BASICS

Putting It All Together

The following code creates two instances and stores their references in variables named t1 and t2.
Figure 4-8 illustrates t1 and t2 in memory. The code demonstrates the following three actions discussed
so far in the use of a class:

e Declaring a class

e Creating instances of the class

e Accessing the class members (that is, writing to a field and reading from a field)

class DaysTemp // Declare the class.
public int High, Low; // Declare the instance fields.
public int Average() // Declare the instance method.

return (High + Low) / 2;

}
class Program
{
static void Main()
{
// Create two instances of DaysTemp.
DaysTemp t1 = new DaysTemp();
DaysTemp t2 = new DaysTemp();
// Write to the fields of each instance.
t1.High = 76, ti.Low = 57;
t2.High = 75; t2.Low = 53;
// Read from the fields of each instance and call a method of
// each instance.
Console.WriteLine("t1: {0}, {1}, {2}",
t1.High, ti.Low, ti.Average());
Console.WriteLine("t2: {0}, {1}, {2}",
t2.High, t2.Low, t2.Average());
T T T
} Field Field Method
}

65

CHAPTER 4 " CLASSES: THE BASICS

66

This code produces the following output:

t1: 76, 57, 66
t2: 75, 53, 64

t2
tl

Stack

— T

Heap

High: 75

Low: 53

Y

-

Figure 4-8. Memory layout of instances t1 and t2

High: 76

Low: 57

CHAPTER 5

Methods

The Structure of a Method
Local Variables

Method Invocations
Return Values

Parameters

Value Parameters
Reference Parameters
Output Parameters
Parameter Arrays
Summary of Parameter Types
Stack Frames

Recursion

Method Overloading

CHAPTER 5 '/ METHODS

The Structure of a Method

A method is a block of code with a name. You can execute the code from somewhere else in the program
by using the method’s name. You can also pass data into a method and receive data back as output.

As you saw in the previous chapter, a method is a function member of a class. Methods have two
major sections, as shown in Figure 5-1—the method header and the method body.

e The method header specifies the method’s characteristics, including the following:
— Whether the method returns data and, if so, what type
— The name of the method

— What types of data can be passed to and from the method and how that data should be
treated

e The method body contains the sequence of executable code statements. Execution starts at the
first statement in the method body and continues sequentially through the method.

Method
void DoTask () <« H:adc;r
{

Statement1

Statement2 Method
Body

StatementX

Figure 5-1. The structure of a method

The following example shows the form of the method header. I'll cover each part in the following

pages.
int MyMethod (int pari, string par2)
T T T
Return Method Parameter
type name list

68

CHAPTER 5 " METHODS

For example, the following code shows a simple method called MyMethod that, in turn, calls the
Writeline method several times:

void MyMethod()

Console.WriteLine("First");
Console.WriteLine("Last");

}

Although these first few chapters describe classes, there’s another user-defined type called a struct,
which I'll cover in Chapter 12. Most of what this chapter covers about class methods is also true for
struct methods.

Code Execution in the Method Body

The method body is a block, which (as you will recall from Chapter 2) is a sequence of statements
between curly braces. A block can contain the following items:

e Local variables
e Flow-of-control constructs
e Method invocations

e Blocks nested within it

Figure 5-2 shows an example of a method body and some of its components.

static void Main() Local Variable

{ ;. «— Initialized to 3

int myInt =

while (myInt > 0)
{

Flow-of-Control

--myInt;
Construct

PrintMyMessage() ;

N

Method Invocation

Figure 5-2. Method body example

69

CHAPTER 5 '/ METHODS

70

Local Variables

Like fields, local variables store data. While fields usually store data about the state of the object, local
variables are usually created to store data for local, or transitory, computations. Table 5-1 compares and
contrasts local variables and instance fields.

The following line of code shows the syntax of local variable declarations. The optional initializer
consists of the equals sign followed by a value to be used to initialize the variable.

Variable name
i
Type Identifier = Value;
T

Optional initializer
¢ The existence of a local variable is limited to the block in which it is created and the blocks nested
within it.
— The variable comes into existence at the point at which it is declared.
— It goes out of existence when the block completes execution.
¢ You can declare local variables at any position in the method body, but they must be declared

before they’re used.

The following example shows the declaration and use of two local variables. The first is of type int,
and the second is of type SomeClass.

static void Main()

int myInt = 15;
SomeClass sc = new SomeClass();
}
Table 5-1. Instance Fields vs. Local Variables
Instance Field Local Variable
Lifetime Starts when the class instance is Starts at the point in the block where
created. Ends when the class itis declared. Ends when the block
instance is no longer accessible. completes execution.
Implicit initialization Initialized to a default value for the = No implicit initialization. The
type. compiler produces an error message
if the variable isn’t assigned to before
use.
Storage area All the fields of a class are storedin ~ Value type: Stored on the stack.
the heap, regardless of whether Reference type: Reference stored on
they’re value types or reference the stack and data stored in the
types. heap.

CHAPTER 5 " METHODS

Type Inference and the var Keyword

If you look at the following code, you'll see that when you supply the type name at the beginning of the
declaration, you are supplying information that the compiler should already be able to infer from the
right side of the initialization.

e In the first variable declaration, the compiler can infer that 15 is an int.

¢ Inthe second declaration, the object-creation expression on the right side returns an object of
type MyExcellentClass.

So in both cases, including the explicit type name at the beginning of the declaration is redundant.
static void Main()

int total = 15;
MyExcellentClass mec = new MyExcellentClass();

}

Starting with C# 3.0 you can use the new keyword var in place of the explicit type name at the
beginning of the variable declaration, as follows:

static void Main()

{ Keyword

1

var total = 15;

var mec = new MyExcellentClass();
}

The var keyword does not signal a special kind of variable. It’s just syntactic shorthand for whatever
type can be inferred from the initialization on the right side of the statement. In the first declaration, it is
shorthand for int. In the second, it is shorthand for MyExcellentClass. The preceding code segment with
the explicit type names and the code segment with the var keywords are semantically equivalent.

Some important conditions on using the var keyword are the following:

¢ You can use it only with local variables—not with fields.
¢ You can use it only when the variable declaration includes an initialization.

e Once the compiler infers the type of a variable, it is fixed and unchangeable.

Note The var keyword is not like the JavaScript var that can reference different types. It's shorthand for the
actual type inferred from the right side of the equals sign. The var keyword does not change the strongly typed
nature of C#.

71

CHAPTER 5 ® METHODS

Local Variables Inside Nested Blocks

Method bodies can have other blocks nested inside them.

e There can be any number of blocks, and they can be sequential or nested further. Blocks can be
nested to any level.

e Local variables can be declared inside nested blocks, and like all local variables, their lifetimes
and visibility are limited to the block in which they're declared and the blocks nested within it.

Figure 5-3 illustrates the lifetimes of two local variables, showing the code and the state of the stack.
The arrows indicate the line that has just been executed.

e Variable var1i is declared in the body of the method, before the nested block.

e Variable var2 is declared inside the nested block. It exists from the time it’s declared, until the end
of the block in which it was declared.

e When control passes out of the nested block, its local variables are popped from the stack.

Download from Wow! eBook <www.wowebook.com>

\{/01’d Method1 : \{/oid Method1
> int varl = 5; : int varl = 5;
{ int var2 = 10; : -—>{ int var2 = 10; | var2 10
} varl 5 3) varl 5
} N : } L

1. Variable varl is declared before the nested

block, and space is allocated for it on the stack.

2. Variable var2 is declared within the nested block,

and space is allocated for it on the stack.

void Methodl
{
int varl = 53
{
int var2 = 10;

>}

}

varl

var? is popped from the stack.

Figure 5-3. The lifetime of a local variable

+

5

+

3. When execution passes out of the nested block,

Note In C and C++ you can declare a local variable, and then within a nested block you can declare another
local variable with the same name. The inner name masks the outer name while within the inner scope. In C#,
however, you cannot declare another local variable with the same name within the scope of the first name
regardless of the level of nesting.

72

CHAPTER 5 " METHODS

Local Constants

Alocal constant is much like a local variable, except that once it is initialized, its value can’t be changed.
Like a local variable, a local constant must be declared inside a block.
The two most important characteristics of a constant are the following:

e A constant must be initialized at its declaration.

e A constant cannot be changed after its declaration.

The core declaration for a constant is shown following. The syntax is the same as that of a field or
variable declaration, except for the following:

e The addition of the keyword const before the type.

e The mandatory initializer. The initializer value must be determinable at compile time and is
usually one of the predefined simple types or an expression made up of them. It can also be the
null reference, but it cannot be a reference to an object, because references to objects are
determined at run time.

Note The keyword const is not a modifier but part of the core declaration. It must be placed immediately
before the type.

Keyword
4
const Type Identifier = Value;
Initializer required

Alocal constant, like a local variable, is declared in a method body or code block, and it goes out of scope
at the end of the block in which it is declared. For example, in the following code, local constant PI goes
out of scope at the end of method DisplayRadii.

void DisplayRadii()

const double PI = 3.1416; // Declare local constant

for (int radius = 1; radius <= 5; radius++)

double area = radius * radius * PI; // Read from local constant
Console.WritelLine
("Radius: {0}, Area: {1}" radius, area);

73

CHAPTER 5 '/ METHODS

74

Flow of Control

Methods contain most of the code for the actions that comprise a program. The remainder is in other
function members, such as properties and operators—but the bulk is in methods.

The term flow of control refers to the flow of execution through your program. By default, program

execution moves sequentially from one statement to the next. The control statements allow you to
modify the order of execution.

In this section, I'll just mention some of the available control statements you can use in your code.

Chapter 9 covers them in detail.

Selection statements: These statements allow you to select which statement, or block of
statements, to execute.

— if: Conditional execution of a statement
— if...else: Conditional execution of one statement or another

— switch: Conditional execution of one statement from a set

Iteration statements: These statements allow you to loop, or iterate, on a block of statements.
— for: Loop—testing at the top

— while: Loop—testing at the top

— do: Loop—testing at the bottom

— foreach: Execute once for each member of a set

Jump statements: These statements allow you to jump from one place in the block or method to
another.

— break: Exit the current loop.
— continue: Go to the bottom of the current loop.
— goto: Go to a named statement.

— return: Return execution to the calling method.

For example, the following method shows two of the flow-of-control statements. Don’t worry about

the details.

void SomeMethod()

{

int intVal = 3;
Equality conlparison operator

if(intval == 3) // if statement
Console.WriteLine("Value is 3. ");

for(int i=0; i<5; i++) // for statement
Console.WriteLine("Value of i: {0}", i);

CHAPTER 5 " METHODS

Method Invocations

You can call other methods from inside a method body.
e The phrases call a method and invoke a method are synonymous.

¢ You call a method by using its name, along with the parameter list, which I’ll discuss shortly.

For example, the following class declares a method called PrintDateAndTime, which is called from
inside method Main:

class MyClass

void PrintDateAndTime() // Declare the method.
{
DateTime dt = DateTime.Now; // Get the current date and time.
Console.WriteLine("{0}", dt); // Write it out.
}
static void Main() // Declare the method.
MyClass mc = new MyClass();
mc.PrintDateAndTime(); // Invoke the method.
} T T
} Method Empty
name parameter list

Figure 5-4 illustrates the sequence of actions when a method is called:

1. Execution of the current method suspends at that point of the invocation.
2. Control transfers to the beginning of the invoked method.
3. Theinvoked method executes until it completes.
4. Control returns to the calling method.
void Task ()
{ void SubTaskl ()
Statement1 l @ |
Statement2 Statement1
e //
SubTask1();
®<~\ StatementY
StatementX i Q)
}

Figure 5-4. Flow of control when calling a method

75

CHAPTER 5 '/ METHODS

Return Values

A method can return a value to the calling code. The returned value is inserted into the calling code at
the position in the expression where the invocation occurred.

e Toreturn avalue, the method must declare a return type before the method name.

e Ifamethod doesn’t return a value, it must declare a return type of void.

The following code shows two method declarations. The first returns a value of type int. The second
doesn’t return a value.

Return type
4

int GetHour() {...}
void DisplayHour() { ... }
T

No value is returned.

A method that declares a return type must return a value from the method by using the following
form of the return statement, which includes an expression after the keyword return. Every path through
the method must end with a return statement of this form.

return ExgreTssion; // Return a value.
Evaluates to a value of the return type
For example, the following code shows a method called GetHour, which returns a value of type int.

Return type
4

int GetHour()
{

DateTime dt = DateTime.Now; // Get the current date and time.
int hour = dt.Hour; // Get the hour.
return hour; // Return an int.

} T

Return statement

76

CHAPTER 5 " METHODS

You can also return objects of user-defined types. For example, the following code returns an object
of type MyClass:

Return type -- MyClass
i
MyClass method3()
MyClass mc = new MyClass();

return mc; // Return a MyClass object.

}

As another example, in the following code, method GetHour is called in the Writeline statement in
Main and returns an int value to that position in the WritelLine statement.

class MyClass

{ 1 Return type
public int GetHour()
{
DateTime dt = DateTime.Now; // Get the current date and time.
int hour = dt.Hour; // Get the hour.
return hour; // Return an int.
}
} Return value

class Program

{
static void Main()
Method invocation
MyClass mc = new MyClass();
Console.WriteLine("Hour: {0}", mc.GetHour());
} T T
} Instance Method

name name

77

CHAPTER 5 '/ METHODS

78

The Return Statement and Void Methods

In the previous section, you saw that methods that return a value must contain return statements. Void
methods do not require return statements. When the flow of control reaches the closing curly brace of
the method body, control returns to the calling code, and no value is inserted back into the calling code.

Often, however, you can simplify your program logic by exiting the method early when certain
conditions apply.

¢ Youcan exit from a void method at any time by using the following form of the return statement,
with no parameters:

return;

e This form of the return statement can be used only with methods declared void.

For example, the following code shows the declaration of a void method called SomeMethod, which
has three possible places it might return to the calling code. The first two places are in branches called if
statements, which are covered in Chapter 9. The last place is the end of the method body.

Void¢return type
void SomeMethod()
{
11’(SomeCondition) /1 If ...
return; // return to the calling code.
if (OtherCondition) /1 If ...
return; // return to the calling code.
} // Default return to the calling code.

CHAPTER 5 " METHODS

The following code shows an example of a void method with a return statement. The method writes
out a message only if the time is after noon. The process, which is illustrated in Figure 5-5, is as follows:
e First the method gets the current date and time. (Don’t worry about understanding the details of
this right now.)

e Ifthe hourisless than 12 (that is, before noon), the return statement is executed, and control
immediately returns to the calling method without writing anything to the screen.

e Ifthe houris 12 or greater, the return statement is skipped, and the code executes the WriteLine
statement, which writes an informative message to the screen.

class MyClass

{ 1 Void return type
void TimeUpdate()
{

DateTime dt = DateTime.Now; // Get the current date and time.
if (dt.Hour < 12) // If the hour is less than 12,
return; // then return.

Return to calling method.
Console.WriteLine("It's afternoon!"); // Otherwise, print message.

static void Main()

MyClass mc = new MyClass(); // Create an instance of the class.
mc.TimeUpdate(); // Invoke the method.
}
}
static void Main() void TimeUpdate()

{ {

MyClass mc = DateTime dt = DateTime.Now;
new MyClass();

/ if (dt.Hour < 12)

fj?
____————————-() return;

|

®

“-\\\\\\\\\\

mc.TimeUpdate();

1\

Console.WriteLine("It's afternoon!");

“— @O ——

}

Figure 5-5. Using a return statement with a void return type

79

CHAPTER 5 '/ METHODS

Parameters

So far, you've seen that methods are named units of code that can be called from many places in a
program and can return a single value to the calling code. Returning a single value is certainly valuable,
but what if you need to return multiple values? Also, it would be useful to be able to pass data into a
method when it starts execution. Parameters are special variables that allow you to do both these things.

Formal Parameters

Formal parameters are local variables that are declared in the method declaration’s parameter list,
rather than in the body of the method.

The following method header shows the syntax of parameter declarations. It declares two formal
parameters—one of type int and the other of type float.

public void PrintSum(int x, float y)
{ T

}

e Because formal parameters are variables, they have a data type and a name, and they can be
written to and read from.

Formal parameter declarations

¢ Unlike a method’s other local variables, the parameters are defined outside the method body and
are initialized before the method starts, except for one type, called output parameters, which I'll
cover shortly.

e The parameter list can have any number of formal parameter declarations, and the declarations
must be separated by commas.

The formal parameters are used throughout the method body, for the most part, just like other local
variables. For example, the following declaration of method PrintSum uses two formal parameters, x and
y, and a local variable, sum, all of which are of type int.

public void PrintSum(int x, int y)
{

int sum = x + y;
Console.WriteLine("Newsflash: {0} + {1} is {2}", x, y, sum);

}

80

CHAPTER 5 " METHODS

Actual Parameters

When your code calls a method, the values of the formal parameters must be initialized before the code
in the method begins execution.

e The expressions or variables used to initialize the formal parameters are called the actual
parameters. They are also sometimes called arguments.

e The actual parameters are placed in the parameter list of the method invocation.

e Each actual parameter must match the type of the corresponding formal parameter, or the
compiler must be able to implicitly convert the actual parameter to that type. I'll explain the
details of conversion from one type to another in Chapter 18.

For example, the following code shows the invocation of method PrintSum, which has two actual
parameters of data type int:

PrintSum(5, somelnt);
T T

Expression Variable of type int

When the method is called, the value of each actual parameter is used to initialize the
corresponding formal parameter. The method body is then executed. Figure 5-6 illustrates the
relationship between the actual parameters and the formal parameters.

. The actual parameters are used
PrintSum(5, somelnt); <«——— toinitialize the formal parameters.

e

public void PrintSum(int x, int y)
{
int sum = x + y;
Console.WriteLine
("Newsflash: {0} + {1} is {2}", x, y, sum);

Figure 5-6. Actual parameters initialize the corresponding formal parameters.

Notice that in the previous example code, and in Figure 5-6, the number of actual parameters must
be the same as the number of formal parameters (with the exception of params parameters, which I'll
discuss later). Parameters that follow this pattern are called positional parameters. We’ll look at some
other options shortly.

81

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5 ® METHODS

An Example of Methods with Positional Input Parameters

In the following code, class MyClass declares two methods—one that takes two integers and returns their
sum and another that takes two floats and returns their average. In the second invocation, notice that
the compiler has implicitly converted the two int values—5 and someInt—to the float type.

class MyClass Formal parameters

{ public int Sum(int x, int y) // Declare the method.
{ return x + y; // Return the sum.
} Formal parameters
public float Avg(float inputi, float input2) // Declare the method.
return (inputi + input2) / 2.0F; // Return the average.
}

class Program
static void Main()

MyClass myT = new MyClass();
int somelnt = 6;

Console.WritelLine
("Newsflash: Sum: {0} and {1} is {2}",

5, someInt, myT.Sum(5, somelnt)); // Invoke the method.
Console.WritelLine Actual parameters
("Newsflash: Avg: {0} and {1} is {2}",
5, someInt, myT.Avg(5, sor%eInt)); // Invoke the method.
}
} Actual parameters

This code produces the following output:

Newsflash: Sum: 5 and 6 is 11
Newsflash: Avg: 5 and 6 is 5.5

82

CHAPTER 5 " METHODS

Value Parameters

There are several kinds of parameters, which pass data to and from the method in slightly different ways.
The kind we’ve looked at so far is the default type and is called a value parameter.

When you use value parameters, data is passed to the method by copying the value of the actual
parameter to the formal parameter. When a method is called, the system does the following:

e Itallocates space on the stack for the formal parameters.

e It copies the values of the actual parameters to the formal parameters.

An actual parameter for a value parameter doesn’t have to be a variable. It can be any expression
evaluating to the matching data type. For example, the following code shows two method calls. In the
first, the actual parameter is a variable of type float. In the second, it’s an expression that evaluates
to float.

float funci(float val) // Declare the method.
{ T
Float data type
float j = 2.6F;
float k = 5.1F; Varieible of type float
float fValuel = funci(k); // Method call
float fvalue2 = funci((k + j) / 3); // Method call

Expression that evaluates to a float

Before you can use a variable as an actual parameter, that variable must have been assigned a value
(except in the case of output parameters, which I'll cover shortly). For reference types, the variable can
be assigned either an actual reference or null.

Note Chapter 3 covered value types, which, as you will remember, are types that contain their own data. Don’t
be confused that I'm now talking about value parameters. They’re entirely different. Value parameters are
parameters where the value of the actual parameter is copied to the formal parameter.

83

CHAPTER 5 '/ METHODS

For example, the following code shows a method called MyMethod, which takes two parameters—a
variable of type MyClass and an int.

e The method adds 5 to both the int type field belonging to the class and to the int.
¢ You might also notice that MyMethod uses the modifier static, which I haven’t explained yet. You

can ignore it for now. I'll explain static methods in Chapter 6.

class MyClass

public int Val = 20; // Initialize the field to 20.
class Program Formal parameters
{
static void MyMethod(MyClass f1, int f2)
fi1.val = f1.val + 5; // Add 5 to field of fi param.
f2 = f2 + 5; // Add 5 to second param.

}
static void Main()

MyClass a1
int a2

new MyClass();
10;

MyMethod (al,Taz); // Call the method.

} Actual parameters

84

CHAPTER 5 " METHODS

Figure 5-7 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method:

e Before the method call, variables a1 and a2, which will be used as the actual parameters, are
already on the stack.

e By the beginning of the method, the system has allocated space on the stack for the formal
parameters and copied the values from the actual parameters.

— Since a1 is areference type, the reference is copied, resulting in both the actual and formal
parameters referring to the same object in the heap.

— Since a2 is a value type, the value is copied, producing an independent data item.

e Atthe end of the method, both f2 and the field of object f1 have been incremented by 5.

— After method execution, the formal parameters are popped off the stack.

— The value of a2, the value type, is unaffected by the activity in the method.

— The value of a1, the reference type, however, has been changed by the activity in the method.

a2
al

f2
f1

Stack

10

ref

LN

3. End of Method

Figure 5-7. Value parameters

f2
f1

a2
al

Stack

10

ref —

10

ref

LN

ref

+

4. After Method

85

CHAPTER 5 '/ METHODS

Reference Parameters
The second type of parameter is called a reference parameter.

e When using a reference parameter, you must use the ref modifier in both the declaration and the
invocation of the method.

e The actual parameter must be a variable, and it must have been assigned to before being used as
the actual parameter. If it’s a reference type variable, it can be assigned either an actual reference
or the value null.

For example, the following code illustrates the syntax of the declaration and invocation:

Include the ref modifier.

void MyMethod(ref int val) // Method declaration

{...}

int y = 1; // Variable for the actual parameter
MyMethod (r%f y); // Method call

Include the ref modifier.

MyMethod (ref 345); // Error!
T

Must use a variable

In the previous section you saw that for value parameters, the system allocates memory on the stack
for the formal parameters. In contrast, for reference parameters:

e The formal parameter name acts as if it were an alias for the actual parameter variable; that is, it
acts as if it referred to the same memory location.

Since the formal parameter name and the actual parameter name are acting as if they reference the
same memory location, clearly any changes made to the formal parameter during method execution are
visible after the method is completed, through the actual parameter variable.

Note Remember to use the ref keyword in both the method declaration and the invocation.

86

CHAPTER 5

For example, the following code shows method MyMethod again, but this time the parameters are
reference parameters rather than value parameters:

class MyClass

public int Val = 20; // Initialize field to 20.
class Program ref modifier ref modifier
{
static void MyMethod(ref MyClass f1, ref int f2)
fi1.val = f1.val + 5; // Add 5 to field of f1 param.
f2 = f2 + 5; // Add 5 to second param.

}

static void Main()

MyClass a1
int a2

new MyClass();
10;

MyMethod(rﬁf al, r$f a2); // Call the method.
}

} ref modifiers

METHODS

87

CHAPTER 5 '/ METHODS

Figure 5-8 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method:

e Before the method call, variables a1 and a2, which will be used as the actual parameters, are
already on the stack.

e By the beginning of the method, the names of the formal parameters have been set as if they were
aliases for the actual parameters. You can think of variables a1 and f1 as if they referred to the
same memory location and a2 and f2 as if they referred to the same memory location.

e Atthe end of the method, both f2 and the field of the object of f1 have been incremented by 5.

e After method execution, the names of the formal parameters are gone (“out of scope”), but both
the value of a2, which is the value type, and the value of the object pointed at by a1, which is the
reference type, have been changed by the activity in the method.

Stack Stack
f2
az 10 a2 } 10
al | Ref fl } Ref
al
+ +

Stack Stack
:g } 15 a2 15
fl } Ref al Ref
al
+ e N

3. End of Method 4. After Method

Figure 5-8. With a reference parameter, the formal parameter behaves as if it were an alias for the actual
parameter.

88

CHAPTER 5 " METHODS

Output Parameters

Output parameters are used to pass data from inside the method back out to the calling code. Their
behavior is very similar to reference parameters. Like reference parameters, output parameters have the
following requirements:

¢ You must use a modifier in both the method declaration and the invocation. With output
parameters, the modifier is out, rather than ref.

e Like reference parameters, the actual parameter must be a variable—it cannot be another type
of expression. This makes sense, since the method needs a memory location to store the value
it’s returning.

For example, the following code declares a method called MyMethod, which takes a single output
parameter.

out modifier
void MyMethod(out int val) // Method declaration
{...}
1nt y = 1; // Variable for the actual parameter
MyMethod (o%t y); // Method call
out modifier

Like reference parameters, the formal parameters of output parameters act as if they were aliases for
the actual parameters. Any changes made to a formal parameter inside the method are visible through
the actual parameter variable after the method completes execution.

Unlike reference parameters, output parameters require the following:

e Inside the method, an output parameter must be assigned to before it can be read from. This
means that the initial values of the parameters are irrelevant and that you don’t have to assign
values to the actual parameters before the method call.

e Inside the method, every possible path through the code must assign a value to every output
parameter before the method exits.

89

CHAPTER 5 '/ METHODS

Since the code inside the method must write to an output parameter before it can read from it, it is
impossible to send data into a method using output parameters. In fact, if there is any execution path
through the method that attempts to read the value of an output parameter before the method has
assigned it a value, the compiler produces an error message.

public void Add2(out int outValue)

{
int varl = outValue + 2; // Error! Can't read from an output parameter
} // before it has been assigned to by the method.

For example, the following code again shows method MyMethod, but this time using output
parameters:

class MyClass

public int Val = 20; // Initialize field to 20.
class Program out modifier out modifier
{
static void MyMethod(out MyClass f1, out int f2)
{
f1 = new MyClass(); // Create an object of the class.
f1.vVal = 25; // Assign to the class field.
f2 = 15; // Assign to the int param.
}
static void Main()
MyClass a1 = null;
int a2;
MyMethod(out a1, out a2); // Call the method.
} T T
} out modifiers

90

CHAPTER 5 " METHODS

Figure 5-9 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method.

e Before the method call, variables a1 and a2, which will be used as the actual parameters, are
already on the stack.

e Atthe beginning of the method, the names of the formal parameters are set as aliases for the
actual parameters. You can think of variables a1 and f1 as if they referred to the same memory
location, and you can think of a2 and f2 as if they referred to the same memory location. The
names al and a2 are out of scope and cannot be accessed from inside MyMethod.

e Inside the method, the code creates an object of type MyClass and assigns it to f1. It then assigns a
value to f1’s field and also assigns a value to 2. The assignments to f1 and f2 are both required,
since they’re output parameters.

e After method execution, the names of the formal parameters are out of scope, but the values
of both a1, the reference type, and a2, the value type, have been changed by the activity in

the method.
1
1
Stack Heap | Stack Heap

1
1
1
| f2 }

a2 ? : a2

al null 1 1 } null
| al

+ | +
1
1. Before Invocation | 2. Beginning of Method

1

____________________ |m—— ———m m—mm————— - ——— -
1

Stack : Stack
1
1
1
i } 15 | 2| 15
Zi } Ref I al Ref
1
+ : L N

1

3. End of Method 4. After Method

Figure 5-9. With an output parameter, the formal parameter behaves as if it were an alias for the actual
parameter, but with the additional requirement that it must be assigned to inside the method.

91

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5 ® METHODS

Parameter Arrays

In the parameter types I've covered so far, there must be exactly one actual parameter for each formal
parameter. Parameter arrays are different in that they allow zero or more actual parameters for a
particular formal parameter. Important points about parameter arrays are the following:

e There can be only one parameter array in a parameter list.

e Ifthereis one, it must be the last parameter in the list.

To declare a parameter array, you must do the following:
e Use the params modifier before the data type.

e Place a set of empty square brackets after the data type.

The following method header shows the syntax for the declaration of a parameter array of type int.
In this example, formal parameter inVals can represent zero or more actual int parameters.

Array of ints

void ListInts(parTa\ms int[] inV?ls)
{...

Modifier Parameter name
The empty set of square brackets after the type name specifies that the parameter will be an array of
ints. You don't need to worry about the details of arrays here. They're covered in detail in Chapter 14.
For our purposes here, though, all you need to know is the following:
e Anarrayis an ordered set of data items of the same type.

e Anarray is accessed by using a numerical index.

e Anarray is a reference type and therefore stores all its data items in the heap.

92

CHAPTER 5 " METHODS

Method Invocation

You can supply the actual parameters for a parameter array in two ways. The forms you can use are
the following:

e A comma-separated list of elements of the data type. All the elements must be of the type
specified in the method declaration.

ListInts(10, 20, 30); // Three ints

e Aone-dimensional array of elements of the data type.

int[] intArray = {1, 2, 3};
ListInts(intArray); // An array variable

Notice in these examples that you do not use the params modifier in the invocation. The usage of the
modifier in parameter arrays doesn’t fit the pattern of the other parameter types.

e The other parameter types are consistent in that they either use a modifier or do not use a
modifier.

— Value parameters take no modifier in either the declaration or the invocation.

— Reference and output parameters require the modifier in both places.

e The summary for the usage of the params modifier is the following:
— Itis required in the declaration.

— Itis not allowed in the invocation.

Expanded Form

The first form of method invocation, where you use separate actual parameters in the invocation, is
sometimes called the expanded form.

For example, the declaration of method ListInts in the following code matches all the method
invocations below it, even though they have different numbers of actual parameters.

void ListInts(params int[] invals) { ... } // Method declaration
ListInts(); // 0 actual parameters
ListInts(1, 2, 3); // 3 actual parameters
ListInts(4, 5, 6, 7); // 4 actual parameters
ListInts(8, 9, 10, 11, 12); // 5 actual parameters

93

CHAPTER 5 '/ METHODS

When you use an invocation with separate actual parameters for a parameter array, the compiler
does the following:

e It takes the list of actual parameters and uses them to create and initialize an array in the heap.
e [Itstores the reference to the array in the formal parameter on the stack.

e Ifthere are no actual parameters at the position corresponding to the formal parameter array, the
compiler creates an array with zero elements and uses that.

For example, the following code declares a method called ListInts, which takes a parameter array.
Main declares three ints and passes them to the array.

class MyClass Parameter array
{ \
public void ListInts(params int[] inVals)

null) 88 (inVals.Length != 0))

if ((invals !
0; i < inVals.Length; i++) // Process the array.

for (int i

invals[i] = inVals[i] * 10;
Console.WriteLine("{0}", invals[i]); // Display new value.

}
}
}

class Program
static void Main()

int first = 5, second = 6, third = 7; // Declare three ints.

MyClass mc = new MyClass();
mc.ListInts(first, second, third); // Call the method.

Actual parameters
Console.WriteLine("{0}, {1}, {2}", first, second, third);

}
}

This code produces the following output:

50
60
70
5, 6, 7

94

CHAPTER 5 " METHODS

Figure 5-10 illustrates the following about the values of the actual and formal parameters at various
stages in the execution of the method:

e Before the method call, the three actual parameters are already on the stack.

e By the beginning of the method, the three actual parameters have been used to initialize an array
in the heap, and the reference to the array has been assigned to formal parameter inVals.

e Inside the method, the code first checks to make sure the array reference is not null and then
processes the array by multiplying each element in the array by 10 and storing it back.

e After method execution, the formal parameter, inVals, is out of scope.

1
Stack [:
| inVals
third | 7 ; third
second 6 ! second
first 5 : first
L A~ :
1. Before Invocation :
___________________ L ..
1
: Stack Hoap
inVals |
third : third 7
second : second 6
first | first 5
: +
1
1

3. End of Method 4. After Method

Figure 5-10. Parameter array

An important thing to remember about parameter arrays is that when an array is created in the
heap, the values of the actual parameters are copied to the array. In this way, they’re like value
parameters.

e Ifthe array parameter is a value type, the values are copied, and the actual parameters cannot be
affected inside the method.

o Ifthe array parameter is a reference type, the references are copied, and the objects referenced by
the actual parameters can be affected inside the method.

95

CHAPTER 5 '/ METHODS

96

Arrays As Actual Parameters

You can also create and populate an array before the method call and pass the single array variable as
the actual parameter. In this case, the compiler uses your array, rather than creating one.

For example, the following code uses method ListInts, declared in the previous example. In this
code, Main creates an array and uses the array variable as the actual parameter, rather than using
separate integers.

static void Main()

{
int[] myArr = new int[] { 5, 6, 7 }; // Create and initialize array.
MyClass mc = new MyClass();
mc.ListInts(myArr); // Call method to print the values.
foreach (int x in myArr)
Console.WriteLine("{0}", x); // Print out each element.
}

This code produces the following output:

50
60
70
50
60
70

Summary of Parameter Types

Since there are four parameter types, it’s sometimes difficult to remember their various characteristics.
Table 5-2 summarizes them, making it easier to compare and contrast them.

Table 5-2. Summary of Parameter Type Syntactic Usage

Parameter Modifier ~ Used at Used at Implementation
Type Declaration? Invocation?
Value None The system copies the value of the actual

parameter to the formal parameter.

Reference ref Yes Yes The formal parameter aliases the actual
parameter.

Output out Yes Yes The formal parameter aliases the actual
parameter.

Array params Yes No This allows passing a variable number of

actual parameters to a method.

CHAPTER 5

Method Overloading

A class can have more than one method with the same name. This is called method overloading. Each
method with the same name must have a different signature than the others.

e Thesignature of a method consists of the following information from the method header of the
method declaration:

— The name of the method
— The number of parameters
— The data types and order of the parameters

— The parameter modifiers

METHODS

e Thereturn type is not part of the signature—although it’s a common mistake to believe that it is.

e Notice that the names of the formal parameters are not part of the signature.

Not¢part of signature

long Addvalues(ir)rt a, out int b) { ... }

Signature

For example, the following four methods are overloads of the method name AddValues:

class A
{
long Addvalues(int a, int b)
long AddValues(int ¢, int d, int e)
long AddValues(float f, float g)
long AddvValues(long h, long m)

}

The following code shows an illegal attempt at overloading the method name AddValues. The two
methods differ only on the return types and the names of the formal parameters. But they still have the
same signature, because they have the same method name; and the number, types, and order of their
parameters are the same. The compiler would produce an error message for this code.

return a + b;

return c + d + e;
return (long)(f + g);
return h + m;

P e Yo Yo
e e

class B Signature

{

long AddValues(long a, long b) { return a+b; }
int AddvValues(long c, long d) { return c+d; } // Error, same signature

}

Signature

97

CHAPTER 5 '/ METHODS

Named Parameters

So far in our discussion of parameters we’ve used positional parameters, which, as you'll remember,
means that the position of each actual parameter matches the position of the corresponding formal
parameter.

Starting with C# 4.0, you can list the actual parameters in your method invocation in any order, as
long as you explicitly specify the names of the parameters. The details are the following:

e Nothing changes in the declaration of the method. The formal parameters already have names.

e Inthe method invocation, however, you use the formal parameter name, followed by a colon, in
front of the actual parameter value or expression, as shown in the following method invocation.
Here a, b, and c are the names of the three formal parameters of method Calc:

Actual parameter values

J 4 4
c.Calc (c: 2, a: 4, b: 3);
T T T

Named parameters
Figure 5-11 illustrates the structure of using named parameters.

No change in

l arameter declarations
class MyClass P
{

public int Calc(int a, int b, int c)
{ return (@ + b) *c; }

static void Main() Parameter names

{ .
MyClass mc = new MyClass(); used with values

int result = mc.Calc(c: 2, a: 4, b: 3);
Console.WriteLine("{0}", result);

}
}

Figure 5-11. When using named parameters, include the parameter name in the method invocation. No

changes are needed in the method declaration.

98

CHAPTER 5 " METHODS

You can use both positional and named parameters in an invocation, but all the positional
parameters must be listed first. For example, the following code shows the declaration of a method
called Calc, along with five different calls to the method using different combinations of positional and
named parameters:

class MyClass

{
public int Calc(int a, int b, int c)
{ return (a +b) * c;
static void Main()
{
MyClass mc = new MyClass();
int 10 = mc.Calc(4, 3, 2); // Positional Parameters
int r1 = mc.Calc(4, b: 3, c: 2); // Positional and Named Parameters
int r2 = mc.Calc(4, c: 2, b: 3); // Switch order
int r3 = mc.Calc(c: 2, b: 3, a: 4); // All named parameters
int 14 = mc.Calc(c: 2, b: 1 +2, a: 3+ 1); // Named parameter expressions
Console.WriteLine("{0}, {1}, {2}, {3}, {4}", ro0, r1, 12, 13, 14);
}
}

This code produces the following output:
14, 14, 14, 14, 14

Named parameters are useful as a means of self-documenting a program, in that they can show, at
the position of the method call, what values are being assigned to which formal parameters. For
example, in the following two calls to method GetCylinderVolume, the second call is a bit more
informative and less prone to error.

class MyClass
double GetCylinderVolume(double radius, double height)
{

return 3.1416 * radius * radius * height;

static void Main(string[] args)

MyClass mc = new MyClass();
double volume;

J4 b
volume = mc.GetCylinderVolume(3.0, 4.0);

volume = mc.GetCylinderVolume(radius: 3.0, height: 4.0);
\ \

} More informative

99

CHAPTER 5 '/ METHODS

Optional Parameters

Another feature introduced in C# 4.0, is called optional parameters. An optional parameter is a
parameter that you can either include or omit when invoking the method.

To specify that a parameter is optional, you need to include a default value for that parameter in the
method declaration. The syntax for specifying the default value is the same as that of initializing a local
variable, as shown in the method declaration of the following code. In this example:

e Formal parameter b is assigned the default value 3.

e Therefore, if the method is called with only a single parameter, the method will use the value 3 as

the initial value of the second parameter.

class MyClass Optional Parameter
{ 4
public int Calc(int a, int b = 3)
{ T
return a + b; Default Value Assignment
}
static void Main()
{
MyClass mc = new MyClass();
int r0 = mc.Calc(5, 6); // Use explicit values.
int r1 = mc.Calc(5); // Use default for b.

Console.WriteLine("{o}, {1}", ro, r1);

}

This code produces the following output:

11, 8

100

CHAPTER 5 " METHODS

There are several important things to know about declaring optional parameters:

e Notall types of parameters can be used as optional parameters.

— You can use value types as optional parameters as long as the default value is determinable
at compile time.

— You can only use a reference type as an optional parameter if the default value is null.

Parameter Types

Value ref out params

(]

- Value Type Yes No No No
>

[

«

- Only null

Reference Type
8 P default e e b=

Figure 5-12. Optional parameters can only be value parameter types.

e Allrequired parameters must be declared before any optional parameters are declared. If there is
a params parameter, it must be declared after all the optional parameters. Figure 5-13 illustrates

the required syntactic order.

Required Parameters Optional Parameters params Parameter

e — A —

P —

(int x, decimal y, ... int opl = 17, double op2 = 36, ... params int[] intVals)

Figure 5-13. In the method declaration, optional parameters must be declared after all the required

parameters and before the params parameter, if one exists.

101

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5 ® METHODS

102

As you saw in the previous example, you use the default value of an optional parameter by leaving
out the corresponding actual parameter from the method invocation. You can’t, however, omit just any
combination of optional parameters because in many situations it would be ambiguous as to which
optional parameters to use. The rules are the following:

¢ You must omit parameters starting from the end of the list of optional parameters and work
toward the beginning.

e Thatis, you can omit the last optional parameter, or the last n optional parameters, but you can’t
pick and choose to omit any arbitrary optional parameters; they must be taken off the end.

class MyClass
public int Calc(int a = 2, int b = 3, int c = 4)

return (a + b) * c;

static void Main()

{
MyClass mc = new MyClass();
int r0 = mc.Calc(5, 6, 7); // Use all explicit values.
int r1 = mc.Calc(5, 6); // Use default for c.
int r2 = mc.Calc(5); // Use default for b and c.
int 13 = mc.Calc(); // Use all defaults.
Console.WriteLine("{o0}, {1}, {2}, {3}", ro, r1, 12, 13);
}

}

This code produces the following output:

77, 44, 32, 20

CHAPTER 5

To omit optional parameters from arbitrary positions within the list of optional parameters, rather
than from the end of the list, you must use the names of the optional parameters to disambiguate the
assignments. You are therefore using both the named parameters and optional parameters features, as
illustrated in the following code:

class MyClass

}

double GetCylinderVolume(double radius = 3.0, double height = 4.0)

}

return 3.1416 * radius * radius * height;

static void Main()

MyClass mc = new MyClass();
double volume;

volume = mc.GetCylinderVolume(
Console.WriteLine("Volume = "

volume = mc.GetCylinderVolume(
Console.WriteLine("Volume = "

volume = mc.GetCylinderVolume(
Console.WriteLine("Volume = "

volume = mc.GetCylinderVolume(
Console.WriteLine("Volume = "

3.0, 4.0);
+ volume);

radius: 2.0);
+ volume);

height: 2.0);
+ volume);

)5

+ volume);

This code produces the following output:

Volume
Volume
Volume
Volume

113.0976
50.2656
56.5488
113.0976

// Positional

// Use default height

// Use default radius

// Use both defaults

METHODS

103

CHAPTER 5 '/ METHODS

104

Stack Frames

So far, you know that local variables and parameters are kept on the stack. Let’s look at that organization
a little further.

When a method is called, memory is allocated at the top of the stack to hold a number of data items
associated with the method. This chunk of memory is called the stack frame for the method.

e The stack frame contains memory to hold the following:
— The return address—that is, where to resume execution when the method exits

— Those parameters that allocate memory—that is, the value parameters of the method, and
the parameter array if there is one

— Various other administrative data items relevant to the method call
e When a method is called, its entire stack frame is pushed onto the stack.

e When the method exits, its entire stack frame is popped from the stack. Popping a stack frame is
sometimes called unwinding the stack.

For example, the following code declares three methods. Main calls MethodA, which calls MethodB,
creating three stack frames. As the methods exit, the stack unwinds.

class Program

static void MethodA(int pari, int par2)

{
Console.WriteLine("Enter MethodA: {0}, {1}", pari, par2);
MethodB(11, 18); // Call MethodB.
Console.WriteLine("Exit MethodA");

}

static void MethodB(int pari, int par2)

{

Console.WriteLine("Enter MethodB: {0}, {1}", pari, par2);
Console.WriteLine("Exit MethodB");

}

static void Main()

{
Console.WriteLine("Enter Main");
MethodA(15, 30); // Call MethodA.
Console.WriteLine("Exit Main");

}

CHAPTER 5 " METHODS

This code produces the following output:

Enter Main

Enter MethodA: 15, 30
Enter MethodB: 11, 18
Exit MethodB

Exit MethodA

Exit Main

Figure 5-14 shows how the stack frames of each method are placed on the stack when the method is
called and how the stack is unwound as the methods complete.

Stack Stack Stack
MethodB{ ——

MethodA{ —— MethodA{ ——
Main{ —— Main{ —— Main{ ——
Start executing Call MethodA Call MethodB
Main. from Main. from MethodA.

Stack Stack

MethodA{ :l

Main { —— Main { ——
+ +
Pop MethodB Pop MethodA
from the stack. from the stack.

Figure 5-14. Stack frames in a simple program

105

CHAPTER 5 '/ METHODS

Recursion

Besides calling other methods, a method can also call itself. This is called recursion.
Recursion can produce some very elegant code, such as the following method for computing the
factorial of a number. Notice that inside the method, the method calls itself with an actual parameter of

one less than its input parameter.
int Factorial(int inValue)

if (invalue <= 1)
return inValue;

else
return inValue * Factorial(inValue - 1); // Call Factorial again.

Calls itself

The mechanics of a method calling itself are exactly the same as if it had called another, different

method. A new stack frame is pushed onto the stack for each call to the method.
For example, in the following code, method Count calls itself with one less than its input parameter

and then prints out its input parameter. As the recursion gets deeper, the stack gets larger.

class Program
public void Count(int inVal)

if (inval == 0)
return;
Count(inVal - 1); // Invoke this method again.

1
Calls itself
Console.WriteLine("{0}", inVal);

}

static void Main()

{

Program pr = new Program();
pr.Count(3);

}

This code produces the following output:

N

106

CHAPTER 5

Figure 5-15 illustrates the code. Notice that with an input value of 3, there are four different,
independent stack frames for method Count. Each has its own value for input parameter inVal.

Main

Count

Count

Count

Main

Count

Count

Main

{

——— —— —— ——

Stack

§tack

Stack

___“\//“___

Call
Count.

Call
Count.

Print 2.

Figure 5-15. Example of recursion

Count

Main

—— ——

Count

Count

Count

Count

Main

e e e A e

Count

Main

Stack

inval [3]

___\\//“___

gtack

inval [0]
inval

Stack

Call
Count.

Reached 0.

Print 3.

Count

Count

Main

Count

Count

Count

Main

A ——

Main{

Stack

inVal II!I

inval [3 |

___\\//“___

§tack

inval

inval

inval

___\\//“___

Stack

Call
Count.

Print 1.

Exit
Main.

METHODS

107

CHAPTER 6

More About Classes

Class Members

Instance Class Members

Static Fields

Static Function Members

Other Static Class Member Types
Constants

Properties

Instance Constructors

Static Constructors

Accessibility of Constructors
Destructors

Comparison of Constructors and Destructors
The readonly Modifier

The this Keyword

Indexers

Access Modifiers on Accessors

Partial Classes

109

CHAPTER 6 "' MORE ABOUT CLASSES

Class Members

The previous two chapters covered two of the nine types of class members: fields and methods. In this
chapter, I'll introduce more types of class members, and explain their features.

Table 6-1 shows a list of the class member types. Those that have already been introduced are
marked with diamonds. Those that are covered in this chapter are marked with a check. Those that will
be covered later in the text are marked with empty check boxes.

Table 6-1. Types of Class Members

Data Members Function Members
(Store Data) (Execute Code)
+ Fields ¢ Methods v Operators
v’ Constants v Properties v Indexers
v Constructors Q Events
v’ Destructors

Order of Member Modifiers

Previously, you saw that the declarations of fields and methods can include modifiers such as public and
private. In this chapter, I'll discuss a number of additional modifiers. Since many of these modifiers can
be used together, the question that arises is, what order do they need to be in?

Class member declaration statements consist of the following: the core declaration, an optional set
of modifiers, and an optional set of attributes. The syntax used to describe this structure is the following.
The square brackets indicate that the enclosed set of components is optional.

[attributes] [modifiers] CoreDeclaration
The optional components are the following:
e Modifiers
— Ifthere are any modifiers, they must be placed before the core declaration.
— If there are multiple modifiers, they can be in an order.
o Attributes
— Ifthere are any attributes, they must be placed before the modifiers and core declaration.

— If there are multiple attributes, they can be in any order.

So far, I've explained only two modifiers: public and private, and I'll cover attributes in Chapter 24.

110

CHAPTER 6 "' MORE ABOUT CLASSES

For example, public and static are both modifiers that can be used together to modify certain

declarations. Since they’re both modifiers, they can be placed in either order. The following two lines are
semantically equivalent:

public static int MaxVal;

static public int MaxVal;

Figure 6-1 shows the order of the components as applied to the member types shown so far: fields
and methods. Notice that the type of the field and the return type of the method are not modifiers—
they’re part of the core declaration.

Attributes Modifiers Core Declaration
e N e N

public
private
static
const

Field Declaration Type FieldName;

public | ReturnType MethodName (ParameterList)
private { ...}
static

Attributes (not —j L Modifiers covered so far and in this chapter

yet covered)

Method Declaration

Figure 6-1. The order of attributes, modifiers, and core declarations

111

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 M MORE ABOUT CLASSES

Instance Class Members

Class members can be associated with an instance of the class or with the class as a whole. By default,
members are associated with an instance. You can think of each instance of a class as having its own
copy of each class member. These members are called instance members.

Changes to the value of one instance field do not affect the values of the members in any other
instance. So far, the fields and methods you've seen have all been instance fields and instance methods.

For example, the following code declares a class D with a single integer field Mem1. Main creates two
instances of the class. Each instance has its own copy of field Mem1. Changing the value of one instance’s
copy of the field doesn’t affect the value of the other instance’s copy. Figure 6-2 shows the two instances
of class D.

class D

public int Mem1;

class Program

{
static void Main()
D d1 = new D();
D d2 = new D();
di.Mem1 = 10; d2.Meml = 28;
Console.WriteLine("d1 = {0}, d2 = {1}", di.Mem1, d2.Mem1);
}
}

This code produces the following output:

d1 = 10, d2 = 28

Heap

[Memi: 10 | [Mem1: 28 |

Figure 6-2. Each instance of class D has its own copy of field Mem .

112

CHAPTER 6 "' MORE ABOUT CLASSES

Static Fields

Besides instance fields, classes can have what are called static fields.

e Astatic field is shared by all the instances of the class, and all the instances access the same
memory location. Hence, if the value of the memory location is changed by one instance, the
change is visible to all the instances.

e Use the static modifier to declare a field static, as follows:

class D

{
int Mem1; // Instance field
static int Mem2; // Static field
static

} Keyword

For example, the code on the left in Figure 6-3 declares class D with static field Mem2 and instance
field Mem1. Main defines two instances of class D. The figure shows that static field Mem2 is stored separately
from the storage of any of the instances. The gray fields inside the instances represent the fact that, from
inside an instance method, the syntax to access or update the static field is the same as for any other
member field.

e Because Mem2 is static, both instances of class D share a single Mem2 field. If Mem2 is changed, that
change is seen from both.

e Member Mem1 is not declared static, so each instance has its own distinct copy.

class D

{

(" Heap N

int Meml; statics: class D

static int Mem2;

The static members of a
Mem2: 45 <«—— class are stored separately
from the instance members.

static void Main() dl N 42

{ iMem2 iMem2
Ddl =newD(); 1 | |'IzZTmmmemm | | MDToTmmmmmn
D d2 = new D(); Meml: 10 Meml: 28

-)

Static field Mem2 is shared by all the instances of class D,
whereas each instance has its own copy of instance field Mem1.

Figure 6-3. Static and instance data members

113

CHAPTER 6 "' MORE ABOUT CLASSES

Accessing Static Members from Outside the Class

In the previous chapter, you saw that dot-syntax notation is used to access instance members from
outside the class. Dot-syntax notation consists of listing the instance name, followed by a dot, followed
by the member name.

Static members, like instance members, are also accessed from outside the class using dot-syntax
notation. But since there is no instance, you must use the class name, as shown here:

Class name

D.Mem2 = 5; // Accessing the static class member

1

Member name

Example of a Static Field

The following code expands the preceding class D by adding two methods:
¢ One method sets the values of the two data members.

e The other method displays the values of the two data members.

class D {
int Mem1;
static int Mem2;

public void SetVars(int vi, int v2) // Set the values
{ Mem1i = vi; Mem2 = v2; }
T Access as if it were an instance field

public void Display(string str)
{ Console.WriteLine("{0}: Mem1= {1}, Mem2= {2}", str, Mema, Me$2); }

}

class Program {
static void Main()

Access as if it were an instance field

{
D d1 = new D(), d2 = new D(); // Create two instances.
di.SetVars(2, 4); // Set di's values.
di.Display("d1");
d2.SetVars(15, 17); // Set d2's values.
d2.Display("d2");
di.Display("d1"); // Display d1 again and notice that the

} // value of static member Mem2 has changed!

114

CHAPTER 6 "' MORE ABOUT CLASSES

This code produces the following output:

di: Memil= 2, Mem2= 4
d2: Meml= 15, Mem2= 17
di: Memi= 2, Mem2= 17

Lifetimes of Static Members

The lifetimes for static members are different from those of instance members.

e Asyousaw previously, instance members come into existence when the instance is created and
go out of existence when the instance is destroyed.

e Static members, however, exist and are accessible even if there are no instances of the class.

Figure 6-4 illustrates a class D, with a static field, Mem2. Even though Main doesn’t define any
instances of the class, it assigns the value 5 to the static field and prints it out with no problem.

4 Heap I

class D
{ statics: D
int Meml;
static public int Mem2; >
A

}

No instances of
class D exist.

static void Main()
{
D.Mem2 = 5;
Console.WriteLine
("Mem2 = {0}", D.Mem2);

- J

Figure 6-4. Static fields with no class instances can still be assigned to and read from, because the field is
associated with the class, and not an instance.

The code in Figure 6-4 produces the following output:

Mem2 = 5

Note Static members exist even if there are no instances of the class. If a static field has an initializer, the
field is initialized before the use of any of the class’s static fields but not necessarily at the beginning of
program execution.

115

CHAPTER 6 "' MORE ABOUT CLASSES

Static Function Members

Besides static fields, there are also static function members.

e Static function members, like static fields, are independent of any class instance. Even if there are
no instances of a class, you can still call a static method.

e Static function members cannot access instance members. They can, however, access other
static members.

For example, the following class contains a static field and a static method. Notice that the body of
the static method accesses the static field.

class X
{
static public int A; // Static field
static public void PrintValA() // Static method
{
Console.WriteLine("Value of A: {0}", %);
}
} Accessing the static field

The following code uses class X, defined in the preceding code:
class Program
static void Main()

X.A = 10; // Use dot-syntax notation
%.PrintValA(); // Use dot-syntax notation

} Class name

This code produces the following output:

Value of A: 10

116

Figure 6-5 illustrates the preceding code.

class X

CHAPTER 6

-

{

static public int A; statics: X

Heap

static public void PrintValA()
{ ...}
}

L—) PrintValA()

A: 10
class Program
{
static void Main()
{
X.A = 10; t -

X.PrintValA(); !

No instances exist.

J

Figure 6-5. Static methods of a class can be called even if there are no instances of the class.

Other Static Class Member Types

MORE ABOUT CLASSES

The types of class members that can be declared static are shown checked in Table 6-2. The other

member types cannot be declared static.

Table 6-2. Class Member Types That Can Be Declared Static

Data Members (Store Data) Function Members (Execute Code)
v' Fields v" Methods
Constants v’ Properties

v" Constructors
v' Operators
Indexers

v' Events

117

CHAPTER 6 "' MORE ABOUT CLASSES

Member Constants

Member constants are like the local constants covered in the previous chapter, except that they're
declared in the class declaration, as shown in the following example:

class MyClass
{

const int IntVal = 100; // Defines a constant of type int
T // with a value of 100.
} Type Initializer
const double PI = 3.1416; // Error: cannot be declared outside a type

// declaration

Like local constants, the value used to initialize a member constant must be computable at compile
time and is usually one of the predefined simple types or an expression composed of them.

class MyClass

const int IntVall = 100;
const int IntVal2 = 2 * IntVali; // Fine, since the value of IntVali

} // was set in the previous line.

Like local constants, you cannot assign to a member constant after its declaration.

class MyClass

const int IntVal; // Error: initialization is required.
Intval = 100; // Error: assignment is not allowed.

Note Unlike C and C++, in C# there are no global constants. Every constant must be declared within a type.

118

Constants Are Like Statics

CHAPTER 6 "' MORE ABOUT CLASSES

Member constants, however, are more interesting than local constants, in that they act like static
values. They're “visible” to every instance of the class, and they’re available even if there are no

instances of the class.

For example, the following code declares class X with constant field PI. Main doesn’t create any
instances of X, and yet it can use field PI and print its value.

class X

public const double PI = 3.1416;

class Program
static void Main()

Console.WriteLine("pi = {0}", X.PI);
}
}

This code produces the following output:

pi = 3.1416

// Use static field PI

119

CHAPTER 6 "' MORE ABOUT CLASSES

Unlike actual statics, however, constants do not have their own storage locations and are
substituted in by the compiler at compile time in a manner similar to #define values in C and C++. This
is shown in Figure 6-6, which illustrates the preceding code. Hence, although a constant member acts
like a static, you cannot declare a constant as static.

static const double PI = 3.14;

Error: can't declare a constant as static
class X 1
{ I
public const double PI = 3.1416; !
} |

Heap

statics: X

no storage lochtion
class Program
{

1
1
. . . 1
M . .

?tatm void Main() | No instances of class X exist,

1

1

T

1

Console.WriteLine but constant PI can be used.

("pi = {0}", X.PI); <

Figure 6-6. Constant fields act like static fields but do not have a storage location in memory.

120

CHAPTER 6 "' MORE ABOUT CLASSES

Properties

A property is a member that represents an item of data in a class or class instance. Using a property
appears very much like writing to, or reading from, a field. The syntax is the same.

For example, the following code shows the use of a class called MyClass that has both a public field
and a public property. From their usage, you cannot tell them apart.

MyClass mc = new MyClass();

mc.MyField
mc.MyProperty

5; // Assigning to a field
10; // Assigning to a property

WriteLine("{0} {1}", mc.MyField, mc.MyProperty); // Read field and property
A property, like a field, has the following characteristics:

e Itisanamed class member.

e Ithasatype.

e Itcan be assigned to and read from.

Unlike a field, however, a property is a function member.

e Itdoes not necessarily allocate memory for data storage.
e Itexecutes code.

A property is a named set of two matching methods called accessors.

e The set accessor is used for assigning a value to the property.
e The get accessor is used for retrieving a value from the property.

Figure 6-7 shows the representation of a property. The code on the left shows the syntax of declaring
a property named MyValue, of type int. The image on the right shows how properties will be represented
visually in this text. Notice that the accessors are shown sticking out the back, because, as you will soon
see, they’'re not directly callable.

int MyValue
it

set

{ MyValue

set
SetAccessorCode

get
get

{
}

GetAccessorCode

}

Figure 6-7. An example property of type int, named MyValue

121

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 M MORE ABOUT CLASSES

Property Declarations and Accessors

The set and get accessors have predefined syntax and semantics. You can think of the set accessor as a
method with a single parameter that “sets” the value of the property. The get accessor has no
parameters and returns the value the property.

e The set accessor always has the following:

— Asingle, implicit value parameter named value, of the same type as the property

— Areturn type of void

e The get accessor always has the following:
— No parameters
— Areturn type of the same type as the property

Figure 6-8 shows the structure of a property declaration. Notice in the figure that neither accessor
declaration has explicit parameter or return type declarations. They don’t need them, because they’re
implicit in the type of the property.

Property Type Property Name
No explicit parameter declaration—the

int Myvalue implicit parameter is always named value,
{ / and has the same type as the property.
set

{ <«— Always void return type.

CodeToSetPropertyValue

}

get

{
CodeToGetPropertyValue Always returns a value of
return Someint; the type of the property.

}
}

Figure 6-8. The syntax and structure of a property declaration

The implicit parameter value in the set accessor is a normal value parameter. Like other value
parameters, you can use it to send data into a method body—or in this case, the accessor block. Once
inside the block, you can use value like a normal variable, including assigning values to it.

Other important points about accessors are the following:

e All paths through the implementation of a get accessor must include a return statement that
returns a value of the property type.

o The set and get accessors can be declared in either order, and no methods other than the two
accessors are allowed on a property.

122

CHAPTER 6 "' MORE ABOUT CLASSES

A Property Example

The following code shows an example of the declaration of a class called C1 that contains a property
named MyValue.

e Notice that the property itself doesn’t have any storage. Instead, the accessors determine what
should be done with data sent in and what data should be sent out. In this case, the property uses
a field called TheRealValue for storage.

e The set accessor takes its input parameter, value, and assigns that value to field TheRealValue.

e The get accessor just returns the value of field TheRealValue.

Figure 6-9 illustrates the code.

class C1

{ private int TheRealValue; // Field: memory allocated
public int MyValue // Property: no memory allocated
{ set

TheRealValue = value;

}
get
return TheRealValue;
}
}
}
C1
| TheRealValue |
MyValue set
get
I

Figure 6-9. Property accessors often use fields for storage

123

CHAPTER 6 "' MORE ABOUT CLASSES

Using a Property

As you saw previously, you write to and read from a property in the same way you access a field. The
accessors are called implicitly.

e To write to a property, use the property’s name on the left side of an assignment statement.

e Toread from a property, use the property’s name in an expression.

For example, the following code contains an outline of the declaration of a property named MyValue.
You write to and read from the property using just the property name, as if it were a field name.

int MyValue // Property declaration
set{ ... }
get{ ... }

Propﬁrty name

MyValue = 5; // Assignment: the set method is implicitly called
z = MyVTallue; // Expression: the get method is implicitly called

Property name

The appropriate accessor is called implicitly depending on whether you are writing to or
reading from the property. You cannot explicitly call the accessors. Attempting to do so produces a
compile error.

y = MyValue.get(); // Error! Can't explicitly call get accessor.
MyValue.set(5); // Error! Can't explicitly call set accessor.

124

CHAPTER 6 "' MORE ABOUT CLASSES

Properties and Associated Fields

A property is often associated with a field, as shown in the previous two sections. A common practice is
to encapsulate a field in a class by declaring it private and declaring a public property to give controlled
access to the field from outside the class. The field associated with a property is called the backing field
or backing store.

For example, the following code uses the public property MyValue to give controlled access to private
field TheRealValue:

class C1

{
private int TheRealValue = 10; // Backing Field: memory allocated
public int MyValue // Property: no memory allocated

set{ TheRealValue = value; } // Sets the value of field TheRealValue
get{ return TheRealValue; } // Gets the value of the field

}
class Program
{
static void Main()
{
Read from the property as if it were a field.
C1 ¢ = new C1(); 4
Console.WriteLine("MyValue: {0}", c.MyValue);
c.MyValue = 20; <« Use assignment to set the value of a property.
Console.WriteLine("MyValue: {0}", c.MyValue);
}
}

125

CHAPTER 6 "' MORE ABOUT CLASSES

126

There are several conventions for naming properties and their backing fields. One convention is to
use the same string for both names but use camel casing (in which the first letter is lowercase) for the
field and Pascal casing for the property. Although this violates the general rule that it is bad practice to
have different identifiers that differ only in casing, it has the advantage of tying the two identifiers
together in a meaningful way.

Another convention is to use Pascal casing for the property, and then for the field, use the camel
case version of the same identifier, with an underscore in front.

The following code shows both conventions:

private int firstField; // Camel casing
public int FirstField // Pascal casing
{

get { return firstField; }
set { firstField = value; }

private int secondField; // Underscore and camel casing
public int SecondField
{

get { return secondField; }
set { secondField = value; }

CHAPTER 6 "' MORE ABOUT CLASSES

Performing Other Calculations

Property accessors are not limited to just passing values back and forth from an associated backing field;
the get and set accessors can perform any, or no, computations. The only action required is that the get
accessor return a value of the property type.

For instance, the following example shows a valid (but probably useless) property that just returns
the value 5 when its get accessor is called. When the set accessor is called, it doesn’t do anything. The
value of implicit parameter value is ignored.

public int Useless

{ set{ /* I'm not setting anything. */)
get{ /* I'm just returning the value 5. */
return 5;
}
}

The following code shows a more realistic and useful property, where the set accessor performs
filtering before setting the associated field. The set accessor sets field TheRealValue to the input value—
unless the input value is greater than 100. In that case, it sets TheRealValue to 100.

int TheRealValue = 10; // The field
int MyValue // The property
{
set // Sets the value of the field
TheRealValue = value > 100 // but makes sure it's not > 100
? 100
: value;
}
get // Gets the value of the field
{

return TheRealValue;

Note In the preceding code sample, the syntax between the equals sign and the end of the statement might
look somewhat strange. That expression uses the conditional operator, which will be covered in greater detail in
Chapter 8. The conditional operator is a ternary operator that evaluates the expression in front of the question
mark, and if the expression evaluates to true, it returns the expression after the question mark. Otherwise, it
returns the expression after the colon.

