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Chapter 1

Introduction

1.1 Our job as programmers

So, you want to write a program? Assuming you've already �gured out what
it's supposed to do (and that subject alone warrants its own book), the next
step is to plan the program and �gure out how to do all that stu� you promised,
then get on to writing it.

Object oriented programming is a collection of techniques intended to make
our job as programmers easier. In particular, it's supposed to save us time and
e�ort. Under the best of circumstances, the hard part of a task is written once,
and then we can simply adapt it to our needs later. If we suddenly come up
with something neat to add to our program, it should be easy to add in, and
not require the use of a sledge hammer or its silicon equivalent.

However, these simple concepts of reusability and maintainability also makes
our job very di�cult: Not only do we have to get it done, we have to get it done
\right," meaning in such a way as that we can actually understand later how it
works and �x or adapt it.

So, we actually end up with two jobs. The �rst is as an application pro-
grammer. In this guise, we have to write some code which is likely to be totally
useless in any other program. Command line parsing, for example, is not com-
pletely reusable unless you happen to have two programs which take exactly
the same options. Help messages and how the menus are organized are also not
particularly reusable. They must still be done \right," so we can come in later
and change things, but that part of the task isn't usually too hard.

The second job is as a library programmer. This is more di�cult, because
code that goes into a library should be as reusable as possible. Any application-
speci�c operations must slide seamlessly into the framework without requiring
that anyone edit our code in the future. Since we as library programmers can't
predict everything our library will be used for, the best we can do is shoot for
some sort of general, powerful solution. As we write more programs, especially
related ones, the libraries from all of them should build on one another, and in

1



2 CHAPTER 1. INTRODUCTION

the end, the amount of thrown-away code put into the applications themselves
should be minimal.

Object oriented programming has turned out to be a very successful means
of maximizing the library and minimizing the thrown-away code.

1.2 Tools of object oriented programming

The techniques of object oriented programming make use of several layers of
thinking. At the bottom are simple things, such as classes, objects, functions,
and variables, that make up the building blocks. There are three higher level
tools available in object oriented programming: encapsulation, intelligent data,
and inheritance.

1.2.1 Encapsulation

Encapsulation is the so-called \black box" data model. All objects are like
machines with a control panel on top, an instruction book, and a label on the
access panel that says, \Do not remove under penalty of law."

The premise here is that as application programmers, we need to know what
objects are capable of and how to get them to do it, but not how it actually
works. This saves us time, since there is no need to �gure out how someone else's
code works. It also allows us to utilize someone else's library without depending
on how its innards are written. When it's changed or updated or ported to a
new operating system, the di�erences are invisible from the application's point
of view, hidden inside the black box, so our code can simply be re-compiled and
should still work.

Encapsulation also prevents name con
icts. In other words, if everything a
class needs is a member of that class, then there is less chance that someone
else's code will con
ict with it by de�ning a di�erent variable or function with
the same name. For an example of what not to do: The GNU implementation
of the Standard Template Library de�nes symbols \red" and \black" at global
scope (instead of inside the balanced tree class that uses them) and is not usable
with a GUI toolkit called Qt that de�nes a bunch of colors at global scope.

Encapsulation also makes it easier to design and plan programs. Just about
every large program appears unmanageable at �rst. Since object oriented pro-
gramming encourages us to package functionality into classes, planning a pro-
gram boils down to deciding which operations should be grouped together, and
how the classes, rather than the individual functions, should interact.

1.2.2 Intelligent data

Object oriented languages allow functions to be attached to objects. They are
therefore intelligent and carry their functionality with them. In C++, this
is accomplished through virtual functions. This principle is at the heart of
many of the most powerful design patterns, especially those which carry custom
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operations into an already existing framework. The technical name for this is
\polymorphism," meaning \many forms."

1.2.3 Inheritance

Inheritance means the process of adding new operations and data to an old
class. There are several somewhat di�erent uses for inheritance.

Programmers can use it to take advantage of code which is already written,
a pattern known as a Template Method. It's common for a library to provide zTemplate Method, 325

an abstract superclass where the \hard part" of the programming has already
been done. A derived class must simply provide a few speci�c functions which
�t in with the parent class's. For example, the ResourceUser class described in
section 4.5 provides correct implementations of tricky and error prone operations
which allow it to make a limited resource appear unlimited. Derived classes has
to implement \primitive" functionality which actually acquires and releases the
resource.

In a strongly typed language, inheritance becomes important as a means of
making data intelligent. The compiler won't let us call a method on an object
unless we tell it ahead of time which operations we need to be able to use on that
object. We can write a purely abstract class which de�nes an interface. Any
code written in terms of the abstract calss can call functions in that interface
and will work on any object that inherits from the abstract base class. This is
how intelligent data works in C++.

1.3 Design patterns

Design patterns are the next level up in our toolbox. They build on top of the
lower level tools and provide a way of dealing with large scale parts of the design
of a program.

In particular, the program as a whole breaks down into smaller problems:
What's the best way to create this complex object? How do we encapsulate this
action? How do we allow for multiple look-and-feel standards?

Many of these problems can be solved with well planned interactions between
classes. The general form of the solution is the design pattern. One of the goals
of object oriented programming is to write reusable code. Design patterns are
a sort of reusable thinking.

The rest of our discussion will focus on the patterns cataloged in the book
Design Patterns [2]. In particular, we will look at a speci�c program and how to
apply those patterns to its design. The little boxes in the margins refer to pages
in the book where certain patterns are described in detail. (Think of them as
hyperlinks.)
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ConcreteClassTwo

Method()
AnotherMethod( arg )
AndAnother()

AbstractClass

Method()
AnotherClass

pseudocode();
ourData
myData
StaticMethod()
AnotherMethod()
Method()

ConcreteClassOne

Inheritance

Has

References

Creates

One

Many

Figure 1.1: Sample class diagram.

1.4 Design notation

Since class and object interactions can be di�cult to discuss verbally, a number
of visual methodologies have been invented. The one used here is based on the
notation in Design Patterns, a variation of OMT notation. See �gure 1.1 for an
example.

Classes are represented by boxes. Their names are at the top followed by
member functions, static member functions, instance data, and static data1.
Not all sections are present in all class boxes. Instance data members all have
names beginning with \my," and static data members all have names beginning
with \our." Return types and types of variables are usually left out of the
diagram to make them less confusing. Functions are almost always public, and
data members are always private. Italic text indicates that a class or function
is abstract, while upright text indicates a concrete class or function.

Subclasses are connected to their parent class by a tree of lines with a triangle
at the trunk.

Class interactions are denoted by lines and arrows. A solid line with a
diamond at the bottom indicates that one class contains instances of another.
A plain solid line means that one class uses another. Dotted lines show that a
class creates instances of another. A solid arrow indicates that just one object is
being used, contained, or created, while a forked arrow means that many objects
are involved. Remember that the base of the line is attached to the container,
user, or creator, and the arrow end is attached to the class being contained,
used, or created. Not all relationships are shown in every diagram.

A box with a dog-eared corner contains a pseudocode implementation of a

1\Static" is C++ terminology for functions and data which belong to a class as a whole

rather than to an individual instance.
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function. These are used to give a general idea of how a class actually works.



Chapter 2

The example

2.1 The original assignment

The example program used here to illustrate design patterns is called Oodle, the
Object Oriented Directory Listing and Expansion program. It was assigned to
a CPS 108 class in the spring semester of 1997 and consists of two big parts.

The �rst or \interactive" part allows users to view a list of all the �les in a
directory in order by name, size, or modi�cation date. Additionally, they can
navigate the �le system and view di�erent directories.

The original assignment also required each programming group to write an
object oriented replacement for the BSD function scandir():

#include <dirent.h>

int scandir(const char *dir, struct dirent ***namelist,

int (*select)(const struct dirent *),

int (*compare)(const struct dirent **,

const struct dirent **));

This function reads the contents of a directory given its name, picks out only
those �les for which select returns true, and sorts them according to compare.
The results of all this are stored in namelist. This function is quite general,
saves us a lot of work, and is a pretty good overall solution to the problem of
scanning and sorting �les in a directory. Unfortunately, it uses dumb, low-level
data structures, and calls malloc() rather than new to allocate memory for the
array of �le names. Also, it is implemented only on BSD UNIX systems. So,
an object oriented replacement is called for.

The second or \comparison" part of Oodle has two modes. In log mode, the
program recursively traverses a directory tree, saving information about the �les
in some more or less permanent fashion. In di� mode, the program recusrively
traverses the directory tree and compares it to the logged version, displaying any
changes it �nds. As an extra detail, the output of di� mode must be \pruned:"

6



2.1. THE ORIGINAL ASSIGNMENT 7

If a directory has been removed since the log was made, only that directory
must be mentioned. We know all of its contents have been deleted. Similarly,
if a new directory is found, we know all of its contents are new as well, so only
the new directory may be mentioned. For brevity, these two operations will be
referred to as \logging" and \di�ng."

We're going to discuss scandir(), logging and di�ng in detail. In particular,
we're going to look at a number of solutions turned in by students in the class
and how to use design patterns to improve the design. The user interface is left ***
for later because to do it right would require designing a terminal widget kit
which I don't have time to do yet. . . .



