
Programming > Core Python Programming See All Titles

Front Matter
Table of Contents
About the Author
Examples

Core Python Programming

Wesley J. Chun
Publisher: Prentice Hall PTR

First Edition December 14, 2000
ISBN: 0-13-026036-3, 816 pages

Buy Print Version

● New to Python? This is the developer's guide to Python development!

● Learn the core features of Python as well as advanced topics such as
regular expressions, multithreaded programming, Web/Internet and
network development, GUI development with Tk(inter) and more

● Also includes features found in the new Python 1.6 and 2.0 releases

● CD-ROM: Complete Python distributions (source code, documentation,
and various binaries) plus all example scripts in the book

Python is an Internet and systems programming language that is soaring in
popularity in today's fast-paced software development environment, and no
wonder: it's simple (yet robust), object-oriented (yet can be used as a procedural
language), extensible, scalable and features an easy to learn syntax that is clear and
concise. Python combines the power of a compiled object language like Java and
C++ with the ease of use and rapid development time of a scripting language. In
fact, its syntax is so easy to understand that you are more likely to pick it up faster
than any of the other popular scripting languages in use today!

In Core Python Programming, Internet software engineer and technical trainer
Wesley Chun provides intermediate and experienced developers all they need to
know to learn Python-fast. Like all Core Series books, Core Python Programming
delivers hundreds of industrial-strength code snippets and examples, all targeted at
professional developers who want to leverage their existing skills! In particular,
Core Python Programming presents numerous interactive examples that can be
entered into the Python interpreter right in front of you! Finally, we present a
chapter that shows you step-by-step how to extend Python using C or C++.

● Python syntax and style

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
http://beta.informit.com/safari/author_bio.asp?ISBN=0130260363
http://beta.informit.com/safari/examples/0130260363
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/printed.asp?editor=informit&mode=add&locale=en-US-INFM02&CF__AUX_STORE_FRONT=IT&sku=0130260363&ofrurl=http%3A%2F%2Fsafari%2Eoreilly%2Ecom%2Fmain%2Easp

● Development and Run-time Environments

● Objects and Python memory management

● Standard data types, methods, and operators

● Loops and conditionals

● Files and Input/Output

● Exceptions and error handling

● Functions, scope, arguments, and functional programming

● Importing modules and module attributes

● Object-oriented Programming with classes, methods, and instances

● Callable Objects

● Extending Python

Coverage of the Python standard module library and client-server application
development includes comprehensive introductions to the following topics in
Python programming:

● Regular expressions

● TCP/IP and UDP/IP Network programming using sockets

● Operating system interface

● GUI development with Tk using Tkinter

● Multithreaded programming

● Interactive Web/CGI/Internet applications

● Executing code in a restricted environment

● Inheritance, type emulation, operator overloading, and delegation in an
OOP environment

Finally, we provide an introduction to the new features introduced in Python 1.6.

These include Unicode string support, the new function invocation syntax which
lets the caller provide a tuple of positional arguments and/or a dictionary of
keyword arguments, and the new string methods. We also provide a glimpse into
features that will only be found in the newer 2.0 release.

Every Core Series book:

● DEMONSTRATES how to write commercial-quality code

● FEATURES dozens of programs and examples!

● FOCUSES on the features and functions most important to real developers

● PROVIDES objective, unbiased coverage of cutting-edge technologies-no

● hype!

Core Python Programming delivers:

● Coverage of the core parts of the Python language

● Real-world insights for developing Web/Internet, network, multithreaded
and GUI applications

● Tables and charts detailing Python modules, built-in functions, operators,
and attributes

● Code snippets to try live with Python's interactive interpreter, hammering
the concepts home

● Extensive code examples-including several complete sample applications

CD-ROM includes complete Python source code and documentation distributions
for Unix/Linux along with binaries for Windows and Macintosh platforms plus
source code for all examples in the book.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > Welcome to Python! See All Titles

 Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240241051211042040087237072065031

Welcome to Python!
Welcome to the wonderful world of Python! As a professional or student with working knowledge of
another high-level programming language, this text was made for you in your efforts to jump straight
into Python with as little overhead as possible. The goal of this book is to provide text that flows in a
conversational style littered with examples to highlight your path towards Python programming.

At the time of publication, Python 2.0 was just released, so you will definitely have the latest and
greatest. The supplementary CD-ROM has the three most recent versions of Python: 1.5.2, 1.6, and 2.0,
not to mention the most recent release of the Java version of the Python interpreter, JPython (a.k.a.
Jython).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

 Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=2
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+8%3A59%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=2&now=5%2F29%2F2002+8%3A59%3A00+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=2

<= Return to book index

Welcome to Python!
 Style:Technical, Yet Easy Reading
 Author's Experience with Python
 Book Contents
 Part I : Core Python
 Chapter 1 —Welcome to Python!
 Chapter 2 —Getting Started
 Chapter 3 —Syntax and Style
 Chapter 4 —Python Objects
 Chapter 5 —Numbers
 Chapter 6 —Sequences: Strings, Lists, and Tuples
 Chapter 7 —Dictionaries
 Chapter 8 —Conditionals and Loops
 Chapter 9 —Files and Input/Output
 Chapter 10 —Errors and Exceptions
 Chapter 11 —Functions
 Chapter 12 —Modules
 Chapter 13 —Classes and OOP
 Chapter 14 —Execution Environment
 Part II : Advanced Topics
 Chapter 15 —Regular Expressions
 Chapter 16 —Network Programming with Sockets
 Chapter 17 —Multithreaded Programming
 Chapter 18 —GUI Programming with Tkinter
 Chapter 19 —Web Programming
 Chapter 20 —Extending Python
 Optional Sections
 Conventions
 Book Support
Acknowledgements
I: CORE PYTHON
1. Welcome to Python!
 What Is Python?
 History of Python
 Features of Python
 Obtaining Python
 Obtaining Python

 Installing Python
 Running Python
 Python Documentation
 Comparing Python
 JPython and Some Nomenclature
 Exercises
2. Getting Started
 Program Output, the print Statement, and "Hello World!"
 Program Input and the raw_input() Built-in Function
 Comments
 Operators
 Variables and Assignment
 Numbers
 Strings
 Lists and Tuples
 Dictionaries
 Code Blocks Use Indentation
 if Statement
 while Loop
 for Loop and the range() Built-in Function
 Files and the open() Built-in Function
 Errors and Exceptions
 Functions
 Classes
 Modules
 Exercises
3. Syntax and Style
 Statements and Syntax
 Variable Assignment
 Identifiers
 Basic Style Guidelines
 Memory Management
 First Python Application
 Exercises
4. Python Objects
 Python Objects
 Standard Types
 Other Built-in Types
 Internal Types

 Standard Type Operators
 Standard Type Built-in Functions
 Categorizing the Standard Types
 Unsupported Types
 Exercises
5. Numbers
 Introduction to Numbers
 Integers
 Floating Point Real Numbers
 Complex Numbers
 Operators
 Built-in Functions
 Related Modules
 Exercises
6. Sequences: Strings, Lists, and Tuples
 Sequences
 Strings
 Strings and Operators
 String-only Operators
 Built-in Functions
 String Built-in Methods
 Special Features of Strings
 Related Modules
 Summary of String Highlights
 Lists
 Operators
 Built-in Functions
 List Type Built-in Methods
 Special Features of Lists
 Tuples
 Tuple Operators and Built-in Functions
 Special Features of Tuples
 Related Modules
 *Shallow and Deep Copies
 Exercises
7. Dictionaries
 Introduction to Dictionaries
 Operators
 Built-in Functions

 Built-in Methods
 Dictionary Keys
 Exercises
8. Conditionals and Loops
 if statement
 else Statement
 elif (a.k.a. else-if) Statement
 while Statement
 for Statement
 break Statement
 continue Statement
 pass Statement
 else Statement… Take Two
 Exercises
9. Files and Input/Output
 File Objects
 File Built-in Function [open()]
 File Built-in Methods
 File Built-in Attributes
 Standard Files
 Command-line Arguments
 File System
 File Execution
 Persistent Storage Modules
 Related Modules
 Exercises
10. Errors And Exceptions
 What Are Exceptions?
 Exceptions in Python
 Detecting and Handling Exceptions
 *Exceptions as Strings
 *Exceptions as Classes
 Raising Exceptions
 Assertions
 Standard Exceptions
 *Creating Exceptions
 Why Exceptions (Now)?
 Why Exceptions at All?
 Exceptions and the sys Module

 Related Modules
 Exercises
11. Functions
 What Are Functions?
 Calling Functions
 Creating Functions
 Passing Functions
 Formal Arguments
 Positional Arguments
 Default Arguments
 Why Default Arguments?
 Default Function Object Argument Example
 Variable-length Arguments
 Non-keyword Variable Arguments (Tuple)
 Keyword Variable Arguments (Dictionary)
 Calling Functions with Variable Argument Objects
 Functional Programming
 Anonymous Functions and lambda
 Built-in Functions: apply(), filter(), map(), reduce()
 * apply()
 Lines 1 - 4
 Lines 6 - 7
 Lines 9 - 28
 Lines 30-41
 filter()
 map()
 reduce()
 Variable Scope
 *Recursion
 Exercises
12. Modules
 What are Modules?
 Modules and Files
 Namespaces
 Importing Modules
 Importing Module Attributes
 Module Built-in Functions
 Packages
 Other Features of Modules

 Exercises
13. Classes and OOP
 Introduction
 Object-oriented Programming
 Classes
 Class Attributes
 Instances
 Instance Attributes
 Binding and Method Invocation
 Composition
 Subclassing and Derivation
 Inheritance
 Built-in Functions for Classes, Instances, and Other Objects
 Type vs. Classes/Instances
 Customizing Classes with Special Methods
 Privacy
 Delegation
 Related Modules and Documentation
 Exercises
14. Execution Environment
 Callable Objects
 Code Objects
 Executable Object Statements and Built-in Functions
 Executing Other (Python) Programs
 Executing Other (Non-Python) Programs
 Restricted Execution
 Terminating Execution
 Related Modules
 Exercises
II: Advanced Topics
15. Regular Expressions
 Introduction/Motivation
 Special Symbols and Characters for REs
 REs and Python
 Regular Expression Adventures
 Exercises
16. Network Programming
 Introduction
 Sockets: Communication Endpoints

 Network Programming in Python
 Related Modules
 Exercises
17. Multithreaded Programming
 Introduction/Motivation
 Threads and Processes
 Threads and Python
 thread Module
 threading Module
 Exercises
18. GUI Programming with Tkinter
 Introduction
 Tkinter and Python Programming
 Tkinter Examples
 Related Modules and Other GUIs
 Exercises
19. Web Programming
 Introduction
 Web Surfing with Python: Creating Simple Web Clients
 Advanced Web Clients
 CGI: Helping Web Servers Process Client Data
 Building CGI Application
 Advanced CGI
 Web (HTTP) Servers
 Related Modules
 Exercises
20. Extending Python
 Introduction/Motivation
 Related Topics
 Exercises
A.
 Answers to Selected Exercises
B.
 Other Reading and References
 Other Printed References
 Online References
C.
 Python Operator Summary
D.

 What's New in Python 2.0?

Programming > Core Python Programming > Welcome to Python! > Style:Technical, Yet
Easy Reading

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240241051211042040086086232239022

Style:Technical, Yet Easy Reading

Rather than strictly a "beginners'" book or a pure, hard-core computer science reference book, my
instructional experience indicates that an easy-to-read, yet technically-oriented book serves our purpose
the best, and that is to get you up-to-speed on Python as quickly as possible, so that you can apply it to
your tasks post haste. We will introduce concepts coupled with appropriate examples to expedite the
learning process. At the end of each chapter you will find numerous exercises to reinforce some of the
concepts and ideas acquired in your reading.

After the obligatory introduction to Python, but before heading to the core of the language, we take a
"quick plunge" into Python with the "Getting Started" chapter. The intention of this chapter is for those
who wish to temporarily dispense of formal reading and get their hands dirty with Python immediately.
If you do not wish to travel this path, you may proceed as normal to the next set of chapters, an
introduction to Python objects. Python's primitive data types, numbers, strings, lists, tuples, and
dictionaries make up the next three chapters.

Python's error-handling capability is extremely useful to both the programmer and the user, and we
address that topic in a separate chapter. Finally, the largest parts of the Python "core" we cover will be
functions, modules, and classes… each in its own chapter. The final chapter of the text provides insight
on how Python may be extended. The last section of the book is a mini-reference guide in the appendix.
There we spill the beans on the core modules of the standard library, highlight the operators and built-
in operators and functions for the Python types, provide solutions to selected exercises, and conclude
with a small glossary of terms.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=3
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+8%3A59%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=3&now=5%2F29%2F2002+8%3A59%3A11+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=3

Programming > Core Python Programming > Welcome to Python! > Author's Experience
with Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240241051211042040085083079010246

Author's Experience with Python

I discovered Python several years ago at a company called Four11. At the time, the company had one
major product, the Four11.com White Page directory service. Python was being used to design the
Rocketmail web-based email service that would eventually one day evolve into what is Yahoo!Mail
today.

In addition to the use of C++, much of the controlling software and web front-end were done
completely in Python. I participated in work done on the Yahoo!Mail address book and spellchecker.
Since then, Python's appearance has spread to other Yahoo! sites, including People Search, Yellow
Pages, and Maps and Driving Directions, just to name a few.

Although Python was new to me at the time, it was fairly easy to pick up; much simpler than other
languages that I have learned in the past. The scarcity of the number of textbooks at the time led me to
primarily use the Library Reference and Quick Reference Guide as my tools in learning, and also led to
the motivation of the book you are reading right now.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=4
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+8%3A59%3A20+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=4&now=5%2F29%2F2002+8%3A59%3A20+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=4

Programming > Core Python Programming > Welcome to Python! > Book Contents See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240241051211042040085090241165238

Book Contents

This book is divided into two main sections. The first part, taking up about two-thirds of the text, gives
you treatment of the "core" part of the language, and the second part provides a set of various advanced
topics to show what you can build using Python.

Python is everywhere—sometimes it is amazing to discover who is using Python and what they are
doing with it—and although we would have loved to produce additional chapters on such topics as
Databases (RDBMSs, SQL, etc.), CGI Processing with HTMLgen, XML, Numerical/Scientific
Processing, Visual and Graphics Image Manipulation, and Zope, there simply wasn't enough time to
develop these topics into their own chapters. However, we are certainly glad that we were at least able
to provide you with a good introduction to many of the key areas of Python development.

Here is a chapter-by-chapter guide:

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=5
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+8%3A59%3A29+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=5&now=5%2F29%2F2002+8%3A59%3A29+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=5

Programming > Core Python Programming > Welcome to Python! > Part I : Core Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240241051211042040084066146110049

Part I: Core Python

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=6
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+8%3A59%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=6&now=5%2F29%2F2002+8%3A59%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=6

Programming > Core Python Programming > Welcome to Python! > Chapter 1 —Welcome
to Python!

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240241051211042040082025050248083

Chapter 1—Welcome to Python!

We begin by introducing Python to you, its history, features, benefits, etc., as well as how to obtain and
install Python on your system.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=7
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+8%3A59%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=7&now=5%2F29%2F2002+8%3A59%3A50+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=7

Programming > Core Python Programming > Welcome to Python! > Chapter 2 —Getting
Started

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173113008251157172131194

Chapter 2—Getting Started

If you are an experienced programmer and just want to see "how it's done" in Python, this is the right
place to go. We introduce the basic Python concepts and statements, and because many of these would
be familiar to you, you would simply learn the proper syntax in Python and can get started right away
on your projects without sacrificing too much reading time.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A00%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=8&now=5%2F29%2F2002+9%3A00%3A02+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=8

Programming > Core Python Programming > Welcome to Python! > Chapter 3 —Syntax
and Style

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173113008250212003156240

Chapter 3—Syntax and Style

This section gives you a good overview of Python's syntax as well as style hints. You will also be
exposed to Python's keywords and its memory management ability. Your first Python application will
be presented at the end of the chapter to give you an idea of what real Python code looks like.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=9
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A00%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=9&now=5%2F29%2F2002+9%3A00%3A13+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=9

Programming > Core Python Programming > Welcome to Python! > Chapter 4 —Python
Objects

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173113008249032058239083

Chapter 4—Python Objects

This chapter introduces Python objects. In addition to generic object attributes, we will show you all of
Python's data types and operators, as well as show you different ways to categorize the standard types.
Built-in functions that apply to most Python objects will also be covered.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=10
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A00%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=10&now=5%2F29%2F2002+9%3A00%3A24+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=10

Programming > Core Python Programming > Welcome to Python! > Chapter 5 —Numbers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173113008248087190254226

Chapter 5—Numbers

Python has four numeric types: regular or "plain" integers, long integers, floating point real numbers,
and complex numbers. You will learn about all four here, as well as the operators and built-in functions
that apply to numbers.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=11
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A00%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=11&now=5%2F29%2F2002+9%3A00%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=11

Programming > Core Python Programming > Welcome to Python! > Chapter 6
—Sequences: Strings, Lists, and Tuples

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173113008255160198169085

Chapter 6—Sequences: Strings, Lists, and Tuples

Your first meaty chapter will expose you to all of Python's powerful sequence types: strings, lists, and
tuples. We will show you all the built-in functions, methods, and special features, which apply to each
type as well as all their operators.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=12
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A00%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=12&now=5%2F29%2F2002+9%3A00%3A48+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=12

Programming > Core Python Programming > Welcome to Python! > Chapter 7
—Dictionaries

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173113008254091048245028

Chapter 7—Dictionaries

Dictionaries are Python's mapping or hashing type. Like other data types, dictionaries also have
operators and applicable built-in functions and methods.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=13
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A00%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=13&now=5%2F29%2F2002+9%3A00%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=13

Programming > Core Python Programming > Welcome to Python! > Chapter 8
—Conditionals and Loops

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173112014001073208044025

Chapter 8—Conditionals and Loops

Like many other high-level languages, Python supports loops such as for and while, as well as if
statements (and related). Python also has a built-in function called range() which enables Python's
for loop to behave more like a traditional counting loop rather than the foreach iterative type loop that it
is.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=14
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A01%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=14&now=5%2F29%2F2002+9%3A01%3A06+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=14

Programming > Core Python Programming > Welcome to Python! > Chapter 9 —Files and
Input/Output

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173112014000141112173250

Chapter 9—Files and Input/Output

In addition to standard file objects and input/output, this chapter introduces you to file system access,
file execution, and persistent storage.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=15
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A01%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=15&now=5%2F29%2F2002+9%3A01%3A18+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=15

Programming > Core Python Programming > Welcome to Python! > Chapter 10 —Errors
and Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173112014002155252131208

Chapter 10—Errors and Exceptions

One of Python's most powerful constructs is its exception handling ability. You can see a full treatment
of it here, instruction on how to raise or throw exceptions, and more importantly, how to create your
own exception classes.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=16
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A01%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=16&now=5%2F29%2F2002+9%3A01%3A34+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=16

Programming > Core Python Programming > Welcome to Python! > Chapter 11
—Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173112014005167212148181

Chapter 11—Functions

Creating and calling functions are relatively straightforward, but Python has many other features that
you will find useful, such as default arguments, named or keyword arguments, variable-length
arguments, and some functional programming constructs. We also dip into variable scope and recursion
briefly.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=17
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A01%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=17&now=5%2F29%2F2002+9%3A01%3A46+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=17

Programming > Core Python Programming > Welcome to Python! > Chapter 12 —Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173112014004160104222139

Chapter 12—Modules

One of Python's key strengths is in its ability to be extended. This feature allows for "plug-n-play"
access as well as promotes code reuse. Applications written as modules can be imported for use by
other Python modules with a single line of code. Furthermore, multiple module software distribution
can be simplified by using packages.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=18
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A01%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=18&now=5%2F29%2F2002+9%3A01%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=18

Programming > Core Python Programming > Welcome to Python! > Chapter 13 —Classes
and OOP

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173115086127201010030020

Chapter 13—Classes and OOP

Python is a fully object-oriented programming language and was designed that way from the
beginning. However, Python does not require you to program in such a manner—you may continue to
develop structural/procedural code as you like, and can transition to "OO" programming anytime you
are ready to take advantage of its benefits. Likewise, this chapter is here to guide you through the
concepts as well as advanced topics, such as operator overloading, customization, and delegation.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=19
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A02%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=19&now=5%2F29%2F2002+9%3A02%3A06+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=19

Programming > Core Python Programming > Welcome to Python! > Chapter 14
—Execution Environment

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173115086126234014253239

Chapter 14—Execution Environment

The term "execution" can mean many different things, from callable and executable objects to running
other programs (Python or otherwise). We discuss these topics in this chapter, as well as limited
restricted execution and different ways of terminating execution.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=20
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A02%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=20&now=5%2F29%2F2002+9%3A02%3A13+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=20

Programming > Core Python Programming > Welcome to Python! > Part II : Advanced
Topics

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173115086125094159171255

Part II: Advanced Topics

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=21
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A02%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=21&now=5%2F29%2F2002+9%3A02%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=21

Programming > Core Python Programming > Welcome to Python! > Chapter 15 —Regular
Expressions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173115086124106123236073

Chapter 15—Regular Expressions

Regular expressions are a powerful tool used for pattern matching, extracting, and search-and-replace
functionality. Learn about them here.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=22
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A02%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=22&now=5%2F29%2F2002+9%3A02%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=22

Programming > Core Python Programming > Welcome to Python! > Chapter 16 —Network
Programming with Sockets

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173115086122131230216171

Chapter 16—Network Programming with Sockets

So many applications today need to be network-oriented. You have to start somewhere. In this chapter,
you will learn to create clients and servers, using TCP/IP and UDP/IP.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=23
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A02%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=23&now=5%2F29%2F2002+9%3A02%3A50+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=23

Programming > Core Python Programming > Welcome to Python! > Chapter 17
—Multithreaded Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173114040175030252011140

Chapter 17—Multithreaded Programming

Multithreaded programming is a powerful way to improve the execution performance of many types of
application. This chapter ends the drought of written documentation on how to do threads in Python by
explaining the concepts and showing you how to correctly build a Python multithreaded application.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=24
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A03%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=24&now=5%2F29%2F2002+9%3A03%3A02+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=24

Programming > Core Python Programming > Welcome to Python! > Chapter 18 —GUI
Programming with Tkinter

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173114040174166163230076

Chapter 18—GUI Programming with Tkinter

Based on the Tk graphical toolkit, Tkinter is Python's default GUI development module. We introduce
Tkinter to you by showing you how to build simple sample GUI applications (say that 10 times, real
fast!). One of the best ways to learn is to copy, and by building on top of some of these applications,
you will be on your way in no time. We conclude the chapter by presenting a more complex example.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=25
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A03%3A12+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=25&now=5%2F29%2F2002+9%3A03%3A12+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=25

Programming > Core Python Programming > Welcome to Python! > Chapter 19 —Web
Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173114040173139065021037

Chapter 19—Web Programming

Web programming using Python takes three main forms… Web clients, Web servers, and the popular
Common Gateway Interface applications which help Web servers deliver dynamically-generated Web
pages. We will cover them all in this chapter: simple and advanced Web clients and CGI applications,
as well as how to build your own Web server.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=26
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A03%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=26&now=5%2F29%2F2002+9%3A03%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=26

Programming > Core Python Programming > Welcome to Python! > Chapter 20
—Extending Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173114040172184173252167

Chapter 20—Extending Python

We mentioned earlier how powerful it is to have the ability to reuse code and extend the language. In
pure Python, these extensions are modules, but you can also develop lower-level code in C, C++, or
Java, and interface those with Python in a seamless fashion. Writing your extensions in a lower-level
programming language gives you added performance and some security (because the source code does
not have to be revealed). This final chapter of the book walks you step-by-step through the extension
building process.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=27
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A03%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=27&now=5%2F29%2F2002+9%3A03%3A35+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=27

Programming > Core Python Programming > Welcome to Python! > Optional Sections See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173114040171236110038199

Optional Sections

Subsections or exercises marked with an asterisk (*) may be skipped due to their advanced or optional
nature. They are usually self-contained segments that can be addressed at another time.