127

CHAPTER 6 "' MORE ABOUT CLASSES

Read-Only and Write-Only Properties

You can leave one or the other (but not both) of a property’s accessors undefined by omitting its
declaration.

e Aproperty with only a get accessor is called a read-only property. A read-only property is a

safe way of passing an item of data out from a class or class instance without allowing too
much access.

e Aproperty with only a set accessor is called a write-only property. A write-only property is a

safe way of passing an item of data from outside the class to the class without allowing too
much access.

e Atleast one of the two accessors must be defined, or the compiler will produce an error message.

Figure 6-10 illustrates read-only and write-only properties.

int MyValue Myvalue int MyValue MyValue set

{ {
get{...} get set{...}
} }

Read-Only Property Write-Only Property

Figure 6-10. A property can have one or the other of its accessors undefined.

128

CHAPTER 6 "' MORE ABOUT CLASSES

An Example of a Computed, Read-Only Property

In most of the examples so far, the property has been associated with a field, and the get and set
accessors have referenced that field. However, a property does not have to be associated with a field. In
the following example, the get accessor computes the return value.

In the following example code, class RightTriangle represents, not surprisingly, a right triangle.

e Ithas two public fields that represent the lengths of the two right-angle sides of the triangle.
These fields can be written to and read from.

e The third side is represented by property Hypotenuse, which is a read-only property whose return
value is based on the lengths of the other two sides. It isn’t stored in a field. Instead, it computes
the correct value, on demand, for the current values of A and B.

Figure 6-11 illustrates read-only property Hypotenuse.

class RightTriangle

public double A = 3;

public double B = 4;

public double Hypotenuse // Read-only property
{

get{ return Math.Sqrt((A*A)+(B*B)); } // Calculate return value
}

class Program
static void Main()

RightTriangle c¢ = new RightTriangle();
Console.WriteLine("Hypotenuse: {0}", c.Hypotenuse);

RightAngle

Figure 6-11. Read-only property Hypotenuse

129

CHAPTER 6 "' MORE ABOUT CLASSES

130

Example of Properties and Databases

Another example in which a property is not associated with a field is when the property is associated
with a value in a database. In that case, the get accessor makes the appropriate database calls to get the
value from the database. The set accessor makes the corresponding calls to the database to set the new
value in the database.

For example, the following property is associated with a particular value in some database. The code
assumes that there are two other methods in the class to handle the details of the database transactions:

e SetValueInDatabase takes an integer parameter and uses it to set a particular field in a record in
some database.

e GetValueFromDatabase retrieves and returns a particular integer field value from a particular
record in some database.

int MyDatabaseValue

{
set // Sets integer value in the database
SetValueInDatabase(value);
}
get // Gets integer value from the database
{
return GetValueFromDatabase();
}
}

Properties vs. Public Fields

As a matter of preferred coding practice, properties are preferred over public fields for several reasons:

e Since properties are functional members as opposed to data members, they allow you to process
the input and output, which you can’t do with public fields.

e The semantics of a compiled variable and a compiled property are different.

The second point has implications when you release an assembly that is accessed by other code. For
example, sometimes there’s the temptation is to use a public field rather than a property, with the
reasoning that if you ever need to add processing to the data held in the field, you can always change it
to a property at a later time. This is true, but if you make that change, you will also have to recompile any
other assemblies accessing that field, because the compiled semantics of fields and properties are
different. On the other hand, if you had implemented it as a property and just changed its
implementation, you wouldn’t need to recompile the other assemblies accessing it.

CHAPTER 6 "' MORE ABOUT CLASSES

Automatically Implemented Properties

Because properties are so often associated with backing fields, C# 3.0 added automatically implemented
properties, or auto-implemented properties, which allow you to just declare the property, without

declaring a backing field. The compiler creates a hidden backing field for you and automatically hooks
up the get and set accessors to it.

The important points about auto-implemented properties are the following:

You do not declare the backing field—the compiler allocates the storage for you, based on the
type of the property.

You cannot supply the bodies of the accessors—they must be declared simply as semicolons. The
get acts as a simple read of the memory, and the set as a simple write.

¢ You cannot access the backing field other than through the accessors. Since you can’t access it

any other way, it wouldn’t make sense to have read-only or write-only auto-implemented
properties—so they’re not allowed.

The following code shows an example of an automatically implemented property:

class C1

{ <« No declared backing field
public int MyValue // Allocates memory
{

set; get;
y to 1

} The bodies of the accessors are declared as semicolons.

class Program

static void Main()

Use auto-implemented properties as regular properties.
C1 ¢ = new C1(); 4
Console.WriteLine("MyValue: {0}", c.MyValue);

c.MyValue = 20;
Console.WriteLine("MyValue: {0}", c.MyValue);

}

This code produces the following output:

MyValue: 0
MyValue: 20

Besides being convenient, auto-implemented properties allow you to easily insert a property where
you might be tempted to declare a public field.

131

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 M MORE ABOUT CLASSES

Static Properties

Properties can also be declared static. Accessors of static properties, like all static members
e Cannot access instance members of a class—although they can be accessed by them
e Existregardless of whether there are instances of the class

e Must be referenced by the class name, rather than an instance name, when being accessed from
outside the class

For example, the following code shows a class with an auto-implemented static property called
MyValue. In the first three lines of Main, the property is accessed, even though there are no instances of
the class. The last line of Main calls an instance method that accesses the property from inside the class.

class Trivial

public static int MyValue { get; set; }

public void PrintValue() Accessed from inside the class
{
Console.WriteLine("Value from inside: {0}", MyValue);
}
}
class Program
{
static void Main() Accessed from outside the class
{ I
Console.WriteLine("Init Value: {0}", Trivial.MyValue);
Trivial.MyValue = 10; « Accessed from outside the class
Console.WriteLine("New Value : {0}", Trivial.MyValue);
Trivial tr = new Trivial();
tr.PrintValue();
}
}

Init Value: 0
New Value : 10
Value from inside: 10

132

CHAPTER 6 "' MORE ABOUT CLASSES

Instance Constructors

An instance constructor is a special method that is executed whenever a new instance of a class
is created.

e A constructor is used to initialize the state of the class instance.

e Ifyouwant to be able to create instances of your class from outside the class, you need to declare
the constructor public.

Figure 6-12 shows the syntax of a constructor. A constructor looks like the other methods in a class
declaration, with the following exceptions:

¢ The name of the constructor is the same as the name of the class.

e A constructor cannot have a return value.

Same as

' . class MyClass f— class hame
Declared public so it can {

be seen (and called) from ——— public MyClass()
outside the class {

|

No return type

Figure 6-12. Constructor declaration

For example, the following class uses its constructor to initialize its fields. In this case, it has a field
called TimeOfInstantiation that is initialized with the current date and time.

class MyClass

DateTime TimeOfInstantiation; // Field
public MyClass() // Constructor
{
TimeOfInstantiation = DateTime.Now; // Initialize field

Note Having finished the section on static properties, take a closer look at the line that initializes
TimeOfInstantiation. The DateTime class is from the BCL, and Now is a static property of the DateTime class.
The Now property creates a new instance of the DateTime class, initializes it with the current date and time from
the system clock, and returns a reference to the new DateTime instance.

133

CHAPTER 6 "' MORE ABOUT CLASSES

Constructors with Parameters

Constructors are like other methods in the following ways:

e A constructor can have parameters. The syntax for the parameters is exactly the same as for other
methods.

e A constructor can be overloaded.

When you use an object-creation expression to create a new instance of a class, you use the new
operator followed by one of the class’s constructors. The new operator uses that constructor to create the
instance of the class.

For example, in the following code, Class1 has three constructors: one that takes no parameters, one
that takes an int, and another that takes a string. Main creates an instance using each one.

class Classi

int Id;

string Name;

public Classi() { Id=28; Name="Nemo"; } // Constructor 0
public Classi(int val) { Id=val; Name="Nemo"; } // Constructor 1
public Classi(String name) { Name=name; } // Constructor 2

public void SoundOff()
{ Console.WriteLine("Name {0}, Id {1}", Name, Id); }

}
class Program
{
static void Main()
Class1 a = new Classi(), // Call constructor o0.
b = new Classi(7), // Call constructor 1.
c = new Class1("Bill"); // Call constructor 2.
a.Soundoff();
b.Soundoff();
c.Soundoff();
}

This code produces the following output:

Name Nemo, Id 28
Name Nemo, Id 7
Name Bill, Id o

134

CHAPTER 6 "' MORE ABOUT CLASSES

Default Constructors

If no instance constructor is explicitly supplied in the class declaration, then the compiler supplies an
implicit, default constructor, which has the following characteristics:

e It takes no parameters.

e Ithas an empty body.

If you declare any constructors at all for a class, then the compiler does not define a default
constructor for the class.
For example, Class2 declares two constructors.

e Because there is at least one explicitly defined constructor, the compiler does not create any
additional constructors.

e InMain, there is an attempt to create a new instance using a constructor with no parameters.
Since there is no constructor with zero parameters, the compiler produces an error message.

class Class2

public Class2(int Value) { ...} // Constructor o
public Class2(String Value) { ... } // Constructor 1
}
class Program
{
static void Main()
Class2 a = new Class2(); // Error! No constructor with 0 parameters
}
}

135

CHAPTER 6 "' MORE ABOUT CLASSES

136

Static Constructors

Constructors can also be declared static. While an instance constructor initializes each new instance of
aclass, a static constructor initializes items at the class level. Generally, static constructors initialize the

static fields of the class.

e (lass-level items need to be initialized:
— Before any static member is referenced
— Before any instance of the class is created
e Static constructors are like instance constructors in the following ways:
— The name of the static constructor must be the same as the name of the class.
— The constructor cannot return a value.
e Static constructors are unlike instance constructors in the following ways:
— Static constructors use the static keyword in the declaration.
— There can only be a single static constructor for a class, and it cannot have parameters.
— Static constructors cannot have accessibility modifiers.

The following is an example of a static constructor. Notice that its form is the same as that of an
instance constructor, but with the addition of the static keyword.

class Classi
static Class1 ()
{

// Do all the static initializations.

Other important things you should know about static constructors are the following:

e Aclass can have both a static constructor and instance constructors.

e Like static methods, a static constructor cannot access instance members of its class and cannot

use the this accessor, which we’ll cover shortly.

¢ You cannot explicitly call static constructors from your program. They’re called automatically by

the system, at some time:
— Before any instance of the class is created

— Before any static member of the class is referenced

CHAPTER 6 "' MORE ABOUT CLASSES

Example of a Static Constructor

The following code uses a static constructor to initialize a private static field named RandomKey, of type
Random. Random is a class provided by the BCL to produce random numbers. It is in the System namespace.

class RandomNumberClass

{ private static Random RandomKey; // Private static field
static RandomNumberClass() // Static constructor
RandomKey = new Random(); // Initialize RandomKey
public int GetRandomNumber ()
return RandomKey.Next();
}
class Program
{ static void Main()

{ RandomNumberClass a = new RandomNumberClass();
RandomNumberClass b = new RandomNumberClass();
Console.WriteLine("Next Random #: {0}", a.GetRandomNumber());

) Console.WriteLine("Next Random #: {0}", b.GetRandomNumber());

}

One execution of this code produced the following output:

Next Random #: 47857058
Next Random #: 1124842041

Accessibility of Constructors

You can assign access modifiers to instance constructors just as you can to other members. Notice that
in the examples, the constructors have been declared public so that you can create instances from
outside the class.

You can also create private constructors, which cannot be called from outside the class, but can be
used from within the class, as you’ll see in the next chapter.

137

CHAPTER 6 "' MORE ABOUT CLASSES

Object Initializers

So far in the text, you've seen that an object-creation expression consists of the keyword new followed by
a class constructor and its parameter list. An object initializer extends that syntax by placing a list of
member initializations at the end of the expression. This allows you to set the values of fields and
properties when creating a new instance of an object.

The syntax has two forms, as shown here. One form includes the constructor’s argument list, and
the other doesn’t. Notice that the first form doesn’t even use the parentheses that would enclose the

argument list.
Object initializer
new TypeName { FieldOrProp = InitExpr, FieldOrProp = InitExpr, ...}
new TypeName(Arglist) { FieldOrProp =TInitExpr, FieldOrProp ; InitExpr, ...}
Member initializer Member initializer

For example, for a class named Point with two public integer fields X and Y, you could use the
following expression to create a new object:

new Point { X =5, Y =6 };
T T
Init X Init Y

Important things to know about object initializers are the following:

e The fields and properties being initialized must be accessible to the code creating the object. For
example, in the previous code, X and Y must be public.

e The initialization occurs after the constructor has finished execution, so the values might have
been set in the constructor and then reset to the same or different value in the object initialize.

138

CHAPTER 6 "' MORE ABOUT CLASSES

The following code shows an example of using an object initializer. In Main, pt1 calls just the
constructor, which sets the values of its two fields. For pt2, however, the constructor sets the fields’
values to 1 and 2, and the initializer changes them to 5 and 6.

public class Point

public int X
public int Y

15
2;

class Program

static void Main()
Object initializer
Point pt1 = new Point(); L
Point pt2 = new Point { X =5, Y =6 };
Console.WriteLine("pt1: {0}, {1}", pti1.X, pt1.Y);
Console.WriteLine("pt2: {0}, {1}", pt2.X, pt2.Y);

}

This code produces the following output:

pti: 1, 2
pt2: 5, 6

139

CHAPTER 6 "' MORE ABOUT CLASSES

Destructors

Destructors perform actions required to clean up or release unmanaged resources after an instance
of a class is no longer referenced. The important things to know about destructors are the following:

¢ You can have only a single destructor per class.
e Adestructor cannot have parameters.
e Adestructor cannot have accessibility modifiers.

e Adestructor has the same name as the class but is preceded by a tilde character (pronounced
TIL-duh).

e Adestructor only acts on instances of classes; hence, there are no static destructors.

e You cannot call a destructor explicitly in your code. Instead, it is called during the garbage
collection process, when the garbage collector analyzes your code and determines that there is no
longer any path through your code that references the object.

For example, the following code illustrates the syntax for a destructor of a class called Class1:
Class1
~Class1() // The destructor
{

CleanupCode

}

Some important guidelines for using destructors are the following:
e Don’timplement a destructor if you don’t need one. They can incur performance costs.
e Adestructor should only release external resources that the object owns.

e Adestructor should not access other objects because you can’t assume that those objects haven’t
already been destroyed.

Note Before the release of version 3.0 of C#, destructors were sometimes called finalizers. You might
sometimes still run across this term in the literature and in the .NET APl method names.

140

CHAPTER 6 "' MORE ABOUT CLASSES

Calling the Destructor

Unlike a C++ destructor, a C# destructor is not called immediately when an instance goes out of scope.
In fact, there is no way of knowing when the destructor will be called. Furthermore, as previously
mentioned, you cannot explicitly call a destructor. If your code needs a destructor, you must provide it
for the system, which will call it at some point before the object is removed from the managed heap.

If your code contains unmanaged resources that need to be released in a timely manner, you
shouldn’t leave that task for the destructor, since there is no guarantee that the destructor will run any
time soon. Instead, you should adopt the standard pattern where your classes implement what is called
the IDisposable interface. (I'll cover interfaces in Chapter 17.) This consists of encapsulating the cleanup
code for these resources in a void, parameterless method, which you should call Dispose.

When you’re done with the resources and want them released, you need to call Dispose. Notice that
it is you who needs to call Dispose—not the destructor. The system won't call it for you automatically.

Some guidelines for your Dispose method are the following:

e Implement the code in Dispose in such a way that it is safe for the method to be called more than
once. If it has already been called, then on any subsequent invocations it should not raise an
exception or do any additional work. (Exceptions are covered in Chapter 11.)

e Write your Dispose method and destructor such that, if for some reason your code doesn’t get to
call Dispose, your destructor will call it and release the resources.

e Since Dispose is doing the cleanup rather than the destructor, it should call the
GC.SuppressFinalize method, which tells the CLR not to call this object’s destructor, because it
has already been taken care of.

The following code describes the safe disposal process. First, the class needs to declare a Boolean
disposed field to keep track of whether the cleanup has occurred. This is initialized to false when the
object is created.

Inside the Dispose method, do the following:

e Check the flag to see whether the resources have already been released. If not, then do the
following:

— Call the Dispose methods on any managed resources that require it.

— Release any unmanaged resources held by the object.
e Now that the disposal has occurred, set the disposed flag to true.

e Finally, call the garbage collector’s SuppressFinalize method to tell the garbage collector not to
call the class’s destructor.

141

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 M MORE ABOUT CLASSES

142

The process in the destructor is similar to but shorter than that in the Dispose method. Just check to

see whether the object has already been cleaned up, and if not, then release the unmanaged resources.
Notice that in this case you do not call the Dispose methods of any managed resources, because the
garbage collector might have already deleted those objects.

class MyClass

bool disposed = false; // Flag indicating disposal status
LILLLLITTII0000001777070071117777777171177771117117711117
public void Dispose() // Public Dispose

if (disposed == false) // Check the flag.

{

// Call Dispose on managed resources.

// Release any unmanaged resources.

}
disposed = true; // Set the flag to show disposal.
GC.SuppressFinalize(this); // Tell GC not to call Finalize.

TILIII0011000001070071071110711107117111171111117111171111
~MyClass () // Destructor
{

if (disposed == false) // Check the flag.
{

// Release any unmanaged resources.

CHAPTER 6 "' MORE ABOUT CLASSES

The Standard Dispose Pattern

In the previous section, you saw that the destructor code is essentially a subset of the Dispose code. The
standard pattern factors out most of the common code of these two methods into another method
called Dispose, which I'll call the factored Dispose. It takes a single Boolean parameter that is used to
indicate whether the method is being called from the public Dispose method (true) or from the
destructor (false).

This standard dispose pattern is shown following and illustrated in Figure 6-13. I'll cover the
protected and virtual modifiers in the next chapter.

class MyClass : IDisposable
bool disposed = false; // Disposal status
public void Dispose() —

Dispose(true); Public Dispose
GC.SuppressFinalize(this);

~MyClass()
Destructor
Dispose(false);
protected virtual void Dispose(bool disposing)]
if (disposed == false)
if (disposing == true)
// Dispose the managed resources. Factored Dispose

}

// Dispose the unmanaged resources.

disposed = true;

143

CHAPTER 6 "' MORE ABOUT CLASSES

protected virtual

public void Dispose() void Dispose(bool disposing)

Call
Dispose(true)

Inhibit call to
destructor using
GC.SupressFinalize

Already disposed?
(disposed == true)

Called from
public Dispose?
(disposing == true)

Destructor

A

Dispose managed
resources.

Call

Dispose(false)

Dispose unmanaged
resources.

Set disposed
flag.

Figure 6-13. The standard dispose pattern

Comparing Constructors and Destructors

Table 6-3 provides a summary of when constructors and destructors are called.

Table 6-3. Constructors and Destructors

When and How Often Called

Instance

Static

Constructor

Destructor

Constructor

Destructor

Called once on the creation of each new instance of the class.

Called for each instance of the class, at some point after the program flow
can no longer access the instance.

Called only once—either before the first access of any static member of
the class or before any instances of the class are created, whichever is first.

Does not exist—destructors work only on instances.

144

CHAPTER 6 "' MORE ABOUT CLASSES

The readonly Modifier

A field can be declared with the readonly modifier. The effect is similar to declaring a field as const, in
that once the value is set, it cannot be changed.

e While a const field can only be initialized in the field’s declaration statement, a readonly field can
have its value set in any of the following places:

— The field declaration statement—Ilike a const.

— Any of the class constructors. If it’s a static field, then it must be done in the static
constructor.

e While the value of a const field must be determinable at compile time, the value of a readonly
field can be determined at run time. This additional freedom allows you to set different values
under different circumstances or in different constructors!

e Unlike a const, which always acts like a static, the following is true of a readonly field:

— Itcan be either an instance field or a static field.

— It has a storage location in memory.

145

CHAPTER 6 "' MORE ABOUT CLASSES

For example, the following code declares a class called Shape, with two readonly fields.
e Field PI is initialized in its declaration.

e Field NumberOfSides is set to either 3 or 4, depending on which constructor is called.

class Shape
{ Keyword Initialized

readonly double PI = 3.1416;
readonly int NumberQfSides;

T T
Keyword Not initialized
public Shape(double side1, double side2) // Constructor

// Shape is a rectangle
NumberOfSides = 4;

T
... Setin constructor

}
public Shape(double sidel, double side2, double side3) // Constructor

// Shape is a triangle
NumberOfSides = 3;
T

... Setin constructor

146

CHAPTER 6 "' MORE ABOUT CLASSES

The this Keyword

The this keyword, used in a class, is a reference to the current instance. It can be used only in the blocks
of the following class members:

e Instance constructors.
e Instance methods.

e Instance accessors of properties and indexers. (Indexers are covered in the next section.)

Clearly, since static members are not part of an instance, you cannot use the this keyword inside
the code of any static function member. Rather, it is used for the following:

e To distinguish between class members and local variables or parameters

e Asan actual parameter when calling a method

For example, the following code declares class MyClass, with an int field and a method that takes a
single int parameter. The method compares the values of the parameter and the field and returns the
greater value. The only complicating factor is that the names of the field and the formal parameter are
the same: Vari. The two names are distinguished inside the method by using the this access keyword to
reference the field.

class MyClass
int Vari = 10;
T Bothare called “Var1” |
public int ReturnMaxSum(int Vari)
{ Parameter Field

return Vari > this.Vari

? Vari // Parameter
: this.Vari; // Field
}
}
class Program
{
static void Main()
MyClass mc = new MyClass();
Console.WriteLine("Max: {0}", mc.ReturnMaxSum(30));
Console.WriteLine("Max: {0}", mc.ReturnMaxSum(5));
}
}

147

CHAPTER 6 "' MORE ABOUT CLASSES

Indexers

Suppose you were to define class Employee, with three fields of type string (as shown in Figure 6-14).
You could then access the fields using their names, as shown in the code in Main.

class Employee

{ Employee
public string LastName;
public string FirstName;
public string CityOfBirth;

|LastName: Doe |

}

|F1‘rstName: Jane |

class Program

{

static void Main() |C1’ty0fB1‘rth: Dallas |
{

Employee empl = new Employee();

Field Names

empl.LastName = "Doe";

empl.FirstName = "Jane";

empl.CityOfBirth = "Dallas";
Console.WriteLine("{0}", empl.LastName);
Console.WriteLine("{0}", empl.FirstName);
Console.WriteLine("{0}", empl.CityOfBirth);

Figure 6-14. Simple class without indexers

There are times, however, when it would be convenient to be able to access them with an index,
as if the instance were an array of fields. This is exactly what indexers allow you to do. If you were to
write an indexer for class Employee, method Main might look like the code in Figure 6-15. Notice that
instead of using dot-syntax notation, indexers use index notation, which consists of an index between
square brackets.

static void Main()
{
Employee empl = new Employee();
P z P Ployee() Indexes [o] |LastName: Doe |

Employee

empl[0] = "Doe";
empl[1] = "Jane";
empl[2] = "Dallas";
Console.WriteLine("{0}", empl[0]); [2] |C1ty0fB1‘rth: Dallas |
Console.WriteLine("{0}", empl[1]);
Console.WriteLine("{0}", empl[2]);

[1] | FirstName: Jane |

Figure 6-15. Using indexed fields

148

CHAPTER 6 "' MORE ABOUT CLASSES

What Is an Indexer?

An indexer is a pair of get and set accessors, similar to those of properties. Figure 6-16 shows the
representation of an indexer for a class that can get and set values of type string.

string this [int index]
{

set

{ this[]

set
SetAccessorCode

1
1
1
1
1
1
} | get
1
1
1
1

get
{

}

GetAccessorCode

}

Figure 6-16. Representations of an indexer

Indexers and Properties

Indexers and properties are similar in many ways.
e Like a property, an indexer does not allocate memory for storage.

¢ Bothindexers and properties are used primarily for giving access to other data members with
which they’re associated and for which they provide get and set access.

— A property usually represents a single data member.

— An indexer usually represents multiple data members.

Note You can think of an indexer as a property that gives get and set access to multiple data members of the
class. You select which of the many possible data members by supplying an index, which itself can be of any
type—not just numeric.

Some additional points you should know when working with indexers are the following:
e Like a property, an indexer can have either one or both of the accessors.
e Indexers are always instance members; hence, an indexer cannot be declared static.

o Like properties, the code implementing the get and set accessors does not have to be associated
with any fields or properties. The code can do anything, or nothing, as long as the get accessor
returns some value of the specified type.

149

CHAPTER 6 "' MORE ABOUT CLASSES

Declaring an Indexer

The syntax for declaring an indexer is shown next. Notice the following about indexers:
e Anindexer does not have a name. In place of the name is the keyword this.
e The parameter list is between square brackets.

e There must be at least one parameter declaration in the parameter list.

Keyword Parameter list

ReturnType this [Type parami, ... JF

{
get Square bracket Square bracket

Declaring an indexer is similar to declaring a property. Figure 6-17 shows the syntactic similarities
and differences.

Unlike a property, an indexer
— Has a parameter list (in square brackets,
no less)
— Uses reference this, instead of a name j

Like a property, an indexer —
- Hasatype @ ————— > string this [int index]
— Has get and set {

accessors set
{

SetAccessorCode

get
{

}
}

GetAccessorCode

Figure 6-17. Comparing an indexer declaration to a property declaration

150

CHAPTER 6 "' MORE ABOUT CLASSES

The Indexer set Accessor

When the indexer is the target of an assignment, the set accessor is called and receives two items of data,
as follows:

e Animplicit parameter, named value, which holds the data to be stored

e One or more index parameters that represent where it should be stored
emp[0] = "Doe";

Index Value
Parameter

Your code in the set accessor must examine the index parameters, determine where the data should
be stored, and then store it.

Figure 6-18 shows the syntax and meaning of the set accessor. The left side of the figure shows the
actual syntax of the accessor declaration. The right side shows the semantics of the accessor if it were
written using the syntax of a normal method. The figure on the right shows that the set accessor has the
following semantics:

e Ithasavoidreturn type.
e Itusesthe same parameter list as that in the indexer declaration.
e Ithas an implicit value parameter named value, of the same type as the indexer.

Syntax of the
set Accessor

Type this [ParameterList] leplicit
{ arameter
Tet void set (ParameterList, Type value)
{
AccessorBody AccessorBody
J [)
get{ ...}

} Meaning of
the set Accessor

Figure 6-18. The syntax and meaning of the set accessor declaration

151

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 M MORE ABOUT CLASSES

152

The Indexer get Accessor

When the indexer is used to retrieve a value, the get accessor is called with one or more index
parameters. The index parameters represent which value to retrieve.

string s = emp[0];
1

Index parameter

The code in the get accessor body must examine the index parameters, determine which field they
represent, and return the value of that field.

Figure 6-19 shows the syntax and meaning of the get accessor. The left side of the figure shows the
actual syntax of the accessor declaration. The right side shows the semantics of the accessor if it were
written using the syntax of a normal method. The semantics of the get accessor are as follows:

e Ithasthe same parameter list as in the indexer declaration.

e Itreturns avalue of the same type as the indexer.

Syntax of the
Type this [ParameterList] get Accessor
{ <_J
get Type get (ParameterList)
{ {
AccessorBody AccessorBody
return ValueOfType; return ValueOfType;
} r> }
set{ ... }
} Meaning of

the get Accessor

Figure 6-19. The syntax and meaning of the get accessor declaration

More About Indexers

As with properties, the get and set accessors cannot be called explicitly. Instead, the get accessor is
called automatically when the indexer is used in an expression for a value. The set accessor is called
automatically when the indexer is assigned a value with the assignment statement.
When an indexer is “called,” the parameters are supplied between the square brackets.
Index Value
\ \

emp[0] = "Doe"; // Calls set accessor
string NewName = emp[0]; // Calls get accessor

Index

Declaring the Indexer for the Employee Example

The following code declares an indexer for the earlier example: class Employee.

CHAPTER 6 "' MORE ABOUT CLASSES

e The indexer must read and write values of type string—so string must be declared as the
indexer’s type. It must be declared public so that it can be accessed from outside the class.

e The three fields in the example have been arbitrarily indexed as integers 0 through 2, so the
formal parameter between the square brackets, named index in this case, must be of type int.

¢ Inthe body of the set accessor, the code determines which field the index refers to and assigns
the value of implicit variable value to it. In the body of the get accessor, the code determines
which field the index refers to and returns that field’s value.

class Employee

public string LastName; // Call this field o.
public string FirstName; // Call this field 1.
public string CityOfBirth; // Call this field 2.
public string this[int index] // Indexer declaration

set // Set accessor declaration

switch (index)

case 0: LastName = value;
break;

case 1: FirstName = value;
break;

case 2: CityOfBirth = value;
break;

default: // (Exceptions in Ch. 11)
throw new ArgumentOutOfRangeException("index");

}
}

get // Get accessor declaration
switch (index)
case 0: return LastName;
case 1: return FirstName;
case 2: return CityOfBirth;

default: // (Exceptions in Ch. 11)
throw new ArgumentOutOfRangeException("index");

153

CHAPTER 6 "' MORE ABOUT CLASSES

Another Indexer Example

The following is an additional example that indexes the two int fields of class Class1:

class Classi

{
int Tempo; // Private field
int Temp1; // Private field
public int this [int index] // The indexer
{
get
return (0 == index) // Return value of either TempO or Tempi
? TempO
: Tempi;
}
set
{
if(0 == index)
Temp0o = value; // Note the implicit variable "value".
else
Templ = value; // Note the implicit variable "value".
}
}

class Example

static void Main()

{
Class1 a = new Classi();
Console.WriteLine("Values -- To: {0}, Ti: {1}", a[o], a[1]);
a[o] = 15;
a[1] = 20;
Console.WriteLine("Values -- To: {0}, T1: {1}", a[o], a[1]);
}

}

This code produces the following output:

Values -- To: 0, Ti: 0
Values -- To: 15, T1: 20

154

CHAPTER 6 "' MORE ABOUT CLASSES

Indexer Overloading

A class can have any number of indexers, as long as the parameter lists are different; it isn’t sufficient for
the indexer type to be different. This is called indexer overloading, because all the indexers have the same
“name”—the this access reference.

For example, the following class has three indexers: two of type string and one of type int. Of the
two indexers of type string, one has a single int parameter, and the other has two int parameters.

class MyClass

{
public string this [int index]
get { ...}
set { ... }
}
public string this [int index1, int index2]
get { ... }
set { ... }
}
public int this [float index1]
{
get { ... }
set { ... }
}

Note Remember that the overloaded indexers of a class must have different parameter lists.

155

CHAPTER 6 "' MORE ABOUT CLASSES

Access Modifiers on Accessors

In this chapter, you've seen two types of function members that have get and set accessors: properties
and indexers. By default, both a member’s accessors have the same access level as the member itself.

That is, if a property has an access level of public, then both its accessors have that same access level.
The same is true of indexers.

You can, however, assign different access levels to the two accessors. For example, the following
code shows a common and important paradigm of declaring a private set accessor and a public get
accessor. The get is public because the access level of the property is public.

Notice in this code that although the property can be read from outside the class, it can only be set
from inside the class itself, in this case by the constructor. This is an important tool for encapsulation.

class Person

{ L \
public string Name { get; private set; }
public Person(string name)

Name = name;
}
}

class Program
static public void Main()

Person p = new Person("Capt. Ernest Evans");
Console.WriteLine("Person's name is {0}", p.Name);

}

There are several restrictions on the access modifiers of accessors. The most important ones are
the following:

e Anaccessor can have an access modifier only if the member (property or indexer) has both a get
accessor and a set accessor.

e Although both accessors must be present, only one of them can have an access modifier.

e The access modifier of the accessor must be strictly more restrictive than the access level of
the member.

Figure 6-20 shows the hierarchy of access levels. The access level of an accessor must be strictly
lower in the chart than the access level of the member.

For example, if a property has an access level of public, you can give any of the four lower access
levels on the chart to one of the accessors. But if the property has an access level of protected, the only
access modifier you can use on one of the accessors is private.

156

CHAPTER 6 "' MORE ABOUT CLASSES

public

protected internal

protected internal

N/

private

Figure 6-20. Hierarchy of strictly restrictive accessor levels

Partial Classes and Partial Types
The declaration of a class can be partitioned among several partial class declarations.
e Each of the partial class declarations contains the declarations of some of the class members.

e The partial class declarations of a class can be in the same file or in different files.

Each partial declaration must be labeled as partial class, in contrast to the single keyword class.

The declaration of a partial class looks the same as the declaration of a normal class, other than the
addition of the type modifier partial.

Type modifier
\
partial class MyPartClass // Same class name as following

member1 declaration
member2 declaration

}
Type modifier
4
partial class MyPartClass // Same class name as preceding

member3 declaration
member4 declaration

Note The type modifier partial is not a keyword, so in other contexts you can use it as an identifier in your
program. But when used immediately before the keywords class, struct, or interface, it signals the use of a
partial type.

157

CHAPTER 6 "' MORE ABOUT CLASSES

For example, the box on the left of Figure 6-21 represents a file with a class declaration. The boxes
on the right of the figure represent that same class declaration split into two files.

file2.cs

1

| .
filel.cs | ;{)arha] class MyPartClass

1

1

class MyPartClass public void Outputl(int inval)
{ {

public void Outputl(int invVal) ! Console.WriteLine("{0}", inval);
{ }

Console.WriteLine("{0}", inVal); }
}

public void Output2(int inval) file3.cs

{ partial class MyPartClass

Console.WriteLine("{0}", inval); N (
} } \:\ public void Output2(int inval)
{

I

| Console.WriteLine("{0}", inval);
| }

I

}

Figure 6-21. Class split using partial types

All the partial class declarations comprising a class must be compiled together. A class using partial
class declarations has the same meaning as if all the class members were declared within a single class
declaration body.

Visual Studio uses this feature in its standard Windows program templates. When you create an
ASP.NET project or a Windows Forms project from the standard templates, the templates create two
class files for each web page or form:

¢ One file contains the partial class containing the code generated by Visual Studio, declaring the
components on the page. You shouldn’t modify the partial class in this file, since it’s regenerated
by the Visual Studio when you modify the components on the page.

e The other file contains the partial class you use to implement the look and behavior of the
components of the page or form.

Besides partial classes, you can also create two other partial types, which are the following:
e Partial structs. (Structs are covered in Chapter 12.)

e Partial interfaces. (Interfaces are covered in Chapter 17.)

158

CHAPTER 6 "' MORE ABOUT CLASSES

Partial Methods

Partial methods are methods that are declared in two parts of a partial class. The two parts of the partial
method can be declared in different parts of the partial class or in the same part. The two parts of the
partial method are the following:

e The defining partial method declaration:

Gives the signature and return type.

The implementation part of the declaration consists of only a semicolon.

o The implementing partial method declaration:

Gives the signature and return type.

The implementation is in the normal format, which, as you know, is a statement block.

The important things to know about partial methods are the following:

e Both the defining and implementing declaration must match in signature and return type. The
signature and return type have the following characteristics:

The contextual keyword partial must be included in both the defining and implementing
declarations immediately before the keyword void.

The signature cannot include access modifiers, making partial methods implicitly private.
The return type must be void.

The parameter list cannot contain out parameters.

¢ You can have a defining partial method without an implementing partial method. In this case, the
compiler removes the declaration and any calls to the method made inside the class. If, however,
the class has an implementing partial method, it must also have a defining partial method.

159

CHAPTER 6 "' MORE ABOUT CLASSES

The following code shows an example of a partial method called PrintSum.

e PrintSumis declared in different parts of partial class Myclass: the defining declaration in the first
part and the implementing declaration in the second part. The implementation prints out the
sum of its two integer parameters.

e Since partial methods are implicitly private, PrintSum cannot be called from outside the class.
Method Add is a public method that calls PrintSum.

e Main creates an object of class MyClass and calls public method Add, which calls method PrintSum,
which prints out the sum of the input parameters.

partial class MyClass

{ Must be void
4
par‘%ial void PrintSum(int x, int y);T // Defining partial method
Contextual keyword No implementation

public void Add(int x, int y)

PrintSum(x, y);

}
partial class MyClass
{
partial void PrintSum(int x, int y) // Implementing partial method
Console.WriteLine("Sum is {0}", x + y); < Implementation
}
}
class Program
{
static void Main()
{
var mc = new MyClass();
mc.Add(5, 6);
}

This code produces the following output:

Sum is 11

160

CHAPTER 7

Classes and Inheritance

Class Inheritance

Accessing the Inherited Members
Hiding Members of a Base Class
Base Access

Using References to a Base Class
Constructor Execution
Inheritance Between Assemblies
Member Access Modifiers
Abstract Members

Abstract Classes

Sealed Classes

External Methods

161

Download from Wow! eBook <www.wowebook.com>

CHAPTER 7 M CLASSES AND INHERITANCE

Class Inheritance

Inheritance allows you to define a new class that incorporates and extends an already declared class.

e You can use an existing class, called the base class, as the basis for a new class, called the derived
class. The members of the derived class consist of the following:

— The members in its own declaration
— The members of the base class
e Todeclare a derived class, you add a class-base specification after the class name. The class-base

specification consists of a colon, followed by the name of the class to be used as the base class.
The derived class is said to directly inherit from the base class listed.

e A derived class is said to extend its base class, because it includes the members of the base class
plus any additional functionality provided in its own declaration.

e Aderived class cannot delete any of the members it has inherited.

For example, the following shows the declaration of a class called OtherClass, which is derived from
a class called SomeClass:

Class-base specification

class OtherClass : SomeClass

{ T T

Colon Base class

Figure 7-1 shows an instance of each of the classes. Class SomeClass, on the left, has one field and
one method. Class OtherClass, on the right, is derived from SomeClass and contains an additional field
and an additional method.

OtherClass
SomeClass Method2 ()
SomeClass
Method1() reldl
Method1()

Figure 7-1. Base class and derived class

162

CHAPTER 7 " CLASSES AND INHERITANCE

Accessing the Inherited Members

Inherited members are accessed just as if they had been declared in the derived class itself. (Inherited
constructors are a bit different—1I'll cover them later in the chapter.) For example, the following code
declares classes SomeClass and OtherClass, which were shown in Figure 7-1. The code shows that all
four members of OtherClass can be seamlessly accessed, regardless of whether they’re declared in the
base class or the derived class.

e Main creates an object of derived class OtherClass.

e The next two lines in Main call Method1 in the base class, using Field1 from the base class and then
Field2 from the derived class.

e The subsequent two lines in Main call Method2 in the derived class, again using Field1 from the
base class and then Field2 from the derived class.

class SomeClass // Base class
public string Fieldl = "base class field ";

public void Method1(string value) {
Console.WriteLine("Base class -- Method1: {0}", value);
}

}
class OtherClass: SomeClass // Derived class
public string Field2 = "derived class field";

public void Method2(string value) {
Console.WriteLine("Derived class -- Method2: {0}", value);

}
}
class Program
{

static void Main() {
OtherClass oc = new OtherClass();

oc.Method1(oc.Field1); // Base method with base field
oc.Method1(oc.Field2); // Base method with derived field
oc.Method2(oc.Field1); // Derived method with base field
oc.Method2(oc.Field2); // Derived method with derived field
}
}
This code produces the following output:
Base class -- Method1: base class field
Base class -- Method1: derived class field

Derived class -- Method2: base class field
Derived class -- Method2: derived class field

163

CHAPTER 7 I CLASSES AND INHERITANCE

All Classes Are Derived from Class object

All classes, except special class object, are derived classes, even if they don’t have a class-base
specification. Class object is the only class that is not derived, since it is the base of the inheritance
hierarchy.

Classes without a class-base specification are implicitly derived directly from class object. Leaving
off the class-base specification is just shorthand for specifying that object is the base class. The two
forms are semantically equivalent, as shown in Figure 7-2.

class SomeClass : class SomeClass : object

{ I {
“ee |

} I 1

Figure 7-2. The class declaration on the left implicitly derives from class object, while the one on the right
explicitly derives from object. The two forms are semantically equivalent.

Other important facts about class derivation are the following:

e Aclass declaration can have only a single class listed in its class-base specification. This is called
single inheritance.

e Although a class can directly inherit from only a single base class, there is no limit to the level of
derivation. That is, the class listed as the base class might be derived from another class, which is
derived from another class, and so forth, until you eventually reach object.

Base class and derived class are relative terms. All classes are derived classes, either from object or
from another class—so generally when we call a class a derived class, we mean that it is immediately
derived from some class other than object. Figure 7-3 shows a simple class hierarchy. After this, I won’t
show object in the figures, since all classes are ultimately derived from it.

1
T]ass ?omeC]ass | MyNenClass
1
class OtherClass: SomeClass ! OtherClass
{ .} !
1
| SomeClass
class MyNewClass: OtherClass |
{
: object

}

Figure 7-3. A class hierarchy

164

CHAPTER 7 " CLASSES AND INHERITANCE

Hiding Members of a Base Class
Although a derived class cannot delete any of the members it has inherited, it can hide them.

e Tohide an inherited data member, declare a new member of the same type and with the
same name.

¢ You can hide, or mask, an inherited function member by declaring in the derived class a new
function member with the same signature. Remember that the signature consists of the name
and parameter list but does not include the return type.

e Tolet the compiler know that you are purposely hiding an inherited member, use the new
modifier. Without it, the program will compile successfully, but the compiler will warn you that
you are hiding an inherited member.

e You can also hide static members.

The following code declares a base class and a derived class, each with a string member called
Field1. The keyword new is used to explicitly tell the compiler to mask the base class member. Figure 7-4
illustrates an instance of each class.

class SomeClass // Base class

public string Field1;

}
class OtherClass : SomeClass // Derived class
new public string Fieldi; // Mask base member with same name
T
Keyword
OtherClass
SomeClass new
SomeClass

Figure 7-4. Hiding a member of a base class

165

CHAPTER 7 I CLASSES AND INHERITANCE

In the following code, OtherClass derives from SomeClass but hides both its inherited members.

Note the use of the new modifier. The code is illustrated in Figure 7-5.
class SomeClass // Base class
public string Field1l = "SomeClass Field1";

public void Method1i(string value)
{ Console.WritelLine("SomeClass.Method1: {0}", value); }

}

class OtherClass : SomeClass // Derived class

{ Keyword
4
new public string Fieldl = "OtherClass Field1"; // Mask the base member.
new public void Method1(string value) // Mask the base member.

T { Console.WritelLine("0OtherClass.Method1: {0}", value); }
} Keyword

class Program
static void Main()

OtherClass oc = new OtherClass(); // Use the masking member.
oc.Method1(oc.Field1); // Use the masking member.

}
}

This code produces the following output:

OtherClass.Method1: OtherClass Field1

OtherClass

SomeClass Method1()

SomeClass

Method1()

Figure 7-5. Hiding a field and a method of the base class

166

CHAPTER 7 " CLASSES AND INHERITANCE

Base Access

If your derived class absolutely must access a hidden inherited member, you can access it by using a
base access expression. This expression consists of the keyword base, followed immediately by a period
and the name of the member, as shown here:

Console.WriteLine("{0}", base.Field1);
T

Base access

For example, in the following code, derived class OtherClass hides Field1 in its base class but
accesses it by using a base access expression.

class SomeClass { // Base class
public string Field1l = "Fieldl -- In the base class";
}
class OtherClass : SomeClass { // Derived class
new public string Fieldl = "Fieldl -- In the derived class";
Hides the field in the base class
public void PrintField1()
{
Console.WritelLine(Field1); // Access the derived class.
Console.WritelLine(base.Field1); // Access the base class.
}
} Base access

class Program {
static void Main()

OtherClass oc = new OtherClass();
oc.PrintField1();

}

This code produces the following output:

Fieldl -- In the derived class
Field1 -- In the base class

If you use this feature frequently, you might want to revaluate the design of your classes. Generally
there are more elegant designs, but the feature is there if there’s a situation where nothing else will do.

167

CHAPTER 7 I CLASSES AND INHERITANCE

168

Using References to a Base Class

An instance of a derived class consists of an instance of the base class, plus the additional members of
the derived class. A reference to the derived class points to the whole class object, including the base
class part.

If you have a reference to a derived class object, you can get a reference to just the base class part of
the object by casting the reference to the type of the base class by using the cast operator. The cast
operator is placed in front of the object reference and consists of a set of parentheses containing the
name of the class being cast to. Casting is covered in detail in Chapter 18.

The next few sections cover accessing an object by using a reference to the base class part of the
object. We'll start by looking at the two lines of code that follow, which declare references to objects.
Figure 7-6 illustrates the code and shows the parts of the object seen by the different variables.

e The first line declares and initializes variable derived, which then contains a reference to an
object of type MyDerivedClass.

e Thesecond line declares a variable of the base class type, MyBaseClass, and casts the reference in
derived to that type, giving a reference to the base class part of the object.

— The reference to the base class part is stored in variable mybc, on the left side of the
assignment operator.

— The reference to the base class part cannot “see” the rest of the derived class object, because
it’s “looking” at it through a reference to the base type.

MyDerivedClass derived = new MyDerivedClass(); // Create an object.
MyBaseClass mybc = (MyBaseClass) derived; // Cast the reference.
— Heap
Sk MyDerivedClass

mybe] Visible to

derived] MyBaseClass “ derived

Visible to

A mybc

Figure 7-6. Reference derived can see the entire MyDerivedClass object, while mybc can only see the

MyBaseClass part of the object.

CHAPTER 7 " CLASSES AND INHERITANCE

The following code shows the declaration and use of these two classes. Figure 7-7 illustrates the
object and references in memory.

Main creates an object of type MyDerivedClass and stores its reference in variable derived. Main also
creates a variable of type MyBaseClass and uses it to store a reference to the base class portion of the
object. When the Print method is called on each reference, the call invokes the implementation of the
method that the reference can see, producing different output strings.

class MyBaseClass
public void Print()
Console.WriteLine("This is the base class.");
}
class MyDerivedClass : MyBaseClass

new public void Print()

Console.WriteLine("This is the derived class.");

}
}
class Program
{
static void Main()
MyDerivedClass derived = new MyDerivedClass();
MyBaseClass mybc = (MyBaseClass)derived;
Cast to base class
derived.Print(); // Call Print from derived portion.
mybc.Print(); // Call Print from base portion.
}

This code produces the following output:

This is the derived class.
This is the base class.

+ Heap
Stack MyDerivedClass
mybc —
derived — MyBaseClass
+ |—

Figure 7-7. A reference to the derived class and the base class

169

CHAPTER 7 I CLASSES AND INHERITANCE

Virtual and Override Methods

In the previous section, you saw that when you access an object of a derived class by using a reference to
the base class, you get the members from the base class. Virtual methods allow a reference to the base
class to access “up into” the derived class.

You can use a reference to a base class to call a method in the derived class, if the following are true:

e The method in the derived class and the method in the base class each have the same signature
and return type.

e The method in the base class is labeled virtual.

e The method in the derived class is labeled override.

For example, the following code shows the virtual and override modifiers on the methods in the
base class and derived class:

class MyBaseClass // Base class

virtual public void Print()

s

class MyDerivedClass : MyBaseClass // Derived class

{

override public void Print()
override

Figure 7-8 illustrates this set of virtual and override methods. Notice how the behavior differs from
the previous case, where I used new to hide the base class members.

e When the Print method is called by using the reference to the base class (mybc), the method call is
passed up to the derived class and executed, because

— The method in the base class is marked as virtual.

— There is a matching override method in the derived class.

e Figure 7-8 illustrates this by showing the arrow coming out the back of the virtual Print method
and pointing at the override Print method.

__\V//__

Stack MyDerivedClass
override Print
mybc I
derived MyBaseClass
virtual Print
__\//A__

Figure 7-8. A virtual method and an override method

170

CHAPTER 7 " CLASSES AND INHERITANCE

The following code is the same as in the previous section, but this time, the methods are labeled
virtual and override. This produces a result that is very different from that of the previous example. In
this version, calling the method through the base class invokes the method in the derived class.

class MyBaseClass

virtual public void Print()

{

Console.WriteLine("This is the base class.");

}
}

class MyDerivedClass : MyBaseClass

override public void Print()

{

Console.WriteLine("This is the derived class.");
}
}

class Program

static void Main()

{

MyDerivedClass derived
MyBaseClass mybc

new MyDerivedClass();
(MyBaseClass)derived;
T

derived.Print(); Cast to base class
mybc.Print();

}
}

This code produces the following output:

This is the derived class.
This is the derived class.
Other important things to know about the virtual and override modifiers are the following:

e The overriding and overridden methods must have the same accessibility. In other words, the
overridden method cannot be, for example, private, and the overriding method public.

e You cannot override a method that is static or is nonvirtual.

e Methods, properties, and indexers (which I covered in the preceding chapter), and another
member type, called events (which I'll cover later in the text), can all be declared virtual
and override.

171

Download from Wow! eBook <www.wowebook.com>

CHAPTER 7 M CLASSES AND INHERITANCE

172

Overriding a Method Marked override

Overriding methods can occur between any levels of inheritance.

e When you use a reference to the base class part of an object to call an overridden method, the
method call is passed up the derivation hierarchy for execution to the most-derived version of the
method marked as override.

e Ifthere are other declarations of the method at higher levels of derivation that are not marked as
override—they are not invoked.

For example, the following code shows three classes that form an inheritance hierarchy:
MyBaseClass, MyDerivedClass, and SecondDerived. All three classes contain a method named Print, with
the same signature. In MyBaseClass, Print is labeled virtual. In MyDerivedClass, it’s labeled override. In
class SecondDerived, you can declare method Print with either override or new. Let’s look at what
happens in each case.

class MyBaseClass // Base class

virtual public void Print()
{ Console.WriteLine("This is the base class."); }

}

class MyDerivedClass : MyBaseClass // Derived class
override public void Print()
{ Console.WritelLine("This is the derived class."); }

class SecondDerived : MyDerivedClass // Most-derived class

. // Given in the following pages

Case 1: Declaring Print with override

If you declare the Print method of SecondDerived as override, then it will override both the less-derived
versions of the method, as shown in Figure 7-9. If a reference to the base class is used to call Print, it gets
passed all the way up the chain to the implementation in class SecondDerived.

CHAPTER 7 " CLASSES AND INHERITANCE

The following code implements this case. Notice the code in the last two lines of method Main.

e The first of the two statements calls the Print method by using a reference to the most-derived
class—SecondDerived. This is not calling through a reference to the base class portion, so it will
call the method implemented in SecondDerived.

e The second statement, however, calls the Print method by using a reference to the base class—
MyBaseClass.

class SecondDerived : MyDerivedClass

{

override public void Print() {
Console.WriteLine("This is the second derived class.");
}

}

class Program

static void Main()

{
SecondDerived derived = new SecondDerived(); // Use SecondDerived.
MyBaseClass mybc = (MyBaseClass)derived; // Use MyBaseClass.

derived.Print();
mybc.Print();
}
}

The result is that regardless of whether Print is called through the derived class or the base class, the
method in the most-derived class is called. When called through the base class, it’s passed up the
inheritance hierarchy. This code produces the following output:

This is the second derived class.
This is the second derived class.

Declared override (\

\$ SecondDerived
override Print

+
Stack MyDerivedClass
[override Print]
mybc —
derived MyBaseClass
virtual Print I—)
+

- J

Figure 7-9. Execution is passed to the top of the chain of multiple levels of override.

173

CHAPTER 7 I CLASSES AND INHERITANCE

Case 2: Declaring Print with new

If instead you declare the Print method of SecondDerived as new, the result is as shown in Figure 7-10.
Main is the same as in the previous case.

class SecondDerived : MyDerivedClass

new public void Print()

{
Console.WriteLine("This is the second derived class.");
}
}
class Program
{
static void Main() // Main
{
SecondDerived derived = new SecondDerived(); // Use SecondDerived.
MyBaseClass mybc = (MyBaseClass)derived; // Use MyBaseClass.
derived.Print();
mybc.Print();
}
}

The result is that when method Print is called through the reference to SecondDerived, the method
in SecondDerived is executed, as you would expect. When the method is called through a reference to
MyBaseClass, however, the method call is passed up only one level, to class MyDerived, where it is
executed. The only difference between the two cases is whether the method in SecondDerived is declared
with modifier override or modifier new.

This code produces the following output:

This is the second derived class.
This is the derived class.

Declared new (\

rather than override
\\‘ SecondDerived
new Print

+

Stack MyDerivedClass

Everride Print
mybc —

derived MyBaseClass
virtual Print
e \

Figure 7-10. Hiding the overridden methods

174

CHAPTER 7 " CLASSES AND INHERITANCE

Overriding Other Member Types

In the previous few sections, you've seen how the virtual/override designations work on methods.
These work exactly the same way with properties, events, and indexers. For example, the following code
shows a read-only property named MyProperty using virtual/override.

class MyBaseClass

{
private int myInt = 5;
virtual public int MyProperty

get { return myInt; }
}

class MyDerivedClass : MyBaseClass

{
private int myInt = 10;
override public int MyProperty

get { return myInt; }
}
class Program
static void Main()

new MyDerivedClass();

MyDerivedClass derived
(MyBaseClass)derived;

MyBaseClass mybc

Console.WritelLine(derived.MyProperty);
Console.WriteLine(mybc.MyProperty);

}
}

This code produces the following output:

10
10

175

CHAPTER 7 I CLASSES AND INHERITANCE

Constructor Execution

In the preceding chapter, you saw that a constructor executes code that prepares a class for use. This
includes initializing both the static and instance members of the class. In this chapter, you saw that part
of a derived class object is an object of the base class.

e To create the base class part of an object, a constructor for the base class is implicitly called as
part of the process of creating the instance.

e Eachclass in the inheritance hierarchy chain executes its base class constructor before it executes

its own constructor body.

For example, the following code shows a declaration of class MyDerivedClass and its constructor.
When the constructor is called, it calls the parameterless constructor MyBaseClass() before executing its
own body.

class MyDerivedClass : MyBaseClass

MyDerivedClass() // Constructor uses base constructor MyBaseClass().

}

Figure 7-11 shows the order of construction. When an instance is being created, one of the first
things that is done is the initialization of all the instance members of the object. After that, the base class
constructor is called. Only then is the body of the constructor of the class itself executed.

Initialize the
instance members.

Call the base
class constructor.

Execute the body of the
instance constructor.

Figure 7-11. Order of object construction

176

CHAPTER 7 " CLASSES AND INHERITANCE

For example, in the following code, the values of MyField1 and MyField2 would be set to 5 and 0,
respectively, before the base class constructor is called.

class MyDerivedClass : MyBaseClass

int MyField1 = 5; // 1. Member initialized
int MyField2; // Member initialized
public MyDerivedClass() // 3. Body of constructor executed
}

}

class MyBaseClass
public MyBaseClass() // 2. Base class constructor called
}

Caution Calling a virtual method in a constructor is strongly discouraged. The virtual method in the base class
would call the override method in the derived class while the base class constructor is being executed. But that
would be before the derived constructor’s body is executed. It would, therefore, be calling up into the derived class
before the class is completely initialized.

177

CHAPTER 7 I CLASSES AND INHERITANCE

Constructor Initializers

By default, the parameterless constructor of the base class is called when an object is being constructed.
But constructors can be overloaded, so a base class might have more than one. If you want your derived
class to use a specific base class constructor other than the parameterless constructor, you must specify
itin a constructor initializer.

There are two forms of constructor initializer:

e The first form uses the keyword base and specifies which base class constructor to use.

e Thesecond form uses the keyword this and specifies which other constructor from this class
should be used.

A base class constructor initializer is placed after a colon following the parameter list in a class’s
constructor declaration. The constructor initializer consists of the keyword base and the parameter list
of the base constructor to call.

For example, the following code shows a constructor for class MyDerivedClass.

e The constructor initializer specifies that the construction process should call the base class
constructor with two parameters, where the first parameter is a string and the second parameter
isan int.

e The parameters in the base parameter list must match the intended base constructor’s parameter
list, in type and order.

Constructor initializer

public MyDerivedClass(int x, string s) : base(s, x)

{

eee Keyword

When you declare a constructor without a constructor initializer, it’s a shortcut for the form with
a constructor initializer consisting of base(), as illustrated in Figure 7-12. The two forms are
semantically equivalent.

class MyDerived: MyBase

{
MyDerived()

{
.

class MyDerived: MyBase

{
MyDerived() : base()

{
.

Constructor implicitly uses base
constructor MyBase().

Constructor explicitly uses base
constructor MyBase().

Figure 7-12. Equivalent forms of a constructor

178

CHAPTER 7 " CLASSES AND INHERITANCE

The other form of constructor initializer instructs the construction process (actually, the compiler)
to use a different constructor from the same class. For example, the following shows a constructor with a
single parameter for class MyClass. That single-parameter constructor, however, uses a constructor from
the same class, but with two parameters, supplying a default parameter as the second one.

Constructor initializer

L
public MyClass(int x): this(x, "Using Default String")
{ T
Keyword
}

Another situation where this comes in particularly handy is where you have several constructors for
a class, and they have common code that should always be performed at the beginning of the object
construction process. In this case, you can factor out that common code and place it in a constructor
that is used as a constructor initializer by all the other constructors. As a matter of fact, this is a
suggested practice since it reduces code duplication.

You might think that you could just declare another method that performs those common
initializations and have all the constructors call that method. This isn’t as good for several reasons. The
first is that the compiler can optimize certain things when it knows a method is a constructor. The
second is that there are some things that can be done only in a constructor and not elsewhere. For
example, in the previous chapter you learned that readonly fields can be initialized only inside a
constructor. You will get a compiler error if you attempt to initialize a readonly field in any other
method, even if that method is called by a constructor only.

179

CHAPTER 7 I CLASSES AND INHERITANCE

180

Going back to that common constructor, if it can stand on its own as a valid constructor that
initializes everything in the class that needs to be initialized, then it’s perfectly fine to leave it as a
public constructor.

What if, however, it doesn’t completely initialize an object? In that case, you mustn’t allow that
constructor to be callable from outside the class, since it would then create incompletely initialized
objects. To avoid that problem, you can declare the constructor private instead of public, as shown in
the following code:

class MyClass

readonly int firstVar;
readonly double secondVar;

public string UserName;
public int UserIdNumber;

private MyClass() // Private constructor performs initializations
// common to the other constructors.

firstVar = 20;
secondVar = 30.5;

}

public MyClass(string firstName) : this() // use constructor initializer
UserName = firstName;
UserIdNumber = -1;

}

public MyClass(int idNumber) : this() // use constructor initializer
UserName = "Anonymous";
UserIdNumber = idNumber;

CHAPTER 7 " CLASSES AND INHERITANCE

Class Access Modifiers

A class can be seen and accessed by other classes in the system. This section explains the accessibility of
classes. Although I'll use classes in the explanations and examples since that’s what we’ve covered so far
in the text, the accessibility rules also apply to the other types I'll cover later.

The term visible is sometimes used for the term accessible. They can be used interchangeably. There
are two levels of class accessibility: public and internal.

e Aclass marked public can be accessed by code from any assembly in the system. To make a class
visible to other assemblies, use the public access modifier, as shown here:

Keyword
4

public class MyBaseClass
1 coo

e Aclass marked internal can only be seen by classes within its own assembly.

— This is the default accessibility level, so unless you explicitly specify the modifier public in
the class declaration, code outside the assembly cannot access the class.

— You can explicitly declare a class as internal by using the internal access modifier.

Keyword
4

internal class MyBaseClass

(...

Figure 7-13 illustrates the accessibility of internal and public classes from outside the assembly.
Class MyClass is not visible to the classes in the assembly on the left, because it’s marked internal. Class
OtherClass, however, is visible to the classes on the left, because it’s marked public.

Assembly Assembly

—> | internal MyClass

> | public OtherClass

Figure 7-13. Classes from other assemblies can access public classes but cannot access internal classes.

181

Download from Wow! eBook <www.wowebook.com>

CHAPTER 7 M CLASSES AND INHERITANCE

182

Inheritance Between Assemblies

So far, I've been declaring derived classes in the same assembly that contains the base class. But C# also
allows you to derive a class from a base class defined in a different assembly. To do this, the following
must be true:

e The base class must be declared public so that it can be accessed from outside its assembly.

¢ Youmustinclude a reference in your Visual Studio project to the assembly containing the
base class.

To make it easier to refer to the classes and types in the other assembly, without using their fully
qualified names, place a using directive at the top of the source file, with the namespace containing the
classes or types you want to access.

Note Adding a reference to the other assembly and adding a using directive are two separate things. Adding
the reference to the other assembly tells the compiler where the required types are defined. Adding the using
directive allows you to reference other classes without having to use their fully qualified names. Chapter 10 covers
this in detail.

For example, the following two code segments, from different assemblies, show how easy it is to
inherit a class from another assembly. The first code listing creates an assembly that contains the
declaration of a class called MyBaseClass, which has the following characteristics:

e It'sdeclared in a source file called Assembly1.cs and inside a namespace declared as BaseClassNS.
e It'sdeclared public so that it can be accessed from other assemblies.
e Itcontains a single member, a method called PrintMe, that just writes out a simple message

identifying the class.

// Source file name Assemblyil.cs
using System;
Namespace containing declaration of base class

namespace BaseClassNS
{ Declare the class public so it can be seen outside the assembly.
4

Hblic class MyBaseClass {
public void PrintMe() {
Console.WriteLine("I am MyBaseClass");

CHAPTER 7 " CLASSES AND INHERITANCE

The second assembly contains the declaration of a class called DerivedClass, which inherits from
MyBaseClass, declared in the first assembly. The source file is named Assembly2.cs. Figure 7-14 illustrates
the two assemblies.

e DerivedClass has an empty body but inherits method PrintMe from MyBaseClass.

e Main creates an object of type DerivedClass and calls its inherited method PrintMe.

// Source file name Assembly2.cs
using System;
using BaseClassNS;
T
Namespace containing declaration of base class
namespace UsesBaseClass
{ Base class in other assembly

class DerivedClass: MyBaseClass {
// Empty body
class Program {

static void Main()

DerivedClass mdc = new DerivedClass();
mdc.PrintMe();

}
}

This code produces the following output:

I am MyBaseClass

Assembly1 Assembly2

DerivedClass

public MyBaseClass public MyBaseClass
PrintMe() " 1| PrintMe()
MyBaseClass is declared DerivedClass derives from
in Assembly1. MyBaseClass in Assembly1.

Figure 7-14. Inheriting across assemblies

183

CHAPTER 7 I CLASSES AND INHERITANCE

184

Member Access Modifiers

The previous two sections explained class accessibility. With class accessibility, there are only two
modifiers—internal and public. This section covers member accessibility. Class accessibility describes
the visibility of a class; member accessibility describes the visibility of the members of a class object.

Each member declared in a class is visible to various parts of the system, depending on the access
modifier assigned to it in its class declaration. You've seen that private members are visible only to
other members of the same class, while public members can be visible to classes outside the assembly
as well. In this section, we’ll look again at the public and private access levels, as well as the three other
levels of accessibility.

Before looking at the specifics of member accessibility, there are some general things we need to
cover first:

¢ Allmembers explicitly declared in a class’s declaration are visible to each other, regardless of
their accessibility specification.

e Inherited members are not explicitly declared in a class’s declaration, so, as you'll see, inherited
members might or might not be visible to members of a derived class.

e There are five member access levels:
— public
— private
— protected
— internal

— protected internal

¢ You must specify member access levels on a per-member basis. If you don’t specify an access
level for a member, its implicit access level is private.

e A member cannot be more accessible than its class. That is, if a class has an accessibility level
limiting it to the assembly, individual members of the class cannot be seen outside the assembly,
regardless of their access modifiers, even public.