Chapter 3

Before

3.1 Rules of the game

We're going to play \Before-and-After" now.

First, we'll look at some of the programs turned in by students who took the
class in some detail, looking carefully at places where the design can be improved
with some patterns. The Oodle assignment was the �rst one given, so most of
these designs were assembled without the bene�t of experience. They represent
each group's �rst attempt at using object oriented techniques to implement
a large-scale program. Most of the students had just taken a course on data
structures and were familiar with the concept of encapsulation, but intelligent
data and inheritence were new to them. Currently, functional programming
is still taught in introductory courses, and object oriented techniques are not
taught until later. There are therefore some traces of functional mind-set in
these designs.

None of these designs are \bad" per se, but there are ways to improve all
of them. The idea is to maximize the reuseable library part, and minimize the
throw-away application part.

You might want to take some time now before reading on and try to design
Oodle for yourself. Don't cheat and look ahead, or we'll have to give you �fty
lashes with the scrabula. Once you have your design, pay careful attention to
the \Before" part and see what choices you've made that parallel the exam-
ples given here. Not all of those choices will be \bad," but some of them will
clearly represent non-object oriented ways of thinking that you should probably
reconsider. Additionally, think about what exactly constitutes a design, and
which parts of your code will be library-worthy, and which parts are application
speci�c.

One last thing: The names have been made up to protect the innocent, but
the designs are real. . . .

8



3.2. BEFORE 9

3.2 Before

3.2.1 Data structures

All the students taking CPS 108 had access to a selection of fundamental data
structures provided by a library called Tapestry. See �gure 3.1 and [1]. Many of
the data structures have a MakeIterator()method which creates an instance of
a companion iterator class that passes over each element of the data structure. zIterator, 257

Whatever receives the iterator must be sure to delete it. Additionally, there is
an IterProxy class which stores and gives access to a pointer to an Iterator

object. When the proxy goes out of scope, it deletes its iterator. This is just zProxy, 207

an easy way to prevent a memory leak. Additionally, a fairly powerful string
class is available, as are classes for reading the contents of a directory without
resorting to system calls. In the design diagrams that follow, fundamental data
structures have been left out to save space and confusion.

Design by Boar, Land and Associates

For the class diagram, see �gure 3.2.

State information about non-container �les is contained in FSItemInfo. Its
GetContents() function does nothing. Since a directory is a special type of �le,
a directory could be represented with a FSItemInfo object. The IsDirectory()
method returns true if this is the case.

Directories are more completely represented by class DirInfo. Internally, it
represents its contents with a vector of FSItemInfo pointers. GetContents()

returns this vector. The GetFileInfo() function sequentially searches its con-
tents for a �le of the given name and returns the pointer it �nds. GetDirInfo()
works similarly, but examines only directories. When a DirInfo is created, it
recursively creates objects for all of its contents. This has the side e�ect that
it takes a long time to create a DirInfo if the directory tree within it contains
a large number of �les. As an interesting side note, the writers of this project
did not make the FSItemInfo destructor virtual and ended up jumping through
some hoops to get rid of the resulting memory leak.

The SortFacade class contains three vectors of pointers, each of which is
sorted in one of the three required orders. As each sort order is requested, the
SortFacade �lls in the vector once and sets a 
ag indicating that it has been
sorted. That way, sorting for each order is done only once. There is no way to
add another sort order.

Class Comparer is responsbile for printing out di�erences between the log
and the current state of the �le system. It has a hash table called myMap from
�le path names to FSItemInfo pointers, which represents the entire current
state of the �le system. The public function PrintReport() does just what its
name suggests: print all di�erences betweeen the log and the current state of
things. It calls a number of private functions to facilitate this. LoadMyMap()

traverses the �le system tree using DirInfo objects, and stores all the informa-
tion in myMap. The private function Compare() reads the contents of the log �le
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Figure 3.2: Design diagram by Boar, Land & Associates.
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sequentially, looking for deleted and changed �les. It writes a short message for
each changed or deleted �le. The output of di�ng must be pruned as described
in the assignment. To implement this, the contents of any deleted directory are
placed in a vector. Before any �le is displayed, this vector is searched sequen-
tially, and if the �le is found, it's not displayed. CheckForNew() uses another
traversal of the physical �le system to check for newly created �les.

Logging is performed by class Pickler. (The name comes from the con-
cept of pickling food for long term storage. We can do the same with �les.)
Its Actualize() method uses a queue to traverse a �le system using DirInfo

objects. Each line in the log represents a single �le. The full path to each �le
is stored, and the log �le is a 
at list structure, not a tree.

Class OodleApp is the central application class. It contains the user interface
and directs what the prgram should do next. It contains code to display a help
screen, list �les in the three required orders, and parse user input. It uses
a Pickler to do logging, and a Comparer to do di�ng. main() creates an
OodleApp and sends it high-level instructions based on the command line.

What's funny about this design is that the class structure has almost noth-
ing to do with the abstractions used by the program. Upon inspection of their
source code, it becomes clear that what we actually have is four di�erent rep-
resentations of a �le system.

File tree: A representation of a �le system as a tree. Leaf nodes are represented
by FSItemInfo and nodes with children by DirInfo. This tree is capable
of traversing itself, printing changes relative to a �le map, and writing
itself to a �le list.

File map: A representation of a �le system as a mapping from �le names to
information about them. These maps can be created from a �le tree.

File list: A sequential list of �les based on an ostream which can be read once
from beginning to end.

File vector: A sequential list of �les in an array sorted in a particular order.

These are the key abstractions used in the program, despite the fact that their
functionality is strewn all over a handful of unrelated classes. There is also some
confusion over who owns what, since most of the time, the map representation
refers to objects which appear to belong to a tree representation. In all the
chaos, we end up with a data structure that looks like a dictionary, smells like
a tree, and barks like a chicken.

The only use of an object oriented technique in this design is in the tree
form of the �le system, which is slightly polymorphic.

The user interface is okay, but implemented as a tangle of if-else chains.
Error messages are put in all over the place, so if we wanted to write a di�erent
interface or translate it into French, we would have to go in and manually change
zillions of cout << statements in all the di�erent classes.

The design includes no replacement for the scandir function. There is
also a problem with the recursion. Under UNIX, a program can only have a
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small number of �le handles open at once, and reading a directory uses one. If
directory recursion goes too deeply, this program runs out of �le handles and
crashes.

Design by Microsquish, Inc.

For the class diagram, see �gure 3.3.
To begin with, this particular Oodle has a well-designed user interface which

isn't shown in the class diagram. It uses a sohpisticated menu class and the
Command pattern which e�ectively decouples the Application class from most zCommand, 233

of the others.
Individual �les are represented by objects of class ScanDirEntry. In addition

to providing state information, the class includes methods for reading from and
writing to streams.

The ScanDir class and its companion ScanDirEntry replace the scandir()
function quite well. ScanDir represents a directory and behaves like a shallow
container. The MakeIterator() function creates a ScanDirIterator which
makes the contents available. Unfortunately, the iterator class doesn't inherit
from an abstract base class, which would make it more useful. This is an example
of the Iterator design pattern. Additionally, a class called ScanDirIterProxy is zIterator, 257

included which contains and provides access to a pointer to a ScanDirIterator.
When a proxy object goes out of scope, it automatically deletes the iterator.
This is useful because it prevents a memory leak that would occur if we asked
a ScanDir to create an iterator for us, then forgot to delete it at the end of the
function. This is an example of the Proxy design pattern. ScanDir objects are zProxy, 207

capable of writing themselves to ostreams.
PickleJar is an interesting class. It's a sort of persistent hash table from

�le path names to their state information. The program uses this class to read
and store the old state of the �le system. Internally, it uses a hidden directory
and several specially named �les to store the information. PickleJarIndex is
an auxilliary class which determines which �le to fetch information from based
on a path name.

Apparently, Pickle was supposed to be a base class for objects which could
store themselves to a �le, but it isn't used at all in the rest of the program, and
the storing and retrieving code is all in terms of ScanDirs. The four member
functions (according to comments in the code) are supposed to do the following
things:

� Preserve() should copy the current state of the object into temporary
storage.

� LogPickle( ostream ) should write the stored state to the stream.

� RetrievePickle( istream ) should read a stored state from the stream
into temporary storage.

� Restore() should move the state information from temorary storage into
the object's accessible data.
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Figure 3.3: Design diagram by Microsquish, Inc.
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Class DiffReporter is responsible for reading in the old state of the �le
system and comparing it to the current state. It non-recursively slurps the con-
tents of the old ScanDir and the new one into two hash tables from path names
to ScanDirEntries for easy access. The Recurse() function does most of the
work. It uses a PickleJar to retrieve stored entries. In each directory, it prints
out the new, deleted, and changed �les, then creates another DiffReporter for
each subdirectory and has it print out its report, and so on.

This design is pretty good, all things considered. Since most of the user
interface is separate from the computation, it's easy to change the interface.
Unfortunately, the DiffReporter class does its own output, so if we wanted
to do something with the changed �les other than just list them, we'd have to
either copy the existing code and change it, or start from scratch. Also, the
PickleJar class, while it appears to be an attempt at providing a generalized
persistent hash table class, is mostly useless outside the context of Oodle. Once
again, we have two di�erent ways of representing a �le system: one as a series
of nested containers (ScanDir objects) and again as a dictionary (PickleJar).