Those of you with enough previous programming knowledge and who have set up their Python
development environments can skip the first two chapters and go straight to Chapter 2—Getting
Started—where you can absorb Python into their system and be off to the races.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=28
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A03%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=28&now=5%2F29%2F2002+9%3A03%3A46+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=28

Programming > Core Python Programming > Welcome to Python! > Conventions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173114040170118177052167

Conventions

Python interpreters are available in both C and Java. To differentiate these two interpreters, the original
implementation written in C is referred to as "CPython" while the native Java implementation is called
"JPython." We would also like to define "Python" as the actual language definition while CPython and
JPython are two interpreters that implement the language. We will refer to "python" as the executable
file name for CPython and "jpython" as the executable file name for JPython.

All program output and source code are in Courier font. Python keywords appear in Courier-
Bold font. Lines of output with three leading greater than signs, >>>, represent the Python interpreter
prompt.

"Core Notes" are highlighted with this logo.

"Core Style" notes are highlighted with this logo.

"Core Module" notes are highlighted with this logo.

New features to Python are highlighted with this logo. The version these features first appeared in
Python is given inside the logo.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=29
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A03%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=29&now=5%2F29%2F2002+9%3A03%3A58+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=29

Programming > Core Python Programming > Welcome to Python! > Book Support See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173117223153108071173227

Book Support

I welcome any and all feedback:the good, the bad, and the ugly. If you have any comments,
suggestions, kudos, complaints, bugs, questions… anything at all, feel free to contact me at
cyberweb_consulting@yahoo.com.

You will find errata and other information at the book's Web site located on the Python Starship:

http://starship.python.net/crew/wesc/cpp/

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=30
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A04%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=30&now=5%2F29%2F2002+9%3A04%3A08+PM
mailto:cyberweb_consulting@yahoo.com
http://starship.python.net/crew/wesc/cpp/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=30

Programming > Core Python Programming > Acknowledgements See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173117223152201138094056

Acknowledgements
The first thanks belongs to Guido van Rossum, without whom this text would not even exist. With
Python, Guido has created a veritable "holy grail" of languages which is an "oh so perfect" tool in so
many fields which involve programming, not to mention being a pleasure to use.

I would also like to express hearty congratulations and a warm thanks to all technical and non-
technical, official and non-official, reviewers involved in this project. Without you, this text would
have never been completed. In no particular order, you are presented in the following table. In
particular, I'd like to recognize Dowson Tong, Dr. Candelaria de Ram, and Jim Ahlstrom for their
numerous nitpicks and helpful comments throughout the entire text (you must be tired of my writing by
now!); Dr. Cay Horstmann, Java guru and editor of Prentice Hall's Core series for his up-front and
targeted remarks.

Thanks goes to my students at UC Santa Cruz Extension, who had to not only endure an incomplete
and buggy version of this text, but also all the homework they endured in my Python programming
courses. Thanks also goes to my Program Assistant, Ezequiel Jaime, who helped coordinate all the
logistics of the C and Python courses; and I can't leave out James P. Prior, who, as the BASIC,
FORTRAN (punch cards!), 6502 Assembly, and Pascal instructor to many of us at Pinole Valley High
School, encouraged us to pick up the art of programming as well as a wry and punishing sense of
humor.

Why am I writing this book? Because my thesis advisors at UC Santa Barbara, Louise Moser and P.
Michael Melliar-Smith, wanted grad students who

Table Team of Technical Reviewers

Name Affiliation (no-spam) E-mail Address
Guido van Rossum creator of Python, PythonLabs guido at python.org
Dowson Tong dtstong at yahoo.com
James C. Ahlstrom Vice President Interet Corp. jim at interet.com
Dr. S. Candelaria de Ram Chief of Research and Technology, Cognizor cognite at zianet.com
Cay S. Horstmann San Jose State University cay at horstmann.com
Michael Santos Green Hills Software michael at alpha.ece.ucsb.edu
Greg Ward gward at python.net

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=32
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A04%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=32&now=5%2F29%2F2002+9%3A04%3A19+PM

Vincent C. Rubino Technical Yahoo!, Yahoo! vcr at yahoo.com
Martijn Faassen faassen at vet.uu.nl
Emile van Sebille emile at fenx.com
Raymond Tsai U. C. San Diego rehmatlh at yahoo.com
Albert L. Anders Principal Engineer Manage.COM aanders at pacbell.net
Fredrik Lundh effbot at telia.com
Cameron Laird Vice President Phaseit, Inc. claird at NeoSoft.com
Fred L. Drake, Jr. fdrake at acm.org
Jeremy Hylton jeremy at alum.mit.edu
Steve Yoshimoto syosh at yahoo.com

could write, and asked to make sure before letting me in the lab. I'm indebted to you both for not only
encouraging your students to work hard and write, but write well.

Thanks to Alan Parsons, Eric Woolfson, Andrew Powell, Ian Bairnson, Stuart Elliott, David Paton, and
the rest of the Project for the many years (including the year it took to write this book!) of listening
pleasure and producing the most intellectual, thought-provoking, and technically sound music to have
ever crossed my ears. I must also thank the many Projectologist Roadkillers for their kind words of
support for my own "project" here.

The entire staff of Prentice Hall PTR, most notably my Acquisitions Editor Mark Taub, Production
Editor Kathleen M. Caren, Managing Editor Lisa Iarkowski, Page Formatter Eileen Clark, as well as
the rest of the staff at PHPTR have been invaluable in helping me put this project together, and
allowing me to join the list of all-star authors of the Core series. Tom Post is the graphic artist behind
some of the cool figures you see in the book. The ugly ones are solely my responsibility.

As I am Macintosh-challenged, I would like to thank Pieter Claerhout for providing the cool
MacPython screen snapshot in the introductory chapter. I would also like to thank Albert Anders, who
provided the inspiration for, as well as being the co-author of, the chapter on multithreaded
programming.

Thanks also goes to Aahz for his multithreaded and direct remarks on the MT chapter (I get it now!), as
well as inspiration for the Crawler in the Web programming chapter, fellow Yahoo! Jeffrey E. F.
Friedl, "regexer-extraordinaire," who gave me valuable feedback for the Regular Expressions chapter,
and Fredrik Lundh, another regex luminary and Tk(inter) expert, for valuable comments and
suggestions for those corresponding chapters. Catriona (Kate) Johnston gave me wonderful newbie
feedback on the Web programming chapter. I'd also like to thank David Ascher (Python expert), Reg
Charney (fearless leader of the Silicon Valley chapter of the Association of C/C++ Users), Chris
Tismer (Python tinkerer), and Jason Stillwell for their helpful comments.

I would also like to thank my family, friends and the Lord above, who have kept me safe and sane
during this crazy period of late nights and abandonment. And finally, I would like give a big thanks to

all those who believed in me (you know who you are!)—I couldn't have done it without you. Those
who didn't… well, you know what you can do! :-)

W. J. Chun

Silicon Valley, CA

(it's not as much a place as it is a state of sanity)

November 2000

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=32

Programming > Core Python Programming > I: CORE PYTHON See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173117223154247166237137

Part I: CORE PYTHON
Last updated on 9/14/2001

Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=34
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A04%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=34&now=5%2F29%2F2002+9%3A04%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=34

Programming > Core Python Programming > 1. Welcome to Python! See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173117223157179165009103

Chapter 1. Welcome to Python!
Chapter Topics

● What is Python, Its History and Features

● Where to Obtain Python

● How to Install and Run Python

● Python Documentation

● Comparing Python

Our introductory chapter provides some background on what Python is, where it came from, and what
some of its "bullet points" are. Once we have stimulated your interest and enthusiasm, we describe how
you can obtain Python and get it up and running on your system. Finally, the exercises at the end of the
chapter will make you comfortable with using Python, both in the interactive interpreter and also in
creating scripts and executing them.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=36
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A04%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=36&now=5%2F29%2F2002+9%3A04%3A44+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=36

Programming > Core Python Programming > 1. Welcome to Python! > What Is Python? See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173117223156168206038106

What Is Python?

Python is an uncomplicated and robust programming language that delivers both the power and
complexity of traditional compiled languages along with the ease-of-use (and then some) of simpler
scripting and interpreted languages. You'll be amazed at how quickly you'll pick up the language as
well as what kind of things you can do with Python, not to mention the things that have already been
done. Your imagination will be the only limit.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=37
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A04%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=37&now=5%2F29%2F2002+9%3A04%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=37

Programming > Core Python Programming > 1. Welcome to Python! > History of Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173116073164220202193020

History of Python

Work on Python began in late 1989 by Guido van Rossum, then at CWI in the Netherlands, and
eventually released for public distribution in early 1991. How did it all begin? Innovative languages are
usually born from one of two motivations: a large well-funded research project or general frustration
due to the lack of tools that were needed at the time to accomplish mundane and/or time-consuming
tasks, many of which could be automated.

At the time, van Rossum was a researcher with considerable language design experience with the
interpreted language ABC, also developed at CWI, but he was unsatisfied with its ability to be
developed into something more. Some of the tools he envisioned were for performing general system
administration tasks, so he also wanted access to the power of system calls that were available through
the Amoeba distributed operating system. Although an Amoeba-specific language was given some
thought, a generalized language made more sense, and late in 1989, the seeds of Python were sown.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=38
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A05%3A03+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=38&now=5%2F29%2F2002+9%3A05%3A03+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=38

Programming > Core Python Programming > 1. Welcome to Python! > Features of Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173116073165195136118104

Features of Python

Although practically a decade in age, Python is still somewhat relatively new to the general software
development industry. We should, however, use caution with our use of the word "relatively," as a few
years seem like decades when developing on "Internet time."

When people ask, "What is Python?" it is difficult to say any one thing. The tendency is to want to blurt
out all the things that you feel Python is in one breath. Python is (fill-in-the-blanks here). Just what are
some of those blanks? For your sanity, we will elucidate on each here… one at a time.

High-level

It seems that with every generation of languages, we move to a higher level. Assembly was a godsend
for those who struggled with machine code, then came FORTRAN, C, and Pascal, all of which took
computing to another plane and created the software development industry. These languages then
evolved into the current compiled systems languages C++ and Java. And further still we climb, with
powerful, system-accessible, interpreted scripting languages like Tcl, Perl, and Python. Each of these
languages has higher-level data structures that reduce the "framework" development time which was
once required. Useful types like Python's lists (resizeable arrays) and dictionaries (hash tables) are built
into the language. Providing these crucial building blocks encourages their use and minimizes
development time as well as code size, resulting in more readable code. Implementing them in C is
complicated and often frustrating due to the necessities of using structures and pointers, not to mention
repetitious if some forms of the same data structures require implementation for every large project.
This initial setup is mitigated somewhat with C++ and its use of templates, but still involves work that
may not be directly related to the application that needs to be developed.

Object-oriented

Object-oriented programming (OOP) adds another dimension to structured and procedural languages
where data and logic are discrete elements of programming. OOP allows for associating specific
behaviors, characteristics, and/or capabilities with the data that they execute on or are representative of.
The object-oriented nature of Python was part of its design from the very beginning. Other OO
scripting languages include SmallTalk, the original Xerox PARC language that started it all, and
Netscape's JavaScript.

Scalable

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=39
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A05%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=39&now=5%2F29%2F2002+9%3A05%3A17+PM

Python is often compared to batch or Unix shell scripting languages. Simple shell scripts handle simple
tasks. They grow (indefinitely) in length, but not truly in depth. There is little code-reusability and you
are confined to small projects with shell scripts. In fact, even small projects may lead to large and
unwieldy scripts. Not so with Python, where you can grow your code from project to project, add other
new or existing Python elements, and reuse code at your whim. Python encourages clean code design,
high-level structure, and "packaging" of multiple components, all of which deliver the flexibility,
consistency, and faster development time required as projects expand in breadth and scope.

The term "scalable" is most often applied to measuring hardware throughput and usually refers to
additional performance when new hardware is added to a system. We would like to differentiate this
comparison with ours here, which tries to inflect the notion that Python provides basic building blocks
on which you can build an application, and as those needs expand and grow, Python's pluggable and
modular architecture allows your project to flourish as well as maintain manageability.

Extensible

As the amount of Python code increases in your project, you may still be able to organize it logically
due to its dual structured and object-oriented programming environments. Or, better yet, you can
separate your code into multiple files, or "modules" and be able to access one module's code and
attributes from another. And what is even better is that Python's syntax for accessing modules is the
same for all modules, whether you access one from the Python standard library or one you created just
a minute ago. Using this feature, you feel like you have just "extended" the language for your own
needs, and you actually have.

The most critical portions of code, perhaps those hotspots that always show up in profile analysis or
areas where performance is absolutely required, are candidates for extensions as well. By "wrapping"
lower-level code with Python interfaces, you can create a "compiled" module. But again, the interface
is exactly the same as for pure Python modules. Access to code and objects occurs in exactly the same
way without any code modification whatsoever. The only thing different about the code now is that you
should notice an improvement in performance. Naturally, it all depends on your application and how
resource-intensive it is. There are times where it is absolutely advantageous to convert application
bottlenecks to compiled code because it will decidedly improve overall performance.

This type of extensibility in a language provides engineers with the flexibility to add-on or customize
their tools to be more productive, and to develop in a shorter period of time. Although this feature is
self-evident in mainstream third-generation languages (3GLs) such as C, C++, and even Java, it is rare
among scripting languages. Other than Python, true extensibility in a current scripting language is
readily available only in the Tool Command Language (TCL). Python extensions can be written in C
and C++ for CPython and in Java for JPython.

Portable

Python is available on a wide variety of platforms (see Section 1.4), which contributes to its

surprisingly rapid growth in today's computing domain. Because Python is written in C, and because of
C's portability, Python is available on practically every type of system with a C compiler and general
operating system interfaces.

Although there are some platform-specific modules, any general Python application written on one
system will run with little or no modification on another. Portability applies across multiple
architectures as well as operating systems.

Easy-to-learn

Python has relatively few keywords, simple structure, and a clearly defined syntax. This allows the
student to pick up the language in a relatively short period of time. There is no extra effort wasted in
learning completely foreign concepts or unfamiliar keywords and syntax. What may perhaps be new to
beginners is the object-oriented nature of Python. Those who are not fully-versed in the ways of object-
oriented programming (OOP) may be apprehensive about jumping straight into Python, but OOP is
neither necessary nor mandatory. Getting started is easy, and you can pick up OOP and use when you
are ready to.

Easy-to-read

Conspicuously absent from the Python syntax are the usual symbols found in other languages for
accessing variables, code block definition, and pattern-matching. These include: dollar signs ($),
semicolons (;), tildes (~), etc. Without all these distractions, Python code is much more clearly
defined and visible to the eyes. In addition, much to many programmers' dismay (and relief), Python
does not give as much flexibility to write obfuscated code as compared to other languages, making it
easier for others to understand your code faster and vice versa. Being easy-to-read usually leads to a
language's being easy-to-learn, as we described above. We would even venture to claim that Python
code is fairly understandable, even to a reader who has never seen a single line of Python before. Take
a look at the examples in the next chapter, Getting Started, and let us know how well you fare.

Easy-to-maintain

Maintaining source code is part of the software development lifecycle. Your software is permanent
until it is replaced or obsoleted, and in the meantime, it is more likely that your code will outlive you in
your current position. Much of Python's success is that source code is fairly easy-to-maintain,
dependent, of course, on size and complexity. However, this conclusion is not difficult to draw given
that Python is easy-to-learn and easy-to-read. Another motivating advantage of Python is that upon
reviewing a script you wrote six months ago, you are less likely to get lost or require pulling out a
reference book to get reacquainted with your software.

Robust

Nothing is more powerful than allowing a programmer to recognize error conditions and provide a

software handler when such errors occur. Python provides "safe and sane" exits on errors, allowing the
programmer to be in the driver's seat. When Python exits due to fatal errors, a complete stack trace is
available, providing an indication of where and how the error occurred. Python errors generate
"exceptions," and the stack trace will indicate the name and type of exception that took place. Python
also provides the programmer with the ability to recognize exceptions and take appropriate action, if
necessary. These "exception handlers" can be written to take specific courses of action when exceptions
arise, either defusing the problem, redirecting program flow, or taking clean-up or other maintenance
measures before shutting down the application gracefully. In either case, the debugging part of the
development cycle is reduced considerably due to Python's ability to help pinpoint the problem faster
rather than just being on the hunt alone. Python's robustness is beneficial for both the software designer
as well as for the user. There is also some accountability when certain errors occur which are not
handled properly. The stack trace which is generated as a result of an error reveals not only the type
and location of the error, but also in which module the erroneous code resides.

Effective as a Rapid Prototyping Tool

We've mentioned before how Python is easy-to-learn and easy-to-read. But, you say, so is a language
like BASIC. What more can Python do? Unlike self-contained and less flexible languages, Python has
so many different interfaces to other systems that it is powerful enough in features and robust enough
that entire systems can be prototyped completely in Python. Obviously, the same systems can be
completed in traditional compiled languages, but Python's simplicity of engineering allows us to do the
same thing and still be home in time for supper. Also, numerous external libraries have already been
developed for Python, so whatever your application is, someone may have traveled down that road
before. All you need to do is plug-'n'-play (some assembly required, as usual). Some of these libraries
include: networking, Internet/Web/CGI, graphics and graphical user interface (GUI) development
(Tkinter), imaging (PIL), numerical computation and analysis (NumPy), database access, hypertext
(HTML, XML, SGML, etc.), operating system extensions, audio/visual, programming tools, and many
others.

A Memory Manager

The biggest pitfall with programming in C or C++ is that the responsibility of memory management is
in the hands of the developer. Even if the application has very little to do with memory access, memory
modification, and memory management, the programmer must still perform those duties, in addition to
the original task at hand. This places an unnecessary burden and responsibility upon the developer and
often provides an extended distraction.

Because memory management is performed by the Python interpreter, the application developer is able
to steer clear of memory issues and focus on the immediate goal of just creating the application that
was planned in the first place. This lead to fewer bugs, a more robust application, and shorter overall
development time.

Interpreted and (Byte-) Compiled

Python is classified as an interpreted language, meaning that compile-time is no longer a factor during
development. Traditionally purely interpreted languages are almost always slower than compiled
languages because execution does not take place in a system's native binary language. However, like
Java, Python is actually byte-compiled, resulting in an intermediate form closer to machine language.
This improves Python's performance, yet allows it to retain all the advantages of interpreted languages.

NOTE

Python source files typically end with the .py extension. The source is byte-compiled upon being
loaded by the interpreter or by being byte-compiled explicitly. Depending on how you invoke the
interpreter, it may leave behind byte-compiled files with a .pyc or .pyo extension. You can find
out more about file extensions in Chapter 12, Modules.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=39

Programming > Core Python Programming > 1. Welcome to Python! > Obtaining Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173116073166109245037037

Obtaining Python

As we alluded to earlier in Section 1.3.5, Python is available on a wide variety of platforms:

● Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX, et al.)

● Win 9x/NT/2000 (Windows 32-bit systems)

● Macintosh (PPC, 68K)

● OS/2

● DOS (multiple versions)

● Windows 3.x

● PalmOS

● Windows CE

● Acorn/RISC OS

● BeOS

● Amiga

● VMS/OpenVMS

● QNX

● VxWorks

● Psion

There are currently three contemporary versions of Python today. 1.5.2 is the most stable version,
having been released over a year and a half ago. Python 1.6, recently made available to the public in

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=40
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A05%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=40&now=5%2F29%2F2002+9%3A05%3A28+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/39#5.html

early September 2000 introduces several major new features and improvements over the 1.5 series.
However, 1.6 is seen as more of a transition to the new Python 2.0, which was released in mid-October
2000. Which version should you use? The answer is based on your needs and expectations.

If you don't need all the fancy new features, but do desire rock solid stability, code which is backwards-
compatible with the older releases (and cohabitating with existing Python installations), and is available
on the greatest number of platforms, 1.5.2 is the obvious choice.

For all new projects, those without backwards dependence on older versions or Python, and those either
wanting or needing to take advantage of the most crucial new features such as Unicode support, not to
mention wanting to have access to the latest and greatest, cutting edge Python technology, you should
start with 2.0.

1.6 is an alternative for those migrating from 1.5.2 to 2.0 who need a migration path, but is otherwise
not recommended since it was only the most current version of Python by slightly over a month's time.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=40

Programming > Core Python Programming > 1. Welcome to Python! > Obtaining Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173116073160168180073231

Obtaining Python

For the most up-to-date and current source code, binaries, documentation, news, etc., check either the main Python language
site or the PythonLabs Web site:

 http://www.python.org (community home
page)
http://www.pythonlabs.com (commercial home page)

If you do not have access to the Internet readily available, all three versions (source code and binaries) are available on the
CD-ROM in the back of the book. The CD-ROM also features the complete online documentation sets viewable via offline
browsing or as archive files which can be installed on hard disk. All of the code samples in the book are there as well as the
Online Resources appendix section (featured as the Python "hotlist").

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=41
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A05%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=41&now=5%2F29%2F2002+9%3A05%3A40+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=41

Programming > Core Python Programming > 1. Welcome to Python! > Installing Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173116073160160126010177

Installing Python

Platforms with ready-to-install binaries require only the file download and initiation of the installation
application. If a binary distribution is not available for your platform, you need to obtain and compile
the source code manually. This is not as bad an option as it may seem at first. Manually building your
own binaries offers the most flexibility.

You can choose what features to put into your interpreter and which to leave out. The smaller your
executable, the faster it will load and run. For example, on Unix systems, you may wish to install the
GNU readline module. This allows you to scroll back through Python commands and use Emacs-
or vi-like key bindings to scroll through, access, and perhaps edit previous commands. Other popular
options include incorporating Tkinter so that you can build GUI applications or the threading library to
create multi-threaded applications. All of the options we described can be added by editing the
Modules/Setup file found in your source distribution.

In general, these are the steps when building your own Python interpreter:

● download and extract files, customizing build files (if applicable)

● run ./configure script

● make

● make install

Python is usually installed in a standard location so that you can find it rather easily. On Unix
machines, the executable is usually installed in /usr/local/bin while the libraries are in
/usr/local/lib/python1.x where the 1.x is the version of Python you are using.

On DOS and Windows, you will usually find Python installed in C:\Python or C:\Program
Files\Python. Since DOS does not support long names like "Program Files," it is usually aliased
as "Progra~1," so if you are in a DOS window in a Windows system, you will have to use the short
name to get to Python. The standard library files are typically installed in C:\Program
Files\Python\Lib.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=42
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A05%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=42&now=5%2F29%2F2002+9%3A05%3A48+PM

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=42

Programming > Core Python Programming > 1. Welcome to Python! > Running Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173116073161083155232226

Running Python

There are three different ways to start Python. The simplest way is by starting the interpreter interactively,
entering one line of Python at a time for execution. Another way to start Python is by running a script
written in Python. This is accomplished by invoking the interpreter on your script application. Finally, you
can run from a graphical user interface (GUI) from within an integrated development environment (IDE).
IDEs typically feature additional tools such as debuggers and text editors.