CHAPTER 7 " CLASSES AND INHERITANCE

Regions Accessing a Member

The member access modifiers in a class’s declaration specify which other types can and cannot access
which members of the class. For example, the following declaration shows members declared with the
five access levels.

public class MyClass

{
public int Member1;
private int Member2;
protected int Member3;
internal int Member4;

protected internal int Members;

The access levels are based on two characteristics with regard to the class being declared:
e Whether the class is derived from the class being declared

e Whether a class is in the same assembly as the class being declared

These two characteristics yield four groups, as illustrated in Figure 7-15. In relation to the class
being declared, another class can be any of the following:

e Inthe same assembly and derived from it (bottom right)
e Inthe same assembly but not derived from it (bottom left)
e Inadifferent assembly and derived from it (top right)

e Inadifferent assembly and not derived from it (top left)

These characteristics are used to define the five access levels.

Classes Not Derived Classes Derived
from MyClass from MyClass

All Other
Assemblies

Same public class MyClass }<

Class MyClass is declared public. The visibility of its members
depends on their individual member access modifiers.

Figure 7-15. Areas of accessibility

185

CHAPTER 7 I CLASSES AND INHERITANCE

Public Member Accessibility

The public access level is the least restrictive. All classes both inside and outside the assembly have free
access to the member. Figure 7-16 illustrates the accessibility of a public class member of MyClass.

To declare a member public, use the public access modifier, as shown.

Keyword

public int Memberi;

All Other
Assemblies

Same
Assembly

Classes Not Derived

from MyClass

Classes Derived
from MyClass

public class MyClass

pubTic Memberl

[] visible To
[] Not Visible To

Figure 7-16. A public member of a public class is visible to all classes in the same assembly or other

assemblies.

Private Member Accessibility

The private access level is the most restrictive.

e Aprivate class member can be accessed only by members of its own class. It cannot be accessed
by other classes, including classes that are derived from it.

e Aprivate member can, however, be accessed by members of classes nested in its class. Nested
classes are covered in Chapter 25.

Figure 7-17 illustrates the accessibility of a private member.

All Other
Assemblies

Same
Assembly

Classes Not Derived

from MyClass

Classes Derived
from MyClass

public class MyClass

private Member2

[] visible To
] Not Visible To

Figure 7-17. A private member of any class is visible only to members of its own class (or nested classes).

186

CHAPTER 7 " CLASSES AND INHERITANCE

Protected Member Accessibility

The protected access level is like the private access level, except that it also allows classes derived from

the class to access the member. Figure 7-18 illustrates protected accessibility. Notice that even classes
outside the assembly that are derived from the class have access to the member.

Classes Not Derived Classes Derived
from MyClass from MyClass

All Other
Assemblies

Same public class MyClass

[] visible To
Assembly protected Member3
] Not Visible To

Figure 7-18. A protected member of a public class is visible to members of its own class or classes derived
from it. The derived classes can even be in other assemblies.

Internal Member Accessibility

Members marked internal are visible to all the classes in the assembly but not to classes outside the
assembly, as illustrated in Figure 7-19.

Classes Not Derived Classes Derived
from MyClass from MyClass

All Other
Assemblies

Same public class MyClass

[] visible To
Assembly internal Member4
[] Not Visible To

Figure 7-19. An internal member of a public class is visible to members of any class in the same assembly

but not to classes outside the assembly.

187

CHAPTER 7 I CLASSES AND INHERITANCE

Protected Internal Member Accessibility

Members marked protected internal are visible to all the classes that inherit from the class and also to
all classes inside the assembly, as shown in Figure 7-20. Notice that the set of classes allowed access is
the combined set of classes allowed by the protected modifier plus the set of classes allowed by the
internal modifier. Notice that this is the union of protected and internal—not the intersection.

Classes Not Derived Classes Derived
from MyClass from MyClass

All Other

Assemblies

public class MyClass
Same -
Assembly protected internal D Visible To
Member5
] Not Visible To

Figure 7-20. A protected internal member of a public class is visible to members of classes in the same
assembly or to members of classes derived from that class. It’s not visible to classes in other assemblies that

are not derived from the class.

Summary of Member Access Modifiers

The following two tables summarize the characteristics of the five member access levels. Table 7-1 lists
the modifiers and gives an intuitive summary of the effects of the modifier.

Table 7-1. Member Access Modifiers

Modifier Meaning

private Accessible only within the class

internal Accessible to all classes within this assembly

protected Accessible to all classes derived from this class

protected internal Accessible to all classes that are either derived from this class or declared

within this assembly

public Accessible to any class

188

CHAPTER 7 " CLASSES AND INHERITANCE

Figure 7-21 shows the relative accessibility of the five member access modifiers.

public Most
Accessible

protected internal

protected internal
M
\‘ / Least
private Accessible

Figure 7-21. Relative accessibility of the various member access modifiers

Table 7-2 lists the access modifiers down the left side of the table and the categories of classes across
the top. Derived refers to classes derived from the class declaring the member. Nonderived means classes
not derived from the class declaring the member. A check in a cell means that the category of class can
access members with the corresponding modifier.

Table 7-2. Summary of Member Accessibility

Classes in Same Assembly Classes in Different Assembly
Non-Derived Derived Non-Derived Derived
private
internal v 4
protected v v
protected internal 4 v v
public 4 v v v

189

CHAPTER 7 I CLASSES AND INHERITANCE

Abstract Members

An abstract member is a function member that is designed to be overridden. An abstract member has the
following characteristics:

e Itis marked with the abstract modifier.

e Itdoesn’t have an implementation code block. The code blocks of abstract members are
represented by semicolons.

For example, the following code from inside a class definition declares two abstract members: an
abstract method called PrintStuff and an abstract property called MyProperty. Notice the semicolons in
place of the implementation blocks.

Keyword Semicolon in place of implementation
abstract public void PrintStuff(string s);

abstract public int MyProperty

{

get; <« Semicolon in place of implementation
set; <« Semicolon in place of implementation

}

Abstract members can be declared only in abstract classes, which we’ll look at in the next section.
Four type of member can be declared as abstract:

e Methods
e Properties
e Events

e Indexers

190

CHAPTER 7 " CLASSES AND INHERITANCE

Other important facts about abstract members are the following:

e Abstract members, although they must be overridden by a corresponding member in a derived
class, cannot use the virtual modifier in addition to the abstract modifier.

e Aswith virtual members, the implementation of an abstract member in a derived class must

specify the override modifier.

Table 7-3 compares and contrasts virtual members and abstract members.

Table 7-3. Comparing Virtual and Abstract Members

Virtual Member

Abstract Member

Keyword

Implementation body

Overridden in a derived class

Types of members

virtual

Has an implementation body

Can be overridden—
using override

Methods
Properties
Events
Indexers

abstract

No implementation body—
semicolon instead

Must be overridden—
using override

Methods
Properties
Events
Indexers

191

Download from Wow! eBook <www.wowebook.com>

CHAPTER 7 M CLASSES AND INHERITANCE

Abstract Classes

Abstract classes are designed to be inherited from. An abstract class can be used only as the base class of
another class.

¢ You cannot create instances of an abstract class.
e Anabstract class is declared using the abstract modifier.

Keyword
4
abstract class MyClass

{
}

e An abstract class can contain abstract members or regular, nonabstract members. The members
of an abstract class can be any combination of abstract members and normal members with
implementations.

e An abstract class can itself be derived from another abstract class. For example, the following
code shows one abstract class derived from another.

abstract class AbClass // Abstract class

{

}

abstract class MyAbClass : AbClass // Abstract class derived from

// an abstract class
}

e Anyclass derived from an abstract class must implement all the abstract members of the class by
using the override keyword, unless the derived class is itself abstract.

192

CHAPTER 7 " CLASSES AND INHERITANCE

Example of an Abstract Class and an Abstract Method

The following code shows an abstract class called AbClass with two methods.

The first method is a normal method with an implementation that prints out the name of the class.
The second method is an abstract method that must be implemented in a derived class. Class
DerivedClass inherits from AbClass and implements and overrides the abstract method. Main creates an
object of DerivedClass and calls its two methods.

Keyword
b
abstract class AbClass // Abstract class
{
public void IdentifyBase() // Normal method
{ Console.WriteLine("I am AbClass"); }
Keyword
b
abstract public void IdentifyDerived(); // Abstract method
}
class DerivedClass : AbClass // Derived class
{ Keyword
o
override public void IdentifyDerived() // Implementation of
{ Console.WriteLine("I am DerivedClass"); } // abstract method
}

class Program

static void Main()

// AbClass a = new AbClass(); // Error. Cannot instantiate

// a.ldentifyDerived(); // an abstract class.
DerivedClass b = new DerivedClass(); // Instantiate the derived class.
b.IdentifyBase(); // Call the inherited method.
b.IdentifyDerived(); // Call the "abstract" method.

}
}

This code produces the following output:

I am AbClass
I am DerivedClass

193

CHAPTER 7 I CLASSES AND INHERITANCE

Another Example of an Abstract Class

The following code shows the declaration of an abstract class that contains data members as well as
function members. Data members cannot be declared as abstract.

abstract class MyBase // Combination of abstract and non-abstract members
{

public int Sidelength = 10; // Data member

const int TriangleSideCount = 3; // Data member

abstract public void PrintStuff(string s); // Abstract method

abstract public int MyInt { get; set; } // Abstract property
public int PerimeterLength() // Regular, non-abstract method
{ return TriangleSideCount * SidelLength; }
}
class MyClass : MyBase
{
public override void PrintStuff(string s) // Override abstract method

{ Console.WritelLine(s); }

private int myInt;
public override int MyInt // Override abstract property

{
get { return myInt; }
set { myInt = value; }

}
class Program
static void Main(string[] args)

MyClass mc = new MyClass();
mc.PrintStuff("This is a string.");
mc.MyInt = 28;
Console.WriteLine(mc.MyInt);
Console.WriteLine("Perimeter Length: {0}", mc.PerimeterLength());
}
}

This code produces the following output:

This is a string.
28
Perimeter Length: 30

194

CHAPTER 7 " CLASSES AND INHERITANCE

Sealed Classes

In the previous section, you saw that an abstract class must be used as a base class—it cannot be
instantiated as a stand-alone class object. The opposite is true of a sealed class.

e Asealed class can be instantiated only as a stand-alone class object—it cannot be used as a base

class.

e Asealed class is labeled with the sealed modifier.

For example, the following class is a sealed class. Any attempt to use it as the base class of another
class will produce a compile error.

Keyword
4

sealed class MyClass

195

CHAPTER 7 I CLASSES AND INHERITANCE

Static Classes

A static class is a class where all the members are static. Static classes are used to group data and
functions that are not affected by instance data. A common use of a static class might be to create a math
library containing sets of mathematical methods and values.

The important things to know about static classes are the following:

e The class itself must be marked static.
e All the members of the class must be static.

e The class can have a static constructor, but it cannot have an instance constructor, since you
cannot create an instance of the class.

e Static classes are implicitly sealed. That is, you cannot inherit from a static class.

You access the members of a static class just as you would access any static member, by using the
class name and the member name.
The following code shows an example of a static class:

Class must be marked static
static public class MyMath
public static float PI = 3.14f;
public sta‘%ic bool IsOdd(int x)

{ return x % 2 == 1; }
Members must be static

public static int Times2(int x)
{ return 2 * x; }

}

class Program

static void Main()

{ Use class name and member name.
int val = 3; I
Console.WritelLine("{0} is odd is {1}.", val, MyMath.IsOdd(val));
Console.WriteLine("{o} * 2 = {1}.", val, MyMath.Times2(val));

}

}

This code produces the following output:

3 is odd is True.
3 %2 =6.

196

CHAPTER 7 " CLASSES AND INHERITANCE

Extension Methods

So far in this text, every method you've seen has been associated with the class in which it is declared.
The extension method feature introduced in C# 3.0 extends that boundary, allowing you to write
methods associated with classes other than the class in which they are declared.

To see how you might use this feature, take a look at the following code. It contains class MyData,

which stores three values of type double, and contains a constructor and a method called Sum, which
returns the sum of the three stored values.

class MyData

}

This is a pretty limited class, but suppose it would be more useful if it contained another method,

private double D1; // Fields
private double D2;
private double D3;

public MyData(double di, double d2, double d3) // Constructor
D1 = d1; D2 = d2; D3 = d3;

}

public double Sum() // Method Sum

return D1 + D2 + D3;

which returned the average of the three data points. With what you know so far about classes, there are
several ways you might implement the additional functionality:

If you have the source code and can modify the class, you could, of course, just add the new
method to the class.

If, however, you can’t modify the class—for example, if the class is in a third-party class library—
then, as long as it isn’t sealed, you could use it as a base class and implement the additional
method in a class derived from it.

If, however, you don’t have access to the code or the class is sealed or there is some other design

reason that neither of these solutions will work, then you will have to write a method in another class
that uses the publicly available members of the class.

197

CHAPTER 7 I CLASSES AND INHERITANCE

For example, you might write a class like the one in the following code. The code contains a static
class called ExtendMyData, which contains a static method called Average, which implements the
additional functionality. Notice that the method takes an instance of MyData as a parameter.

static class ExtendMyData Instance of MyData class

{ 4
public static double Average(MyData md)

{

}
} Use the instance of MyData.

return r%d.Sum() / 3;

class Program

{
static void Main()
Instance of MyData
MyData md = new MyData(3, 4, 5);
Console.WriteLine("Average: {0}", ExtendeData.ATverage(m));
}
} Call the static method.

This code produces the following output:

Average: 4

Although this is a perfectly fine solution, it would be more elegant if you could call the method on
the class instance itself, rather than creating an instance of another class to act on it. The following two
lines of code illustrate the difference. The first uses the method just shown—invoking a static method on
an instance of another class. The second shows the form we would like to use—invoking an instance
method on the object itself.

ExtendMyData.Average(md) // Static invocation form
md.Average(); // Instance invocation form

Extension methods allow you to use the second form, even though the first form would be the
normal way of writing the invocation.

198

CHAPTER 7 " CLASSES AND INHERITANCE

By making a small change in the declaration of method Average, you can use the instance invocation
form. The change you need to make is to add the keyword this before the type name in the parameter
declaration as shown following. Adding the this keyword to the first parameter of the static method of
the static class changes it from a regular method of class ExtendMyData into an extension method of class
MyData. You can now use both invocation forms.

Must be a static class

static class ExtendMyData

{ Must be public anf static Keywordiand type
public static double Average(this MyData md)
{
)

The important requirements for an extension method are the following:
e The class in which the extension method is declared must also be declared static.
¢ The extension method itself must be declared static.

e The extension method must contain as its first parameter type the keyword this, followed by the
name of the class it is extending.

Figure 7-22 illustrates the structure of an extension method.

namespace MyNameSpace

An extension method static class ExtendMyData

— Must be declared in a static class |
— Must itself be declared static | static Average(this MyData md)
— Must include the keyword this and |
the name of the class it extends, as
the type of the first parameter

MyData

Figure 7-22. The structure of an extension method

199

CHAPTER 7 I CLASSES AND INHERITANCE

The following code shows a full program, including class MyData and extension method Average
declared in class ExtendMyData. Notice that method Average is invoked exactly as if it were an instance
member of MyData! Figure 7-22 illustrates the code. Classes MyData and ExtendMyData together act like the
desired class, with three methods.

namespace ExtensionMethods

sealed class MyData

{
private double D1, D2, D3;

public MyData(double di, double d2, double d3)
{D1=d1; D2 = d2; D3 = d3; }

public double Sum() { return D1 + D2 + D3; }
}

static class ExtendMyData Keywordiand type

{ I
public staTtic double Average(this MyData md)

{

Declared static
return md.Sum() / 3;

}

class Program

{

static void Main()

MyData md = new MyData(3, 4, 5);

Console.WriteLine("Sum: {0}", md.Sum());
Console.WritelLine("Average: {0}", md.AveTrage();
}
} Invoke as an instance member of the class

}

This code produces the following output:

Sum: 12
Average: 4

200

CHAPTER 8

Expressions and Operators

Expressions

Literals

Order of Evaluation

Simple Arithmetic Operators

The Remainder Operator

Relational and Equality Comparison Operators
Increment and Decrement Operators
Conditional Logical Operators
Logical Operators

Shift Operators

Assignment Operators

The Conditional Operator

Unary Arithmetic Operators
User-Defined Type Conversions
Operator Overloading

The typeof Operator

Other Operators

201

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 M EXPRESSIONS AND OPERATORS

202

Expressions

This chapter defines expressions and describes the operators provided by C#. It also explains how you
can define the C# operators to work with your user-defined classes.

An expression is a string of operators and operands. The following are some of the constructs that

can act as operands:

Literals

Constants

Variables

Method calls

Element accessors, such as array accessors and indexers

Other expressions

The C# operators take one, two, or three operands. An operator does the following:

Takes its operands as input
Performs an action

Returns a value, based on the action

Expressions can be combined, using operators, to create other expressions, as shown in this

expression, with three operators and four operands:

a+h

——

expr + ¢ a+b+c+d
———

expr +d

Evaluating an expression is the process of applying each operator to its operands, in the proper

sequence, to produce a value.

The value is returned to the position at which the expression was evaluated. There, it might in
turn be an operand in an enclosing expression.

Besides the value returned, some expressions also have side effects, such as setting a value
in memory.

Literals

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Literals are numbers or strings typed into the source code that represent a specific, set value of a

specific type.

For example, the following code shows literals of six types. Notice, for example, the difference

between the double literal and the float literal.

static void Main() Literals

{
Console.WriteLine("{0}", 1024);
Console.WriteLine("{0}", 3.1416);
Console.WriteLine("{0}", 3.1416F);
Console.WriteLine("{0}", true);
Console.WriteLine("{0}", 'x');
Console.WriteLine("{0}", "Hi there");

}

The output of this code is the following:

1024
3.1416
3.1416
True

X

Hi there

int literal
double literal
float literal
boolean literal
character literal
string literal

Because literals are written into the source code, their values must be known at compile time.
Several of the predefined types have their own forms of literal:

e Type bool has two literals: true and false.

e Forreference type variables, literal null means that the variable is not set to a reference

in memory.

203

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

204

Integer Literals

Integer literals are the most commonly used literals. They are written as a sequence of decimal digits,
with the following:

e Nodecimal point

e An optional suffix to specify the type of the integer

For example, the following lines show four literals for the integer 236. Each is interpreted by the
compiler as a different type of integer, depending on its suffix.

236 // int

236L // long

236U // unsigned
236UL // unsigned long

Integer type literals can also be written in hexadecimal (hex) form. The digits must be the hex digits
(0 through F), and the string must be prefaced with either 0x or 0X (numeral 0, letter x).

Figure 8-1 shows the forms of the integer literal formats. Components with names in square
brackets are optional.

Decimal Digits [SUfﬁX] Decimal DIgItS

{0,1,2,3,4,5,6,7,8,9}

-) Hex Digits
0 Hex Digits [Suffix] {0,1,2,3,4,5,6,7,8,9,
[} a,b,c,d,e,1,A B C,D EF)

Figure 8-1. The integer literal formats

Table 8-1 lists the integer literal suffixes. For a given suffix, the compiler will interpret the string of
digits as the smallest of the corresponding integer types that can represent the value without losing data.
For example, take the literals 236 and 5000000000, neither of which has a suffix. Since 236 can be
represented with 32 bits, it will be interpreted by the compiler as an int. The larger number, however,

won't fit into 32 bits, so the compiler will represent it as a long.

Table 8-1. Integer Literal Suffixes

Suffix Integer Type Notes

None int, uint, long, ulong

U,u uint, ulong

L1 long, ulong Using the lowercase letter / is not recommended, because

it is easily mistaken for the digit 1.

ul, uL, U1, UL ulong Using the lowercase letter / is not recommended, because
lu, Lu, 1U, LU it is easily mistaken for the digit 1

Real Literals

Literals for real numbers consist of the following:
e Decimal digits
e Anoptional decimal point
e Anoptional exponent part

e An optional suffix

CHAPTER 8 " EXPRESSIONS AND OPERATORS

For example, the following code shows various formats of literals of the real types:

float f1 = 236F;
double d1 = 236.714;
double d2 = .35192;
double d3 = 6.338e-26;

Figure 8-2 shows the valid formats for real literals. Components with names in square brackets are

optional. Table 8-2 shows the real suffixes and their meanings.

Decimal Digits Suffix

10

Decimal Digits Exponent [Suffix]

{ E£xx }
L e [
Decimal Digits [Exponent] [Suffix]

{ E+xx }
I T ess [
Decimal Digits [Exponent] [Suffix]

| {ext [

Decimal Digits

oy

Figure 8-2. The real literal formats

Table 8-2. Suffixes for the Real Literals

Suffix Real Type
None double

F, f float

D, d double

M, m decimal

Decimal Digits
{0,1,2,3,4,5,6,7,8,9}

The exponent part consists of
— An E, either upper or lowercase
— An optional sign
— Decimal digits

205

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

206

Note Real literals without a suffix are of type double, not float!

Character Literals

A character literal consists of a character representation between two single quote marks. A character
representation can be any of the following: a single character, a simple escape sequence, a hex escape
sequence, or a Unicode escape sequence.

e The type of a character literal is char.

e Asimple escape sequence is a backslash followed by a single character.

e Ahexescape sequence is a backslash, followed by an uppercase or lowercase x, followed by up to
four hex digits.

¢ ATUnicode escape sequence is a backslash, followed by an uppercase or lowercase u, followed by
up to four hex digits.

For example, the following code shows various formats of character literals:

char c1 = 'd'; // Single character

char c2 = "\n'; // Simple escape sequence
char c3 = '\x0061"; // Hex escape sequence
char c4 = '\uoo5a’; // Unicode escape sequence

Table 8-3 shows some of the important special characters and their encodings.

Table 8-3. Important Special Characters

Name Escape Sequence Hex Encoding
Null \0 0x0000
Alert \a 0x0007
Backspace \b 0x0008
Horizontal tab \t 0x0009
New line \n 0x000A
Vertical tab \v 0x000B
Form feed \f 0x000C

CHAPTER 8

Name

Escape Sequence

Hex Encoding

Carriage return
Double quote
Single quote

Backslash

\r

\\

0x000D

0x0022

0x0027

0x005C

String Literals

String literals use double quote marks rather than the single quote marks used in character literals.
There are two types of string literals:

e Regular string literals

e Verbatims

tring literals

EXPRESSIONS AND OPERATORS

A regular string literal consists of a sequence of characters between a set of double quotes. A regular

string literal can include the following:

e Characters

e Simple escape sequences

¢ Hexand Unicode escape sequences

Here’s an example:

string st1
string st2
string st3

"Hi there!";

"Val1i\t5, Val2\ti10";

"Add\x000ASome\u0007Interest";

A verbatim string literal is written like a regular string literal but is prefaced with an @ character. The
important characteristics of verbatim string literals are the following:

e Verbatim literals differ from regular string literals in that escape sequences are not evaluated.
Everything between the set of double quotes—including what would normally be considered
escape sequences—is printed exactly as it is listed in the string.

e The only exception with verbatim literals is sets of contiguous double quotes, which are
interpreted as a single double quote character.

207

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

For example, the following code compares some regular and verbatim string literals:

"Hi there!";
@"Hi there!";

string rst1
string vst1

"It started, \"Four score and seven...\"";

@"It started, ""Four score and seven...""";

string rst2
string vst2

string rst3
string vst3

"Value 1 \t 5, Val2 \t 10"; // Interprets tab esc sequence
@"Value 1 \t 5, Val2 \t 10"; // Does not interpret tab

string rst4
string vst4

"C:\\Program Files\\Microsoft\\";
@"C:\Program Files\Microsoft\";

string rst5

string vsts
Multiple
Lines";

" Print \x000A Multiple \uOOOA Lines";
@" Print

Printing these strings produces the following output:

Hi there!
Hi there!

It started, "Four score and seven..."
It started, "Four score and seven..."

Value 1 5, Val2 10
Value 1 \t 5, Val2 \t 10

C:\Program Files\Microsoft\
C:\Program Files\Microsoft\

Print
Multiple
Lines

Print
Multiple
Lines

Note The compiler saves memory by having identical string literals share the same memory location in
the heap.

208

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Order of Evaluation

An expression can be made up of many nested subexpressions. The order in which the subexpressions
are evaluated can make a difference in the final value of the expression.

For example, given the expression 3 * 5 + 2, there are two possible results depending on the order in
which the subexpressions are evaluated, as shown in Figure 8-3.

e Ifthe multiplication is performed first, the resultis 17.

e Ifthe 5 and the 2 are added together first, the result is 21.

: 5. 2
| 3\+/
I

I

3005
N/,
*/ =

*
\+/ = 17 21

Figure 8-3. Simple order of evaluation

Precedence

You know from your grade-school days that in the preceding example, the multiplication must be
performed before the addition because multiplication has a higher precedence than addition. But unlike
grade-school days, when you had four operators and two levels of precedence, things are a bit more
complex with C#, which has more than 45 operators and 14 levels of precedence.

Table 8-4 shows the complete list of operators and their precedences. The table lists the highest
precedence operators at the top and continues to the lowest precedence operators at the bottom.

Table 8-4. Operator Precedence: Highest to Lowest

Category Operators

Primary a.x, f(x),a[x], x++, x--, new, typeof, checked, unchecked
Unary + - L X, =%, (T)X

Multiplicative * /%

Additive +, -

Shift <<, >

Relational and type <, >, <=, >=, 1is, as

Equality ==, =
Logical AND &
Logical XOR "

209

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

210

Category Operators

Logical OR |

Conditional AND &&
Conditional OR [
Conditional ?:

Assignment =, *=, /=, %=, 4=, -5, <<=, 005, 8, s, | =

Associativity

If all the operators in an expression have different levels of precedence, then evaluate each
subexpression, starting at the one with the highest level, and work down the precedence scale.
But what if two sequential operators have the same level of precedence? For example, given the
expression 2 / 6 * 4, there are two possible evaluation sequences:
(2/6)*4=4/3
or
2/(6*4)=1/12
When sequential operators have the same level of precedence, the order of evaluation is determined
by operator associativity. That is, given two operators of the same level of precedence, one or the other
will have precedence, depending on the operators’ associativity. Some important characteristics of
operator associativity are the following and are summarized in Table 8-5:
e Left-associative operators are evaluated from left to right.
e Right-associative operators are evaluated from right to left.

e Binary operators, except the assignment operators, are left-associative.

e The assignment operators and the conditional operator are right-associative.

Therefore, given these rules, the preceding example expression should be grouped left to right,
giving (2 / 6) * 4, which yields 4/3.

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Table 8-5. Summary of Operator Associativity

Type of Operator Associativity
Assignment operators Right-associative
Other binary operators Left-associative

The conditional operator Right-associative

You can explicitly set the order of evaluation of the subexpressions of an expression by using
parentheses. Parenthesized subexpressions do the following:

e Override the precedence and associativity rules

e Are evaluated in order from the innermost nested set to the outermost

211

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 M EXPRESSIONS AND OPERATORS

212

Simple Arithmetic Operators

The simple arithmetic operators perform the four basic arithmetic operations and are listed in Table 8-6.
These operators are binary and left-associative.

Table 8-6. The Simple Arithmetic Operators

Operator Name Description

+ Addition Adds the two operands.

- Subtraction Subtracts the second operand from the first.

* Multiplication = Multiplies the two operands.

/ Division Divides the first operand by the second. Integer division rounds

the result toward 0 to the nearest integer.

The arithmetic operators perform the standard arithmetic operations on all the predefined simple
arithmetic types.
The following are examples of the simple arithmetic operators:

int x1 =5 + 6; double d1 = 5.0 + 6.0;
int x2 = 12 - 3; double d2 = 12.0 - 3.0;
int x3 = 3 * 4; double d3 = 3.0 * 4.0;
int x4 = 10 / 3; double d4 = 10.0 / 3.0;

byte b1 = 5 + 6;
- *

sbyte sb1 = 6 * 5;

CHAPTER 8 " EXPRESSIONS AND OPERATORS

The Remainder Operator

The remainder operator (%) divides the first operand by the second operand, ignores the quotient, and
returns the remainder. Table 8-7 gives its description.
The remainder operator is binary and left-associative.

Table 8-7. The Remainder Operator

Operator Name Description

% Remainder Divides the first operand by the second operand and
returns the remainder

The following lines show examples of the integer remainder operator:
e 0%3=0, because 0 divided by 3 is 0 with a remainder of 0.
e 1%3=1,because 1 divided by 3 is 0 with a remainder of 1.
e 27%3=2,because 2 divided by 3 is 0 with a remainder of 2.
e 3%3=0, because 3 divided by 3 is 1 with a remainder of 0.

e 47%3=1,because 4 divided by 3 is 1 with a remainder of 1.

The remainder operator can also be used with real numbers to give real remainders.

Console.WriteLine("0.0f % 1.5f is {0}" , 0.0f % 1.5f);
Console.WriteLine("0.5f % 1.5f is {0}" , 0.5f % 1.5f);
Console.WriteLine("1.0f % 1.5f is {0}" , 1.0f % 1.5f);
Console.WriteLine("1.5f % 1.5f is {0}" , 1.5f % 1.5f);
Console.WriteLine("2.0f % 1.5f is {0}" , 2.0f % 1.5f);
Console.WriteLine("2.5f % 1.5f is {0}" , 2.5f % 1.5f);
This code produces the following output:
0.o0f % 1.5f is 0 // 0.0 / 1.5 = 0 remainder 0
0.5f % 1.5f is 0.5 // 0.5 / 1.5 = 0 remainder .5
1.0f % 1.5f is 1 // 1.0 / 1.5 = 0 remainder 1
1.5f % 1.5f is 0 // 1.5 / 1.5 = 1 remainder 0
2.0f % 1.5f is 0.5 // 2.0 / 1.5 = 1 remainder .5
2.5f % 1.5f is 1 // 2.5/ 1.5 = 1 remainder 1

213

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

Relational and Equality Comparison Operators

The relational and equality comparison operators are binary operators that compare their operands and
return a value of type bool. Table 8-8 lists these operators.
The relational and equality operators are binary and left-associative.

Table 8-8. The Relational and Equality Comparison Operators

Operator Name Description

< Less than true if first operand is less than second operand; false
otherwise

> Greater than true if first operand is greater than second operand; false
otherwise

<= Less than or equal to true if first operand is less than or equal to second operand,;

false otherwise

>= Greater than or equal to true if first operand is greater than or equal to second
operand; false otherwise

== Equal to true if first operand is equal to second operand; false
otherwise

I= Not equal to true if first operand is not equal to second operand; false
otherwise

A binary expression with a relational or equality operator returns a value of type bool.

Note Unlike C and C++, numbers in C# do not have a Boolean interpretation.

int x = 5;
if(x) // Wrong. x is of type int, not type boolean.
if(x ==5) // Fine, since expression returns a value of type boolean

When printed, the Boolean values true and false are represented by the string output values True
and False.

int x =5, y = 4;
Console.WriteLine("
(ll

xX X
nu
nou

Console.Writeline

214

CHAPTER 8 " EXPRESSIONS AND OPERATORS

The output of this code is the following:

x is True
==y is False

Comparison and Equality Operations

When comparing most reference types for equality, only the references are compared.

e Ifthereferences are equal—that is, if they point to the same object in memory—the equality
comparison is true; otherwise, it is false, even if the two separate objects in memory are exactly
equivalent in every other respect.

e Thisis called a shallow comparison.

Figure 8-4 illustrates the comparison of reference types.

e On the left of the figure, the references of both a and b are the same, so a comparison would
return true.

e On theright of the figure, the references are not the same, so even if the contents of the two
AClass objects were exactly the same, the comparison would return false.

Stack Mz : Stack (e
b — 1 b AClass
1
AClass | AClass 1—»
a — : a >
| 1=
a==>»h a b

Figure 8-4. Comparing reference types for equality

215

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

216

Obijects of type string are also reference types but are compared differently. When strings are
compared for equality, they are compared in length and case-sensitive content.

e If two strings have the same length and the same case-sensitive content, the equality comparison
returns true, even if they occupy different areas of memory.

e Thisis called a deep comparison.

Delegates, which are covered in Chapter 15, are also reference types and also use deep comparison.
When delegates are compared for equality, the comparison returns true if both delegates are null or if
both have the same number of members in their invocation lists and the invocation lists match.

When comparing numeric expressions, the types and values are compared. When comparing enum
types, the comparisons are done on the underlying values of the operands. Enums are covered in
Chapter 13.

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Increment and Decrement Operators

The increment operator adds 1 to the operand. The decrement operator subtracts 1 from the operand.
Table 8-9 lists the operators and their descriptions.
These operators are unary and have two forms, the pre- form and the post- form, which act
differently.
¢ Inthe pre-form, the operator is placed before the operand; for example, ++x and --y.

e Inthe post-form, the operator is placed after the operand; for example, x++ and y--.

Table 8-9. The Increment and Decrement Operators

Operator Name Description

++ Pre-increment ++var Increment the value of the variable by 1 and save it back into
the variable. Return the new value of the variable.

Post-increment var++ Increment the value of the variable by 1 and save it back into
the variable. Return the old value of the variable before it was
incremented.

-- Pre-decrement--var Decrement the value of the variable by 1 and save it back into
the variable. Return the new value of the variable.

Post-decrement var-- Decrement the value of the variable by 1 and save it back into
the variable. Return the old value of the variable before it was
decremented.

In comparing the pre- and post-forms of the operators

e The final, stored value of the operand variable after the statement is executed is the same
regardless of whether the pre- or post-form of the operator is used.

e The only difference is the value returned by the operator to the expression.

Table 8-10 shows an example summarizing the behavior.

217

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

218

Table 8-10. Behavior of Pre- and Post-Increment and Decrement Operators

Value Returned to the

Value of Variable

Expression: x=10 Expression After Evaluation
Pre-increment ++X 11 11
Post-increment x++ 10 11
Pre-decrement --X 9 9
Post-decrement x-- 10 9

<K<K<K<

For example, the following is a simple demonstration of the four different versions of the operators.
To show the different results on the same input, the value of the operand x is reset to 5 before each
assignment statement.

int x =5, y;
Y = X++;
Console.WriteLine("y:

X = 5;
= +4X;
Console.WritelLine("y:

X = 5;
= X--3
Console.WriteLine("y:

X = 5;

y = --X;
Console.WritelLine("y:

// result:

// result:

// result:

// result:

y: 5, x: 6
{0}, x: {1}"

y: 6, x: 6
{0}, x: {1}"

y: 5, x: 4
{0}, x: {1}"

y: 4, x: 4
{0}, x: {1}"

)

)

This code produces the following output:

5,
6,
5,
4,

X X X X
P oo

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Conditional Logical Operators

The logical operators are used for comparing or negating the logical values of their operands and

returning the resulting logical value. Table 8-11 lists the operators.
The logical AND and logical OR operators are binary and left-associative. The logical NOT is unary.

Table 8-11. The Conditional Logical Operators

Operator Name Description

& Logical AND true if both operands are true; false otherwise

[l Logical OR true if at least one operand is true; false otherwise
! Logical NOT true if the operand is false; false otherwise

The syntax for these operators is the following, where Expr1 and Expr2 evaluate to Boolean values:
Expri &8 Expr2

Expr1 || Expr2
! Expr

219

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

220

The following are some examples:

bool bVal;

bval = (1 == 1) 8& (2 == 2); // True, both operand expressions are true
bval = (1 == 1) 88 (1 == 2); // False, second operand expression is false
bval = (1 == 1) || (2 == 2); // True, both operand expressions are true
bval = (1 == 1) || (1 == 2); // True, first operand expression is true
bval = (1 == 2) || (2 == 3); // False, both operand expressions are false
bval = true; // Set bVal to true.

bval = Ibval; // bVal is now false.

The conditional logical operators operate in “short-circuit” mode, meaning that, if after evaluating
Expr1 the result can already be determined, then it skips the evaluation of Expr2. The following code
shows examples of expressions in which the value can be determined after evaluating the first operand:

bool bVal;
bval = (1 == 2) 88 (2 == 2); // False, after evaluating first expression

bval = (1 == 1) || (1 == 2); // True, after evaluating first expression
Because of the short circuit behavior, do not place expressions with side effects (such as changing a

value) in Expr2, since they might not be evaluated. In the following code, the post-increment of variable
ival would not be executed, because after executing the first subexpression, it can be determined that
the value of the entire expression is false.

bool bval; int iVal = 10;

bval = (1 == 2) 8& (9 == iVal++); // result: bVal = False, iVal = 10

T T

False Never evaluated

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Logical Operators

The bitwise logical operators are often used to set the bit patterns for parameters to methods. Table 8-12
lists the bitwise logical operators.

These operators, except for bitwise negation, are binary and left-associative. The bitwise negation
operator is unary.

Table 8-12. The Logical Operators

Operator Name Description

& Bitwise AND Produces the bitwise AND of the two operands. The resulting bit is 1
only if both operand bits are 1.

| Bitwise OR Produces the bitwise OR of the two operands. The resulting bit is 1 if
either operand bit is 1.

" Bitwise XOR Produces the bitwise XOR of the two operands. The resulting bit is 1
only if one, but not both, operand bits are 1.

Bitwise Each bit in the operand is switched to its opposite. This produces the
negation one’s complement of the operand.

The binary bitwise operators compare the corresponding bits at each position in each of their two
operands, and they set the bit in the return value according to the logical operation.

221

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 M EXPRESSIONS AND OPERATORS

Figure 8-5 shows four examples of the bitwise logical operations.

[oToToJol1 10 0] 12 [oToToJol1]2]0 0] 12
[o]ofofof1]0]1]0] 10 [o]ofofol1]0]1]0] 10
[o]ofofof1]0ofof0] 122 10=38 [o]ofofof1]2]1]0] 12 | 10 = 14
[oToToJol1 10 0] 12 eTeTo[oTi[lo o] 12
[o]ofofof1]0]1]0] 10

[1]1]1]1]0f0]2]2] ™2 = -13
[o]ofofofof1]1]0] 12~ 10=6

Figure 8-5. Examples of bitwise logical operators

The following code implements the preceding examples:

const byte x = 12, y = 10;

sbyte a;

a=x8y; // a=28
a=x1y; // a=14
a=x"y; // a=6

a = "x; // a = -13

222

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Shift Operators

The bitwise shift operators shift the bit pattern either right or left a specified number of positions, with
the vacated bits filled with Os or 1s. Table 8-13 lists the shift operators.

The shift operators are binary and left-associative. The syntax of the bitwise shift operators is shown
here. The number of positions to shift is given by Count.

Operand << Count // Left shift
Operand >> Count // Right shift

Table 8-13. The Shift Operators

Operator Name Description

<« Left shift Shifts the bit pattern left by the given number of positions. The bits shifted
off the left end are lost. Bit positions opening up on the right are filled
with 0s.

> Right shift Shifts the bit pattern right by the given number of positions. Bits shifted off
the right end are lost.

For the vast majority of programming in C#, you don’t need to know anything about the hardware
underneath. If you're doing bitwise manipulation of signed numbers, however, it can be helpful to know
about the numeric representation. The underlying hardware represents signed binary numbers in a
form called two’s complement. In two’s-complement representation, positive numbers have their
normal binary form. To negate a number, you take the bitwise negation of the number and add 1 to it.
This process turns a positive number into its negative representation, and vice versa. In two’s
complement, all negative numbers have a 1 in the leftmost bit position. Figure 8-6 shows the negation of
the number 12.

|12

Bitwise Negation |

= |« o

+1

Two'sCompIement|1 |1 |1 |1 |0|1 |0|0|-12

Figure 8-6. To get the negation of a two’s-complement number, take its bitwise negation and add 1.

The underlying representation is important when shifting signed numbers because the result of
shifting an integral value one bit to the left is the same as multiplying it by two. Shifting it to the right is
the same as dividing it by two.

If, however, you were to shift a negative number to the right and the leftmost bit were to be
filled with a 0, it would produce the wrong result. The 0 in the leftmost position would indicate a
positive number. But this is incorrect, because dividing a negative number by 2 doesn’t produce a
positive number.

223

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

To address this situation, when the operand is a signed integer, if the leftmost bit of the operand is a
1 (indicating a negative number), bit positions opening up on the left are filled with 1s rather than 0s.
This maintains the correct two’s-complement representation. For positive or unsigned numbers, bit
positions opening up on the left are filled with 0s.

Figure 8-7 shows how the expression 14 << 3 would be evaluated in a byte. This operation causes

the following:
e Each of the bits in the operand (14) is shifted three places to the left.

e The three bit positions vacated on the right end are filled with 0s.

e Theresulting value is 112.

loJofolo1[1[1]o]m

A A Ao e g 2]
0
14 <<3=112
Figure 8-7. Example of left shift of three bits
Figure 8-8 illustrates bitwise shift operations.
[oTofolol1]2]1]0] 14 [oTofolol11]1]0] 14
[ol1]1]1]0of0fo]0] 14 << 3 =112 [o]ofofolofofof1]14>>3=1

Figure 8-8. Bitwise shifts
The following code implements the preceding examples:
int a, b, x = 14;

a
b

X << 3; // Shift left
X > 3; // Shift right

{1}" , x, a);
{1}, x, b);

This code produces the following output:

Console.WritelLine("{0} << 3
Console.WriteLine("{0} >> 3

112
1

14 << 3
14 >> 3

224

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Assignment Operators

The assignment operators evaluate the expression on the right side of the operator and use that value to
set the variable expression on the left side of the operator. Table 8-14 lists the assignment operators.
The assignment operators are binary and right-associative.

Table 8-14. The Assignment Operators

Operator Description

= Simple assignment; evaluate the expression on the right, and assign the returned value to
the variable or expression on the left.

*= Compound assignment; var *= expr is equal to var = var * (expr).
/= Compound assignment; var /= expr is equal to var = var / (expr).
%= Compound assignment; var %= expr is equal to var= var % (expr).
+= Compound assignment; var += expr is equal to var = var + (expr).

-= Compound assignment; var -

expr isequaltovar = var- (expr).

K= Compound assignment; var <<= expr is equal tovar = var << (expr).
>>= Compound assignment; var >>= expr is equal to var = var >> (expr).
&= Compound assignment; var &= expr is equal to var = var & (expr).
= Compound assignment; var "= expr is equal to var = var ~ (expr).

|= Compound assignment; var |= expr is equal to var

var | (expr).

The syntax is as follows:

VariableExpression Operator Expression

225

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

For simple assignment, the expression to the right of the operator is evaluated, and its value is
assigned to the variable on the left.

int x;
X = 5;
x =y * z;

The types of objects that can be on the left side of an assignment operator are the following. They
are discussed later in the text.

e Variables (local variables, fields, parameters)
e Properties
e Indexers

e Events

Compound Assignment

Frequently, you’ll want to evaluate an expression and add the results to the current value of a variable, as
shown here:

X = X + expr;

The compound assignment operators allow a shorthand method for avoiding the repetition of the
left-side variable on the right side under certain common circumstances. For example, the following two
statements are semantically equivalent, but the second is shorter and just as easy to understand.

x=x+ (y - z);
X +=Yy - z;

The other compound assignment statements are analogous:
Notice the parentheses.
\ \

x ¥=y - z; // Equivalent to x
X /=y - z; // Equivalent to x

x * (y-z)
! (y - 2)

226

CHAPTER 8 " EXPRESSIONS AND OPERATORS

The Conditional Operator

The conditional operator is a powerful and succinct way of returning one of two values, based on the
result of a condition. Table 8-15 shows the operator.
The conditional operator is ternary.

Table 8-15. The Conditional Operator

Operator Name Description

?: Conditional operator ~ Evaluates an expression and returns one of two values,
depending on whether the expression returns true or false

The syntax for the conditional operator is shown following. It has a test expression and two result
expressions.

e C(Condition must return a value of type bool.

e IfCondition evaluates to true, then Expression1 is evaluated and returned. Otherwise,
Expression2 is evaluated and returned.

Condition ? Expressionl : Expression2

The conditional operator can be compared with the if...else construct. For example, the following
if...else construct checks a condition, and if the condition is true, it assigns 5 to variable intVar.
Otherwise, it assigns it the value 10.

if (x<y) // if...else
intVar = 5;

else
intVar = 10;

The conditional operator can perform the same operation in a less verbose form, as shown in the
following statement:

intVar = x <y ? 5 : 10; // Conditional operator

Placing the condition and each return expression on separate lines, as in the following code, makes
the intent very easy to understand.

intVar = x < y
? 5
: 10 ;

227

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

Figure 8-9 compares the two forms shown in the example.

if(x<y)
intVar = 5;
else
intVar = 10;

Figure 8-9. The conditional operator versus if...else

Test Return Value Return Value
Expression if true if false
—_—
intVar = x <y ? 10

5
Conditional]]

Operator

For example, the following code uses the conditional operator three times—once in each of the
Writeline statements. In the first instance, it returns either the value of x or the value of y. In the second
two instances, it returns either the empty string or the string “ not”.

int x = 10, y =
int h1ghVa1 = X y
? X

1y
Console.WriteLine("highVal: {o}\n" ,

Console.WriteLine("x is{0} greater than y"

X >y
5
: n not");
y = 11
Console.WritelLine("x is{0} greater than y" ,
X >y
5
: n not");

This code produces the following output:

highval: 10

x is greater than y
x is not greater than y

// Condition
// Expression 1
// Expression 2

highval);

// Condition
// Expression 1
// Expression 2

// Condition
// Expression
// Expression 2

[N

Note The if..

.else statement is a flow-of-control statement. It should be used for doing one or the other

of two actions. The conditional operator returns an expression. It should be used for returning one or the other of

two values.

228

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Unary Arithmetic Operators
The unary operators set the sign of a numeric value. They are listed in Table 8-16.
e The unary positive operator simply returns the value of the operand.

e The unary negative operator returns the value of the operand subtracted from 0.

Table 8-16. The Unary Operators

Operator Name Description

+ Positive sign Returns the numeric value of the operand

- Negative sign Returns the numeric value of the operand subtracted from 0

For example, the following code shows the use and results of the operators:

int x = +10; // x = 10
int y = -x; //'y = -10
int z = -y; // z =10

229

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

User-Defined Type Conversions

User-defined conversions are discussed in greater detail in Chapter 18, but I'll mention them here as
well because they are operators.

¢ You can define both implicit and explicit conversions for your own classes and structs. This
allows you to convert an object of your user-defined type to some other type, and vice versa.

e C# provides implicit and explicit conversions.

— With an implicit conversion, the compiler automatically makes the conversion, if necessary,
when it is resolving what types to use in a particular context.

— With an explicit conversion, the compiler will make the conversion only when an explicit cast
operator is used.

The syntax for declaring an implicit conversion is the following. The public and static modifiers are
required for all user-defined conversions.

Required Target Source
1 d 4
public static implicit operator TargetType (SourceType Identifier)
{
return ObjectOfTargetType;
}

The syntax for the explicit conversion is the same, except that explicit is substituted for implicit.
The following code shows an example of declarations for conversion operators that will convert an
object of type LimitedInt to type int, and vice versa.

class LimitedInt Target Source

{ N S
public static implicit operator int (LimitedInt 1i) // LimitedInt to int
{

return 1i.TheValue;
Target Source

public static implicit operator LimitedInt (int x) // int to LimitedInt

LimitedInt 1i = new LimitedInt();
1i.TheValue = x;
return 1i;

private int _theValue = 0;
public int TheValue{ ... }
}

For example, the following code reiterates and uses the two type conversion operators just defined.
InMain, an int literal is converted into a LimitedInt object, and in the next line, a LimitedInt object is
converted into an int.

230

class LimitedInt

CHAPTER 8 " EXPRESSIONS AND OPERATORS

// Convert type

// Convert type

// Property

// Convert 500 to LimitedInt
// Convert LimitedInt to int

, li.TheValue, value);

{
const int MaxValue = 100;
const int MinValue = 0;
public static implicit operator int(LimitedInt 1i)
return 1i.TheValue;
}
public static implicit operator LimitedInt(int x)
LimitedInt 1i = new LimitedInt();
1i.TheValue = x;
return 1i;
}
private int theValue = 0;
public int TheValue
get { return theValue; }
set
if (value < MinValue)
_theValue = 0;
else
_theValue = value > MaxValue
? MaxValue
: value;
}
}
}
class Program
{
static void Main() // Main
LimitedInt 1i = 500;
int value = 1i;
Console.WriteLine("1i: {0}, value: {1}"
}
}

This code produces the following output:

1i: 100, value: 100

231

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 M EXPRESSIONS AND OPERATORS

232

Explicit Conversion and the Cast Operator

The preceding example code showed the implicit conversion of the int to a LimitedInt type and the

implicit conversion of a LimitedInt type to an int. If, however, you had declared the two conversion

operators as explicit, you would have had to explicitly use cast operators when making the conversions.
A cast operator consists of the name of the type to which you want to convert the expression, inside

a set of parentheses. For example, in the following code, method Main casts the value 500 to a

LimitedInt object.

Cast operator
LimitedInt 1i = (LimitedInt) 500;

For example, here is the relevant portion of the code, with the changes marked:

4
public static explicit operator int(LimitedInt 1i)
{
return 1li.TheValue;
}

)

public static explicit operator LimitedInt(int x)

LimitedInt 1i = new LimitedInt();

1i.TheValue X;
return 1i;
}
static void Main()
{ _
LimitedInt 1i = (LimitedInt) 500;
int value = (i?t) 1i;
Console.WriteLine("1i: {0}, value: {1}" , 1li.TheValue, value);
}

In both versions of the code, the output is the following:

1i: 100, value: 100

There are two other operators that take a value of one type and return a value of a different,
specified type. These are the is operator and the as operator. These are covered at the end of Chapter 18.

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Operator Overloading

The C# operators, as you've seen, are defined to work using the predefined types as operands. If
confronted with a user-defined type, an operator simply would not know how to process it. Operator
overloading allows you to define how the C# operators should operate on operands of your user-
defined types.

e Operator overloading is available only for classes and structs.

e You can overload an operator x for use with your class or struct by declaring a method named
operator x that implements the behavior (for example, operator +, operator -, and so on).

— The overload methods for unary operators take a single parameter of the class or
struct type.

— The overload methods for binary operators take two parameters, at least one of which must
be of the class or struct type.

public static LimitedInt operator -(LimitedInt x) // Unary
public static LimitedInt operator +(LimitedInt x, double y) // Binary

The declaration of an operator overload method requires the following:
e The declaration must use both the static and public modifiers.

e The operator must be a member of the class or struct for which it is an operator.

For example, the following code shows two of the overloaded operators of class LimitedInt: the
addition operator and the negation operator. You can tell that it is negation and not subtraction because
the operator overload method has only a single parameter and is therefore unary; whereas the
subtraction operator is binary.

class LimitedInt Return
{ Required type Keyword Operator Operand
4 ! L 4 4

public static LimitedInt operator + (LimitedInt x, double y)

LimitedInt 1i = new LimitedInt();
li.TheValue = x.TheValue + (int)y;

return 1i;
}
public static LimitedInt operator - (LimitedInt x)
{
// In this strange class, negating a value just sets its value to 0.
LimitedInt 1i = new LimitedInt();
1i.TheValue = 0;
return 1i;

233

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

Restrictions on Operator Overloading

Not all operators can be overloaded, and there are restrictions on the types of overloading that can be
done. The important things you should know about the restrictions on operator overloading are
described later in the section.
Only the following operators can be overloaded. Prominently missing from the list is the
assignment operator.
Overloadable unary operators: +, -, 1, ~, ++, --, true, false
Overloadable binary operators: +, -, *, /, %, &, |, », <<, >, ==, I=, >, <, >=, <=
The increment and decrement operators are overloadable. But unlike the predefined versions, there
is no distinction between the pre- and post-usage of the overloaded operator.
You cannot do the following things with operator overloading:
e Create a new operator
e Change the syntax of an operator

e Redefine how an operator works on the predefined types

e Change the precedence or associativity of an operator

Note Your overloaded operators should conform to the intuitive meanings of the operators.

234

CHAPTER 8 " EXPRESSIONS AND OPERATORS

Example of Operator Overloading

The following example shows the overloads of three operators for class LimitedInt: negation,
subtraction, and addition.

class LimitedInt {
const int MaxValue
const int MinValue

100;
0;

public static LimitedInt operator -(LimitedInt x)

{
// In this strange class, negating a value just sets its value to 0.
LimitedInt 1i = new LimitedInt();
1i.TheValue = 0;
return 1i;

}

public static LimitedInt operator -(LimitedInt x, LimitedInt y)

LimitedInt 1i = new LimitedInt();
li.TheValue = x.TheValue - y.TheValue;
return 1i;

}
public static LimitedInt operator +(LimitedInt x, double y)

LimitedInt 1i = new LimitedInt();
1li.TheValue = x.TheValue + (int)y;
return 1i;

}

private int theValue = 0;
public int TheValue

get { return theValue; }
set

if (value < MinValue)
_theValue = 0;
else
_theValue = value > MaxValue
? MaxValue
: value;

235

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

236

class Program {
static void Main() {
LimitedInt 1i1 = new LimitedInt();
LimitedInt 1i2 = new LimitedInt();
LimitedInt 1i3 = new LimitedInt();
1i1.TheValue = 10; 1i2.TheValue = 26;

Console.WriteLine(" li1: {0}, li2: {1}" , lii.TheValue, li2.TheValue);

li3 = -1li1;
Console.WriteLine("-{0} = {1}" , lii.TheValue, 1i3.TheValue);

1li3 = 1i2 - 1lia;
Console.WriteLine(" {0} - {1} = {2}",
li2.TheValue, li1.TheValue, 1i3.TheValue);

1li3 = 1li1 - 1li2;
Console.WriteLine(" {0} - {1} = {2}",
li1.TheValue, 1i2.TheValue, 1i3.TheValue);

}
}

This code produces the following output:

1li1: 10, 1li2: 26

-10 = 0
26 - 10 = 16
10 - 26 = 0

The typeof Operator

The typeof operator returns the System.Type object of any type given as its parameter. From this object,
you can learn the characteristics of the type. (There is only one System.Type object for any given type.)
You cannot overload the typeof operator. Table 8-17 lists the operator’s characteristics.

The typeof operator is unary.

Table 8-17. The typeof Operator

Operator Description

typeof Returns the System.Type object of a given type

CHAPTER 8 " EXPRESSIONS AND OPERATORS

The following is an example of the syntax of the typeof operator. Type is a class in the System
namespace.

Type t = typeof (SomeClass)

For example, the following code uses the typeof operator to get information on a class called
SomeClass and to print the names of its public fields and methods.

using System.Reflection; // Use the Reflection namespace to take full advantage
// of determining information about a type.
class SomeClass
{
public int Field1,;
public int Field2;

public void Method1() { }
public int Method2() { return 1; }

}
class Program
static void Main()
Type t = typeof(SomeClass);

FieldInfo[] fi = t.GetFields();
MethodInfo[] mi = t.GetMethods();

foreach (FieldInfo f in fi)
Console.WriteLine("Field : {0}" , f.Name);

foreach (MethodInfo m in mi)
Console.WriteLine("Method: {0}" , m.Name);

237

CHAPTER 8 I/ EXPRESSIONS AND OPERATORS

238

The output of this code is the following:

Field : Fielda
Field : Field2
Method: Method1
Method: Method2
Method: ToString
Method: Equals
Method: GetHashCode
Method: GetType

The typeof operator is also called by the GetType method, which is available for every object of every
type. For example, the following code retrieves the name of the type of the object:

class SomeClass

{
}
class Program
static void Main()
SomeClass s = new SomeClass();

Console.WriteLine("Type s: {0}" , s.GetType().Name);

}
}

This code produces the following output:

Type s: SomeClass

Other Operators

The operators covered in this chapter are the standard operators for the built-in types. There are other
special usage operators that are dealt with later in the book, along with their operand types. For
example, the nullable types have a special operator called the null coalescing operator, which is
described in Chapter 25 along with a more in-depth description of nullable types.

CHAPTER 9

Statements

What Are Statements?
Expression Statements
Flow-of-Control Statements
The if Statement

Theif . . . else Statement
The switch Statement
The while Loop

The do Loop

The for Loop

Jump Statements

The break Statement
The continue Statement
Labeled Statements

The goto Statement

The using Statement

Other Statements

239

CHAPTER 9 I/ STATEMENTS

240

What Are Statements?

The statements in C# are very similar to those of C and C++. This chapter covers the characteristics of a
C# statement, as well as the flow-of-control statements provided by the language.

e Astatementis a source code instruction describing a type or telling the program to perform

an action.

e There are three major categories of statements:

— Declaration statements: Statements that declare types or variables

— Embedded statements:

— Labeled statements: Statements to which control can jump

Previous chapters have covered a number of different declaration statements, including
declarations of local variables, classes, and class members. This chapter covers the embedded
statements, which do not declare types, variables, or instances. Instead, they use expressions and
flow-of-control constructs to work with the objects and variables that have been declared by the

declaration statements.

e Asimple statement consists of an expression followed by a semicolon.

e Ablockis a sequence of statements enclosed by matching curly braces. The enclosed statements

can include the following:

Statements that perform actions or manage flow of control

— Declaration statements

— Embedded statements
— Labeled statements

— Nested blocks

The following code gives examples of each:

int x = 10; //

int z; //

{ /1
int y = 20; //
Z=X+Y; //

top: y = 30; //
‘ cee p
}

}

Simple declaration
Simple declaration

Block

Simple declaration
Embedded statement
Labeled statement

Nested block

CHAPTER 9 " STATEMENTS

Note A block counts syntactically as a single embedded statement. Anywhere that an embedded statement is
required syntactically, you can use a block.

An empty statement consists of just a semicolon. You can use an empty statement at any position
where the syntax of the language requires an embedded statement but your program logic does not
require any action.

For example, the following code is an example of using the empty statement:

e Thesecond line in the code is an empty statement. It is required because there must be an
embedded statement between the if part and the else part of the construct.

e The fourth line is a simple statement, as shown by the terminating semicolon.
if(x<y)
3 // Empty statement

)
else
z=2a+b; // Simple statement

Expression Statements

The previous chapter looked at expressions. Expressions return values, but they can also have side
effects.

e Aside effect is an action that affects the state of the program.

e Many expressions are evaluated only for their side effects.

You can create a statement from an expression by placing a statement terminator (semicolon) after
it. Any value returned by the expression is discarded. For example, the following code shows an
expression statement. It consists of the assignment expression (an assignment operator and two
operands) followed by a semicolon. This does the following two things:

e The expression assigns the value on the right of the operator to the memory location referenced
by variable x. Although this is probably the main reason for the statement, this is considered the
side effect.

e After setting the value of x, the expression returns with the new value of x. But there is nothing to
receive this return value, so it is ignored.

X = 10;

The whole reason for evaluating the expression is to achieve the side effect.

241

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9 M STATEMENTS

242

Flow-of-Control Statements

C# provides the flow-of-control constructs common to modern programming languages.

Conditional execution executes or skips a section of code depending on a condition. The
conditional execution statements are the following:

— if
— if...else
— switch

Looping statements repeatedly execute a section of code. The looping statements are the
following:

— while
— do
— for

— foreach

Jump statements change the flow of control from one section of code to a specific statement in
another section of code. The jump statements are the following:

— break

— continue
— return
— goto

— throw

Conditional execution and looping constructs (other than foreach) require a test expression, or
condition, to determine where the program should continue execution.

Note Unlike C and C++, test expressions must return a value of type bool. Numbers do not have a Boolean

interpretation in C#.

CHAPTER 9 " STATEMENTS

The if Statement

The if statement implements conditional execution. The syntax for the if statement is shown here and
is illustrated in Figure 9-1.

e TestExpr must evaluate to a value of type bool.
e IfTestExpr evaluates to true, Statement is executed.

e [Ifitevaluates to false, Statement is skipped.

if(TestExpr)
Statement

TestExpr

false true

Statement

Figure 9-1. The if statement

The following code shows examples of if statements:
// With a simple statement

if(x <= 10)
z=x-1; // Single statement — no curly braces needed

// With a block

if(x >= 20)
{
X = X - 5; // Block — curly braces needed
y = X + 2;
}
int x = 5;
if(x) // Error: test expression must be a bool, not int
{
}

243

CHAPTER 9 I/ STATEMENTS

The if . . . else Statement

The if...else statement implements a two-way branch. The syntax for the if...else statement is
shown here and is illustrated in Figure 9-2.

e IfTestExpr evaluates to true, Statement1 is executed.

e Ifitevaluates to false, Statement?2 is executed instead.

if(TestExpr)
Statement1

else
Statement2

(TestExpr)

true false
Y Y

Statement1 Statement2

w_J

Figure 9-2. The if . . . else statement

The following is an example of the if...else statement:

if(x <= 10)
z=x-1; // Single statement

else

{ // Multiple statements--block
X =X-5;
y =X + z;

}

244

CHAPTER 9 " STATEMENTS

The switch Statement

The switch statement implements multiway branching. Figure 9-3 shows the syntax and structure of the
switch statement.

e The switch statement contains zero or more switch sections.
e Each switch section starts with one or more switch labels.

(— Test Expression

switch(TestExpr)
{

—> case ConstExpri :
StatementList <«
break;
—> case ConstExprN :
StatementList «—
break;
—> default :
StatementList “«—
break;
Switch } Switch
Labels Sections

Figure 9-3. Structure of a switch statement

Switch labels have the following form:

case ConstantExpression:
T

Keyword Switch label terminator
The flow of control through the structure in Figure 9-3 is the following:
e The test expression, TestExpr, is evaluated at the top of the construct.

e Each switch section must end with the break statement or one of the other four jump statements.

— The jump statements are break, return, continue, goto, and throw, and they are described
later in this chapter.

— Of the five jump statements, the break statement is the most commonly used for ending a
switch section. The break statement branches execution to the end of the switch statement.
We’'ll cover all the jump statements later in this chapter.

o Ifthe value of TestExpr is equal to the value ConstExpri, the constant expression in the first switch
label and then the statements in the statement list following the switch label are executed, until
the one of the jump statements is encountered.

e Thedefault section is optional, but if it is included, it must end with one of the jump statements.

245

CHAPTER 9 ' STATEMENTS

Figure 9-4 illustrates the general flow of control through a switch statement. You can modify the
flow through a switch statement with a goto statement or a return statement.

case case
StatementList StatementList
break; break;
case case
StatementList StatementList
break; break; B
default”
StatementList
~—> —
break;
N\ I J J—
Without default Case With default Case

Figure 9-4. The flow of control through a switch statement

246

CHAPTER 9 " STATEMENTS

A Switch Example

The following code executes the switch statement five times, with the value of x ranging from 1 to 5.
From the output, you can tell which case section was executed on each cycle through the loop.

for(int x=1; x<6; x++)

switch(x) // Evaluate the value of variable x.
case 2: // If x equals 2
Console.WriteLine("x is {0} -- In Case 2", x);
break; // Go to end of switch.
case 5: // If x equals 5
Console.WriteLine("x is {0} -- In Case 5", x);
break; // Go to end of switch.
default: // If x is neither 2 nor 5
Console.WriteLine("x is {0} -- In Default case", x);
break; // Go to end of switch.
}

}

This code produces the following output:

is 1 -- In Default case
is 2 -- In Case 2
is 3 -- In Default case
is 4 -- In Default case
is 5 -- In Case 5

X X X X X

247

CHAPTER 9 I/ STATEMENTS

More on the switch Statement

A switch statement can have any number of switch sections, including none. The default section is not
required, as shown in the following example. It is, however, generally considered good practice to
include it, since it can catch potential errors.

For example, the switch statement in the following code has no default section. The switch
statement is inside a for loop, which executes the statement five times, with the value of x starting at 1
and ending at 5.

for(int x=1; x<6; x++)

switch(x)
case 5:
Console.WriteLine("x is {0} -- In Case 5", x);
break;
}

}

This code produces the following output:

x is 5 -- In Case §

The following code has only the default section:

for(int x=1; x<4; x++)

switch(x)
default:
Console.WriteLine("x is {0} -- In Default case", x);
break;
}

}

This code produces the following output:

x is 1 -- In Default case
x is 2 -- In Default case
x is 3 -- In Default case

248

CHAPTER 9 " STATEMENTS

Switch Labels

The expression following the keyword case in a switch label must be a constant expression and must
therefore be completely evaluable by the compiler at compile time. It must also be of the same type as
the test expression

For example, Figure 9-5 shows three sample switch statements.

const string YES = "yes"; const char LetterB = 'b'; const int Five = 5;
string s = "no"; char ¢ = 'a'; int x = 53
switch (s) switch (c) switch (x)
{ { {
case YES: case 'a': case Five:
PrintOut("Yes"); PrintOut("a"); PrintOut("5");
break; break; break;
case "no": case LetterB: case 10:
PrintOut ("No"); PrintOut("b"); PrintOut("10");
break; break; break;

Figure 9-5. Switch statements with different types of switch labels

Note Unlike C and C++, each switch section, including the optional default section, must end with one of the
jump statements. In C#, you cannot execute the code in one switch section and then fall through to the next.