There is one strange thing about the sorting system. Class ScanDirEntry
contains a static member which is a pointer to a comparison function. All sorting
takes place in terms of that pointer's contents. A more common and possibly
better technique is to pass the comparison function to the sorting algorithm.

Design by Superego Software

See �gure 3.4 for the class diagram.
The ScanDir class is something like an array of �les which represents a di-

rectory. The List() function returns the name of a di�erent contained �le each
time you call it. Each �le is associated with a number, and the GetIndexName(),
GetIndexTime(), and IsIndexDir() return information about a �le given its
number. The GetLength() method returns the number of �les in the ScanDir.
SetFilter() takes a pointer to a �lter function which should return true if
the DirEntry passed to it should be included in the list. A directory is read
in with the ReadDirectory() method, which only reads in the �les accepted
by the �lter. Sorting is done with two functions. SortEntries() takes an in-
teger 
ag, which selects either by name, by date, or by size. CustomSort()

takes a function (not a comparison function) and applies it to its internal vec-
tor of DirEntries. Apparently, the passed in function should sort the vector,
although it could just as easily do anything else. DiffScanDir() compares the
contents of the object to the information stored in an input stream, stores string
representations of �les which have changed in the passed in vector diffs, and
puts names of subdirectories in the supplied vector subdirs. FormatLine()

takes a DirEntry and returns a string representation of it suitable for display
on a screen 80 characters wide.

Class Oodle has a hash table of path names to ScanDir objects which it
collaborates closely with. A single Oodle object is created by main() and sort
of runs the show by communicating with the user interface. The program main-
tains a hidden directory where it stores log �les. CheckLogFiles() is called
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Figure 3.4: Design diagram by Superego Software.
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upon start-up and looks in the hidden directory for invalid log �les or logs
which are very old. One ScanDir is maintained for the current directory and
UpdateList() puts a string representation of each of its �les into passed-in vec-
tor. The LogDir() method simply calls the recursive DoLogDir() which stores
information about ScanDir objects in specially named �les in the hidden direc-
tory. Likewise, DiffDir() calls the recursive DoDiffDir() which compares log
�les to ScanDirs created from the physical �le system and �lls a vector with
string representations of any di�erences it encounters. HandleUser() makes
calls to the interface class to interact with the user. A few other functions are
provided for moving the Oodle to a new current directory.

This design does show good separation of user interface from computation.
The interface class knows nothing about ScanDirs or Oodles and stands a good
chance of being reusable. The convention of passing vectors of string representa-
tions around makes this separation possible, although there are probably better
ways to do it.

The ScanDir class does indeed replace the BSD scandir() function, but
not particularly well, since it's quite awkward to get the sorted and �tered
information out of the object. Also, that CustomSort() could use a little work
since it saves the programmer exactly zero work.

Unfortunately, the ScanDir and Oodle classes are a case of the \god class,"
in which one object ends up doing a little too much. The ScanDir class has to
do iteration, several di�erent kinds of output formatting, parsing saved input,
sorting, �ltering, di�ng, and logging. Oodle has to do some log retrieval, part
of the di�ng, more formatting, and drive the user interface. The two classes
provide functionality in a lot of the same areas, such as how the log directory
works, and could easily step on each other's toes if we wanted to change the
program around.

Again, the primary abstractions in this program have nothing to do with
the classes. They are:

Directory: A sortable, �lterable list of �le information, capable of comparing
itself to a saved copy.

File: Information about a single �le. (For whatever reason, the ScanDir class
returns only bits and pieces of a �le by its number. This is reminiscent of
the technique of having parallel arrays of di�ereny types, used frequently
in old-fashioned BASIC, which had nothing like a struct. Furthermore,
these functions are hardly used at all by the program, so it is unclear why
they are even there.)

Persistent �le system: A permanent hash table of some kind frompath names
to information about the �les.

Functions and data for these tasks are split between Oodle and ScanDir.
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Other di�culties of note

Those three are typical of the designs turned in for this assignment. Some were
better, others were worse. Some worked, some didn't. Some had good interfaces,
some didn't, but that's another story and shall be told another time.

Concerning designs, here is a list of many of the mistakes, bad ideas, and
things-to-be-improved-upon that showed up frequently.

Mistaking a data structure for an abstraction. File systems have to sup-
port an operation where we give it a path name and it gives us back in-
formation about that �le. Although that does sound like a job for a hash
table, the �le system is really tree shaped, and the fact that paths are
represented by strings is just tradition, so a tree-like data structure really
makes more sense. Many groups just used a plain HMap object, without
even wrapping it up in a separate class. Then, when they needed to at-
tach more functionality to the �le system, such as recursion, it had to go
elsewhere, and led to chaos in the design.

Using nondescriptive names. Many groups had an Oodle class, or some-
thing like that. But what is an Oodle? Or for that matter, what is a
ScanDir? Other wonderful names used by various groups included myMap,
myVec, myQ, stupid, stoopid, and stooopid (no joke!). The idea here is
that if you don't know what to call it, then you don't know what it really
is. If you can't �gure out what it's name means, then you don't know
what it really is and neither did whoever named it. If you don't know
what it really is, you can't code it and have it make any sense at all.

Crossed wires. A consequence of not knowing what our abstractions are is
that we end up putting member functions and data for them in several
di�erent places rather than in one class. Along with this comes confusion
over who owns what. If we have an HMap of path names to pointers to
�le information, and a vector of pointers to the same �le information in
alphabetical order, then which object is responsible for deleting what?
Crossing of wires is often a consequence of using nondescriptive names or
mistaking a data structure for an abstraction.

Doing things the hard way. It's amazing how many groups provided com-
pletely di�erent and unrelated mechanisms for doing the three sort orders
required for the user interface and the custom sort order required for
scandir(). Often, there was a global 
ag which could be set to \name,"
\date," \size," or \custom," and the sort function (wherever it was) would
use a switch statement on that 
ag to determine which one of four helper
functions to call. Why not just solve the general problem, since we have
to solve it anyway, and implement solutions to the speci�c problems in
terms of the more general solution? (A few groups did in fact do this.)

Mixing user interface with computation. The Oodle assignment was given
before any mention was made of GUI's, and it was assumed by just about
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everyone that it would always run in a console (text-only) mode. As a
result, many of the programs have output statements in the di�ng code,
report all errors to cout, and have menus in random places.

It's a bad idea to tie computation directly to user interface. What if we
decide later to port the code to a windowing interface? What if someone
wants to use it in a minature electronic memo book which has a one line
screen? The user interface of a program is very seldom reusable1, so we
should make every e�ort to keep it separate.

Concerning errors: It's okay for a program to handle logical errors (things
which should never happen) in a non-graceful manner, such as by print-
out out a desperate message and exiting. In the case of user input errors
however, the program should pass the information along to the user inter-
face, informing the user that something they did won't work and asking
for what to do next. Since this involves communicating with the user, it
should be handled by the user interface, and therefore kept separate.

Very little use of object oriented tools. Most of the programs reeked of
functional programming. Very few of the designs used inheritance, and
even fewer used it in a way that made any sense. Virtual functions were few
and far between, and groups tended to think in terms of data structures
and implementations rather than abstractions. Even encapsulation tended
to be violated.

A few of the groups did in fact use the Command pattern in their user zCommand, 233

interfaces, and bene�tted greatly. The Iterator pattern showed up fre-
zIterator, 257quently, too. Class discussion encouraged the use of these two patterns.

1Although small components of it, such as buttons and lists, often are.



Chapter 4

After

4.1 A more elaborate design

This chapter is devoted to a detailed description of a completely di�erent design
which makes extensive use of design patterns. In the �rst few sections, we will
discuss the extensive library code. The library is called \Bargello," after a style
of needlework made famous by the Bargello museum in Florence, Italy.1 The
small amount of Oodle speci�c code is put o� until the end to emphesize the
point that with the Bargello library in place, Oodle itself is almost trivial.

The various frameworks within Bargello are described roughly in order of
increasing complexity.

Don't get the wrong idea about complexity. Part of object oriented design
involves trading one form of complexity for another. In the \Before" section,
one of the designs had only three classes but was arguably the most di�cult to
understand. The others are hard to �gure out because the interactions between
them are complex and unclear. Code which uses chains of if-else statements
or switch statements is structurally simpler than, say, polymorphism, but much
harder to read and comprehend.

Object oriented deisn trades all that for a bunch of smaller, intelligent classes,
with speci�c interactions. Keep that in mind as you look at �gure 4.1 which
shows in minature most of the 56 classes present in Bargello.

4.2 Magic pointers

4.2.1 Intent

To provide a general purpose Proxy for pointers.zProxy, 207

1The style makes use of abstract patterns.. . . I know it's a bad pun, but it's easy to spell

and goes with Tapestry.

20
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Add( resource )
Remove( resource )
SetCapacity( capacity )

ResourceRegistry

myUsers

FileHandleUser

FileHandleUser()

ourRegistry

PrimitiveInitialize()
PrimitiveOpen()
PrimitiveClose()

ResourceUser

Bump()
IsOpen()
Close()
Open()

myRegistry

ResourceUser( registry )

ResourceUser( ourRegistry )

(All subclasses of FileHandleUser use the same
registry, a static member of class FileHandleUser.)