Interactive Interpreter from the Command-line

You can enter Python and start coding right away in the interactive interpreter by starting it from the
command line. You can do this from Unix, DOS, or any other system which provides you a command-line
interpreter or shell window. One of the best ways to start learning Python is to run the interpreter
interactively. Interactive mode is also very useful later on when you want to experiment with specific
features of Python.

Unix

To access Python, you will need to type in the full pathname to its location unless you have added the
directory where Python resides to your search path. Common places where Python is installed include
/usr/bin and /usr/local/bin.

We recommend that you add Python (i.e., the executable file python, or jpython if you wish to use the
Java version of the interpreter) to your search path because you do not want to have to type in the full
pathname every time you wish to run interactively. Once this is accomplished, you can start the interpreter
with just its name.

To add Python to your search path, simply check your login start-up scripts and look for a set of directories
given to the set path or PATH= directive. Adding the full path to where your Python interpreter is
located is all you have to do, followed by refreshing your shell's path variable. Now at the Unix prompt (%
or $, depending on your shell), you can start the interpreter just by invoking the name python (or
jpython), as in the following:

% python

Once Python has started, you'll see the interpreter startup message indicating version and platform and be
given the interpreter prompt ">>>" to enter Python commands. Figure1-1 is a screen shot of what Python
looks like when you start it in a Unix environment:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=43
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A05%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=43&now=5%2F29%2F2002+9%3A05%3A55+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/43#3.html

Figure 1-1. Starting Python in a Unix (Solaris) Window

DOS

To add Python to your search path, you need to edit the C:\autoexec.bat file and add the full path to
where your interpreter is installed. It is usually either C:\Python or C:\Program Files \Python
(or its short DOS name equivalent C:\Progra~1\Python). From a DOS window (either really running
in DOS or started from Windows), the command to start Python is the same as Unix, python. The only
difference is the prompt, which is C:\>.

C:> python

Figure 1-2. Starting Python in a DOS Window

Command-line Options

When starting Python from the command-line, additional options may be provided to the interpreter. Here
are some of the options to choose from:

-d provide debug output
-O generate optimized bytecode (resulting in .pyo files)
-S do not run import site to look for Python paths on startup
-v verbose output (detailed trace on import statements)
-X disable class-based built-in exceptions (just use strings); obsolete starting with version 1.6
-c cmd run Python script sent in as cmd string
file run Python script from given file (see below)

As a Script from the Command-line

From Unix, DOS, or any other version with a command-line interface, a Python script can be executed by
invoking the interpreter on your application, as in the following:

C:\>
 python script.py
unix%
 python script.py

Most Python scripts end with a file extension of .py, as indicated above.

It is also possible in Unix to automatically launch the Python interpreter without explicitly invoking it from
the command-line. If you are using any Unix-flavored system, you can use the shell-launching ("sh-bang")
first line of your program:

#!/usr/local/bin/python

The "file path," i.e., the part that follows the "#!," is the full path location of the Python interpreter. As we
mentioned before, it is usually installed in /usr/local/bin or /usr/bin. If not, be sure to get the
exact pathname correct so that you can run your Python scripts. Pathnames that are not correct will result in
the familiar "Command not found" error message.

As a preferred alternative, many Unix systems have a command named env, either installed in /bin or
/usr/bin, that will look for the Python interpreter in your path. If you have env, your startup line can be
changed to something like this:

#!/usr/bin/env python

env is useful when you either do not know exactly where the Python executable is located, or if it changes
location often, yet still remains available via your directory path. Once you add the proper startup directive
to the beginning of your script, it becomes directly executable, and when invoked, loads the Python
interpreter first, then runs your script. As we mentioned before, Python no longer has to be invoked
explicitly from the command. You only need the script name:

unix%
 script.py

Be sure the file permission mode allows execution first. There should be an 'rwx' flag for the user in the
long listing of your file. Check with your system administrator if you require help in finding where Python
is installed or if you need help with file permissions or the chmod (CHange MODe) command.

DOS does not support the auto-launching mechanism; however, Windows does provide a "file type"
interface. This interface allows Windows to recognize file types based on extension names and to invoke a
program to "handle" files of predetermined types. For example, if you install Python with PythonWin (see
below), double-clicking on a Python script with the .py extension will invoke Python or PythonWin IDE
(if you have it installed) to run your script.

In an Integrated Development Environment

You can run Python from a graphical user interface (GUI) environment as well. All you need is a GUI
application on your system that supports Python. If you have found one, chances are that it is also an IDE
(integrated development environment). IDEs are more than just graphical interfaces. They typically have
source code editors and trace and debugging facilities.

Unix

IDLE is the very first Unix IDE for Python. It was also developed by Guido and made its debut in Python
1.5.2. IDLE either stands for IDE with a raised "L," as in Integrated DeveLopment Environment.
Suspiciously, IDLE also happens to be the name of a Monty Python troupe member. Hmmm…. IDLE is
Tkinter-based, thus requiring you to have Tcl/Tk installed on your system. Current versions of Python
include a distributed minimal subset of the Tcl/Tk library so that a full install is no longer required.

You will find the idle executable in the Tools subdirectory with the source distribution. The Tk toolkit
also exists on Windows, so IDLE is also available on that platform and on the Macintosh as well. A screen
shot of IDLE in Unix appears in Figure1-3.

Figure 1-3. Starting IDLE in Unix

Windows

PythonWin is the first Windows interface for Python and is an IDE with a GUI. Included with the
PythonWin distribution are a Windows API, COM (Component Object Model, a.k.a. OLE [Object Linking

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/43#10.html

and Embedding] and ActiveX) extensions. PythonWin itself was written to the MFC

(Microsoft Foundation Class) libraries, and it can be used as a development environment to create your
own Windows applications.

PythonWin is usually installed in the same directory as Python, in its own subdirectory, C:\Program
Files\Python\Pythonwin as the executable pythonwin.exe. PythonWin features a color editor,
a new and improved debugger, interactive shell window, COM extensions, and more. A screen snapshot of
the PythonWin IDE running on a Windows machine appears in Figure1-4.

Figure 1-4. PythonWin Environment in Windows

More documentation from the installed software can be found by firing up your web browser and pointing
it to the following location (or wherever your PythonWin is installed):

file://C:/Program Files/Python/Pythonwin/readme.html

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/43#12.html

As we mentioned before, IDLE is also available on the Windows platform, due to the portability of Tcl/Tk
and Python/Tkinter. It looks similar to its Unix counterpart (Figure1-5).

Figure 1-5. Starting IDLE in Windows

From Windows, IDLE can be found in the Tools\idle subdirectory of where your Python interpreter is
found, usually C:\Program Files \Python\Tools\idle. To start IDLE from a DOS window,
invoke idle.py. You can also invoke idle.py from a Windows environment, but that starts an
unnecessary DOS window. Instead, double-click on idle.pyw.

Macintosh

The Macintosh effort of Python is called MacPython and also available from the main website,
downloadable as either MacBinary or BinHex'd files. Python source code is available as a Stuff-It archive.
This distribution contains all the software you need to run Python on either the PowerPC or Motorola 68K
architectures. MacPython includes an IDE, the numerical Python (NumPy) module, and various graphics
modules, and the Tk windowing toolkit comes with the package, so IDLE will work on the Mac as well.
Figure1-6 shows what the MacPython environment looks like. Presented in the figure below are a text
window open to edit a Python script as well as a Python "shell" running the interpreter:

Figure 1-6. Running the IDE in MacPython

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/43#13.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/43#15.html

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=43

Programming > Core Python Programming > 1. Welcome to Python! > Python
Documentation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173119023244247020099015

Python Documentation

Most of the documentation that you need with Python can be found on the CD-ROM or the main
website. Documentation is available for download in printable format or as hypertext HTML files for
online (or offline) viewing.

If you download the Windows version of Python, the HTML documentation comes with the
distribution as an install option. Be sure to leave the "Help Files" box checked if you would like to
install the HTML files in your Python directory. Once the installation is complete, you may then access
the Python documentation through your web browser by pointing to the link below or wherever your
interpreter is installed:

file://C:/Program Files/Python/Doc/index.html

Also see the Appendix for an exhaustive list of both printed and online documentation for Python.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=44
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A06%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=44&now=5%2F29%2F2002+9%3A06%3A45+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=44

Programming > Core Python Programming > 1. Welcome to Python! > Comparing Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173119023245199011052152

Comparing Python

Python has been compared with many languages. One reason is that it provides many features found in
other languages. Another reason is that Python itself is derived from many other languages, including
ABC, Modula-3, C, C++, Algol-68, SmallTalk, and Unix shell and other scripting languages, to name a
few. Python is a virtual "greatest hits" where van Rossum combined the features he admired most in the
other languages he had studied and brought them together for our programming sanity.

However, more often than not, since Python is an interpreted language, you will find that most of the
comparisons are with Perl, Java, Tcl, and JavaScript. Perl is another scripting language which goes well
beyond the realm of the standard shell scripts. Like Python, Perl gives you the power of a full
programming language as well as system call access.

Perl's greatest strength is in its string pattern matching ability, providing an extremely powerful regular
expression matching engine. This has pushed Perl to become the de facto language for string text
stream filtering, recognition, and extraction, and it is still the most popular language for developing
Internet applications through web servers' Common Gateway Interface (CGI). However, Perl's obscure
and overly-symbolic syntax is much more difficult to decipher, resulting in a steep learning curve that
inhibits the beginner, frustrating those for whom grasping concepts is impeded by semantics. This,
coupled with Perl's "feature" of providing many ways of accomplishing the same task, introduces
inconsistency and factionization of developers. Finally, all too often the reference book is required
reading to decipher a Perl script which was written just a mere quarter ago.

Python is often compared to Java because of their similar object-oriented nature and syntax. Java's
syntax, although much simpler than C++'s, can still be fairly cumbersome, especially if you want to
perform just a small task. Python's simplicity offers a much more rapid development environment that
using just pure Java. One major evolution in Python's relationship with Java is the development of
JPython, a Python interpreter written completely in Java. It is now possible to run Python programs
with only the presence of a Java VM (virtual machine). We will mention more of JPython's advantages
briefly in the following section, but for now we can tell you that in the JPython scripting environment,
you can manipulate Java objects, Java can interact with Python objects, and you have access to your
normal Java class libraries as if Java has always been part of the Python environment.

Tcl is another scripting language that bears some similarities to Python. Tcl is one of the first truly easy-
to-use scripting languages providing the programmer extensibility as well as system call access. Tcl is
still popular today and perhaps somewhat more restrictive (due to its limited types) than Python, but it
shares Python's ability to extend past its original design. More importantly, Tcl is often used with its

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=45
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A06%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=45&now=5%2F29%2F2002+9%3A06%3A57+PM

graphical toolkit partner, Tk, in developing graphical user interface (GUI) applications. Due to its
popularity, Tk has been ported to Perl (Perl/Tk) and Python (Tkinter).

Python has some light functional programming (FP) constructs which likens it to languages such as
Lisp or Scheme. However, it should be noted that Python is not considered an FP language; therefore, it
does provide much more than what you see.

Of all the languages most often compared to Python, JavaScript bears the most resemblance. It is the
most similar syntax-wise as well as also being object-oriented. Any proficient JavaScript programmer
will find that picking up Python requires little or no effort. Python provides execution outside the web
browser environment as well as the ability to interact with system calls and perform general system
tasks commonly handled by shell scripts.

You can access a number of comparisons between Python and other languages at:

http://www.python.org/doc/Comparisons.html

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

http://www.python.org/doc/comparisons.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=45

Programming > Core Python Programming > 1. Welcome to Python! > JPython and Some
Nomenclature

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173118092012152162137081

JPython and Some Nomenclature

As we mentioned in the previous section, a Python interpreter completely (re)written in Java called
JPython is currently available. Although there are still minor differences between both interpreters,
they are very similar and provide a comparable startup environment.

What are the advantages of JPython? JPython…

● Can run (almost) anywhere a Java Virtual Machine (JVM) can be found

● Provides access to Java packages and class libraries

● Furnishes a scripting environment for Java development

● Enables ease-of-testing for Java class libraries

● Matches object-oriented programming environments

● Delivers JavaBeans property and introspection ability

● Encourages Python-to-Java development (and vice versa)

● Gives GUI developers access to Java AWT/Swing libraries

● Utilizes Java's native garbage collector (so CPython's was not implemented)

A full treatment of JPython is beyond the scope of this text, but there is a good amount of information
online. JPython is still an ongoing development project, so keep an eye out for new features.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=46
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A07%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=46&now=5%2F29%2F2002+9%3A07%3A08+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=46

Programming > Core Python Programming > 1. Welcome to Python! > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173118092013151098099180

Exercises

1-1. Installing Python. Download the Python software or load it from the CD-ROM, and install
it on your system.

1-2. Executing Python. How many different ways are there to run Python?

1-3. Python Standard Library.

1. (a) Find where the Python executables and standard library modules are installed on your
system.

2. (b) Take a look at some of the standard library files, for example, string.py. It will
help you get acclimated to looking at Python scripts.

1-4. Interactive Execution. Start the Python interactive interpreter. You can invoke it by
typing in its full pathname or just its name (python or python.exe) if you
haveinstalled its location in your search path. (You can alsouse the Python interpreter
compiled in Java [jpython or jpython.exe] if you wish.) The startup screen
should look like the ones depicted in this chapter. When you see the ">>>," that
means the interpreter is ready to accept your Python commands.

Try entering the command for the famous Hello World! program by typing print "Hello
World!," then exit the interpreter. On Unix systems, Ctrl-D will send the EOF signal to
terminate the Python interpreter, and on DOS systems, the keypress is Ctrl-Z. Exiting from
windows in graphical user environments like the Macintosh, PythonWin or IDLE on Windows,
or IDLE on Unix can be accomplished by simply closing their respective windows.

1-5. Scripting. As a follow-up to Exercise 1–4, create "Hello World!" as a Python script that
does exactly the same thing as the interactive exercise above. If you are using the Unix system,
try setting up the automatic startup line so that you can run the program without invoking the
Python interpreter.

1-6. Scripting. Create a script that displays your name, age, favorite color, and a bit about you
(background, interests, hobbies, etc.) to the screen using the print statement.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=47
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A07%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=47&now=5%2F29%2F2002+9%3A07%3A16+PM

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=47

Programming > Core Python Programming > 2. Getting Started See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173118092014153175052143

Chapter 2. Getting Started
Chapter Topics

● Program Input/Output

● Comments

● Operators

● Variables

● Python Types

● Indentation

● Conditionals

● Loops

● Files

● Errors

● Functions

● Classes

● Modules

This "quick start" section is intended to "flash" Python to you so that any constructs recognized from
previous programming experience can be used for your immediate needs. The details will be spelled
out in succeeding chapters, but a high-level tour is one fast and easy way to get you into Python and
show you what it has to offer. The best way to follow along is to bring up the Python interpreter in
front of you and try some of these examples, and at the same time you can experiment on your own.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=49
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A07%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=49&now=5%2F29%2F2002+9%3A07%3A24+PM

We introduced how to start up the Python interpreter in Chapter 1 as well as in the exercises (problem 1-
4). In all interactive examples, you will see the Python primary (>>>) and secondary (…) prompts.
The primary prompt is a way for the interpreter to let you know that it is expecting the next Python
statement while the secondary prompt indicates that the interpreter is waiting for additional input to
complete the current statement.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=49

Programming > Core Python Programming > 2. Getting Started > Program Output, the
print Statement, and "Hello World!"

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173118092015158081143008

Program Output, the print Statement, and "Hello World!"

Veterans to software development will no doubt be ready to take a look at the famous "Hello World!"
program, typically the first program that a programmer experiences when exposed to a new language.
There is no exception here.

>>> print 'Hello World!'
Hello World!

The print statement is used to display output to the screen. Those of you who are familiar with C are
aware that the printf() function produces screen output. Many shell script languages use the echo
command for program output.

NOTE

Usually when you want to see the contents of a variable, you use the print statement in your
code. However, from within the interactive interpreter, you can use the print statement to give
you the string representation of a variable, or just dump the variable raw—this is accomplished by
simply giving the name of the variable.

In the following example, we assign a string variable, then use print to display its contents.
Following that, we issue just the variable name.

>>> myString = 'Hello World!'
>>> print myString
Hello World!
>>> myString
'Hello World!'

Notice how just giving only the name reveals quotation marks around the string. The reason for this

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=50
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A07%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=50&now=5%2F29%2F2002+9%3A07%3A37+PM

is to allow objects other than strings to be displayed in the same manner as this string —being able
to display a printable string representation of any object, not just strings. The quotes are there to
indicate that the object whose value you just dumped to the display is a string.

One final introductory note: The print statement, paired with the string format operator (%),
behaves even more like C's printf() function:

>>> print "%s is number %d!" % ("Python", 1)

See Section 6.4 for more information on the string format and other operators.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=50

Programming > Core Python Programming > 2. Getting Started > Program Input and the
raw_input() Built-in Function

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173118092008038004069168

Program Input and the raw_input() Built-in Function

The easiest way to obtain user input from the command-line is with the raw_input() built-in
function. It reads from standard input and assigns the string value to the variable you designate. You
can use the int() built-in function (Python versions older than 1.5 will have to use the
string.atoi() function) to convert any numeric input string to an integer representation.

>>> user = raw_input('Enter login name: ')
Enter login name: root
>>> print 'Your login is:', user
Your login is: root

The above example was strictly for text input. A numeric string input (with conversion to a real integer)
example follows below:

>>> num = raw_input('Now enter a number: ')
Now enter a number: 1024
>>> print 'Doubling your number: %d' % (int(num) * 2)
Doubling your number: 2048

The int() function converts the string num to an integer, which is the reason why we need to use the
%d (indicates integer) with the string format operator. See Section 6.5.3 for more information in the
raw_input() built-in function.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=51
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A07%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=51&now=5%2F29%2F2002+9%3A07%3A49+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/105#6.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=51

Programming > Core Python Programming > 2. Getting Started > Comments See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173118092009208060066067

Comments

As with most scripting and Unix-shell languages, the hash/pound (#) sign signals that a comment
begins right from the # and continues till the end of the line.

>>> # one comment
>>> print 'Hello World!' # another comment
Hello World!

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=52
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A07%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=52&now=5%2F29%2F2002+9%3A07%3A58+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=52

Programming > Core Python Programming > 2. Getting Started > Operators See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173121140154121222194214

Operators

The standard mathematical operators that you are familiar with work the same way in Python as in
most other languages.

+ - * / % **

Addition, subtraction, multiplication, division, and modulus/remainder are all part of the standard set of
operators. In addition, Python provides an exponentiation operator, the double star/asterisk (**).
Although we are emphasizing the mathematical nature of these operators, please note that some of
these operators are overloaded for use with other data types as well, for example, strings and lists.

>>> print -2 * 4 + 3 ** 2
1

As you can see from above, all operator priorities are what you expect: + and - at the bottom, followed
by *, /, and %, then comes the unary + and -, and finally, ** at the top. (3 ** 2 is calculated
first, followed by -2 * 4, then both results are summed together.)

NOTE

Although the example in the print statement is a valid mathematical statement, with Python's
hierarchical rules dictating the order in which operations are applied, adhering to good
programming style means properly placing parentheses to indicate visually the grouping you have
intended (see exercises). Anyone maintaining your code will thank you, and you will thank you.

Python also provides the standard comparison operators:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=53
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A08%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=53&now=5%2F29%2F2002+9%3A08%3A09+PM

< <= > >= == != <>

Trying out some of the comparison operators we get:

>>> 2 < 4
1
>>> 2 == 4
0
>>> 2 > 4
0
>>> 6.2 <= 6
0
>>> 6.2 <= 6.2
1
>>> 6.2 <= 6.20001
1

Python currently supports two "not equals" comparison operators, != and <>. These are the C-style
and ABC/Pascal-style notations. The latter is slowly being phased out, so we recommend against its
use.

Python also provides the expression conjunction operators:

 and
 or
 not

Using these operators along with grouping parentheses, we can "chain" some of our comparisons
together:

>>> (2 < 4) and (2 == 4)
0
>>> (2 > 4) or (2 < 4)
1
>>> not (6.2 <= 6)

1
>>> 3 < 4 < 5

The last example is an expression that maybe invalid in other languages, but in Python it is really a
short way of saying:

>>> (3 < 4) and (4 < 5)

You can find out more about Python operators in Section 4.5of the text.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=53

Programming > Core Python Programming > 2. Getting Started > Variables and
Assignment

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173121140155231113219150

Variables and Assignment

Rules for variables in Python are the same as they are in most other high-level languages: They are
simply identifier names with an alphabetic first character—"alphabetic" meaning upper- or lowercase
letters, including the underscore (_). Any additional characters may be alphanumeric or underscore.
Python is case-sensitive, meaning that the identifier "cAsE" is different from "CaSe."

Python is dynamically-typed, meaning that no pre-declaration of a variable or its type is necessary. The
type (and value) are initialized on assignment. Assignments are performed using the equals sign.

>>> counter = 0
>>> miles = 1000.0
>>> name = 'Bob'
>>> counter = counter + 1
>>> kilometers = 1.609 * miles
>>> print '%f miles is the same as %f km' % (miles, kilometers)
1000.000000 miles is the same as 1609.000000 km

We have presented five examples of variable assignment. The first is an integer assignment followed
by one each for floating point numbers, one for strings, an increment statement for integers, and finally,
a floating point operation and assignment.

As you will discover in Chapter 3, the equals sign (=) was formerly the sole assignment operator in
Python. However, beginning with 2.0, the equals sign can be combined with an arithmetic operation
and the resulting value reassigned to the existing variable. Known as augmented assignment,
statements such as:

n = n * 10

can now be written as:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=54
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A08%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=54&now=5%2F29%2F2002+9%3A08%3A18+PM

n *= 10

Python does not support operators such as n++ or --n.

The print statement at the end shows off the string format operator (%) again. Each "%x" code
matches the type of the argument to be printed. We have seen %s (for strings) and %d (for integers)
earlier in this chapter. Now we are introduced to %f (for floating point values). See Section 6.4 for
more information on the string format operator.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=54

Programming > Core Python Programming > 2. Getting Started > Numbers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173121140153174186079071

Numbers

Python supports four different numerical types:

● int (signed integers)

● long (long integers [can also be represented in octal and hexadecimal])

● float (floating point real values)

● complex (complex numbers)

Here are some examples:

int 0101 84 -237 0x80 017 -680 -0X92
long 29979062458L -

84140l
0xDECADEDEADBEEFBADFEEDDEAL

float 3.14159 4.2E-10 -90. 6.022e23 -1.609E-
19

complex 6.23+1.5j -1.23-875J 0+1j 9.80665-
8.31441J

-
.0224+0j

Numeric types of interest are the Python long and complex types. Python long integers should not be
confused with C long s. Python longs have a capacity that surpasses any C long. You are limited
only by the amount of (virtual) memory in your system as far as range is concerned. If you are familiar
with Java, a Python long is similar to numbers of the BigInteger class type.

Complex numbers (numbers which involve the square root of -1, so called "imaginary" numbers) are
not supported in many languages and perhaps are implemented only as classes in others.