Although C# does not allow falling through from one switch section to another, you can do the
following:

¢ You can attach multiple switch labels to any switch section.

¢ Following the statement list associated with a case, there must be one of the jump statements
before the next switch label, unless there are no intervening executable statements between the
switch labels.

For example, in the following code, since there are no executable statements between the first three
switch labels, it’s fine to have one follow the other. Cases 5 and 6, however, have an executable
statement between them, so there must be a jump statement before case 6.

switch(x)

case 1: // Acceptable
case 2:
case 3:
500 // Execute this code if x equals 1, 2, or 3.
break;
case 5:
y =X+ 1;
case 6: // Not acceptable because there is no break

249

CHAPTER 9 I/ STATEMENTS

The while Loop

The while loop is a simple loop construct in which the test expression is performed at the top of the loop.
The syntax of the while loop is shown here and is illustrated in Figure 9-6.

e First, TestExpr is evaluated.
o If TestExpr evaluates to false, then execution continues after the end of the while loop.

e Otherwise, when TestExpr evaluates to true, then Statement is executed, and TestExpr is
evaluated again. Each time TestExpr evaluates to true, Statement is executed another time. The
loop ends when TestExpr evaluates to false.

while(TestExpr)
Statement

TestExpr

false

Statement

Figure 9-6. The while loop

The following code shows an example of the while loop, where the test expression variable starts
with a value of 3 and is decremented at each iteration. The loop exits when the value of the variable
becomes 0.

int x = 3;
while(x > 0)

Console.WriteLine("x: {0}", x);
X--;
}

Console.WritelLine("Out of loop");

This code produces the following output:

x: 3
X: 2
x: 1
Out of loop

250

CHAPTER 9 " STATEMENTS

The do Loop

The do loop is a simple loop construct in which the test expression is performed at the bottom of the
loop. The syntax for the do loop is shown here and illustrated in Figure 9-7.

do
Statement

First, Statement is executed.

Then, TestExpr is evaluated.

If TestExpr returns true, then Statement is executed again.
Each time TestExpr returns true, Statement is executed again.

When TestExpr returns false, control passes to the statement following the end of the
loop construct.

while(TestExpr); // End of do loop

Statement

TestExpr

true

Figure 9-7. The do loop

251

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9 M STATEMENTS

The do loop has several characteristics that set it apart from other flow-of-control constructs. They
are the following:

e The body of the loop, Statement, is always executed at least once, even if TestExpr is
initially false.

¢ The semicolon is required after the closing parenthesis of the test expression.

The following code shows an example of a do loop:

int x = 0;
do

Console.WriteLine("x is {0}", x++);
while (XG);F

Required

This code produces the following output:

X is 0
x is 1
x is 2

252

CHAPTER 9 " STATEMENTS

The for Loop

The for loop construct executes the body of the loop as long as the test expression returns true when it is
evaluated at the top of the loop. The syntax of the for loop is shown here and illustrated in Figure 9-8.

e Atthe beginning of the for loop, Initializer is executed once.

e TestExpr is then evaluated.

o If TestExpr returns true, Statement is executed, followed by I'terationExpr.

e Control then returns to the top of the loop, and TestExpr is evaluated again.

e Aslong as TestExpr returns true, Statement, followed by IterationExpr, is executed.

e Assoon as TestExpr returns false, execution continues at the statement following Statement.

Separated by semicolons
4)

for(Initializer ; TestExpr ; IterationExpr)
Statement

Some parts of the statement are optional.

e Initializer, TestExpr, and IterationExpr are all optional. Their positions can be left blank. If the
TestExpr position is left blank, the test is assumed to return true. Therefore, there must be some
other method of exiting the statement if the program is to avoid going into an infinite loop.

e The two semicolons are required as field separators.

Initializer
—\
Y
(TestExpr
false true
Statement

IterationExpr

Figure 9-8. The for loop

253

CHAPTER 9 I/ STATEMENTS

Figure 9-8 illustrates the flow of control through the for statement. You should also know the
following about its components:

e Initializer is executed only once, before any other part of the for construct. It is usually used to
declare and initialize local values to be used in the loop.

e TestExpr is evaluated to determine whether Statement should be executed or skipped. It must
evaluate to a value of type bool.

e TIterationExpr is executed immediately after Statement and before returning to the top of the loop
to TestExpr.

For example, in the following code:

e Before anything else, the initializer (int i=0) defines a variable called i and initializes its value
to 0.

e The condition (i<3) is then evaluated. If it is true, then the body of the loop is executed.
e Atthe bottom of the loop, after all the loop statements have been executed, the IterationExpr

statement is executed—in this case, incrementing the value of i.

// The body of this for loop is executed three times.
for(int i=0 ; i<3 ; i++)
Console.WriteLine("Inside loop. i: {o}", i);

Console.WritelLine("Out of Loop");

This code produces the following output:
Inside loop. i: ©
Inside loop. i

Inside loop. 1i: 2
Out of Loop

=
=

254

CHAPTER 9 " STATEMENTS

The Scope of Variables in a for Statement

Any variables declared in the initializer are visible only within the for statement.
[)

This is different from C and C++, where the declaration introduces the variable into the
enclosing block.

e The following code illustrates this point:

Type islleeded here for declaration.

for(int i=0; i<10; i++) // Variable i is in scope here, and also
Statement; // here within the statement.

// Here, after the statement, i no longer exists.

Type iineeded here again because the previous variable i has gone out of existence.

for(int i=0; i<10; i++) // We need to define a new variable i here,
Statement;

// the previous one has gone out of existence.

The local variables declared within the body of the loop are known only within the loop.

Note Unlike C and C++, the scope of variables declared in the initializer lasts only for the length of the loop.

255

CHAPTER 9 I/ STATEMENTS

Multiple Expressions in the Initializer and Iteration Expression

Both the initializer expression and the iteration expression can contain multiple expressions as long as
they are separated by commas.

For example, the following code has two variable declarations in the initializer and two expressions
in the iteration expression:

static void Main()
{

const int MaxI = 5;

Two declarations Two expressions
4

for (int i = 0, j = 10; 1 < MaxI; i++, j += 10)
Console.WriteLine("{0}, {1}", i, j);

}

This code produces the following output:

0, 10
1, 20
2, 30
3, 40
4, 50

256

CHAPTER 9 " STATEMENTS

Jump Statements

When the flow of control reaches jump statements, program execution is unconditionally transferred to
another part of the program. The jump statements are the following:

e Dbreak

e continue

. return
e goto
e throw

This chapter covers the first four of these statements. The throw statement is explained in
Chapter 11.

The break Statement

Earlier in this chapter you saw the break statement used in the switch statement. It can also be used in
the following statement types:

e for
e foreach
e while

e do

In the body of one of these statements, break causes execution to exit the innermost enclosing loop.

For example, the following while loop would be an infinite loop if it relied only on its test
expression, which is always true. But instead, after three iterations of the loop, the break statement is
encountered, and the loop is exited.

int x = 0;
while(true)
{

X++;

if(x >=3)
break;

257

CHAPTER 9 I/ STATEMENTS

The continue Statement

The continue statement causes program execution to go to the top of the innermost enclosing loop of the

following types:
e while
e do
e for

e foreach

For example, the following for loop is executed five times. In the first three iterations, it encounters
the continue statement and goes directly back to the top of the loop, missing the WritelLine statement at
the bottom of the loop. Execution only reaches the WritelLine statement during the last two iterations.

for(int x=0; x<5; X++) // Execute loop five times
if(x<3) // The first three times
continue; // Go directly back to top of loop

// This line is only reached when x is 3 or greater.
Console.WriteLine("Value of x is {0}", x);

This code produces the following output:

Value of x is 3
Value of x is 4

The following code shows an example of a continue statement in a while loop. This code produces
the same output as the preceding for loop example.

int x = 0;
while(x < 5)

if(x < 3)
{

X++;

continue; // Go back to top of loop
}

// This line is reached only when x is 3 or greater.
Console.WriteLine("Value of x is {0}", x);
X++;

258

CHAPTER 9 " STATEMENTS

Labeled Statements

A labeled statement consists of an identifier, followed by a colon, followed by a statement. It has the
following form:

Identifier: Statement

Alabeled statement is executed exactly as if the label were not there and consisted of just the
Statement part.

e Adding alabel to a statement allows control to be transferred to the statement from another part
of the code.

e Labeled statements are allowed only inside blocks.

Labels

Labels have their own declaration space, so the identifier in a labeled statement can be any valid
identifier—including those that might be declared in an overlapping scope, such as local variables or
parameter names.

For example, the following code shows the valid use of a label with the same identifier as a
local variable:

{

int xyz = 0; // Variable xyz

xyz;.(.Zonsole.WIiteLine("No problem."); // Label xyz
}

There are restrictions, however. The identifier cannot be either
e The same as another label identifier with an overlapping scope

e Akeyword

259

CHAPTER 9 I/ STATEMENTS

The Scope of Labeled Statements

Labeled statements cannot be seen (or accessed) from outside the block in which they are declared. The
scope of a labeled statement is

e The block in which it is declared

e Any blocks nested inside that block

For example, the code on the left of Figure 9-9 contains several nested blocks, with their scopes
marked. There are two labeled statements declared in scope B of the program: increment and end.

e Theshaded portions on the right of the figure show the areas of the code in which the labeled
statements are in scope.

e Codeinscope B, and all the nested blocks, can see and access the labeled statements.
e Code from any of the inner scopes can jump out to the labeled statements.
e Code from outside (scope A, in this case) cannot jump into a block with a labeled statement.

static void Main()
{ // Scope A

Scope A

{ // Scope B Scope B
increment: x++;

increment: x++;

{ // Scope C Scope C
{ // Scope D Scope D
} S E
{ // Scope E CObE

|

end: Console...;

}
end: Console.WriteLine("Exiting");

}

Figure 9-9. The scope of labels includes nested blocks.

260

CHAPTER 9 " STATEMENTS

The goto Statement

The goto statement unconditionally transfers control to a labeled statement. Its general form is the
following, where Identifier is the identifier of a labeled statement:

goto Identifier ;

For example, the following code shows the simple use of a goto statement:

bool thingsAreFine;
while (true)

thingsAreFine = GetNuclearReactorCondition();
if (thingsAreFine)
Console.WriteLine("Things are fine.");
else
goto NotSoGood;
NotSoGood: Console.WriteLine("We have a problem.");

The goto statement must be within the scope of the labeled statement.

e Agotostatement can jump to any labeled statement within its own block or can jump out to any
block in which it is nested.

e Agotostatement cannot jump info any blocks nested within its own block.

Caution Using the goto statement is strongly discouraged, because it can lead to code that is poorly
structured and difficult to debug and maintain. Edsger Dijkstra’s 1968 letter to the Communications of the ACM,
entitled “Go To Statement Considered Harmful,” was an important contribution to computer science; it was one of
the first published descriptions of the pitfalls of using the goto statement.

The goto Statement Inside a switch Statement

There are also two other forms of the goto statement, for use inside switch statements. These goto
statements transfer control to the correspondingly named switch label in the switch statement.

goto case ConstantExpression;
goto default;

261

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9 M STATEMENTS

The using Statement

Certain types of unmanaged objects are limited in number or are expensive with system resources. It's
important that when your code is done with them, they be released as soon as possible. The using
statement helps simplify the process and ensures that these resources are properly disposed of.

A resource is a class or struct that implements the System.IDisposable interface. Interfaces are
covered in detail in Chapter 17—but in short, an interface is a collection of unimplemented function
members that classes and structs can choose to implement. The IDisposable interface contains a single
method named Dispose.

The phases of using a resource are shown in Figure 9-10 and consist of the following:

e Allocating the resource
e Using the resource

¢ Disposing of the resource

If an unexpected run-time error occurs during the portion of the code using the resource, the code
disposing of the resource might not get executed.

Allocate resource

ResType Resource =
new ResType(...);

Use resource

Statements using Resource

— Exception causes control If an exception happens
to transfer out of method in this section, Di spose

will not get called.

Dispose of resource

Resource.Dispose;

Figure 9-10. Components of using a resource

Note The using statement is different from the using directives. The using directives are covered in
Chapter 10.

262

CHAPTER 9 " STATEMENTS

Packaging Use of the Resource

The using statement helps reduce the potential problem of an unexpected run-time error by neatly
packaging the use of a resource.
There are two forms of the using statement. The first form is the following and is illustrated in
Figure 9-11.
e The code between the parentheses allocates the resource.
e Statement is the code that uses the resource.

e The using statement implicitly generates the code to dispose of the resource.

usin ResourceType Identifier = Expression) Statement
g (

Allocates resource Uses resource
Unexpected run-time errors are called exceptions and are covered in Chapter 11. The standard way
of handling the possibility of exceptions is to place the code that might cause an exception in a try block
and place any code that must be executed, whether or not there is an exception, into a finally block.
This form of the using statement does exactly that. It performs the following:
e Allocates the resource
e Places Statement in a try block

e Creates a call to the resource’s Dispose method and places it in a finally block

using (ResType Resource = new ResType(...)) Statement

The compiler takes the components {

of the using statement and produces
an implicit try...finally pair to
handle potential exceptions.

ResType Resource =
new ResType(...);

try

The entire construct is enclosed in {

an implicit block so that when the | Statement | «—
finally block is exited, the resource }

goes out of scope and cannot
accidentally be called.

finally
{ Implicitly
] supplied
| Dispose of resource 4—'— by the using
} statement

—> }

Figure 9-11. The effect of the using statement

263

CHAPTER 9 I/ STATEMENTS

Example of the using Statement

The following code uses the using statement twice—once with a class called TextWriter and once with a
class called TextReader, both from the System.I0 namespace. Both classes implement the IDisposable
interface, as required by the using statement.

e The TextWriter resource opens a text file for writing and writes a line to the file.

e The TextReader resource then opens the same text file and reads and displays the contents, line
by line.

¢ Inboth cases, the using statement makes sure that the objects’ Dispose methods are called.

e Notice also the difference between the using statements in Main and the using directives on the
first two lines.

using System; // using DIRECTIVE; not using statement
using System.IO; // using DIRECTIVE; not using statement
namespace UsingStatement
{
class Program
{
static void Main()
{
// using statement
using (TextWriter tw = File.CreateText("Lincoln.txt"))
tw.WriteLine("Four score and seven years ago, ...");
}
// using statement
using (TextReader tr = File.OpenText("Lincoln.txt"))
string InputString;
while (null != (InputString = tr.ReadlLine()))
Console.WriteLine(InputString);
}
}
}
}

This code produces the following output:

Four score and seven years ago, ...

264

CHAPTER 9 " STATEMENTS

Multiple Resources and Nesting

The using statement can also be used with multiple resources of the same type, with the resource
declarations separated by commas. The syntax is the following:

Only one type Resource Resource
4

usin esourceType Id1 = Expri 2 = Exprz, ... mbeddedStatemen
ing (R Type 1d Expri, 1Id Expr2,) EmbeddedStat t

For example, in the following code, each using statement allocates and uses two resources:
static void Main()

using (TextWriter twi = File.CreateText("Lincoln.txt"),

tw2 = File.CreateText("Franklin.txt"))
twl.WriteLine("Four score and seven years ago, ...");
tw2.WriteLine("Early to bed; Early to rise ...");
}
using (TextReader tr1 = File.OpenText("Lincoln.txt"),
tr2 = File.OpenText("Franklin.txt"))
{

string InputString;

while (null != (InputString = tri.ReadLine()))
Console.WriteLine(InputString);

while (null != (InputString = tr2.ReadlLine()))
Console.WritelLine(InputString);

}

The using statement can also be nested. In the following code, besides the nesting of the using
statements, also note that it is not necessary to use a block with the second using statement because it
consists of only a single, simple statement.

using (TextWriter twi = File.CreateText("Lincoln.txt"))

twl.WriteLine("Four score and seven years ago, ...");

using (TextWriter tw2 = File.CreateText("Franklin.txt")) // Nested

tw2.WriteLine("Early to bed; Early to rise ..."); // Single

265

CHAPTER 9 I/ STATEMENTS

266

Another Form of the using Statement

Another form of the using statement is the following:

Keyword Resource Uses resource

usin Expression) EmbeddedStatement
g (Exp

In this form, the resource is declared before the using statement.

TextWriter tw = File.CreateText("Lincoln.txt"); // Resource declared
using (tw) // using statement
tw.WritelLine("Four score and seven years ago, ...");

Although this form still ensures that the Dispose method will always be called after you finish using
the resource, it does not protect you from attempting to use the resource after the using statement has
released its unmanaged resources, leaving it in an inconsistent state. It therefore gives less protection
and is discouraged. This form is illustrated in Figure 9-12.

ResType Resource = new ResType(...);
using (Resource) Statement

ResType Resource = new ResType(...);
In this form of the using statement, the {
try
resource has already been allocated, {
so it is outside the scope of the using

statement. | Statement |

}

finally
{

| Dispose of resource |

}

Attempting to use the resource after the }
using statement will cause an exception
because Dispose has already been called.

Figure 9-12. Resource declaration before the using statement

Other Statements

There are other statements that are associated with particular features of the language. These statements
are covered in the sections dealing with those features. The statements covered in other chapters are

shown in Table 9-1.

Table 9-1. Statements Covered in Other Chapters

CHAPTER 9 " STATEMENTS

Statement

Description

Relevant Chapter

checked, unchecked

foreach

try, throw, finally

return

yield

These statements control the overflow checking
context.

This statement iterates through each member of a
collection.

These statements are associated with exceptions.

This statement returns control to the calling function
member and can also return a value.

This statement is used with iterators.

Chapter 18

Chapters 14 and 20

Chapter 11

Chapter 5

Chapter 20

267

CHAPTER 10

Namespaces and Assemblies

Referencing Other Assemblies
Namespaces

The using Directives

The Structure of an Assembly

The Identity of an Assembly
Strongly Named Assemblies

Private Deployment of an Assembly
Shared Assemblies and the GAC
Configuration Files

Delayed Signing

269

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Referencing Other Assemblies

In Chapter 1, we took a high-level look at the compilation process. You saw that the compiler takes the
source code file and produces an output file called an assembly. This chapter takes a closer look at
assemblies and how they are produced and deployed. You will also look at how namespaces help
organize types.

All the programs you've seen so far have, for the most part, declared and used their own classes. In
many projects, however, you will want to use classes or types from other assemblies. These other
assemblies might come from the BCL or a third-party vendor, or you might have created them yourself.
These are called class libraries, and the names of their assembly files generally end with the .d11
extension rather than the .exe extension.

Suppose, for example, that you want to create a class library that contains classes and types that can
be used by other assemblies. The source code for a simple library is shown in the following example and
is contained in a file called SuperLib.cs. The library contains a single public class called SquareWidget.
Figure 10-1 illustrates the production of the DLL.

public class SquareWidget

public double SidelLength = 0;
public double Area

get { return Sidelength * Sidelength; }

SuperLib.cs
|{3ub11c class SquareWidget SuperLib.d11
public double SidelLength = 0; . SuperLib
public double Area G Compiler Assembly
b}

{ get { ...
}

Figure 10-1. The SuperLib source code and the resulting assembly

To create a class library using Visual Studio 2010, select the Class Library template from the installed
Windows templates. Specifically, when in Visual Studio, do the following:
1. Select File » New » Project, and the New Project window will open.
2. Inthe left pane in the Installed Templates panel, find the Visual C# node under the Other
Languages root, and select the Windows entry.
3. Intheright pane, select the Class Library template.

270

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Suppose also that you are writing a program called MyWidgets, and you want to use the SquarelWidget
class. The code for the program is in a file called MyWidgets.cs and is shown in the following example.
The code simply creates an object of type SquareWidget and uses the object’s members.

using System;

class WidgetsProgram

{
static void Main()
{
SquareWidget sq = new SquareWidget(); // From class library
T
Not declared in this assembly
sq.Sidelength = 5.0; // Set the side length.
Console.Writeline(sq.Area); // Print out the area.
}

} Not declared in this assembly

Notice that the code doesn’t declare class SquareWidget. Instead, you use the class defined in
SuperLib. When you compile the MyWidgets program, however, the compiler must be aware that your
code uses assembly SuperLib so it can get the information about class SquarelWidget. To do this, you need
to give the compiler a reference to the assembly, by giving its name and location.

In Visual Studio, you can add references to a project in the following way:

e Select the Solution Explorer, and find the References folder underneath the project name. The
References folder contains a list of the assemblies used by the project.

e Right-click the References folder, and select Add Reference. There are five tabs from which to
choose, allowing you to find the class library in different ways.

e For our program, select the Browse tab, browse to the DLL file containing the SquareWidget class
definition, and select it.

e Click the OK button, and the reference will be added to the project.

271

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10 I NAMESPACES AND ASSEMBLIES

272

After you've added the reference, you can compile MyWidgets. Figure 10-2 illustrates the full
compilation process.

SuperLib.cs

Source Code

C# Compiler Compile
SuperLib.

MyWidgets.cs SuperLib.dl11

SuperLib
Assembly J

Compile .
MyWIdgets

MyWidgets.exe

MyWidgets
\ Assembly

Source Code

Figure 10-2. Referencing another assembly

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

The mscorlib Library

There’s a class library that I've been using in every example in the book so far. It is the one that contains
the Console class. The Console class is defined in an assembly called mscorlib in a file called
mscorlib.dll. You won'’t find this assembly listed in the References folder, however. Assembly mscorlib
contains the definitions of the C# types and the basic types for most .NET languages. It must always be
referenced when compiling a C# program, so Visual Studio doesn’t bother showing it in the References
folder.

When you take into account mscorlib, the compilation process for MyWidgets looks more like the
representation shown in Figure 10-3. After this, I'll assume the use of the mscorlib assembly without
representing it again.

SuperLib.d11 MyWidgets.cs mscorlib.d11
SuperLib mscotlib
Assembly Source Code Assembly
Y
C# Compiler

MyWidgets.exe

MyWidgets
Assembly

Figure 10-3. Referencing class libraries

Now suppose that your program has been working fine with the SquareWidget class, but you want to
expand its capabilities to use a class called CircleWidget, which is defined in a different assembly called
Ultralib. The MyWidgets source code now looks like the following. It creates a SquarelWidget object as
defined in SuperLib and a CircleWidget object as defined in Ultralib.

class WidgetsProgram
static void Main()

SquareWidget sq = new SquareWidget(); // From Superlib

CircleWidget circle = new CircleWidget(); // From Ultralib

273

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

The source code for class library UltralLib is shown in the following example. Notice that besides
class CircleWidget, like library SuperLib, it also declares a class called SquareWidget. You can compile
Ultralib to a DLL and add it to the list of references in project MyWidgets.

public class SquareWidget
{

}
public class CircleWidget

public double Radius = 0;
public double Area

get { ... }
}
}

Since both libraries contain a class called SquarelWidget, when you attempt to compile program
MyWidgets, the compiler produces an error message because it doesn’t know which version of class
SquareWidget to use. Figure 10-4 illustrates this name clash.

. SuperLib.d11 UTtralib.d11
MyWidget.cs
SuperLib Conflict UltraLib
Source Code SquareWidget |«———> SquareWidget
CircleWidget

L J

Y

C# Compiler

Figure 10-4. Since assemblies SuperLib and UltraLib both contain declarations for a class called
SquareWidget, the compiler doesn’t know which one to instantiate.

274

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Namespaces

In the MyWidgets example, since you have the source code, you can solve the name clash by just
changing the name of the SquareWidget class in either the SuperLib source code or the Ultralib source
code. But what if these libraries had been developed by separate companies, and you didn’t have the
source code? Suppose that SuperLib was produced by a company called MyCorp, and Ultralib was
produced by the ABCCorp company. In that case, you wouldn’t be able to use them together if you used
any classes or types where there was a clash.

As you can imagine, with your development machine containing assemblies produced by dozens, if
not hundreds, of different companies, there is likely to be a certain amount of duplication in the names
of classes. It would be a shame if you couldn’t use two assemblies in the same program just because they
happened to have type names in common.

Suppose, however, that MyCorp had a policy of prefacing all their classes with a string that
consisted of the company name followed by the product name followed by the descriptive class name.
Suppose further that ABCCorp had the same policy. In that case, the three class names in our example
would be named MyCorpSuperLibSquareWidget, ABCCorpUltralibSquareWidget, and
ABCCorpUltralibCircleWidget, as shown in Figure 10-5. These are perfectly valid class names, and
there’s little chance of the classes in one company’s library conflicting with those of another company.

. SuperLib.d11 Ultralib.d11
MyWidget.cs No
SuperLib Conflict UltraLib
Source Code MyCorpSuperLibSquareWidget » ABCCorpUltralLibSquareWidget
ABCCorpUltraLibCircleWidget

L]

A.

C# Compiler

Figure 10-5. With disambiguating strings prefaced to the class names, there is no conflict between the
libraries.

Our example program, however, would need to use these long names and would look like the
following:

class WidgetsProgram

{
static void Main()
MyCorpSuperLibSquareWidget sq
= new MyCorpSuperlLibSquareWidget(); // From SuperlLib
ABCCorpUltralibCircleWidget circle
= new ABCCorpUltralibCircleWidget(); // From Ultralib
}
}

275

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Although this solves the conflict problem, these new, disambiguated names are harder to read and
clumsy to work with, even with IntelliSense.

Suppose, however, that in addition to the characters normally allowed in an identifier, you could
also use the period character within the string—although still not at the beginning or at the end of the
class name. In this case, we could make the names more understandable, such as
MyCorp.SuperLib.SquareWidget, ABCCorp.Ultralib.SquareWidget, and ABCCorp.Ultralib.Circlelidget.
Now the code would look like the following:

class WidgetsProgram

static void Main()

{
MyCorp.SuperLib.SquareWidget sq
= new MyCorp.Superlib.SquareWidget(); // From Superlib
ABCCorp.Ultralib.CircleWidget circle
= new ABCCorp.Ultralib.CircleWidget(); // From Ultralib
}

}

This brings us to the concept of the namespace name and a namespace.

¢ You can think of a namespace name as a string of characters (that can include periods inside the
string) tacked on to the front of the class or type name and separated by a period.

e The full string including the namespace name, separating period, and the class name is called the
class’s fully qualified name.

e A namespace is the set of classes and types that share that namespace name.

Figure 10-6 illustrates these definitions.

Namespace Class ABCCorp.UTltraLib Namespace
Name
Nai"e ABCCorp.UTtraLib.Squarelidget

ABCCorp.UltraLib.CircleWidget

ABCCorp.Ultralib.Squarelidget ABCCorp.UltraLib.TriangleWidget

Fully Qualified Class Name

Figure 10-6. A namespace is the set of type definitions that share the same namespace name.

276

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

You can use namespaces to group a set of types together and give them a name. Generally, you want
namespace names to be descriptive of the types contained by the namespace and to be distinct from
other namespace names.

You create a namespace by declaring the namespace in the source file that contains your type
declarations. The following shows the syntax for declaring a namespace. You then declare all your

classes and other types between the curly braces of the namespace declaration. These are then the
members of the namespace.

Keyword Namespace name

namespace NamespaceName

TypeDeclarations

}

The following code shows how the programmers at MyCorp could create the MyCorp.SuperlLib
namespace and declare the Squarelidget class inside it.

Company name Period
4

namespace MyCorp.SuperlLib

public class SquareWidget

public double SidelLength = 0;
public double Area

get { return Sidelength * Sidelength; }

277

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Now, when the MyCorp company ships you the new updated assembly, you can use it by modifying
your MyWidgets program, as shown here:

class WidgetsProgram

static void Main()
{ Fully qualiiied name Fully qualified name

MyCorp.%uperLib.Squarqui\dget sq = new MyCorp.Superlib.SquareWidget();
Namespace name Class name

CircleWidget circle = new CircleWidget();

Now that you have explicitly specified the SuperLib version of SquarelWidget in your code, the
compiler will no longer have a problem distinguishing the classes. The fully qualified name is a bit long
to type, but at least you can now use both libraries. A little later in the chapter, we’ll cover the using alias
directive to solve the inconvenience of having to repeatedly type in the fully qualified name.

If the Ultralib assembly is also updated with a namespace by the company that produces it
(ABCCorp), then the compile process would be as shown in Figure 10-7.

MyWidgets.cs

Source Code

SuperLib.d11 UltraLib.d11
SuperLib UltraLib
MyCorp.SuperLib.Squarelidget ABCCorp.UltraLib.SquareWidget
ABCCorp.UltraLib.CircleWidget
Yy v ¥
C# Compiler

MyWidgets.exe

MyWidgets
Assembly

Figure 10-7. Class libraries with namespaces

278

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Namespace Names

As you saw, the name of a namespace can contain the name of the company that created the assembly.
Besides identifying the company, the name is also used to help programmers get a quick idea of the
kinds of types defined in the namespace.
Some important points about the names of namespaces are the following:
¢ Anamespace name can be any valid identifier, as described in Chapter 2.

e Additionally, a namespace name can include any number of period characters. You can use this
to organize types into hierarchies.

For example, Table 10-1 gives the names of some of the namespaces in the .NET BCL.

Table 10-1. Sample Namespaces from the BCL

System System.IO
System.Data Microsoft.CSharp
System.Drawing Microsoft.VisualBasic

Namespace naming guidelines suggest the following:
e Start namespace names with the company name.
e Follow the company name with the technology name.

e Do notname a namespace with the same name as a class or type.

For example, the software development department of the Acme Widget Company develops
software in the following three namespaces, as shown in the following code:

o AcmeWidgets.Superhidget
e AcmeWidgets.Media

e AcmeWidgets.Games

namespace AcmeWidgets.SuperhWidget

class SPDBase ...

279

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

More About Namespaces

There are several other important points you should know about namespaces:
e Everytype name in a namespace must be different from all the others.
e Thetypes in a namespace are called members of the namespace.

e Asource file can contain any number of namespace declarations, either sequentially or nested.

Figure 10-8 shows a source file on the left that declares two namespaces sequentially, with several
types in each one. Notice that even though the namespaces contain several class names in common,
they are differentiated by their namespace names, as shown in the assembly at the right of the figure.

SimpleProg.cs

namespace MyNS .
{ SimpleProg.d11
class FirstClass { ... } SimpleProg Assembly
class SecondClass { ... }
} MyNS.FirstClass
> MyNS.SecondClass
namespace OtherNS OtherNS.FirstClass
{ OtherNS.SecondClass
class FirstClass { ... } OtherNS.MyStruct
class SecondClass { ... }
struct MyStruct { ... }
}

Figure 10-8. Multiple namespaces in a source file

The .NET Framework BCL offers thousands of defined classes and types to choose from in building
your programs. To help organize this vast array of available functionality, types with related functionality
are declared in the same namespace. The BCL uses more than 100 namespaces to organize its types.

280

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Namespaces Spread Across Files

A namespace is not closed. This means you can add more type declarations to it by declaring it again
either later in the source file or in another source file.

For example, Figure 10-9 shows the declaration of three classes, all in the same namespace but
declared in separate source files. The source files can be compiled into a single assembly, as shown in
Figure 10-9, or into separate assemblies, as shown in Figure 10-10.

Partl.cs Part2.cs
namespace MyNS namespace MyNS
{
{
class Classl { ... }
class Class2 { ... }) class Class3 { ...)
1

C# Compiler

SomeLib.d11

SomeLib Assembly
MyNS.Class1
MyNS.Class2
MyNS.Class3

Figure 10-9. A namespace can be spread across source files and compiled to a single assembly.

Partl.cs Part2.cs

namespace MyNS

{

}

class Classl { ...
class Class2 { ...

C# Compiler

Partl.d11 |

Part1 Assembly

MyNS.Classl
MyNS.Class2

namespace MyNS

{
}

class Class3 { ...

C# Compiler

Part2.d11

Part2 Assembly
MyNS.Class3

Figure 10-10. A namespace can be spread across source files and compiled to separate assemblies.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10 I NAMESPACES AND ASSEMBLIES

282

Nesting Namespaces

Namespaces can be nested, producing a nested namespace. Nesting namespaces allows you to create a
conceptual hierarchy of types.
There are two ways you can declare a nested namespace:

e Textual nesting: You can create a nested namespace by placing its declaration inside the
declaration body of the enclosing namespace. This is illustrated on the left in Figure 10-11. In this
example, namespace OtherNs is nested in namespace MyNamespace.

e Separate declaration: You can also create a separate declaration for the nested namespace, but
you must use its fully qualified name in the declaration. This is illustrated on the right in Figure
10-11. Notice that in the declaration of nested namespace OtherNs, the fully qualified name
MyNamespace.OthexNS is used.

SomeLib.cs SomeLib.cs

namespace MyNamespace

{
}

namespace MyNamespace
{

class MyClass {...} class MyClass {...}

namespace MyNamespace.OtherNs

{
class OtherClass {...}

}

namespace OtherNs

{
class OtherClass {...}

}

Nested Declaration Separate Declaration

Figure 10-11. The two forms of declaring a nested namespace are equivalent.

Both forms of the nested namespace declarations shown in Figure 10-11 produce the same
assembly, as illustrated in Figure 10-12. The figure shows the two classes declared in file SomeLib.cs,
with their fully qualified names.

SomeLib.d11

SomeLib Assembly

MyNamespace.MyClass
MyNamespace.0therNS.OtherClass

Figure 10-12. Nested namespace structure

Although the nested namespace is inside the enclosing namespace, its members are nof members of
the enclosing namespace. A common misconception is that since the nested namespace is inside the
enclosing namespace, the members of the nested namespace must be a subset of the enclosing
namespace. This is not true; the namespaces are separate.

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

The using Directives

Fully qualified names can be quite long, and using them throughout your code can become quite
cumbersome. There are two compiler directives, however, that allow you to avoid having to use fully
qualified names—the using namespace directive and the using alias directive.

Two important points about the using directives are the following:

e They must be placed at the top of the source file, before any type declarations.

e They apply for all the namespaces in the current source file.

The using Namespace Directive

You saw in the MyWidgets example several sections back that you can specify a class by using the fully
qualified name. You can avoid having to use the long name by placing using namespace directives at the
top of the source file.

The using namespace directive instructs the compiler that you will be using types from certain
specific namespaces. You can then go ahead and use the simple class names without having to fully
qualify them.

When the compiler encounters a name that is not in the current namespace, it checks the list of
namespaces given in the using namespace directives and appends the unknown name to the first
namespace in the list. If the resulting fully qualified name matches a class in this assembly or a
referenced assembly, the compiler uses that class. If it does not match, it tries the next namespace in
the list.

The using namespace directive consists of the keyword using, followed by a namespace identifier.

Keyword

using System ;

Name of namespace

One method I have been using throughout the text is the WritelLine method, which is a member of
class Console, in the System namespace. Rather than use its fully qualified name throughout the code, I
simplified our work just a bit, by the use of the using namespace directive at the top of the code.

For example, the following code uses the using namespace directive in the first line to state that the
code uses classes or other types from the System namespace.

using System; // using namespace directive

System.Console.WriteLine("This is text 1"); // Use fully qualified name
Console.WritelLine("This is text 2"); // Use directive

283

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

The using Alias Directive

The using alias directive allows you to assign an alias for either of the following:
e Anamespace

e Atypeinanamespace

For example, the following code shows the use of two using alias directives. The first directive
instructs the compiler that identifier Syst is an alias for namespace System. The second directive says
that identifier SC is an alias for class System.Console.

Keyword Alias Namespace
L \ L

using Syst = System;
using SC = System.Console;
T 7 T
Keyword Alias Class

The following code uses these aliases. All three lines of code in Main call the
System.Console.WritelLine method.

e The first statement in Main uses the alias for a namespace—System.
e The second statement uses the fully qualified name of the method.
e The third statement uses the alias for a class—Console.

using Syst
using SC

System; // using alias directive
System.Console; // using alias directive

namespace MyNamespace

class SomeClass

{
static void Main()
{ Alias for namespace

Syst.Console.WriteLine ("Using the namespace alias.");
System.Console.WriteLine("Using fully qualified name.");
%.WIiteLine ("Using the type alias");

} Alias for class

}

284

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

The Structure of an Assembly

As you saw in Chapter 1, an assembly does not contain native machine code, but Common Intermediate
Language (CIL) code. It also contains everything needed by the Just-in-Time (JIT) compiler to convert
the CIL into native code at run time, including references to other assemblies it references. The file
extension for an assembly is generally .exe or .d11.

Most assemblies are composed of a single file. Figure 10-13 illustrates the four main sections of
an assembly.

e The assembly manifest contains the following:
— The identity of the assembly
— Alist of the files that make up the assembly
— A map of where things are in the assembly

— Information about other assemblies that are referenced

e The type metadata section contains the information about all the types defined in the assembly.
This information contains everything there is to know about each type.

e The CIL section contains all the intermediate code for the assembly.

e The resources section is optional but can contain graphics or language resources.

Contains
— Assembly name information, including simple name,
version number, culture information, and public key.
— Alist of the files that make up the assembly.
— Alist of the other assemblies referenced by this assembly.
Type Metadata 4_1 — A map of which types are contained in which assemblies.

Manifest <«

GIL Code 1 Metadata about all the types in the assembly.
The Common Intermediate Language code.

Resources <—— Resources. This section is optional.

Figure 10-13. The structure of a single-file assembly

285

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Although most assemblies comprise a single file, some have more. For an assembly with multiple
modules, one file is the primary module, and the others are secondary modules.

e The primary module contains the manifest of the assembly and references to the secondary
modules.

e The file names of secondary modules end with the extension .netmodule.

e Multiple-file assemblies are considered a single unit. They are deployed together and versioned
together.

Figure 10-14 illustrates a multifile assembly with secondary modules.

MathClasses.netmodule

MyAssembly.dl1 [Type Metadata

Manifest
CIL Code

Type Metadata

DisplayClasses.netmodule

CIL Code
Type Metadata

Resources

CIL Code

Figure 10-14. A multifile assembly

286

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

The Identity of an Assembly

In the .NET Framework, the file names of assemblies are not as important as in other operating systems
and environments. What is much more important is the identity of an assembly.

The identity of an assembly has four components that together should uniquely identify it. These
four components are the following:

e Simple name: This is just the file name without the file extension. Every assembly has a simple
name. It is also called the assembly name or the friendly name.

e Version number: This consists of a string of four period-separated integers, in the form
MajorVersion.MinorVersion.Build.Revision—for example, 2.0.35.9.

e Cultureinformation: This is a string that consists of two to five characters representing a
language, or a language and a country or region. For example, the culture name for English as
used in the United States is en-US. For German as used in Germany, it is de-DE.

e Public key: This 128-byte string should be unique to the company producing the assembly.

The public key is part of a public/private key pair, which is a set of two very large, specially chosen
numbers that can be used to create secure digital signatures. The public key, as its name implies, can be
made public. The private key must be guarded by the owner. The public key is part of the assembly’s
identity. We will look at the use of the private key later in the chapter.

287

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

The components of an assembly’s name are embedded in the assembly’s manifest. Figure 10-15
illustrates this section of the manifest.

Manifest

Simple Name: MyProgram

Version: 2.0.345.9
Culture: en-US

Public Key: (128-byte value)

Figure 10-15. The components of an assembly identity in the manifest

Figure 10-16 shows some of the terms used in the .NET documentation and literature regarding the
identity of an assembly.

Identity: All four of the components listed at the right
together constitute the identity of an assembly. 'mple Mame
Fully qualified name: A textual listing of the simple name,
version, culture, and the public key, represented
by a 16-byte public key token.
Display name: Same as fully qualified name. Public Key

Figure 10-16. Terms for an assembly’s identity

288

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Strongly Named Assemblies

A strongly named assembly is one that has a unique digital signature attached to it. Strongly
named assemblies are much more secure than assemblies that do not have strong names, for the
following reasons:

e Astrong name uniquely identifies an assembly. No one else can create an assembly with the
same strong name, so the user can be sure that the assembly came from the claimed source.

e The contents of an assembly with a strong name cannot be altered without the security
components of the CLR catching the modification.

A weakly named assembly is one that is not strongly named. Since a weakly named assembly does
not have a digital signature, it is inherently insecure. Because a chain is only as strong as its weakest link,
by default, strongly named assemblies can only access other strongly named assemblies. (There’s also a
way to allow “partially trusted callers,” but I won’t be covering that topic.)

The programmer does not produce the strong name. The compiler produces it by taking
information about the assembly and hashing it to create a unique digital signature that it attaches to the
assembly. The pieces of information it uses in the hash process are the following:

e The sequence of bytes composing the assembly
e Thesimple name

e The version number

e The culture information

e The public/private key pair

Note There is some diversity in the nomenclature surrounding strong names. What I’'m calling “strongly
named” is often referred to as “strong-named.” What I'm calling “weakly named” is sometimes referred to as “not
strong-named” or “assembly with a simple name.”

289

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

290

Creating a Strongly Named Assembly

To strongly name an assembly using Visual Studio 2010, you must have a copy of the public/private key
pair file. If you don’t have a key file, you can have Visual Studio generate one for you. You can then do

the following:

1. Open the properties of the project.
2. Select the Signing tab.
3. Select the Sign the Assembly check box, and enter the location of the key file or create a

new one.

When you compile the code, the compiler will produce a strongly named assembly. Figure 10-17
illustrates the inputs and output of the compiler.

Assembly

Hash Input
P Manifest

- Simple Name
— Version Number

- Assembly Binary

— Simple Name
— Version Number — Culture Info
- Public Key

- Culture Info
~
Key File
— Public Key CIL

— Private Key Digital Signature

Figure 10-17. Creating a strongly named assembly

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Private Deployment of an Assembly

Deploying a program on a target machine can be as simple as creating a directory on the machine
and copying the application to it. If the application doesn’t need other assemblies (such as DLLs) or
if the required DLLs are in the same directory, the program should work just fine where it is.
Programs deployed this way are called private assemblies, and this method of deployment is called
xcopy deployment.

Private assemblies can be placed in almost any directory and are self-sufficient as long as all the files
on which they depend are in the same directory or a subdirectory. In fact, you could have several
directories in various parts of the file system, each with the identical set of assemblies, and they would
all work fine in their various locations.

Some important things to know about private assembly deployment are the following:

e Thedirectory in which the private assemblies are placed is called the application directory.
e A private assembly can be either strongly named or weakly named.
e Thereis no need to register components in the registry.

e Touninstall a private assembly, just delete it from the file system.

291

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10 I NAMESPACES AND ASSEMBLIES

292

Shared Assemblies and the GAC

Private assemblies are very useful, but sometimes you’ll want to put a DLL in a central place so that a
single copy can be shared by other assemblies on the system. .NET has such a repository, called the
global assembly cache (GAC). An assembly placed into the GAC is called a shared assembly.

Some important facts about the GAC are the following:

e Only strongly named assemblies can be added to the GAC.

e Although earlier versions of the GAC accepted only files with the .d11 extension, you can now add
assemblies with the .exe extension as well.

e The GACislocated in a subdirectory named Assembly, of the Windows system directory.

Installing Assemblies into the GAC

When you attempt to install an assembly into the GAC, the security components of the CLR must first
verify that the digital signature on the assembly is valid. If there is no digital signature or if it is invalid,
the system will not install it into the GAC.

This is a one-time check, however. After an assembly is in the GAC, no further checks are required
when it is referenced by a running program.

The gacutil.exe command-line utility allows you to add and delete assemblies from the GAC and
list the assemblies it contains. The three most useful flags are the following:

e /i:Inserts an assembly into the GAC
e /u:Uninstalls an assembly from the GAC

e /1:Lists the assemblies in the GAC

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Side-by-Side Execution in the GAC

After an assembly is deployed to the GAC, it can be used by other assemblies in the system.
Remember, however, that an assembly’s identity consists of all four parts of the fully qualified name.
So, if the version number of a library changes or if it has a different public key, these differences
specify different assemblies.

The result is that there can be many different assemblies in the GAC that have the same file
name. Although they have the same file name, they are different assemblies and coexist perfectly fine
together in the GAC. This makes it easy for different applications to use different versions of the same
DLL at the same time, since they are different assemblies with different identities. This is called side-
by-side execution.

Figure 10-18 illustrates four different DLLs in the GAC that all have the same file name—
MyLibrary.dll. Looking at the figure, you can see that the first three come from the same company,
because they have the same public key, and the fourth comes from a different source, since it has a
different public key. These versions differ as follows:

e An English version 1.0.0.0, from company A
e An English version 2.0.0.0, from company A
¢ A German version 1.0.0.0, from company A
e An English version 1.0.0.0, from company B

Global Assembly Cache

MyLibrary.d11
MyLibrary v.1.0.0.0 English Language,
en-US PubK-xxx Version 1.0.0.0
MyLibrary.d11
MyLibrary v.1.0.0.0 German Language, DLLs from the
de PubK-xxx Version 1.0.0.0 Same Company
MyLibrary.d11
MyLibrary v.2.0.0.0 English Language,
en-US PubK-xxx Version 2.0.0.0 J
MyLibrary.d11
MyLibrary v.1.0.0.0 English Language, Version 1.0.0.0 DLL
en-US PubK-abc from a Different Company

Figure 10-18. Four different side-by-side DLLs in the GAC

293

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

294

Configuration Files

Configuration files contain information about the application, for use by the CLR at run time. They can
instruct the CLR to do such things as use a different version of a DLL or to look in additional directories
when searching for a DLL referenced by the program.

Configuration files consist of XML code and don’t contain C# code. The details of writing the XML
code are beyond the scope of this text, but you should understand the purpose of configuration files
and how they are used. One way they are used is to update an application assembly to use the new
version of a DLL.

Suppose, for example, that you have an application that references a DLL in the GAC. The identity of
the reference in the application’s manifest must exactly match the identity of the assembly in the GAC. If
anew version of the DLL is released, it can be added to the GAC, where it can happily coexist with the
old version.

The application, however, still has embedded in its manifest the identity of the old version of the
DLL. Unless you recompile the application and make it reference the new version of the DLL, it will
continue to use the old version. That’s fine, if that’s what you want.

If, however, you do not want to recompile the application but want it to use the new DLL, then you
can create a configuration file telling the CLR to use the new version rather than the old version. The
configuration file is placed in the application directory.

Figure 10-19 illustrates objects in the run-time process. The MyProgram.exe application on the left
calls for version 1.0.0.0 of the MyLibrary.dl1l, as indicated by the dashed arrow. But the application has a
configuration file, which instructs the CLR to load version 2.0.0.0 instead. Notice that the name of the
configuration file consists of the full name of the executable file including the extension, plus the
additional extension .config.

Global Assembly Cache

MyProgram.exe MyLibrary.d11
MyLibrary v.1.0.0.0 TT\~|~ — |~ =>| v1.0.0.0
| MyProgram.exe.config > MyL\;grgBy(.)dH

Figure 10-19. Using a configuration file to bind to a new version

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Delayed Signing

It is important that companies carefully guard the private key of their official public/private key pair.
Otherwise, if untrustworthy people were to obtain it, they could publish code masquerading as the
company’s code. To avoid this, companies clearly cannot allow free access to the file containing their
public/private key pair. In large companies, the final strong naming of an assembly is often performed at
the very end of the development process, by a special group with access to the key pair.

This can cause problems, though, in the development and testing processes, for several reasons.
First, since the public key is one of the four components of an assembly’s identity, it can’t be set until the
public key is supplied. Also, a weakly named assembly cannot be deployed to the GAC. Both the
developers and testers need to be able to compile and test the code in the way it will be deployed on
release, including its identity and location in the GAC.

To allow for this, there is a modified form of assigning a strong name, called delayed signing, or
partial signing, that overcomes these problems, but without releasing access to the private key.

In delayed signing, the compiler uses only the public key of the public/private key pair. The public
key can then be placed in the manifest to complete the assembly’s identity. Delayed signing also uses a
block of 0s to reserve space for the digital signature.

To create a delay-signed assembly, you must do two things. First, create a copy of the key file that
has only the public key, rather than the public/private key pair. Next, add an additional attribute called
DelaySignAttribute to the assembly scope of the source code and set its value to true.

295

CHAPTER 10 " NAMESPACES AND ASSEMBLIES

Figure 10-20 shows the input and output for producing a delay-signed assembly. Notice the
following in the figure:

¢ Intheinput, the DelaySignAttribute is located in the source files, and the key file contains only
the public key.

e Inthe output, there is space reserved for the digital signature at the bottom of the assembly.

Assembly
Source Code Files -
Manifest
- Simple Name - Simple Name
- Version Number — Version Number
— Culture Info - CuItL_Jre Info
—DelaySignAttribute - Public Key
= true -
C# Compiler etadata
Key File CIL
- Public Key J
Block of Os reseving | . 4500000,
space for digital signature

Figure 10-20. Creating a delay-signed assembly

If you try to deploy the delay-signed assembly to the GAC, the CLR will not allow it, because it’s not
strongly named. To deploy it on a particular machine, you must first issue a command-line command
that disables the GAC’s signature verification on that machine, for this assembly only, and allows it to be
installed in the GAC. To do this, issue the following command from the Visual Studio command prompt.

sn -vr MyAssembly.dll

You've now looked at weakly named assemblies, delay-signed assemblies, and strongly named
assemblies. Figure 10-21 summarizes the differences in their structures.

Weakly Named Delay-Signed Strongly Named
Assembly Assembly Assembly
Manifest Manifest Manifest
Metadata Metadata Metadata
CIL CIL CIL
00000000000000 39AE264F781BA
000000000000 ... E4199D6A278 ...

Placeholder for l

Digital Signature Digi

Figure 10-21. The structures of different assembly signing stages

296

tal Signature —j

CHAPTER 11

Exceptions

What Are Exceptions?

The try Statement

The Exception Classes

The catch Clause

Examples Using Specific catch Clauses
The catch Clauses Section

The finally Block

Finding a Handler for an Exception
Searching Further

Throwing Exceptions

Throwing Without an Exception Object

297

CHAPTER 11 = EXCEPTIONS

What Are Exceptions?

An exception is a run-time error in a program that violates a system or application constraint, or a
condition that is not expected to occur during normal operation. Examples are when a program tries to

divide a number by zero or tries to write to a read-only file. When these occur, the system catches the
error and raises an exception.

If the program has not provided code to handle the exception, the system will halt the program. For
example, the following code raises an exception when it attempts to divide by zero:

static void Main()

{
int x = 10, y = 0;
X /=y; // Attempt to divide by zero--raises an exception

}

When this code is run, the system displays the following error message:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.
at Exceptions_1.Program.Main() in C:\Progs\Exceptions\Program.cs:1line 12

298

The try Statement

CHAPTER 11 = EXCEPTIONS

The try statement allows you to designate blocks of code to be guarded for exceptions and to supply
code to handle them if they occur. The try statement consists of three sections, as shown in Figure 11-1.

e The try block contains the code that is being guarded for exceptions.

e The catch clauses section contains one or more catch clauses. These are blocks of code to handle

the exceptions. They are also known as exception handlers.

e The finally block contains code to be executed under all circumstances, whether or not an

exception is raised.

try block: This block contains the
statements being guarded for
exceptions.

catch clauses: This section contains
the exception handlers for
exceptions thrown in the try block.

finally block: This block contains
code to be executed whether or not
an exception is thrown in the try
block.

Figure 11-1. Structure of the try statement

try
{

statements

}

catch(...)
i

}
catch(...)
{

}

catch ...

statements

statements

finally
{

}

statements

This section is required.

One or both of these sec-
tions must be present. If
both sections are present,
the finally block must be
placed last.

299

CHAPTER 11 = EXCEPTIONS

300

Handling the Exception

The previous example showed that attempting to divide by zero causes an exception. You can modify the
program to handle that exception by placing the code inside a try block and supplying a simple catch
clause. When the exception is raised, it is caught and handled in the catch block.

static void Main()

{
int x = 10;
try
{
int y = 0;
X /=y; // Raises an exception
}
catch
{
// Code to handle the exception
Console.WriteLine("Handling all exceptions - Keep on Running");
}
}

This code produces the following message. Notice that, other than the output message, there is no
indication that an exception has occurred.

Handling all exceptions - Keep on Running

CHAPTER 11 = EXCEPTIONS

The Exception Classes

There are many different types of exceptions that can occur in a program. The BCL defines a number of
exception classes, each representing a specific type. When one occurs, the CLR does the following:

e Itcreates an exception object for the type.
e Itlooks for an appropriate catch clause to handle it.

All exception classes are ultimately derived from the System.Exception class. Figure 11-2 shows a
portion of the exception inheritance hierarchy.

System.Exception: The base
class for all exception classes

SystemException: The base class
for all the predefined system exceptions

IndexOutOfRangeException

NullReferenceException

10.I0Exception |

IHNE

ApplicationException: The base class
for all non-fatal, application-defined exceptions

Figure 11-2. Structure of the exception hierarchy

301

Download from Wow! eBook <www.wowebook.com>

CHAPTER 11 I EXCEPTIONS

302

An exception object contains read-only properties with information about the exception that
caused it. Table 11-1 shows some of these properties.

Table 11-1. Selected Properties of an Exception Object

Property Type Description

Message string This property contains an error message explaining the cause of the
exception.

StackTrace string This property contains information describing where the exception
occurred.

InnerException Exception If the current exception was raised by another exception, this property
contains a reference to the previous exception.

HelpLink string This property can be set by application-defined exceptions to give a
URN or URL for information on the cause of the exception.

Source string If not set by an application-defined exception, this property contains

the name of the assembly where the exception originated.

CHAPTER 11 = EXCEPTIONS

The catch Clause

The catch clause handles exceptions. There are three forms, allowing different levels of processing.
Figure 11-3 shows the forms.

catch General catch Clause

{ - Does not have a parameter list after the catch keyword.
Statements — Matches any type of exception raised in the try block.

}

catch(ExceptionType) Specific catch Clause

{ — Takes the name of an exception class as a single parameter.
Statements — Matches any exception of the named type.

}

Specific catch Clause with Object

catch(ExceptionType ExceptionVariable) - Includes an identifier after the name of the exception class.

{ — The identifier acts as a local variable in the block of the catch
Statements clause, and is called the exception variable.

} — The exception variable references the exception object, and

can be used to access information about the object.

Figure 11-3. The three forms of the catch clause

The general catch clause can accept any exception but can’t determine the type of exception that
caused it. This allows only general processing and cleanup for whatever exception might occur.

The specific catch clause form takes the name of an exception class as a parameter. It matches
exceptions of the specified class or exception classes derived from it.

The specific catch clause with object form gives you the most information about the exception. It
matches exceptions of the specified class, or exception classes derived from it. It gives you a reference to
the exception object created by the CLR, by assigning it to the exception variable. You can access the
exception variable’s properties within the block of the catch clause to get specific information about the
exception raised.

For example, the following code handles exceptions of type IndexOutOfRangeException. When one
occurs, a reference to the actual exception object is passed into the code with parameter name e. The
three WritelLine statements each read a string field from the exception object.

Exception type Exception variable
4 d

catch (IndexOutOfRangeException e)
{ Accessing the exception variable
4
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);
Console.WriteLine("Stack: {0}", e.StackTrace);

303

CHAPTER 11 = EXCEPTIONS

304

Examples Using Specific catch Clauses

Going back to our divide-by-zero example, the following code modifies the previous catch clause to
specifically handle exceptions of the DivideByZeroException class. While in the previous example, the
catch clause would handle any exception raised in the try block, the current example will only handle
those of the DivideByZeroException class.

int x = 10;
try
{

int y = 0;

X /=y; // Raises an exception
} Exception type

1

catch (DivideByZeroException)
{

Console.WriteLine("Handling an exception.");
}

You could further modify the catch clause to use an exception variable. This allows you to access the
exception object inside the catch block.

int x = 10;
try
{

int y = 0;

X /=y; // Raises an exception
} Exception type Exception variable

4 2

catch (DivideByZeroException e)
{ Accessing the exception variable

!
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);
Console.WriteLine("Stack: {0}", e.StackTrace);

}

This code produces the following output:

Message: Attempted to divide by zero.

Source: Exceptions 1

Stack: at Exceptions_1.Program.Main() in C:\Progs\Exceptions 1\
Exceptions 1\Program.cs:line 14

The catch Clauses Section

CHAPTER 11 = EXCEPTIONS

The purpose of a catch clause is to allow you to handle an exception in an elegant way. If your catch
clause is of the form that takes a parameter, then the system has set that exception variable to a
reference to the exception object, which you can inspect to determine the cause of the exception. If the
exception was the result of a previous exception, you can get a reference to that previous exception’s

exception object from the exception variable’s InnerException property.

The catch clauses section can contain multiple catch clauses. Figure 11-4 shows a summary of the
catch clauses section.

try
Block

catch
Clauses

finally
Block

try 7 catch(class_type id)
{ e {
Statements Phd Statements
} e }
g
?atch(o) catch(class_type id)
{
| Statements Statements
}
catch ...
N
finally S o catch
{ RS {
Statements S o Statements

} o)

Figure 11-4. Structure of the catch clauses section of a try statement

Specific catch clauses:
more than one allowed

General catch clause:
only one allowed

When an exception is raised, the system searches the list of catch clauses in order, and the first
catch clause that matches the type of the exception object is executed. Because of this, there are two
important rules in ordering the catch clauses. They are the following:

e The specific catch clauses must be ordered with the most specific exception types first,
progressing to the most general. For example, if you declare an exception class derived from
NullReferenceException, the catch clause for your derived exception type should be listed before
the catch clause for NullReferenceException.

o Ifthereis a general catch clause, it must be last, after all specific catch clauses. Using the general
catch clause is discouraged. You should use one of the specific catch clauses if at all possible. The
general catch clause hides bugs by allowing the program to continue execution and can leave the
program in an unknown state.

305

CHAPTER 11 = EXCEPTIONS

The finally Block

If a program’s flow of control enters a try statement that has a finally block, the finally block is always
executed. Figure 11-5 shows the flow of control.

e Ifno exception occurs inside the try block, then at the end of the try block, control skips over any
catch clauses and goes to the finally block.

e Ifan exception occurs inside the try block, then the appropriate catch clause in the catch clauses
section is executed, followed by execution of the finally block.

try try
{ {
Statements Statements -
} } If an exception is encountered
in the try block, then execution
catch(...) If no exception is en- catch(...) transfers to the appropriate
{ countered in the try { catch clause.
Statements block, then execution Statements
} skips the catch clauses } When execution of the catch
catch ... and starts at the begin- catch ... clause is complete, control is
ning of the finally block. transferred to the finally block.
finally finally
{ {
Statements Statements

} }
Figure 11-5. Execution of the finally block

The finally block will always be executed before returning to the calling code, even if a try block
has a return statement or an exception is thrown in the catch block. For example, in the following code,
there is a return statement in the middle of the try block that is executed under certain conditions. This
does not allow it to bypass the finally statement.

try
{
if (inval < 10) {
Console.Write("First Branch - ");
return;
}
else
Console.Write("Second Branch - ");
}
finally

{ Console.WriteLine("In finally statement"); }

This code produces the following output when variable inVal has the value 5:

First Branch - In finally statement

306

CHAPTER 11 = EXCEPTIONS

Finding a Handler for an Exception

When a program raises an exception, the system checks to see whether the program has provided a
handler for it. Figure 11-6 shows the flow of control.

e Ifthe exception occurred inside a try block, the system will check to see whether any of the catch
clauses can handle the exception.

e Ifan appropriate catch clause is found, the one of the following happens:
— The catch clause is executed.
— Ifthereis a finally block, it is executed.

— Execution continues after the end of the try statement (that is, after the finally block, or
after the last catch clause if there is no finally block).

try
{
try
{ }
} cee Find a matching catch cla}use and cateh(...)
transfer control to it. catch(...)
catch(...) {
catch(...)
{ Transfer control to the finally (} tch
v block if one exists; if not, transfer cateh ...
} control to the code following the finally
catch ... last catch block. {
}
Without a finally block With a finally block

Figure 11-6. Exception with handler in current try statement

307

CHAPTER 11

EXCEPTIONS

Searching Further

If the exception was raised in a section of code that was not guarded by a try statement or if the try
statement does not have a matching exception handler, the system will have to look further for a
matching handler. It will do this by searching down the call stack, in sequence, to see whether there is an
enclosing try block with a matching handler.

Figure 11-7 illustrates the search process. On the left of the figure is the calling structure of the code,

and on the right is the call stack. The figure shows that Method2 is called from inside the try block of
Method1. If an exception occurs inside the try block in Method2, the system does the following:

First, it checks to see whether Method2 has exception handlers that can handle the exception.
— Ifso, Method2 handles it, and program execution continues.

— Ifnot, the system continues down the call stack to Method1, searching for an appropriate
handler.

If Method1 has an appropriate catch clause, the system does the following:
— Goes back to the top of the call stack—which is Method2
— Executes Method2’s finally block and pops Method2 off the stack

— Executes Method1’s catch clause and its finally block

If Method1 doesn’t have an appropriate catch clause, the system continues searching down the
call stack.

Call Stack

1
Method2 () Method1() |
{ ... { ... | Method2()
try try | ‘>
{ { I
... Method2 () | Method1()
} } I)
catch ... catch ... 1
finally ... finally ... 1
1
1
1

3. Search down the call stack for
an enclosing try statement
with a matching catch.

2. Search the catch clauses of
the try statement of the
enclosing method.

1. Search the catch clauses
of the local try statement.

Figure 11-7. Searching down the call stack

308

CHAPTER 11 = EXCEPTIONS

General Algorithm

Figure 11-8 shows the general algorithm for handling an exception.

Did the exception occur
within a try block?

Yesl No

Is there a matching catch
clause in the try block?

Yes lNo

)

Search down the call stack for

an enclosing try statement with
a matching catch clause. Was
l one found?

Yes No
Execute the finally clause, if
there is one. 4

l Prepare to execute the catch

clause.

Continue execution after the l
try statement.

Go back to the top of the call
stack. Working down the
stack, execute the finally
clauses of any enclosing try
statements, and pop each
stack frame from the stack.

|

Execute the matching catch
clause.

|

Execute the finally clause, if
there is one.

|

Continue execution after the
try statement.

Execute the catch clause.

/

NI

Terminate the application.

2
N

N

(o0, ©)

(o)
N

)
=/

/

Figure 11-8. The general algorithm for handling an exception

309

CHAPTER 11 = EXCEPTIONS

Example of Searching Down the Call Stack

In the following code, Main starts execution and calls method A, which calls method B. A description and
diagram of the process are given after the code and in Figure 11-9.

class Program

{
static void Main()
{
MyClass MCls = new MyClass();
try
{ MC1s.A(); }
catch (DivideByZeroException e)
{ Console.WritelLine("catch clause in Main()"); }
finally
{ Console.WriteLine("finally clause in Main()"); }
Console.WritelLine("After try statement in Main.");
Console.WriteLine(" -- Keep running.");
}
}
class MyClass
{
public void A()
{
try
{B(); }
catch (System.NullReferenceException)
{ Console.WritelLine("catch clause in A()"); }
finally
{ Console.WriteLine("finally clause in A()"); }
}
void B()
{
int x = 10, y = 0;
try
{x/=y;}
catch (System.IndexOutOfRangeException)
{ Console.WritelLine("catch clause in B()"); }
finally
{ Console.WriteLine("finally clause in B()"); }
}
}

310

CHAPTER 11 = EXCEPTIONS

This code produces the following output:

finally clause in B()

finally clause in A()

catch clause in Main()

finally clause in Main()

After try statement in Main.
-- Keep running.

1. Main calls A, which calls B, which encounters a DivideByZeroException exception.

2. The system checks B’s catch section for a matching catch clause. Although it has one for
IndexOutOfRangeException, it doesn’t have one for DivideByZeroException

3. The system then moves down the call stack and checks A’s catch section, where it finds that A
also doesn’t have a matching catch clause.

4, The system continues down the call stack and checks Main’s catch clause section, where it
finds that Main does have a DivideByZeroException catch clause.