Close()

$Id: Resource.fig,v 1.3 1997/07/11 21:26:42 garrett Exp $

PrimitiveInitialize()

PrimitiveClose()
PrimitiveOpen()

DirectoryStream

~DirectoryStream()

First()
Next()
Current()
IsDone()

myDirHandle
myLastPosition
myPathName

CreateFrom( string )
GetFactoryIDCode()
GetName()

PersistentFactory
StoreString()
GetFactory()

Persistent

StoreString()
GetFactory()

ConcretePObject

CreateFactory()

ourFactory

CreateFrom( string )
GetFactoryIDCode()
GetName()

ConcretePFactory

return ourFactory;

ourFactory = new ConcretePFactory( "PFactory 1.0 1997/07/03" );

PersistentArchive
GetName()
Register( factory )
BeginReading( istream )
HasMoreObjects()
Current()
Next()
BeginWriting( ostream )
Write( object )
FinishWriting()

$Id: Persistent.fig,v 1.2 1997/07/03 20:21:13 garrett Exp $

GetInfo()
AcceptVisitor( visitor )

PlainFileNode
GetInfo()
AcceptVisitor( visitor )

LinkFileNode
GetInfo()
AcceptVisitor( visitor )

OtherFileNode
GetInfo()
AcceptVisitor( visitor )

DirectoryNode

SetFilter( test )
Sort( comparison )
First()
Next()
IsDone()
Current()

FileNode
GetInfo()
AcceptVisitor( visitor )

FileInfo
IsValid()
GetName()
GetRealPath()
GetSize()
GetAccessTime()
GetModifiedTime()
GetChangeTime()
IsReadable()
IsWritable()
IsExecutable()
IsDirectory()
IsLink()
IsPlainFile()
IsOther() visitor.VisitOther( this )visitor.VisitPlain( this ) visitor.VisitLink( this )

visitor.VisitDirectory( this )

FileNodeVisitor

VisitLink( linkNode )
VisitOther( otherNode )
VisitDirectory( dirNode )

VisitPlain( plainNode ) GetInfo( fileName )
GetNode( fileName )
FileExists( fileName )
GetCurrentDirectory()
SetCurrentDirectory()
AcceptVisitor( visitor )

InformationalFileSystem

$Id: FileSystem.fig,v 1.3 1997/07/07 16:35:25 garrett Exp $

(Uses all the node classes...)

VisitPlain( node )
VisitLink( node )
VisitOther( node )
VisitDirectory( node )

ChangedListVisitor

VisitPlain( node )
VisitLink( node )
VisitOther( node )
VisitDirectory( node )

NewListVisitor

FileNodeVisitor

Run()
Log()
Diff()

TextOodleApp

TextOodleApp( argc, argv )

myLogFileName
myDirectoryName
imLogging
imVerbose
imQuiet

CommandLine

PersistentArchive

DiskFileSystem

ShadowFileSystem

GetHelpMessage()

CommandLine

Option( name, help, strCmd )

Option( name, help, intCmd )
Option( name, help, dblCmd )

Option( name, help, strVar )
Option( name, help, intVar )
Option( name, help, dblVar )

Flag( name, help, cmd )

Flag( name, help, boolVar, value )
HelpFlag( name )

myFlags
myOptions

ArgCommand<Type>

Execute( arg )

AssignArgCommand<Type>

Execute( arg )

ArgCommand<string>

PrintHelpAndExitArgCommand

Execute( arg )

ArgCommand<From>

ConversionArgCommand<From,To>

Execute( arg )

Command

Execute()

Command

Execute()

AssignBoolCommand

Execute()

ArgCommand<string>

$Id: CommandLine.fig,v 1.1 1997/07/10 20:33:18 garrett Exp $

Figure 4.1: All of Bargello and Oodle.
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4.2.2 Motivation

Throughout the Bargello library, a number of complex creational patterns are
used and as a result, it is very easy to create a memory leak. For example,
the �le system classes have a \create node" method which creates a new object
and returns a pointer to it. When should that object be deleted? It could be
stored as part of another object, so it should be deleted when that object goes
out of scope, or used temporarily, in which case it should be deleted as soon as
possible.

The problem boils down to a question of ownership: When does a pointer
own it's contents? If it does, then it should delete it when it goes out of scope.

4.2.3 Solution

The MagicPointer class is one solution. Each instance of it contains a pointer
and a 
ag indicating whether or not the object is responsible for deleting its
contents (the \pointee") when it goes out of scope.

template<class Type>

class MagicPointer

{

public:

MagicPointer( Type * pointee = 0, bool owns = true );

MagicPointer( MagicPointer<Type> & );

~MagicPointer( void );

void Destroy( void );

MagicPointer<Type> & operator=( MagicPointer<Type> & );

MagicPointer<Type> & operator=( Type * pointee );

Type & operator*( void ) const;

Type * operator->( void ) const;

MagicPointer<Type> & SetOwnership( bool flag );

MagicPointer<Type> & PointTo( Type * pointee,

bool owns = true );

bool Owns( void ) const;

Type * Pointee( void ) const;

bool IsNull( void ) const;

};

Instances of this class look very much like pointers thanks to the overloaded *

and -> operators. The magic part comes from the fact that when a MagicPointer
goes out of scope, it �rst checks to see if it owns its pointee. If it does, it deletes
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it. Since this class represents a substitute for dumb pointers, it is an instance
of the Proxy design pattern. zProxy, 207

This has several advantages. For instance, if we have a class that must
store something by pointer, we can use a MagicPointer for the data member
instead of a dumb pointer and a simple member-wise destructor supplied by the
compiler takes care of deleting it automatically.

If we call MakeIterator on a data structure, we can store the returned
pointer in a MagicPointer and it will be deleted automatically.

The tricky thing about MagicPointers is their copy semantics. When one
is copied, ownership of the pointee is transferred to the copy. This is so that
MagicPointers may be passed by value to other functions.

A word of warning: This class will not solve all your memory management
problems. For example, if a MagicPointer is copied and the copy goes out of
scope before the original does, then the original points into oblivion and your
program will most likely crash if you try to use it.

A copy constructor and assignment operator are provided which work on
const objects (not shown in listing). This is a necessary evil because many
container classes require just such member functions. The MagicPointer copy
semantics require that ownership be transferred to the copy so the implemen-
tations of these functions must cast away the const of their argument and call
SetOwnership(). This action is usually harmless, but if you use this class, you
should be aware of it.

This class is very similar to the auto ptr class, which is probably going to
be included in the Standard Template Library. For a good discussion of the
smart pointer idiom in C++, see [3].

4.3 Encapsulating actions

4.3.1 Intent

To encapsulate actions and the means of passing them the information they
need.

4.3.2 Motivation and reformulation

Many activities in a program are event-driven. That is, the program is sup-
posed to perform some action when a particular condition arises. Parsing and
interpreting user input are often event-driven, and so are network connections,
simulations, and lots of other things.

There are two ways in general of coding an event-handling program. One
is to write a loop that checks for each possible event and performs an action
based on a chain of logic. The trouble is that objects which have to handle a lot
of events get to be very di�cult to code, and adding or moving event-handling
code around becomes a maintenance nightmare.
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A better way would be to encapsulate the action somehow and use a more
intelligent means of storing and �nding it, such as a hash table, or a Chain of
Responsibility pattern. Often, just a direct reference will do, i.e. a button that
knows what to do when pressed.

In particular, we want to be able to do the following things:

� Add an inde�nite amount of functionality to an object.

� Reference any data the action needs without resorting to global variables
or anything similar.

� Be able to pass parameters to the action.

4.3.3 Solutions from other languages and libraries

As a note to the reader, many of the code examples in this section contain

abbreviations, such as shortened or slightly altered names, missing details, and

occasionally omitted syntax. This is because the examples span a wide range of

languages and libraries, and most readers will not be familiar with all of them.

Rather than obscure the example with a lot of hard-to-explain details, I have

sacri�ced exact correctness in favor of clarity and consistency.

In many interpreted languages, it's possible to pass pieces of code around
using what's known as a code block, bound method, closure, or callback, de-
pending on what language we're using. Suppose for instance that we have a
GUI toolkit and we want to cause our program to exit when someone presses
the \quit" button. What we'd like to do in general is store some code in a
variable somehow and have the button execute it when pressed. The program
quitting operation is simply an example. So, suppose we have a Button class
with a \when-pressed" method of some kind that takes a bit of code and stores
it away, to be executed when the button is pressed. Suppose also that we've
decided to write a subclass of Button called QuitButton which mostly consists
of an initialization function that installs our little bit of code. We must also
have an Application class which includes an Exit() member function.

Here's what it might look like in Python:

class QuitButton(Button):

def initialize(self):

self.setLabel( "Quit" )

self.whenPressed( self.quit )

return self

def quit(self):

self.application.exit()

or in Smalltalk:
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Button subclass: #QuitButton

instanceVariableNames: 'myApplication'

...

!QuitButton methodsFor: 'initialization'!

initialize: app

myApplication := app.

self setLabel: 'Quit'.

self whenPressed: [myApplication exit].

^self

!!