All numeric types are covered in Chapter 5.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=55
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A08%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=55&now=5%2F29%2F2002+9%3A08%3A30+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=55

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 2. Getting Started > Strings See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173121140158211222162177

Strings

Strings in Python are identified as a contiguous set of characters in between quotation marks. Python
allows for either pairs of single or double quotes. Subsets of strings can be taken using the slice
operator ([] and [:]) with indexes starting at 0 in the beginning of the string and working their way
from -1 at the end. The plus (+) sign is the string concatenation operator, and the asterisk (*) is the
repetition operator. Here are some examples of strings and string usage:

>>> pystr = 'Python'
>>> iscool = 'is cool!'
>>> pystr[0]
'P'
>>> pystr[2:5]
'tho'
>>> iscool[:2]
'is'
>>> iscool[3:]
'cool!'
>>> iscool[-1]
'!'
>>> pystr + iscool
'Pythonis cool!'
>>> pystr + ' ' + iscool
'Python is cool!'
>>> pystr * 2
'PythonPython'
>>> '-' * 20
'--------------------'

You can learn more about strings in Chapter 6.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=56
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A08%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=56&now=5%2F29%2F2002+9%3A08%3A40+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=56

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 2. Getting Started > Lists and Tuples See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173121140158218204228117

Lists and Tuples

Lists and tuples can be thought of as generic "buckets" with which to hold an arbitrary number of
arbitrary Python objects. The items are ordered and accessed via index offsets, similar to arrays, except
that lists and tuples can store different types of objects.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]), and their
elements and size can be changed, while tuples are enclosed in parentheses (()) and cannot be
updated. Tuples can be thought of for now as "read-only" lists. Subsets can be taken with the slice
operator ([] and [:]) in the same manner as strings.

>>> aList = [1, 2, 3, 4]
>>> aList
[1, 2, 3, 4]
>>> aList[0]
1
>>> aList[2:]
[3, 4]
>>> aList[:3]
[1, 2, 3]
>>> aList[1] = 5
>>> aLlist
[1, 5, 3, 4]

Slice access to a tuple is similar, except for being able to set a value (as in aList[1] = 5 above).

>>> aTuple = ('robots', 77, 93, 'try')
>>> aTuple
('robots', 77, 93, 'try')
>>> aTuple[0]
'robots'
>>> aTuple[2:]
(93, 'try')
>>> aTuple[:3]

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=57
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A08%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=57&now=5%2F29%2F2002+9%3A08%3A49+PM

('robots', 77, 93)
>>> aTuple[1] = 5
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: object doesn\qt support item assignment

We encountered an error in our last example because we attempted to update a tuple, which is not
allowed. You can find out a lot more about lists and tuples along with strings in Chapter 6.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=57

Programming > Core Python Programming > 2. Getting Started > Dictionaries See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173120061001052039252028

Dictionaries

Dictionaries are Python's hash table type. They work like associative arrays or hashes found in Perl and
consist of key-value pairs. Keys can be almost any Python type, but are usually numbers or strings.
Values, on the other hand, can be any arbitrary Python object. Dictionaries are enclosed by curly braces
({ }).

>>> aDict = {}
>>> aDict['host'] = 'earth'
>>> aDict['port'] = 80
>>> aDict
{'host': 'earth', 'port': 80}
>>> aDict.keys()
['host', 'port']
>>> aDict['host']
'earth'

Dictionaries are covered in Chapter 7.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=58
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A09%3A01+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=58&now=5%2F29%2F2002+9%3A09%3A01+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=58

Programming > Core Python Programming > 2. Getting Started > Code Blocks Use
Indentation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173120061001061129114134

Code Blocks Use Indentation

Code blocks are identified by indentation rather than using symbols like curly braces. Without extra
symbols, programs are easier to read. Also, indentation clearly identifies which block of code a
statement belongs to. Of course, code blocks can consist of single statements, too.

When one is new to Python, indentation may comes as a surprise. Humans generally prefer to avoid
change, so perhaps after many years of coding with brace delimitation, the first impression of using
pure indentation may not be completely positive. However, recall that two of Python's features are that
it is simplistic in nature and easy-to-read. Three hundred and sixty-five days after you indent your first
line of Python, revisit this thought and determine if you maintain the same position you have today.
More than likely, you will have discovered that life without braces is not as bad as you had originally
thought.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=59
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A09%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=59&now=5%2F29%2F2002+9%3A09%3A08+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=59

Programming > Core Python Programming > 2. Getting Started > if Statement See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173120061000063012170099

if Statement

The standard if conditional statement follows this syntax:

 if
 expression:
 if_suite

If the expression is non-zero or true, then the statement suite is executed; otherwise, execution
continues on the first statement after. "Suite" is the term used in Python to refer to a sub-block of code
and can consist of single or multiple statements.

>>> if counter > 5:
… print 'stopping after 5 iterations'
… break

Python supports an else statement that is used with if in the following manner:

 if expression:
 if_suite
 else:
 else_suite

Python has an "else-if" statement named elif which has the following syntax:

 if
 expression1:
 if_suite

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=60
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A09%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=60&now=5%2F29%2F2002+9%3A09%3A19+PM

 elif
 expression2:
 elif_suite
 else:
 else_suite

Another surprise: There is no switch or case statement in Python. This may also seem strange
and/or detracting at first, but a set of if-elif-else statements are not as "ugly" because of Python's
clean syntax. If you really want to circumvent a set of chained if-elif-else statements, another
elegant workaround is using a for loop (see below) to iterate through your list of possible "cases."

You can learn more about if, elif, and else statements in the conditional section of Chapter 8.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=60

Programming > Core Python Programming > 2. Getting Started > while Loop See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173120061003211102074073

while Loop

The standard while conditional loop statement is similar to the if. Again, as with every code sub-
block, indentation (and dedentation) are used to delimit blocks of code as well as to indicate which
block of code statements belong to:

 while
 expression:
 while_suite

The statement suite is executed continuously in a loop until the expression becomes zero or false;
execution then continues on the first succeeding statement.

>>> counter = 0
>>> while counter < 5:
… print 'loop #%d' % (counter)
… counter = counter + 1

loop #0
loop #1
loop #2
loop #3
loop #4
loop #5

Loops such as while and for (see below) are covered in the loops section of Chapter 8.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=61
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A09%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=61&now=5%2F29%2F2002+9%3A09%3A28+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=61

Programming > Core Python Programming > 2. Getting Started > for Loop and the range()
Built-in Function

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173120061002172142079076

for Loop and the range() Built-in Function

The for loop in Python is more like a foreach iterative-type loop in a shell scripting language than
a traditional for conditional loop that works like a counter. Python's for loop takes what we will later
describe as a sequence type (list, tuple, or string) and iterates over each element of that sequence.

>>> print 'I like to use the Internet for:'
I like to use the Internet for:
>>> for item in ['e-mail', 'net-surfing', 'homework', 'chat']:
… print item
…
e-mail
net-surfing
homework
chat

Our output in the previous example may look more presentable if we display the items on the same line
rather than on separate lines. print statements by default automatically add a NEWLINE character at
the end of every line. This can be suppressed by terminating the print statement with a comma (,).

 print 'I like to use the Internet for:'
 for item in ['e-mail', 'net-surfing', 'homework', 'chat']:
 print item,
 print

The code required further modification to include an additional print statement with no arguments to
flush our line of output with a terminating NEWLINE; otherwise, the prompt will show up on the same
line immediately after the last piece of data output. Here is the output with the modified code:

I like to use the Internet for:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=62
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A09%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=62&now=5%2F29%2F2002+9%3A09%3A36+PM

e-mail net-surfing homework chat

Elements in print statements separated by commas will automatically include a delimiting space
between them as they are displayed. Providing a string format gives the programmer the most control
because it dictates the exact output layout, without having to worry about the spaces generated by
commas. It also allows all the data to be grouped together in one place—the tuple or dictionary on the
right-hand side of the format operator.

>>> who = 'knights'
>>> what = 'Ni!'
>>> print 'We are the', who, 'who say', what, what, what, what
We are the knights who say Ni! Ni! Ni! Ni!
>>> print 'We are the %s who say %s' % \
… who, ((what + ' ') * 4))
We are the knights who say Ni! Ni! Ni! Ni!

Using the string format operator also allows us to do some quick string manipulation before the output,
as you can see in the above example.

We conclude our introduction to loops by showing you how we can make Python's for statement act
more like a traditional loop, in other words, a numerical counting loop. Because we cannot change the
behavior of a for loop (iterates over a sequence), we can manipulate our sequence so that it is a list of
numbers. That way, even though we are still iterating over a sequence, it will at least appear to perform
the number counting an incrementing that we envisioned.

>>> for eachNum in [0, 1, 2, 3, 4, 5]:
… print eachNum
…
0
1
2
3
4
5

Within our loop, eachNum contains the integer value that we are displaying and can use it in any

numerical calculation we wish. Because our range of numbers may differ, Python provides the
range() built-in function to generate such a list for us. It does exactly what we want, taking a range
of numbers and generating a list.

>>> for eachNum in range(6):
… print eachNum
…
0
1
2
3
4
5

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=62

Programming > Core Python Programming > 2. Getting Started > Files and the open()
Built-in Function

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173120061005208250115047

Files and the open() Built-in Function

File access is one of the more important aspects of a language once you are comfortable with the
syntax; there is nothing like the power of persistent storage to get some real work done.

How to Open a File

 handle = open(file_name, access_mode='r')

The file_name variable contains the string name of the file we wish to open, and access_mode is
either 'r' for read, 'w' for write, or 'a' for append. Other flags which can be used in the
access_mode string include the '+' for dual read-write access and the 'b' for binary access. If the
mode is not provided, a default of read-only ('r') is used to open the file.

NOTE

Attributes are items associated with a piece of data. Attributes can be simply data values or
executable objects such as functions and methods. What kind of objects have attributes? Many.
Classes, modules, files, complex numbers. These are just some of the Python objects which have
attributes.

How do I access object attributes? With the dotted attribute notation, that is, by putting together the
object and attribute names, separated by a dot or period: object.attribute.

If open() is successful, a file object will be returned as the handle (handle). All succeeding access
to this file must go through its file handle. Once a file object is returned, we then have access to the
other functionality through its methods such as readlines() and close(). Methods are
attributes of file objects and must be accessed via the dotted attribute notation (see Core Note above).

Here is some code which prompts the user for the name of a text file, then opens the file and displays
its contents to the screen:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=63
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A09%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=63&now=5%2F29%2F2002+9%3A09%3A46+PM

filename = raw_input('Enter file name: ')
file = open(filename, 'r')
allLines = file.readlines()
file.close()
for eachLine in allLines:
 print eachLine,

Rather than looping to read and display one line at a time, our code does something a little different.
We read all lines in one fell swoop, close the file, and then iterate through the lines of the file. One
advantage to coding this way is that it permits the file access to complete more quickly. The output and
file access do not have to alternate back and forth between reading a line and printing a line. It is
cleaner and separates two somewhat unrelated tasks. The caveat here is the file size. The code above is
reasonable for files with reasonable sizes. Programs too large may take up too much memory, in which
case you would have to revert back to reading one line at a time.

The other interesting statement in our code is that we are again using the comma at the end of the
print statement to suppress the printing of the NEWLINE character. Why? Because each text line of
the file already contains NEWLINEs at the end of every line. If we did not suppress the NEWLINE
from being added by print, our display would be double-spaced.

In Chapter 9, we cover file objects, their built-in methods attributes, and how to access your local file
system. Please go there for all the details.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=63

Programming > Core Python Programming > 2. Getting Started > Errors and Exceptions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204173120061004004217247232

Errors and Exceptions

Syntax errors are detected on compilation, but Python also allows for the detection of errors during
program execution. When an error is detected, the Python interpreter raises (a.k.a. throws, generates,
triggers) an exception. Armed with the information that Python's exception reporting can generate at
runtime, programmers can quickly debug their applications as well as fine-tune their software to take a
specific course of action if an anticipated error occurs.

To add error detection or exception handling to your code, just "wrap" it with a try-except
statement. The suite following the try statement will be the code you want to manage. The code
which comes after the except will be the code that executes if the exception you are anticipating
occurs:

 try:
 try_running_this_suite
 except
 someError:
 suite_if_someError_occurs

Programmers can explicitly raise an exception with the raise command. You can learn more about
exceptions as well as see a complete list of Python exceptions in Chapter 10.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=64
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A09%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=64&now=5%2F29%2F2002+9%3A09%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=64

Programming > Core Python Programming > 2. Getting Started > Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172036093228167235163059

Functions

Functions in Python follow rules and syntax similar to most other languages: Functions are called using the functional
operator (()), functions must be declared before they are used, and the function type is the type of the value returned.

All arguments of function calls are made by reference, meaning that any changes to these parameters within the function
affect the original objects in the calling function.

How to Declare a Function

 def
 function_name([arguments]):
 "optional documentation string"
 function_suite

The syntax for declaring a function consists of the def keyword followed by the function name and any arguments which the
function may take. Function arguments such as arguments above are optional, hence the reason why they are enclosed in
brackets above. (Do not physically put brackets in your code!) The statement terminates with a colon (the same way that an
if or while statement is terminated), and a code suite representing the function body follows. Here is one short example:

 def addMe2Me(x):
 'apply + operation to argument'
 return (x + x)

This function, presumably meaning "add me to me" takes an object, adds its current value to itself and returns the sum. While
the results are fairly obvious with numerical arguments, we point out that the plus sign works for almost all types. In other
words, most of the standard types support the + operator, whether it be numeric addition or sequence concatenation.

How to Call Functions

>>> addMe2Me(4.25)
8.5
>>>
>>> addMe2Me(10)
20
>>>
>>> addMe2Me('Python')
'PythonPython'
>>>
>>> addMe2Me([-1, 'abc'])

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=65
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A10%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=65&now=5%2F29%2F2002+9%3A10%3A07+PM

[-1, 'abc', -1, 'abc']

Calling functions in Python is similar to function invocations in other high-level languages, by giving the name of the
function followed by the functional operator, a pair of parentheses. Any optional parameters go between the parentheses.
Observe how the + operator works with non-numeric types.

Default arguments

Functions may have arguments which have default values. If present, arguments will take on the appearance of assignment in
the function declaration, but in actuality, it is just the syntax for default arguments and indicates that if a value is not provided
for the parameter, it will take on the assigned value as a default.

>>> def foo(debug=1):
… 'determine if in debug mode with default argument'
… if debug:
… print 'in debug mode'
… print 'done'
…
>>> foo()
in debug mode
done
>>> foo(0)
done

In the example above, the debug parameter has a default value of 1. When we do not pass in an argument to the function
foo(), debug automatically takes on a true value of 1. On our second call to foo(), we deliberately send an argument of
0, so that the default argument is not used.

Functions have many more features than we could describe in this introductory section. Please refer to Chapter 11 for more
details.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=65

Programming > Core Python Programming > 2. Getting Started > Classes See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172036093230151123052147

Classes

A class is merely a container for static data members or function declarations, called a class's attributes.
Classes provide something which can be considered a blueprint for creating "real" objects, called class
instances. Functions which are part of classes are called methods. Classes are an object-oriented
construct that are not required at this stage in learning Python. However, we will present it here for
those who have some background in object-oriented methodology and would like to see how classes
are implemented in Python.

How to Declare a Class

 class class_name[(base_classes_if_any)]:
 "optional documentation string"
 static_member_declarations
 method_declarations

Classes are declared using the class keyword. If a subclass is being declared, then the super or base
classes from which it is derived is given in parentheses. This header line is then terminated and
followed by an optional class documentation string, static member declarations, and any method
declarations.

 class FooClass:
 'my very first class: FooClass'
 version = 0.1 # class (data) attribute

 def __init__(self, nm='John Doe'):
 'constructor'
 self.name = nm # class instance (data) attribute
 print 'Created a class instance for', nm

 def showname(self):
 'display instance attribute and class name'
 print 'Your name is', self.name
 print 'My name is', self.__class__ # full class name

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=66
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A10%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=66&now=5%2F29%2F2002+9%3A10%3A21+PM

 def showver(self):
 'display class(static) attribute'
 print self.version # references FooClass.version

 def addMe2Me(self, x): # does not use 'self'
 'apply + operation to argument'
 return (x + x)

In the above class, we declared one static data type variable version shared among all instances and
four methods, __init__(), showname(), showver(), and the familiar addMe2Me(). The
show*() methods do not really do much but output the data they were created to. The __init__()
method has a special name, as do all those whose name begins and ends with a double underscore (
__).

The __init__() method is a function provided by default that is called when a class instance is
created, similar to a constructor and called after the object has been instantiated. Its purpose is to
perform any other type of "start up" necessary for the instance to take on a life of its own. By creating
our own __init__() method, we override the default method (which does not do anything) so that
we can do customization and other "extra things" when our instance is created. In our case, we initialize
a class instance attribute called name. This variable is associated only with class instances and is not
part of the actual class itself. __init__() also features a default argument, introduced in the
previous section. You will no doubt also notice the one argument which is part of every method,
self.

What is self? Self is basically an instance's handle to itself. (In other object-oriented languages such
as C++ or Java, self is called this.) When a method is called, self refers to the instance which
made the call. No class methods may be called without an instance, and is one reason why self is
required. Class methods which belong to an instance are called bound methods. (Those not belonging
to a class instance are called unbound methods and cannot be invoked [unless an instance is explicitly
passed in as the first argument].)

How to Create Class Instances

>>> foo1 = FooClass()
Created a class instance for John Doe

The string that is displayed is a result of a call to the __init__() method which we did not

explicitly have to make. When an instance is created, __init__() is automatically called, whether
we provided our own or the interpreter used the default one.

Creating instances looks just like calling a function and has the exact syntax. Class instantiation
apparently uses the same functional operator as invoking a function or method. Do not get confused
between the two, however. Just because the same symbols are used does not necessarily mean
equivalent operations. Function calls and creating class instances are very different animals. The same
applies for the + operator. Given a pair of integers, it performs integer addition; given a pair of floating
point numbers, it performs real number addition; and giving it two strings results in string
concatenation. All three of these operations are distinct.

Now that we have successfully created our first class instance, we can make some method calls, too:

>>> foo1.showname()
Your name is John Doe
My name is __main__.FooClass
>>>
>>> foo1.showver()
0.1
>>> print foo1.addMe2Me(5)
10
>>> print foo1.addMe2Me('xyz')
xyzxyz

The result of each function call is as we expected. One interesting piece of data is the class name. In the
showname() method, we displayed the self.__class__ variable which, for an instance,
represents the name of the class from which it has been instantiated. In our example, we did not pass in
a name to create our instance, so the 'John Doe' default argument was used. In our next example,
we do not use it.

>>> foo2 = FooClass('Jane Smith')
Created a class instance for Jane Smith
>>> foo2.showname()
Your name is Jane Smith
__main__.FooClass

There is plenty more on Python classes and instances in Chapter 13.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=66

Programming > Core Python Programming > 2. Getting Started > Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172036093231197067193166

Modules

Modules are a logical way to physically organize and distinguish related pieces of Python code into
individual files. Modules can contain executable code, functions, classes, or any and all of the above.

When you create a Python source file, the name of the module is the same as the file except without the
trailing ".py" extension. Once a module is created, you may "import" that module for use from
another module using the import statement.

How to Import a Module

 import
 module_name

How to Call a Module Function or Access a Module Variable

Once imported, a module's attributes (functions and variables) can be accessed using the familiar dotted
attribute notation:

 module.function()
 module.variable

We will now present our Hello World! example again, but using the output functions inside the sys
module.

>>> import sys
>>> sys.stdout.write('Hello World!\n')
Hello World!

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=67
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A10%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=67&now=5%2F29%2F2002+9%3A10%3A33+PM

This code behaves just like our original Hello World! using the print statement. The only difference
is that the standard output write() method is called, and the NEWLINE character needs to be stated
explicitly because, unlike the print statement, write() does not do that for you.

Let us now look at some other attributes of the sys module and some of the functions in the string
module as well.

>>> import sys
>>> import string
>>> sys.platform
'win32'
>>> sys.version
'1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]'
>>>
>>> up2space = string.find(sys.version, ' ')
>>> ver = sys.version[:up2space]
>>> ver
1.5.2
>>>
>>> print 'I am running Python %s on %s' % (ver, sys.platform)
I am running Python 1.5.2 on win32

As you can probably surmise, the sys.platform and sys.version variables contain information
regarding the system you are running on and which version of the Python interpreter you are using.

The string.find() function looks for substrings in strings. In the example, we are capturing just
the version number which occurs from the beginning of the string to right before the first space
character. We use find() to tell us where the space is located so we can grab all the characters in the
string before the space.

Another way to snare the version number is by breaking up the entire string into words (separated by
spaces). The version number is the first word, so that is all we want. The string.split() function
returns a list of all the "words" in a string:

>>> verchunks = string.split(sys.version)
>>> verchunks
['1.5.2', '(#0,', 'Apr', '13', '1999,', '10:51:12)',
'[MSC', '32', 'bit', '(Intel)]']
>>> print 'I am running Python %s on %s' % \

… (verchunks[0], sys.platform)
I am running Python 1.5.2 on win32

Our output is the exact same as the example above In this case, there was clearly more than one way to
accomplish the same task. This is not always the case in Python, but both examples will allow the
reader to decide on the appropriate course of action when warranted.

You can find out more information on modules and importing in Chapter 12.

We will cover all of the above topics in much greater detail throughout the text, but hopefully we have
provided enough of a "quick dip in the pool" to facilitate your needs if your primary goal is to get
started working with Python as quickly as possible without too much serious reading.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=67

Programming > Core Python Programming > 2. Getting Started > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172036093224046142245250

Exercises

1: Variables, print, and the string format operator. Start the interactive interpreter. Assign
values to some variables (strings, numbers, etc.) and display them within the interpreter by
typing their names. Also try doing the same thing with the print statement. What is the
difference between giving just a variable name versus using it in conjunction with print?
Also try using the string format operator (%) to become familiar with it.

2: Program output. Take a look at the following Python script:

#!/usr/bin/env python
1 + 2 * 4

(a) What do you think this script does?

(b) What do you think this script will output?

(c) Type the code in as a script program and execute it. Did it do what you expected? Why
or why not?

(d) How does execution differ if you are running this code from within the interactive
interpreter? Try it and write down the results.

(e) How can we improve the output of the script version so that it does what we
expect/want?

3: Numbers and operators. Enter the interpreter. Use Python to add, subtract, multiply, and
divide two numbers (of any type). Then use the modulus operator to determine the
remainder when dividing one number by another, and finally, raise one number to the
power of another by using the exponentiation operator.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=68
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A10%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=68&now=5%2F29%2F2002+9%3A10%3A44+PM

4: User input with raw_input().

(a) Create a small script to use raw_input() built-in function to take a string input from
the user, then display to the user what he/she just typed in.

(b) Add another piece of similar code, but have the input be numeric. Convert the value to
a number (using either int() or any of the other numeric conversion functions), and
display the value back to the user. (Note that if your version of Python is older than 1.5,
you will need to use the string.ato*() functions to perform the conversion.)

5: Loops and numbers. Create some loops using both while and for.

(a) Write a loop that counts from 0 to 10 using a while loop. (Make sure your solution
really does count from 0 to 10, not 0 to 9 or 1 to 10.)

(b) Do the same loop as in part (a), but use a for loop and the range() built-in function.

6: Conditionals. Detect whether a number is positive, negative, or zero. Try using fixed
values at first, then update your program to accept numeric input from the user.

7: Loops and strings. Take a user input string and display string, one character at a time. As in
your above solution, perform this task with a while loop first, then with a for loop.