5. Although the matching catch clause has now been located, it is not executed yet. Instead, the
system goes back to the top of the stack, executes B’s finally clause, and pops B from the call
stack.

6. The system then moves to A, executes its finally clause, and pops A from the call stack.

7. Finally, Main’s matching catch clause is executed, followed by its finally clause. Execution
then continues after the end of Main’s try statement.

311

Download from Wow! eBook <www.wowebook.com>

CHAPTER 11 I EXCEPTIONS

312

Call Stack

B()

A()

Main()

B()

AQ)

Main()

Figure 11-9.

An exception
is raised.
(_

catch is found,
but not executed

yet.
4—

B()

A()

Main()

B()

AQ)

Main()

Main()

3.
catch is not
found. B()
<«
AQ)
Main()
finallyis 6.
executed, and
B is popped.
(_
A()
Main()

catch is executed and
finally is executed, so
execution continues.

R

Searching the stack for an exception handler

catch is not

found.
<«

finallyis
executed, and

A is popped.
(_

CHAPTER 11 = EXCEPTIONS

Throwing Exceptions

You can make your code explicitly raise an exception by using the throw statement. The syntax for the
throw statement is the following:

throw ExceptionObject;

For example, the following code defines a method called PrintArg, which takes a string argument
and prints it out. Inside the try block, it first checks to make sure the argument is not null. If it is, it
creates an ArgumentNullException instance and throws it. The exception instance is caught in the catch
statement, and the error message is printed. Main calls the method twice: once with a null argument and
then with a valid argument.

class MyClass

{
public static void PrintArg(string arg)
{
try
if (arg == null) Supply name of null argument
.
ArgumentNullException myEx = new ArgumentNullException("arg");
throw myEx;
}
Console.Writeline(arg);
catch (ArgumentNullException e)
Console.WritelLine("Message: {0}", e.Message);
}
}
}

class Program

static void Main()

{
string s = null;
MyClass.PrintArg(s);
MyClass.PrintArg("Hi there!");

}
}

This code produces the following output:

Message: Value cannot be null.
Parameter name: arg
Hi there!

313

CHAPTER 11 = EXCEPTIONS

Throwing Without an Exception Object

The throw statement can also be used without an exception object, inside a catch block.

e This form rethrows the current exception, and the system continues its search for additional
handlers for it.

e This form can be used only inside a catch statement.
For example, the following code rethrows the exception from inside the first catch clause:

class MyClass

public static void PrintArg(string arg)

{
try
{
try
{
if (arg == null) Supply name of null argument
{ 4
ArgumentNullException myEx = new ArgumentNullException("arg");
throw myEx;
}
Console.WriteLine(arg);
}
catch (ArgumentNullException e)
Console.WriteLine("Inner Catch: {0}", e.Message);
throw;
yo0
} Rethrow the exception, with no additional parameters
catch
{
Console.WriteLine("Outer Catch: Handling an Exception.");
}
}

}

class Program {
static void Main() {
string s = null;
MyClass.PrintArg(s);
}
}

314

CHAPTER 11 = EXCEPTIONS

This code produces the following output:

Inner Catch: Value cannot be null.
Parameter name: arg
Outer Catch: Handling an Exception.

315

I What Are Structs?
I Structs Are Value Types

[Assigning to a Struct

[Constructors and Destructors

Il Field Initializers Are Not Allowed

[Structs Are Sealed

[Boxing and Unboxing

[Structs As Return Values and Parameters

" Additional Information About Structs

317

CHAPTER 12 I STRUCTS

What Are Structs?

Structs are programmer-defined data types, very similar to classes. They have data members and
function members. Although similar to classes, there are a number of important differences. The most
important ones are the following:

e C(Classes are reference types, and structs are value types.

e Structs are implicitly sealed, which means they cannot be derived from.

The syntax for declaring a struct is similar to that of declaring a class:
Keyword
struct StructName

MemberDeclarations

}

For example, the following code declares a struct named Point. It has two public fields, named X and
Y.In Main, three variables of struct type Point are declared, and their values are assigned and printed out.

struct Point

public int X;
public int Y;
}

class Program

static void Main()

{

Point first, second, third;

first.X
second.X
third.X
third.Y

10; first.Y = 10;

20; second.Y = 20;
first.X + second.X;
first.Y + second.Y;

Console.WriteLine("first: {0}, {1}", first.X, first.Y);
Console.WriteLine("second: {0}, {1}", second.X, second.Y);
Console.WriteLine("third: {0}, {1}", third.X, third.Y);

318

CHAPTER 12 I STRUCTS

Structs Are Value Types

As with all value types, a variable of a struct type contains its own data. Consequently:
e Avariable of a struct type cannot be null.

e Two structs variables cannot refer to the same object.

For example, the following code declares a class called CSimple, a struct called Simple, and a variable
of each. Figure 12-1 shows how the two would be arranged in memory.

class CSimple
public int X;

) public int Y;

struct Simple
public int X;
public int Y;
class Program
static void Main()

CSimple cs
Simple ss

new CSimple();
new Simple();

Heap

Struct Simple ss

Il

Class CSimple cs —

LN

Figure 12-1. Memory arrangement of a class versus a struct

319

CHAPTER 12 I STRUCTS

Assigning to a Struct

Assigning one struct to another copies the values from one to the other. This is quite different from
copying from a class variable, where only the reference is copied.

Figure 12-2 shows the difference between the assignment of a class variable and a struct variable.
Notice that after the class assignment, cs2 is pointing at the same object in the heap as cs1. But after the
struct assignment, the values of ss2’s members are copies of those in ss1.

class CSimple
{ public int X; public int VY; }

struct Simple
{ public int X; public int VY; }

class Program

{
static void Main()
{
CSimple cs1 = new CSimple(), cs2 = null; // Class instances
Simple ss1 = new Simple(), ss2 = new Simple(); // Struct instances
cs1.X = ss1.X = 5; // Assign 5 to ss1.X and cs1.X
cs1.Y = ss1.Y = 10; // Assign 10 to ss1.Y and cs1.Y
€s2 = csl; // Assign class instance
$S2 = ssil; // Assign struct instance
}
}
+ | +
Stack ! Stack
|
l Y: 0 : (Y: 10
ss2 ! ss2
X: 0 1 .
|
ssl I : ssl [
|
cs2 | cs2
|
csl | csl
|
|
|
Before Instance Assignments After Instance Assignments

Figure 12-2. Assigning a class variable and a struct variable

320

CHAPTER 12 I STRUCTS

Constructors and Destructors

Structs can have instance and static constructors, but destructors are not allowed.

Instance Constructors

The language implicitly supplies a parameterless constructor for every struct. This constructor sets each
of the struct’s members to the default value for that type. Value members are set to their default values.
Reference members are set to null.

The predefined parameterless constructor exists for every struct—and you cannot delete or redefine
it. You can, however, create additional constructors, as long as they have parameters. Notice that this is
different from classes. For classes, the compiler will supply an implicit parameterless constructor only if
no other constructors are declared.

To call a constructor, including the implicit parameterless constructor, use the new operator. Notice
that the new operator is used even though the memory is not allocated from the heap.

For example, the following code declares a simple struct with a constructor that takes two int
parameters. Main creates two instances of the struct—one using the implicit parameterless constructor
and the second with the declared two-parameter constructor.

struct Simple

{
public int X;
public int Y;
public Simple(int a, int b) // Constructor with parameters
{
X = a;
Y = b;
}
}

class Program

static void Main()
{ Call implicit constructor

new Simple();

new Simple(5, 10);

Call constructor
Console.WriteLine("{0},{1}", s1.X, s1.Y);
Console.WriteLine("{0},{1}", s2.X, s2.Y);

Simple s1
Simple s2

321

Download from Wow! eBook <www.wowebook.com>

CHAPTER 12 B STRUCTS

322

You can also create an instance of a struct without using the new operator. If you do this, however,
there are some restrictions, which are the following:

¢ You cannot use the value of a data member until you have explicitly set it.

¢ You cannot call any function member of the struct until all the data members have been
assigned.

For example, the following code shows two instances of struct Simple created without using the
new operator. When there is an attempt to access s1 without explicitly setting the data member values,
the compiler produces an error message. There are no problems reading from s2 after assigning values
to its members.

struct Simple

public int X;
public int Y;

}
class Program
{
static void Main()
{ No constructor calls
L
Simple s1, s2;
Console.WriteLine("{0},{1}", s1.X, s1.Y); // Compiler error
=)
s2.X = 5; Not yet assigned
s2.Y = 10;
Console.WriteLine("{0},{1}", s2.X, s2.Y); // OK
}
}

CHAPTER 12 I STRUCTS

Static Constructors

As with classes, the static constructors of structs create and initialize the static data members and cannot
reference instance members. Static constructors for structs follow the same rules as those for classes.
A static constructor is called before the first of either of the following two actions:
e Acall to an explicitly declared constructor

e Areference to a static member of the struct

Summary of Constructors and Destructors

Table 12-1 summarizes the use of constructors and destructors with structs.

Table 12-1. Summary of Constructors and Destructors

Type Description

Instance constructor (parameterless) Cannot be declared in the program. An implicit
constructor is supplied by the system for all structs. It
cannot be deleted or redefined by the program.

Instance constructor (with parameters) Can be declared in the program.

Static constructor Can be declared in the program.
Destructor Cannot be declared in the program. Destructors are not
allowed.

323

CHAPTER 12 I STRUCTS

Field Initializers Are Not Allowed

Field initializers are not allowed in struct declarations, as shown in the following code:

struct Simple

Not allowed
public int x = 0; // Compile error
public int y = 10; // Compile error
Not allowed

Structs Are Sealed

Structs are always implicitly sealed, and hence you cannot derive other structs from them.

Since structs do not support inheritance, the use of several of the class member modifiers with
struct members would not make sense; thus, they cannot be used in their declarations. The modifiers
that cannot be used with structs are the following:

e protected
e internal
e abstract

e virtual

Structs themselves are, under the covers, derived from System.ValueType, which is derived
from object.

The two inheritance-associated keywords you can use with struct members are the new and override
modifiers, when creating a member with the same name as a member of base class System.ValueType,
from which all structs are derived.

Boxing and Unboxing

As with other value type data, if you want to use a struct instance as a reference type object, you must
make a boxed copy. Boxing and unboxing are explained in Chapter 18.

324

CHAPTER 12 I STRUCTS

Structs As Return Values and Parameters

Structs can be used as return values and parameters.

e Return value: When a struct is a return value, a copy is created and returned from the
function member.

o Value parameter: When a struct is used as a value parameter, a copy of the actual parameter
struct is created. The copy is used in the execution of the method.

e ref and out parameters: If you use a struct as a ref or out parameter, a reference to the struct is
passed into the method so that the data members can be changed.

Additional Information About Structs

Allocating structs requires less overhead than creating instances of a class, so using structs instead of
classes can sometimes improve performance—but beware of the high cost of boxing and unboxing.
Finally, some last things you should know about structs are the following:

o The predefined simple types (int, short, long, and so on), although considered primitives in .NET
and C#, are all actually implemented under the covers in .NET as structs.

e Youcan declare partial structs in the same way as partial classes, as described in Chapter 6.

Structs, like classes, can implement interfaces, which will be covered in Chapter 17.

325

" Enumerations
I Bit Flags
" More About Enums

327

CHAPTER 13 I ENUMERATIONS

Enumerations

An enumeration, or enum, is a programmer-defined type, like a class or a struct.

e Like structs, enums are value types and therefore store their data directly, rather than separately,
with a reference and data.

e Enums have only one type of member: named constants with integral values.

The following code shows an example of the declaration of a new enum type called TrafficlLight,
which contains three members. Notice that the list of member declarations is a comma-separated list;
there are no semicolons in an enum declaration.

Keyword Enum name

enum TrafficLight

Green, <« Comma separated—no semicolons
Yellow, <« Comma separated—no semicolons
Red

Every enum type has an underlying integral type, which by default is int.

e FEach enum member is assigned a constant value of the underlying type.

e By default, the compiler assigns 0 to the first member and assigns each subsequent member the
value one more than the previous member.

For example, in the TrafficLight type, the compiler assigns the int values 0, 1, and 2 to members
Green, Yellow, and Red, respectively. In the output of the following code, you can see the underlying
member values by casting them to type int. Figure 13-1 illustrates their arrangement on the stack.

TrafficLight t1
TrafficLight t2
Trafficlight t3

Trafficlight.Green;
TrafficlLight.Yellow;
Trafficlight.Red,;

Console.WriteLine("{0},\t{1}", t1, (int) t1);
Console.WriteLine("{0},\t{1}", t2, (int) t2);
Console.WriteLine("{0},\t{1}\n", t3, (int) t3);

Cast to int

328

CHAPTER 13 I ENUMERATIONS

This code produces the following output:

Green, 0
Yellow, 1
Red, 2
I —"
static void Main() !
{ | t3 2
TrafficLight t1 = TrafficLight.Green; 1
TrafficLight t2 = TrafficLight.Yellow; 1 t2 !
TrafficLight t3 = TrafficLight.Red; | tl 0
) ! [A~

Figure 13-1. The member constants of an enum are represented by underlying integral values.

You can assign enum values to variables of the enum type. For example, the following code shows
the declaration of three variables of type TrafficLight. Notice that you can assign member literals to
variables, or you can copy the value from another variable of the same type.

class Program

static void Main()

{ Type Variable Member
L 4
Trafficlight t1 = TrafficlLight.Red; // Assign from member
Trafficlight t2 = Trafficlight.Green; // Assign from member
Trafficlight t3 = t2; // Assign from variable

Console.WritelLine(t1);
Console.WritelLine(t2);
Console.WritelLine(t3);
}
}

This code produces the following output. Notice that the member names are printed as strings.

Red
Green
Green

329

CHAPTER 13 I ENUMERATIONS

Setting the Underlying Type and Explicit Values
You can use an integral type other than int by placing a colon and the type name after the enum name.
The type can be any integer type. All the member constants are of the enum’s underlying type.

Colon

enum TrafficlLight : ul(%ng

{
Underlying type

The values of the member constants can be any values of the underlying type. To explicitly set the
value of a member, use an initializer after its name in the enum declaration. There can be duplicate
values, although not duplicate names, as shown here:

enum Trafficlight

{
Green = 10,
Yellow = 15, // Duplicate values
Red = 15 // Duplicate values
}

For example, the code in Figure 13-2 shows two equivalent declarations of enum TrafficlLight.

e The code on the left accepts the default type and numbering.

e The code on the right explicitly sets the underlying type to int and the members to values
corresponding to the default values.

Colon w rType

enum TrafficLight : int
{

enum TrafficLight
{

Green, Green =0,
Yellow, Yellow = 1,
Red Red =2

} }

—

Explicitly set values

Figure 13-2. Equivalent enum declarations

330

Implicit Member Numbering

CHAPTER 13 I ENUMERATIONS

You can explicitly assign the values for any of the member constants. If you don’t initialize a member

constant, the compiler implicitly assigns it a value. Figure 13-3 illustrates the rules the compiler uses for

assigning those values.

e The values associated with the member names do not need to be distinct.

Does the first
member have an
initialization?

Set it to 0.

member have an
initialization?

Does the next

Set it to the

Assign it the value
L one more than the
initialization value.)
previous value.

L

|)

Figure 13-3. The algorithm for assigning member values

For example, the following code declares two enumerations. CardSuit accepts the implicit
numbering of the members, as shown in the comments. FaceCards sets some members explicitly and
accepts implicit numbering of the others.

enum CardSuit

Hearts,
Clubs,
Diamonds,
Spades,
MaxSuits

}

enum FaceCards

// Member
Jack
Queen,
King,
Ace,
NumberOfFaceCards = 4,
SomeOtherValue,
HighestFaceCard

11,

Ace

//
//
//
//
//
//

//
//
//
//
//
//
//
//

~HwWN RO
1

Since this is first

One more than the previous one
One more than the previous one
One more than the previous one

A common way to assign a constant
to the number of listed items.

Value assigned

11 -
12 -
13 -
14 -
4 -
5_
14 -

Explicitly set

One more than the previous one
One more than the previous one
One more than the previous one
Explicitly set

One more than the previous one
Ace is defined above

331

Download from Wow! eBook <www.wowebook.com>

CHAPTER 13 M ENUMERATIONS

Bit Flags

Programmers have long used the different bits in a single word as a compact way of representing a set of
on/off flags. Enums offer a convenient way to implement this.
The general steps are the following:

1. Determine how many bit flags you need, and choose an unsigned integral type with enough
bits to hold them.

2. Determine what each bit position represents, and give it a name. Declare an enum of the
chosen integral type, with each member represented by a bit position.

3. Use the bitwise OR operator to set the appropriate bits in a word holding the bit flags.

4. Unpack the bit flags by using the bitwise AND operator, or the HasFlag method.

For example, the following code shows the enum declaration representing the options for a card
deck in a card game. The underlying type, uint, is more than sufficient to hold the four bit flags needed.
Notice the following about the code:

e The members have names that represent binary options.

— Each option is represented by a particular bit position in the word. Bit positions hold either a
Ooral.

— Since a bit flag represents a set of bits that are either on or off, you do not want to use 0 as a
member value. It already has a meaning—that all the bit flags are off.

e Hexadecimal representation is often used when working with bit patterns because there is a more
direct correlation between a bit pattern and its hexadecimal representation than with its decimal
representation.

e Decorating the enum with the Flags attribute is not actually necessary but gives some additional
convenience, which I'll discuss shortly. Attributes are covered in Chapter 24.

[Flags]

enum CardDeckSettings : uint
SingleDeck = 0x01, // Bit o
LargePictures = 0x02, // Bit 1
FancyNumbers = 0x04, // Bit 2
Animation = 0x08 // Bit 3

Figure 13-4 illustrates this enumeration.

332

CHAPTER 13 I ENUMERATIONS

& (Q’%_
S g\y&o [of ... TJofofo[1] =1, singledeck
AR SN .
& & & ¢ Bitname [of ... Jofo[1]o] = 2, LargePictures
V‘Q (b \/'D :,,\
31 3.2 1 0 Bit number [o] ... [o[1]ofo] = 4, FancyNumbers
T - T T 111 [o] ... [1[o]o]0] = & Animation
Definition of the flag bits Single bit flag values

Figure 13-4. Definition of the flag bits, and their individual representations

To create a word with the appropriate bit flags, declare a variable of the enum type, and use
the bitwise OR operator to set the required bits. For example, the following code sets three of the
four options:

Enum type Flag word Bit flags ORed together
4 4 {

CardDeckSettings ops = CardDeckSettings.SingleDeck
| CardDeckSettings.FancyNumbers
| CardDeckSettings.Animation ;

Prior to C# 4.0, to determine whether a particular bit was set, you would use the bitwise AND
operator with the flag word and the bit flag.

For example, the following code checks a value to see whether the FancyNumbers bit flag is set. It
does this by ANDing that value with the bit flag and then comparing that result with the bit flag. If the
bit was set in the original value, then the result of the AND operation will have the same bit pattern as
the bit flag.

bool useFancyNumbers =
(0{35 & CaIdDeckSettingqg.FancyNumbers) == CardDeckSettings.FancyNumbers;

Flag word Bit flag

Figure 13-5 illustrates the process of creating the flag word and then checking whether a particular
bit is set.

[o] ... Tololof1] singleDeck
[o] ... Tof1]ofo]| FancyNumbers

Bitwise OR (]) [o] ... [1]o]olo] Animated
[o] ... T1f1fof1] ops

Produce flag word representing the states of the flag bits.

[of ... J1]1]o]1] ops
Bitwise AND (8) [o] ... Tol1ofo]| FancyNumbers
[o] ... Jof1]ofo]| ops & FancyNumbers

Check whether the FancyNumbers bit is set.

Figure 13-56. Producing a flag word and checking it for a particular bit flag

333

CHAPTER 13 I ENUMERATIONS

This process of checking a flag word for a particular bit or set of bits is such a common task that C#
4.0 introduced a new instance method to the enum type to do the process for you. The method is called
HasFlag. You use it on an instance of a flag word and pass it the bit flag you want to check for.

For example, the previous check for useFancyNumbers can be significantly shortened and simplified
to the following statement:

UseFancyNumbers = ops.HasFlag(CardDeckSettings.FancyNumbers);

Flag word Bit flag

The HasFlag method can also check for multiple bit flags. For example, the following code checks
whether the flag word, ops, has both the Animation and FancyNumbers bits set. The code does the
following:

o The first statement creates a test word instance, called testFlags, with the Animation and
FancyNumbers bits set.
e It then passes testFlags as the parameter to the HasFlags method.

e HasFlags checks whether all the flags that are set in the test word are also set in the flag word, ops.
If they are, then HasFlag returns true. Otherwise, it returns false.

CardDeckSettings testFlags =
CardDeckSettings.Animation | CardDeckSettings.FancyNumbers;

UseAnimationAndFancyNumbers = ops.HasFlag(testFlags);
T T

Flag word Test word

334

CHAPTER 13 I ENUMERATIONS

The Flags Attribute

We'll cover attributes in Chapter 24, but it’s worth mentioning the Flags attribute here. An attribute
appears as a string between square brackets placed on the line above a class declaration. The Flags
attribute does not change the calculations at all. It does, however, provide several convenient features.

First, it informs the compiler, object browsers, and other tools looking at the code that the members
of the enum are meant to be combined as bit flags, rather than used only as separate values. This allows
the browsers to interpret variables of the enum type more appropriately.

Second, it allows the ToString method of an enum to provide more appropriate formatting for the
values of bit flags. The ToString method takes an enum value and compares it to the values of the
constant members of the enum. If it matches one of the members, ToString returns the string name of
the member.

Suppose, for example, that you have used the enum declaration for CardDeckSettings (given in the
preceding code) and have not used the Flags attribute. The first line of the following code creates a
variable (named ops) of the enum type and sets the value of a single flag bit. The second line uses
ToString to get the string name of the member represented by that value.

CardDeckSettings ops = CardDeckSettings.FancyNumbers; // Set the bit flag.
Console.WriteLine(ops.ToString()); // Print its name.

This code produces the following output:

FancyNumbers

335

CHAPTER 13 I ENUMERATIONS

336

That’s all well and good, but suppose you set two bit flags instead of one, as in the following code.
Suppose also that you didn't use the Flags attribute on the enum declaration.

// Set two bit flags.
ops = CardDeckSettings.FancyNumbers | CardDeckSettings.Animation;
Console.Writeline(ops.ToString()); // Print what?

The resulting value of ops is 12, where 4 is from the FancyNumbers flag and 8 is from the Animation
flag. In the second line, when ToString attempts to look up the value in the list of enum members, it
finds that there is no member with the value 12—so it just returns the string representing 12. The
resulting output is the following:

12

If, however, you change your code to use the Flags attribute before the declaration of the enum, this
tells the ToString method that the bits can be considered separately. In looking up the value, it would
find that 12 corresponds to the two bit flag members FancyNumbers and Animation. It would then return
the string containing their names, separated by a comma and space, as shown here:

FancyNumbers, Animation

Example Using Bit Flags

The following code puts together all the pieces of using bit flags:

[Flags]
enum CardDeckSettings :
{
SingleDeck = 0x01
LargePictures = 0x02
FancyNumbers = 0x04
Animation = 0x08
}

class MyClass

bool UseSingleDeck
UseBigPics
UseFancyNumbers
UseAnimation

public void SetOptions(CardDeckSettings ops)

{

}

UseAnimationAndFancyNumbers

UseSingleDeck
UseBigPics
UseFancyNumbers
UseAnimation

uint

)

)

)

// bit 0
// bit 1
// bit 2
// bit 3

false,
false,
false,
false,
false;

CHAPTER 13 I ENUMERATIONS

ops.HasFlag(CardDeckSettings.SingleDeck);
ops.HasFlag(CardDeckSettings.LargePictures);
ops.HasFlag(CardDeckSettings.FancyNumbers);
ops.HasFlag(CardDeckSettings.Animation);

CardDeckSettings testFlags =
CardDeckSettings.Animation | CardDeckSettings.FancyNumbers;
UseAnimationAndFancyNumbers = ops.HasFlag(testFlags);

public void PrintOptions()

{

Console
Console
Console
Console
Console
Console

WritelLine(
Writeline(
Writeline(
Writeline(
Writeline(
WritelLine(

Option settings:");
Use Single Deck
Use Large Pictures
Use Fancy Numbers
Show Animation

- {0}", UseSingleDeck);

- {0}", UseBigPics);

- {0}", UseFancyNumbers);
- {0}", UseAnimation);

Show Animation and FancyNumbers - {0}",

UseAnimationAndFancyNumbers);

337

CHAPTER 13 "/ ENUMERATIONS

338

class Program
static void Main(string[] args)

MyClass mc = new MyClass();

CardDeckSettings ops = CardDeckSettings.SingleDeck
| CardDeckSettings.FancyNumbers
| CardDeckSettings.Animation;

mc.SetOptions(ops);

mc.PrintOptions();

}
}

This code produces the following output:

Option settings:

Use Single Deck - True
Use Large Pictures - False
Use Fancy Numbers - True
Show Animation - True

Show Animation and FancyNumbers - True

CHAPTER 13 I ENUMERATIONS

More About Enums

Enums have only a single member type: the declared member constants.

¢ You cannot use modifiers with the members. They all implicitly have the same accessibility as
the enum.

¢ Since the members are static, they are accessible even if there are no variables of the enum type.
Use the enum type name, followed by a dot and the member name.

For example, the following code does not create any variables of the enum TrafficlLight type, but
the members are accessible and can be printed using WriteLine.

static void Main()

Console.WriteLine("{0}", TrafficlLight.Green);
Console.WriteLine("{0}", TrafficlLight.Yellow);
Console.WriteLine("{0}", TraffiTcLight.%);

}

Enum name Member name

339

CHAPTER 13 I ENUMERATIONS

An enum is a distinct type. Comparing enum members of different enum types results in a compile-
time error. For example, the following code declares two enum types.

e The first if statement is fine because it compares different members from the same enum type.

e Thesecond if statement produces an error because it compares members from different enum
types, even though their structures and member names are exactly the same.

enum FirstEnum // First enum type
{
Mem1,
Mem2
enum SecondEnum // Second enum type
{
Mem1,
Mem2
}
class Program
{

static void Main()

if (FirstEnum.Meml < FirstEnum.Mem2) // OK--members of same enum type
Console.WriteLine("True");

if (FirstEnum.Memi < SecondEnum.Mem1) // Error--different enum types
Console.WriteLine("True");

340

CHAPTER 14

Arrays

Arrays

Types of Arrays

An Array As an Object

One-Dimensional and Rectangular Arrays
Instantiating a One-Dimensional or Rectangular Array
Accessing Array Elements

Initializing an Array

Jagged Arrays

Comparing Rectangular and Jagged Arrays
The foreach Statement

Array Covariance

Useful Inherited Array Members
Comparing Array Types

341

Download from Wow! eBook <www.wowebook.com>

CHAPTER 14 M ARRAYS

342

Arrays

An array is a set of uniform data elements, represented by a single variable name. The individual
elements are accessed using the variable name together with one or more indexes between square
brackets, as shown here:

Array name Index
Ll

MyArray[4]

Definitions

Let’s start with some important definitions having to do with arrays in C#.

Elements: The individual data items of an array are called elements. All elements of an array must
be of the same type or derived from the same type.

Rank/dimensions: Arrays can have any positive number of dimensions. The number of
dimensions an array has is called its rank.

Dimension length: Each dimension of an array has a length, which is the number of positions in
that direction.

Array length: The total number of elements contained in an array, in all dimensions, is called the
length of the array.

Important Details

The following are some important general facts about C# arrays:

Once an array is created, its size is fixed. C# does not support dynamic arrays.

Array indexes are 0-based. That is, if the length of a dimension is 7, the index values range from 0
to n—1. For example, Figure 14-1 shows the dimensions and lengths of two example arrays.
Notice that for each dimension, the indexes range from 0 to length - 1.

4
[Se]
o0|® 112
nl2 oF |1
°B| 530
59]0 0 1 2 3 4 5
Dim 1, Length = 6
One-Dimensional Array, int[5] Two-Dimensional Array, int[3,6]
- Rank =1 - Rank =2
- Length of Array = 5 - Length of Array = 18

Figure 14-1. Dimensions and sizes

CHAPTER 14 I ARRAYS

Types of Arrays

C# provides two kinds of arrays:

¢ One-dimensional arrays can be thought of as a single line, or vector, of elements.

e Multidimensional arrays are composed such that each position in the primary vector is itself an
array, called a subarray. Positions in the subarray vectors can themselves be subarrays.

Additionally, there are two types of multidimensional arrays, rectangular arrays and jagged arrays,
which have the following characteristics:

e Rectangular arrays

— Are multidimensional arrays where all the subarrays in a particular dimension have the same
length

— Always use a single set of square brackets, regardless of the number of dimensions

int x = myArray2[4, 6, 1] // One set of square brackets

e Jagged arrays
— Are multidimensional arrays where each subarray is an independent array
— Can have subarrays of different lengths
— Use a separate set of square brackets for each dimension of the array

jagArray1[2][7][4] // Three sets of square brackets

Figure 14-2 shows the kinds of arrays available in C#.

One-Dimensional Rectangular Arrays Jagged Arrays
Arrays
2
1
4 0 3
3 012345
5 Two-Dimensional 2
1 int[3,6] 1
0 0
One-Dimensional 2 Jagged Array
int[5] 1 int[4]0]
0 O1
012345
Three-Dimensional
int[3,6,2]

Figure 14-2. One-dimensional, rectangular, and jagged arrays

343

CHAPTER 14 I ARRAYS

An Array As an Object

An array instance is an object whose type derives from class System.Array. Since arrays are derived from

this BCL base class, they inherit a number of useful members from it, such as the following:

e Rank: A property that returns the number of dimensions of the array

e Length: A property that returns the length (the total number of elements)of the array

Arrays are reference types, and as with all reference types, they have both a reference to the data and
the data object itself. The reference is in either the stack or the heap, and the data object itself will always

be in the heap. Figure 14-3 shows the memory configuration and components of an array.

Memory
(Stack or Heap)

Ref

+

A Elements f

NG

1

1_}0

(&

Heap\

Figure 14-3. Structure of an array

Although an array is always a reference type, the elements of the array can be either value types or

reference types.

Properties and methods inherited
from System.Array

— Rank

— Length

— GetLength()

— Sort()

e Anarray is called a value type array if the elements stored are value types.

e Anarray is called a reference type array if the elements stored in the array are references of
reference type objects.

Figure 14-4 shows a value type array and a reference type array.

int[]
SomeClass[]

Figure 14-4. Elements can be values or references.

344

+

Memory

L

Values

Heap \

References

A4

CHAPTER 14 I ARRAYS

One-Dimensional and Rectangular Arrays

Syntactically, one-dimensional arrays and rectangular arrays are very similar, so I'll treat them together.
I'll then treat jagged arrays separately.

Declaring a One-Dimensional Array or a Rectangular Array

To declare a one-dimensional or rectangular array, use a single set of square brackets between the type
and the variable name.

The rank specifiers are commas between the brackets. They specify the number of dimensions the
array will have. The rank is the number of commas, plus one. For example, no commas indicates a one-
dimensional array, one comma indicates a two-dimensional array, and so forth.

The base type, together with the rank specifiers, is the type of the array. For example, the following
line of code declares a one-dimensional array of longs. The type of the array is long[], which is read as
“an array of longs.”

Rank specifiers = 1

long secondArray;
T

Array type

The following code shows examples of declarations of rectangular arrays. Notice the following:

¢ You can have as many rank specifiers as you need.

¢ You cannot place array dimension lengths in the array type section. The rank is part of the array’s
type, but the lengths of the dimensions are not part of the type.

e When an array is declared, the number of dimensions is fixed. The length of the dimensions,
however, is not determined until the array is instantiated.

Rank specifiers

2
int[,,] firstArray; // Array type: 3-D array of int
int[,] arri; // Array type: 2-D array of int
long[,,] arr3; // Array type: 3-D array of long

T
Array type
long[3,2,6] SecondArray; // Wrong! Compile error

TTT

Dimension lengths not allowed!

Note Unlike C/C++, the brackets follow the base type, not the variable name.

345

CHAPTER 14 I ARRAYS

Instantiating a One-Dimensional or Rectangular Array

To instantiate an array, you use an array-creation expression. An array-creation expression consists of
the new operator, followed by the base type, followed by a pair of square brackets. The length of each
dimension is placed in a comma-separated list between the brackets.

The following are examples of one-dimensional array declarations:

e Arrayarr2 is a one-dimensional array of four ints.
e ArraymcArr is a one-dimensional array of four MyClass references.

e Figure 14-5 shows their layouts in memory.

Four elements

new int[4];

new MyClass[4];
T

Array-creation expression

int[] arr2
MyClass[] mcArr

The following is an example of a rectangular array. Array arr3 is a three-dimensional array.

e Thelength of the array is 3 * 6 * 2 = 36.

e Figure 14-5 shows its layout in memory.

Lengths of the dimensions

int[,,] arr3 = new int[3,6,2] ;

j . o 2o foJojJojJofo
nu
arr3 — o Mol 1JojJojJofofo]o
ofofoJojJojJofo 1
mcArr — 1| null 3 1 2 3 4 5 v
arr2 — 0 null 2
— 1] 0|
‘0 Heap
> []

- J

Figure 14-5. Declaring and instantiating arrays

Note Unlike object-creation expressions, array-creation expressions do not contain parentheses—even for
reference type arrays.

346

CHAPTER 14 I ARRAYS

Accessing Array Elements

An array element is accessed using an integer value as an index into the array.
e FEach dimension uses 0-based indexing.
e Theindexis placed between square brackets following the array name.

The following code shows examples of declaring, writing to, and reading from a one-dimensional
and a two-dimensional array:

int[] intArri1 = new int[15]; // Declare 1-D array.

intArri[2] = 10; // Write to element 2 of the array.
int vari = intArri[2]; // Read from element 2 of the array.
int[,] intArr2 = new int[5,10]; // Declare 2-D array.

intArr2[2,3] = 7; // Write to the array.

int var2 = intArr2[2,3]; // Read from the array.

The following code shows the full process of creating and accessing a one-dimensional array:

int[] myIntArray; // Declare the array.
myIntArray = new int[4]; // Instantiate the array.
for(int i=0; i<4; i++) // Set the values.

myIntArray[i] = i*10;

// Read and display the values of each element.
for(int i=0; i<4; i++)
Console.WritelLine("Value of element {0} = {1}", i, myIntArray[i]);

This code produces the following output:

Value of element 0 is 0O
Value of element 1 is 10
Value of element 2 is 20
Value of element 3 is 30

347

CHAPTER 14 I ARRAYS

Initializing an Array

Whenever an array is created, each of the elements is automatically initialized to the default value for the
type. The default values for the predefined types are 0 for integer types, 0.0 for floating-point types,
false for Booleans, and null for reference types.

For example, the following code creates an array and initializes its four elements to the value 0.
Figure 14-6 illustrates the layout in memory.

int[] intArr = new int[4];

Memory 3 n

2[0 |

1[0]

intArr[4] 0 n
= [|

Figure 14-6. Automatic initialization of a one-dimensional array

Explicit Initialization of One-Dimensional Arrays

For a one-dimensional array, you can set explicit initial values by including an initialization list
immediately after the array-creation expression of an array instantiation.

e The initialization values must be separated by commas and enclosed in a set of curly braces.

e The dimension lengths are optional, since the compiler will infer the lengths from the number of

initializing values.

e Notice that nothing separates the array-creation expression and the initialization list. That is,
there is no equals sign or other connecting operator.

For example, the following code creates an array and initializes its four elements to the values
between the curly braces. Figure 14-7 illustrates the layout in memory.

Initialization list

!
int[] intArr = new int[] { 10, 20, 30, 40 };
T

No connecting operator

intArr[4]

Figure 14-7. Explicit initialization of a one-dimensional array

348

CHAPTER 14

Explicit Initialization of Rectangular Arrays

To explicitly initialize a rectangular array, you need to follow these rules:

e Each vector of initial values must be enclosed in curly braces.
e Each dimension must also be nested and enclosed in curly braces.

e Inaddition to the initial values, the initialization lists and components of each dimension must
also be separated by commas.

For example, the following code shows the declaration of a two-dimensional array with an
initialization list. Figure 14-8 illustrates the layout in memory.

Initializatiorllists separited by commas

int[,] intArray2 = new int[,] { {10, 1}, {2, 10}, {11, 9} } ;

intArr2[3,2]

Figure 14-8. Initializing a rectangular array

Syntax Points for Initializing Rectangular Arrays

Rectangular arrays are initialized with nested, comma-separated initialization lists. The initialization
lists are nested in curly braces. This can sometimes be confusing, so to get the nesting, grouping, and
commas right, the following tips might be helpful:

e Commas are used as separators between all elements and groups.
e Commas are not placed between left curly braces.
e Commas are not placed before a right curly brace.

e Read the rank specifications from left to right, designating the last number as “elements” and all
the others as “groups.”

ARRAYS

349

CHAPTER 14 I ARRAYS

For example, read the following declaration as “intArray has four groups of three groups of two
elements.”

Initialization lists, nested and separated by commas
int[,,] intArray = new int[4,3,2] {
b {5, 2}, {12, 9} },

6

» 4}, {13, 9}, {18, 4} },
2}, {1, 13}, {9, 3} L,
6}, {3, 2}, {23, 8} }

Shortcut Syntax

When combining declaration, array creation, and initialization in a single statement, you can omit the
array-creation expression part of the syntax entirely and provide just the initialization portion. Figure
14-9 shows this shortcut syntax.

int[] arrl = new int[3] {10, 20, 30};)

int[] arrl = {10, 20, 30}; }Equwalent

int[,] arr = new int[2,3] {{0, 1, 2}, {10, 11, 12}};)
int[,] arr = ({0, 1, 2}, {10, 11, 12}}; }Equwalent

Figure 14-9. Shortcut for array declaration, creation, and initialization

350

CHAPTER 14 I ARRAYS

Implicitly Typed Arrays

So far, we’ve explicitly specified the array types at the beginnings of all our array declarations. But, like
other local variables, your arrays can also be implicitly typed. This means the following:

e When initializing an array, you can let the compiler infer the array’s type from the type of
the initializers. This is allowed as long as all the initializers can be implicitly converted to a
single type.

e Justas with implicitly typed local variables, use the keyword var instead of the array type.

The following code shows explicit and implicit versions of three array declarations. The first set is a
one-dimensional array of ints. The second is a two-dimensional array of ints. The third is an array of
strings. Notice that in the declaration of implicitly typed intArr4 you still need to include the rank
specifier in the initialization.

Explicit Explicit
4

int [] intArr1 = new int[] { 10, 20, 30, 40 };
var intArr2 = new [1{ 10, 20, 30, 40 };
T T

Keyword Inferred

int[,] intArr3 = new int[,] { { 10, 1 }, { 2, 10}, { 11, 9 } };
var intArr4 = new [L1{{10, 121}, { { 11, :

Rank specifier
new string[] { "life", "liberty", "pursuit of happiness" };
new [T { "life", "liberty", "pursuit of happiness" };

string[] sArri
var sArr2

351

Download from Wow! eBook <www.wowebook.com>

CHAPTER 14 M ARRAYS

Putting It All Together

The following code puts together all the pieces we’ve looked at so far. It creates, initializes, and uses a
rectangular array.

// Declare, create, and initialize an implicitly typed array.
var arr = new int[,] {{o, 1, 2}, {10, 11, 12}};

// Print the values.
for(int i=0; i<2; i++)
for(int j=0; j<3; j++)
Console.WriteLine("Element [{0},{1}] is {2}", i, j, arr[i,j]);

This code produces the following output:

Element [0,0] is O
Element [0,1] is 1
Element [0,2] is 2
Element [1,0] is 10
Element [1,1] is 11
Element [1,2] is 12

352

CHAPTER 14

Jagged Arrays
Ajagged array is an array of arrays. Unlike rectangular arrays, the subarrays of a jagged array can have
different numbers of elements.

For example, the following code declares a two-dimensional jagged array. Figure 14-10 shows the
array’s layout in memory.

e Thelength of the first dimension is 3.
e The declaration can be read as “jagArr is an array of three arrays of ints.”

e Notice that the figure shows four array objects—one for the top-level array and three for the
subarrays.

int[][] jagArr = new int[3][]; // Declare and create top-level array.
// Declare and create subarrays.

4] N

Heap -
. jagArr([2]
Memory 2
1
0 1 .
jaghrr[3](] > | JagArr[1]
JjagArr —
+
jagArr[0]
(S —

| /

T
JjagArr[3][] is an array of three arrays.

Figure 14-10. A jagged array is an array of arrays.

ARRAYS

353

CHAPTER 14 I ARRAYS

Declaring a Jagged Array

The declaration syntax for jagged arrays requires a separate set of square brackets for each dimension.
The number of sets of square brackets in the declaration of the array variable determines the rank of

the array.

e Ajagged array can be of any number of dimensions greater than one.

e Aswithrectangular arrays, dimension lengths cannot be included in the array type section of

the declaration.

Rank specifiers

int[]J[] SomeArr; // Rank = 2
int OtherArr; // Rank = 3
T T

Array type Array name

Shortcut Instantiation

You can combine the jagged array declaration with the creation of the first-level array using an array-
creation expression, such as in the following declaration. Figure 14-11 shows the result.

Three sufarrays

int[][] jagArr = new int[3][];

jagArr

Figure 14-11. Shortcut first-level instantiation
You cannot instantiate more than the first-level array in the declaration statement.
Allowed
l
int[][] jagArr = new int[3][4]; // Wrong! Compile error
T

Not allowed

354

CHAPTER 14 I ARRAYS

Instantiating a Jagged Array

Unlike other types of arrays, you cannot fully instantiate a jagged array in a single step. Since a jagged
array is an array of independent arrays, each array must be created separately. Instantiating a full jagged
array requires the following steps:

1. Instantiate the top-level array.
2. Instantiate each subarray separately, assigning the reference of the newly created array to the
appropriate element of its containing array.

For example, the following code shows the declaration, instantiation, and initialization of a two-
dimensional jagged array. Notice in the code that the reference to each subarray is assigned to an
element in the top-level array. Steps 1 through 4 in the code correspond to the numbered
representations in Figure 14-12.

int[][] Arr = new int[3][]; // 1. Instantiate top level
Arr[0] = new int[] {10, 20, 30}; // 2. Instantiate subarray
Arr[1] = new int[] {40, 50, 60, 70}; // 3. Instantiate subarray
Arr[2] = new int[] {80, 90, 100, 110, 120}; // 4. Instantiate subarray

|
1. L2 A ™\
: Memory
|
|
|
:
: L
:)
|
|
3. a.

Figure 14-12. Creating a two-dimensional jagged array

355

CHAPTER 14 I ARRAYS

Subarrays in Jagged Arrays

Since the subarrays in a jagged array are themselves arrays, It’s possible to have rectangular arrays inside
jagged arrays. For example, the following code creates a jagged array of three two-dimensional
rectangular arrays and initializes them with values. It then displays the values.

e Figure 14-13 illustrates the structure.

e The code uses the GetLength(int n) method of arrays, inherited from System.Array, to get the
length of the specified dimension of the array.

int[][,] Arr; // An array of 2-D arrays
Arr = new int[3][,]; // Instantiate an array of three 2-D arrays.

new int[,] { { 10, 20 }, { 100, 200 } g
new int[,] { { 30, 40, 50 }, { 300, 400, 500 } };
new int[,] { { 60, 70, 80, 90 }, { 600, 700, 800, 900 } };

Arr[o]
Arr[1]
Arr[2]

1 Get length of dimension 0 of Arr
for (int i = 0; i < Arr.GetlLength(0); i++)
1 Get length of dimension 0 of Arr[i]
for (int j = 0; j < Arr[i].GetLength(0); j++)
1 Get length of dimension 1 of Arr[i]
for (int k = 0; k < Arr[i].GetLength(1); k++) {
Console.Writeline

("[{o}][{a},{2}] = {3}", 1, 3, k, Arr[i][], k]);

Console.WriteLine("");

}

Console.WriteLine("");

}

/Heap \
600|700{800|900
60]70]80]|90

=

o

5 Arr[2]
; 300]400]500
0 o[30]40]50
Arr[31LL] E——> 100 ||
10 | 20 Arr[1]
Arr[0]

Figure 14-13. Jagged array of three two-dimensional arrays

356

CHAPTER 14 I ARRAYS

Comparing Rectangular and Jagged Arrays

The structure of rectangular and jagged arrays is significantly different. For example, Figure 14-14 shows
the structure of a rectangular three-by-three array, as well as a jagged array of three one-dimensional
arrays of length 3.

e Both arrays hold nine integers, but as you can see, their structures are quite different.

e Therectangular array has a single array object, while the jagged array has four array objects.

(Heap \

2|70 (8090
1120 50 60 Rectangular Three-by-Three Array
— One array object
010)20 30 - Not optimized
5 (rectangular)

90 |
m Jagged Three-by-Three Array
RectArr[3,3] - Four array objects
JagArr[3][3] — More complex
L | arrl2] — Optimized arrays
Arr[1] (one-dimensional)

Arr[0]
\ J

Figure 14-14. Comparing the structure of rectangular and jagged arrays

One-dimensional arrays have specific instructions in the CIL that allow them to be optimized for

performance. Rectangular arrays do not have these instructions and are not optimized to the same level.

Because of this, it can sometimes be more efficient to use jagged arrays of one-dimensional arrays—
which can be optimized—than rectangular arrays, which cannot.

On the other hand, the programming complexity can be less for a rectangular array because it can
be treated as a single unit, rather than an array of arrays.

357

CHAPTER 14 I ARRAYS

358

The foreach Statement

The foreach statement allows you to sequentially access each element in an array. It’s actually a more
general construct in that it also works with other collection types as well—but this section only discusses
its use with arrays. Chapter 20 covers its use with other collection types.

The important points of the foreach statement are the following:

e The iteration variable is a temporary variable of the same type as the elements of the array. The
foreach statement uses the iteration variable to sequentially represent each element in the array.
e The syntax of the foreach statement is shown here, where

— Typeis the type of the elements of the array. You can explicitly supply its type, or you can let
it be implicitly typed and inferred by the compiler, since the compiler knows the type of the
array.

— Identifier is the name of the iteration variable.
— ArrayName is the name of the array to be processed.

— Statement is a simple statement or a block that is executed once for each element in the
array.

Explicitly typed iteration variable declaration
4

foreach(Type Identifier in ArrayName)
Statement

Implicitly tyﬁed iteration variable declaration

foreach(var Identifier in ArrayName)
Statement

In the following text, I'll sometimes use implicit typing, and other times I'll use explicit typing so
that you can see the exact type being used. But the forms are semantically equivalent.

CHAPTER 14 I ARRAYS

The foreach statement works in the following way:

e Itstarts with the first element of the array and assigns that value to the iteration variable.

e It then executes the body of the statement. Inside the body, you can use the iteration variable as a
read-only alias for the array element.

e After the body is executed, the foreach statement selects the next element in the array and
repeats the process.

In this way, it cycles through the array, allowing you to access each element one by one. For
example, the following code shows the use of a foreach statement with a one-dimensional array of
four integers:

e TheWriteline statement, which is the body of the foreach statement, is executed once for each of
the elements of the array.

e The first time through the loop, iteration variable item has the value of the first element of the
array. Each successive time, it has the value of the next element in the array.

int[] arr1 = {10, 11, 12, 13};
Iteration variable declaration
Iteration variable use
foreach(int item in arri)
Console.WriteLine("Item Value: {0}", item);

This code produces the following output:

Item Value: 10
Item Value: 11
Item Value: 12
Item Value: 13

359

CHAPTER 14 I ARRAYS

The Iteration Variable Is Read-Only

Since the value of the iteration variable is read-only, clearly it cannot be changed. But this has different
effects on value type arrays and reference type arrays.

For value type arrays, this means you cannot change the data of the array. For example, in the
following code, the attempt to change the data in the iteration variable produces a compile-time
error message:

int[] arr1 = {10, 11, 12, 13};

foreach(int item in arri)
item++; // Compilation error. Changing variable value is not allowed.

For reference type arrays, you still cannot change the iteration variable, but the iteration variable
only holds the reference to the data, not the data itself. So although you cannot change the reference,
you can change the data through the iteration variable.

The following code creates an array of four MyClass objects and initializes them. In the first foreach
statement, the data in each of the objects is changed. In the second foreach statement, the changed data
is read from the objects.

class MyClass

public int MyField = 0;
class Program {

static void Main() {

MyClass[] mcArray = new MyClass[4]; // Create array
for (int i = 0; 1 < 4; i++)

mcArray[i] = new MyClass(); // Create class objects
mcArray[i].MyField = i; // Set field

foreach (MyClass item in mcArray)
item.MyField += 10; // Change the data.

foreach (MyClass item in mcArray)
Console.WriteLine("{0}", item.MyField); // Read the changed data.
}
}

This code produces the following output:

10
11
12
13

360

CHAPTER 14

The foreach Statement with Multidimensional Arrays

In a multidimensional array, the elements are processed in the order in which the rightmost index is
incremented fastest. When the index has gone from 0 to length - 1, the next index to the left is
incremented, and the indexes to the right are reset to 0.

Example with a Rectangular Array

The following example shows the foreach statement used with a rectangular array:
class Program
static void Main()

int total = o;
int[,] arr1 = { {10, 11}, {12, 13} };
foreach(var element in arri)

total += element;
Console.WritelLine
("Element: {0}, Current Total: {1}", element, total);
}

}
}

This code produces the following output:

Element: 10, Current Total: 10
Element: 11, Current Total: 21
Element: 12, Current Total: 33
Element: 13, Current Total: 46

ARRAYS

361

Download from Wow! eBook <www.wowebook.com>

CHAPTER 14 M ARRAYS

Example with a Jagged Array

Since jagged arrays are arrays of arrays, you must use separate foreach statements for each dimension in
the jagged array. The foreach statements must be nested properly to make sure that each nested array is
processed properly.

For example, in the following code, the first foreach statement cycles through the top-level array—
arri—selecting the next subarray to process. The inner foreach statement processes the elements of
that subarray.

class Program

static void Main()

{
int total = o;
int[][] arr1 = new int[2][];

arri[0] = new int[] { 10, 11 };
arri[1] = new int[] { 12, 13, 14 };
foreach (int[] array in arri) // Process the top level.

Console.WriteLine("Starting new array");
foreach (int item in array) // Process the second level.

total += item;
Console.WriteLine(" Item: {0}, Current Total: {1}", item, total);
}
}
}
}

This code produces the following output:

Starting new array
Item: 10, Current Total: 10
Item: 11, Current Total: 21
Starting new array
Item: 12, Current Total: 33
Item: 13, Current Total: 46
Item: 14, Current Total: 60

362

CHAPTER 14 I ARRAYS

Array Covariance

Under certain conditions, you can assign an object to an array element even if the object is not of the
array’s base type. This property of arrays is called array covariance. You can use array covariance if the
following are true:

e Thearray is a reference type array.

e There is an implicit or explicit conversion between the type of the object you are assigning and
the array’s base type.

Since there is always an implicit conversion between a derived class and its base class, you can
always assign an object of a derived class to an array declared for the base class.

For example, the following code declares two classes, A and B, where class B derives from class A. The
last line shows covariance by assigning objects of type B to array elements of type A. Figure 14-15 shows
the memory layout for the code.

class A { ... } // Base class
class B : A { ...} // Derived class

class Program {
static void Main() {
// Two arrays of type A[]
A[] AArrayl = new A[3];
A[] AArray2 = new A[3];

// Normal--assigning objects of type A to an array of type A
AArray1[0] = new A(); AArrayi[1] = new A(); AArrayi[2] = new A();

// Covariant--assigning objects of type B to an array of type A
AArray2[0] = new B(); AArray2[1] = new B(); AArray2[2] = new B();

[Hea;)
Two arrays of type A[]. Obijects of type A,
as declared. -
AArray2[]
AArrayl1[] B .
> [A] I
—— A Ob]ects of type B are
L5 also acceptable, since they
derive from A.

= J

Figure 14-15. Arrays showing covariance

Note There is no covariance for value type arrays.

363

CHAPTER 14 I ARRAYS

Useful Inherited Array Members

I mentioned earlier that C# arrays are derived from class System.Array. From that base class they inherit
anumber of useful properties and methods. Table 14-1 lists some of the most useful ones.

Table 14-1. Some Useful Members Inherited by Arrays

Member Type Lifetime Meaning

Rank Property Instance Gets the number of dimensions of the array

Length Property Instance Gets the total number of elements in all the dimensions
of the array

GetlLength Method Instance Returns the length of a particular dimension of the array

Clear Method Static Sets a range of elements to 0 or null

Sort Method Static Sorts the elements in a one-dimensional array

BinarySearch Method Static Searches a one-dimensional array for a value, using
binary search

Clone Method Instance Performs a shallow copy of the array—copying only the
elements, both for arrays of value types and reference
types

Index0f Method Static Returns the index of the first occurrence of a value in a
one-dimensional array

Reverse Method Static Reverses the order of the elements of a range of a one-
dimensional array

GetUpperBound Method Instance Gets the upper bound at the specified dimension

364

For example, the following code uses some of these properties and methods:
public static void PrintArray(int[] a)

foreach (var x in a)
Console.Write("{0} ", x);

Console.WriteLine("");

}

static void Main()

int[] arr = new int[] { 15, 20, 5, 25, 10 };
PrintArray(arr);

Array.Sort(arr);
PrintArray(arr);

Array.Reverse(arr);
PrintArray(arr);

Console.WriteLine();

Console.WriteLine("Rank = {0}, Length = {1}",arr.Rank, arr.Length);
Console.WriteLine("GetLength(0) {0}",arr.GetLength(0));
Console.WritelLine("GetType() {0}",arr.GetType());

}

This code produces the following output:

15 20 5 25 10
5 10 15 20 25
25 20 15 10 5

Rank = 1, Length =5
GetLength(0) =5
GetType() = System.Int32[]

CHAPTER 14 I ARRAYS

365

CHAPTER 14 I ARRAYS

The Clone Method

The Clone method performs a shallow copy of an array. This means that it only creates a clone of the
array itself. If it is a reference type array, it does not copy the objects referenced by the elements. This has
different results for value type arrays and reference type arrays.

¢ Cloning a value type array results in two independent arrays.

¢ Cloning areference type array results in two arrays pointing at the same objects.

The Clone method returns a reference of type object, which must be cast to the array type.

int[] intArr1 = { 1, 2, 3 };

Array fype Returﬂs an object

int[] intArr2 = (int[]) intArri.Clone();

For example, the following code shows an example of cloning a value type array, producing two
independent arrays. Figure 14-16 illustrates the steps shown in the code.

static void Main()

int[] intArri

{1, 2,31} // Step 1
int[] intArr2

(int[]) intArri.Clone(); // Step 2

intArr2[0] = 100; intArr2[1] = 200; intArr2[2] = 300; // Step 3

intArr2 —
intArrl

T

intArr2 -
intArrl

Figure 14-16. Cloning a value type array produces two independent arrays.

366

CHAPTER 14 I ARRAYS

Cloning a reference type array results in two arrays pointing at the same objects. The following code
shows an example. Figure 14-17 illustrates the steps shown in the code.

class A

public int Value = 5;

class Program
static void Main()

A[] AArrayl = new A[3] { new A(), new A(), new A() }; // Step 1

A[] AArray2 = (A[]) AArrayi.Clone(); // Step 2
AArray2[0].Value = 100;
AArray2[1].Value = 200;
AArray2[2].Value = 300; // Step 3

Heap \

~

1, e N\ 2.

A

5
AArray2
Mrrayl E_ AArrayl > 5

-
[
s
[

4 Heap N

300

200 | ¢

AArray2 -
AArrayl > 100

= J

Figure 14-17. Cloning a reference type array produces two arrays referencing the same objects.

367

CHAPTER 14 I ARRAYS

Comparing Array Types

Table 14-2 summarizes some of the important similarities and differences between the three types

of arrays.

Table 14-2. Summary Comparing Array Types

Syntax
Array
Array Type Objects Brackets Commas | Shape
One-dimensional 1 Singleset No . .
One-Dimensional

e Has optimizing

instructions in CIL.
Rectangular 1 Singleset Yes Two-Dimensional
e Multidimensional. int[3,6]
e Allsubarraysina

multidimensional Three-Dimensional

array must be of the int[3,6,2]

same length.
Jagged Multiple Multiple No

t

e Multidimensional. sets Jagged

e Subarrays can be of
different lengths.

int[4][]

368

CHAPTER 15

Delegates

What Is a Delegate?

Declaring the Delegate Type

Creating the Delegate Object
Assigning Delegates

Combining Delegates

Adding Methods to Delegates
Removing Methods from a Delegate
Invoking a Delegate

Delegate Example

Invoking Delegates with Return Values
Invoking Delegates with Reference Parameters
Anonymous Methods

Lambda Expressions

369

CHAPTER 15 I DELEGATES

What Is a Delegate?

A delegate is a user-defined type, like a class. But whereas a class represents a collection of data, a
delegate keeps track of one or more methods. You use a delegate by doing the following. We’ll go
through each of these steps in detail in the following sections.

1. Declare a new delegate type with a particular signature and return type. A delegate
declaration looks like a method declaration, except that it doesn’t have an
implementation block.

2. Declare a delegate variable of the new delegate type.

3. Create an object of the delegate type, and assign it to the delegate variable. The new delegate
object includes a reference to a method with the same signature as defined in the first step.

4. Add additional methods into the delegate object. These methods must have the same
signature and return type as the delegate type defined in the first step.

5. Throughout your code you can then invoke the delegate, just as it if it were a method. When
you invoke the delegate, each of the methods it contains is executed.

In looking at the previous steps, you might have noticed that they’re similar to the steps in creating
and using a class. Figure 15-1 compares the processes of creating and using classes and delegates.

Class Delegate
Declare the Declare the
Declare the class
Type delegate (type)
Declare a Variable Declare a variable Declare a variable
of the Type of the class type of the delegate type
. Create an instance of the
Create an instance of the o
Populate S delegate, assign its
) class and assign its .
the Variable eference to the variable reference to the variable,
r van and add first method
Use the Use the Invoke the
Variable class object delegate object

Figure 15-1. A delegate is a user-defined reference type, like a class.

Note If you're coming from a C++ background, the fastest way for you to understand delegates is to think of
them as type-safe, object-oriented C++ function pointers on steroids.

370

CHAPTER 15 I DELEGATES

You can think of a delegate as an object that contains an ordered list of methods with the same
signature and return type, as illustrated in Figure 15-2.

e Thelist of methods is called the invocation list.

e Methods held by a delegate can be from any class or struct, as long as they match both the
delegate’s

— Return type

— Signature (including ref and out modifiers)
e Methods in the invocation list can be either instance methods or static methods.

e When a delegate is invoked, each method in its invocation list is executed.

Delegate
Invocation List
Method 1
Method 2
Method 3
Method 4

Figure 15-2. A delegate as a list of methods

371

Download from Wow! eBook <www.wowebook.com>

CHAPTER 15 I DELEGATES

372

Declaring the Delegate Type

Delegates are types, just as classes are types. And as with classes, a delegate type must be declared
before you can use it to create variables and objects of the type. The following example code declares a
delegate type.

e Even though the delegate type declaration looks like a method declaration, it does not need to be
declared inside a class because it is a type declaration.

Keyword Delegate type name
L L
delegate void MyDel (int x);

The declaration of a delegate type looks much like the declaration of a method, in that it has both a
return type and a signature. The return type and signature specify the form of the methods that the
delegate will accept.

For example, the following code declares delegate type MyDel. This declaration specifies that
delegates of this type will only accept methods that have a single int parameter and that have no
return value. Figure 15-3 shows a representation of the delegate type on the left and the delegate object
on the right.

Delegate type name
delegate void MyDel(int x);
T T
Return type Signature

Compile Time Run Time

Delegate Type

____________ Memory void MyDel(int x)

| Invocation List : Invocation List

L o e e — - — — a SClass.0therM2
+

I
I
I
I
| void MyDel (int x) I :
I
I
I
I

The delegate type defines the form
of the methods that will be allowed

in a delegate object's invocation list. | Delegate Object

Figure 15-3. Delegate type and object

The delegate type declaration differs from a method declaration in two ways. The delegate type
declaration

e Is prefaced with the keyword delegate

e Does not have a method body

CHAPTER 15

Creating the Delegate Object

A delegate is a reference type and therefore has both a reference and an object. After a delegate type is
declared, you can declare variables and create objects of the type. The following code shows the
declaration of a variable of a delegate type:

Delegate type Variable
4 A}
MyDel delVar;

There are two ways you can create a delegate object. The first is to use an object-creation
expression with the new operator, as shown in the following code. The operand of the new operator
consists of the following:

e The delegate type name.
e Asetof parentheses containing the name of a method to use as the first member in the

invocation list. The method can be either an instance method or a static method.

Instance method

1
delVar = new MyDel(myInstObj.MyM1); // Create delegate and save ref.
dvar = new MyDel(SClass.OtherM2); // Create delegate and save ref.
T

Static method

You can also use the shortcut syntax, which consists of just the method specifier, as shown in the
following code. This code and the preceding code are equivalent. Using the shortcut syntax works
because there is an implicit conversion between a method name and a compatible delegate type.

delvar
dvar

myInstObj.MyM1; // Create delegate and save reference.
SClass.OtherM2; // Create delegate and save reference.

DELEGATES

373

CHAPTER 15 I DELEGATES

For example, the following code creates two delegate objects—one with an instance method and the
other with a static method. Figure 15-4 shows the instantiations of the delegates. This code assumes that
there is an object called myInstObj, which is an instance of a class that has defined a method called MyM1
returning no value and taking an int as a parameter. It also assumes that there is a class called SClass,
which has a static method OtherM2 with a return type and signature matching those of delegate MyDel.

delegate void MyDel(int x); // Declare delegate type.
MyDel delVar, dVar; // Create two delegate variables.
Instance method
1
delVar = new MyDel(myInstObj.MyM1); // Create delegate and save ref.
dvar = new MyDel(SClass.OtherM2); // Create delegate and save ref.
T

Static method

void MyDel (int x)
Invocation List

| SClass.OtherM2 |<—— Static Method

+

dv. —
ar Ref _I_> void MyDel (int x)
delVar Ref —

Invocation List

A | myInstObj.MyM1 |<—— Instance Method

Figure 15-4. Instantiating the delegates

Besides allocating the memory for the delegate, creating a delegate object also places the first
method in the delegate’s invocation list.

You can also create the variable and instantiate the object in the same statement, using the
initializer syntax. For example, the following statements also produce the same configuration shown in
Figure 15-4:

MyDel delVar = new MyDel(myInstObj.MyM1);
MyDel dVar = new MyDel(SClass.OtherM2);

The following statements use the shortcut syntax but again produce the results shown in Figure 15-4:

MyDel delVar = myInstObj.MyM1;
MyDel dVar SClass.OtherM2;

374

CHAPTER 15 I DELEGATES

Assigning Delegates

Because delegates are reference types, you can change the reference contained in a delegate variable by

assigning to it. The old delegate object will be disposed of by the garbage collector (GC) when it gets
around to it.

For example, the following code sets and then changes the value of delVar. Figure 15-5 illustrates
the code.
MyDel delVar;
delVar = myInstObj.MyM1; // Create and assign the delegate object.

delVar = SClass.OtherM2; // Create and assign the new delegate object.

I> delegate void MyDel (int x)

Invocation List

delVar

| myInstObj . MyM1

¢

delegate void MyDel (int x)
Invocation List

| SClass.OtherM? |

;

delegate void MyDel (int x)
delVar Ref — Invocation List <— No longer referenced
| myInstObg .MyM1 | by the variable

Figure 15-5. Assigning to a delegate variable

375

CHAPTER 15 I DELEGATES

376

Combining Delegates

All the delegates you’ve seen so far have had only a single method in their invocation lists. Delegates can
be “combined” by using the addition operator. The result of the operation is the creation of a new
delegate, with an invocation list that is the concatenation of copies of the invocation lists of the two
operand delegates.