Here's the same sort of thing in Perl:

use Button;

package QuitButton;

@ISA = ( 'Button' );

sub initialize {

my ($self, $app) = @_;

$self->{application} = $app;

$self->setLabel( "Quit" );

$self->whenPressed( sub { $self->{application}->exit(); } );

return $self;

}

What's really great about these interpreted languages is that the code blocks
come with a sort of \context." In the Smalltalk and Perl examples, the code
block is eventually executed elsewhere, but runs as if it were still inside the
object method. So, the code blocks can access all the data in the object, and
any local variables in the particular code where they were created. In Python,
the notation variable.method(...) executes a method, but variable.method
creates a copy of the method that is bound to the object stored in variable.
When it's executed later, it magically uses the object it's bound to for self.2

In other languages, we have to use some other, clumsier method to ensure that
the code block can access the information it needs.

In C, the only way to pass code around is with a function pointer, often
called a \callback," which might look something like this (assuming we're using
some object oriented GUI library such as the X toolkit):

2All this stu� about closures and scoping can be really mind-boggling when you just read

it. Something that helps is to look at the examples above and �gure out what has to happen

for them to work.



26 CHAPTER 4. AFTER

void QuitButtonInitialize( Object * self, Application * app )

{

Set( self, WIN_WHEN_PRESSED_CALLBACK, qbquit );

Set( self, MY_APPLICATION, app );

}

void qbquit( Object * self )

{

Application * app;

app = (Application*) Get( self, MY_APPLICATION );

AppClose( app );

}

Any information the \callback" function needs, such as the application, must
be stored in the object itself, which in C tends to be a tangle of function calls
and casting. There is no type checking going on (everything has to be in terms
of void *'s). Despite the syntactical nightmare, exactly the same thing is
accomplished as in the other examples.

What gets to be a problem is that not all C toolkits are object oriented.
For example, the C library for Windows requires the programmer to assign a
number to each event, then bind a callback to the number. When the callback
is executed, it's passed a generalized pointer that must be decoded, which is
bug prone and hard to do.

An improvement is a C++ wrapper framework around the underlying C
library, such as Borland's Object Windows Library (OWL). OWL still uses
the numbering mechanism, but it's almost invisible and most of the custom
functionality is de�ned by subclassing and overriding a virtual function, rather
than with a function pointer. This particular approach is a sort of Template
Method, since the hard work is factored out in the superclass. Here's a pseudo-zTemplate Method, 325

OWL subclass that works this way:

class QuitButton : public Button

{

private:

Application & myApp;

protected:

DECLARE_CALLBACK_TABLE; // a macro

public:

QuitButton( Application & app ) : myApp( app )

{ SetLabel( "Quit" ); }

// Override the ``when pressed'' function

virtual void WhenPressed( void ) { myApp.Exit(); }
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};

BEGIN_CALLBACK_TABLE(QuitButton) // more macros

BIND( BUTTON_PRESS_EVENT, WhenPressed )

END_CALLBACK_TABLE;

Alternatively, the Qt library de�nes some additions to the C++ language
called signals and slots. Source code must pass through the Qt \meta-object
compiler" which translates the additional keywords into regular C++. When a
signal function is executed, all the slot functions it has been connected to are
called. In this library, we can attach a response directly to the function that
creates it:

class QuitButton : public Button

{

private:

Application & myApp;

public slots:

void Quit( void ) { myApp.Exit(); }

QuitButton( Application & app ) : myApp( app )

{

SetLabel( "Quit" );

Connect( SIGNAL( void ButtonPressed(void) ),

SLOT( *this, void Quit(void) ) );

}

};

main()

{

Application app;

QuitButton quitButton( app );

}

The slot does not have to be in the same class as the signal. We could in fact
do something like this:

class Application

{

public slots:

void Exit( void );

};

main()

{
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Application app;

Button quitButton;

quitButton.SetLabel( "Quit" );

quitButton.Connect( SIGNAL( void ButtonPressed(void) ),

SLOT( app, void Exit(void) ) );

}

Java does not provide for any sort of code block or even function pointers,
but just about the same thing can be accomplished with a \Callback" interface
de�ning a single member function. (We replace a function call based on a pointer
with a virtual method.) So, we can write a callback class, and pass it to the
button, like so:

interface Callback

{

public void execute();

}

class QuitMe implements Callback

{

private Application myApp;

public QuitMe( Application app )

{

myApp = app;

}

public void execute()

{

myApp.exit();

}

}

class QuitButton extends Button

{

public QuitButton( Application app )

{

myApp = app;

setLabel( "Quit" );

whenPressed( new QuitMe( myApp ) );

}

}

main()

{
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Application app = new Application;

QuitButton quitButton = new QuitButton( app );

}

Java 1.1 provides a simple but strange-looking feature called inner classes
that makes callbacks easier to write. Inner classes are de�ned inside of regular
class de�nitions, and their instances are magically attached to an instance of
the class they are inside. Furthermore, they have access to the private and
protected members of the outer class.

class QuitButton extends Button

{

private Application myApp;

class QuitMe implements Callback

{

public void execute()

{

myApp.exit(); // Calls exit() through the implicit

// reference to the outer object.

// Same as:

// QuitButton.this.myApp.exit();

}

}

public QuitButton( Application app )

{

myApp = app;

setLabel( "Quit" );

whenPressed( new QuitMe );

}

}

main()

{

Application app = new Application;

QuitButton quitButton = new QuitButton( app );

}

As an alternative, the application class can contain the QuitMe inner class and
provide a Factory method for constructing one. Then, whoever creates the
button will have to bind the callback to the event:

class Application

{

class QuitMe implements Callback
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{

void execute()

{

exit(); // called on outer class

}

}

Callback createQuitCallback()

{

return new QuitMe;

}

...

}

main()

{

Application app = new Application;

Button quitButton( "Quit" );

quitButton.whenPressed( app.createQuitCallback() );

}

The actual AWT uses a number of di�erent callback interfaces, called \lis-
teners," but this example illustrates the general idea.

4.3.4 Implementation

The solution used in Bargello is similar to the �rst Java example and follows the
Command design pattern. C++ doesn't have any sort of code block or closure,zCommand, 233

so we have no choice but to use a class. C++ has no inner class concept, but
that's really just a convenience in Java and not vital to how the pattern works.

To begin with, there is the Command class:

class Command

{

public:

virtual void Execute( void ) = 0;

};

Simple enough. This corresponds to the Callback interface in the Java example.
Additionally, we have:

template<class Type>

class ArgCommand

{

public:
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virtual void Execute( Type & arg ) = 0;

};

which is just a command object whose execution requires an argument. The
trick now is to use Commands and ArgCommand<Type>'s throughout the rest of
Bargello. For example, the command line parsing framework makes extensive
use of commands.

4.3.5 Consequences

This particular solution causes a proliferation of classes. That is, each individual
action has to be in its own class. That many classes can cause serious namespace
pollution. A way around that is to use nested classes (not the same thing as
inner classes) to hide the names of command classes inside the larger class that
uses them.

On the other hand, functionality encapsulated in a command is not tied
to any particular other large object and can easily be revised, exchanged for
another command at run time, or used multiple times. For example, a quit
button and a quit menu item could easily use the same command object, or at
least instances of the same class to do their work. GUI toolkits which require us
to subclass graphical components to customize their actions require additional
design complexity. In the example, the QuitButton would have to know about
Applications to be a separate subclass. If instead we hide that additional
knowledge in a Command subclass, the button and application are decoupled,
and there is no need to write a subclass of Button. Furthermore, there is no
need to repeat the quitting code in a button class and a menu class and a hot-key
class. . . .

One of the most powerful uses of commands is to implement undoable opera-
tions. In this case, the abstract command interface might have Do() and Undo()

members. When a command is \done," it registers itself with a command list.
We can undo the commands which have been executed so far by traversing the
list in reverse and calling Undo() on each object. Additionally, we can redo the
undone commands by going back the other way. . . .

Command objects can be implemented as Singletons, which is especially zSingleton, 127

useful if they are shared.
Simple Factories can be thought of as special purpose commands with a zFactory, 87

function parallel to the Execute() function which creates an object of some
kind.

4.4 Parsing the command line

4.4.1 Intent

Provide a 
xeible and powerful tool for parsing command lines, but to aslo
include a means of making simple parsomg easy to do.
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4.4.2 Formulation of the problem

In C++, a program is passed a list of strings typed on the command line through
the arguments to main(). They are used to give it simple instructions and
modify its behavior. Parsing the command line is often di�cult because it's
most convenient for the user to be able to enter 
ags and options in a fairly free
format: 
ags can come in any order, any number of �le names can be present,
and so. The general pattern considered here is as follows:

� A special character at the beginning of a string, usually \-" or \/", indi-
cates that it's a 
ag or option.

� A 
ag is a single string whose presence tells the program to take a certain
action. For example, -v often puts a program into some sort of \verbose
mode."

� An option is a string which considers the following string to be an argu-
ment. For example, -o filename usually means for the program to send
its output to the given �le instead of the default.

� Other strings are called \trailing strings" since they usually come at the
end of the command line (but not always). They are often processed as a
list of some kind.