8: Loops and operators. Create a fixed list or tuple of 5 numbers and output their sum. Then
update your program so that this set of numbers comes from user input. As with the
problems above, implement your solution twice, once using while and again with for.

9: More loops and operators. Create a fixed list or tuple of 5 numbers and determine their
average. The most difficult part of this exercise is the division to obtain the average. You
will discover that integer division truncates and that you must use floating point division to
obtain a more accurate result. The float() built-in function may help you there.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#4.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#4.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#5.html

10: User input with loops and conditionals. Use raw_input() to prompt for a number
between 1 and 100. If the input matches criteria, indicate so on the screen and exit.
Otherwise, display an error and reprompt the user until the correct input is received.

11: Menu-driven text applications. Take your solutions to any number of the previous 5
problems and upgrade your program to present a menu-driven text-based application that
presents the user with a set of choices, e.g., (1) sum of 5 numbers, (2) average of 5
numbers, … (X) Quit. The user makes a selection, which is then executed. The program
exits when the user choose the "quit" option. The great advantage to a program like this is
that it allows the user to run as many iterations of your solutions without having to
necessarily restart the same program over and over again. (It is also good for the developer
who is usually the first user main quality assurance engineer of their applications!)

12: The dir() built-in function.

(a) Start up the Python interpreter. Run the dir() built-in function by simply typing
"dir()" at the prompt. What do you see? Print the value of each element in the list you
see. Write down the output for each and what you think each is.

(b) You may be asking, so what does dir() do? We have already seen that adding the
pair of parentheses after "dir" causes the function to run. Try typing just the name "dir"
at the prompt. What information does the interpreter give you? What do you think it
means?

(c) The type() built-in function takes any Python object and returns its type. Try running
it on dir by entering "type(dir)" into the interpreter. What do you get?

(d) For the final part of this exercise, let us take a quick look at Python documentation
strings. We can access the documentation for the dir() function by appending ".__doc__"
after its name. So from the interpreter, display the document string for dir() by typing
the following at the promt: print dir.__doc__. Many of the built-in functions,
methods, modules, and module attributes have a documentation string associated with
them. We invite you to put in your own as you write your code; it may help another user
down the road.

13: Finding more about the sys module with dir().

(a) Start the Python interpreter again. Run the dir() command as in the previous
exercise. Now import the sys module by typing import sys at the prompt. Run the
dir() command again to verify that the sys module now shows up. Now run the dir()
command on the sys module by typing dir(sys). Now you see all the attributes of the
sys module.

(b) Display the version and platform variables of the sys module. Be sure to prepend the
names with sys to indicate that they are attributes of sys. The version variable contains
information regarding the version of the Python interpreter you are using, and the platform
attribute contains the name of the computer system that Python believes you are running
on.

(c) Finally, call the sys.exit() function. This is another way to quit the Python
interpreter in case the keystrokes described above in problem 1 do not get you out of
Python.

14: Operator precedence and grouping with parentheses. Rewrite the mathematical expression
of the print statement in Section 2.4, but try to group pairs of operands correctly, using
parentheses.

15: Elementary sorting.

(a) Have the user enter 3 numeric values and store them in 3 different variables. Without
using lists or sorting algorithms, manually sort these 3 numbers from smallest to largest.

(b) How would you change your solution in part (a) to sort from largest to smallest?

16: Files. Type in and/or run the file display code in Section 2.14. Verify that it works on your
system and try different input files as well.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=68

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 3. Syntax and Style See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172036093225012046226123

Chapter 3. Syntax and Style
Chapter Topics

● Statements and syntax

● Variable assignment

● Identifiers and keywords

● Basic style guidelines

● Memory management

● First Python application

Our next goal is to go through the basic Python syntax, describe some general style guidelines, then be
briefed on identifiers, variables, and keywords. We will also discuss how memory space for variables is
allocated and deallocated. Finally, we will be exposed to a much larger example Python
program—taking the plunge, as it were. No need to worry, there are plenty of life preservers around
that allow for swimming rather than the alternative.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=70
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A10%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=70&now=5%2F29%2F2002+9%3A10%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=70

Programming > Core Python Programming > 3. Syntax and Style > Statements and Syntax See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172037206199140046205020

Statements and Syntax

Some rules and certain symbols are used with regard to statements in Python:

● Hash mark (#) indicates Python comments

● NEWLINE (\n) is the standard line separator (one statement per line)

● Backslash (\) continues a line

● Semicolon (;) joins two statements on a line

● Colon (:) separates a header line from its suite

● Statements (code blocks) grouped as suites

● Suites delimited via indentation

● Python files organized as "modules"

Comments (#)

First thing's first: Although Python is one of the easiest languages to read, it does not preclude the
programmer from proper and adequate usage and placement of comments in the code. Like many of its
Unix scripting brethren, Python comment statements begin with the pound sign or hash symbol (#). A
comment can begin anywhere on a line. All characters following the # to the end of the line are ignored
by the interpreter. Use them wisely and judiciously.

Continuation (\)

Python statements are, in general, delimited by NEWLINEs, meaning one statement per line. Single
statements can be broken up into multiple lines by use of the backslash. The backslash symbol (\) can
be placed before a NEWLINE to continue the current statement onto the next line.

check conditions

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=71
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A11%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=71&now=5%2F29%2F2002+9%3A11%3A06+PM

if (weather_is_hot == 1) and \
 (shark_warnings == 0) :

 send_goto_beach_mesg_to_pager()

There are two exceptions where lines can be continued without backslashes. A single statement can
take up more than one line when (1) container objects are broken up between elements over multiple
lines, and when (2) NEWLINEs are contained in strings enclosed in triple quotes.

display a string with triple quotes
print '''hi there, this is a long message for you
that goes over multiple lines… you will find
out soon that triple quotes in Python allows
this kind of fun! it is like a day on the beach!'''

set some variables
go_surf, get_a_tan_while, boat_size, toll_money = (1,
 'windsurfing', 40.0, -2.00)

Multiple Statement Groups as Suites (:)

Groups of individual statements making up a single code block are called "suites" in Python (as we
introduced in Chapter 2). Compound or complex statements, such as if, while, def, and
class, are those which require a header line and a suite. Header lines begin the statement (with the
keyword) and terminate with a colon (:) and are followed by one or more lines which make up the
suite. We will refer to the combination of a header line and a suite as a clause.

Suites Delimited via Indentation

As we introduced in Section 2.10, Python employs indentation as a means of delimiting blocks of code.
Code at inner levels are indented via spaces or TABs. Indentation requires exact indentation, in other
words, all the lines of code in a suite must be indented at the exact same level (e.g. same number of
spaces). Indented lines starting at different positions or column numbers is not allowed; each line
would be considered part of another suite and would more than likely result in syntax errors.

A new code block is recognized when the amount of indentation has increased, and its termination is
signaled by a "dedentation," or a reduction of indentation matching a previous level's. Code that is not
indented, i.e., the highest level of code, is considered the "main" portion of the script.

The decision to creating Python using indentation was based on the belief that grouping code in this
manner is more elegant and contributes to the ease-of-reading to which we alluded earlier. It also helps
avoid "dangling-else"-type problems, including ungrouped single statement clauses (those where a C
if statement which does not use braces at all, but has two indented statements following). The second
statement will execute regardless of the conditional, leading to more programmer confusion until the
light bulb finally blinks on.

Finally, no "holy brace wars" can occur when using indentation. In C (also C++ and Java), starting
braces may be placed on the same line as the header statement, or may start the very next line, or may
be indented on the next line. Some like it one way, others prefer the other, etc. You get the picture.

We should also mention a minor performance improvement which can occur since each missing brace
means one less byte to load during execution. Sure these are pennies on their own, but add up to
hundreds and thousands of bytes over a 24×7×365 environment across a global network such as the
Internet and you have something you can see. See below in Section 3.4 for tips and style guidelines on
indentation.

Multiple Statements on a Single Line (;)

The semicolon (;) allows multiple statements on the single line given that neither statement starts a
new code block. Here is a sample snip using the semicolon:

import sys; x = 'foo'; sys.stdout.write(x + '\n')

We caution the reader to be wary of the amount of usage of chaining multiple statements on individual
lines since it makes code much less readable. You decide:

import sys
x = 'foo'
sys.stdout.write(x + '\n')

In our example, separating the code to individual lines makes for remarkably improved reader-
friendliness.

Modules

Each Python script is considered a module. Modules have a physical presence as disk files. When a

module gets large enough or has diverse enough functionality, it may make sense to move some of the
code out to another module. Code that resides in modules may belong to an application (i.e., a script
that is directly executed), or may be executable code in a library-type module that may be "imported"
from another module for invocation. As we mentioned in the last chapter, modules can contain blocks
of code to run, class declarations, function declarations, or any combination of all of those.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=71

Programming > Core Python Programming > 3. Syntax and Style > Variable Assignment See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172037206198154154076169

Variable Assignment

This section focuses on variable assignment. We will discuss which identifiers make valid variables
coming up in Section 3.3.

Equal sign (=) is the assignment operator

The equal sign (=) is the main Python assignment operator

anInt = -12
String = 'cart'
aFloat = -3.1415 * (5.0 ** 2)
anotherString = 'shop' + 'ping'
aList = [3.14e10, '2nd elmt of a list', 8.82-4.371j]

Be aware now that assignment does not explicitly assign a value to a variable, although it may appear
that way from your experience with other programming languages. In Python, objects are referenced,
so on assignment, a reference (not a value) to an object is what is being assigned, whether the object
was just created or was a pre-existing object. If this is not 100% clear now, do not worry about it. We
will revisit this topic later on in the chapter, but just keep it in mind for now.

Also, if you familiar with C, you are aware that assignments are treated as expressions. This is not the
case for Python, where assignments do not have inherent values. Statements such as the following are
invalid in Python:

>>> x = 1
>>> y = (x = x + 1) # assignments not expressions!
 File "<stdin>", line 1
 y = (x = x + 1)
 ^
SyntaxError: invalid syntax

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=72
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A11%3A15+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=72&now=5%2F29%2F2002+9%3A11%3A15+PM

Beginning in Python 2.0, the equals sign can be combined with an arithmetic operation and the
resulting value reassigned to the existing variable. Known as augmented assignment, statements such
as

x = x + 1

can now be written as

x += 1

Python does not support pre-/post-increment nor pre-/post-decrement operators such as x++ or --x.

How To Do a Multiple Assignment

>>> x = y = z = 1
>>> x
1
>>> y
1
>>> z
1

In the above example, an integer object (with the value 1) is created, and x, y, and z are all assigned
the same reference to that object. This is the process of assigning a single object to multiple variables.
It is also possible in Python to assign multiple objects to multiple variables.

How to Do a "Multuple" Assignment

Another way of assigning multiple variables is using what we shall call the "multuple" assignment.
This is not an official Python term, but we use "multuple" here because when assigning variables this
way, the objects on both sides of the equals sign are tuples, a Python standard type we introduced in
Section 2.8.

>>> x, y, z = 1, 2, 'a string'

>>> x
1
>>> y
2
>>> z
'a string'

In the above example, two integer objects (with values 1 and 2) and one string object are assigned to
x, y, and z respectively. Parentheses are normally used to denote tuples, and although they are
optional, we recommend them anywhere they make the code easier to read:

>>> (x, y, z) = (1, 2, 'a string')

If you have ever needed to swap values in other languages like C, you will be reminded that a
temporary variable, i.e., tmp, is required to hold one value which the other is being exchanged:

/* swapping variables in C */
tmp = x;
x = y;
y = tmp;

In the above C code fragment, the values of the variables x and y are being exchanged. The tmp
variable is needed to hold the value of one of the variables while the other is being copied into it. After
that step, the original value kept in the temporary variable can be assigned to the second variable.

One interesting side effect of Python's "multuple" assignment is that we no longer need a temporary
variable to swap the values of two variables.

swapping variables in Python
>>> (x, y) = (1, 2)
>>> x
1
>>> y
2
>>> (x, y) = (y, x)

>>> x
2
>>> y
1

Obviously, Python performs evaluation before making assignments.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=72

Programming > Core Python Programming > 3. Syntax and Style > Identifiers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172037206197220143250153

Identifiers

Identifiers are the set of valid strings which are allowed as names in a computer language. From this all-
encompassing list, we segregate out those which are keywords, names that form a construct of the
language. Such identifiers are reserved words which may not be used for any other purpose, or else a
syntax error (SyntaxError exception) will occur.

Python also has an additional set of identifiers known as built-ins, and although they are not reserved
words, use of these special names is not recommended. (Also see Section 3.3.3.)

Valid Python Identifiers

The rules for Python identifier strings are not unlike most other high-level programming languages:

● First character must be letter or underscore (_)

● Any additional characters can be alphanumeric or underscore

● Case-sensitive

No identifiers can begin with a number, and no symbols other than the underscore are ever allowed.
The easiest way to deal with underscores is to consider them as alphabetic characters. Case-sensitivity
means that identifier foo is different from Foo, and both of those are different from FOO.

Keywords

Python currently has twenty-eight keywords. They are listed in Table 3.1.

Generally, the keywords in any language should remain relatively stable, but should things ever change
(as Python is a growing and evolving language), a list of keywords as well as an iskeyword()
function are available in the keyword module.

Table 3.1. Python Keywords

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=73
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A11%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=73&now=5%2F29%2F2002+9%3A11%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/73#4.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/73#3.html

and elif global or

assert else if pass

break except import print

class exec in raise

continue finally is return

def for lambda try

del from not while

For compatibility reasons, observe that the assert keyword is new as of Python 1.5, and the access
keyword was obsolete beginning with 1.4.

Built-ins

In addition to keywords, Python has a set of "built-in" names which are either set and/or used by the
interpreter that are available at any level of Python code. Although not keywords, built-ins should be
treated as "reserved for the system" and not used for any other purpose. However, some circumstances
may call for overriding (a.k.a. redefining, replacing) them. Python does not support overloading of
identifiers, so only one name "binding" may exist at any given time.

Special Underscore Identifiers

Python designates (even more) special variables with underscores both prefixed and suffixed. We will
also discover later that some are quite useful to the programmer while others are unknown or useless.
Here is a summary of the special underscore usage in Python:

● _xxx do not import with 'from module import *'

● _xxx__ system-defined name

● _xxx request private name mangling in classes

NOTE

Because of the underscore usage in Python system, interpreter, and built-in identifiers, we
recommend that the programmer avoid the use of beginning variable names with the underscore.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=73

Programming > Core Python Programming > 3. Syntax and Style > Basic Style Guidelines See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172037206196160047026245

Basic Style Guidelines

Comments

You do not need to be reminded that comments are useful both to you and those who come after you.
This is especially true for code that has been untouched by man (or woman) for a time (that means
several months in software development time). Comments should not be absent, nor should there be
novellas. Keep the comments explanatory, clear, short, and concise, but get them in there. In the end, it
saves time and energy for everyone.

Documentation

Python also provides a mechanism whereby documentation strings can be retrieved dynamically
through the __doc__ special variable. The first unassigned string in a module, class declaration, or
function declaration can be accessed through by using obj.__doc__ where obj is the module, class,
or function name.

Indentation

Since indentation plays a major role, you will have to decide on a spacing style that is easy to read as
well as the least confusing. Common sense also plays a recurring role in choosing how many spaces or
columns to indent.

1 or 2 probably not enough; difficult to determine which block of code statements belong to
8 to 10 may be too many; code which has many embedded levels will wraparound, causing the source to be

difficult to read

Four (4) spaces is very popular, not to mention being the preferred choice of Python's creator. Five (5)
and six (6) are not bad, but text editors usually do not use these settings, so they are not as commonly
used. Three (3) and seven (7) are borderline cases.

As far as TABs go, bear in mind that different text editors have different concepts of what TABs are. It
is advised not to use TABs if your code will live and run on different systems or be accessed with
different text editors.

Choosing Identifier Names

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=74
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A11%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=74&now=5%2F29%2F2002+9%3A11%3A35+PM

The concept of good judgment also applies in choosing logical identifier names. Decide on short yet
meaningful identifiers for variables. Although variable length is no longer an issue with programming
languages of today, it is still a good idea to keep name sizes reasonable. The same applies for naming
your modules (Python files).

Module Structure and Layout

Modules are simply physical ways of logically organizing all your Python code. Within each file, you
should set up a consistent and easy-to-read structure. One such layout is the following:

(1) startup line (Unix)
(2) module documentation
(3) module imports
(4) variable declarations
(5) class declarations
(6) function declarations
(7) "main" body

Figure 3-1 illustrates the internal structure of a typical module.

Figure 3-1. Typical Python File Structure

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/74#6.html

(1) Startup line

Generally used only in Unix environments, the start-up line allows for script execution
by name only (invoking the interpreter is not required).

(2) Module documentation

Summary of a module's functionality and significant global variables; accessible
externally as module.__doc__.

(3) Module imports

Import all the modules necessary for all the code in current module; modules are
imported once (when this module is loaded); imports within functions are not invoked
until those functions are called.

(4) Variable declarations

Declare (global) variables here which are used by multiple functions in this module (if
not, make them local variables for improved memory/performance).

(5) Class declarations

Any classes should be declared here, along with any static member and method
attributes; class is defined when this module is imported and the class statement
executed. Documentation variable is class.__doc__.

(6) Function declarations

Functions which are declared here are accessible externally as
module.function(); function is defined when this module is imported and the
def statement executed. Documentation variable is function.__doc__.

(7) "main" body

All code at this level is executed, whether this module is imported or started as a script;
generally does not include much functional code; rather, gives direction depending on
mode of execution.

NOTE

The main body of code tends to contain lines such as the ones you see above which check the
__name__ variable and takes appropriate action (see Core Note below). Code in the main body
typically executes the class, function, and variable declarations, then checks __name__ to see
whether it should invoke another function (often called main()) which performs the primary
duties of this module. The main body usually does no more than that. (Our example above uses
test() rather than main() to avoid confusion until you read this Core Note.)

Regardless of the name, we want to emphasize that this is a great place to put a test suite in your
code. As we explain in Section 3.4.2, most Python modules are created for import use only, and
calling such a module directly should invoke a regression test of the code in such a module.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/74#7.html

Most projects tend to consist of a single application and importing any required modules. Thus it is
important to bear in mind that most modules are created solely to be imported rather than to execute as
scripts. We are more likely to create a Python library-style module whose sole purpose is to be
imported by another module. After all, only one of the modules—the one which houses the main
application—will be executed, either by a user from the command-line, by a batch or timed mechanism
such as a Unix cron job, via a web server call, or be invoked from a GUI callback.

With that fact in hand, we should also remember that all modules have the ability to execute code. All
Python statements in the highest level of code, that is, the lines that are not indented, will be executed
on import, whether desired or not. Because of this "feature," safer code is written such that everything
is in a function except for the code that should be executed on an import of a module. Again, usually
only the main application module has the bulk of the executable code at its highest-level. All other
imported modules will have very little on the outside, and everything in functions or classes. (See Core
Note below for more information.)

NOTE

Because the "main" code is executed whether a module is imported or executed directly, we often
need to know how this module was loaded to guide the execution path. An application may wish to
import the module of another application, perhaps to access useful code which will otherwise have
to be duplicated (not the OO thing to do). However, in this case, you only want access to this other
application's code, not to necessarily run it. So the big question is, "Is there a way for Python to
detect at runtime whether this module was imported or executed directly?" The answer is… (drum
roll…) yes! The __name__ system variable is the ticket.

● __name__ contains module name if imported

● __name__ contains '__main__' if executed directly

Create Tests in the Main Body

For good programmers and engineers, providing a test suite or harness for our entire application is the
goal. Python simplifies this task particularly well for modules created solely for import. For these
modules, you know that they would never be executed directly. Wouldn't it be nice if they were
invoked to run code that puts that module through the test grinder? Would this be difficult to set up?
Not really.

The test software should run only when this file is executed directly, i.e., not when it is imported from
another module, which is the usual case. Above and in the Core Note, we described how we can
determine whether a module was imported or executed directly. We can take advantage of this

mechanism by using the __name__ variable. If this module was called as a script, plug the test code
right in there, perhaps as part of main() or test() (or whatever you decide to call your "second-
level" piece of code) function, which is called only if this module is executed directly.

The "tester" application for our code should be kept current along with any new test criteria and results,
and it should run as often as the code is updated. These steps will help improve the robustness of our
code, not to mention validating and verifying any new features or updates.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=74

Programming > Core Python Programming > 3. Syntax and Style > Memory Management See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172037206194051189049122

Memory Management

So far you have seen a large number of Python code samples and may have noticed a few interesting
details about variables and memory management. Highlighting some of the more conspicuous ones, we
have:

● Variables not declared ahead of time

● Variable types are not declared

● No memory management on programmers' part

● Variable names can be "recycled"

● del statement allows for explicit "deallocation"

Variable Declarations (or Lack Thereof)

In most compiled languages, variables must be declared before they are used. In fact, C is even more
restrictive: Variables have to be declared at the beginning of a code block and before any statements
are given. Other languages, like C++ and Java, allow "on-the-fly" declarations i.e., those which occur
in the middle of a body of code—but these name and type declarations are still required before the
variables can be used. In Python, there are no explicit variable declarations. Variables are "declared" on
first assignment. Like most languages, however, variables cannot be accessed until they are (created
and) assigned:

>>> a
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: a

Once a variable has been assigned, you can access it by using its name:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=75
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A11%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=75&now=5%2F29%2F2002+9%3A11%3A51+PM

>>> x = 4
>>> y = 'this is a string'
>>> x
4
>>> y
'this is a string'

Dynamic Typing

Another observation, in addition to lack of variable declaration, is the lack of type specification. In
Python, the type and memory space for an object are determined and allocated at run-time. Although
code is byte-compiled, Python is still an interpreted language. On creation, that is, on assignment, the
interpreter creates an object whose type is dictated by the syntax that is used for the operand on the
right-hand side of an assignment. After the object is created, a reference to that object is assigned to the
variable on the left-hand side of the assignment.

Memory Allocation

As responsible programmers, we are aware that when allocating memory space for variables, we are
borrowing system resources, and eventually, we will have to return that which we borrowed back to the
system. Happily, not only do we not have to explicitly allocate the memory, we don't have to deallocate
it either. That is memory management made easy. Well, okay, perhaps it had something to do with the
decision that Python should simply be a tool for the application writer to and shouldn't have to worry
about lower-level, operating system or machine-oriented tasks.

Garbage Collection

Memory that is no longer being used is reclaimed by the system using a mechanism known as garbage
collection. Python's garbage collector will automatically deallocate a data object once is it no longer
needed, all without requiring any management on the programmer's part. How does Python decide
when an object is "no longer needed?" By keeping track of the number of references to objects. This is
called reference counting.

Reference Counting

To keep track of memory that has been allocated, Python does something quite similar to card-
counting, a popular scheme used in casino gaming. When an object is created, a reference is made to
that object. An internal tracking variable, a reference counter, keeps track of how many references are
being made to each object. The reference count for an object is initially set to one (1) when an object is
created and (its reference) assigned.