For example, the following code creates three delegates. The third delegate is created from the
combination of the first two.

MyDel delA = myInstObj.MyM1;
MyDel delB = SClass.OtherM2;
MyDel delC = delA + delB; // Has combined invocation list

Although the term combining delegates might give the impression that the operand delegates are
modified, they are not changed at all. In fact, delegates are immutable. After a delegate object is created,
it cannot be changed.

Figure 15-6 illustrates the results of the preceding code. Notice that the operand delegates remain
unchanged.

Y

delegate void MyDel (int x)
Invocation List

delegate void MyDel (int x)

— N myInstObj.MyM1
Invocation List y Y
delC — | SClass.OtherM2 | SClass.0therM2
delB L
New Delegate
delA —— T | delegate void MyDel (int x) Unchanged with Combined
Invocation List Invocation List
+

| myInstObj .MyM1 |

Figure 15-6. Combining delegates

CHAPTER 15 I DELEGATES

Adding Methods to Delegates

Although you saw in the previous section that delegates are, in reality, immutable, C# provides syntax for
making it appear that you can add a method to a delegate, using the += operator.

For example, the following code “adds” two methods to the invocation list of the delegate. The
methods are added to the bottom of the invocation list. Figure 15-7 shows the result.

MyDel delVar = inst.MyM1; // Create and initialize.
delVar += SCl.m3; // Add a method.
delVar += X.Act; // Add a method.

delegate void MyDel (int x)

A Invocation List

void inst.MyM1(int par)
void SCT.m3 (int a)
void X.Act (int x1)

delvVar]

Y

Figure 15-7. Result of “adding” methods to a delegate. In reality, because delegates are immutable, the
resulting delegate with three methods in its invocation list is an entirely new delegate pointed at by
the variable.

What is actually happening, of course, is that when the += operator is used, a new delegate is
created, with an invocation list that is the combination of the delegate on the left plus the method listed
on the right. This new delegate is then assigned to the delVar variable.

377

CHAPTER 15 I DELEGATES

Removing Methods from a Delegate

You can also remove a method from a delegate, using the -= operator. The following code shows the use
of the operator. Figure 15-8 shows the result of this code when applied to the delegate illustrated in
Figure 15-7.

delvar -= SCl.m3; // Remove the method from the delegate.

delegate void MyDel (int x)
Invocation List

void inst.MyM1(int par)

delVar —

void X.Act (int x1)

Figure 15-8. Result of removing a method from a delegate

As with adding a method to a delegate, the resulting delegate is actually a new delegate. The new
delegate is a copy of the old delegate—but its invocation list no longer contains the reference to the

method that was removed.
The following are some things to remember when removing methods:

e Ifthere are multiple entries for a method in the invocation list, the -= operator starts searching at
the bottom of the list and removes the first instance of the matching method it finds.

e Attempting to delete a method that is not in the delegate has no effect.
e Attempting to invoke an empty delegate throws an exception.

¢ You can check whether a delegate’s invocation list is empty by comparing the delegate to null. If
the invocation list is empty, the delegate is null.

378

CHAPTER 15 I DELEGATES

Invoking a Delegate

You invoke a delegate by calling it, as if it were simply a method. The parameters used to invoke the
delegate are used to invoke each of the methods on the invocation list (unless one of the parameters is
an output parameter, which we’ll cover shortly).

For example, the delegate delVar, as shown in the following code, takes a single integer input value.
Invoking the delegate with a parameter causes it to invoke each of the members in its invocation list with
the same parameter value (55, in this case). Figure 15-9 illustrates the invocation.

MyDel delVar = inst.MyM1;
delVar += SCl.m3;
delVar += X.Act;

del\.léllr(55); // Invoke the delegate.

delegate void MyDel (int x)
Invocation List

void inst.MyM1(int par)
delvar — Y P

void SC1.m3 (int a)

e void X.Act (int x1)

inst.MyM1
delvar(55); EE— SC1.m3
X.Act

———
o oo
(3 3 T
—_———

Figure 15-9. When the delegate is invoked, it executes each of the methods in its invocation list, with the
same parameters with which it was called.

A method can be in the invocation list more than once. If it’s in the list more than once, then when
the delegate is invoked, the method will be called each time it is encountered in the list.

379

CHAPTER 15

380

DELEGATES

Delegate Example

The following code defines and uses a delegate with no parameters and no return value. Note the
following about the code:

e (Class Test defines two print functions.

e Method Main creates an instance of the delegate and then adds three more methods.

e The program then invokes the delegate, which calls its methods. Before invoking the delegate,
however, it checks to make sure it’s not null.

// Define a delegate type with no return value and no parameters.
delegate void PrintFunction();

class Test

{

public void Printi()
{ Console.WritelLine("Print1 -- instance"); }

public static void Print2()
{ Console.WritelLine("Print2 -- static"); }

}

class Program

static void Main()

{

}

Test t = new Test(); // Create a test class instance.
PrintFunction pf; // Create a null delegate.
pf = t.Print1; // Instantiate and initialize the delegate.

// Add three more methods to the delegate.
pf += Test.Print2;

pf += t.Printi,;

pf += Test.Print2;

// The delegate now contains four methods.

if(null != pf) // Make sure the delegate isn't null.
pf(); // Invoke the delegate.

else
Console.WritelLine("Delegate is empty");

This code produces the following output:

Print1 --
Print2 --
Print1 --
Print2 --

instance
static
instance
static

CHAPTER 15 I DELEGATES

Invoking Delegates with Return Values

If a delegate has a return value and more than one method in its invocation list, the following occurs:

e The value returned by the last method in the invocation list is the value returned from the

delegate invocation.

e Thereturn values from all the other methods in the invocation list are ignored.

For example, the following code declares a delegate that returns an int value. Main creates an object
of the delegate and adds two additional methods. It then calls the delegate in the WritelLine statement
and prints its return value. Figure 15-10 shows a graphical representation of the code.

delegate int MyDel(); // Declare method with return value.
class MyClass {

int IntValue = 5;

public int Add2() { IntValue += 2; return IntValue;}

public int Add3() { IntValue += 3; return IntValue;}

}

class Program {
static void Main() {
MyClass mc = new MyClass();

MyDel mDel = mc.Add2; // Create and initialize the delegate.
mDel += mc.Add3; // Add a method.
mDel += mc.Add2; // Add a method.
Console.WriteLine("Value: {0}", mDel());
} T
} Invoke the delegate and use the return value.

This code produces the following output:

Value: 12
delegate int MyDel ()
Invocation List
+
int Add2()
mDel —
int Add3()
N int Add2()
Add2(); <«—— Return value 7 is ignored.
mhel(); —> Add3(); ~ <«—— Return value 10 is ignored.
Add2(); <«—— Return value 12 is used.

Figure 15-10. The return value of the last method executed is the value returned by the delegate.

381

Download from Wow! eBook <www.wowebook.com>

CHAPTER 15 I DELEGATES

Invoking Delegates with Reference Parameters

If a delegate has a reference parameter, the value of the parameter can change upon return from one or
more of the methods in the invocation list.

e When calling the next method in the invocation list, the new value of the parameter—not the
initial value—is the one passed to the next method.

For example, the following code invokes a delegate with a reference parameter. Figure 15-11
illustrates the code.

delegate void MyDel(ref int X);

class MyClass

{
public void Add2(ref int x) { x += 2; }
public void Add3(ref int x) { x += 3; }
static void Main()
{
MyClass mc = new MyClass();
MyDel mDel = mc.Add2;
mDel += mc.Add3;
mDel += mc.Add2;
int x = 5;
mDel(ref x);
Console.WriteLine("Value: {0}", x);
}
}

This code produces the following output:

Value: 12

delegate int MyDel ()

. Invocation List

void Add2(ref int x)
mDel —
void Add3(ref int x)
N void Add2(ref int x)
Add2(x =5); <«—— |Initial value of ref x
mDel(); —> Add3(x =7)3 <«—— New input value of ref x
Add2(x =10); <—— New input value of ref x

Figure 15-11. The value of a reference parameter can change between calls.

382

CHAPTER 15 I DELEGATES

Anonymous Methods

So far, you've seen that you can use either static methods or instance methods to instantiate a delegate.
In either case, the method itself can be called explicitly from other parts of the code and, of course, must
be a member of some class or struct.

What if, however, the method is used only one time—to instantiate the delegate? In that case, other
than the syntactic requirement for creating the delegate, there is no real need for a separate, named
method. Anonymous methods allow you to dispense with the separate, named method.

e Ananonymous method is a method that is declared inline, at the point of instantiating a delegate.

For example, Figure 15-12 shows two versions of the same class. The version on the left declares and
uses a method named Add20. The version on the right uses an anonymous method instead. The
nonshaded code of both versions is identical.

class Program

{
public static int Add20(int x)
{

return x + 20;

}

class Program

{

delegate int OtherDel(int InParam);
static void Main()
{

OtherDel del = Add20;

delegate int OtherDel(int InParam);
static void Main()
{
OtherDel del = delegate(int x)
{

return x + 20;

b8
Console.WriteLine("{0}", del(5));
Console.WriteLine("{0}", del(6));
}
}

Named Method Anonymous Method

Console.WriteLine("{0}", del(5));
Console.WriteLine("{0}", del(6));
}
}

Figure 15-12. Comparing a named method and an anonymous method

Both sets of code in Figure 15-12 produce the following output:

25
26

Using Anonymous Methods

You can use an anonymous method in the following places:
e Asan initializer expression when declaring a delegate variable.
e Ontheright side of an assignment statement when combining delegates.

e Ontheright side of an assignment statement adding a delegate to an event. Chapter 16
covers events.

383

CHAPTER 15 I DELEGATES

Syntax of Anonymous Methods

The syntax of an anonymous method expression includes the following components:

e The type keyword delegate
e The parameter list, which can be omitted if the statement block doesn’t use any parameters

e The statement block, which contains the code of the anonymous method

Parameter
Keyword list Statement block
4) 4

delegate (Parameters) { ImplementationCode }

Return Type

An anonymous method does not explicitly declare a return type. The behavior of the implementation
code itself, however, must match the delegate’s return type by returning a value of that type. If the
delegate has a return type of void, then the anonymous method code cannot return a value.

For example, in the following code, the delegate’s return type is int. The implementation code of
the anonymous method must therefore return an int on all pathways through the code.

Return type of delegate type
L
delegate int OtherDel(int InParam);

static void Main()

OtherDel del = delegate(int x)

return x + 20 ; // Returns an int

)

384

CHAPTER 15 I DELEGATES

Parameters

Except in the case of array parameters, the parameter list of an anonymous method must match that of
the delegate in the following three characteristics:

e Number of parameters
e Types and positions of the parameters
e Modifiers

You can simplify the parameter list of an anonymous method by leaving the parentheses empty or
omitting them altogether, but only if both of the following are true:

e The delegate’s parameter list does not contain any out parameters.
e The anonymous method does not use any parameters.
For example, the following code declares a delegate that does not have any out parameters and an

anonymous method that does not use any parameters. Since both conditions are met, you can omit the
parameter list from the anonymous method.

delegate void SomeDel (int X); // Declare the delegate type.
SomeDel SDel = delegate // Parameter list omitted
PrintMessage();
Cleanup();

)

params Parameters

If the delegate declaration’s parameter list contains a params parameter, then the params keyword
is omitted from the parameter list of the anonymous method. For example, in the following code,
this happens:

e The delegate type declaration specifies the last parameter as a params type parameter.

e The anonymous method parameter list, however, must omit the params keyword.

params keyword used in delegate type declaration

delegate void SomeDel(int X, params int[] Y);

params keyword omitted in matching anonymous method
4
SomeDel mDel = delegate (int X, int[] Y)

_—

385

CHAPTER 15 I DELEGATES

386

Scope of Variables and Parameters

The scopes of parameters and local variables declared inside an anonymous method are limited to the
body of the implementation code, as illustrated in Figure 15-13.

For example, the following anonymous method defines parameter y and local variable z. After the
close of the body of the anonymous method, y and z are no longer in scope. The last line of the code
would produce a compile error.

delegate void MyDel(int x);

MyDel mDel =|delegate (int y)
{
int z = 10; Scope of y and z
Console.WriteLine("{0}, {1}", y, z);
1s

Console.WriteLine("{0}, {1}", y, z); // Compile error.
20

Out of Scope

Figure 15-13. Scope of variables and parameters

Outer Variables

Unlike the named methods of a delegate, anonymous methods have access to the local variables and
environment of the scope surrounding them.

e Variables from the surrounding scope are called outer variables.
e Anouter variable used in the implementation code of an anonymous method is said to be

captured by the method.

For example, the code in Figure 15-14 shows variable x defined outside the anonymous method. The
code in the method, however, has access to x and can print its value.

Variable x is defined before the scope

int x = 5: 4/ of the anonymous method.

MyDel mDel =|delegate Variable x can be used

{ S
Console.WriteLine("{0}", x); inside the scope of the
b anonymous method.

Using outer variable x.

Figure 15-14. Using an outer variable

CHAPTER 15 I DELEGATES

Extension of Captured Variable’s Lifetime

A captured outer variable remains alive as long as its capturing method is part of the delegate, even if the
variable would have normally gone out of scope.
For example, the code in Figure 15-15 illustrates the extension of a captured variable’s lifetime.

Local variable x is declared and initialized inside a block.

e Delegate mDel is then instantiated, using an anonymous method that captures outer variable x.
¢ When the block is closed, x goes out of scope.

e Ifthe WritelLine statement following the close of the block were to be uncommented, it would
cause a compile error, because it references x, which is now out of scope.

e The anonymous method inside delegate mDel, however, maintains x in its environment and prints
its value when mDel is invoked.

deTegate void MyDel(); Variable x is defined inside the outer block
static void Main()

{ (_ and outside the anonymous method.
MyDel mDel;

(int x = 5; <—J

mDel = |delegate
{ Scope of x
Console.WriteLine("Value of x: {0}", x);

1s 4

}

// Console.WriteLine("Value of x: {0}", x); Variable x is captured by

the anonymous method.
if (null != mDel)
mDel();

} Variable x is out of scope here and
would cause a compile error.
But x is used here, inside

the anonymous method.

Figure 15-15. Variable captured in an anonymous method

The code in the figure produces the following output:

Value of x: 5

387

CHAPTER 15 I DELEGATES

388

Lambda Expressions

C# 2.0 introduced anonymous methods, which allowed you to include short bits of inline code when
creating or adding to delegates. The syntax for anonymous methods, however, is somewhat verbose
and requires information that the compiler itself already knows. Rather than requiring you to include
this redundant information, C# 3.0 introduced lambda expressions, which pare down the syntax of
anonymous methods. You’ll probably want to use lambda expressions instead of anonymous
methods. In fact, if lambda expressions had been introduced first, there never would have been
anonymous methods.

In the anonymous method syntax, the delegate keyword is redundant because the compiler can
already see that you're assigning the method to a delegate. You can easily transform an anonymous
method into a lambda expression by doing the following:

e Delete the delegate keyword.

e Place the lambda operator, =>, between the parameter list and the body of the anonymous
method. The lambda operator is read as “goes to.”

The following code shows this transformation. The first line shows an anonymous method being
assigned to variable del. The second line shows the same anonymous method after having been
transformed into a lambda expression, being assigned to variable le1.

MyDel del = delegate(int x) { return x + 1; }
MyDel lei (int x) => { return x + 1; }

// Anonymous method
// Lambda expression

)
)

Note The term lambda expression comes from the /lambda calculus, which was developed in the 1920s and
1930s by mathematician Alonzo Church and others. The lambda calculus is a system for representing functions
and uses the Greek letter lambda (A) to represent a nameless function. More recently, functional programming
languages such as Lisp and its dialects use the term to represent expressions that can be used to directly describe
the definition of a function, rather than using a name for it.

CHAPTER 15 I DELEGATES

This simple transformation is less verbose and looks cleaner, but it only saves you six characters.
There’s more, however, that the compiler can infer, allowing you to simplify the lambda expression
further, as shown in the following code.

e From the delegate’s declaration, the compiler also knows the types of the delegate’s parameters,
so the lambda expression allows you to leave out the parameter types, as shown in the
assignment to le2.

— Parameters listed with their types are called explicitly typed.
— Those listed without their types are called implicitly typed.

e Ifthere’s only a single, implicitly typed parameter, you can leave off the parentheses surrounding
it, as shown in the assignment to le3.

e Finally, lambda expressions allow the body of the expression to be either a statement block or an
expression. If the statement block contains a single return statement, you can replace the
statement block with just the expression that follows the return keyword, as shown in the
assignment to le4.

MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method
MyDel lei = (int x) => { return x + 1; } ; // Lambda expression
MyDel le2 = x) => { return x + 1; } ; // Lambda expression
MyDel le3 = x => { return x + 1; } ; // Lambda expression
MyDel le4 = X = X + 1 3 // Lambda expression

The final form of the lambda expression has about one-fourth the characters of the original
anonymous method and is cleaner and easier to understand.

389

CHAPTER 15 I DELEGATES

The following code shows the full transformation. The first line of Main shows an anonymous
method being assigned to variable del. The second line shows the same anonymous method, after
having been transformed into a lambda expression, being assigned to variable le1.

delegate double MyDel(int par);

static void Main()

{
MyDel del = delegate(int x) { return x + 1; } ; // Anonymous method
MyDel lei = (int x) => { return x + 1; } ; // Lambda expression
MyDel le2 = (x) => { return x + 1; } ;
MyDel le3 = x => { return x + 1; } ;
MyDel le4 = X = X+ 1 ;
Console.WriteLine("{0}", del (12));
Console.WriteLine("{0}", le1 (12)); Console.WriteLine("{0}", le2 (12));
Console.WriteLine("{0}", le3 (12)); Console.WriteLine("{0}", le4 (12));
}

Some important points about lambda expression parameter lists are the following:

e The parameters in the parameter list of a lambda expression must match that of the delegate in
number, type, and position.

e The parameters in the parameter list of an expression do not have to include the type (that is,
implicitly typed) unless the delegate has either ref or out parameters—in which case the types are
required (that is, explicitly typed).

e Ifthere is only a single parameter and it is implicitly typed, the surrounding parentheses can be
omitted. Otherwise, they are required.

e Ifthere are no parameters, you must use an empty set of parentheses.

Figure 15-16 shows the syntax for lambda expressions.

(Parameter, Parameter, ...)
(Parameter) { Statements }
Parameter Expression

)

Figure 15-16. The syntax for lambda expressions consists of the lambda operator with the parameter section
on the left and the lambda body on the right.

390

I Events Are Like Delegates

I Overview of Source Code Components
[Declaring an Event

[Raising an Event

[Subscribing to an Event

I Standard Event Usage

" The MyTimerClass Code

I Event Accessors

391

Download from Wow! eBook <www.wowebook.com>

CHAPTER 16 I EVENTS

Events Are Like Delegates

The preceding chapter covered delegates. Many aspects of events are similar to those of delegates. In

fact, an event is like a simpler delegate that is specialized for a particular use. Figure 16-1 illustrates that,

like a delegate, an event has methods registered with it and invokes those methods when it is invoked.
The following are some important terms related to events:

® Raising an event: The term for invoking or firing an event. When an event is raised, all the
methods registered with it are invoked—in order.

e Publisher: A class or struct that makes an event available to other classes or structs for their use.

o Subscriber: A class or struct that registers methods with a publisher.

e Event handler: A method that is registered with an event. It can be declared in the same class or
struct as the event or in a different class or struct.

Publisher |
Event Member [¢—m7m—uo | Subscribers

\

1. The publisher defines an event member.

2. Subscribers register methods (handlers) to

be invoked when the event member is raised.
3. When the publisher raises the event,

all the handlers in its list are invoked.

Figure 16-1. Publishers and subscribers

392

CHAPTER 16 I EVENTS

An Event Has a Private Delegate
There’s good reason for the similarities in the behaviors of delegates and events. An event contains a

private delegate, as illustrated in Figure 16-2. The important things to know about an event’s private
delegate are the following:

e An event gives structured access to its privately controlled delegate.

e Unlike the many operations available with a delegate, with an event you can only add, remove,
and invoke event handlers.

e When an event is raised, it invokes the delegate, which sequentially calls the methods in the
invocation list.

Notice in Figure 16-2 that only the += and -= operators are sticking out to the left of the event. This is
because they are the only operations allowed on an event.

Event

Private Internal Delegate

Invocation List

t:: Method 1
Method 2

Figure 16-2. An event has an encapsulated delegate

Figure 16-3 illustrates the runtime view of a publisher class with an event called Elapsed. ClassA and
ClassB, on the right, each has an event handler registered with Elapsed. Inside the event you can see the

delegate referencing the two event handlers. Besides the event, the publisher also contains the code that
raises the event.

Publisher Class Subscriber Classes
MyTimerClass ClassA
Event
Elapsed TimerHandlerA()
- Delegate
+=
ClassB
TimerHandlerB() |<_\
Code that raises
the event
| Event Handlers

Figure 16-3. Structure and terminology of a class with a timer event

393

CHAPTER 16 I EVENTS

Overview of Source Code Components

Five components of code need to be in place to use events. I'll cover each of them in the following
sections, and they are illustrated in Figure 16-4. These components are the following:

e Delegate type declaration: The event and the event handlers must have a common signature and
return type, which is described by the delegate type declaration.

e Event handler declarations: These are the declarations in the subscriber classes of the methods
(event handlers) to be executed when the event is raised. These do not have to be separate
methods. They can be anonymous methods or lambda expressions.

e Eventdeclaration: This is the declaration in the publisher class of the event that holds and
invokes the event handlers.

e Eventregistration: This is the code that connects the event handlers to the event.

o Code that raises the event: This is the code in the publisher that calls the event, causing it to
invoke its event handlers.

Source Code O Eaie T

Declaration

Event
Registration

Publisher Class

Subscriber Classes
Event

Declaration Event Handler
Declarations

Code that raises
the event

Figure 16-4. The five source code components of using an event

394

CHAPTER 16 I EVENTS

Declaring an Event
The publisher must provide the event and often provides the code to raise the event.
Creating an event is simple—it requires only a delegate type and a name. The syntax for an event

declaration is shown in the following code, which declares an event called Elapsed. Notice the following
about event Elapsed:

e Itisdeclared inside a class called MyTimerClass.

e Itaccepts event handlers with the return type and signature matching the delegate type
EventHandler.

e Itisdeclared public so that other classes and structs can register event handlers with it.

class MyTimerClass

{ Keyword Name of event
\ \
public event EventHandler Elapsed;
T

Delegate type

You can declare more than one event in a declaration statement by using a comma-separated list.
For example, the following statement declares three events:

public event EventHandler MyEventi, MyEvent2, OtherEvent;
T

Three events

You can also make events static, by including the static keyword, as shown in the following
declaration:

public static event EventHandler Elapsed;

1

Keyword

395

CHAPTER 16 I EVENTS

An Event Is a Member

A common error is to think of an event as a type, which it is not. An event is a member, and there are
several important ramifications to this:

e Because a member is not a type, you do not use an object-creation expression (a new expression)
to create its object.

e Because an event is a member
— It must be declared in a class or struct, with the other members.

— You cannot declare an event in a block of executable code.

e Anevent member is implicitly and automatically initialized to null with the other members.

The Delegate Type and EventHandler

An event declaration requires the name of a delegate type. You can either declare one or use one that
already exists. If you declare a delegate type, it must specify the signature and return type of the methods
that will be stored by the event.

A better idea is to use the EventHandler delegate, which is a predefined delegate type used by the
.NET BCL and designated as the standard for use with events. You are strongly encouraged to use it. The
following code shows what EventHandler’s declaration looks like in the BCL. The EventHandler delegate
is covered in more detail later in this chapter.

public delegate void EventHandler(object sender, EventArgs e);

396

CHAPTER 16

Raising an Event

The event member itself just holds the event handlers that need to be invoked. Nothing happens
with them unless the event is raised. You need to make sure there is code to do just that, at the

appropriate times.
For example, the following code raises event Elapsed. Notice the following about the code:

e Before raising the event, the code compares it to null, to see whether it contains any event
handlers. If the event is null, it is empty.

e Raising the event itself is like invoking a function.
— Use the name of the event, followed by the parameter list enclosed in parentheses.

— The parameter list must match the delegate type of the event.

if (Elapsed != null) // Make sure there are methods to execute.
Elapsed (source, args); // Raise the event.
T T

Event name Parameter list

Putting together the event declaration and the code to raise the event gives the following class
declaration for the publisher. The code contains two members: the event and a method called
OnOneSecond, which raises the event.

public class MyTimerClass

{
public event EventHandler Elapsed; // Declare the event.
private void OnOneSecond(object source, EventArgs args)
if (Elapsed != null) // Make sure there are methods to execute.
Elapsed(source, args);
} T
Raise the event.
// The following code makes sure that method OnOneSecond is called every
// 1,000 milliseconds.
}

For now, I'll let method OnOneSecond be somehow, mysteriously, called once every second. Later in

the chapter I'll show you how to make this happen. But for now, remember these important points:

e The publisher class has an event as a member.

e The class contains the code to raise the event.

EVENTS

397

CHAPTER 16 I EVENTS

Subscribing to an Event

To add an event handler to an event, the handler must have the same return type and signature as the
event’s delegate.

e Usethe +=operator to add an event handler to an event, as shown in the following code.

e The method can be any of the following:
— Aninstance method
— Astatic method
— An anonymous method
— Alambda expression

For example, the following code adds three methods to event Elapsed. The first is an instance
method using the method form. The second is a static method using the method form. The third is an
instance method using the delegate form.

Class instance Instance method
L \
mc.Elapsed += ca.TimerHandlerA; // Method reference form
mc.Elapsed += ClassB.TimerHandlerB; // Method reference form
T T
Event member Static method

mc.Elapsed += new EventHandler(cc.TimerHandlerC); // Delegate form

Just as with delegates, you can use anonymous methods and lambda expressions to add event
handlers. For example, the following code first uses a lambda expression and then uses an
anonymous method.

mc.Elapsed += (source, args) => // Lambda expression
Console.WriteLine("Lambda expression.");
};
mc.Elapsed += delegate(object source, EventArgs args) // Anonymous method

Console.WriteLine("Anonymous method.");

b8

398

CHAPTER 16

The following program uses the MyTimerClass class declared in the previous section. The code
performs the following:

e Itregisters two event handlers from two different class instances.

e After registering the event handlers, it sleeps for two seconds. During that time, the timer class
raises the event two times, and both event handlers are executed each time.

public class MyTimerClass { ... }
class ClassA

public void TimerHandlerA(object source, EventArgs args) // Event handler

{

}
}

class ClassB

Console.WriteLine("Class A handler called");

public static void TimerHandlerB(object source, EventArgs args) // Static

{

}
}

class Program

Console.WriteLine("Class B handler called");

static void Main()

{
ClassA ca = new ClassA(); // Create the class object.
MyTimerClass mc = new MyTimerClass(); // Create the timer object.
mc.Elapsed += ca.TimerHandlerA; // Add handler A -- instance.
mc.Elapsed += ClassB.TimerHandlerB; // Add handler B -- static.
Thread.Sleep(2250);

}

}

When supplied with the code for MyTimerClass, this code produces the following output:

Class A handler called
Class B handler called
Class A handler called
Class B handler called

EVENTS

399

CHAPTER 16 I EVENTS

Removing Event Handlers

When you’re done with an event handler, you should remove it from the event, to allow the garbage
collector to free up that memory. You remove an event handler from an event by using the -= operator,
as shown here:

mc.Elapsed -= ca.TimerHandlerA; // Remove handler A.

For example, the following code removes the event handler for ClassB after the first two times the
event is raised and then lets the program run for another two seconds.

mc.Elapsed += ca.TimerHandlerA; // Add instance handler A.
mc.Elapsed += ClassB.TimerHandlerB; // Add static handler B.
Thread.Sleep(2250); // Sleep more than 2 seconds.
mc.Elapsed -= ClassB.TimerHandlerB; // Remove static handler B.

Console.WritelLine("Class B event handler removed");

Thread.Sleep(2250); // Sleep more than 2 seconds.

This code produces the following output. The first four lines are the result of both handlers being
called twice, in the first two seconds. After the handler for ClassB is removed, only the handler for the
instance of ClassA is called, during the last two seconds.

Class A handler called
Class B handler called
Class A handler called
Class B handler called
Class B event handler removed
Class A handler called
A

Class A handler called

400

CHAPTER 16

Standard Event Usage

GUI programming is event driven, which means that while the program is running, it can be interrupted
at any time by events such as button clicks, key presses, or system timers. When this happens, the
program needs to handle the event and then continue on its course.

Clearly, this asynchronous handling of program events is the perfect situation to use C# events.
Windows GUI programming uses events so extensively that there is a standard .NET Framework pattern
for using them, which you are strongly encouraged to follow.

The foundation of the standard pattern for event usage is the EventHandler delegate type, which is
declared in the System namespace. The declaration of the EventHandler delegate type is shown in the
following code:

e The first parameter is meant to hold a reference to the object that raised the event. It is of type
object and can, therefore, match any instance of any type.

e Thesecond parameter is meant to hold state information of whatever type is appropriate for the
application.

e Thereturn type is void.

public delegate void EventHandler(object sender, EventArgs e);

Using the EventArgs Class

The second parameter in the EventHandler delegate type is an object of class EventArgs, which is
declared in the System namespace. You might be tempted to think that, since the second parameter is
meant for passing data, an EventArgs class object would be able to store data of some sort. You would
be wrong.

e The EventArgs class is designed to carry no data. It is used for event handlers that do not need to
pass data—and is generally ignored by them.

e Ifyouwant to pass data, you must declare a class derived from EventArgs, with the appropriate
fields to hold the data you want to pass.

Even though the EventArgs class does not actually pass data, it is an important part of the pattern of
using the EventHandler delegate. Class object and class EventArgs are the base classes for whatever
actual types are used as the parameters. This allows EventHandler to provide a signature that is the
lowest common denominator for all events and event handlers, allowing them to have exactly two
parameters, rather than having different signatures for each case.

EVENTS

401

Download from Wow! eBook <www.wowebook.com>

CHAPTER 16 I EVENTS

Passing Data by Extending EventArgs

To pass data in the second parameter of your event handler and adhere to the standard conventions,
you need to declare a custom class derived from EventArgs that can store the data you need passed. The
name of the class should end in EventArgs. For example, the following code declares a custom class that
can store a string in a field called Message:

Custom class name Base class

public class MyTCEv\intArgs: EventArgs
{ public string Message; // Stores a message
public MyTCEventArgs(string s) // The constructor sets the message.
Message = s;
}

402

CHAPTER 16 I EVENTS

Using the Custom Delegate

Now that you have a custom class for passing data in the second parameter of your event handlers, you
need a delegate type that uses the new custom class. There are two ways you can do this:

e The first way is to use a nongeneric delegate. To do this, do the following:
— Create a new custom delegate using your custom class type, as shown in the following code.
— Use the new delegate name throughout the four other sections of the event code.

Custom delegate name Custom class
\’ \’
public delegate void MyTCEventHandler (object sender, MyTCEventArgs e);

¢ The second way was introduced with C# 2.0 and uses the generic delegate EventHandler<>.
Chapter 19 covers C# generics. To use the generic delegate, do the following, as shown in the
code following:

— Place the name of the custom class between the angle brackets.

— Use the entire string wherever you would have used the name of your custom delegate type.
For example, this is what the event declaration would look like:

Generic delegate using custom class

public event EventHandler<MyTCEventArgs> Elapsed;
T

Event name

Use the custom class and the custom delegate, either nongeneric or generic, in the other four
sections of code dealing with the event.

For example, the following code updates the MyTimerClass code to use a custom EventArgs class
called MyTCEventArgs and the generic EventHandler<> delegate.

403

CHAPTER 16 I EVENTS

public class MyTCEventArgs: EventArgs

public string Message;

Declaration of custom class

public MyTCEventArgs(string s) {
Message = s;

}
public class MyTimerClass Generic delegate B
{ public event EventHandler<MyTéEventArgs> Elapsed; // Event declaration
private void OnOneSecond(object source, EventArgs args)
if (Elapsed != null)
{ MyTCEventArgs mtcea =
new MyTCEventArgs("Message from OnOneSecond"); Code to raise event
Elapsed(source, mtcea);
}
) // This code is given at the end of the chapter.

class ClassA

public void TimerHandlerA(object source, MyTCEventArgs args)
{ Event handler
Console.WriteLine("Class A Message: {0}", args.Message);

}
}

404

CHAPTER 16 I EVENTS

class Program

static void Main()

{
ClassA ca = new ClassA();
MyTimerClass mc = new MyTimerClass();

mc.Elapsed += // Register handler.
new EventHandler<MyTCEventArgs» (ca.TimerHandlerA);

Thread.Sleep(3250);
}
}

This code produces the following output:

Class A Message: Message from OnOneSecond
Class A Message: Message from OnOneSecond
Class A Message: Message from OnOneSecond

405

CHAPTER 16 I EVENTS

406

The MyTimerClass Code

Now that you've seen all five components of code that need to be implemented to use an event, I can
show you the full MyTimerClass class that the code has been using.

Most things about the class have been pretty clear—it has an event called Elapsed that can be
subscribed to and a method called OnOneSecond that is called every second and raises the event. The one
question remaining about it is, “What causes OnOneSecond to be called every second?”

The answer is that I've created method OnOneSecond and subscribed it as an event handler to an
event in a class called Timer, in the System.Timers namespace. The event in Timer is raised every 1,000
milliseconds and calls event handler OnOneSecond, which in turn raises event Elapsed in class
MyTimerClass. Figure 16-5 shows the structure of the code.

.NET Code Our Code
Publisher Class Publisher/Subscriber Subscriber Classes
System.Timers.Timer MyTimerClass ClassA

1
1
1
1
1
Elapsed | Elapsed TimerHandlerA()
+= ! +=

N E—
1
| | ClassB

[I
1
1
1
1
1

OnOneSecond() TimerHandlerB()
Code that raises

the event

Figure 16-5. The code structure of MyTimerClass

The Timer class is a useful tool, so I'll mention a little more about it. First, it has a public event called
Elapsed. If that sounds familiar, it’s because I named the event in MyTimerClass after it. The names have
no other connection than that. I could have named the event in MyTimerClass anything.

One of the properties of Timer is Interval, which is of type double, and specifies the number of
milliseconds between raising the event. The other property the code uses is Enabled, which is of type
bool, and starts and stops the timer.

CHAPTER 16

The actual code is the following. The only things I haven’t shown previously are the private timer
field, called MyPrivateTimer, and the constructor for the class. The constructor does the work of setting
up the internal timer and attaching it to event handler OnOneSecond.

public class MyTimerClass

{

public event EventHandler Elapsed;

private void OnOneSecond(object source, EventArgs args)
if (Elapsed != null)

Elapsed(source, args);

[l--------——--

private System.Timers.Timer MyPrivateTimer; // Private timer

public MyTimerClass() // Constructor
MyPrivateTimer = new System.Timers.Timer(); // Create the private timer.
// The following statement sets our OnOneSecond method above as an event
// handler to the Elapsed event of class Timer. It is completely
// unrelated to our event Elapsed, declared above.
MyPrivateTimer.Elapsed += OnOneSecond; // Attach our event handler.
// Property Interval is of type double, and specifies the number of
// milliseconds between when its event is raised.
MyPrivateTimer.Interval = 1000; // 1 second interval.
// Property Enabled is of type bool, and turns the timer on and off.
MyPrivateTimer.Enabled = true; // Start the timer.

}

}

EVENTS

407

CHAPTER 16 I EVENTS

408

Event Accessors

The last topic to cover in this chapter is event accessors. I mentioned earlier that the += and -= operators
were the only operators allowed for an event. These operators have the well-defined behavior that

you've seen so far in this chapter.
You can, however, change these operators’ behavior and have the event perform whatever custom

code you like when they are used. You can do this by defining event accessors for the event.

e There are two accessors: add and remove.

e The declaration of an event with accessors looks similar to the declaration of a property.

The following example shows the form of an event declaration with accessors. Both accessors
have an implicit value parameter called value that takes a reference to either an instance method or a
static method.

public event EventHandler Elapsed

add
{

00 // Code to implement the =+ operator
}
remove

00 // Code to implement the -= operator
}

When event accessors are declared, the event does not contain an embedded delegate object. You
must implement your own storage mechanism for storing and removing the methods registered with

the event.
The event accessors act as void methods, meaning that they cannot use return statements that

return a value.

CHAPTER 17

Interfaces

What Is an Interface?

Declaring an Interface

Implementing an Interface

An Interface Is a Reference Type

Using the as Operator with Interfaces
Implementing Multiple Interfaces

Implementing Interfaces with Duplicate Members
References to Multiple Interfaces

An Inherited Member As an Implementation
Explicit Interface Member Implementations

Interfaces Can Inherit Interfaces

409

CHAPTER 17 I INTERFACES

What Is an Interface?

An interface is a reference type that specifies a set of function members but does not implement them.
Other types—classes or structs—can implement interfaces.

To get a feeling for interfaces, I'll start by showing one that is already defined. The BCL declares an
interface called IComparable, the declaration of which is shown in the following code. Notice that the
interface body contains the declaration of a single method, CompareTo, which takes a single parameter of
type object. Although the method has a name, parameters, and a return type, there is no
implementation. Instead, the implementation is replaced by a semicolon.

Keyword Interface name
L d

public interface IComparable

int CompareTo(object obj);
} T

Semicolon in place of method implementation

Figure 17-1 illustrates interface IComparable. The CompareTo method is shown in gray to illustrate
that it doesn’t contain an implementation.

IComparable

CompareTo()

Figure 17-1. Representation of interface IComparable

Although the interface declaration doesn't provide an implementation for method CompareTo, the
.NET documentation of interface IComparable describes what the method should do, in case you create a
class or struct that implements the interface. It says that when method CompareTo is called, it should
return one of the following values:

e Anegative value, if the current object is less than the parameter object
e A positive value, if the current object is greater than the parameter object

e Zero, if the two objects are considered equal in the comparison

410

CHAPTER 17 I INTERFACES

Example Using the IComparable Interface

To understand what this means and why it’s useful, let’s start by taking a look at the following code,
which takes an unsorted array of integers and sorts them in ascending order.

e The firstline creates an array of five integers that are in no particular order.
e Thesecond line uses the Array class’s static Sort method to sort the elements.

e The foreach loop prints them out, showing that the integers are now in ascending order.

var myInt = new [] { 20, 4, 16, 9, 2 }; // Create an array of ints.
Array.Sort(myInt); // Sort elements by magnitude.

foreach (var i in myInt) // Print them out.
Console.Write("{o} ", i);

This code produces the following output:
24916 20

The Array class’s Sort method works great on an array of ints, but what would happen if you were
to try to use it on one of your own classes, as shown here?

class MyClass // Declare a simple class.

public int TheValue;

MyClass[] mc = new MyClass[5]; // Create an array of five elements.
// Create and initialize the elements.

Array.Sort(mc); // Try to use Sort--raises exception

When you try to run this code, it raises an exception instead of sorting the elements. The reason
Sort doesn’t work with the array of MyClass objects is that it doesn’t know how to compare user-defined
objects and how to rank their order.

The algorithm used by Sort depends on the fact that it can use the element’s CompareTo method to
determine the order of two elements. The int type implements IComparable, but MyClass does not, so
when Sort tries to call the nonexistent CompareTo method of MyClass, it raises an exception.

411

Download from Wow! eBook <www.wowebook.com>

CHAPTER 17 I INTERFACES

You can make the Sort method work with objects of type MyClass by making the class implement
IComparable. To implement an interface, a class or struct must do two things:

e It mustlist the interface name in its base class list.

e Itmust provide an implementation for each of the interface’s members.

For example, the following code updates MyClass to implement interface IComparable. Notice the
following about the code:

e The name of the interface is listed in the base class list of the class declaration.

e Theclass implements a method called CompareTo, whose parameter type and return type match
those of the interface member.

e Method CompareTo is implemented to satisfy the definition given in the interface’s
documentation. That is, it returns a negative 1, positive 1, or 0, depending on its value compared
to the object passed into the method.

Interface name in base class list
4
class MyClass : IComparable

public int TheValue;

public int CompareTo(object obj) // Implementation of interface method

{
MyClass mc = (MyClass)obj;
if (this.TheValue < mc.TheValue) return -1;
if (this.TheValue > mc.TheValue) return 1;
return 0;

}

}

Figure 17-2 illustrates the updated class. The arrow from the grayed interface method to the class
method indicates that the interface method doesn’t contain code but is implemented by the class-level
method.

MyClass

TheValue
IComparable

CompareTo() |[€«——— CompareTo()

Method implemented f

by the class

Figure 17-2. Implementing IComparable in MyClass

412

CHAPTER 17 I INTERFACES

Now that MyClass implements IComparable, Sort will work on it just fine. It would not, by the way,
have been sufficient to just declare the CompareTo method—it must be part of implementing the
interface, which means placing the interface name in the base class list.

The following shows the complete updated code, which can now use the Sort method to sort an
array of MyClass objects. Main creates and initializes an array of MyClass objects and then prints them out.
It then calls Sort and prints them out again to show that they’ve been sorted.

class MyClass : IComparable // Class implements interface.

public int TheValue;
public int CompareTo(object obj) // Implement the method.
{

MyClass mc = (MyClass)obj;

if (this.TheValue < mc.TheValue) return -1;

if (this.TheValue > mc.TheValue) return 1;

return 0;

}
}

class Program
static void PrintOut(string s, MyClass[] mc)

Console.Write(s);

foreach (var m in mc)
Console.Write("{0} ", m.TheValue);

Console.WriteLine("");

static void Main()

{

var myInt = new [] { 20, 4, 16, 9, 2 };

MyClass[] mcArr = new MyClass[5]; // Create array of MyClass objs.
for (int i = 0; i < 5; i++) // Initialize the array.

mcArr[i] = new MyClass();
mcArr[i].TheValue = myInt[i];

PrintOut("Initial Order: ", mcArr); // Print the initial array.
Array.Sort(mcArr); // Sort the array.
PrintOut("Sorted Order: ", mcArr); // Print the sorted array.
}
}

This code produces the following output:

Initial Order: 20 4 16 9 2
Sorted Order: 249 16 20

413

CHAPTER 17 I INTERFACES

Declaring an Interface

The previous section used an interface that was already declared in the BCL. In this section, you'll see
how to declare interfaces.
The important things to know about declaring an interface are the following:

e Aninterface declaration cannot contain data members.

¢ Aninterface declaration can contain only declarations of the following kinds of nonstatic
function members:

Methods
Properties
Events

Indexers

e The declarations of these function members cannot contain any implementation code. Instead, a
semicolon must be used for the body of each member declaration.

e By convention, interface names begin with an uppercase I (for example, ISaveable).

e Like classes and structs, interface declarations can also be split into partial interface declarations,
as described in the “Partial Classes” section of Chapter 6.

414

CHAPTER 17

The following code shows an example of declaring an interface with two method members:

Keyword Interface name

L L
interface IMyInterface1 Semicolon in place of body
{ L

int DoStuff (int nvari, long 1lvar2);

double DoOtherStuff(string s, long x);

}

Semicolon in place of body

There is an important difference between the accessibility of an interface and the accessibility of

interface members:

e Aninterface declaration can have any of the access modifiers public, protected, internal, or

private.

e Members of an interface, however, are implicitly public, and no access modifiers, including
public, are allowed.

Access modifiers are allowed on interfaces.
4
public interface IMyInterface2

{
private int Method1(int nVari, long 1lVar2); // Error
} T

Access modifiers are NOT allowed on interface members.

INTERFACES

415

CHAPTER 17 I INTERFACES

Implementing an Interface

Only classes or structs can implement an interface. As shown in the Sort example, to implement an
interface, a class or struct must

e Include the name of the interface in its base class list

e Supply implementations for each of the interface’s members

For example, the following code shows a new declaration for class MyClass, which implements
interface IMyInterfacel, declared in the previous section. Notice that the interface name is listed in the
base class list after the colon and that the class provides the actual implementation code for the interface
members.

Colon Interface name
4 L
class MyClass: IMyInterfacel

int DoStuff (int nVari, long lvar2)
{...} // Implementation code

double DoOtherStuff(string s, long x)
{...} // Implementation code

}

Some important things to know about implementing interfaces are the following:

e Ifaclass implements an interface, it must implement all the members of that interface.

e Ifaclassis derived from a base class and also implements interfaces, the name of the base class
must be listed in the base class list before any interfaces, as shown here:

Base class must be first Interface names
4 d

class Derived : MyBaseClass, IIfc1, IEnumerable, IComparable

416

CHAPTER 17 I INTERFACES

Example with a Simple Interface

The following code declares an interface named IIfc1, which contains a single method named PrintOut.
Class MyClass implements interface IIfc1 by listing it in its base class list and supplying a method
named PrintOut that matches the signature and return type of the interface member. Main creates an
object of the class and calls the method from the object.

interface IIfc1 Semicolon in place of body // Declare interface
{)
void PrintOut(string s);
}
Implement interface
L
class MyClass : IIfci // Declare class
public void PrintOut(string s) // Implementation
Console.WriteLine("Calling through: {0}", s);
}
}
class Program
{
static void Main()
MyClass mc = new MyClass(); // Create instance
mc.PrintOut("object"); // Call method

}
}

This code produces the following output:

Calling through: object

417

CHAPTER 17 I INTERFACES

418

An Interface Is a Reference Type

An interface is more than just a list of members for a class or struct to implement. It is a reference type.
You cannot access an interface directly through the class object’s members. You can, however, get a
reference to the interface by casting the class object reference to the type of the interface. Once you have

areference to the interface, you can use dot-syntax notation with the reference to call interface
members.

For example, the following code shows an example of getting an interface reference from a class
object reference.

o Inthe first statement, variable mc is a reference to a class object that implements interface IIfc1.
The statement casts that reference to a reference to the interface and assigns it to variable ifc.

e Thesecond statement uses the reference to the interface to call the implementation method.

Interface Cast to interface

4 4
IIfc1 ifc = (IIfcl) mc; // Get ref to interface
T T
Interface ref Class object ref
ifc.PrintOut ("interface"); // Use ref to interface to call member
T

Use dot-syntax notation to call through the interface reference.

For example, the following code declares an interface and a class that implements it. The code in
Main creates an object of the class and calls the implementation method through the class object. It also
creates a variable of the interface type, casts the reference of the class object to the interface type, and
calls the implementation method through the reference to the interface. Figure 17-3 illustrates the class
and the reference to the interface.

CHAPTER 17

interface IIfci

{
void PrintOut(string s);
}
class MyClass: IIfci
public void PrintOut(string s)

Console.WritelLine("Calling through: {0}", s);

}
}
class Program
{

static void Main()

MyClass mc = new MyClass(); // Create class object
mc.PrintOut("object"); // Call class object implementation method

IIfc1 ifc = (IIfcl)mc; // Cast class object ref to interface ref
ifc.PrintOut("interface"); // Call interface method
}
}

This code produces the following output:

Calling through: object
Calling through: interface

— f Heap
S MyClass
IIfc
ifc T Prir@l(— PrintOut ()
mc = >
+

Figure 17-3. A reference to the class object and a reference to the interface

INTERFACES

419

CHAPTER 17 I INTERFACES

420

Using the as Operator with Interfaces

In the previous section, you saw that you can use the cast operator to get a reference to an object’s
interface. An even better idea is to use the as operator. The as operator is covered in detail in Chapter 18,
but I'll mention it here as well, since it’s a good choice to use with interfaces.

If you attempt to cast a class object reference to a reference of an interface that the class doesn’t
implement, the cast operation will raise an exception. You can avoid this problem by using the as
operator instead. It works as follows:

e Ifthe class implements the interface, the expression returns a reference to the interface.

e Ifthe class doesn’t implement the interface, the expression returns null rather than raising an
exception.

The following code demonstrates the use of the as operator. The first line uses the as operator to
obtain an interface reference from a class object. The result of the expression sets the value of b either to
null or to a reference to an ILiveBirth interface.

The second line checks the value of b and, if it is not null, executes the command that calls the
interface member method.

Class object ref Interface name

L 2
ILiveBirth b = a as ILiveBirth; // Acts like cast: (ILiveBirth)a
T T
Interface Operator
ref
if (b != null)

Console.WritelLine("Baby is called: {0}", b.BabyCalled());

CHAPTER 17 I INTERFACES

Implementing Multiple Interfaces

In the examples shown so far, the classes have implemented a single interface.

e Aclass or struct can implement any number of interfaces.

e All the interfaces implemented must be listed in the base class list and separated by commas
(following the base class name, if there is one).

For example, the following code shows class MyData, which implements two interfaces: IDataStore
and IDataRetrieve. Figure 17-4 illustrates the implementation of the multiple interfaces in class MyData.

interface IDataRetrieve { int GetData(); } // Declare interface
interface IDataStore { void SetData(int x); } // Declare interface
Interface Interface
L 2
({:1ass MyData: IDataRetrieve, IDataStore // Declare class
int Mem1; // Declare field
public int GetData() { return Mem1i; }

public void SetData(int x) { Memi = x; }
}

class Program
static void Main() // Main

MyData data = new MyData();
data.SetData(5);
Console.WriteLine("Value = {0}", data.GetData());
}
}

This code produces the following output:

Value = §

MyData IDataRetrieve
GetData()
GetData()
IDataStore
SetData() SetData()

Figure 17-4. Class implementing multiple interfaces

421

Download from Wow! eBook <www.wowebook.com>

CHAPTER 17 I INTERFACES

422

Implementing Interfaces with Duplicate Members

Since a class can implement any number of interfaces, it’s possible that two or more of the interface
members might have the same signature and return type. So, how does the compiler handle that
situation?

For example, suppose you had two interfaces—IIfc1 and IIfc2—as shown following. Each interface
has a method named PrintOut, with the same signature and return type. If you were to create a class that
implemented both interfaces, how should you handle these duplicate interface methods?

interface IIfci

void PrintOut(string s);

}
interface IIfc2
{
void PrintOut(string t);
}

The answer is that if a class implements multiple interfaces, where several of the interfaces have
members with the same signature and return type, the class can implement a single member that
satisfies all the interfaces containing that duplicated member.

For example, the following code shows the declaration of class MyClass, which implements both
IIfc1 and IIfc2. Its implementation of method PrintOut satisfies the requirement for both interfaces.

class MyClass : IIfc1, IIfc2 // Implement both interfaces.
public void PrintOut(string s) // Single implementation for both
{ Console.WriteLine("Calling through: {0}", s);

y }

Elass Program

static void Main()

MyClass mc = new MyClass();
mc.PrintOut("object");
}
}

CHAPTER 17 I INTERFACES

This code produces the following output:

Calling through: object

Figure 17-5 illustrates the duplicate interface methods being implemented by a single class-level
method implementation.

— / Heap \
Stack MyClass
IIfcl
PrintOut ()
mc] PrintOut() I1I1fc2
PrintOut ()
+
>

- J

Figure 17-5. Multiple interfaces implemented by the same class member

423

CHAPTER 17 I INTERFACES

424

References to Multiple Interfaces

You saw previously that interfaces are reference types and that you can get a reference to an interface by
using the as operator or by casting an object reference to the interface type. If a class implements

multiple interfaces, you can get separate references for each one.
For example, the following class implements two interfaces with the single method PrintOut. The

code in Main calls method PrintOut in three ways:

e Through the class object
e Through a reference to the IIfc1 interface

e Through a reference to the IIfc2 interface

Figure 17-6 illustrates the class object and references to IIfc1 and IIfc2.

interface IIfci // Declare interface

void PrintOut(string s);

interface IIfc2 // Declare interface

void PrintOut(string s);

class MyClass : IIfci, IIfc2 // Declare class
public void PrintOut(string s)
{
Console.WriteLine("Calling through: {0}", s);
}

}

class Program

static void Main()

{
MyClass mc

new MyClass();

IIfc1 ifca
IIfc2 ifc2

(IIfc1) mc;
(IIfc2) mc;

mc.PrintOut("object");

ifc1.PrintOut("interface 1");
ifc2.PrintOut("interface 2");
}
}

This code produces the following output:

CHAPTER 17

// Get ref to IIfc1
// Get ref to IIfc2

// Call through class object

// Call through IIfci
// Call through IIfc2

INTERFACES

Calling through: object
Calling through: interface 1
Calling through: interface 2

o -

Stack

MyClass

» | IIfc2

ifc2 —J

PrintOut ()

PrintOut() IIfcl
PrintOut()

:ﬂ

A4

-

Figure 17-6. Separate references to different interfaces in the class

425

CHAPTER 17 I INTERFACES

426

An Inherited Member As an Implementation

A class implementing an interface can inherit the code for an implementation from one of its base
classes. For example, the following code illustrates a class inheriting implementation code from a
base class.

e IIfclisan interface with a method member called PrintOut.
e MyBaseClass contains a method called PrintOut that matches IIfc1’s method.

e (ClassDerived has an empty declaration body but derives from class MyBaseClass and contains
IIfc1in its base class list.

e Even though Derived’s declaration body is empty, the code in the base class satisfies the

requirement to implement the interface method.

interface IIfci { void PrintOut(string s); }
class MyBaseClass // Declare base class.
public void PrintOut(string s) // Declare the method.
Console.WriteLine("Calling through: {0}", s);
}

class Derived : MyBaseClass, IIfcil // Declare class.
{
}

class Program {
static void Main()

Derived d = new Derived(); // Create class object
d.PrintOut("object."); // Call method
}
}

Figure 17-7 illustrates the preceding code. Notice that the arrow from IIfc1 goes down to the code

in the base class.

Derived
IIfcl

MyBaseClass I FRIECYE)
PrintOut() |<«—

Figure 17-7. Implementation in the base class

CHAPTER 17 I INTERFACES

Explicit Interface Member Implementations

You saw in a previous section that a single class can implement all the members required by multiple

interfaces, as illustrated in Figures 17-5 and 17-6.
But what if you want separate implementations for each interface? In this case, you can create what
are called explicit interface member implementations. An explicit interface member implementation has

the following characteristics:

e Like all interface implementations, it is placed in the class or struct implementing the interface.

e Itisdeclared using a qualified interface name, which consists of the interface name and member

name, separated by a dot.

The following code shows the syntax for declaring explicit interface member implementations. Each
of the two interfaces implemented by MyClass implements its own version of method PrintOut.

class MyClass : IIfci, IIfc2

{ Qualified interface name
{
void IIfc1.PrintOut (string s) // Explicit implementation
{...}
void IIfc2.PrintOut (string s) // Explicit implementation
{...}

Figure 17-8 illustrates the class and interfaces. Notice that the boxes representing the explicit
interface member implementations are not shown in gray, since they now represent actual code.

MyClass
IIfc2
PrintOut ()

IIfcl
PrintOut ()

Figure 17-8. Explicit interface member implementations

427

CHAPTER 17 I INTERFACES

For example, in the following code, class MyClass declares explicit interface member
implementations for the members of the two interfaces. Notice that in this example there are only
explicit interface member implementations. There is no class-level implementation.

interface IIfc1l { void PrintOut(string s); } // Declare interface
interface IIfc2 { void PrintOut(string t); } // Declare interface

class MyClass : IIfc1, IIfc2

{ Qualified interface name
{
void IIfci.PrintOut(string s) // Explicit interface member
// implementation
Console.WriteLine("IIfc1i: {0}", s);
Qualified interface name
{
void IIfc2.PrintOut(string s) // Explicit interface member
{ // implementation
Console.WriteLine("IIfc2: {0}", s);
}
}
class Program
static void Main()
{
MyClass mc = new MyClass(); // Create class object
IIfc1 ifc1l = (IIfcl) mc; // Get reference to IIfcl
ifc1.PrintOut("interface 1"); // Call explicit implementation
IIfc2 ifc2 = (IIfc2) mc; // Get reference to IIfc2
ifc2.PrintOut("interface 2"); // Call explicit implementation
}

}

This code produces the following output:

IIfc1: interface 1
IIfc2: interface 2

428

CHAPTER 17 I INTERFACES

Figure 17-9 illustrates the code. Notice in the figure that the interface methods are not pointing at
class-level implementations but contain their own code.

4 N

MyClass
%
IIfc2
ifc2 PrintOut ()
ffet I1fcl
me ‘ PrintOut ()
L —

Figure 17-9. References to interfaces with explicit interface member implementations

When there is an explicit interface member implementation, a class-level implementation is
allowed but not required. The explicit implementation satisfies the requirement that the class or
struct must implement the method. You can therefore have any of the following three

implementation scenarios:

e Aclass-level implementation
e Anexplicit interface member implementation

e Both aclass-level and an explicit interface member implementation

429

CHAPTER 17 I INTERFACES

Accessing Explicit Interface Member Implementations

An explicit interface member implementation can be accessed only through a reference to the interface.
This means that even other class members can’t directly access them.

For example, the following code shows the declaration of class MyClass, which implements interface
IIfc1 with an explicit implementation. Notice that even Method1, which is also a member of MyClass,
can’t directly access the explicit implementation.

e The first two lines of Method1 produce compile errors because the method is trying to access the
implementation directly.

e Only the last line in Method1 will compile, because it casts the reference to the current object
(this) to a reference to the interface type and uses that reference to the interface to call the
explicit interface implementation.

class MyClass : IIfci

void IIfc1.PrintOut(string s) // Explicit interface implementation

Console.WriteLine("IIfc1");

}
public void Method1()

PrintOut("..."); // Compile error
this.PrintOut("..."); // Compile error

((1Ifc1)this).PrintOut("..."); // OK, call method
} T

} Cast to a reference to the interface

This restriction has an important ramification for inheritance. Since other fellow class members
can’t directly access explicit interface member implementations, members of classes derived from the
class clearly can’t directly access them either. They must always be accessed through a reference to
the interface.

430

CHAPTER 17 I INTERFACES

Interfaces Can Inherit Interfaces

You saw earlier that interface implementations can be inherited from base classes. But an interface itself
can inherit from one or more other interfaces.

e To specify that an interface inherits from other interfaces, place the names of the base interfaces
in a comma-separated list after a colon following the interface name in the interface declaration,
as shown here:

Colon Base interface list
L 4
interface IDataIO : IDataRetrieve, IDataStore

(...

e Unlike a class, which can have only a single class name in its base class list, an interface can have
any number of interfaces in its base interface list.

— The interfaces in the list can themselves have inherited interfaces.

— The resulting interface contains all the members it declares, as well as all those of its base
interfaces.
The code in Figure 17-10 shows the declaration of three interfaces. Interface IDataIO inherits from
the first two. The figure on the right shows IDataI0 encompassing the other two interfaces.

interface IDataRetrieve
{ int GetData(); }

interface IDataStore
{ void SetData(int x); }

// Derives from the first two interfaces MyData
interface IDatal0: IDataRetrieve, IDataStore
{ [Meml | | rpataro
IDataRetrieve
class MyData: IDatalO { I
int nPrivateData; |GetData() < | GetData() |
public int GetData()
{ return nPrivateData; } IDataStore
public void SetData(int x)
{ nPrivateData = x; } |SetData() < I SetData() |
}

class Program {
static void Main() {
MyData data = new MyData ();
data.SetData(5);
Console.WriteLine("{0}", data.GetData());
}

}

Figure 17-10. Class with interface inheriting multiple interfaces

431

Download from Wow! eBook <www.wowebook.com>

CHAPTER 17 I INTERFACES

432

Example of Different Classes Implementing an Interface

The following code illustrates several aspects of interfaces that have been covered. The program declares
a class called Animal, which is used as a base class for several other classes that represent various types of
animals. It also declares an interface named ILiveBirth.

Classes Cat, Dog, and Bird all derive from base class Animal. Cat and Dog both implement the

ILiveBirth interface, but class Bird does not.

In Main, the program creates an array of Animal objects and populates it with a class object of each
of the three types of animal classes. The program then iterates through the array and, using the as
operator, retrieves references to the ILiveBirth interface of each object that has one and calls its

BabyCalled method.

interface ILiveBirth

{
string BabyCalled();

class Animal { }

class Cat : Animal, ILiveBirth

{
string ILiveBirth.BabyCalled()

{ return "kitten"; }

}

class Dog : Animal, ILiveBirth

string ILiveBirth.BabyCalled()
{ return "puppy"; }

class Bird : Animal

{
}

// Declare interface

// Base class Animal

// Declare class Cat

// Declare class Dog

// Declare class Bird

CHAPTER 17 I INTERFACES

class Program

{
static void Main()
{
Animal[] animalArray = new Animal[3]; // Create Animal array
animalArray[0] = new Cat(); // Insert Cat class object
animalArray[1] = new Bird(); // Insert Bird class object
animalArray[2] = new Dog(); // Insert Dog class object
foreach(Animal a in animalArray) // Cycle through array
{
ILiveBirth b = a as ILiveBirth; // if implements ILiveBirth...
if (b != null)
Console.WriteLine("Baby is called: {0}", b.BabyCalled());
}
}
}

This code produces the following output:

Baby is called: kitten
Baby is called: puppy

Figure 17-11 illustrates the array and the objects in memory.

Dog Cat

ILiveBirth ILiveBirth

BabyCalled() Bird BabyCalled()
Animal Animal Animal

S ——

Figure 17-11. Different object types of base class Animal are interspersed in the array.

o =N

433

CHAPTER 18

Conversions

What Are Conversions?
Implicit Conversions
Explicit Conversions and Casting
Types of Conversions
Numeric Conversions
Reference Conversions
Boxing Conversions
Unboxing Conversions
User-Defined Conversions
The is Operator

The as Operator

435

CHAPTER 18 " CONVERSIONS

What Are Conversions?

To get an understanding of what conversions are, let’s start by considering the simple case in which you
declare two variables of different types and then assign the value of one (the source) to the other (the
target). Before the assignment can occur, the source value must be converted to a value of the target
type. Figure 18-1 illustrates type conversion.

Conversion is the process of taking a value of one type and using it as the equivalent value of
another type.

The value resulting from the conversion should be the same as the source value—but in the
target type.

Source Expression Target Expression

SourceType TargetType

Convertto
Valueg TargetType Valuey

Example of converting a value of type short to a value of type shyte

short sbyte
Convert to
—
[ofoJoJoJoJoJo o oJoJoJo o 1 o 1] sbyte [ofoJoJofo]1]0]1]

Figure 18-1. Type conversion

For example, the code in Figure 18-2 shows the declaration of two variables of different types.

var1l is of type short, a 16-bit signed integer that is initialized to 5. var2 is of type sbyte, an 8-bit
signed integer that is initialized to the value 10.

The third line of the code assigns the value of var1 to var2. Since these are two different types, the
value of varl must be converted to a value of the same type as var2 before the assignment can be
performed. This is performed using the cast expression, which you'll see shortly.

Notice also that the value and type of var1 are unchanged. Although it is called a conversion, this
only means that the source value is used as the target type—not that the source is changed into
the target type.

Short varl [oTe oToTe[oToTe[ooTe oo 2 oT1] vart - 5

sbyte var2

5;
10;

[oJoJoJo]1]o]1]0] var2 = 10

n
(&,

var2 = (shyte) varl;

[

I
I
I
I
I
I [oToJoJoToJoJoJoJoJoJoJoJo 2 o 1] vart
I

| [oToJoJoJo]1]o 1] var2

1l
3,

Cast expression, which says to convert
the value of varl to type shyte

Figure 18-2. Converting from a short to an sbyte

436

CHAPTER 18 ' CONVERSIONS

Implicit Conversions

For certain types of conversions, there is no possibility of loss of data or precision. For example, it’s easy
to stuff an 8-bit value into a 16-bit type with no loss of data.
e Thelanguage will do these conversions for you automatically. These are called implicit
conversions.

e When converting from a source type with fewer bits to a target type with more bits, the extra bits
in the target need to be filled with either 0s or 1s.

e When converting from a smaller unsigned type to a larger unsigned type, the extra, most
significant bits of the target are filled with 0s. This is called zero extension.

Figure 18-3 shows an example of the zero extension of an 8-bit value of 10 converted to a 16-bit
value of 10.