� The special option -- means the next string is a trailing string. This is
important in case you want your program to deal with a �le which happens
to being with -.3

We can write a general parser which simply iterates over the strings and
tests each to see if it's a 
ag, option, or trailing string, then selects some action
from a table, and executes it. To be useful, we'll have to customize such a
general-purpose parser in similar ways all the time. It makes sense to go ahead
and provide that functionality in the library.

We will often want to interpret some command line strings as numerical
values, as in -depth 5. So, the ability to process options with arguments of
type int or double would make the parser more useful. Often, we simply want
to assign a value to a variable, so we may as well factor out that code and put
it in the library, too.

4.4.3 Cathedral pattern

One problemwith library design is how to deal with excessive complexity. Often,
a general purpose framework makes it easy to do di�cult tasks: The hard work
has already been done, and all we have to do is slide some custom objects into
the gaps. However, many suck packages are complex and we have to read a lot
of documentation to �gure out they work. In the end, simple tasks are often as
di�cult to do as more complex ones. For example, in the Java 1.0 AWT, it was

3On UNIX, try removing a �le named -o and you'll see why this is needed.
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very easy to fetch a large picture �le from a slow network connection while the
rest of the program continued to work. When it was �nished, it would sound
an alarm, so to speak, and the program could use the image. However, simpler
things like creating an image based on binary data, or reading one from a local
�le without using the alarm mechanism, were surprizingly di�cult.

One way around this is to provide cathedral shaped frameworks. Imagine
a gothic cathedral: The majority of the structure consists of large stones and
buttresses, but there are lots of tiny details and decorations on top of them.
We can apply the same principle of putting small components on top of large
components in library design. At the heart is some very general, but possi-
bly hard to use means of solving a problem. Implemented on top of that are
successive layers of less general but more immediately useful functions. The
framework then becomes a collection of small, manageable pieces, with larger,
more 
exible features available if they're needed.

4.4.4 Implementation of the command line parser

Custom operations are handled by the Command pattern, desribed in section zCommand, 233

4.3. Commands are represented by objects that have an Execute() member
function which performs an action. Simple commands which take no arguments
implement the interface de�ned by class Command. Those which take a single
argument are subclasses of ArgCommand<Type>.

Class CommandLine encapsulates the parsing code. It contains a map from

ag names to their associated Commands, and a map from option names to their
associated ArgCommand<string>'s.

The classes and their relationships are illustrated in �gure 4.2.

Most of the real work is done by these two functions4 which constititue the
lowest layer:

class CommandLine

{

...

public:

CommandLine & Flag( const string & name,

const string & helpMessage,

MagicPointer<Command> command );

CommandLine & Option( const string & name,

const string & helpMessage,

MagicPointer< ArgCommand<string> > command );

...

};

4Many of the functions in class CommandLine return *this so they may be chain called, as

in parser.Flag(...).Flag(...)....
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Figure 4.2: The command line parser and some of its helper classes. The dot-
ted lines in class CommandLine separate the member functions into layers, as
described in the text.
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These bind a command object to a 
ag or option name. The parser also con-
tains a help message which accumulates all the little messages for each 
ag or
option. Notice that since the data structure is implemented in terms of classes
Command and ArgCommand<string>, it is not possible to directly process a nu-
merical argument to an option at this stage. Instead, we must write a special
ArgCommand<string> class whose execute function converts its string argument
to an int or double, then does something numerical with it.

Since converting an option's argument to a number is such a common task,
it makes sense for it to be simple in the framework. So, we provide special
ConversionArgCommand<From,To>'s which handle the conversion, then call an
ArgCommand<To>. Note that these inherit from ArgCommand<From>, so we can
instantiate conversion commands from strings to ints or doubles, and in-
sert them into the table with the �rst-layer Option function described above.
Rather than require programmers using the library to do all that construction
themselves, we add the following additional versions of Option() which do it
automatically:

class CommandLine

{

...

public:

CommandLine & Option( const string & name,

const string & helpMessage,

MagicPointer< ArgCommand<int> > command );

CommandLine & Option( const string & name,

const string & helpMessage,

MagicPointer< ArgCommand<double> > command );

...

}

Many times, all we want to do is assign the argument of an option to a
variable. That's quite doable with something like AssignArgCommand<Type>,
which is constructed with a reference to a variable and whose Execute() func-
tion assigns a new value to that variable. Again, rather than make applications
programmers write their own ArgCommands, we can put them in the library and
add three more versions of Option(). Class AssignBoolCommand �lls in a simi-
lar role for boolean variables which are assigned based on the presence of 
ags.
The interface to the parser now includes these methods:

class CommandLine

{

...

public:

CommandLine & Flag( const string & name,
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const string & helpMessage,

bool & var,

bool newValue );

CommandLine & Option( const string & name,

const string & helpMessage,

int & var );

CommandLine & Option( const string & name,

const string & helpMessage,

double & var );

CommandLine & Option( const string & name,

const string & helpMessage,

string & var );

...

}

The third layer consists of just one additional convenience function. All the
functions so far include a help-string parameter. To print that out, we could
create a PrintHelpAndExitCommand and attach it to a 
ag like -h, but since
every program should at least be able to print out a command line help message,
we may as well automate this, too:

class CommandLine

{

...

public:

CommandLine & HelpFlag( const string & name );

...

};

Again, this function simply builds on the underlying abilities of class CommandLine.

4.5 Managing limited resources

4.5.1 Intent

To make a limited resource appear unlimited and save a lot of headaches.

4.5.2 Motivation

There is a small but di�cult to solve problem that shows up in the most ag-
gravating situations and adds complexity to what should be simple tasks: A
program in UNIX is only allowed to have a �xed number of �le handles open at
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any one time. File handles are not just for �les. Directory traversal, standard
input and output, and many other i/o operations require �le handles.

A similar problem exists in many graphical user interface libraries: There
can be no more than a handful of fonts available at once, for example.

Sometimes the same sort of problem appears in what would seem an entirely
di�erent situation: Only one operation can be performed on a hard drive or
modem at once. These details become important when writing an operating
system.

The problem here is that some sort of cricial resource is only available in
limitied quantities and our programs must be able to operate when it runs out.

4.5.3 Generalization of the problem

All instances of a resource can be either open (in use) or closed (not in use).
The limit is on the number of resources in use. The general problem here is to
encapsulate the resource in such a way as to make it appear unlimited.

It's possible to connect all instances of a particular resource (�le handles,
GUI devices, etc.) so that when a new one is needed, but the supply has run
out, another open instance can be temporarily closed to make room to open the
new one.

4.5.4 Implementation

See �gure 4.3 for the class structure of the resource framework. Every instance
of a resource class must refer to a ResourceRegistry, which in turn refers to
several objects which are open. When a resource object is opened, it informs its
registry via the Add() function before attempting to acquire the resource. The
registry keeps up with which resources are open in order of frequency of use.
If needed, it closes the least frequently used resource before returning from the
Add() method.

Whenever the resource object is told to perform some operation, such as the
iteration methods in class DirectoryStream, the object �rst calls Open() to
ensure that it's opened, then performs whatever operation it needs.

4.5.5 Writing concrete resource subclasses

A number of things are implemented by class ResourceUser which make sub-
classes easier to write. These are instances of the Template Method pattern, zTemplate Method, 325

that is, member functions wihc do their work in terms of abstract functions
which must be supplied by a concrete subclass.

� The ResourceUser class, when constructed in the initializer list of a sub-
class, must be given a registry. A reference to it is stored automatically.
It's often a singleton which is a private, static data member of the subclass.
For example:
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Figure 4.3: The Bargello resource framework
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FileHandleUser::FileHandleUser( void )

: ResourceUser( ourRegistry )

{

...

}

� ResourceUser implements Open() and Close() in terms of three abstract
functions:

{ PrimitiveInitialize() is called only the �rst time the resource is
opened. Unless you override it, it simply calls PrimitiveOpen().

{ PrimitiveOpen() should acquire the resource and return it to its
previously saved state. It will only be called if the object is currently
closed.

{ PrimitiveClose() should save the state of the resource so it may
be re-opened again later, then release the resource. It will only be
called if the object is currently open.

The Open() and Close() functions automatically deal with the registry.
Calling Open() on an already-opened object is safe and does nothing.
Likewise, calling Close() on an already-closed object is safe and does
nothing.

There is one tricky thing to remember: The destructor in the concrete sub-
class absolutely must call Close(). It makes more sense to call Close() in
the base class destructor; however, there is an obscure technicality in the C++
language which makes this impossible.5

4.5.6 Example

As a speci�c example, consider a DirectoryStream. It has a path name and a
DIR * which points to a black-box directory stream data structure containing
a �le handle. Its state consists of the position in the stream where the next
�le name is to be read. The PrimitiveInitialize() implementation calls
the system function opendir(). The PrimitiveOpen() implementation calls
opendir(), then moves the stream forward to where it left o� when it was
last closed. PrimitiveClose() saves the DIR *'s current location, then calls
closedir() to release the resource.

Since a DIR * internally uses a �le handle, DirectoryStream inherits from
FileHandleUser and registers all of its instances with a static registry in class
FileHandleUser.