New references to objects, also called aliases, occur when additional variables are assigned to the same
object, passed as arguments to invoke other bodies of code such as functions, methods, or class
instantiation, or assigned as members of a sequence or mapping.

initialize string object, set reference count to 1
foo1 = 'foobar'

increment reference count by assigning another variable
foo2 = foo1 # create an alias

increment ref count again temporarily by calling function
check_val(foo1)

In the function call above, the reference count is set to one on creation, incremented when an alias is
created, and incremented again when the object participated in a function call. The reference count is
decremented when the function call has completed; and once again if foo2 is removed from the
namespace. The reference count goes to zero and the object deallocated when foo1 goes out of scope.
(See Section 11.8 for more information on variable scope.)

del Statement

The del statement removes a single reference to an object, and its syntax is:

del obj1[, obj2[, … objN…]]

For example, executing del foo2 in the example above has two results:

(1) removes name foo2 from namespace

(2) lowers reference count to object 'foobar' (by one)

Further still, executing del foo1 will remove the final reference to the 'foobar' object,
decrementing the reference counter to zero and causing the object to become "inaccessible" or
"unreachable." It is at this point that the object becomes a candidate for garbage collection. Note that
any tracing or debugging facility may keep additional references to an object, delaying or postponing
that object from being garbage-collected.

Decrementing Reference Count

You already noticed that when the del statement was executed, an object was not really "deleted,"
rather just a reference to it. Likewise, you can "lose" the reference to an object by reassigning it to
another object.

foo1 = 'foobar' # create original string
foo1 = 'a new string' # 'foobar' "lost" and reclaimed

The preceding example shows how all references to an object can occur with reassigning a variable.
The most common case utilizes neither reassignment nor calling the del statement.

Exiting from the current scope means that when a piece of code such as a function or method has
completed, all the objects created within that scope are destroyed (unless passed back as a return
object), such as our example above when foo1 is given as an argument to the check_val()
function. The reference count for foo1 is incremented on the call and decremented when the function
completed.

We present below a reference count decrementing summary. The reference count for an object is
decremented when a variable referencing the object…

● Is named explicitly in a del statement

● Is (re)assigned to another object

● Goes out-of-scope

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=75

Programming > Core Python Programming > 3. Syntax and Style > First Python
Application

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172038188103074146044048

First Python Application

Now that we are familiar with the syntax, style, variable assignment and memory allocation, it is time
to look at a more complex example of Python programming. Many of the things in this program will be
parts of Python which may have unfamiliar constructs, but we believe that Python is so simple and
elegant that the reader should be able to make the appropriate conclusions upon examination of the
code.

The source file we will be looking at is fgrepwc.py, named in honor of the two Unix utilities of
which this program is a hybrid. fgrep is a simple string searching command. It looks at a text file line
by line and will output any line for which the search string appears. Note that a string may appear more
than once on a line. wc is another Unix command; this one counts the number of characters, words, and
lines of an input text file.

Our version does a little of both. It requires a search string and a filename, and outputs all lines with a
match and concludes by displaying the total number of matching lines found. Because a string may
appear more than once on a line, we have to state that the count is a strict number of lines that match
rather than the total number of times a search string appears in a text file. (One of the exercises at the
end of the chapter requires the reader to "upgrade" the program so that the output is the total number of
matches.)

One other note before we take a look at the code: The normal convention for source code in this text is
to leave out all comments, and place the annotated version on the CD-ROM. However, we will include
comments for this example to aid you as you explore your first longer Python script with features we
have yet to introduce.

We now introduce fgrepwc.py, found below as Listing 3.1, and provide analysis immediately
afterward.

Example 3.1. File Find (fgrepwc.py)

This application looks for a search word in a file and displays each matching line as well as a
summary of how many matching lines were found.

 <$nopage>
001 1 #!/usr/bin/env python

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=76
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A12%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=76&now=5%2F29%2F2002+9%3A12%3A09+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/76#1.html

002 2
003 3 "fgrepwc.py -- searches for string in text file"
004 4
005 5 import sys
006 6 import string
007 7
008 8 # print usage and exit
009 9 def usage():
010 10 print "usage: fgrepwc [-i] string file"
011 11 sys.exit(1)
012 12
013 13 # does all the work
014 14 def filefind(word, filename):
015 15
016 16 # reset word count
017 17 count = 0
018 18
019 19 # can we open file? if so, return file handle
020 20 try: <$nopage>
021 21 fh = open(filename, 'r') <$nopage>
022 22
023 23 # if not, exit
024 24 except: <$nopage>
025 25 print filename, ":",sys.exc_info()[1]
026 26 usage()
027 27
028 28 # read all file lines into list and close
029 29 allLines = fh.readlines()
030 30 fh.close()
031 31
032 32 # iterate over all lines of file
033 33 for eachLine in allLines:
034 34
035 35 # search each line for the word
036 36 if string.find(eachLine, word) > -1:
037 37 count = count + 1
038 38 print eachLine,
039 39
040 40 # when complete, display line count
041 41 print count
042 42
043 43 # validates arguments and calls filefind()
044 44 def checkargs():
045 45

046 46 # check args; 'argv' comes from 'sys' module
047 47 argc = len(sys.argv)
048 48 if argc != 3:
049 49 usage()
050 50
051 51 # call fgrepwc.filefind() with args
052 52 filefind(sys.argv[1], sys.argv[2])
053 53
054 54 # execute as application
055 55 if __name__ == '__main__':
056 56 checkargs()
057 <$nopage>

Lines 1–3

The Unix start up line is followed by the module documentation string. If you import the fgrepwc
module from another module, this string can be accessed with fgrepwc.__doc__. This is a key
feature because it makes previously static text information available in a dynamic execution
environment. We can also point out that what we described is usually the only use of the
documentation string. It serves no other purpose, but it can double as a comment which is conveniently
located at the top of a file. (We invite the reader to take a look at the documentation string at the
commencement of the cgi module in the standard library for a serious example of module
documentation.)

Lines 5–6

We've already seen the sys and string modules. The sys module contains mostly variables and
functions that represent interaction between the Python interpreter and the operating system. You will
find items in here such as the command-line arguments, the exit() function, the contents of the
Python path environment variable PYTHONPATH, the standard files, and information on errors.

The string module contains practically every function you'll need in processing strings, such as
integer conversion via atoi() (and related functions), various string variables, and other string
manipulation functions.

The main motivation to provide modules to import is to keep the language small, light, fast, and
efficient, and bring in only software that you need to get the job done. Plug'n'play with only the
modules you need. Perl and Java have a similar setup, importing modules, packages, and the like, and
to a certain extent so do C and C++ with the inclusion of header files.

Lines 8–11

We declare a function called usage() here which has no arguments/parameters. The purpose of this
function is to simply display a message to the user indicating the proper command-line syntax with
which to initiate the script, and exit the program with the exit() function, found in the sys module.
We also mentioned that in the Python namespace, calling a function from an imported module requires
a "fully-qualified" name. All imported variables and functions have the following formats:
module.variable or module.function(). Thus we have sys.exit().

An alternative from-import statement allows the import of specific functions or variables from a
module, bringing them into the current namespace. If this method of importing is used, only the
attribute name is necessary.

For example, if we wanted to import only the exit() function from sys and nothing else, we could
use the following replacement:

from sys import exit

Then in the usage() function, we would call exit(1) and leave off the "sys.". One final note
about exit(): The argument to sys.exit() is the same as the C exit() function, and that is the
return value to the calling program, usually a command-line shell program. With that said, we point out
that this "protocol" of printing usage and exiting applies only to command-line driven applications.

In web-based applications, this would not be the preferred way to quit a running program, because the
calling web browser is expecting an acceptable valid HTML response. For web applications, it is more
appropriate to output an error message formatted in HTML so that end-users can correct their input. So,
basically, no web application should terminate with an error. Exiting a program will send a system or
browser error to the user, which is incorrect behavior and the responsibility falls on the website
application developer.

The same theory applies to GUI-based applications, which should not "crash out" of their executing
window. The correct way to handle errors in such applications is to bring up an error dialog and notify
the user and perhaps allow for a parameter change which may rectify the situation.

Lines 13–41

The core part of our Python program is the filefind() function. filefind() takes two
parameters: the word the user is searching for, and the name of the file to search.

A counter is kept to track the total number of successful matches (number of lines that contain the
word). The next step is to open the file. The try-except construct is used to "catch" errors which

may occur when attempting to open the file. One of Python's strengths is its ability to let the
programmer handle errors and perform appropriate action rather than simply exiting the program. This
results in a more robust application and a more acceptable way of programming. Chapter 10 is devoted
to errors and exceptions.

Barring any errors, the goal of this section of function is to open a file, read in all the lines into a buffer
that can be processed later, and close the file. We took a sneak peek at files earlier, but to recap, the
open() built-in function returns a file object or file handle, with which all succeeding operations are
performed on, i.e., readlines() and close().

The final part of the function involves iterating through each line, looking for the target word.
Searching is accomplished using the find() function from the string module. find() returns the
starting character position (index) if there is a match, or -1 if the string does not appear in the line. All
successful matches are tallied and matching lines are displayed to the user.

filefind() concludes by displaying the total number of matching lines that were found.

Lines 43–52

The last function found in our program is checkargs(), which does exactly two things: checking
for the correct number of command-line arguments and calling filefind() to do the real work. The
command-line arguments are stored in the sys.argv list. The first argument is the program name and
presumably, the second is the string we are looking for, and the final argument is the name of the file to
search.

Lines 54–56

This is the special code we alluded to earlier: the code that determines (based on __name__) the
different courses of action to take if this script was imported or executed directly. With the boilerplate
if statement, we can be sure that checkargs() would not be executed if this module were
imported, nor would we want it to. It exits anyway because the check for the command-line arguments
would fail. If the code did not have the if statement and the main body of code consisted of just the
single line to call checkargs(), then checkargs() would be executed whether this module was
imported or executed directly.

One final note regarding fgrepwc.py. This script was created to run from the command-line. Some
work would be required, specifically interface changes, if you wanted to execute this from a GUI or
web-based environment.

The example we just looked at was fairly complex, but hopefully it was not a complete mystery, with
the help of our comments in this section as well as any previous programming experience you may

have brought. In the next chapter, we will take a closer look at Python objects, the standard data types,
and how we can classify them.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=76

Programming > Core Python Programming > 3. Syntax and Style > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172038188101085148138104

Exercises

1: Identifiers. Why are variable type declarations not used in Python?

2: Identifiers. Why are variable name declarations not used in Python?

3: Identifiers. Why should we avoid the use of the underscore to begin variable names with?

4: Statements. Can multiple Python statements be written on a single line?

5: Statements. Can a single Python statement be written over multiple lines?

6: Variable assignment.

(a) Given the assignment x, y, z = 1, 2, 3, what do x, y, and z contain?

(b) What do x, y, and z contain after executing: z, x, y = y, z, x?

7: Identifiers. Which of the following are valid Python identifiers? If not, why not? Of the
invalid ones, which are keywords?

int32 40XL char $aving$ printf print
_print a do this self __name__ 0x40L
boolean python big-daddy 2hot2touch type
thisIsn'tAVar thisIsAVar R_U_Ready yes
if no counter-1 access -

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=77
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A12%3A22+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=77&now=5%2F29%2F2002+9%3A12%3A22+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#7.html

The remaining problems deal with the fgrepwc.py application.

8: In the fgrepwc.py program above, you will notice the use of the string.find()
module. What does this function do, and what are its return values for success and failure?

9: We briefly discussed module names above with regards to the __name__ variable. What
are the contents of this variable if we ran fgrepwc.py directly? What would the contents
be if we imported fgrepwc as a module?

10: The "-i" option is indicated in the usage() function of the fgrepwc module but is not
implemented anywhere in the entire application. This option is to perform the search in a
case-insensitive manner. Implement this functionality for fgrepwc.py. You may use
the getopt module.

11: fgrepwc.py currently outputs the number of matching lines which contain the search
string. Update the script so that it outputs the total number of times the string appears in the
text file. In other words, if a match occurs more than once on a line, count all of those
additional appearances.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=77

Programming > Core Python Programming > 4. Python Objects See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172038188100224058071019

Chapter 4. Python Objects
Chapter Topics

● Python Objects

● Built-in Types

● Standard Type Operators

❍ Value Comparison

❍ Object Identity Comparison

❍ Boolean

● Standard Type Built-in Functions

● Categorizing the Standard Types

● Unsupported Types

We will now begin our journey to the core part of the language. First we will introduce what Python
objects are, then discuss the most commonly-used built-in types. An introduction to the standard type
operators and built-in functions comes next, followed by an insightful discussion of the different ways
to categorize the standard types to gain a better understanding of how they work, and finally, we will
conclude by describing some types that Python does not have (mostly as a benefit for those of you with
experience with another high-level language).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=79
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A12%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=79&now=5%2F29%2F2002+9%3A12%3A31+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=79

Programming > Core Python Programming > 4. Python Objects > Python Objects See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172038188099094160165130

Python Objects

Python uses the object model abstraction for data storage. Any construct which contains any type of
value is an object. Although Python is classified as an "object-oriented programming language," OOP
is not required to create perfectly working Python applications. You can certainly write a useful Python
script without the use of classes and instances. However, Python's object syntax and architecture
certainly encourage or "provoke" this type of behavior. Let us now take a closer look at what a Python
"object" is.

All Python objects have the following three characteristics: an identity, a type, and a value.

IDENTITY Unique identifier that differentiates an object from all others. Any object's identifier can be obtained using
the id() built-in function. This value is as close as you will get to a "memory address" in Python
(probably much to the relief of some of you). Even better is that you rarely, if ever, access this value, much
less care what it is at all.

TYPE An object's type indicates what kind of values an object can hold, what operations can be applied to such
objects, and what behavioral rules these objects are subject to. You can use the type() built-in function
to reveal the type of a Python object. Since types are also objects in Python (did we mention that Python
was object-oriented?), type() actually returns an object to you rather than a simple literal.

VALUE Data item that is represented by an object.

All three are assigned on object creation and are read-only with one exception, the value. If an object
supports updates, its value can be changed; otherwise, it is also read-only. Whether an object's value
can be changed is known as an object's mutability, which we will investigate later on in Section 4.7.
These characteristics hang around as long as the object does and are reclaimed when an object is
deallocated.

Python supports a set of basic (built-in) data types, as well as some auxiliary types that may come into
play if your application requires them. Most applications generally use the standard types and create
and instantiate classes for all specialized data storage.

Object Attributes

Certain Python objects have attributes, data values or executable code such as methods, associated with

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=80
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A12%3A41+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=80&now=5%2F29%2F2002+9%3A12%3A41+PM

them. Attributes are accessed in the dotted attribute notation, which includes the name of the associated
object, and were introduced in the Core Note near Section 3.14. The most familiar attributes are
functions and methods, but some Python types have data attributes associated with them. Objects with
data attributes include (but are not limited to): classes, class instances, modules, complex numbers, and
files.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=80

Programming > Core Python Programming > 4. Python Objects > Standard Types See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172038188098227191228119

Standard Types

● Numbers (four separate sub-types)

❍ Regular or "Plain" Integer

❍ Long Integer

❍ Floating Point Real Number

❍ Complex Number

● String

● List

● Tuple

● Dictionary

We will also refer to standard types as "primitive data types" in this text because these types represent
the primitive data types that Python provides. We will go over each one in detail in Chapters 5, 6 and 7.

NOTE

In Java, although primitive data types are supported, they usually come in class "wrappers" for
which instances are created when a data type is needed. In Python, standard types are not classes,
so creating integers and strings does not involve instantiation. That also means that you cannot
subclass a standard type either, although there is nothing wrong with wrapping a type around a
Python class and modifying a class to what you desire. Python also provides some classes which
emulate types and can be subclassed. See Section 13.18.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=81
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A12%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=81&now=5%2F29%2F2002+9%3A12%3A51+PM

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=81

Programming > Core Python Programming > 4. Python Objects > Other Built-in Types See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172038188098235200064124

Other Built-in Types

● Type

● None

● File

● Function

● Module

● Class

● Class Instance

● Method

These are some of the other types you will interact with as you develop as a Python programmer. We
will also cover these in Chapters 9, 11, 12, and 13 with the exception of the Type and None types,
which we will discuss here.

Types and the type() Built-in Function

It may seem unusual perhaps, to regard types themselves as objects since we are attempting to just
describe all of Python's types to you in this chapter. However, if you keep in mind that an object's set of
inherent behaviors and characteristics (such as supported operators and built-in methods) must be
defined somewhere, an object's type is a logical place for this information. The amount of information
necessary to describe a type cannot fit into a single string; therefore types cannot simply be strings, nor
should this information be stored with the data, so we are back to types as objects.

We will formally introduce the type() built-in function. The syntax is as follows:

type(object)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=82
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A12%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=82&now=5%2F29%2F2002+9%3A12%3A59+PM

The type() built-in function takes object and returns its type. The return object is a type object.

>>> type(4) #int type
<type 'int'>
>>>
>>> type('Hello World!') #string type
<type 'string'>
>>>
>>> type(type(4)) #type type
<type 'type'>

In the examples above, we take an integer and a string and obtain their types using the type() built-in
function; in order to also verify that types themselves are types, we call type() on the output of a
type() call.

Note the interesting output from the type() function. It does not look like a typical Python data type,
i.e., a number or string, but is something enclosed by greater-than and less-than signs. This syntax is
generally a clue that what you are looking at is an object. Objects may implement a printable string
representation; however, this is not always the case. In these scenarios where there is no easy way to
"display" an object, Python "pretty-prints" a string representation of the object. The format is usually of
the form: <object_something_or_another>. Any object displayed in this manner generally
gives the object type, an object ID or location, or other pertinent information.

None

Python has a special type known as the Null object. It has only one value, None. The type of None is
also None. It does not have any operators or built-in functions. If you are familiar with C, the closest
analogy to the None type is void, while the None value is similar to the C value of NULL. (Other
similar objects and values include Perl's undef and Java's Void type and null value.) None has no
attributes and always evaluates to having a Boolean false value.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=82

Programming > Core Python Programming > 4. Python Objects > Internal Types See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172039119065024101120054

Internal Types

● Code

● Frame

● Traceback

● Slice

● Ellipsis

● Xrange

We will briefly introduce these internal types here. The general application programmer would
typically not interact with these objects directly, but we include them here for completeness. Please
refer to the source code or Python internal and online documentation for more information.

In case you were wondering about exceptions, they are now implemented as classes not types. In older
versions of Python, exceptions were implemented as strings.

Code Objects

Code objects are executable pieces of Python source that are byte-compiled, usually as return values
from calling the compile() built-in function. Such objects are appropriate for execution by either
exec or by the eval() built-in function. All this will be discussed in greater detail in Chapter 14.

Code objects themselves do not contain any information regarding their execution environment, but
they are at the heart of every user-defined function, all of which do contain some execution context.
(The actual byte-compiled code as a code object is one attribute belonging to a function). Along with
the code object, a function's attributes also consist of the administrative support which a function
requires, including its name, documentation string, default arguments, and global namespace.

Frames

These are objects representing execution stack frames in Python. Frame objects contain all the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=83
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A13%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=83&now=5%2F29%2F2002+9%3A13%3A11+PM

information the Python interpreter needs to know during a runtime execution environment. Some of its
attributes include a link to the previous stack frame, the code object (see above) that is being executed,
dictionaries for the local and global namespaces, and the current instruction. Each function call results
in a new frame object, and for each frame object, a C stack frame is created as well. One place where
you can access a frame object is in a traceback object (see below).

Tracebacks

When you make an error in Python, an exception is raised. If exceptions are not caught or "handled,"
the interpreter exits with some diagnostic information similar to the output shown below:

Traceback (innermost last):
 File "<stdin>", line N?, in ???
ErrorName: error reason

The traceback object is just a data item that holds the stack trace information for an exception and is
created when an exception occurs. If a handler is provided for an exception, this handler is given access
to the traceback object.

Slice Objects

Slice objects are created when using the Python extended slice syntax. This extended syntax allows for
different types of indexing. These various types of indexing include stride indexing, multi-dimensional
indexing, and indexing using the Ellipsis type. The syntax for multi-dimensional indexing is
sequence[start1 : end1, start2 : end2], or using the ellipsis, sequence[…,
start1 : end1]. Slice objects can also be generated by the slice() built-in function. Extended
slice syntax is currently supported only in external third party modules such as the NumPy module and
JPython.

Stride indexing for sequence types allows for a third slice element that allows for "step"-like access
with a syntax of sequence[starting_index : ending_index : stride]. We will
demonstrate an example of stride indexing using JPython here:

% jpython
JPython 1.1 on java1.1.8 (JIT: sunwjit)
Copyright (C) 1997–1999 Corporation for National Research
Initiatives
>>> foostr = 'abcde'
>>> foostr[::-1]

'edcba'
>>> foostr[::-2]
'eca'
>>> foolist = [123, 'xba', 342.23, 'abc']
>>> foolist[::-1]
['abc', 342.23, 'xba', 123]

Ellipsis

Ellipsis objects are used in extended slice notations as demonstrated above. These objects are used to
represent the actual ellipses in the slice syntax (…). Like the Null object, ellipsis objects also have a
single name, Ellipsis, and has a Boolean true value at all times.

Xranges

XRange objects are created by the built-in function xrange(), a sibling of the range() built-in
function and used when memory is limited and for when range() generates an unusually large data
set. You can find out more about range() and xrange() in Chapter 8.

For an interesting side adventure into Python types, we invite the reader to take a look at the types
module in the standard Python library.

NOTE

All standard type objects can be tested for truth value and compared to objects of the same type.
Objects have inherent true or false values. Objects take a false value when they are empty, any
numeric representation of zero, or the Null object None.

The following are defined as having false values in Python:

● None

● Any numeric zero:

❍ 0 ([plain] integer)

❍ 0.0 (float)

❍ 0L (long integer)

❍ 0.0+0.0j (complex)

❍ "" (empty string)

❍ [] (empty list)

❍ () (empty tuple)

❍ {} (empty dictionary)

Any value for an object other than the those above is considered to have a true value, i.e., non-
empty, non-zero, etc. User-created class instances have a false value when their nonzero (
__nonzero__()) or length (__len__()) special methods, if defined, return a zero value.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=83

Programming > Core Python Programming > 4. Python Objects > Standard Type
Operators

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172039119066042195214133

Standard Type Operators

Value Comparison

Comparison operators are used to determine equality of two data values between members of the same
type. These comparison operators are supported for all built-in types. Comparisons yield true or false
values, based on the validity of the comparison expression. Python chooses to interpret these values as
the plain integers 0 and 1 for false and true, respectively, meaning that each comparison will result in
one of those two possible values. A list of Python's value comparison operators is given in Table 4.1.

Table 4.1. Standard Type Value Comparison Operators

operator function

expr1 < expr2 expr1 is less than expr2

expr1 > expr2 expr1 is greater than expr2

expr1 <= expr2 expr1 is less than or equal to expr2

expr1 >= expr2 expr1 is greater than or equal to expr2

expr1 == expr2 expr1 is equal to expr2

expr1 != expr2 expr1 is not equal to expr2 (C-style)

expr1 <> expr2 expr1 is not equal to expr2 (ABC/Pascal-style)[a]

[a] This "not equals" sign will slowly be phased out. Use != instead.