The source value fits fine in the target type,
and the most significant eight bits of the target
are padded with Os. Source Type: byte

Padded with Os— [oJoJoJoJ1JoJ1Jo] 10

called zero extension l l l l l l l l

[oToJoJoJoJoJoJoJoJoJoJoJ1JoJ1]o] 10
Target Type: ushort

Figure 18-3. Zero extension in unsigned conversions

For conversion between signed types, the extra most significant bits are filled with the sign bit of the
source expression.

e This maintains the correct sign and magnitude for the converted value.
e This is called sign extension and is illustrated in Figure 18-4, first with 10 and then with -10.

Positive Number Sign Bit

Sign bit copied to [oTJoJoJoJ1JoJ1Jo] sbyte10

the most significant bits i l l i i l l i

[oJoJoJoJoJoJoJoJoJoJoJoJ1JoJ1Jo] short:10

Negative Number Sign Bit

Sign bit copied to [ATxTaJ1JoJ1]1Jo] shyte-10

the most significant bits i l l i i l l i

[aJaJaJaJaJaJaJaJaJaJaJaJoJ1]1Jo] short:-10

Figure 18-4. Sign extension in signed conversions

437

CHAPTER 18 " CONVERSIONS

Explicit Conversions and Casting
When converting from a shorter type to a longer type, it’s easy for the longer type to hold all the bits of
the shorter type. In other situations, however, the target type might not be able to accommodate the
source value without loss of data.
For example, suppose you want to convert a ushort value to a byte.
e Aushort can hold any value between 0 and 65,535.
e Abyte can only hold a value between 0 and 255.

e Aslong as the ushort value you want to convert is less than 256, there won’t be any loss of data. If
it is greater, however, the most significant bits will be lost.

For example, Figure 18-5 shows an attempt to convert a ushort with a value of 1,365 to a byte,
resulting in a loss of data.

Not all the significant bits of the source value fit into the target
type, resulting in an overflow and loss of data. The source value
was 1,365, but the maximum value the target can hold is 255.

TTTTTTT]

X X X|
Overflow: Lost Data

Source Type: ushort
[1JoJ1JoJ1] 1365

:

[oJ1JoJ1] 85
Target Type: byte

—_———

Figure 18-5. Attempting to convert a ushort to a byte

Clearly, only a relatively small number (0.4 percent) of the possible unsigned 16-bit ushort values
can be safely converted to an unsigned 8-bit byte type without loss of data. The rest result in data
overflow, yielding different values.

438

CHAPTER 18 ' CONVERSIONS

Casting

For the predefined types, C# will automatically convert from one data type to another—but only
between those types for which there is no possibility of data loss between the source type and the target
type. That is, the language does not provide automatic conversion between two types if there is any
value of the source type that would lose data if it were converted to the target type. If you want to make a
conversion of this type, you must use an explicit conversion, called a cast expression.

The following code shows an example of a cast expression. It converts the value of var1 to type
sbyte. A cast expression consists of the following:

e Asetof matching parentheses containing the name of the target type

e The source expression, following the parentheses
Target type
l
(sbyte) vari;
T

Source expression

When you use a cast expression, you are explicitly taking responsibility for performing the operation
that might lose data. Essentially, you are saying, “In spite of the possibility of data loss, I know what I'm
doing, so make this conversion anyway.” (Make sure, however, that you do know what you’re doing.)

For example, Figure 18-6 shows cast expressions converting two values of type ushort to type byte.
In the first case, there is no loss of data. In the second case, the most significant bits are lost, giving a
value of 85—which is clearly not equivalent to the source value, 1,365.

The same value—no data loss

{I0I0I0I0I0I0I0I0I0I0I0I0I1I0I1I0Ish 10 }

[oToJoJoJ1]o]1]0] sb 10

ushort sh = 10;
byte sb = (byte) sh;
Console.WriteLine

("sb: {0} = 0x{0:X}", sb);

sb = (byte) sh;
Console.WriteLine
("sb: {0} = 0x{0:X}", sb);

{|0|0|0|0|0|1|0|1|0|1|0|1|0|1|0|1| sh 1,365}

[o]1ToJ1]o]1]o]1] sb 85

|
|
|
|
|
sh = 1365; :
I
|
|
I

Different values—data loss

Figure 18-6. Casting a ushort to a byte

The output of the code in the figure is the following:

sb: 10 = OxA

sb: 85 = 0x55

439

CHAPTER 18 " CONVERSIONS

Types of Conversions

There are a number of standard, predefined conversions for the numeric and reference types. The
categories are illustrated in Figure 18-7.

e Beyond the standard conversions, you can also define both implicit and explicit conversions for
your user-defined types.

e Thereis also a predefined type of conversion called boxing, which converts any value type to
either of these:

— Typeobject
— Type System.ValueType

e Unboxing converts a boxed value back to its original type.

Conversions

/\

Predefined User-Defined
Numeric Boxing/ Reference Implicit Explicit
/\ Unboxing /\
Implicit Explicit Implicit Explicit

Figure 18-7. Types of conversions

Numeric Conversions

Any numeric type can be converted into any other numeric type, as illustrated in Figure 18-8. Some of
the conversions are implicit conversions, and others must be explicit.

Integer Types:

float

byte, sbyte, short,

ushort, int, uint, [~ - - _ _ — = double ; t
e the other
From one integer
type to another /
integer type , ’
7
'
Implicit
Explicit

Figure 18-8. Numeric conversions

440

CHAPTER 18 ' CONVERSIONS

Implicit Numeric Conversions

The implicit numeric conversions are shown in Figure 18-9.

e There is an implicit conversion from the source type to the target type if there is a path, following
the arrows, from the source type to the target type.

¢ Anynumeric conversion for which there is not a path following the arrows from the source type
to the target type must be an explicit conversion.

The figure demonstrates that, as you would expect, there is an implicit conversion between numeric
types that occupy fewer bits to those that occupy more bits.

Unsigned Signed

o]
16-Bit

o]

uint 32-Bit

Figure 18-9. The implicit numeric conversions

441

Download from Wow! eBook <www.wowebook.com>

CHAPTER 18 " CONVERSIONS

Overflow Checking Context

You've seen that explicit conversions have the possibility of losing data and not being able to represent
the source value equivalently in the target type. For integral types, C# provides you with the ability to
choose whether the runtime should check the result for overflow when making these types of
conversions. It does this through the checked operator and the checked statement.

e Whether a segment of code is checked or not is called its overflow checking context.

— Ifyou designate an expression or segment of code as checked, the CLR will raise an
OverflowException exception if the conversion produces an overflow.

— Ifthe code is not checked, the conversion will proceed regardless of whether there is an
overflow.

e The default overflow checking context is not checked.

The checked and unchecked Operators

The checked and unchecked operators control the overflow checking context of an expression, which is
placed between a set of parentheses. The expression cannot be a method. The syntax is the following:

checked (Expression)
unchecked (Expression)

For example, the following code executes the same conversion—first in a checked operator and then
in an unchecked operator.

e Inthe unchecked context, the overflow is ignored, resulting in the value 208.

e Inthe checked context, an OverflowException exception is raised.

ushort sh = 2000;
byte sb;

sb = unchecked ((byte) sh); // Most significant bits lost
Console.WriteLine("sb: {0}", sb);

sb = checked ((byte) sh); // OverflowException raised
Console.WriteLine("sb: {0}", sb);

442

CHAPTER 18 ' CONVERSIONS

This code produces the following output:

sb: 208

Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an overflow.
at Test1.Test.Main() in C:\Programs\Test1\Program.cs:line 21

The checked and unchecked Statements

The checked and unchecked operators that you just saw act on the single expression between the
parentheses. The checked and unchecked statements perform the same function but control all the
conversions in a block of code, rather than in a single expression.

The checked and unchecked statements can be nested to any level.

For example, the following code uses checked and unchecked statements and produces the same
results as the previous example, which uses checked and unchecked expressions. In this case, however,
blocks of code are affected, rather than just expressions.

byte sb;
ushort sh = 2000;

unchecked // Set unchecked

{
sb = (byte) sh;
Console.WriteLine("sb: {0}", sb);

checked // Set checked
sb = (byte) sh;
Console.WriteLine("sb: {0}", sh);

}
}

443

CHAPTER 18 " CONVERSIONS

Explicit Numeric Conversions

You've seen that the implicit conversions automatically convert from the source expression to the target
type because there is no possible loss of data. With the explicit conversions, however, there is the
possibility of losing data—so it’s important for you as the programmer to know how a conversion will
handle that loss if it occurs.

In this section, you will look at each of the various types of explicit numeric conversions. Figure
18-10 shows the subset of explicit conversions shown in Figure 18-8.

byte, sbyte,
short, ushort,
int, uint,
Tong, ulong

Figure 18-10. The explicit numeric conversions

Integral to Integral

Figure 18-11 shows the behavior of the integral-to-integral explicit conversions. In the checked case, if
the conversion loses data, the operation raises an OverflowException exception. In the unchecked case,
any lost bits go unreported.

byte, sbyte,
short, ushort,
int, uint,
long, ulong

Unchecked

Is source type S longer
than target type T?
Yes l lNo

Discard the extra, Sign-extend, or zero-
Throw N
Succeed. OverflowExcention most significant extend S to the
ption. bits of S. length of T.

Figure 18-11. Integer type to integer type explicit conversions

Checked

Is S within the range of
target type T?

Yes No

444

CHAPTER 18 ' CONVERSIONS

float or double to Integral

When converting a floating-point type to an integer type, the value is rounded toward 0 to the nearest
integer. Figure 18-12 illustrates the conversion conditions. If the rounded value is not within the range of
the target type, then

e The CLRraises an OverflowException exception if the overflow checking context is checked.

e C# does not define what its value should be if the context is unchecked.

Round the value
of S, toward 0, to the
nearest integer.

v

Integer Types:

float
byte, shyte, short, oa Is the resulting value with-
ushort, int, uint, double in the range of type T?
Tong, ulong S=-7
No

(Succeed.) (checked?)
Yes l

Raise Unspecified
OverflowException. result.

Figure 18-12. Converting a float or a double to an integer type

decimal to Integral

When converting from decimal to the integer types, the CLR raises an OverflowException exception if the
resulting value is not within the target type’s range. Figure 18-13 illustrates the conversion conditions.

Round the value
of S, toward 0, to the
nearest integer.

Is the resulting value with-
* in the range of type T?

N No

Succeed. Throw
OverflowException.

byte, sbyte,
short, ushort,
int, uint,
long, ulong

Figure 18-13. Converting a decimal to an integer type

445

CHAPTER 18 " CONVERSIONS

double to float

Values of type float occupy 32 bits, and values of type double occupy 64 bits. When a double is rounded
to a float, the double type value is rounded to the nearest float type value. Figure 18-14 illustrates the
conversion conditions.

e Ifthe value is too small to be represented by a float, the value is set to either positive or
negative 0.

o Ifthe value is too large to be represented by a float, the value is set to either positive or
negative infinity.

double l

! Does the value
fitin float?

Fits Toolsmall Too Large
A
Set value to posi- Set value to positive
Succeed.) ! .
tive or negative 0. or negative oo.

Figure 18-14. Converting a double to a float

Round the value
of S to the nearest
float float value.

float or double to decimal

Figure 18-15 shows the conversion conditions for converting from floating-point types to decimal.
e Ifthe value is too small to be represented by the decimal type, the result is set to 0.

o Ifthe value is too large, the CLR raises an OverflowException exception.

446

CHAPTER 18 ' CONVERSIONS

Convert S to decimal and
round to the nearest number
after the 28th decimal place.

float l

double K .
Is the resulting value with-
in the range of decimal?
Yes l No
’
x 4 Succeed. Is the value too small
to represent as decimal?
Yes l No
Set the Raise
result to 0. OverflowException.

Figure 18-15. Converting a float or double to a decimal

decimal to float or double

Conversions from decimal to the floating-point types always succeed. There might, however, be a loss of
precision. Figure 18-16 shows the conversion conditions.

float
Round the value of S
double
o to the nearest float or
’ doubTe value.

/7
’
/
Succeed. There might
be a loss of precision.

Figure 18-16. Converting a decimal to a float or double

447

CHAPTER 18 " CONVERSIONS

Reference Conversions

As you well know by now, reference type objects comprise two parts in memory: the reference and
the data.

e Part of the information held by the reference is the type of the data it is pointing at.

e Areference conversion takes a source reference and returns a reference pointing at the same
place in the heap but “labels” the reference as a different type.

For example, the following code shows two reference variables, myVar1 and myVar2, that point to the
same object in memory. The code is illustrated in Figure 18-17.

e TomyVari, the object it references looks like an object of type B—which it is.

e TomyVar2, the same object looks like an object of type A.

— Even though it is actually pointing at an object of type B, it cannot see the parts of B that
extend A and therefore cannot see Field2.

— The second Writeline statement would therefore cause a compile error.

Notice that the “conversion” does not change myVar1.
class A { public int Field1; }
class B: A { public int Field2; }

class Program

{

static void Main()

{
B myVarl = new B();

Return the reference to myVar1 as a reference to a class A.
2
A myVar2 = (A) myVari;

Console.WriteLine("{0}", myVar2.Field1); // Fine
Console.WriteLine("{0}", myVar2.Field2); // Compile error!
} T
} myVar2 can’t see Field2.

448

CHAPTER 18 ' CONVERSIONS

myVar2 Ref myVar2 Ref —

myVarl Ref A myVarl Ref A
Fieldl Fieldl
+ +
To myVarl, the object pointed at by its To myVar2, the object pointed at by its
reference looks like a class B object. reference looks like a class A object.

Figure 18-17. A reference conversion returns a different type associated to the object.

Implicit Reference Conversions

Just as there are implicit numeric conversions that the language will automatically perform for you,
there are also implicit reference conversions. These are illustrated in Figure 18-18.

e Allreference types have an implicit conversion to type object.
e Anyinterface can be implicitly converted to an interface from which it is derived.

e Aclass can be implicitly converted to
— Any class in the chain from which it is derived

— Any interface that it implements

Reference InterfaceS ClassS
Type J_J %
object InterfaceT ClassT InterfaceT

Figure 18-18. Implicit conversions for classes and interfaces

449

CHAPTER 18 " CONVERSIONS

A delegate can be implicitly converted to the .NET BCL classes and interfaces shown in Figure 18-19.
An array, ArrayS, with elements of type Ts, can be implicitly converted to the following:

e The .NET BCL class and interfaces shown in Figure 18-19.
e Another array, ArrayT, with elements of type Tt, if all of the following are true:
— Both arrays have the same number of dimensions.

— The element types, Ts and Tt, are reference types—not value types.

— There is an implicit conversion between types Ts and Tt.

DelegateS ArrayS
J \) (J N y
System.Delegate System.ICloneable
ArrayT .
System.MulticastDelegate rray System.IList
v System.ICollection

System.IEnumerable

System.ICloneable

System.Runtime.Serialization.ISerializable System.Array

Figure 18-19. Implicit conversions for delegates and arrays

450

CHAPTER 18 ' CONVERSIONS

Explicit Reference Conversions

Explicit reference conversions are reference conversions from a general type to a more specialized type.

e Explicit conversions include
— Conversions from an object to any reference type

— Conversions from a base class to a class derived from it

e The explicit reference conversions are illustrated by reversing each of the arrows in Figures 18-18
and 18-19.

If this type of conversion were allowed without restriction, you could easily attempt to reference
members of a class that are not actually in memory. The compiler, however, does allow these types of
conversions. But when the system encounters them at run time, it raises an exception.

For example, the code in Figure 18-20 converts the reference of base class A to its derived class B and
assigns it to variable myVar2.

e IfmyVar2 were to attempt to access Field2, it would be attempting to access a field in the “B part”
of the object, which doesn’t exist—causing a memory fault.

e The runtime will catch this inappropriate cast and raise an InvalidCastException exception.
Notice, however, that it does not cause a compile error.

This part of the class does

class A { not exist in memory!

public int Fieldl }

class B: A {
public int Field2 }

=
1 B
Unsafe—raises myVar2 | Field2

1
1
1
1
1
1
1
; 1
class Program { an exception | (class B)
1
1
1
1
1
1
1

static void Main() at run time. myVarl Ref —
{ (class A)

Fieldl

A myVarl = new A();
B myVar2 = (B)myVarl;

} At run time, the CLR will determine that the

conversion is unsafe and raise an exception.

}

Figure 18-20. Invalid casts raise runtime exceptions.

451

Download from Wow! eBook <www.wowebook.com>

CHAPTER 18 " CONVERSIONS

452

Valid Explicit Reference Conversions

There are three situations in which an explicit reference conversion will succeed at run time—that is, not
raise an InvalidCastException exception.

The first case is where the explicit conversion is unnecessary—that is, where the language would
have performed an implicit conversion for you anyway. For example, in the code that follows, the
explicit conversion is unnecessary because there is always an implicit conversion from a derived class to
one of its base classes.

class A { }

class B: A { }

B myVarl = new B();

A myVar2 = (A) myVari; // Cast is unnecessary; A is the base class of B.

The second case is where the source reference is null. For example, in the following code, even
though it would normally be unsafe to convert a reference of a base class to that of a derived class, the
conversion is allowed because the value of the source reference is null.

class A { }

class B: A { }

A m&&érl = null;

B myVar2 = (B) myVari; // Allowed because myVari is null

CHAPTER 18 ' CONVERSIONS

The third case is where the actual data pointed to by the source reference could safely be converted
implicitly. The following code shows an example, and Figure 18-21 illustrates the code.

e The implicit conversion in the second line makes myVar2 “think” that it is pointing to data of type
A, while it is actually pointing to a data object of type B.

e The explicit conversion in the third line is casting a reference of a base class to a reference of one
of its derived classes. Normally this would raise an exception. In this case, however, the object
being pointed to actually is a data item of type B.

B myVari = new B();
A myVar2 = myVari; // Implicitly cast myVari to type A.
B myVar3 = (B)myVar2; // This cast is fine because the data is of type B.
hd Heap : NV Heap
myVar3 Ref _| B : myVar3 Ref B
nyvarz | Ref Field2 | nvarz| Ref - Field2
myVarl| Ref | ! Fieldl : myVarl| Ref ! Fieldl

Figure 18-21. Casting to a safe type

453

CHAPTER 18 " CONVERSIONS

Boxing Conversions

All C# types, including the value types, are derived from type object. Value types, however, are efficient,

lightweight types that do not, by default, include their object component in the heap. When the object

component is needed, however, you can use boxing, which is an implicit conversion that takes a value

type value, creates from it a full reference type object in the heap, and returns a reference to the object.
For example, Figure 18-22 shows three lines of code.

e The first two lines of code declare and initialize value type variable i and reference type
variable oi.

¢ Inthe third line of code, you want to assign the value of variable i to oi. But oi is a reference type
variable and must be assigned a reference to an object in the heap. Variable i, however, is a value
type and doesn’t have a reference to an object in the heap.

e The system therefore boxes the value of i by doing the following:
— Creating an object of type int in the heap
— Copying the value of i to the int object

— Returning the reference of the int object to oi to store as its reference

+
int i = 12; } oi null
; o B e
object oi = null; ; 12

+

Variable i has no reference into the heap to assign
to oi. It must, therefore
— Create an int type object in memory.
— Copy the value of i to the object. i 12
— Return the reference of the int object to oi.

Heap

12

object

oi —

Figure 18-22. Boxing creates a full reference type object from a value type.

454

CHAPTER 18 ' CONVERSIONS

Boxing Creates a Copy

A common misunderstanding about boxing is that it somehow acts upon the item being boxed. It
doesn’t. It returns a reference type copy of the value. After the boxing procedure, there are two
copies of the value—the value type original and the reference type copy—each of which can be
manipulated separately.

For example, the following code shows the separate manipulation of each copy of the value. Figure
18-23 illustrates the code.

e The first line defines value type variable i and initializes its value to 10.

e The second line creates reference type variable oi and initializes it with the boxed copy of
variable i.

e Thelast three lines of code show i and oi being manipulated separately.

int i = 10; // Create and initialize value type
Box i and assign its reference to oi.
4
object oi = i; // Create and initialize reference type

Console.WriteLine("i: {0}, io: {1}", i, oi);
i = 12;
oi = 15;
Console.WriteLine("i: {0}, io: {1}", i, oi);

This code produces the following output:

i: 10, io: 10

i: 12, jo: 15

Heap
10

object

Heap
15

object

oi — oi —

Figure 18-23. Boxing creates a copy that can be manipulated separately.

455

CHAPTER 18 " CONVERSIONS

456

The Boxing Conversions

Figure 18-24 shows the boxing conversions. Any value type ValueTypeS can be implicitly converted to
any of types object, System.ValueType, or InterfaceT, if ValueTypeS implements InterfaceT.

ValueTypeS

(J l L

Y

object System.ValueType

InterfaceT

Figure 18-24. Boxing is the implicit conversion of value types to reference types.

Unboxing Conversions

Unboxing is the process of converting a boxed object back to its value type.

Unboxing is an explicit conversion.

The system performs the following steps when unboxing a value to ValueTypeT:

— It checks that the object being unboxed is actually a boxed value of type ValueTypeT .

— It copies the value of the object to the variable.

For example, the following code shows an example of unboxing a value.

Value type variable i is boxed and assigned to reference type variable oi.

Variable oi is then unboxed, and its value is assigned to value type variable j.

static void Main()

{

int i = 10;
Box i and assign its reference to oi.
4

object oi = i;
Unbox oi and assign its value to j.
b
int j = (int) oi;
Console.WriteLine("i:

{0},

oi: {1},

je {21, 4,

oi, 3);

This code produces the following output:

CHAPTER 18 ' CONVERSIONS

i: 10, oi: 10, j: 10

Attempting to unbox a value to a type other than the original type raises an InvalidCastException

exception.

The Unboxing Conversions

Figure 18-25 shows the unboxing conversions.

Figure 18-25. The unboxing conversions

object System.ValueType InterfaceS
ValueTypeT ValueTypeT ValueTypeT

457

CHAPTER 18 " CONVERSIONS

User-Defined Conversions

Besides the standard conversions, you can also define both implicit and explicit conversions for your
own classes and structs.
The syntax for user-defined conversions is shown following.

e The syntax is the same for both implicit and explicit conversion declarations, except for the
keywords implicit and explicit.

e The modifiers public and static are required.

Required Operator Keyword Source
U \ s U
public static implicit operator TargetType (SourceType Identifier)
{ T
Implicit or explicit
return ObjectOfTargetType;
}

For example, the following shows an example of the syntax of a conversion method that converts an
object of type Person to an int:

public static implicit operator int(Person p)

{

return p.Age;

Constraints on User-Defined Conversions

There are some important constraints on user-defined conversions. The most important are the
following:

¢ You can only define user-defined conversions for classes and structs.
¢ You cannot redefine standard implicit or explicit conversions.

e The following is true for source type S and target type T:
— Sand Tmust be different types.

— Sand T cannot be related by inheritance. That is, S cannot be derived from T, and T cannot be
derived from S.

— Neither S nor T can be an interface type or the type object.

— The conversion operator must be a member of either S or T.

¢ You cannot declare two conversions, one implicit and the other explicit, with the same source
and target types.

458

CHAPTER 18 ' CONVERSIONS

Example of a User-Defined Conversion

The following code defines a class called Person that contains a person’s name and age. The class also
defines two implicit conversions. The first converts a Person object to an int value. The target int value
is the age of the person. The second converts an int to a Person object.

class Person

{
public string Name;
public int Age;
public Person(string name, int age)
Name = name;
Age = age;
public static implicit operator int(Person p) // Convert Person to int.
{
return p.Age;
public static implicit operator Person(int i) // Convert int to Person.
return new Person("Nemo", i);
}
class Program
{
static void Main()
Person bill = new Person("bill", 25);
Convert a Person object to an int.
I T
int age = bill;
Console.WriteLine("Person Info: {0}, {1}", bill.Name, age);
Convert an int to a Person object.
4
Person anon = 35;
Console.WriteLine("Person Info: {0}, {1}", anon.Name, anon.Age);
}
}

459

CHAPTER 18 ' CONVERSIONS

This code produces the following output:

Person Info: bill, 25
Person Info: Nemo, 35

If you had defined the same conversion operators as explicit rather than implicit, then you would
have needed to use cast expressions to perform the conversions, as shown here:

Explicit
L

public static explicit operator int(Person p)

{

return p.Age;

static void Main()

Requires cast expression
{
int age = (int) bill;

460

CHAPTER 18 ' CONVERSIONS

Evaluating User-Defined Conversions

The user-defined conversions discussed so far have directly converted the source type to an object of the
target type in a single step, as shown in Figure 18-26.

| User-Defined Conversion |

SourceType TargetType

Valueg Valuer

Figure 18-26. Single-step user-defined conversion

But user-defined conversions can have up to three steps in the full conversion. Figure 18-27
illustrates these stages, which include the following:

e The preliminary standard conversion
e The user-defined conversion

e The following standard conversion

There is never more than a single user-defined conversion in the chain.

Standard Standard
Conversion Conversion

| User-Defined Conversion |

SourceType SourceType TargetType TargetType

Valueg Value " | vawe Valuer

Figure 18-27. Multistep user-defined conversion

Y

Y

Example of a Multistep User-Defined Conversion

The following code declares class Employee, which is derived from class Person.

e Several sections ago, the code sample declared a user-defined conversion from class Person to
int. So if there is a standard conversion from Employee to Person and one from int to float, you
can convert from Employee to float.

— There is a standard conversion from Employee to Person, since Employee is derived from
Person.

— There is a standard conversion from int to float, since that is an implicit numeric
conversion.

¢ Since all three parts of the chain exist, you can convert from Employee to float. Figure 18-28
illustrates how the compiler performs the conversion.

461

Download from Wow! eBook <www.wowebook.com>

CHAPTER 18 " CONVERSIONS

462

class Employee : Person { }

class Person

{
public string Name;
public int Age;
// Convert a Person object to an int.
public static implicit operator int(Person p)
return p.Age;
}

class Program
static void Main()

Employee bill = new Employee();
bill.Name = "William";
bill.Age = 25;

Convert an Employee to a float.

float fvar = bill;

Console.WriteLine("Person Info: {0}, {1}", bill.Name, fVar);
}
}

This code produces the following output:

Person Info: William, 25

Standard conversion: Standard conversion:
derived class to base class int to float

User-Defined Conversion |

Employee Person int float
"William" "William" 25 25.0
25 25 |

Figure 18-28. Conversion of Employee to float

CHAPTER 18 ' CONVERSIONS

The is Operator

As shown previously, some conversion attempts are not successful and raise an
InvalidCastException exception at run time. Instead of blindly attempting a conversion, you can use the
is operator to check whether a conversion would complete successfully.

The syntax of the is operator is the following, where Expr is the source expression:

Returns a bool
U
Expr is TargetType

The operator returns true if Expr can be successfully converted to the target type through any of
the following:

e Areference conversion
e Aboxing conversion

e Anunboxing conversion

For example, in the following code, you use the is operator to check whether variable bill of type
Employee can be converted to type Person, and then you take the appropriate action.

class Employee : Person { }
class Person

public string Name = "Anonymous";

public int Age 25;
}
class Program
{
static void Main()
{
Employee bill = new Employee();
Person p;
// Check if variable bill can be converted to type Person
if(bill is Person)
p = bill;
Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
}
}

The is operator can be used only for reference conversions and boxing and unboxing conversions.
It cannot be used for user-defined conversions.

463

CHAPTER 18 " CONVERSIONS

The as Operator

The as operator is like the cast operator, except that it does not raise an exception. If the conversion fails,
rather than raising an exception, it returns null.
The syntax of the as operator is the following, where

e Expris the source expression.

e TargetType isthe target type, which must be a reference type.

Returns a reference
4
Expr as TargetType

Since the as operator returns a reference expression, it can be used as the source for an assignment.
For example, variable bill of type Employee is converted to type Person, using the as operator, and
assigned to variable p of type Person. You then check to see whether p is null before using it.
class Employee : Person { }

class Person

public string Name = "Anonymous";
public int Age 25;

class Program

static void Main()

{
Employee bill = new Employee();
Person p;
p = bill as Person;
if(p !=null)
{
Console.WriteLine("Person Info: {0}, {1}", p.Name, p.Age);
}
}

}

Like the is operator, the as operator can be used only for reference conversions and boxing
conversions. It cannot be used for user-defined conversions or conversions to a value type.

464

CHAPTER 19

Generics

What Are Generics?

Generics in C#

Generic Classes

Declaring a Generic Class
Creating a Constructed Type
Creating Variables and Instances
Constraints on Type Parameters
Generic Methods

Extension Methods with Generic Classes
Generic Structs

Generic Delegates

Generic Interfaces

Covariance and Contravariance in Generics

465

CHAPTER 19 I GENERICS

466

What Are Generics?

With the language constructs you've learned so far, you can build powerful objects of many different
types. You do this mostly by declaring classes that encapsulate the behavior you want and then creating
instances of those classes.

All the types used in the class declarations so far have been specific types—either programmer-
defined or supplied by the language or the BCL. There are times, however, when a class would be more
useful if you could “distill” or “refactor” out its actions and apply them not just to the data types for
which they are coded but for other types as well.

Generics allow you to do just that. You can refactor your code and add an additional layer of
abstraction so that, for certain kinds of code, the data types are not hard-coded. This is particularly
designed for cases in which there are multiple sections of code performing the same instructions, but on
different data types.

That might sound pretty abstract, so we’ll start with an example that should make things clearer.

A Stack Example

Suppose first that you have created the following code, which declares a class called MyIntStack, which
implements a stack of ints. It allows you to push ints onto the stack and pop them off. This, by the way,
isn’t the system stack.

class MyIntStack // Stack for ints
int StackPointer = 0;
int[] StackArray; // Array of int
T int
int L
public void Push(int x) // Input type: int
{
} T it
4
public int Pop() // Return type: int
}

CHAPTER 19 ' GENERICS

Suppose now that you would like the same functionality for values of type float. There are several
ways you could achieve this. One way is to perform the following steps to produce the subsequent code:

e Cutand paste the code for class MyIntStack.
e Change the class name to MyFloatStack.

e Change the appropriate int declarations to float declarations throughout the class declaration.

class MyFloatStack // Stack for floats
int StackPointer = 0;
float [] StackArray; // Array of float
T float
float L
public void Push(float x) // Input type: float
{
float
L
public float Pop() // Return type: float
{
}

}

This method certainly works, but it’s error-prone, and has the following drawbacks:

¢ Youneed to inspect every part of the class carefully to determine which type declarations need to
be changed and which should be left alone.

¢ Youneed to repeat the process for each new type of stack class you need (long, double, string,
and so on).

e After the process, you end up with multiple copies of nearly identical code, taking up
additional space.

e Debugging and maintaining the parallel implementations is inelegant and error-prone.

467

CHAPTER 19 I GENERICS

Generics in C#

With C# 2.0, Microsoft introduced the generics features, which offer more elegant ways of using a set of
code with more than one type. Generics allow you to declare type-parameterized code, which you can
instantiate with different types. This means you can write the code with “placeholders for types” and

then supply the actual types when you create an instance of the class.

By this point in the text, you should be very familiar with the concept that a type is not an object but
a template for an object. In the same way, a generic type is not a type but a template for a type. Figure

19-1 illustrates this point.

Generic
Types

Generic types
are templates
for types.

Types

Instances

Predefined
Types

User-Defined

Types

Types are
templates for
instances.

o gH

= O]
IZID 10
(|

i

Figure 19-1. Generic types are templates for types.

C# provides five kinds of generics: classes, structs, interfaces, delegates, and methods. Notice that

the first four are types, and methods are members.

Figure 19-2 shows how generic types fit in with the other types covered.

Types covered so far

Generic Types
- Class
— Struct
- Interface
— Delegate

User-Defined Types

Non-Generic Types

— Delegate - Array

— Enum - Class

— Struct - Interface

Figure 19-2. Generics and user-defined types

468

Constructed Types
- Class
— Struct

Interface

— Delegate

CHAPTER 19 ' GENERICS

Continuing with the Stack Example

In the stack example, with classes MyIntStack and MyFloatStack, the bodies of the declarations of the
classes are identical except at the positions dealing with the type of the value held by the stack.

e InMyIntStack, these positions are occupied by type int.

e InMyFloatStack, they are occupied by float.

You can create a generic class from MyIntStack by doing the following:

e Take the MyIntStack class declaration, and instead of substituting float for int, substitute the
type placeholder T.

e Change the class name to MyStack.

e Place the string <T> after the class name.

The result is the following generic class declaration. The string consisting of the angle brackets with
the T means that T is a placeholder for a type. (It doesn’t have to be the letter T—it can be any identifier.)
Everywhere throughout the body of the class declaration where T is located, an actual type will need to
be substituted by the compiler.

class MyStack <T>

int StackPointer = 0;
T [] StackArray;

1
\’

public void Push(T x) {...}

L
public T Pop() {...}

469

CHAPTER 19 I GENERICS

Generic Classes

Now that you've seen a generic class, let’s look at generic classes in more detail and see how they're
created and used.

As you know, there are two steps for creating and using your own regular, nongeneric classes:
declaring the class and creating instances of the class. But generic classes are not actual classes but
templates for classes—so you must first construct actual class types from them. You can then create
references and instances from these constructed class types.

Figure 19-3 illustrates the process at a high level. If it’s not all completely clear yet, don’t worry—
we’ll cover each part in the following sections.

1. Declare a class, using placeholders for some of the types.
2. Provide actual types to substitute in for the placeholders. This gives you an actual class
definition, with all the “blanks” filled in.

3. Create instances from the “filled-in” class definition.

Constructed Types Instances

Generic Type ,Tl f—:%
—

-0
|G

@ Declare generic ® Create constructed types ® Create instances from
type. by supplying actual types. the constructed types.

Figure 19-3. Creating instances from a generic type

470

CHAPTER 19 ' GENERICS

Declaring a Generic Class

Declaring a simple generic class is much like declaring a regular class, with the following differences:
e Place a matching set of angle brackets after the class name.

e Between the angle brackets, place a comma-separated list of the placeholder strings that
represent the types, to be supplied on demand. These are called type parameters.

e Use the type parameters throughout the body of the declaration of the generic class to represent
the types that should be substituted in.

For example, the following code declares a generic class called SomeClass. The type parameters are
listed between the angle brackets and then used throughout the body of the declaration as if they were
real types.

Type parameters
4

class SomeClass < T1, T2 >
{ Normally, types would be used in these positions.

2
public T1 SomeVar = new T1();
public T2 OtherVar = new T2();

} T T

Normally, types would be used in these positions.
There is no special keyword that flags a generic class declaration. Instead, the presence of the type

parameter list, demarcated with angle brackets, distinguishes a generic class declaration from a regular
class declaration.

471

Download from Wow! eBook <www.wowebook.com>

CHAPTER 19 M GENERICS

472

Creating a Constructed Type

You cannot create class objects directly from a generic class. First, you need to tell the compiler what
actual types should be substituted for the placeholders (the type parameters). The compiler takes those
actual types and creates a template from which it creates actual class objects.

To construct a class type from a generic class, list the class name and supply real types between the
angle brackets, in place of the type parameters. The real types being substituted for the type parameters
are called type arguments.

Type arguments

J

SomeClass< short, int >

The compiler takes the type arguments and substitutes them for their corresponding type
parameters throughout the body of the generic class, producing the constructed type—from which actual
class instances are created.

Figure 19-4 shows the declaration of generic class SomeClass on the left. On the right, it shows the
constructed class created by using the type arguments short and int.

SomeClass< short, int >

Constructed Class

class SomeClass< T1, T2 > class SomeClass<short, int>

Generic { {
Produces .
Class T1 SomeVar; _— short SomeVar;

Declaration T2 OtherVar; int OtherVar;

} 1

Figure 19-4. Supplying type arguments for all the type parameters of a generic class produces a constructed
class from which actual class objects can be created.
Figure 19-5 illustrates the difference between type parameters and type arguments.
e Generic class declarations have type parameters, which act as placeholders for types.

e Type arguments are the actual types you supply when creating a constructed type.

Type Parameters j Type Argumentsl

—_—— —_—
class SomeClass< T1, T2 > SomeClass< short, int >

{
}

Generic Class Declaration

Constructed Type

Figure 19-5. Type parameters versus type arguments

CHAPTER 19 ' GENERICS

Creating Variables and Instances

A constructed class type is used just like a regular type in creating references and instances. For example,
the following code shows the creation of two class objects.

e The firstline shows the creation of an object from a regular, nongeneric class. This is a form that
you should be completely familiar with by now.

e Thesecond line of code shows the creation of an object from generic class SomeClass, instantiated
with types short and int. The form is exactly analogous to the line above it, with the constructed
class forms in place of a regular class name.

e The third line is the same semantically as the second line, but rather than listing the constructed
type on both sides of the equals sign, it uses the var keyword to make the compiler use type

inference.
MyNonGenClass myNGC = new MyNonGenClass 0O;
Constructed class Constructed class
4 4
SomeClass<short, int> myScl = new SomeClass<short int>();
var mySc2 = new SomeClass<short, int>();

As with nongeneric classes, the reference and the instance can be created separately, as shown in
Figure 19-6. The figure also shows that what is going on in memory is the same as for a nongeneric class.

e The firstline below the generic class declaration allocates a reference in the stack for variable
myInst. Its value is null.

e Thesecond line allocates an instance in the heap and assigns its reference to the variable.

class SomeClass< T1, T2 >

{

1
1
public T1 SomeVar; Generic Qlass ! "
public T2 OtherVar; Declaration ! Stack Heap
) 1
} Allocate class variable I
|
SomeClass< short, int > mylnst; | myInst
1
myInst = new SomeClass< short, int >(); 1 Y

1
Allocate instance

Figure 19-6. Using a constructed type to create a reference and an instance

Many different class types can be constructed from the same generic class. Each one is a separate
class type, just as if it had its own separate nongeneric class declaration.

473

CHAPTER 19 I GENERICS

For example, the following code shows the creation of two types from generic class SomeClass. The
code is illustrated in Figure 19-7.

e One type is constructed with types short and int.

e The other is constructed with types int and long.

class SomeClass< T1, T2 > // Generic class
class Program
static void Main()
var first = new SomeClass<short, int >(); // Constructed type
var second = new SomeClass<int, long>(); // Constructed type
class SomeClass< T1, T2 > class SomeClass <short,int>
{ {
T1 SomeVar; short SomeVar;
T2 OtherVar; int OtherVar;

} }

var first = new SomeClass<short, int> (); class SomeClass <int,long>

{

var second = new SomeClass<int, long> (); —> int SomeVar;

long OtherVar;
}

Figure 19-7. Two constructed classes created from a generic class

474

The Stack Example Using Generics

The following code shows the stack example implemented using generics. Method Main defines two
variables: stackInt and stackString. The two constructed types are created using int and string as the
type arguments.

class MyStack<T>

{

T[] StackArray;
int StackPointer = 0;

public void Push(T x)

if (!IsStackFull)

StackArray[StackPointer++] = x;

}
public T Pop()
{

return (!IsStackEmpty)
? StackArray[--StackPointer]
: StackArray[o0];

}

const int MaxStack = 10;

bool IsStackFull { get{ return StackPointer >= MaxStack; } }
bool IsStackEmpty { get{ return StackPointer <= 0; } }

public MyStack()
{

StackArray = new T[MaxStack];
}

public void Print()

for (int i = StackPointer -1; i >= 0 ;
Console.WritelLine(" Value: {0}", StackArray[i]);

i--)

CHAPTER 19 ' GENERICS

475

CHAPTER 19 " GENERICS

476

class

Program

static void Main()

{

}
}

new MyStack<int>();
new MyStack<string>();

var stackInt
var stackString

stackInt.Push(3);
stackInt.Push(5);
stackInt.Push(7);
stackInt.Print();

stackString.Push("Generics are great!");
stackString.Push("Hi there!");

stackString.Print();

This code produces the following output:

Value:
Value:
Value:
Value:
Value:

7

5

3

Hi there!

Generics are great!

CHAPTER 19 ' GENERICS

Comparing the Generic and Nongeneric Stack

Table 19-1 summarizes some of the differences between the initial nongeneric version of the stack and
the final generic version of the stack. Figure 19-8 illustrates some of these differences.

Table 19-1. Differences Between the Nongeneric and Generic Stacks

Nongeneric

Generic

Source Code Size

Executable Size

Ease of Writing

Difficulty to Maintain

Larger: You need a new
implementation for each type.

The compiled version of each
stack is present, regardless of
whether it is used.

Easier to write because it’s more
concrete.

More error-prone to maintain,
since all changes need to be

applied for each applicable type.

Smaller: You need only one
implementation regardless of the
number of constructed types.

Only types for which there is a
constructed type are present in the
executable.

Harder to write because it’s more
abstract.

Easier to maintain, because
modifications are needed in only
one place.

class MyIntStack

Nongeneric

int[] StackArray;

int

StackPointer = 0;

Generic

public void Push(int x)

{ ...
public

{ ...}
}

}
int Pop()

class MyStringStack
{

string[] StackArray;

int

StackPointer = 0;

public void Push(string x)

{ ...}
public

{ ...}
}

static void Main()

{

var intStack =

new MyintStack();

string Pop()

var stringStack =
new MyStringStack();

Figure 19-8. Nongeneric stack versus generic stack

class MyStack < T >

T[] StackArray;
int StackPointer = 0;

public void Push(T x)
{...}

public T Pop()

{...}

static void Main()

var intStack =

new MyStack<int>();

var stringStack =

new MyStack<string>();

477

CHAPTER 19 I GENERICS

478

Constraints on Type Parameters

In the generic stack example, the stack did not do anything with the items it contained other than store
them and pop them. It didn’t try to add them, compare them, or do anything else that would require
using operations of the items themselves. There’s good reason for that. Since the generic stack doesn’t
know the type of the items it will be storing, it can’t know what members these types implement.

All C# objects, however, are ultimately derived from class object, so the one thing the stack can be
sure of about the items it’s storing is that they implement the members of class object. These include
methods ToString, Equals, and GetType. Other than that, it can’t know what members are available.

Aslong as your code doesn’t access the objects of the types it handles (or as long as it sticks to the
members of type object), your generic class can handle any type. Type parameters that meet this
constraint are called unbounded type parameters. If, however, your code tries to use any other members,
the compiler will produce an error message.

For example, the following code declares a class called Simple with a method called LessThan that
takes two variables of the same generic type. LessThan attempts to return the result of using the less-than
operator. But not all classes implement the less-than operator, so you can’t just substitute any class for T.
The compiler, therefore, produces an error message.

class Simple<T>

static public bool LessThan(T i1, T i2)
{

return i1 < i2; // Error

}
, o

To make generics more useful, therefore, you need to be able to supply additional information to
the compiler about what kinds of types are acceptable as arguments. These additional bits of
information are called constraints. Only types that meet the constraints can be substituted for the given
type parameter.

CHAPTER 19 ' GENERICS

Where Clauses

Constraints are listed as where clauses.
e Each type parameter that has constraints has its own where clause.

e Ifaparameter has multiple constraints, they are listed in the where clause, separated by commas.

The syntax of a where clause is the following:

Type parameter Constraint list

where TypeParam : constraint, constraint, ...
Keyword Colon
The important points about where clauses are the following:
e They're listed after the closing angle bracket of the type parameter list.
e They're not separated by commas or any other token.
e They can be listed in any order.

e The token where is a contextual keyword, so you can use it in other contexts.

For example, the following generic class has three type parameters. T1 is unbounded. For T2, only
classes of type Customer, or classes derived from Customer, can be used as type arguments. For T3, only
classes that implement interface IComparable can be used as type arguments.

Unbounded With constraints

d J No separators
class MyClass < T1, T2, T3 >
where T2: Customer // Constraint for T2
where T3: IComparable // Constraint for T3
{ T
No separators
}

479

CHAPTER 19 I GENERICS

Constraint Types and Order

There are five types of constraints. These are listed in Table 19-2.

Table 19-2. Types of Constraints

Constraint Type Description

ClassName Only classes of this type, or classes derived from it, can be used as the type
argument.

class Any reference type, including classes, arrays, delegates, and interfaces, can be used
as the type argument.

struct Any value type can be used as the type argument.

InterfaceName Only this interface, or types that implement this interface, can be used as the
type argument.

new() Any type with a parameterless public constructor can be used as the type

argument. This is called the constructor constraint.

The where clauses can be listed in any order. The constraints in a where clause, however, must be
placed in a particular order, as shown in Figure 19-9.

e There can be at most one primary constraint, and if there is one, it must be listed first.

e There can be any number of InterfaceName constraints.

e Ifthe constructor constraint is present, it must be listed last.

Primary Secondary Constructor
Oor1) (0 or more) Oor1)

ClassName
class InterfaceName new()
struct

Figure 19-9. If a type parameter has multiple constraints, they must be in this order.

The following declarations show examples of where clauses:

class SortedList<S>
where S: IComparable<S> { ... }

class LinkedList<M,N>
where M : IComparable<M>
where N : ICloneable {...}

class MyDictionary<KeyType, ValueType>
where KeyType : IEnumerable,

new()

480

(.01

Generic Methods

CHAPTER 19 ' GENERICS

Unlike the other generics, a method is not a type but a member. You can declare generic methods in
both generic and nongeneric classes, and in structs and interfaces, as shown in Figure 19-10.

Generic methods can be
included in non-generic
declarations of these types,

or in generic types.w

Generic Types

14| Nongeneric Types

User-Defined Types

- Class
— Struct
- Interface

Constructed Types

1
1
1
| — Struct
1
1

— Class — Class
>
- Interface - Interface

1
1
1
- Struct 1
1
1

Figure 19-10. Generic methods can be declared in generic and nongeneric types.

481

Download from Wow! eBook <www.wowebook.com>

CHAPTER 19 M GENERICS

482

Declaring a Generic Method

Generic methods have a type parameter list and optional constraints.

¢ Generic methods have two parameter lists:
— The method parameter list, enclosed in parentheses

— The type parameter list, enclosed in angle brackets

e To declare a generic method, do the following:

— Place the type parameter list immediately after the method name and before the method
parameter list.

— Place any constraint clauses after the method parameter list.

Type parameter list Constraint clauses
4

public void PrintData<S, T> (S p, T t) where S: Person
{ T

Method parameter list

Note Remember that the type parameter list goes after the method name and before the method parameter
list.

CHAPTER 19 ' GENERICS

Invoking a Generic Method

To invoke a generic method, supply type arguments with the method invocation, as shown here:
Type arguments

MyMethod<short, int>();
MyMethod<int, long >();

Figure 19-11 shows the declaration of a generic method called DoStuff, which takes two type
parameters. Below it are two places where the method is called, each with a different set of type
parameters. Each of these constructed instances produces a different version of the method, as shown
on the right of the figure.

void DoStuff<Tl, T2>(Tl t1, T2 t2) void DoStuff <short,int >($hort tl, int t2) {
{ short someVar = tl;

T1 someVar = tl; int otherVar = t2;

T2 otherVar = t2;)
}

void DoStuff <int,long >(int tl, long t2) {
int someVar = tl;

DoStuff<short, int>(sval, ival); long otherVar = t2;
DoStuff<int, Tong>(ival, 1Val); }

Figure 19-11. A generic method with two instantiations

483

CHAPTER 19 I GENERICS

484

Inferring Types

If you are passing parameters into a method, the compiler can sometimes infer from the types of the
method parameters the types that should be used as the type parameters of the generic method. This can
make the method calls simpler and easier to read.

For example, the following code declares MyMethod, which takes a method parameter of the same
type as the type parameter.

public void MyMethod <T> (T myVal) { ... }
T

Both are of type T

If you invoke MyMethod with a variable of type int, as shown in the following code, the information in
the type parameter of the method invocation is redundant, since the compiler can see from the method
parameter that it’s an int.

int myInt = 5;
MyMethod <int> (myInt);
T T

Both are ints

Since the compiler can infer the type parameter from the method parameter, you can omit the type
parameter and its angle brackets from the invocation, as shown here:

MyMethod (myInt);

Example of a Generic Method

The following code declares a generic method called ReverseAndPrint in a nongeneric class called
Simple. The method takes as its parameter an array of any type. Main declares three different array types.
It then calls the method twice with each array. The first time it calls the method with a particular array, it
explicitly uses the type parameter. The second time, the type is inferred.

class Simple

static public void ReverseAndPrint<T>(T[] arr)

{

Array.Reverse(arr);
foreach (T item in arr)

Console.Write("{o}, ", item.ToString());
Console.WriteLine("");

}
}

class Program

static void Main()

{

// Create arrays of various types.

var intArray
var stringArray
var doubleArray

Simple.
Simple.

Simple.
Simple.

Simple.
Simple.
}
}

ReverseAndPrint<int>(intArray);
ReverseAndPrint(intArray);

ReverseAndPrint<string>(stringArray);
ReverseAndPrint(stringArray);

ReverseAndPrint<double>(doubleArray);
ReverseAndPrint(doubleArray);

This code produces the following output:

11, 9, 7, 5, 3,
3) 5) 7, 9) 11)

third, second, first,
first, second, third,

2.345, 7.891, 3.
3.567, 7.891, 2.

567,
345,

//
//

//
//

//
//

CHAPTER 19 ' GENERICS

// Non-generic class

// Generic method

// Use type argument T.

new int[] {3,5, 7,9, 11 };
new string[] { "first", "second", "third" };
new double[] { 3.567, 7.891, 2.

345 };

Invoke method
Infer type and invoke

Invoke method
Infer type and invoke

Invoke method
Infer type and invoke

485

CHAPTER 19 I GENERICS

486

Extension Methods with Generic Classes

Extension methods are described in detail in Chapter 7 and work just as well with generic classes. They
allow you to associate a static method in one class with a different generic class and to invoke the
method as if it were an instance method on a constructed instance of the class.

As with nongeneric classes, an extension method for a generic class must satisfy the following

constraints:

3,
al,

It must be declared static.
It must be the member of a static class.

It must contain as its first parameter type the keyword this, followed by the name of the generic
class it extends.

The following code shows an example of an extension method called Print on a generic class called
Holder<T>:

static class ExtendHolder

}

public static void Print<T>(this Holder<T> h)

T[] vals = h.GetValues();
Console.WriteLine("{0},\t{1},\t{2}", vals[o], vals[1], vals[2]);

}

class Holder<T>

}

T[] vals = new T[3];

public Holder(T vo, T vi, T v2)
{ vals[o] = vo; Vals[1] = v1; Vals[2] = v2; }

public T[] GetValues() { return Vals; }

class Program

{

}

static void Main(string[] args) {
var intHolder = new Holder<int>(3, 5, 7);
var stringHolder = new Holder<string>("a1", "b2", "c3");
intHolder.Print();
stringHolder.Print();

This code produces the following output:

5, 7
b2, c3

CHAPTER 19 ' GENERICS

Generic Structs

Like generic classes, generic structs can have type parameters and constraints. The rules and conditions
for generic structs are the same as those for generic classes.

For example, the following code declares a generic struct called PieceOfData, which stores and
retrieves a piece of data, the type of which is determined when the type is constructed. Main creates
objects of two constructed types—one using int and the other using string.

struct PieceOfData<T> // Generic struct
public PieceOfData(T value) { _data = value; }
private T data;
public T Data

get { return data; }
set { data = value; }

}
class Program
{
static void Main() Constructed type
{ 4
var intData = new PieceOfData<int>(10);
var stringData = new PieceOfData<string>("Hi there.");
Constructed type
Console.WriteLine("intData = {0}", intData.Data);
Console.WriteLine("stringData = {0}", stringData.Data);
}
}

This code produces the following output:

intData 10
stringData = Hi there.

487

CHAPTER 19 I GENERICS

Generic Delegates

Generic delegates are very much like nongeneric delegates, except that the type parameters determine
the characteristics of what methods will be accepted.

e To declare a generic delegate, place the type parameter list in angle brackets after the delegate
name and before the delegate parameter list.

Type parameters
4

delegate R MyDelegate<T, R>(T value);
T
Return type Delegate formal parameter

e Notice that there are two parameter lists: the delegate formal parameter list and the type
parameter list.

e The scope of the type parameters includes the following:

— The return type
— The formal parameter list

— The constraint clauses

488

CHAPTER 19 ' GENERICS

The following code shows an example of a generic delegate. In Main, generic delegate MyDelegate is
instantiated with an argument of type string and initialized with method PrintString.

delegate void MyDelegate<T>(T value); // Generic delegate

class Simple

static public void PrintString(string s) // Method matches delegate
{ Console.WritelLine(s);

}

static public void PrintUpperString(string s) // Method matches delegate
i Console.WriteLine("{0}", s.ToUpper());

}

class Program

static void Main()

var myDel = // Create inst of delegate
new MyDelegate<string>(Simple.PrintString);

myDel += Simple.PrintUpperString; // Add a method.

myDel("Hi There."); // Call delegate

}

This code produces the following output:

Hi There.
HI THERE.

489

CHAPTER 19 I GENERICS

490

Another Generic Delegate Example

Since the LINQ feature of C# 3.0 uses generic delegates extensively, it’s worth showing another example
before we get there. I'll cover LINQ itself, and more about its generic delegates, in Chapter 21.

The following code declares a generic delegate named Func, which takes methods with two
parameters and that return a value. The method return type is represented as TR, and the method
parameter types are represented as T1 and T2.

Delegate parameter type
L} 4 4

public delegate TR Func<T1, T2, TR>(T1 p1, T2 p2); // Generic delegate
T T

class Simple Delegate return type

{
static public string PrintString(int p1, int p2) // Method matches delegate
{

int total = p1 + p2;
return total.ToString();

}
}
class Program
{
static void Main()
{
var myDel = // Create inst of delegate
new Func<int, int, string>(Simple.PrintString);
Console.WritelLine("Total: {0}", myDel(15, 13)); // Call delegate
}
}

This code produces the following output:

Total: 28

CHAPTER 19 ' GENERICS

Generic Interfaces

Generic interfaces allow you to write interfaces where the formal parameters and return types of
interface members are generic type parameters. Generic interface declarations are similar to nongeneric
interface declarations but have the type parameter list in angle brackets after the interface name.
For example, the following code declares a generic interface called IMyIfc.
e Simpleis a generic class that implements generic interface IMyIfc.
e Main instantiates two objects of the generic class: one with type int and the other with type
string.
Type piran1eter
interface IMyIfc<T> // Generic interface
T ReturnIt(T inValue);
Type parameter Generic interface
\
class Simple<S> : IMyIfc<S> // Generic class
public S ReturnIt(S inValue) // Implement generic interface
{ return invalue; }
class Program
static void Main()

{

var trivInt
var trivString

new Simple<int>();
new Simple<string>();

Console.WritelLine("{0}", trivInt.ReturnIt(5));
Console.WriteLine("{0}", trivString.ReturnIt("Hi there."));

}
}

This code produces the following output:

5
Hi there.

491

Download from Wow! eBook <www.wowebook.com>

CHAPTER 19 M GENERICS

An Example Using Generic Interfaces

The following example illustrates two additional capabilities of generic interfaces:

e Like other generics, instances of a generic interface instantiated with different type parameters
are different interfaces.

¢ Youcanimplement a generic interface in a nongeneric type.

For example, the following code is similar to the last example, but in this case, Simple is a nongeneric
class that implements a generic interface. In fact, it implements two instances of IMyIfc. One instance is
instantiated with type int and the other with type string.

interface IMyIfc<T> // Generic interface

T ReturnIt(T inValue);

Two different interfaces from the saine generic interface

class Simple : IMyIfc<int>, IMyIfc<string> // Non-generic class

public int ReturnIt(int inValue) // Implement interface using int
{ return invalue; }

public string ReturnIt(string inValue) // Implement interface using string
{ return invalue; }
}
class Program
{
static void Main()
Simple trivial = new Simple();
Console.WriteLine("{0}", trivial.ReturnIt(5));
Console.WriteLine("{0}", trivial.ReturnIt("Hi there."));
}
}

This code produces the following output:

5
Hi there.

492

CHAPTER 19 ' GENERICS

Generic Interface Implementations Must Be Unique

When implementing an interface in a generic type, there must be no possible combination of type
arguments that would create a duplicate interface in the type.
For example, in the following code, class Simple uses two instantiations of interface IMyIfc.
e The first one is a constructed type, instantiated with type int.

e Thesecond one has a type parameter rather than an argument.

There's nothing wrong in itself with the second interface, since it’s perfectly fine to use a generic
interface. The problem here, though, is that it allows a possible conflict, because if int is used as the type
argument to replace S in the second interface, then Simple would have two interfaces of the same type—
which is not allowed.

interface IMyIfc<T>
T ReturnIt(T inValue);

Two interfaces

class Simple<S> : IMyIfc<int>, IMyIfc<S> // Error!

public int ReturnIt(int inValue) // Implement first interface.

{

return inValue;
public S ReturnIt(S inValue) // Implement second interface,
{ // but if it's int, it would be

return inValue; // the same as the one above.

Note The names of generic interfaces do not clash with nongeneric interfaces. For example, in the preceding
code, we could have also declared a nongeneric interface named IMyIfc.

493

CHAPTER 19 I GENERICS

494

Covariance and Contravariance in Generics

As you’ve seen throughout this chapter, when you create an instance of a generic type, the compiler
takes the generic type declaration and the type arguments and creates a constructed type. A mistake that
people commonly make, however, is to assume that you can assign a delegate of a derived type to a
variable of a delegate of a base type. In the following sections, we’ll look at this topic, which is called
variance. There are three types of variance—covariance, contravariance, and invariance.

We’'ll start by reviewing something you've already learned: every variable has a type assigned to it,
and you can assign an object of a more derived type to a variable of one of its base types. This is called
assignment compatibility. The following code demonstrates assignment compatibility with a base class
Animal and a class Dog derived from Animal. In Main, you can see that the code creates an object of type
Dog and assigns it to variable a2 of type Animal.

class Animal

public int NumberOflLegs = 4;

class Dog : Animal

}
class Program
: static void Main()
Animal a1 = new Animal();
Animal a2 = new Dog();
Console.WriteLine("Number of dog legs: {0}", a2.NumberOflLegs);
) }

Figure 19-12 illustrates assignment compatibility. In this figure, the boxes showing the Dog and
Animal objects also show their base classes.

Do
~ g
a2 Animal
al L object Animal
j—» object
L

Figure 19-12. Assignment compatibility means that you can assign a reference of a more derived type to a

variable of a less derived type.

Now let’s look at a more interesting case by expanding the code in the following ways as shown
following:

e This code adds a generic delegate named Factory, which takes a single type parameter T, takes no
method parameters, and returns an object of type T.

CHAPTER 19 ' GENERICS

e I'veadded a method named MakeDog that takes no parameters and returns a Dog object. This
method, therefore, matches delegate Factory if we use Dog as the type parameter.

o The firstline of Main creates a delegate object whose type is delegate Factory<Dog> and assigns
its reference to variable dogMaker, of the same type.

e The second line attempts to assign a delegate of type delegate Factory<Dog> to a delegate type
variable named animalMaker of type delegate Factory<Animal>.

This second line in Main, however, causes a problem, and the compiler produces an error message
saying that it can’t implicitly convert the type on the right to the type on the left.

class Animal { public int Legs = 4; } // Base class
class Dog : Animal { } // Derived class
delegate T Factory<T>(); < delegate Factory
class Program
{
static Dog MakeDog() < Method that matches delegate Factory
{
return new Dog();
}
static void Main()
{
Factory<Dog> dogMaker = MakeDog; <« Create delegate object
Factory<Animal> animalMaker = dogMaker; < Attempt to assign delegate object
Console.WriteLine(animalMaker().Legs.ToString());
}

It seems to make sense that a delegate constructed with the base type should be able to hold a
delegate constructed with the derived type. So why does the compiler give an error message? Doesn’t the
principle of assignment compatibility hold?

The principle does hold, but it doesn’t apply in this situation! The problem is that although Dog
derives from Animal, delegate Factory<Dog> does not derive from delegate Factory<Animal>. Instead,
both delegate objects are peers, deriving from type delegate, which derives from type object, as shown
in Figure 19-13. Neither delegate is derived from the other, so assignment compatibility doesn’t apply.

delegate Animal Factory() delegate Dog Factory()
delegate delegate
object object

delegate Animal Factory<Animal>() delegate Dog Factory<Dog>()

Figure 19-13. Assignment compatibility doesn’t apply because the two delegates are unrelated by inheritance.

495

CHAPTER 19 I GENERICS

496

Although the mismatch of delegate types doesn’t allow assigning one type to the variable of another
type, it’s too bad in this situation, because in the example code, any time we would execute delegate
animalMaker, the calling code would expect to have a reference to an Animal object returned. If it
returned a reference to a Dog object instead, that would be perfectly fine since a reference to a Dog is a
reference to an Animal, by assignment compatibility.

Looking at the situation more carefully, we can see that for any generic delegate, if a type
parameter is used only as an output value, then the same situation applies. In all such situations, you
would be able to use a constructed delegate type created with a derived class, and it would work fine,
since the invoking code would always be expecting a reference to the base class—which is exactly what
it would get.

This constant relation between the use of a derived type only as an output value, and the validity of
the constructed delegate, is called covariance, and is now explicitly allowed in C# 4.0. To let the compiler
know that this is what you intend, you must mark the type parameter in the delegate declaration with
the out keyword.

For example, if we change the delegate declaration in the example by adding the out keyword, as
shown here, the code compiles and works fine.

delegate T Factory<out T>();
T

Keyword specifying covariance
of the type parameter

Figure 19-14 illustrates the components of covariance in this example:

e The variable on the stack on the left is of type delegate T Factory<out T>(), where type variable T
is of class Animal.

e The actual constructed delegate in the heap, on the right, was declared with a type variable of
class Dog, which is derived from class Animal.

e This is acceptable because when the delegate is called, the calling code receives an object of type
Dog, instead of the expected object of type Animal. The calling code can freely operate on the
Animal part of the object as it expects to do.

~ Delegate constructed
from class Dog
Type:
Dog MakeDo
Animal Factory<out Animal>() > [Dog | 9 9() .
Return Type:
\/\ class Dog

Figure 19-14. The covariant relation allows a more derived type to be in return and out positions.

CHAPTER 19 ' GENERICS

The following code illustrates a related situation. In this example, there’s a delegate, named Actioni,
which takes a single type parameter, and a single method parameter whose type is that of the type
parameter, and it returns no value.

The code also contains a method called ActOnAnimal, whose signature and void return type match
the delegate declaration.

The first line in Main creates a constructed delegate using type Animal and method ActOnAnimal,
whose signature and void return type match the delegate declaration. In the second line, however, the
code attempts to assign the reference to this delegate to a stack variable named dog1, of type delegate
Actioni<Dog>.

class Animal { public int NumberOflLegs = 4; }
class Dog : Animal { }

class Program Keyword for Contravariance
{ delegate void Actioni<in T>(T a);
static void ActOnAnimal(Animal a) { Console.WritelLine(a.NumberOflLegs); }
static void Main()
Actioni<Animal> act1

Actioni<Dog> dog1
dog1(new Dog());

ActOnAnimal;
act1;

}

This code produces the following output:

Like the previous situation, by default, you can’t assign the two incompatible types. But also like the
previous situation, there are situations where the assignment would work perfectly fine.

As a matter of fact, this is true whenever the type parameter is used only as an input parameter to
the method in the delegate. The reason for this is that even though the invoking code passes in a
reference to a more derived class, the method in the delegate is only expecting a reference to a less
derived class—which of course it receives and knows how to manipulate.

This relation, allowing a more derived object where a less derived object is expected, is called
contravariance and is now explicitly allowed in C# 4.0. To use it, you must use the in keyword with the
type parameter, as shown in the code.

497

CHAPTER 19 I GENERICS

Figure 19-15 illustrates the components of contravariance in line 2 of Main.

e The variable on the stack on the left is of type delegate void Actioni<in T>(T p), where the type
variable is of class Dog.

e The actual constructed delegate, on the right, is declared with a type variable of class Animal,
which is a base class of class Dog.

e This works fine because when the delegate is called, the calling code passes in an object of type
Dog, to method ActOnAnimal, which is expecting an object of type Animal. The method can freely
operate on the Animal part of the object as it expects to do.

Dog
~ Delegate constructed Animal
from class Animal
Type: void ActOnAnimal (Animal a)

Y

void Actionl<in Dog>(Dog p) Input Parameter: a Dog object

N

Figure 19-15. The contravariant relation allows more derived types to be allowed as input parameters.