5If you're interested, this is what goes wrong. Take a DirectoryStreamobject, for example,

and consider what happens when it goes out of scope. First, the DirectoryStream destructor

is called, then the FileHandleUser destructor, and �nally the ResourceUser destructor. If

the ResourceUser destructor calls Close(), it eventually calls PrimitiveClose(), a virtual

function. The program cannot now do the expected thing and use the de�nition in class

DirectoryStream, because the DirectoryStreampart of the object has already been destroyed.

So, the program crashes.
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4.6 The problem of persistent objects

4.6.1 Intent

A persistent object is one which can be written to and read from a data stream,
such as a �le or network socket. Persistent objects are a good way for pro-
grams to save documents and computed data. The Bargello library includes a
framework which takes some of the dirty work out of persistence.

4.6.2 Motivation

Writing data is usually not di�cult: a few calls to the i/o stream operators and
the job is done. Reading it back in is the hard part. Unless the saved output
is carefully formatted, reading will require a lot of complicated parsing, which
often means code with lots of if-else chains and hard-to-follow 
ow control.

Reading data from a �le when all the objects are basically the same is not
too di�cult. For example, reading in a matrix of real numbers in text format
isn't hard at all. Nor is reading in a list of strings.

What gets tricky is reading and writing objects of di�erent types to the
same stream. For example, a drawing program must save text and polygons
di�erently. Obviously, when reading a saved �le back into memory, it must have
some way of knowing the type of the next object in a data stream, preferably
without a lot of parsing.

4.6.3 Solutions from other languages

Just for comparison, here are some ways the persistence problem has been solved
in other languages and libraries.

In Smalltalk, an interpreted language, classes can de�ne a storeString

method which returns a string representation of the object. In particular, it
must be a bit of Smalltalk code which can be executed to create an object with
the same state as the original. Reading a data stream is then almost the same
as running the interpreter. In C++ this would require creating a custom mini-
language and accompanying interpreter, which can be a lot of work. There are
some programs which save documents as LISP-like instructions or some other
very simple language.

In Java, there is a serialization framework. The ability to save and restore
primitive types is built into the language, and it's possible to store an object
by storing the name and version of its class, and then storing all of its data
members. Restoring it is then almost trivial. All of that functionality is part of
the library. Since C++ classes are not so heavily automated, this method will
not work without some adaptation.

4.6.4 Implementation

The solution used in Bargello is similar to the Java framework, but with di�er-
ences due to the language and some e�orts made to keep the size of the output
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from being too large. See �gure 4.4.
Each concrete persistent class must implement a StoreString() method

which returns a string representation of the object. Restoring the object from a
stream is done using the Factory design pattern. Each persistent class must also
provide a companion factory class which can create an object from its string
representation. The factory is given a unique ID code when it is created. The
factories are usually Singletons and must be created in the same order every
time the program runs so they always get the same ID.6

The PersistentArchive class coordinates factories, objects, and data streams.
To use a PersistentArchive, the program must do several things in a speci�c
order:

� Create all the necessary factories in a �xed order.

� Create the archive itself. It must be given a name, which is used to verify
objects when they are read back in.

� Register the appropriate factories with the archive. When the archive
begins writing, it will list its own name, then all the factories which have
been registered with it. Only objects associated with those factories can
be written to the archive. Again, this is for verifying the data stream's
correctness.

� Write persistent objects to the archive. They are written to the data
stream in the form idcode:length:representation:. So for example,
the integer 761 might appear 107:3:761:.

� Call FinishWriting() on the archive. This writes a sentinel value at the
end.

Reading from a stream requires similar steps. The factories and then the
PersistentArchive object must be created as before, and the factories regis-
tered with the archive. When the archive begins reading, it �rst veri�es that
the name at the head of the input stream matches its own, and that all the
factories listed afterwards match up with the factories it knows about. Reading
objects is just a matter of using the iterator methods of the archive and some
type casting.

Internally, the archive reads each object as follows. First, the ID code is
read in. Then, a factory registered with that ID code is selected. There is now
a counted, delimited string at the front of the input stream. That string is read
in and the selected factory is used to recreate the persistent object. A sentinel
value indicates the end of the �le.

4.6.5 One last unsolved problem

There's one last bit of functionality which is available in Java but not in the
Bargello system. If two objects must both reference a third, the Persistent

6Unique ID codes are generated with a simple class that keeps a counter. Each time a new

ID is needed, it bumps the counter and returns the next number.
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Figure 4.4: The Bargello persistency framework
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framework is of no use for ensuring that the references are intact after the three
are read from a stream. A persistent hash table of some kind might be useful
for solving this problem.

4.7 The �le system abstraction

4.7.1 Intent

The ability to scan through the contents of disk drives and other tree-shaped
collections of �les is generally useful and ought to be encapsulated in a 
exible
and powerful manner. The implementation used in the Bargello library achieves
this through the use of the Visitor pattern and a number of creational patterns.

4.7.2 Motivation

There are three di�erent kinds of �les common to the platforms used by the
Bargello library: plain �les, which simply contain data; directories, also called
folders, which contain a set of �les; and links, also known as aliases and short-
cuts, which refer to another �le. Files which don't �t into one of these categories
will be called \other �les." All �les have a name, a size in bytes, permissions
(readable, writable, or executable), the time of the last change made to them,
and a \real path" which is an absolute path to the �le which doesn't contain
any links.

A �le system is a tree-shaped collection of �les with a root directory and a
current working directory. File systems can fetch information about a �le from
a path name. Relative path names are resolved based on the current directory.
Note that these de�nitions are not restricted to disk drives. FTP sites and
archive �les may be treated like �le systems as well.

Consider the following problems:

� List the contents of a directory in alphabetical order, omitting the . and
.. entries (which mean the current directory and its parent on UNIX and
Windows).

� Recursively list the contents of a directory and all subdirectories within
it, using depth �rst search, breadth �rst search, and in-order traversal.

� Create a snapshot of the state of a disk drive and use it later to locate all
�les which have changed, been added, or deleted since the snapshot was
taken.

� Do the same logging and di�ng for an anonymous FTP site.

� Do the same for a compressed archive (ie. a tar.gz �le, a ZIP �le, or a
Stuffit �le.)

� Locate all �les in a certain directory which are larger than one megabyte
and whose names contain the string \letter."



44 CHAPTER 4. AFTER

All of these tasks are essentially di�erent versions of the same general problem of
\�le visitation," executing actions on some of the �les in some sort of �le system
in a particular order. Since operating systems tend to provide a lot of powerful
functions for dealing with �le systems, it is tempting just to use a bunch of
system calls to perform �le visitations. However, this has the disadvantage of
being very non-portable, and di�erent operating systems make di�erent parts of
the task easy. For example, Windows automates the task of looking at just the
�les whose names match a particular pattern, such as *.txt, but UNIX does
not. One solution is simply to wrap up the operating system calls in some sort
of general-purpose Facade class which can be re-implemented on each platform
in a di�erent way.

There are two problems with that. The �rst is that the resulting class would
be a \god class." For it to be capable of solving the above problems, it would
have to support �ltering, sorting, saving to some kind of data stream, restoring
from a data stream, comparison to another such object, and three di�erent
forms of recursion. That's a lot of functionality for just one class. On top of
that, the entire class must be re-implemented to deal with di�erent kinds of �le
systems, such as FTP sites and archive �les, for which the operating system
doesn't provide helper functions. In short, this solution doesn't save a whole
lot of work and is not reusable.

The second problem is that the class ends up being a mush of loosely related
functions based on ideas borrowed from di�erent libraries: Windows style �lters,
UNIX scandir() functionality, and so on. What should such a class be named?
What abstraction does it represent? Is it di�cult to document, and therefore
di�cult to understand and reuse?

The Bargello solution trades one kind of complexity (a single god class) for a
di�erent kind (a lot of little classes each with certain speci�c capabilities). The
end result is more 
exible and easier to maintain than the god class model.

4.7.3 Reformulation of the problem

Since �le systems are structured like trees, it makes sense to represent them by
a tree-like data structure. See the class diagram in �gure 4.5 and a sketch of an
object hierarchy in �gure 4.6. Files are represented by di�erent kinds of nodes,
all of which inherit from class FileNode. Information about �les usually comes
from the operating system or some other source as a dumb data structure, so
state information about �les is encapsulated by a FileInfo object, one of which
is stored in each �le node.7

Each DirectoryNode has a child node for each �le it contains. They are
available through iteration methods. Note that DirectoryNode::Current()

must return FileNode& because the directory can contain any sort of �les an
arbitrary order. The other node classes PlainFileNode, LinkFileNode, and

7This class could be eliminated by combining it with FileNode. However, it turns out to be

useful to have all the state informationof a �le separate from the node functionality. FileInfo

serves as a sort of Memento class which simpli�es the ShadowFileSystem and construction of

the DiskFileSystem, described elsewhere.
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OtherFileNode represent the non-container �les and make up the leaf nodes of
the tree, that is, those which have no children.

The generalized problem of �le visiting may now be stated more speci�cally:
The library is responsible for providing abstract and concrete �le system pack-
ages, including a means by which application programmers can apply custom
operations to the contents of a �le system. These custom operations must be
able to include operating on a select subset of the contents of a directory in cus-
tomizable order, so any extra functionality which facilitates these sorting and
�ltering operations should be included. also, anything which saves time would
be advantageous, since most physical �le systems are relatively slow.