Note that comparisons performed are those that are appropriate for each data type. In other words,
numeric types will be compared according to numeric value in sign and magnitude, strings will
compare lexicographically, etc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=84
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A13%3A22+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=84&now=5%2F29%2F2002+9%3A13%3A22+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/84#2.html

>>> 2 == 2
1
>>> 2.46 <= 8.33
1
>>> 5+4j >= 2-3j
1
>>> 'abc' == 'xyz'
0
>>> 'abc' > 'xyz'
0
>>> 'abc' < 'xyz'
1
>>> [3, 'abc'] == ['abc', 3]
0
>>> [3, 'abc'] == [3, 'abc']
1

Also, unlike many other languages, multiple comparisons can be made on the same line, evaluated in
left-to-right order:

>>> 3 < 4 < 7 # same as (3 < 4) and (4 < 7)
1
>>> 4 > 3 == 3 # same as (4 > 3) and (3 == 3)
1
>>> 4 < 3 < 5 != 2 < 7
0

We would like to note here that comparisons are strictly between object values, meaning that the
comparisons are between the data values and not the actual data objects themselves. For the latter, we
will defer to the object identity comparison operators described next.

Object Identity Comparison

In addition to value comparisons, Python also supports the notion of directly comparing objects
themselves. Objects can be assigned to other variables (by reference). Because each variable points to
the same (shared) data object, any change effected through one variable will change the object and
hence be reflected through all references to the same object.

In order to understand this, you will have to think of variables as linking to objects now and be less
concerned with the values themselves. Let us take a look at three examples.

Example 1: foo1 and foo2 reference the same object

foo1 = foo2 = 4

When you look at this statement from the value point-of-view, it appears that you are performing a
multiple assignment and assigning the numeric value of 4 to both the foo1 and foo2 variables. This
is true to a certain degree, but upon lifting the covers, you will find that a numeric object with the
contents or value of 4 has been created. Then that object's reference is assigned to both foo1 and
foo2, resulting in both foo1 and foo2 aliased to the same object. Figure 4-1 shows an object with
two references.

Figure 4-1. foo1 and foo2 Reference the Same Object

Example 2: foo1 and foo2 reference the same object

foo1 = 4
foo2 = foo1

This example is very much like the first: A numeric object with value 4 is created, then assigned to one
variable. When foo2 = foo1 occurs, foo2 is directed to the same object as foo1 since Python
deals with objects by passing references. foo2 then becomes a new and additional reference for the
original value. So both foo1 and foo2 now point to the same object. The same figure above applies
here as well.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/84#6.html

Example 3: foo1 and foo2 reference different objects

foo1 = 4
foo2 = 1 + 3

This example is different. First, a numeric object is created, then assigned to foo1. Then a second
numeric object is created, and this time assigned to foo2. Although both objects are storing the exact
same value, there are indeed two distinct objects in the system, with foo1 pointing to the first, and
foo2 being a reference to the second. Figure 4-2 below shows now we have two distinct objects even
though both objects have the same value.

Figure 4-2. foo1 and foo2 Reference Different Objects

Why did we choose to use boxes in our diagrams above? Well, a good way to visualize this concept is
to imagine a box (with contents inside) as an object. When a variable is assigned an object, that creates
a "label" to stick on the box, indicating a reference has been made. Each time a new reference to the
same object is made, another sticker is put on the box. When references are abandoned, then a label is
removed. A box can be "recycled" only when all the labels have been peeled off the box. How does the
system keep track of how many labels are on a box?

Each object has associated with it a counter that tracks the total number of references that exist to that
object. This number simply indicates how many variables are "pointing to" any particular object. This
is the reference count that we introduced in the last chapter in Sections 3.5.5–3.5.7. Python provides
the is and is not operators to test if a pair of variables do indeed refer to the same object.
Performing a check such as

a is b

is an equivalent expression to

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/84#9.html

id(a) == id(b)

The object identity comparison operators all share the same precedence level and are presented in
Table 4.2.

Table 4.2. Standard Type Object Identity Comparison Operators

operator function

obj1 is obj2 obj1 is the same object as obj2

obj1 is not obj2 obj1 is not the same object as obj2

In the example below, we create a variable, then another that points to the same object.

>>> a = [5, 'hat', -9.3]
>>> b = a
>>> a is b
1
>>> a is not b
0
>>>
>>> b = 2.5e-5
>>> b
2.5e-005
>>> a
[5, 'hat', -9.3]
>>> a is b
0
>>> a is not b
1

Both the is and not identifiers are Python keywords.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/84#10.html

Boolean

Expressions may be linked together or negated using the boolean logical operators and, or, and
not, all of which are Python keywords. These Boolean operations are in highest-to-lowest order of
precedence in Table 4.3. The not operator has the highest precedence and is immediately one level
below all the comparison operators. The and and or operators follow, respectively.

Table 4.3. Standard Type Boolean Operators

operator function

not expr logical NOT of expr (negation)

expr1 and expr2 logical AND of expr1 and expr2 (conjunction)

expr1 or expr2 logical OR of expr1 and expr2 (disjunction)

>>> x, y = 3.1415926536, -1024
>>> x < 5.0
1
>>> not (x < 5.0)
0
>>> (x < 5.0) or (y > 2.718281828)
1
>>> (x < 5.0) and (y > 2.718281828)
0
>>> not (x is y)
1

Earlier, we introduced the notion that Python supports multiple comparisons within one expression.
These expressions have an implicit and operator joining them together.

>>> 3 < 4 < 7 # same as "(3 < 4) and (4 < 7)"
1

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/84#12.html

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=84

Programming > Core Python Programming > 4. Python Objects > Standard Type Built-in
Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172039119068198216157185

Standard Type Built-in Functions

Along with generic operators which we have just seen, Python also provides some built-in functions
that can be applied to all the basic object types: cmp(), repr(), str(), type(), and the single
reverse or back quotes ('') operator, which is functionally-equivalent to repr().

Table 4.4. Standard Type Built-in Functions

function operation

cmp(obj1, obj2) compares obj1 and obj2, returns integer i where:

i < 0 if obj1 < obj2

i > 0 if obj1 > obj2

i == 0 if obj1 == obj2

repr(obj)/' obj' returns evaluatable string representation of obj

str(obj) returns printable string representation of obj

type(obj) determines type of obj and return type object

cmp()

The cmp() built-in function CoMPares two objects, say, obj1 and obj2, and returns a negative
number (integer) if obj1 is less than obj2, a positive number if obj1 is greater than obj2, and
zero if obj1 is equal to obj2. Notice the similarity in return values as C's strcmp(). The
comparison used is the one that applies for that type of object, whether it be a standard type or a user-
created class; if the latter, cmp() will call the class's special __cmp__() method. More on these
special methods in Chapter 13, on Python classes. Here are some samples of using the cmp() built-in

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=85
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A13%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=85&now=5%2F29%2F2002+9%3A13%3A47+PM

function with numbers and strings.

>>> a, b = -4, 12
>>> cmp(a,b)
-1
>>> cmp(b,a)
1
>>> b = -4
>>> cmp(a,b)
0
>>>
>>> a, b = 'abc', 'xyz'
>>> cmp(a,b)
-23
>>> cmp(b,a)
23
>>> b = 'abc'
>>> cmp(a,b)
0

We will look at using cmp() with other objects later.

str() and repr() (and ''Operator)

The str() STRing and repr() REPResentation built-in functions or the single back or reverse
quote operator (``) come in really handy if the need arises to either recreate an object through
evaluation or obtain a human-readable view of the contents of objects, data values, object types, etc. To
use these operations, a Python object is provided as an argument and some type of string representation
of that object is returned.

In some examples below, we take some random Python types and convert them to their string
representations.

>>> str(4.53-2j)
'(4.53-2j)'
>>>
>>> str(1)
'1'
>>>>>> str(2e10)

'20000000000.0'
>>>
>>> str([0, 5, 9, 9])
'[0, 5, 9, 9]'
>>>
>>> repr([0, 5, 9, 9])
'[0, 5, 9, 9]'
>>>
>>> `[0, 5, 9, 9]`
'[0, 5, 9, 9]'

Although all three are similar in nature and functionality, only repr() and `` do exactly the same
thing, and using them will deliver the "official" string representation of an object that can be evaluated
as a valid Python expression (using the eval() built-in function). In contrast, str() has the job of
delivering a "printable" string representation of an object which may not necessarily be acceptable by
eval(), but will look nice in a print statement.

The executive summary is that repr() is Python-friendly while str() produces human-friendly
output. However, with that said, because both types of string representations coincide so often, on
many occasions all three return the exact same string.

NOTE

Occasionally in Python, you will find both an operator and a function that do exactly the same
thing. One reason why both an operator and a function exist is that there are times where a function
may be more useful than the operator, for example, when you are passing around executable
objects like functions and where different functions may be called depending on the data item.
Another example is the double-star (**) and pow() built-in function which performs "x to the y
power" exponentiation for x ** y or pow(x,y).

A Second Look at type()

Python does not support method or function overloading, so you are responsible for any "introspection"
of the objects that your functions are called with. (Also see the Python FAQ 4.75.) Fortunately, we
have the type() built-in function to help us with just that, introduced earlier in Section 4.3.1.

What's in a name? Quite a lot, if it is the name of a type. It is often advantageous and/or necessary to
base pending computation on the type of object that is received. Fortunately, Python provides a built-in

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/82#1.html

function just for that very purpose. type() returns the type for any Python object, not just the
standard types. Using the interactive interpreter, let's take a look at some examples of what type()
returns when we give it various objects.

>>> type('')
<type 'string'>
>>>
>>> s = 'xyz'
>>>
>>> type(s)
<type 'string'>
>>>
>>> type(100)
<type 'int'>
>>>
>>> type(-2)
<type 'int'>
>>>
>>> type(0)
<type 'int'>
>>>
>>> type(0+0j)
<type 'complex'>
>>>
>>> type(0L)
<type 'long int'>
>>>
>>> type(0.0)
<type 'float'>
>>>
>>> type([])
<type 'list'>
>>>
>>> type(())
<type 'tuple'>
>>>
>>> type({})
<type 'dictionary'>
>>>
>>> type(type)
<type 'builtin_function_or_method'>
>>>
>>> type(Abc)

<type 'class'>
>>>
>>> type(Abc_obj)
<type 'instance'>

You will find most of these types familiar, as we discussed them at the beginning of the chapter,
however, you can now see how Python recognizes types with type(). Since we cannot usually
"look" at a type object to reveal its value from outside the interactive interpreter, the best use of the
type object is to compare it with other type objects to make this determination.

>>> type(1.2e-10+4.5e20j) == type(0+0j):
1
>>> type('this is a string') == type(''):
1
>>> type(34L) == type(0L)
1
>>> type(2.4) == type(3)
0

Although type() returns a type object rather than an integer, say, we can still use it to our advantage
because we can make a direct comparison using the if statement. We present below a script in
Example 4.1 that shows how we can use type() in a run-time environment.

Example 4.1. Checking the Type (typechk.py)

The function displayNumType() takes a numeric argument and uses the type() built-in to
indicate its type (or "not a number," if that is the case).

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def displayNumType(number):
004 4
005 5 print number, "is",
006 6 if type(number) == type(0):
007 7 print 'an integer'
008 8 elif type(number) == type(0L):
009 9 print 'a long'

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/85#5.html

010 10 elif type(number) == type(0.0):
011 11 print 'a float'
012 12 elif type(number) == type(0+0j):
013 13 print 'a complex number'
014 14 else: <$nopage>
015 15 print 'not a number at all!!'
016 16
017 17 displayNumType(-69)
018 18 displayNumType(9999999999999999999999L)
019 19 displayNumType(98.6)
020 20 displayNumType(-5.2+1.9j)
021 21 displayNumType('xxx')
022 <$nopage>

Running typechk.py, we get the following output:

-69 is an integer
9999999999999999999999 is a long
98.6 is a float
(-5.2+1.9j) is a complex number
xxx is not a number at all!!

An alternative to comparing an object's type with a known object's type (as we did above and in the
example below) is to utilize the types module which we briefly mentioned earlier in the chapter.

>>> import types
>>> aFloat = 1.69
>>> if type(aFloat) == types.FloatType:
… print aFloat, 'is a float type'
… else:
… print aFloat, 'is not a float type'
…
1.69 is a float type

A summary of operators and built-in functions common to all basic Python types is given in Table 4.5.
The progressing shaded groups indicate hierarchical precedence from highest-to-lowest order.
Elements grouped with similar shading all have equal priority.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/85#6.html

Table 4.5. Standard Type Operators and Built-In Functions

operator/function description result[a]

string representation

`` string representation string

built-in functions

cmp(obj1, obj2) compares two objects integer

repr(obj) string representation string

str(obj) string representation string

type(obj) determines object type type object

value comparisons

< less than Boolean

> greater than Boolean

<= less than or equal to Boolean

>= greater than or equal to Boolean

== equal to Boolean

!= not equal to Boolean

<> not equal to Boolean

object comparisons

is the same as Boolean

is not not the same as Boolean

Boolean operators

not logical negation Boolean

and logical conjuction Boolean

or logical disjunction Boolean

[a] Those results labelled as "Boolean" indicate a Boolean comparison; since Python does not have a Boolean type per se, the
result returned is a plain integer with value 0 (for false) or 1 (for true).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=85

Programming > Core Python Programming > 4. Python Objects > Categorizing the
Standard Types

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172039119069116237248019

Categorizing the Standard Types

If we were to be maximally verbose in describing the standard types, we would probably call them
something like Python's "basic built-in data object primitive types."

● "Basic," indicating that these are the standard or core types that Python provides

● "Built-in," due to the fact that types these come default with Python. (We use this term very
loosely so as to not confuse them with Python built-in variables and functions.)

● "Data," because they are used for general data storage

● "Object," because objects are the default abstraction for data and functionality

● "Primitive," because these types provide the lowest-level granularity of data storage

● "Types," because that's what they are: data types!

However, this description does not really give you an idea of how each type works or what
functionality applies to them. Indeed, some of them share certain characteristics, such as how they
function, and others share commonality with regards to how their data values are accessed. We should
also be interested in whether the data that some of these types hold can be updated and what kind of
storage they provide.

There are three different models we have come up with to help categorize the standard types, with each
model showing us the interrelationships between the types. These models help us obtain a better
understanding of how the types are related, as well as how they work.

Storage Model

The first way we can categorize the types is by how many objects can be stored in an object of this
type. Python's types, as well as types from most other languages, can hold either single or multiple
values. A type which holds a single object we will call literal or scalar storage, and those which can
hold multiple objects we will refer to as container storage. (Container objects are also referred to as
composite or compound objects in the documentation, but some of these refer to objects other than
types, such as class instances.) Container types bring up the additional issue of whether different types

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=86
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A13%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=86&now=5%2F29%2F2002+9%3A13%3A57+PM

of objects can be stored. All of Python's container types can hold objects of different types. Table 4.6
categorizes Python's types by storage model.

Table 4.6. Types categorized by the Storage Model

Storage model category Python types that fit category

literal/scalar numbers (all numeric types), strings

container lists, tuples, dictionaries

Although strings may seem like a container type since they "contain" characters (and usually more than
one character), they are not considered as such because Python does not have a character type (see
Section 4.8). Thus, because strings are self-contained literals.

Update Model

Another way of categorizing the standard types is by asking the question, "Once created, can objects be
changed or their values updated?" When we introduced Python types early on, we indicated that certain
types allow their values to be updated and others do not. Mutable objects are those whose values can be
changed, and immutable objects are those whose values cannot be changed. Table 4.7 illustrates which
types support updates and which do not.

Table 4.7. Types Categorized by the Update Model

Update model category Python types that fit category

mutable lists, dictionaries

immutable numbers, strings, tuples

Now after looking at the table, a thought which must immediately come to mind is, "Wait a minute!
What do you mean that numbers and strings are immutable? I've done things like the following:"

x = 'Python numbers and strings'
x = 'are immutable?!? What gives?'

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/86#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/86#4.html

i = 0
i = i + 1

"They sure as heck don't look immutable to me!" That is true to some degree, but looks can be
deceiving. What is really happening behind the scenes is that the original objects are actually being
replaced in the above examples. Yes, that is right. Read that again.

Rather than pointing to the original objects, new objects with the new values were allocated and
(re)assigned to the original variable names, and the old objects were garbage-collected. One can
confirm this by using the id() built-in function to compare object identities before and after such
assignments.

If we added calls to id() in our example above, we may be able to see that the objects are being
changed, as below:

x = 'Python numbers and strings'
print id(x)
x = 'are immutable?!? What gives?'
print id(x)
i = 0
print id(i)
i = i + 1
print id(i)

Upon executing our little piece of code, we get the following output. Your mileage will vary since
object IDs will differ from system to system and are memory location dependent:

16191392
16191232
7749552
7749600

On the flip side, lists can be modified without replacing the original object, as illustrated in the code
below.

>>> aList = ['ammonia', 83, 85, 'lady']
>>> aList
['ammonia', 83, 85, 'lady']
>>>
>>> aList[2]
85
>>>
>>> id(aList)
135443480
>>>
>>> aList[2] = aList[2] + 1
>>> aList[3] = 'stereo'
>>> aList
['ammonia', 83, 86, 'stereo']
>>>
>>> id(aList)
135443480
>>>
>>> aList.append('gaudy')
>>> aList.append(aList[2] + 1)
>>> aList
['ammonia', 83, 86, 'stereo', 'gaudy', 87]
>>>
>>> id(aList)
135443480

Notice how for each change, the ID for the list remained the same.

Access Model

Although the previous two models of categorizing the types are useful when being introduced to
Python, they are not the primary models for differentiating the types. For that purpose, we use the
access model. By this, we mean, how do we access the values of our stored data? There are three
categories under the access model: direct, sequence, and mapping. The different access models and
which types fall into each respective category are given in Table 4.8.

Table 4.8. Types Categorized by the Access Model

access model category types that fit category

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/86#6.html

direct numbers

sequence strings, lists, tuples

mapping dictionaries

Direct types indicate single element, non-container types. All numeric types fit into this category.

Sequence types are those whose elements are sequentially-accessible via index values starting at 0.
Accessed items can be either single elements or in groups, better known as slices. Types which fall into
this category include strings, lists, and tuples. As we mentioned before, Python does not support a
character type, so, although strings are literals, they are a sequence type because of the ability to access
substrings sequentially.

Mapping types are similar to the indexing properties of sequences, except instead of indexing on a
sequential numeric offset, elements (values) are unordered and accessed with a key, thus making
mapping types a set of hashed key-value pairs.

We will use this primary model in the next chapter by presenting each access model type and what all
types in that category have in common (such as operators and built-in functions), then discussing each
Python standard type that fits into those categories. Any operators, built-in functions, and methods
unique to a specific type will be highlighted in their respective sections.

So why this side trip to view the same data types from differing perspectives? Well, first of all, why
categorize at all? Because of the high-level data structures that Python provides, we need to
differentiate the "primitive" types from those which provide more functionality. Another reason is to be
clear on what the expected behavior of a type should be. For example, if we minimize the number of
times we ask ourselves, "What are the differences between lists and tuples again?" or "What types are
immutable and which are not?" then we have done our job. And finally, certain categories have general
characteristics which apply to all types which belong to a certain category. A good craftsman (and
craftswoman) should know what is available in his or her toolboxes.

The second part of our inquiry asks, why all these different models or perspectives? It seems that there
is no one way of classifying all of the data types. They all have crossed relationships with each other,
and we feel it best to expose the different sets of relationships shared by all the types. We also want to
show how each type is unique in its own right. No two types map the same across all categories. And
finally, we believe that understanding all these relationships will ultimately play an important implicit
role during development. The more you know about each type, the more you are apt to use the correct
ones in the parts of your application where they are the most appropriate, and where you can maximize
performance.

We summarize by presenting a cross-reference chart (see Table 4.9) which shows all the standard
types, the three different models we use for categorization, and where each type fits into these models.

Table 4.9. Categorizing the Standard Types

Data Type Storage Model Update Model Access Model

numbers literal/scalar immutable direct

strings literal/scalar immutable sequence

lists container mutable sequence

tuples container immutable sequence

dictionaries container mutable mapping

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/86#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=86

Programming > Core Python Programming > 4. Python Objects > Unsupported Types See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172032185093234073226032

Unsupported Types

Before we explore each standard type, we conclude this chapter by giving a list of types that are not
supported by Python.

Boolean

Unlike Pascal or Java, Python does not feature the Boolean type. Use integers instead.

char or byte

Python does not have a char or byte type to hold either single character or 8-bit integers. Use strings of
length one for characters and integers for 8-bit numbers.

pointer

Since Python manages memory for you, there is no need to access pointer addresses. The closest to an
address that you can get in Python is by looking at an object's identity using the id() built-in function.
Since you have no control over this value, it's a moot point.

int vs. short vs. long

Python's plain integers are the universal "standard" integer type, obviating the need for three different
integer types, i.e., C's int, short, and long. For the record, Python's integers are implemented as
C longs. For values larger in magnitude than regular integers (usually your system architecture size,
i.e., 32-bit), use Python's long integer.

float vs. double

C has both a single precision float type and double-precision double type. Python's float type is
actually a C double. Python does not support a single-precision floating point type because its
benefits are outweighed by the overhead required to support two types of floating point types.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=87
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A14%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=87&now=5%2F29%2F2002+9%3A14%3A10+PM

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=87

Programming > Core Python Programming > 4. Python Objects > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172032185094024017056209

Exercises

1: Python Objects. What three values are associated with all Python objects?

2: Types. Which Python types are immutable?

3: Types. Which Python types are sequences?

4: type() Built-in Function. What does the type() built-in function do? What kind of
object does type() return—an integer or an object?

5: str() and repr() Built-in Functions. What are the differences between the str() and
repr() built-in functions and the backquote (``) operator?

6: Object Equality. What do you think is the difference between the expressions type(a) ==
type(b) and type(a) is type(b)?

7: dir() Built-in Function. In Exercises 2-12 and 2-13, we experimented with a built-in
function called dir() which takes an object and reveals its attributes. Do the same thing
for the types module. Write down the list of the types that you are familiar with, including
all you know about each of these types; then create a separate list of those you are not
familiar with. As you learn Python, deplete the "unknown" list so that all of them can be
moved to the "familiar with" list.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=88
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A14%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=88&now=5%2F29%2F2002+9%3A14%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#9.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#9.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/68#11.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/68#12.html

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=88

Programming > Core Python Programming > 5. Numbers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172032185095146195052068

Chapter 5. Numbers
Chapter Topics

● Introduction to Numbers

● Integers

❍ (Plain) Integers

❍ Long Integers

● Floating Point Real Numbers

● Complex Numbers

● Operators

● Built-in Functions

● Related Modules

In this chapter, we will focus on Python's numeric types. We will cover each type in detail, then present
the various operators and built-in functions which can be used with numbers. We conclude this chapter
by introducing some of the standard library modules which deal with numbers.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=90
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A14%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=90&now=5%2F29%2F2002+9%3A14%3A34+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=90

Programming > Core Python Programming > 5. Numbers > Introduction to Numbers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172032185088105041025162

Introduction to Numbers

Numbers provide literal or scalar storage and direct access. Numbers are also an immutable type,
meaning that changing or updating its value results in a newly allocated object. This activity is, of
course, transparent to both the programmer and the user, so it should not change the way the
application is developed.

Python has four types of numbers: "plain" integers, long integers, floating point real numbers, and
complex numbers.