498

CHAPTER 19 ' GENERICS

Figure 19-16 summarizes the differences between covariance and contravariance in a generic

delegate.

e The top figure illustrates covariance.

The variable on the stack on the left is of type delegate F<out T>() where the type variable is
of a class named Base.

The actual constructed delegate, on the right, was declared with a type variable of class
Derived, which is derived from class Base.

This works fine because when the delegate is called, the method returns a reference to an
object of the derived type, which is also a reference to the base class, which is exactly what
the calling code is expecting.

e The bottom figure illustrates contravariance.

The variable on the stack on the left is of type delegate void F<in T>(T p), where the type
parameter is of class Derived.

The actual constructed delegate, on the right was declared with a type variable of class Base,
which is a base class of class Derived.

This works fine because when the delegate is called, the calling code passes in an object of
the derived type, to the method which is expecting an object of the base type. The method
can operate freely on the base part of the object as it expects to do.

Covariance
~ Delegate constructed Type safe because the calling
from class Derived code receives back a reference
Derived Derived Method () to base class Base—as it was
erived Metho :
N, expecting.
7 Base [<€— Return Type:
Tvoe: class Derived
ype:
Base F<out Base>()
Contravariance
Derived
~" Delegate constructed Base Type safe because the method
from class Base ‘L invoked receives a reference
- N to base class Base—as it was
N void Method (Base param) expecting.
4 Input Parameter:
class Derived
Type: S

void F<in Derived>(Derived p)

Figure 19-16. A comparison of covariance and contravariance

499

CHAPTER 19 I GENERICS

Covariance and Contravariance in Interfaces

You should now have an understanding of covariance and contravariance as it applies to delegates.
The same principles apply to interfaces, including the syntax using the out and in keywords in the
interface declaration.

The following code shows an example of using covariance with an interface. The things to note
about the code are the following:

e The code declares a generic interface with type parameter T. The out keyword specifies that the
type parameter is covariant.

e Generic class SimpleReturn implements the generic interface.

e Method DoSomething shows how a method can take an interface as a parameter. This method
takes as its parameter a generic IMyIfc interface constructed with type Animal.

The code works in the following way:

e The first two lines of Main create and initialize a constructed instance of generic class
SimpleReturn, using class Dog.

e The nextline assigns that object to a variable on the stack that is declared of constructed interface
type IMyIfc<Animal>. Notice several things about this declaration:
— The type on the left of the assignment is an interface type—not a class.

— Even though the interface types don’t exactly match, the compiler allows them because of
the covariant out specifier in the interface declaration.

o Finally, the code calls method DoSomething with the constructed covariant class that implements
the interface.

500

CHAPTER 19 ' GENERICS

class Animal { public string Name; }
class Dog: Animal{ };

Keywirdfor00vaﬂance
interface IMyIfc<out T>

T GetFirst();

class SimpleReturn<T>: IMyIfc<T>
public T[] items = new T[2];
public T GetFirst() { return items[0]; }
class Program
static void DoSomething(IMyIfc<Animaly> returner)

Console.WritelLine(returner.GetFirst().Name);

}

static void Main()

{ SimpleReturn<Dog> dogReturner = new SimpleReturn<Dog>();
dogReturner.items[0] = new Dog() { Name = "Avonlea" };
IMyIfc<Animal> animalReturner = dogReturner;

: DoSomething(dogReturner);

}

This code produces the following output:

Avonlea

501

Download from Wow! eBook <www.wowebook.com>

CHAPTER 19 M GENERICS

502

More About Variance

The previous two sections explained explicit covariance and contravariance. There is also a situation
where the compiler automatically recognizes that a certain constructed delegate is covariant or
contravariant and makes the type coercion automatically. That happens when the object hasn’t yet had
a type assigned to it. The following code shows an example.

The first line of Main creates a constructed delegate of type Factory<Animal> from a method where
the return type is a Dog object, not an Animal object. In creating this delegate, the method name on the
right side of the assignment operator doesn’t yet have a type, and the compiler can determine that the
method fits the type of the delegate except that its return type is of type Dog rather than type Animal. The
compiler is smart enough to realize that this is a covariant relation and creates the constructed type and
assigns it to the variable.

Compare that with the assignments in the third and fourth lines of Main. In these cases, the
expressions on the right side of the equals sign already have a type and therefore need the out specifier
in the delegate declaration to signal the compiler to allow them to be covariant.

class Animal { public int Legs = 4; } // Base class
class Dog : Animal { } // Derived class

class Program
delegate T Factory<out T>();
static Dog MakeDog() { return new Dog(); }

static void Main()

{
Factory<Animal> animalMakeril = MakeDog; // Coerced implicitly
Factory<Dog> dogMaker = MakeDog;
Factory<Animal> animalMaker2 = dogMaker; // Requires the out specifier
Factory<Animal> animalMaker3
= new Factory<Dog>(MakeDog); // Requires the out specifier
}

}

This implicit coercion implementing covariance and contravariance has been available without the
in/out keywords since before C# 4.0.

CHAPTER 19 ' GENERICS

Other important things you should know about variance are the following:

e Asyou've seen, variance deals with the issue of where it’s safe to substitute a base type for a

derived type, and vice versa. Variance, therefore, applies only to reference types, since value types
can’t be derived from.

e Explicit variance, using the in and out keywords applies only to delegates and interfaces—not
classes, structs, or methods.

e Delegate and interface type parameters that don’t include either the in or out keyword are called
invariant. These types cannot be used covariantly or contravariantly.

Contravariant

delegate T Factory<out R, in S, T>();
T T

Covariant Invariant

503

CHAPTER 20

Enumerators and Iterators

Enumerators and Enumerable Types
Using the IEnumerator Interface
The IEnumerable Interface

The Noninterface Enumerator

The Generic Enumeration Interfaces
The IEnumerator<T> Interface

The IEnumerable<T> Interface
Iterators

Common Iterator Patterns
Producing Enumerables and Enumerators
Producing Multiple Enumerables
Producing Multiple Enumerators

Behind the Scenes with Iterators

505

CHAPTER 20 " ENUMERATORS AND ITERATORS

506

Enumerators and Enumerable Types

In Chapter 14, you saw that you can use a foreach statement to cycle through the elements of an array.
In this chapter, you'll take a closer look at arrays and see why they can be processed by foreach
statements. You'll also look at how you can add this capability to your own user-defined classes. Later in
the chapter, I'll explain the use of iterators.

Using the foreach Statement

When you use a foreach statement with an array, the statement presents you with each element in the
array, one by one, allowing you to read its value.

For example, the following code declares an array with four elements and then uses a foreach loop
to print out the values of the items:

int[] arr1 = { 10, 11, 12, 13 }; // Define the array.

foreach (int item in arri) // Enumerate the elements.
Console.WriteLine("Item value: {0}", item);

This code produces the following output:

Item value: 10
Item value: 11
Item value: 12
Item value: 13

Why does this work, apparently magically, with arrays? The reason is that an array can produce,
upon request, an object called an enumerator. The enumerator is an object that can return the elements
of the array, one by one, in order, as they are requested. The enumerator “knows” the order of the items
and keeps track of where it is in the sequence. It then returns the current item when it is requested.

For types that have enumerators, there must be a way of retrieving them. The standard way of
retrieving an object’s enumerator in .NET is to call the object’s GetEnumerator method. Types that
implement a GetEnumerator method are called enumerable types, or just enumerables. Arrays are
enumerables.

Figure 20-1 illustrates the relationship between enumerables and enumerators.

CHAPTER 20 " ENUMERATORS AND ITERATORS

The GetEnumerator method

returns
an instance of an enumerator.
Enumerable Class l
Enumerator
GetEnumerator()
Position

2[]]
1 |:| ltems
o]

An enumerable is a type that has a An enumerator is a class object
method called GetEnumerator that that can return each itemin a
returns an enumerator for its items. collection, in order.

Figure 20-1. Overview of enumerators and enumerables

The foreach construct is designed to work with enumerables. As long as the object it is given to
iterate over is an enumerable type, such as an array, it will perform the following actions:

e Get the object’s enumerator by calling its GetEnumerator method
e Request each item from the enumerator and make it available to your code as the iteration

variable, which your code can read (but not change).

Must be enumerable
4
foreach(Type VarName in EnumerableObject)
{

Types of Enumerators

There are three variations on enumerators. They all work essentially the same way, with only slight
differences. I'll discuss all three types. You can implement enumerators using the following:

e The IEnumerator/IEnumerable interfaces—called the nongeneric interface form
e The IEnumerator<T>/IEnumerable<T> interfaces—called the generic interface form

e The form that uses no interfaces

507

CHAPTER 20 " ENUMERATORS AND ITERATORS

508

Using the IEnumerator Interface

This section will start by looking at the first in the preceding list: the nongeneric interface form. This
form of enumerator is a class that implements the IEnumerator interface. It's called nongeneric because it

does not use C# generics.
The IEnumerator interface contains three function members: Current, MoveNext, and Reset.

e Currentis a property that returns the item at the current position in the sequence.
— Itis aread-only property.

— Itreturns a reference of type object, so an object of any type can be returned.

e MoveNext is a method that advances the enumerator’s position to the next item in the collection. It
also returns a Boolean value, indicating whether the new position is a valid position or is beyond
the end of the sequence.

— If the new position is valid, the method returns true.
— Ifthe new position isn't valid (that is, it’s beyond the end), the method returns false.

— The initial position of the enumerator is before the first item in the sequence. MoveNext must
be called before the first access of Current.

e Reset is a method that resets the position to the initial state.

Figure 20-2 illustrates a collection of three items, which is shown on the left of the figure, and its
enumerator, which is shown on the right. In the figure, the enumerator is an instance of a class called
ArrEnumerator.

ArrEnumerator: IEnumerator

Position of the current item.

Position

GetEnumerator()
2] J
1] «—
o] >
Collection of

Three Items

Current returns the item at
the current position.

MoveNext advances the
position to the next item.

Reset sets the position back

to the initial configuration.
Members of IEnumerator 9

Figure 20-2. The enumerator for a small collection

CHAPTER 20 " ENUMERATORS AND ITERATORS

The enumerator class is usually declared as a nested class of the class for which it is an enumerator.
A nested class is declared inside the declaration of another class. Nested classes are described in detail in
Chapter 25.

The way the enumerator keeps track of the current item in the sequence is entirely implementation-
dependent. It might be implemented as a reference to an object, an index value, or something else
entirely. In the case of the built-in single-dimensional array type, it's simply the index of the item.

Figure 20-3 illustrates the states of an enumerator for a collection of three items. The states are
labeled 1 through 5.

e Notice that in state 1, the initial position of the enumerator is -1 (that is, before the first element
of the collection).

e Each transition between states is caused by a call to MoveNext, which advances the position in the
sequence. Each call to MoveNext between states 1 and 4 returns true. In the transition between
states 4 and 5, however, the position ends up beyond the last item in the collection, so the
method returns false.

e In the final state, any further calls to MoveNext return false.

’1(';_|:‘ Position IZG_I:‘ Position
etEnum... etEnum...

=] Eo]
2[] 2]
1[] 1[]
o[] o]+

Current

MoveNext ()

Current

MoveNext ()

’3'_|:‘ Position f_l:‘ Position
GetEnum. .. :l GetEnum. ..
1 —2 |

= =l

1]
o[] o[]

Current

MoveNext ()

Current

MoveNext ()

E -
= L3]
3

2 |:| Current

10
o]

Figure 20-3. The states of an enumerator

509

CHAPTER 20 " ENUMERATORS AND ITERATORS

Given a collection’s enumerator, you should be able to simulate a foreach loop by cycling through
the items in the collection using the MoveNext and Current members. For example, you know that arrays
are enumerable, so the following code does manually what the foreach statement does automatically. In
fact, the C# compiler generates exactly this code when you write a foreach loop.

static void Main()

int[] MyArray = { 10, 11, 12, 13 }; // Create an array.

IEnumerator ie = MyArray.GetEnumerator(); // Get its enumerator.

while (ie.MoveNext()) // Move to the next item.
int 1 = (int) ie.Current; // Get the current item.
Console.WriteLine("{0}", 1i); // Write it out.

}

}

This code produces the following output:

10
11
12
13

510

CHAPTER 20 " ENUMERATORS AND ITERATORS

Declaring an IEnumerator Enumerator

To create a nongeneric interface enumerator class, you must declare a class that implements the
IEnumerator interface. The IEnumerator interface has the following characteristics:

e Itisamember of the System.Collections namespace.

e It contains the three members Current, MoveNext, and Reset.

The following code shows the outline of a nongeneric enumerator class. It does not show how the
position is maintained. Notice that Current returns a reference to an object.

using System.Collections; // Include the namespace.

class MyEnumerator: IEnumerator
Returns a reference to an object

L
public object Current { get; } // Current
public bool MoveNext() { ... } // MoveNext

public void Reset() {...} // Reset

511

Download from Wow! eBook <www.wowebook.com>

CHAPTER 20 " ENUMERATORS AND ITERATORS

For example, the following code implements an enumerator class that lists an array of color names:
using System.Collections;

class ColorEnumerator: IEnumerator

{ T
string[] Colors; Implements IEnumerator
int Position = -1;

public object Current // Current

get
{
if (Position == -1)
throw new InvalidOperationException();
if (Position == Colors.Length)
throw new InvalidOperationException();

return Colors[Position];

}
}

public bool MoveNext() // MoveNext

if (Position < Colors.Length - 1)

Position++;
return true;
}
else
return false;
}
public void Reset() // Reset
{
Position = -1;
}
public ColorEnumerator(string[] theColors) // Constructor
{

Colors = new string[theColors.Length];
for (int i = 0; i < theColors.Length; i++)
Colors[i] = theColors[i];

512

CHAPTER 20 " ENUMERATORS AND ITERATORS

The IEnumerable Interface

The IEnumerable interface has only a single member, method GetEnumerator, which returns an
enumerator for the object.

Figure 20-4 shows class MyClass, which has three items to enumerate, and implements the
IEnumerable interface by implementing the GetEnumerator method.

MyClass: IEnumerable MyEnumerator: IEnumerator

Position
GetEnumerator()

2 |:| Current
! I:l MoveNext (
o[]

prA—

Figure 20-4. The GetEnumerator method returns an enumerator object for the class.

The following code shows the form for the declaration of an enumerable class:

using System.Collections;
Implements the IEnumerable interface

\’

class MyClass : IEnumerable

public IEnumerator GetEnumerator { ... }
T

} Returns an object of type IEnumerator

The following code gives an example of an enumerable class that uses enumerator class
ColorEnumerator from the previous example. Remember that ColorEnumerator implements IEnumerator.

using System.Collections;
class MyColors: IEnumerable
string[] Colors = { "Red", "Yellow", "Blue" };

public IEnumerator GetEnumerator()

{
return new ColorEnumerator(Colors);
} T
} An instance of the enumerator class

513

CHAPTER 20 " ENUMERATORS AND ITERATORS

Example Using [Enumerable and IEnumerator

Putting the MyColors and ColorEnumerator examples together, you can add a class called Program with a
Main method that creates an instance of MyColors and uses it in a foreach loop.

using System;
using System.Collections;

namespace ColorCollectionEnumerator

class ColorEnumerator: IEnumerator

{

string[] Colors;
int Position = -1;

public ColorEnumerator(string[] theColors) // Constructor

{

Colors = new string[theColors.Length];
for (int i = 0; i < theColors.Length; i++)
Colors[i] = theColors[i];

public object Current // Current
get

{

if (Position == -1)
{
throw new InvalidOperationException();
}
if (Position == Colors.Length)

throw new InvalidOperationException();

}
return Colors[Position];
}
}
public bool MoveNext() // MoveNext
if (Position < Colors.Length - 1)
{
Position++;
return true;
}
else
return false;
public void Reset() // Reset
{ Position = -1; }
} -

514

CHAPTER 20 " ENUMERATORS AND ITERATORS

class MyColors: IEnumerable
string[] Colors = { "Red", "Yellow", "Blue" };
public IEnumerator GetEnumerator()

{

return new ColorEnumerator(Colors);
}
class Program
static void Main()
MyColors mc = new MyColors();

foreach (string color in mc)
Console.Writeline(color);

}

This code produces the following output:

Red
Yellow
Blue

515

CHAPTER 20 " ENUMERATORS AND ITERATORS

516

The Noninterface Enumerator

You've just seen how to use the IEnumerable and IEnumerator interfaces to create useful enumerables
and enumerators. But there are several drawbacks to this method.

First, remember that the object returned by Current is of type object. For value types, this means
that before they are returned by Current, they must be boxed to turn them into objects. They must then
be unboxed again after they have been received from Current. This can exact a substantial performance
penalty if it needs to be done on large amounts of data.

Another drawback of the nongeneric interface method is that you've lost type safety. The values
being enumerated are being handled as objects and so can be of any type. This eliminates the safety of
compile-time type checking.

You can solve these problems by making the following changes to the enumerator/enumerable
class declarations.

e For the enumerator class
— Do not derive the class from IEnumerator.
— Implement MoveNext just as before.

— Implement Current just as before but have as its return type the type of the items
being enumerated.

— You do not have to implement Reset.
e For the enumerable class
— Do not derive the class from IEnumerable.

— Implement GetEnumerator as before, but have its return type be the type of the
enumerator class.

CHAPTER 20 " ENUMERATORS AND ITERATORS

Figure 20-5 shows the differences. The nongeneric interface code is on the left, and the noninterface
code is on the right. With these changes, the foreach statement will be perfectly happy to process your
collection, but without the drawbacks just listed.

class SibEnumerator

{

class SibEnumerator : IEnumerator

{

public object Current

{get { ... }}

public bool MoveNext ()

public string Current

{get {...}}

public bool MoveNext()

{ ...} { ...}

public void Reset()
{ ...}
}

}

class Siblings : IEnumerable

{

class Siblings

{

public SibEnumerator GetEnumerator()

{ ...}

public IEnumerator GetEnumerator()
{ ...}
}

}

Figure 20-5. Comparing interface-based and non-interface-based enumerators

One possible problem with the noninterface enumerator implementation is that types from other
assemblies might expect enumeration to be implemented using the interface method. If these objects
attempt to get an enumeration of your class objects using the interface conventions, they won't be able
to find them.

To solve this problem, you can implement both forms in the same classes. That is, you can create
implementations for Current, MoveNext, Reset, and GetEnumerator at the class level and also create
explicit interface implementations for them. With both sets of implementations, the type-safe, more
efficient implementation will be called by foreach and other constructs that can use the noninterface
implementations, while the other constructs will call the explicit interface implementations. An even
better way, however, is to use the generic forms, which I describe next.

517

CHAPTER 20 " ENUMERATORS AND ITERATORS

The Generic Enumeration Interfaces

The third form of enumerator uses the generic interfaces IEnumerable<T> and IEnumerator<T>. They are
called generic because they use C# generics. Using them is very similar to using the nongeneric forms.
Essentially, the differences between the two are the following:

e With the nongeneric interface form

— The GetEnumerator method of interface IEnumerable returns an enumerator class instance
that implements IEnumerator.

— The class implementing IEnumerator implements property Current, which returns a
reference of type object, which you must then cast to the actual type of the object.

e With the generic interface form

— The GetEnumerator method of interface IEnumerable<T> returns an instance of a class that
implements IEnumerator<T>.

— The class implementing IEnumerator<T> implements property Current, which returns an
instance of the actual type, rather than a reference to the base class object.

The most important point to notice, though, is that the nongeneric interface implementations are
not type-safe. They return references to type object, which must then be cast to the actual types. With
the generic interfaces, however, the enumerator is type-safe, returning references to the actual types. Of
the three forms of enumerations, this is the one you should implement and use. The others are for legacy
code developed before C# 2.0 when generics were introduced.

518

CHAPTER 20 " ENUMERATORS AND ITERATORS

The IEnumerator<T> Interface

The IEnumerator<T> interface uses generics to return an actual derived type, rather than a reference to
an object.

The IEnumerator<T> interface derives from two other interfaces: the nongeneric IEnumerator
interface and the IDisposable interface. It must therefore implement their members.

¢ You've already seen the nongeneric IEnumerator interface and its three members.

e The IDisposable interface has a single, void, parameterless method called Dispose, which can be
used to free unmanaged resources being held by the class. (The Dispose method was described in
Chapter 6.)

o The IEnumerator<T> interface itself has a single property, Current, which returns an instance of
type T or derived from T—rather than a reference of type object.

e Since both IEnumerator<T> and IEnumerator have a member named Current, you should explicitly
implement the IEnumerator version and implement the generic version in the class itself, as
shown in Figure 20-6.

Figure 20-6 illustrates the implementation of the interface.

IEnumerator<T>:
This version of Current IEnumerator,
returns a type and imple- ——— | Current IDisposable

ments IEnumerator<T>.

MoveNext ()

These methods Reset ()

implement IEnumerator.

IEnumerator This version of Current returns

< an object. Implement it explicitly
as a member of IEnumerator.

This method

implements IDisposable. ————> | Dispose()

Figure 20-6. Implementing the IEnumerator<T> interface

519

CHAPTER 20 " ENUMERATORS AND ITERATORS

The declaration of the class implementing the interface should look something like the pattern in
the following code, where T is the type returned by the enumerator:

using System.Collections;
using System.Collections.Generic;

class MyGenEnumerator: IEnumerator< T >

public T Current { get {.} } // IEnumerator<T>--Current
Explicit implementation

object IEnumerator.Current {\;et {...}} // IEnumerator--Current

public bool MoveNext() { ... } // IEnumerator--MoveNext

public void Reset() {...} // IEnumerator--Reset

public void Dispose() { ... } // IDisposable--Dispose

520

CHAPTER 20 " ENUMERATORS AND ITERATORS

For example, the following code implements the ColorEnumerator example using the generic
enumerator interface:

using System.Collections;
using System.Collections.Generic; Substitute type string for T

\’

class ColorEnumerator : IEnumerator<string>

string[] Colors;
int Position = -1;
Returns the type argument type

\’

public string Current // Current--generic
get { return Colors[Position]; }

Explicit implementation
4

object IEnumerator.Current // Current--nongeneric

get { return Colors[Position]; }

public bool MoveNext() // MoveNext

if (Position < Colors.Length - 1)

Position++;
return true;
}
else
return false;
}
public void Reset() // Reset

{ Position = -1; }
public void Dispose() { }

public ColorEnumerator(string[] colors) // Constructor

{

Colors = new string[colors.Length];

for (int i

= 0; 1 < colors.Length; i++)
Colors[i] =

colors[i];

521

Download from Wow! eBook <www.wowebook.com>

CHAPTER 20 " ENUMERATORS AND ITERATORS

The IEnumerable<T> Interface

The generic IEnumerable<T> interface is very similar to the nongeneric version, IEnumerable. The generic
version derives from IEnumerable, so it must also implement the IEnumerable interface.

e Like IEnumerable, the generic version also contains a single member, a method called
GetEnumerator. This version of GetEnumerator, however, returns a class object implementing the
generic IEnumerator<T> interface.

¢ Since the class must implement two GetEnumerator methods, you should explicitly implement the
nongeneric version and implement the generic version at the class level, as shown in Figure 20-7.

Figure 20-7 illustrates the implementation of the interface.

This version of GetEnumerator
implements IEnumerable<T>
and returns an IEnumerator<T>.

IEnumerable<T>:
IEnumerable

[GetEnumerator() |

IEnumerable

This version of GetEnumerator imple- >
ments IEnumerable and returns an
IEnumerator. Implement it explicitly
as a member of IEnumerable.

Figure 20-7. Implementing the IEnumerable<T> interface

522

CHAPTER 20 " ENUMERATORS AND ITERATORS

The following code shows a pattern for implementing the generic interface. T is the type returned by

the enumerator.

using System.Collections;
using System.Collections.Generic;

class MyGenEnumerable: IEnumerable<T>

public IEnumerator<T> GetEnumerator() { ... } // IEnumerable<T> version
Explicit implementation
4
IEnumerator IEnumerable.GetEnumerator() { ... } // IEnumerable version

}

The following code shows the use of the generic enumerable interface:
using System.Collections;

using System.Collections.Generic;
Substitute actual type for T
4

class MyColors : IEnumerable<string>

string[] Colors = { "Red", "Yellow", "Blue" };
Substitute actual type for T
L

public IEnumerator<string> GetEnumerator() // IEnumerable<T> version
{

return new ColorEnumerator(Colors);
}

Explicit implementation
\

IEnumerator IEnumerable.GetEnumerator() // IEnumerable version
{

return new ColorEnumerator(Colors);
}

523

CHAPTER 20 " ENUMERATORS AND ITERATORS

524

Iterators

Enumerable classes and enumerators are used extensively in the .NET collection classes, so it’s important
that you know how they work. But now that you know how to create your own enumerable classes and
enumerators, you might be pleased to learn that, starting with C# 2.0, the language got a much simpler
way of creating enumerators and enumerables. In fact, the compiler will create them for you. The
construct that produces them is called an iterator. You can use the enumerators and enumerables
generated by iterators wherever you would use manually coded enumerators or enumerables.

Before I explain the details, let’s take a look at two examples. The following method declaration
implements an iterator that produces and returns an enumerator.

e Theiterator returns a generic enumerator that returns three items of type string.

e Theyield return statements declare that this is the next item in the enumeration.

Return a generic enumerator.

4
public IEnumerator<string> BlackAndWhite() // Version 1
yield return "black"; // yield return
yield return "gray"; // yield return
yield return "white"; // yield return

}

The following method declaration is another version that produces the same result:

Return a generic enumerator.
L
public IEnumerator<string> BlackAndWhite() // Version 2

string[] theColors = { "black", "gray", "white" };

for (int i = 0; i < theColors.length; i++)
yield return theColors[i]; // yield return
}

IT'haven’t explained the yield return statement yet, but on inspecting these code segments, you
might have the feeling that something is different about this code. It doesn’t seem quite right. What
exactly does the yield return statement do?

For example, in the first version, if the method returns on the first yield return statement, then the
last two statements can never be reached. If it doesn’t return on the first statement but continues
through to the end of the method, then what happens to the values? And in the second version, if the
yield return statement in the body of the loop returns on the first iteration, then the loop will never get
to any subsequent iterations.

And besides all that, an enumerator doesn’t just return all the elements in one shot—it returns a
new value with each access of the Current property. So, how does this give you an enumerator? Clearly
this code is different from anything shown before.

CHAPTER 20 " ENUMERATORS AND ITERATORS

Iterator Blocks

An iterator block is a code block with one or more yield statements. Any of the following three types of
code blocks can be iterator blocks:

e A method body
e Anaccessor body

e Anoperator body

Iterator blocks are treated differently than other blocks. Other blocks contain sequences of
statements that are treated imperatively. That is, the first statement in the block is executed, followed by
the subsequent statements, and eventually control leaves the block.

An iterator block, on the other hand, is not a sequence of imperative commands to be executed at
one time. Instead, it’s declarative; it describes the behavior of the enumerator class you want the
compiler to build for you. The code in the iterator block describes how to enumerate the elements.

Iterator blocks have two special statements:

e Theyield return statement specifies the next item in the sequence to return.

e Theyield break statement specifies that there are no more items in the sequence.

The compiler takes this description of how to enumerate the items and uses it to build an
enumerator class, including all the required method and property implementations. The resulting class
is nested inside the class where the iterator is declared.

You can have the iterator produce either an enumerator or an enumerable depending on the return
type you use for the iterator block, as shown in Figure 20-8.

public IEnumerable<string> IteratorMethod()

{

public IEnumerator<string> IteratorMethod()

{

yield return ...;

}

An iterator that produces an enumerator An iterator that produces an enumerable

yield return ...;

}

Figure 20-8. You can have an iterator block produce either an enumerator or an enumerable depending on
the return type you specify.

525

CHAPTER 20 " ENUMERATORS AND ITERATORS

Using an Iterator to Create an Enumerator

The following code illustrates how to use an iterator to create an enumerable class.

e MyClass uses iterator method BlackAndWhite to produce an enumerator for the class.

e MyClass also implements method GetEnumerator, which in turn calls BlackAndWhite, and returns

the enumerator that BlackAndWhite returns to it.

e Notice that in Main, you can use an instance of the class directly in the foreach statement since

the class is enumerable.

class MyClass
public IEnumerator<string> GetEnumerator()
return BlackAndWhite();

Returns an enumerator
L
public IEnumerator<string> BlackAndWhite()

yield return "black";
yield return "gray";
yield return "white";

}
}

class Program
static void Main()

MyClass mc = new MyClass();

Use the instance of MyClass

\’

foreach (string shade in mc)
Console.WritelLine(shade);

}

This code produces the following output:

black

gray
white

526

// Returns the enumerator.

// Iterator

CHAPTER 20 " ENUMERATORS AND ITERATORS

Figure 20-9 shows the code for MyClass on the left and the resulting objects on the right. Notice how
much is built for you automatically by the compiler.

e The iterator’s code is shown on the left side of the figure and shows that its return type is
IEnumerator<string>.

¢ Ontheright side of the figure, the diagram shows that the nested class implements

IEnumerator<string>.
MyClass
class Myclass GetEnumerator()

{
public IEnumerator<string> GetEnumerator()

{

Enumerator
return BlackAndWhite();

)

MoveNext ()

BlackAndWhite()

public IEnumerator<string>

BlackAndWhite() The iterator IEnumerator
yield return "black"; produces both a method
yield return "gray"; and an enumerator.
yield return "white";
) } IDisposable
Dispose()

Figure 20-9. An iterator block that produces an enumerator

527

CHAPTER 20 " ENUMERATORS AND ITERATORS

Using an Iterator to Create an Enumerable

The previous example created a class comprising two parts: the iterator that produced the enumerator
and the GetEnumerator method that returned that enumerator. In this example, the iterator is used to
create an enumerable rather than an enumerator. There are some important differences between this
example and the last:

¢ Inthe previous example, iterator method BlackAndwhite returned an IEnumerator<string>, and
MyClass implemented method GetEnumerator by returning the object created by BlackAndWhite.

o In this example, the iterator method BlackAndWhite returns an IEnumerable<string> rather than
an IEnumerator<string>. MyClass, therefore, implements its GetEnumerator method by first calling
method BlackAndhhite to get the enumerable object and then calling that object’s GetEnumerator
method and returning its results.

e Notice that in the foreach statement in Main, you can either use an instance of the class or call
BlackAndWhite directly, since it returns an enumerable. Both ways are shown.

class MyClass
public IEnumerator<string> GetEnumerator()

IEnumerable<string> myEnumerable = BlackAndWhite(); // Get enumerable
return myEnumerable.GetEnumerator(); // Get enumerator
} Returns an enumerable

L
public IEnumerable<string> BlackAndWhite()

yield return "black";
yield return "gray";
yield return "white";

}
}

class Program
static void Main()

MyClass mc = new MyClass();
Use the class object.

4
foreach (string shade in mc)
Console.Write("{0} ", shade);
Use the class iterator method.

{
foreach (string shade in mc.BlackAndWhite())
Console.Write("{0} ", shade);

528

CHAPTER 20 " ENUMERATORS AND ITERATORS

This code produces the following output:
black gray white black gray white

Figure 20-10 illustrates the generic enumerable produced by the enumerable iterator in the code.

e The iterator’s code is shown on the left side of the figure and shows that its return type is
IEnumerable<string>.

e On theright side of the figure, the diagram shows that the nested class implements both
IEnumerator<string> and IEnumerable<string>.

class Myclass MyClass

{ GetEnumerator()
public IEnumerator<string> GetEnumerator()
{ BlackAndWhite()

IEnumerable<string> myEnumerable =

BlackAndWhite(); Enumerable
return myEnumerable.GetEnumerator(); GetEnumerator()

}

Implements

- . IEnumerable IEnumerable

public IEnumerable<string> GetEnumerator() <string>
BlackAndWhite()

{

: u " _
yield return "black"; Current
yield return "gray";
yield return "white"; MoveNext ()

Implements
} IEnumerator P
} IEnumerator
<strings
Iterator

IDisposable
Dispose()

Figure 20-10. The compiler produces a class that is both an enumerable and an enumerator. It also
produces the method, BlackAndWhite, that returns the Enumerable object.

529

CHAPTER 20 " ENUMERATORS AND ITERATORS

Common lterator Patterns

The previous two sections showed that you can create an iterator to return either an enumerable or an
enumerator. Figure 20-11 summarizes how to use the common iterator patterns.

e When you implement an iterator that returns an enumerator, you must make the class
enumerable by implementing GetEnumerator so that it returns the enumerator returned by the

iterator. This is shown on the left of the figure.

e Inaclass, when you implement an iterator that returns an enumerable, you can either make this
class itself enumerable or not by either making it implement GetEnumerator or not.

— Ifyouimplement GetEnumerator, make it call the iterator method to get an instance of the
automatically generated class that implements IEnumerable. Next, return the enumerator
built by GetEnumerator from this IEnumerable object, as shown on the right of the figure.

— Ifyou don’t make the class itself enumerable by not implementing GetEnumerator, you can
still use the enumerable returned by the iterator, by calling the iterator method directly, as
shown in the second foreach statement on the right.

class MyClass

{

public IEnumerator<string> GetEnumerator()

{
}

return IteratorMethod();

public IEnumerator<string> IteratorMethod()

{

yield return ...;
}
}

Main
{
MyClass mc = new MyClass();

foreach(string x in mc)

The enumerator iterator pattern

Figure 20-11. The common iterator patterns

530

class MyClass

{

public IEnumerator<string> GetEnumerator()

{

return IteratorMethod().GetEnumerator();

}

public IEnumerable<string> IteratorMethod()
{
yield return ...;

}
}

Main
{
MyClass mc = new MyClass();

foreach(string x in mc)

foreach(string x in mc.IteratorMethod())

The enumerable iterator pattern

CHAPTER 20 " ENUMERATORS AND ITERATORS

Producing Enumerables and Enumerators

The previous examples used iterators that returned either an IEnumerator<T> or an IEnumerable<T>. You
can also create iterators that return the nongeneric versions as well. The return types you can specify are
the following:

e IEnumerator<T> (generic—substitute an actual type for T)
e IEnumerable<T> (generic—substitute an actual type for T)
. IEnumerator (nongeneric)

e IEnumerable (nongeneric)

For the two enumerator types, the compiler generates a nested class that contains the
implementation of either the nongeneric or the generic enumerator, with the behavior specified by the
iterator block.

For the two enumerable types, it does even more. It produces a nested class that is both enumerable
and the enumerator. The class, therefore, implements both the enumerator interface and the
GetEnumerator method. Notice that GetEnumerator is implemented as part of the nested class—not as part
of the enclosing class.

531

Download from Wow! eBook <www.wowebook.com>

CHAPTER 20 " ENUMERATORS AND ITERATORS

Producing Multiple Enumerables

In the following example, class ColorCollection has two enumerable iterators—one enumerating
the items in forward order and the other enumerating them in reverse order. Notice that although it
has two methods that return enumerables, the class itself is not enumerable since it doesn’t
implement GetEnumerator.

using System;
using System.Collections.Generic; // You need this namespace.

namespace ColorCollectionIterator
class ColorCollection
string[] Colors={"Red", "Orange", "Yellow", "Green", "Blue", "Purple"};
public IEnumerable<string> Forward() { // Enumerable iterator

for (int i = 0; i < Colors.Length; i++)
yield return Colors[i];

public IEnumerable<string> Reverse() { // Enumerable iterator
for (int i = Colors.Length - 1; i »>= 0; i--)
yield return Colors[i];

532

CHAPTER 20 " ENUMERATORS AND ITERATORS

class Program
static void Main()

ColorCollection cc = new ColorCollection();
Return enumerable to the foreach statement
!
foreach (string color in cc.Forward())
Console.Write("{0} ", color);
Console.WritelLine();

Return enumerable to the foreach statement
A
foreach (string color in cc.Reverse())
Console.Write("{0} ", color);
Console.WritelLine();

// Skip the foreach and manually use the enumerable and enumerator.
IEnumerable<string> ieable = cc.Reverse();
IEnumerator<string> ieator = ieable.GetEnumerator();

while (ieator.MoveNext())
Console.Write("{0} ", ieator.Current);
Console.WritelLine();

}

This code produces the following output:

Red Orange Yellow Green Blue Purple
Purple Blue Green Yellow Orange Red
Purple Blue Green Yellow Orange Red

533

CHAPTER 20 " ENUMERATORS AND ITERATORS

Producing Multiple Enumerators

The previous example used iterators to produce a class with two enumerables. This example shows two
things. First, it uses iterators to produce a class with two enumerators. Second, it shows how iterators
can be implemented as properties rather than methods.

The code declares two properties that define two different enumerators. The GetEnumerator method
returns one or the other of the two enumerators, depending on the value of the Boolean variable
ColorFlag. If ColorFlag is true, the Colors enumerator is returned. Otherwise, the BlackAndWhite
enumerator is returned.

class MyClass: IEnumerable<string>

{
bool ColorFlag = true;

public MyClass(bool flag) // Constructor

ColorFlag = flag,

IEnumerator<string> BlackAndWhite // Property--enumerator iterator

get

{
yield return "black";
yield return "gray";
yield return "white";

}
}
IEnumerator<string> Colors // Property--enumerator iterator
{
get
{
string[] theColors = { "blue", "red", "yellow" };
for (int i = 0; i < theColors.Length; i++)
yield return theColors[i];
}

534

CHAPTER 20 " ENUMERATORS AND ITERATORS

public IEnumerator<string> GetEnumerator() // GetEnumerator

{
return ColorFlag
? Colors // Return Colors enumerator
: BlackAndWhite; // Return BlackAndWhite enumerator
}

System.Collections.IEnumerator
System.Collections.IEnumerable.GetEnumerator()

{
return ColorFlag
? Colors // Return Colors enumerator
: BlackAndWhite; // Return BlackAndWhite enumerator
}

}
class Program

static void Main()

{

MyClass mcl = new MyClass(true); // Call constructor with true
foreach (string s in mc1)

Console.Write("{0} ", s);
Console.WriteLine();

MyClass mc2 = new MyClass(false); // Call constructor with false
foreach (string s in mc2)

Console.Write("{0} ", s);
Console.WriteLine();

}

This code produces the following output:

blue red yellow
black gray white

535

CHAPTER 20 " ENUMERATORS AND ITERATORS

Behind the Scenes with Iterators

The following are some other important things to know about iterators:

e Iterators require the System.Collections.Generic namespace, so you should include it with a
using directive.

e Inthe compiler-generated enumerators, the Reset method is not supported. It is implemented,
since it is required by the interface, but the implementation throws a
System.NotSupportedException exception if it is called. Notice that the Reset method is shown
grayed out in Figure 20-9.

Behind the scenes, the enumerator class generated by the compiler is a state machine with
four states:

Before: The initial state before the first call to MoveNext.

Running: The state entered when MoveNext is called. While in this state, the enumerator determines
and sets the position for the next item. It exits the state when it encounters a yield return, ayield
break, or the end of the iterator body.

Suspended: The state where the state machine is waiting for the next call to MoveNext.
After: The state where there are no more items to enumerate.

If the state machine is in either the before or suspended states and there is a call to the MoveNext
method, it goes into the running state. In the running state, it determines the next item in the collection
and sets the position.

If there are more items, the state machine goes into the suspended state. If there are no more items,
it goes into the after state, where it remains. Figure 20-12 shows the state machine.

Before

MoveNext MoveNext

Suspended

yield break or

end of iterator body yield return

Figure 20-12. An iterator state machine

536

CHAPTER 21

Introduction to LINQ

What Is LINQ?

LINQ Providers

Query Syntax and Method Syntax
Query Variables

The Structure of Query Expressions
The Standard Query Operators
LINQ to XML

537

CHAPTER 21 ' INTRODUCTION TO LINQ

What Is LINQ?

In a relational database system, data is organized into nicely normalized tables and accessed with a very
simple but powerful query language—SQL. SQL can work with any set of data in a database because the
data is organized into tables, following strict rules.

In a program, as opposed to a database, however, data is stored in class objects or structs that are all
vastly different. As a result, there’s been no general query language for retrieving data from data
structures. The method of retrieving data from objects has always been custom-designed as part of the
program. LINQ, however, makes it easy to query collections of objects.

The following are the important high-level characteristics of LINQ:

e LINQ stands for Language Integrated Query and is pronounced link.

e LINQis an extension of the .NET Framework that allows you to query collections of datain a
manner similar to using SQL to query databases.

e With LINQ you can query data from databases, collections of program objects, XML documents,
and more.

The following code shows a simple example of using LINQ. In this code, the data source being
queried is simply an array of ints. The definition of the query is the statement with the from and select
keywords. Although the query is defined in this statement, it is actually performed and used in the
foreach statement at the bottom.

static void Main()
int[] numbers = { 2, 12, 5, 15 }; // Data source
IEnumerable<int> lowNums = // Define and store the query.
from n in numbers
where n < 10
select n;
foreach (var x in lowNums) // Execute the query.
Console.Write("{0}, ", x);
}

This code produces the following output:

2, 5,

538

CHAPTER 21 " INTRODUCTION TO LINQ

LINQ Providers

In the previous example, the data source was simply an array of ints, which is an in-memory object of
the program. LINQ, however, can work with many different types of data sources, such as SQL
databases, XML documents, and a host of others. For every data source type, however, under the
covers there must be a module of code that implements the LINQ queries in terms of that data source
type. These code modules are called LINQ providers. The important points about LINQ providers are
the following:

e Microsoft provides LINQ providers for a number of common data source types, as shown in
Figure 21-1.

¢ Youcan use any LINQ-enabled language (C# in our case) to query any data source type for which
there is a LINQ provider.

e New LINQ providers are constantly being produced by third parties for all sorts of data
source types.

LINQ-Enabled Visual C# Visual Basic
Languages 2008 2008
LINQ to LINQ to
LINQ Objects XML LINQ Support for ADO.NET
Providers LINQ to LINQ to LINQ to
BLINQ SQL Datasets Entities
(ASP.NET)

Figure 21-1. The architecture of LINQ, the LINQ-enabled languages, and LINQ providers

There are entire books dedicated to LINQ in all its forms and subtleties, but that’s clearly beyond the
scope of this chapter. Instead, this chapter will introduce you to LINQ and explain how to use it with
program objects (LINQ to Objects) and XML (LINQ to XML).

539

CHAPTER 21 ' INTRODUCTION TO LINQ

Anonymous Types

Before getting into the details of LINQ’s querying features, I'll start by covering a language feature that
allows you to create unnamed class types. These are called, not surprisingly, anonymous types.

In Chapter 6 we covered object initializers, which is the construct that allows you to initialize the
fields and properties of a new class instance when using an object-creation expression. Just to remind
you, this kind of object-creation expression consists of three components: the keyword new, the class
name or constructor, and the object initializer. The object initializer consists of a comma-separated list
of member initializers between a set of curly braces.

Creating a variable of an anonymous type uses the same form—but without the class name or
constructor. The following line of code shows the object-creation expression form of an anonymous type:

Object initializer
4
new { FieldProp = InitExpr, FieldProp = InitExpr, ...}
T

Member initializer Member initializer

The following code shows an example of creating and using an anonymous type. It creates a variable
called student, with an anonymous type that has three string properties and one int property. Notice in
the Writeline statement that the instance’s members are accessed just as if they were members of a
named type.

static void Main()

var student = new {LName="Jones", FName="Mary", Age=19, Major="History"};
T
Must use var Object initializer
Console.WriteLine("{0} {1}, Age {2}, Major: {3}",
student.FName, student.LName, student.Age, student.Major);

}

This code produces the following output:

Mary Jones, Age 19, Major: History

Important things to know about anonymous types are the following:
e Anonymous types can be used only with local variables—not with class members.

e Since an anonymous type doesn’t have a name, you must use the var keyword as the variable
type.

540

CHAPTER 21 " INTRODUCTION TO LINQ

When the compiler encounters the object initializer of an anonymous type, it creates a new class
type with a private name that it constructs. For each member initializer, it infers its type and creates a
private variable of that type in the new class, and it creates a read/write property to access the variable.
The property has the same name as the member initializer. Once the anonymous type is constructed,
the compiler creates an object of that type.

Besides the assignment form of member initializers, anonymous type object initializers also
allow two other forms: simple identifiers and member access expressions. These two forms are
called projection initializers. The following variable declaration shows all three forms. The first
member initializer is in the assignment form. The second is an identifier, and the third is a member
access expression.

var student = new { Age = 19, Major, Other.Name };
For example, the following code uses all three types. Notice that the projection initializers must be

defined before the declaration of the anonymous type. Major is a local variable, and Name is a static field
of class Other.

class Other

{

static public string Name = "Mary Jones";

class Program

{
static void Main()
{
string Major = "History";
Assignment form Identifier
var student = new { Age = 19, Other.Name, Major};
Member access
Console.WriteLine("{0}, Age {1}, Major: {2}",
student.Name, student.Age, student.Major);
}
}

This code produces the following output:
Mary Jones, Age 19, Major: History
The projection initializer form of the object initializer just shown has exactly the same result as the
assignment form shown here:
var student = new { Age = Age, Name = Other.Name, Major = Major};
Although your code cannot see the anonymous type, it’s visible to object browsers. If the compiler

encounters another anonymous type with the same parameter names, with the same inferred types, and
in the same order, it will reuse the type and create a new instance—not create a new anonymous type.

541

Download from Wow! eBook <www.wowebook.com>

CHAPTER 21 M INTRODUCTION TO LINQ

Query Syntax and Method Syntax

There are two syntactic forms you can use when writing LINQ queries—query syntax and method syntax.

e Query syntax is a declarative form that looks very much like an SQL statement. Query syntax is
written in the form of query expressions.

e Method syntax is an imperative form, which uses standard method invocations. The methods are
from a set called the standard query operators, which will be described later in the chapter.

¢ You can also combine both forms in a single query.

Microsoft recommends using query syntax because it’s more readable, more clearly states your
query intentions, and is therefore less error-prone. There are some operators, however, that can be
written only using method syntax.

Note Queries expressed using query syntax are translated by the C# compiler into method invocation form.
There is no difference in runtime performance between the two forms.

542

CHAPTER 21 " INTRODUCTION TO LINQ

The following code shows all three query forms. In the method syntax part, you might find that the
parameter of the Where method looks a bit odd. It’s a lambda expression, as was described in Chapter 15.
I'll cover its use in LINQ a bit later in the chapter.

static void Main()

{

int[] numbers = { 2, 5, 28, 31, 17, 16, 42 };

var numsQuery = from n in numbers // Query syntax
where n < 20
select n;

var numsMethod = numbers.Where(x => x < 20); // Method syntax

int numsCount = (from n in numbers // Combined
where n < 20
select n).Count();

foreach (var x in numsQuery)
Console.Write("{0}, ", x);
Console.WriteLine();

foreach (var x in numsMethod)

Console.Write("{0}, ", x);
Console.WriteLine();

Console.WriteLine(numsCount);

}

This code produces the following output:

2, 5, 17, 16,
2, 5, 17, 16,
4

543

CHAPTER 21 ' INTRODUCTION TO LINQ

544

Query Variables

LINQ queries can return two types of results: an enumeration, which lists the items that satisfy the query
parameters; or a single value, called a scalar, which is some form of summary of the results that satisfied
the query.

In the following example code, the following happens:

e The first statement creates an array of ints and initializes it with three values.

e The second statement returns an IEnumerable object, which can be used to enumerate the results
of the query.

e The third statement executes a query and then calls a method (Count) that returns the count of
the items returned from the query. We’'ll cover operators that return scalars, such as Count, later
in the chapter.

int[] numbers = { 2, 5, 28 };

IEnumerable<int> lowNums = from n in numbers // Returns an enumerator
where n < 20
select n;

int numsCount = (from n in numbers // Returns an int

where n < 20
select n).Count();

The variable on the left of the equals sign is called the query variable. Although the types of the
query variables are given explicitly in the example statements, you could also have had the compiler
infer the types of the query variables by using the var keyword in place of the type names.

It’s important to understand the contents of query variables. After executing the preceding code,
query variable lowNums does not contain the results of the query. Instead, it contains an object of type
IEnumerable<int>, which can perform the query if it’s called upon to do so later in the code. Query
variable numsCount, however, contains an actual integer value, which can have been obtained only by
actually running the query.

CHAPTER 21 " INTRODUCTION TO LINQ

The differences in the timing of the execution of the queries can be summarized as follows:
e Ifaquery expression returns an enumeration, the query is not executed until the enumeration is
processed.
— Ifthe enumeration is processed multiple times, the query is executed multiple times.

— If the data changes between the time the enumeration is produced and the time the query is
executed, the query is run on the new data.

e Ifthe query expression returns a scalar, the query is executed immediately, and the result is
stored in the query variable.

Figure 21-2 illustrates this for the enumerable query. Variable lowNums contains a reference to the
enumerable that can enumerate the query results from the array.

—

TowNums ref 1 Heap

1

1

1

1 N -

| |IEnumerable<int>
int[] numbers = { 2, 5, 28 }; | E—

1

1

1

T

1

1

static void Main()

{

IEnumerable<int> TowNums =
from n in numbers
where n < 20
select n;

L

The query is stored in
e an object that implements
} |IEnumerable<int>.

Figure 21-2. The compiler creates an object that implements IEnumerable<int> and stores the query in
the object.

545

CHAPTER 21 ' INTRODUCTION TO LINQ

The Structure of Query Expressions

A query expression consists of a from clause followed by a query body, as illustrated in Figure 21-3. Some
of the important things to know about query expressions are the following:

e The clauses must appear in the order shown.
— The two parts that are required are the from clause and the select...group clause.

— The other clauses are optional.
e InaLINQ query expression, the select clause is at the end of the expression. This is different
than SQL, where the SELECT statement is at the beginning of a query. One of the reasons for using

this position in C# is that it allows Visual Studio’s IntelliSense to give you more options while
you're entering code.

e There can be any number of from...let...where clauses, as illustrated in the figure.

from £
Clause rom ...
from...let... from ...
where let ...
Clause where ...
Query 0(;&122’ orderby ...
Body
select...group select ...
Clause roup ...
Query) .
\ Continuation U0 oz el

Figure 21-3. The structure of a query statement consists of a from clause followed by a query body.

546

CHAPTER 21 " INTRODUCTION TO LINQ

The from Clause

The from clause specifies the data collection that is to be used as the data source. It also introduces the
iteration variable. The important points about the from clause are the following:

e The iteration variable sequentially represents each element in the data source.

e The syntax of the from clause is shown following, where

— Typeis the type of the elements in the collection. This is optional, because the compiler can
infer the type from the collection.

— Item is the name of the iteration variable.

— Items is the name of the collection to be queried. The collection must be enumerable, as
described in Chapter 13.

Iteration variable declaration

from Type Item in Items

The following code shows a query expression used to query an array of four ints. Iteration
variable item will represent each of the four elements in the array and will be either selected or
rejected by the where and select clauses following it. This code leaves out the optional type (int) of

the iteration variable.

int[] arr1 = {10, 11, 12, 13};
Iteration variable

var query = from item in arri
where item < 13 < Uses the iteration variable
select item; < Uses the iteration variable

foreach(var item in query)
Console.Write("{0}, ", item);
This code produces the following output:

10, 11, 12,

547

CHAPTER 21 ' INTRODUCTION TO LINQ

Figure 21-4 shows the syntax of the from clause. The type specifier is optional, since it can be
inferred by the compiler. There can be any number of optional join clauses.

from Type Identifier in Expression JoinClause

join Type Identifier in Expression
on Expression equals Expression

join Type Identifier in Expression
on Expression equals Expression
into Identifier

Optional

Figure 21-4. The syntax of the from clause

Although there is a strong similarity between the LINQ from clause and the foreach statement, there
are several major differences:

e The foreach statement executes its body at the point in the code where it is encountered. The
from clause, on the other hand, does not execute anything. It creates an enumerable object that’s
stored in the query variable. The query itself might or might not be executed later in the code.

e The foreach statement imperatively specifies that the items in the collection are to be considered
in order, from the first to the last. The from clause declaratively states that each item in the
collection must be considered but does not assume an order.

548

CHAPTER 21 " INTRODUCTION TO LINQ

The join Clause

The join clause in LINQ is much like the JOIN clause in SQL. If you're familiar with joins from SQL, then
joins in LINQ will be nothing new for you conceptually, except for the fact that you can now perform
them on collections of objects as well as database tables. If you're new to joins or need a refresher, then
the next section should help clear things up for you.

The first important things to know about a join are the following:

e Ajoin operation takes two collections and creates a new temporary collection of objects, where
each object contains all the fields from an object from both initial collections.

e Useajoin to combine data from two or more collections.

The syntax for a join is shown here. It specifies that the second collection is to be joined with the
collection in the previous clause.

Keyword Keyword Keyvivord Keyword
join Identifier in Collection2 on Field1 equals Field2
T T
Specify additional collection The fields to compare
and ID to reference it for equality

Figure 21-5 illustrates the syntax for the join clause.

join Type Identifier in Expression
on Expression equals Expression

join Type Identifier in Expression
on Expression equals Expression
into Identifier

Figure 21-5. Syntax for the join clause

The following annotated statement shows an example of the join clause:

First collection and ID
4 Item from first collection ltem from second
var query = from s in students
join c in studentsInCourses ons.StID equals c.StID
T T

Second collection and ID Fields to compare

549

CHAPTER 21 ' INTRODUCTION TO LINQ

What Is a Join?

Ajoin in LINQ takes two collections and creates a new collection where each element has members from
the elements of the two original collections.

For example, the following code declares two classes: Student and CourseStudent.
e Obijects of type Student contain a student’s last name and student ID number.

e Obijects of type CourseStudent represent a student that is enrolled in a course and contain the
course name and a student ID number.

public class Student

public int StiD;
public string LastName;

}
public class CourseStudent

public string CourseName;
public int StiD;

}

Figure 21-6 shows the situation in a program where there are three students and three courses, and
the students are enrolled in various courses. The program has an array called students, of Student
objects, and an array called studentsInCourses, of CourseStudent objects, which contains one object for
every student enrolled in each course.

LastName StID StID CourseName
— "Carson" 1 1 | "Philosophy"
Stack "Klassen" 2 2 | "Philosophy"
students Fleming 3 1 History
studentsInCourses — —> J 3 History
3 | "Physics"
Vv ; L 1

Figure 21-6. Students enrolled in various courses

550

CHAPTER 21 " INTRODUCTION TO LINQ

Suppose now that you want to get the last name of every student in a particular course. The
students array has the last names, and the studentsInCourses array has the course enrollment
information. To get the information, you must combine the information in the arrays, based on the
student ID field, which is common to objects of both types. You can do this with a join on the StID field.

Figure 21-7 shows how the join works. The left column shows the students array, and the right
column shows the studentsInCourses array. If we take the first student record and compare its ID with
the student ID in each studentsInCourses object, we find that two of them match, as shown at the top of
the center column. If we then do the same with the other two students, we find that the second student
is taking one course, and the third student is taking two courses.

The five grayed objects in the middle column represent the join of the two arrays on field StID. Each
object contains three fields: the LastName field from the Students class, the CourseName field from the
CourseStudent class, and the StID field common to both classes.

students studentsInCourses

LastName StID CourseName StID CourseName

LastName StID | "Carson" 1 | "Philosophy"

i f "Philosophy"
i= s " H "
b =

3 | "Physics"

1 | "Philosophy"

"Klassen" 2 | "Philosophy"

1 | "History"
3 | "History"
3 | "Physics"

1 | "Philosophy"

2 | "Philosophy"

1 | "History"

"Fleming" 3 | "History"

"Fleming" 3 | "Physics"

Figure 21-7. Two arrays of objects and their join on field Stld

551

Download from Wow! eBook <www.wowebook.com>

CHAPTER 21 M INTRODUCTION TO LINQ

The following code puts the whole example together. The query finds the last names of all the
students taking the history course.

class Program

public class Student { // Declare classes.
public int StiD;
public string LastName;

}

public class CourseStudent {
public string CourseName;
public int StiD;

}
// Initialize arrays.
static CourseStudent[] studentsInCourses = new CourseStudent[] {

new CourseStudent { CourseName = "Art", StID =1 },
new CourseStudent { CourseName = "Art", StID = 2 },
new CourseStudent { CourseName = "History", StID =1 },
new CourseStudent { CourseName = "History", StID = 3 },
new CourseStudent { CourseName = "Physics", StID = 3 },

bs

static Student[] students = new Student[] {

new Student { StID = 1, LastName = "Carson" 1},
new Student { StID = 2, LastName = "Klassen" 1},
new Student { StID = 3, LastName = "Fleming" 1},

)

static void Main()
{
// Find the last names of the students taking history.
var query = from s in students
join c in studentsInCourses on s.StID equals c.StID
where c.CourseName == "History"
select s.LastName;

// Display the names of the students taking history.

foreach (var q in query)
Console.WriteLine("Student taking History: {o0}", q);

}

This code produces the following output:

Student taking History: Carson
Student taking History: Fleming

552

CHAPTER 21 " INTRODUCTION TO LINQ

The from . .. let...where Section in the Query Body

The optional from...let...where section is the first section of the query body. It can have any number of
any of the three clauses that comprise it—the from clause, the let clause, and the where clause. Figure
21-8 summarizes the syntax of the three clauses.

let Identifier = Expression

where BooleanExpression

from Type Identifier in Expression JoinClause

join Type Identifier in Expression
on Expression equals Expression

join Type Identifier in Expression
on Expression equals Expression
into Identifier

Optional

Figure 21-8. The syntax of the from . .. let . . . where clause

553

CHAPTER 21 ' INTRODUCTION TO LINQ

The from Clause

You saw that a query expression starts with a required from clause, which is followed by the query body.
The body itself can start with any number of additional from clauses, where each subsequent from clause
specifies an additional source data collection and introduces a new iteration variable for use in further
evaluations. The syntax and meanings of all the from clauses are the same.
The following code shows an example of this use.
e The first from clause is the required clause of the query expression.
e Thesecond from clause is the first clause of the query body.

e The select clause creates objects of an anonymous type.

static void Main()

{
var groupA = new[] { 3, 4, 5, 6 };
var groupB = new[] { 6, 7, 8, 9 };
var someInts = from a in groupA < Required first from clause
from b in groupB « First clause of query body
where a > 4 & b <= 8
select new {a, b, sum = a + b}; <« Object of anonymous type
foreach (var a in somelnts)
Console.WritelLine(a);
}

This code produces the following output:

{a=5b=6, sun =11}
{a=5b=7, sun =12}
{a=5 b=28, sum =13}
{a=6,b=6, sun=12}
{a=6,b=7, sun =13}
{a=6,b=28, sum= 14}

554

CHAPTER 21 " INTRODUCTION TO LINQ

The let Clause

The let clause takes the evaluation of an expression and assigns it to an identifier to be used in other
evaluations. The syntax of the let clause is the following:

let Identifier = Expression

For example, the query expression in the following code pairs each member of array groupA with
each element of array groupB. The where clause eliminates each set of integers from the two arrays where
the sum of the two is not equal to 12.

static void Main()

{
var groupA = new[] { 3, 4, 5, 6 };
var groupB = new[] { 6, 7, 8, 9 };
var someInts = from a in groupA
from b in groupB
let sum=a + b « Store result in new variable
where sum == 12
select new {a, b, sum};
foreach (var a in somelnts)
Console.WritelLine(a);
}

This code produces the following output:

{a=3,b=9, sun=12}
{a=4,b=28, sum= 12}
{a=5b=7, sumn =12}
{a=6,b=6, sun=12}

555

CHAPTER 21 ' INTRODUCTION TO LINQ

The where Clause

The where clause eliminates items from further consideration if they don’t meet the specified condition.
The syntax of the where clause is the following:

where BooleanExpression
Important things to know about the where clause are the following:

e A query expression can have any number of where clauses, as long as they are in the
from...let...where section.

e Anitem must satisfy all the where clauses to avoid elimination from further consideration.

The following code shows an example of a query expression that contains two where clauses. The
where clauses eliminate each set of integers from the two arrays where the sum of the two is not greater
than or equal to 11, and the element from groupA is not the value 4. Each set of elements selected must
satisfy the conditions of both where clauses.

static void Main()

{
var groupA = new[] { 3, 4, 5, 6 };
var groupB = new[] { 6, 7, 8, 9 };
var someInts = from int a in groupA
from int b in groupB
let sum = a + b
where sum >= 11 < Condition 1
where a == « Condition 2
select new {a, b, sum};
foreach (var a in somelnts)
Console.WritelLine(a);
}

This code produces the following output:

{a=4b=7, sum=11}
{a=4,b=28, sum= 12}
{a=4,b=9, sum=13 }

556

CHAPTER 21 " INTRODUCTION TO LINQ

The orderby Clause

The orderby clause takes an expression and returns the result items in order according to the expression.
Figure 21-9 shows the syntax of the orderby clause. The optional keywords ascending and
descending set the direction of the order. Expression is generally a field of the items.

e The default ordering of an orderby clause is ascending. You can, however, explicitly set the
ordering of the elements to either ascending or descending, using the ascending and
descending keywords.

e There can be any number of orderby clauses, and they must be separated by commas.

ascending

orderby = Expression {descending

Figure 21-9. The syntax of the orderby clause

The following code shows an example of student records ordered by the ages of the students. Notice
that the array of student information is stored in an array of anonymous types.

static void Main() {
var students = new [] // Array of objects of an anonymous type

new { LName="Jones", FName="Mary", Age=19, Major="History" },
new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
new { LName="Fleming", FName="Carol", Age=21, Major="History" }

b8

var query = from student in students
orderby student.Age <« Order by Age.
select student;

foreach (var s in query) {

Console.WriteLine("{0}, {1}: {2} - {3}",
s.LName, s.FName, s.Age, s.Major);

}

This code produces the following output:

Jones, Mary: 19 - History
Smith, Bob: 20 - CompSci
Fleming, Carol: 21 - History

557

CHAPTER 21

558

INTRODUCTION TO LINQ

The select . . . group Clause

There are two types of clauses that make up the select...group section—the select clause and the
group...by clause. While the clauses that precede the select...group section specify the data sources
and which objects to choose, the select...group section does the following:

The select clause specifies which parts of the chosen objects should be selected. It can specify
any of the following:

— The entire data item
— Afield from the data item

— Anew object comprising several fields from the data item (or any other value, for
that matter).

The group. . .by clause is optional and specifies how the chosen items should be grouped. We’ll
cover the group. . .by clause later in the chapter.

Figure 21-10 shows the syntax for the select...group clause.

select Expression

group Expression1 by Expression2

Figure 21-10. The syntax of the select . . . group clause

CHAPTER 21 " INTRODUCTION TO LINQ

The following code shows an example of using the select clause to select the entire data item. First,
the program creates an array of objects of an anonymous type. The query expression then uses the
select statement to select each item in the array.

using System;
using System.ling;
class Program {
static void Main() {
var students = new[] // Array of objects of an anonymous type

new { LName="Jones", FName="Mary", Age=19, Major="History" },
new { LName="Smith", FName="Bob", Age=20, Major="CompSci" },
new { LName="Fleming", FName="Carol", Age=21, Major="History" }
5
var query = from s in students
select s;

foreach (var q in query)
Console.WriteLine("{0}, {1}: Age {2}, {3}",
q.LName, q.FName, q.Age, g.Major);

}

This code produces the following output:

Jones, Mary: Age 19, History
Smith, Bob: Age 20, CompSci
Fleming, Carol: Age 21, History

You can also use the select clause to choose only particular fields of the object. For example, the
select clause in the following code selects only the last name of the student.

var query = from s in students
select s.LName;

foreach (var q in query)
Console.WriteLine(q);

When you substitute these two statements for the corresponding two statements in the preceding
full example, the program produces the following output:

Jones
Smith
Fleming

559

CHAPTER 21 ' INTRODUCTION TO LINQ

Anonymous Types in Queries

The result of a query can consist of items from the source collections, fields from the items in the source
collections, or anonymous types.

You can create an anonymous type in a select clause by placing curly braces around a comma-
separated list of fields you want to include in the type. For example, to make the code in the previous
section select just the names and majors of the students, you could u