4.7.4 Visitors

The Visitor pattern is an example of separating the part that changes from the
part that doesn't change. In the generalized �le visiting problem, the structure
of a �le system is not going to change. It will always be a tree with a few
types of �les. The order in which the �les are traversed will change, however, as
will which ones are visited, and what operations are performed on them. The
Visitor pattern consists of a data structure containing di�erent kinds of objects
and a visitor class which encapsulates the operations, and in this case, visitation
order.

Double dispatch

We want to be able to write code which will work on any �le system, so there
must be an abstract framework, and reusable code must be written in terms of
it. But to maintain abstraction, the �le system must deal with many di�erent
kinds of �le nodes, so it must implement just about everything in terms of the
base class FileNode and rely on virtual functions to deal with the speci�cs. The
key to making visitors work is to be able to apply a function to any �le node
based on which speci�c class the �le node belongs to (Plain, Link, Directory,
or Other) and on the class a visitor object belongs to. The trick is called double

dispatch.

Single dispatch means calling one out of many similar functions based on
the type of one object. Not to be confused with overloaded functions, single
dispatch is the idea behind virtual functions. If we declare Gadget * gp it
could point to any object which belongs to class Gadget or any of its subclasses.
If class Gadget includes a function virtual void Open(), then the statement
gp->Open() calls whichever version of the Open function matches the type of the
object pointed to by gp, not the declared type of gp itself. The same selection
mechanism works on references, too.

Double dispatch is a generalization of the same thing: calling one out of
many similar functions based on the types of two objects. It's not directly
supported by C++ or most object oriented languages, but it can be done with
some well-planned object interactions. This is how the Visitor pattern works.
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Figure 4.6: A sketch of the data structure.
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Implementation

A di�erent member function is declared in class FileNodeVisitor for every
di�erent sort of �le:

class FileNodeVisitor

{

...

public:

virtual void VisitPlain( PlainFileNode & ) = 0;

virtual void VisitLink( LinkFileNode & ) = 0;

virtual void VisitOther( OtherFileNode & ) = 0;

virtual void VisitDirectory( DirectoryNode & ) = 0;

...

};

A concrete subclass must implement them. Since there can be any number
of concrete subclasses, there can be any number of di�erent versions of those
operations.

All the di�erent kinds of FileNodes implement a special AcceptVisitor
function which takes a visitor for an argument and simple passes itself as an
argument to one of its type speci�c functions. (This enables the visitor to
\know" which type of node it's dealing with without a cast.):

PlainFileNode::AcceptVisitor( FileNodeVisitor & v )

{

v.VisitPlain( *this );

}

LinkFileNode::AcceptVisitor( FileNodeVisitor & v )

{

v.VisitLink( *this );

}

OtherFileNode::AcceptVisitor( FileNodeVisitor & v )

{

v.VisitOther( *this );

}

DirectoryNode::AcceptVisitor( FileNodeVisitor & v )

{

v.VisitDirectory( *this );

}

Now suppose we have FileNode & fn and FileNodeVisitor & v and we
want to perform a di�erent operation depending on what sort of visitor v refers
to and where fn refers to a plain �le, directory, or link (use double dispatch).
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Since FileNode and FileNodeVisitor cooperate so well, this is done by call-
ing fn.AcceptVisitor( v ). The particular AcceptVisitor function comes
from whatever class fn refers to, and it in turn calls one of the type-speci�c
Visit...() operations on v. The particular version of Visit...() is selected
virtually, depending on the class v refers to.

Recursive traversal

In particular, to implement recursive traversal, the programmer must simply
write a concrete subclass of FileNodeVisitor whose VisitDirectory function
iterates over the �les in the directory and calls AcceptVisitor on some of them,
passing itself as the argument.

4.7.5 A few details about object creation

Nodes for plain �les and links are created by the concrete �le system class itself.
Nodes for directories are a little more complicated.

The DirectoryNode class acts like a container for �le nodes, since it must
provide iteration, sorting, and �ltering functionality. The problem is, where
does it get its contents?

One solution is that it should �ll itself up when it is created. The problem
with that is that most �le systems, such as disk drives and FTP sites, are
relatively slow. If each directory node were �lled upon construction, then the
entire �le hierarchy would have to be read in whenever a �le system was created.
That can take considerable time.

The solution used in Bargello is to provide for lazy initialization. DirectoryNode
has functions not listed in the diagram for adding �le nodes to it, and specifying
that it has been fully constructed. However, if another object starts to iterate
over a DirectoryNode and it has not been �lled yet, the DirectoryNode calls a
set of \primitive iteration" functions to �ll itself before continuing. That is, it
can wait to collect the information until someone needs it. Concrete subclasses
of DirectoryNode must either override the primitive iteration functions, or be
constructed in such a way that they are never called.

The primitive iteration functions are a modi�ed form of the Factory Method
design pattern.

4.7.6 The DiskFileSystem

Since the classes described so far are all abstract, it is necessary to de�ne con-
crete subclasses for a particular type of �le system. The case of a physical
disk �le system is the most obvious. See �gure 4.7 for the DiskFileSystem

framework.
Class DiskFileSystem serves as a �le node Factory. It makes system calls

(through auxiliary classes) which fetch information about �les on disk and uses
that data to create DiskPlainFileNodes and so on. DiskDirectoryNodes also
know which �le system they belong to and use it to create their child nodes on
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Figure 4.7: A physical �le system
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demand, thereby taking advantage of the lazy initializationmechanism provided
in the superclass.

4.7.7 The ShadowFileSystem

In the original formulation of the problems for this section, several of the tasks
included saving information to a data stream for use later on. So, how can that
be done?

One solution is to use make all �le systems persistent (capable of being
written to and read from data streams). The problem with that is that the
DiskFileSystem would have to provide two types of functionality: It would
serve as a Facade and Adaptor by encapsulating operating system calls, and
also as a container for the retrieved information. (It has to contain the data. It
can't write it back to the physical device it came from, and usually that's not
what you want it to do anyway.) The same di�culty would plague an FTP �le
system, or a compressed archive �le system.

A better idea is to have another kind of InformationalFileSystem which
is persistent and serves only to store information about another �le system.
In Bargello, this functionality is provided by class ShadowFileSystem and its
associates.

The class diagram for ShadowFileSystem is very much like the one for
DiskFileSystem, so it isn't repeated. The main di�erences are that the four
kinds of shadow �le nodes and the �le system itself are all persistent, and in
how ShadowFileSystems are created.

There is no way around directly storing all the data required by the �le sys-
tem, unlike the DiskFileSystem which could use lazy initialization and delete
the contents of directories which had already been traversed. So, ShadowFileSystem
has methods for adding information to itself and behaves more like a con-
tainer class. When an instance is initially created, it must be given another
InformationalFileSystem which it will \shadow," or copy data from. To get
the data, a special creation visitor is applied to the other �le system which
traverses it recursively and adds a shadow version of each �le node to the
ShadowFileSystem under construction.

To save time, the entire �le system is not shadowed. Only the directo-
ries needed to construct a path to the current directory, the current direc-
tory, and all �les contained in it (recursively) are shadowed. For example, if
you create a DiskFileSystem dfs and set its current directory to /home/me, a
ShadowFileSystem constructed from it would contain /, /home, /home/me, and
everything inside of home/me, but not /usr or /home/otherguy. If you need to
shadow an entire �le system, just be sure to change to its root directory before
constructing the shadow.

ShadowFileSystems and the companion node classes all utilize Bargello's
persistency framework to save themselves to and restore themselves from data
streams.



52 CHAPTER 4. AFTER

4.8 The remaining Oodle classes

There remains now jus the tast of combining all those library classes into a
program. There are three Oodle speci�c classes, shown in �gure 4.8.

NewListVisitors are created with a �le system which they refer to as a
\master copy." When they visit a �le node, they check to see if it exists in the
master copy. If not, then it is considered new and printed out.

ChangedListVisitor does almost the same thing, but it outputs only those
�les which have a newer date than the corresponding �le in the master copy.

The application class is TextOodleApp. It runs Oodle using a text-only
command line interface. It coordinates the other classes, thereby acting as a
sort of Mediator. Its Log() function creates a DiskFileSystem and a shadow ofzMediator, 273

it, then writes the shadow to a �le. Its Diff() function creates a disk �le system
and reads a shadow �le system from a log �le, then applies several visitors to
generate the output. It creates a NewListVisitor whose master copy is the
shadow and sends it to visit the disk �le system, thereby printing out the �les
which have been created since the last log. It creates another NewListVisitor
whose master copy is the disk �le system and sends it to visit the shadow,
thereby printing out all the �les which have been deleted since the log. Note how
nicely this reversal of viewpoint solves two parts of our problem with minimal
duplicated code. The �nal step is to create a ChangedListVisitor and send it
visiting the disk �le system.

Note that none of these classes does much work. All of that is hidden away
in the library somewhere. If someone got adventurous and write an FTP �le
system or a TAR �le system, it would be very easy to adapt these three classes
to take advantage of it. The interface is tightly woven into all three classes,
but they are so trivial that is't pointless to separate out any more functionality
until we have de�nite plans for a more powerful interface.
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Figure 4.8: The Oodle application design.
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