How to Create and Assign Numbers (Number Objects)

Creating numbers is as simple as assigning a value to a variable:

anInt = 1
1aLong = -9999999999999999L
aFloat = 3.1415926535897932384626433832795
aComplex = 1.23 + 4.56J

How to Update Numbers

You can "update" an existing number by (re)assigning a variable to another number. The new value can
be related to its previous value or to a completely different number altogether.

anInt = anInt + 1
aFloat = 2.718281828

How to Remove Numbers

Under normal circumstances, you do not really "remove" a number; you just stop using it! If you really
want to delete a reference to a number object, just use the del statement (introduced in Section 3.5.6).
You can no longer use the variable name, once removed, unless you assign it to a new object;

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=91
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A14%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=91&now=5%2F29%2F2002+9%3A14%3A44+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/75#6.html

otherwise, you will cause a NameError exception to occur.

 del anInt
del aLong, aFloat, aComplex

Okay, now that you have a good idea of how to create and update numbers, let us take a look at
Python's four numeric types.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=91

Programming > Core Python Programming > 5. Numbers > Integers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172032185089149014058255

Integers

Python has two types of integers. Plain integers are the generic vanilla (32-bit) integers recognized on
most systems today. Python also has a long integer size; however, these far exceed the size provided by
C longs. We will take a look at both types of Python integers, followed by a description of operators
and built-in functions applicable only to Python integer types.

(Plain) Integers

Python's "plain" integers are the universal numeric type. Most machines (32-bit) running Python will
provide a range of -231 to 231-1, that is -2,147,483,648 to 2,147,483,647. Here are some examples of
Python integers:

0101 84 -237 0x80 017 -680 -0X92

Python integers are implemented as (signed) longs in C. Integers are normally represented in base 10
decimal format, but they can also be specified in base eight or base sixteen representation. Octal values
have a "0" prefix, and hexadecimal values have either "0x" or "0X" prefixes.

Long Integers

The first thing we need to say about Python long integers is to not get them confused with long integers
in C or other compiled languages—these values are typically restricted to 32- or 64-bit sizes, whereas
Python long integers are limited only by the amount of (virtual) memory in your machine. In other
words, they can be very L-O-N-G longs.

Long integers are a superset of integers and are useful when the range of plain integers exceeds those of
your application, meaning less than -231 or greater than 231-1. Use of long integers is denoted by an
upper- or lowercase (L) or (l), appended to the integer's numeric value. Values can be expressed in
decimal, octal, or hexadecimal. The following are examples of long integers:

16384L -0x4E8L 017L -2147483648l 052144364L

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=92
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A14%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=92&now=5%2F29%2F2002+9%3A14%3A53+PM

299792458l 0xDECADEDEADBEEFBADFEEDDEAL-5432101234L

NOTE

Although Python supports a case-insensitive "L" to denote long integers, we recommend that you
use only the uppercase "L" to avoid confusion with the number "one" (1). Python will display only
long integers with a capital "L."

>>> aLong = 999999999l

>>> aLong

999999999L

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=92

Programming > Core Python Programming > 5. Numbers > Floating Point Real Numbers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172033173198032013048244

Floating Point Real Numbers

Floats in Python are implemented as C doubles, double precision floating point real numbers, values
which can be represented in straightfoward decimal or scientific notations. These 8-byte (64-bit) values
conform to the IEEE 754 definition (52M/11E/1S) where 52 bits are allocated to the mantissa, 11 bits
to the exponent (this gives you about ± 10308.25 in range), and the final bit to the sign. That all sounds
fine and dandy; however, the actual amount of precision you will receive (along with the range and
overflow handling) depends completely on the architecture of the machine as well as the
implementation of the compiler which built your Python interpreter.

Floating point values are denoted by a decimal point (.) in the appropriate place and an optional "e"
suffix representing scientific notation. We can use either lowercase (e) or uppercase (E). Positive (+)
or negative (-) signs between the "e" and the exponent indicate the sign of the exponent. Absence of
such a sign indicates a positive exponent. Here are some floating point values:

0.0 -777. 1.6 -5.555567119 96e3 * 1.0
4.3e25 9.384e-23 -2.172818 float(12) 1.000000001
3.1416 4.2E-10 -90. 6.022e23 -1.609E-19

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=93
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A15%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=93&now=5%2F29%2F2002+9%3A15%3A06+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=93

Programming > Core Python Programming > 5. Numbers > Complex Numbers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172033173199022118034223

Complex Numbers

A long time ago, mathematicians were stumped by the following equation:

The reason for this is because any real number (positive or negative) multiplied by itself results in a
positive number. How can you multiply any number with itself to get a negative number? No such real
number exists. So in the eighteenth century, mathematicians invented something called an imaginary
number i (or j— depending what math book you are reading) such that:

Basically a new branch of mathematics was created around this special number (or concept), and now
imaginary numbers are used in numerical and mathematical applications. Combining a real number
with an imaginary number forms a single entity known as a complex number. A complex number is any
ordered pair of floating point real numbers (x, y) denoted by x + y j where x is the real part and y
is the imaginary part of a complex number.

Here are some facts about Python's support of complex numbers:

● Imaginary numbers by themselves are not supported in Python

● Complex numbers are made up of real and imaginary parts

● Syntax for a complex number: real+imag j

● Both real and imaginary components are floating point values

● Imaginary part is suffixed with letter "J" lowercase (j) or upper (J)

The following are examples of complex numbers:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=94
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A15%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=94&now=5%2F29%2F2002+9%3A15%3A17+PM

64.375+1j 4.23-8.5j 0.23-8.55j 1.23e-045+6.7e+089j
6.23+1.5j -1.23-875J 0+1j9.80665-8. 31441J -.0224+0j

Complex Number Built-in Attributes

Complex numbers are one example of objects with data attributes (Section 4.1.1). The data attributes
are the real and imaginary components of the complex number object they belong to. Complex
numbers also have a method attribute which can be invoked, returning the complex conjugate of the
object.

>>> aComplex = -8.333-1.47j
>>> aComplex
(-8.333-1.47j)
>>> aComplex.real
-8.333
>>> aComplex.imag
-1.47
>>> aComplex.conjugate()
(-8.333+1.47j)

Table 5.1 describes the attributes which complex numbers have:

Table 5.1. Complex Number Attributes

attribute desciption

num. real real component of complex number num

num. imag imaginary component of complex number num

num. conjugate() returns complex conjugate of num

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/80#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/94#2.html

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=94

Programming > Core Python Programming > 5. Numbers > Operators See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172033173194117045053021

Operators

Numeric types support a wide variety of operators, ranging from the standard type of operators to
operators created specifically for numbers, and even some which apply to integer types only.

Mixed-Mode Operations

It may be hard to remember, but when you added a pair of numbers in the past, what was important was
that you got your numbers correct. Addition using the plus (+) sign was always the same. In
programming languages, this may not be as straightforward because there are different types of
numbers.

When you add a pair of integers, the + represents integer addition, and when you add a pair of floating
point numbers, the + represents double-precision floating point addition, and so on. Our little
description extends even to non-numeric types in Python. For example, the + operator for strings
represents concatenation, not addition, but it uses the same operator! The point is that for each data
type that supports the + operator, there are different pieces of functionality to "make it all work,"
embodying the concept of overloading.

Now, we cannot add a number and a string, but Python does support mixed mode operations strictly
between numeric types. When adding an integer and a float, a choice has to be made as to whether
integer or floating point addition is used. There is no hybrid operation. Python solves this problem
using something called numeric coercion. This is the process whereby one of the operands is converted
to the same type as the other before the operation. Python perform's numeric coercion by following
some rules:

To begin with, if both numbers are the same type, no conversion is necessary. When both types are
different, a search takes place to see whether one number can be converted to the other's type. If so, the
operation occurs and both numbers are returned, one having been converted. There are rules that must
be followed since certain conversions are impossible, such as turning a float into an integer, or
converting a complex number to any non-complex number type.

Coercions which are possible, however, include turning an integer into a float (just add " .0 ") or
converting any non-complex type to a complex number (just add a zero imaginary component, i.e., "
0j "). The rules of coercion follow from these two examples: integers move towards float, and all
move toward complex. The Python Reference Guide describes the coerce() operation in the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=95
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A15%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=95&now=5%2F29%2F2002+9%3A15%3A43+PM

following manner:

● If either argument is a complex number, the other is converted to complex;

● Otherwise, if either argument is a floating point number, the other is converted to floating point;

● Otherwise, if either argument is a long integer, the other is converted to long integer;

● Otherwise, both must be plain integers and no conversion is necessary (in the upcoming
diagram, this describes the rightmost arrow).

The following flowchart illustrates these coercion rules:

Figure 5.1. Numeric coercion.

Automatic numeric coercion makes life easier for the programmer since he or she does not have to
worry about adding coercion code to his or her application. If explicit coercion is desired, Python does
provide the coerce() built-in function (described later in Section 5.6.2).

If there is any bad news about coercion and mixed-mode operations, it is that no coercion is performed
during an operation. For example, if you multiply two integers together forming a result that is too
large for an integer, no conversion to a long takes place, and your operation will fail:

>>> 999999 * 999999
Traceback (innermost last):
 File "<stdin>", line 1, in ?
OverflowError: integer multiplication

A workaround to such a situation is to try to detect if such problems may occur, and if so, perform a
manual conversion of both integers to longs by using the long() built-in function before the
operation.

Below is an example showing you Python's automatic coercion. The 2 is converted to a long before the
operation.

>>> 999999L ** 2.
99999B000001L

Standard Type Operators

The standard type operators discussed in the previous chapter all work as advertised for numeric types.
Mixed-mode operations, described above, are those which involve two numbers of different types. The
values are internally converted to the same type before the operation is applied.

Here are some examples of the standard type operators in action with numbers:

>>> 5.2 == 5.2
1
>>> -719 >= 833
0
>>> 5+4e >= 2-3e

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/96#2.html

1
>>> 2 < 5 < 9 # same as (2 < 5) and (5 < 9)
1
>>> 77 > 66 == 66 # same as (77 > 66) and (66 == 66)
1
>>> 0. < -90.4 < 55.3e2 != 3 < 181
0
>>> (-1 < 1) or (1 < -1)
1

Numeric Type (Arithmetic) Operators

Python supports unary operators for no change and negation, + and -, respectively; and binary
arithmetic operators +, -, *, /, %, and **, for addition, subtraction, multiplication, division,
modulo, and exponentiation, respectively.

Rules and exceptions: Any zero right-hand argument for division and modulo will result in a
ZeroDivisionError exception. Integer modulo is straightforward integer division remainder,
while for float, take the difference of the dividend and the product of the divisor and the quotient of the
quantity dividend divided by the divisor rounded down to the closest integer, i.e., x -
(math.floor(x/y) * y, or

For complex number modulo, take only the real component of the division result, i.e., x -
(math.floor((x/y).real) * y).

The exponentiation operator has a peculiar precedence rule in its relationship with the unary operators:
It binds more tightly than unary operators to its left, but less tightly than unary operators to its right.
Due to this characteristic, you will find the ** operator twice in the numeric operator charts in this text.
Here are some examples:

>>> 3 ** 2
9
>>> -3 ** 2 # ** binds together than - to its left
-9
>>> (-3) ** 2 # group to cause - to bind first

9>>> 4.0 ** -1.0 # ** binds looser than - to its right
0.25

In the second case, it performs 3 to the power of 2 (3-squared) before it applies the unary negation. We
need to use the parentheses around the "-3" to prevent this from happening. In the final example, we
see that the unary operator binds more tightly because the operation is 1 over quantity 4 to the first

power or ¼. Note that 1/4 as an integer operation results in an integer 0, so integers are not allowed
to be raised to a negative power (it is a floating point operation anyway), as we will show here:

>>> 4 ** -1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: integer to the negative power

A summary of all arithmetic operators, in shaded hierarchical order from highest-to-lowest priority is
found Table 5.2. All the operators listed here rank higher in priority than the bitwise operators for
integers, found in Section 5.5.4.

Table 5.2. Numeric Type Arithmetic Operators

arithmetic operator function

expr1 ** expr2 expr1 raised to the power of expr2 [a]

+ expr (unary) expr sign unchanged

- expr (unary) negation of expr

expr1 ** expr2 exp1 raised to the power of expr2 [a]

expr1 * expr2 expr1 times expr2

expr1 / expr2 expr1 divided by expr2

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/95#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/95#7.html

expr1 % expr2 expr1 modulo expr2

expr1 + expr2 expr1 plus expr2

expr1 - expr2 expr1 minus expr2

[a] blinds tighter than unary operators to its left and looser than unary operators to its right

Be aware that integer division truncates. To obtain the correct fractional result, use floating point
numbers instead:

>>> 3 / 4
0
>>> 3.0 / 4.0
0.75

Here are a few more examples of Python's numeric operators.

>>> -442 - 77
-519
>>>
>>> 4 ** 3
64
>>>
>>> 4.2 ** 3.2
98.7183139527
>>> 8 / 3
2
>>> 8.0 / 3.0
2.66666666667
>>> 8 % 3
2
>>> (60. - 32.) * (5. / 9.)
15.5555555556
>>> 14 * 0x04
56
>>> 0170 / 4
30

>>> 0x80 + 0777
639
>>> 45L * 22L
990L
>>> 16399L + 0xA94E8L
709879L
>>> -2147483648L - 52147483648L
-54294967296L
>>> 64.375+1j + 4.23-8.5j
(68.605-7.5j)
>>> 0+1j ** 2 # same as 0+(lj**2)
(-1+0j)
>>> 1+1j ** 2 # same as 1+(lj**2)
0j
>>> (1+1j) ** 2
2j

Note how the exponentiation operator is still higher in priority than the binding addition operator that
delimits the real and imaginary components of a complex number. Regarding the last two examples
above, we grouped the components of the complex number together to obtain the desired result.

*Bit Operators (Integer-only)

Python integers may be manipulated bitwise and the standard bit operations are supported: inversion,
bitwise AND, OR, and exclusive OR (a.k.a. XOR), and left and right shifting. Here are some facts
regarding the bit operators:

● Negative numbers are treated as their 2's complement value.

● Left and right shifts of N bits are equivalent to multiplication and division by (2 ** N) without
overflow checking.

● For long integers, the bit operators use a "modified" form of 2's complement, acting as if the
sign bit were extended infinitely to the left.

The bit inversion operator (~) has the same precedence as the arithmetic unary operators, the highest
of all bit operators. The bit shift operators (<< and >>) come next, having a precedence one level
below that of the standard plus and minus operators, and finally we have the bitwise AND, XOR, and
OR operators (&, ^, |), respectively. All of the bitwise operators are presented in the order of
descending priority in Table 5.3.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/95#8.html

Table 5.3. Integer Type Bitwise Operators

bitwise operator function

~ num (unary) invert the bits of num, yielding -(num + 1)

num1 << num2 expr1 left shifted by expr2 bits

num1 >> num2 expr1 right shifted by expr2 bits

num1 & num2 expr1 bitwise AND with expr2

num1 ^ num2 expr1 bitwise XOR (exclusive OR) with expr2

num1 | num2 expr1 bitwise OR with expr2

We will now present some examples using the bit operators using 30 (011110), 45 (101101), and 60
(111100):

>>> 30 & 45
12
>>> 30 | 45
63
>>> 45 & 60
44
>>> 45 | 60
61
>>> ~30
-31
>>> ~45
-46
>>> 45 << 1
90
>>> 60 >> 2
15
>>> 30 ^ 45
51

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=95

Programming > Core Python Programming > 5. Numbers > Built-in Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172034243135042141168081

Built-in Functions

Standard Type Functions

In the last chapter, we introduced the cmp(), str(), and type() built-in functions that apply for
all standard types. For numbers, these functions will compare two numbers, convert numbers into
strings, and tell you a number's type, respectively. Here are some examples of using these functions:

>>> cmp(-6, 2)]
-1
>>> cmp(-4.333333, -2.718281828)
-1
>>> cmp(0xFF, 255)
0
>>> str(0xFF)
'255'
>>> str(55.3e2)
'5530.0'
>>> type(0xFF)
<type 'int'>
>>> type(98765432109876543210L)
<type 'long int'>
>>> type(2-1j)
<type 'complex'>

Numeric Type Functions

Python currently supports different sets of built-in functions for numeric types. Some convert from one
numeric type to another while others are more operational, performing some type of calculation on
their numeric arguments.

Conversion

The int(), long(), float(), and complex() built-in functions are used to convert from

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=96
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A16%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=96&now=5%2F29%2F2002+9%3A16%3A11+PM

any numeric type to another. Starting in Python 1.5, these functions will also take strings and return the
numerical value represented by the string.

The following are some examples using the numeric type conversion built-ins:

>>> int(4.25555)
4
>>> long(42)
42L
>>> float(4)
4.0
>>> complex(4)
(4+0j)
>>>
>>> complex(2.4, -8)
(2.4-8j)
>>>
>>> complex(2.3e-10, 45.3e4)
(2.3e-10+453000j)

Table 5.4 nutshells these numeric type conversion built-in functions.

Table 5.4. Numeric Type Conversion Built-in Functions

function operation

int(obj, base=10) converts string or number obj to (plain) integer; provides same behavior
as string.atoi(); optional base argument introduced in 1.6

long(obj, base=10) converts string or number obj to long integer; provides same behavior as
string.atol(); optional base argument introduced in 1.6

float(obj) converts string or number obj to floating point; provides same behavior
as string.atof()

complex(str) or complex(real,
imag =0.0)

converts string str to complex, or takes real (and perhaps imag inary)
numbers and returns a complex number with those components

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/96#4.html

Operational

Python has five operational built-in functions for numeric types: abs(), coerce(), divmod(),
pow(), and round(). We will take a look at each and present some usage examples.

abs() returns the absolute value of the given argument. If the argument is a complex number, then
math.sqrt(num. real2 + num. imag2) is returned. Here are some examples of using the
abs() built-in function:

>>> abs(-1)
1
>>> abs(10.)
10.0
>>> abs(1.2-2.1j)
2.41867732449
>>> abs(0.23 - 0.78)
0.55

The coerce() function, although it technically is a numeric type conversion function, does not
convert to a specific type and acts more like an operator, hence our placement of it in our operational
built-ins section. In Section 5.5.1, we discussed numeric coercion and how Python performs that
operation. The coerce() function is a way for the programmer to explicitly coerce a pair of numbers
rather than letting the interpreter do it. This feature is particularly useful when defining operations for
newly-created numeric class types. coerce() just returns a tuple containing the converted pair of
numbers. Here are some examples:

>>> coerce(1, 2)
(1, 2)
>>>
>>> coerce(1.3, 134L)
(1.3, 134.0)
>>>
>>> coerce(1, 134L)
(1L, 134L)
>>>
>>> coerce(1j, 134L)
(1j, (134+0j))
>>>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/95#1.html

>>> coerce(1.23-41j, 134L)
((1.23-41j), (134+0j))

The divmod() built-in function combines division and modulus operations into a single function call
that returns the pair (quotient, remainder) as a tuple. The values returned are the same as those given
for the standalone division and modulus operators for integer types. For floats, the quotient returned is
math.floor(num1/num2) and for complex numbers, the quotient is math.floor((
num1/num2).real).

>>> divmod(10,3)
(3, 1)
>>> divmod(3,10)
(0, 3)
>>> divmod(10,2.5)
(4.0, 0.0)
>>> divmod(2.5,10)
(0.0, 2.5)
>>> divmod(2+1j, 0.5-1j)
(0j, (2+1j))

Both pow() and the double star (**) operator perform exponentiation; however, there are differences
other than the fact that one is an operator and the other is a built-in function.

The ** operator did not appear until Python 1.5, and the pow() built-in takes an optional third
parameter, a modulus argument. If provided, pow() will perform the exponentiation first, then return
the result modulo the third argument. This feature is used for cryptographic applications and has better
performance than pow(x,y) % z since the latter performs the calculations in Python rather than in C
like pow(x, y, z).

>>> pow(2,5)
32
>>>
>>> pow(5,2)
25
>>> pow(3.141592,2)
9.86960029446
>>>

>>> pow(1+1j, 3)
(-2+2j)

The round() built-in function has a syntax of round (flt,ndig=0). It normally rounds a floating
point number to the nearest integral number and returns that result (still) as a float. When the optional
third ndig option is given, round() will round the argument to the specific number of decimal
places.

>>> round(3)
3.0
>>> round(3.45)
3.0
>>> round(3.4999999)
3.0
>>> round(3.4999999, 1)
3.5
>>> import math
>>> for eachNum in range(10):
… print round(math.pi, eachNum)
…
3.0
3.1
3.14
3.142
3.1416
3.14159
3.141593
3.1415927
3.14159265
3.141592654
3.1415926536
>>> round(-3.5)
-4.0
>>> round(-3.4)
-3.0
>>> round(-3.49)
-3.0
>>> round(-3.49, 1)
-3.5

Note that the rounding performed by round() moves away from zero on the number line, i.e.,
round(.5) goes to 1 and round(-.5) goes to -1. Also, with functions like int(), round(),
and math.floor(), all may seem like they are doing the same thing; it is possible to get them all
confused. Here is how you can differentiate among these:

● int() chops off the decimal point and everything after (a.k.a. truncation).

● floor() rounds you to the next smaller integer, i.e., the next integer moving in a negative
direction (towards the left on the number line).

● round() (rounded zero digits) rounds you to the nearest integer period.

Here is the output for four different values, positive and negative, and the results of running these three
functions on eight different numbers. (We reconverted the result from int() back to a float so that
you can visualize the results more clearly when compared to the output of the other two functions.)

>>> import math
>>> for eachNum in (.2, .7, 1.2, 1.7, -.2, -.7, -1.2, -1.7):
… print "int(%.1f)\t%+.1f" % (eachNum, float(int(eachNum)))
… print "floor(%.1f)\t%+.1f" % (eachNum,
… math.floor(eachNum))
… print "round(%.1f)\t%+.1f" % (eachNum, round(eachNum))
… print '-' * 20
…
int(0.2) +0.0
floor(0.2) +0.0
round(0.2) +0.0

int(0.7) +0.0
floor(0.7) +0.0
round(0.7) +1.0

int(1.2) +1.0
floor(1.2) +1.0
round(1.2) +1.0

int(1.7) +1.0
floor(1.7) +1.0
round(1.7) +2.0

int(-0.2) +0.0

floor(-0.2) -1.0
round(-0.2) +0.0

int(-0.7) +0.0
floor(-0.7) -1.0
round(-0.7) -1.0

int(-1.2) -1.0
floor(-1.2) -2.0
round(-1.2) -1.0

int(-1.7) -1.0
floor(-1.7) -2.0
round(-1.7) -2.0

Table5.5 summarizes the operational functions for numeric types:

Table 5.5. Numeric Type Operational Built-in Functions[a]

function operation

abs(num) returns the absolute value of num

coerce(num1, num2) converts num1 and num2 to the same numeric type and returns the converted pair as
a tuple

divmod(num1, num2) division-modulo combination returns (num1 / num2, num1 % num2) as a
tuple. For floats and complex, the quotient is rounded down (complex uses only real
component of quotient)

pow(num1, num2, mod =1) raises num1 to num2 power, quantity modulo mod if provided

round(flt, ndig =0) (floats only) takes a float flt and rounds it to ndig digits, defaulting to zero if not
provided

[a] except for round(), which applies only to floats

Integer-only Functions

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/96#6.html

In addition to the built-in functions for all numeric types, Python supports a few that are specific only
to integers (plain and long). These functions fall into two categories, base presentation with hex() and
oct(), and ASCII conversion featuring chr() and ord().

Base Representation

As we have seen before, Python integers automatically support octal and hexadecimal representations
in addition to the decimal standard. Also, Python has two built-in functions which return string
representations of an integer's octal or hexadecimal equivalent. These are the oct() and hex() built-
in functions, respectively. They both take an integer (in any representation) object and return a string
with the corresponding value. The following are some examples of their usage:

>>> hex(255)
'0xff'
>>> hex(23094823l)
'0x1606627L'
>>> hex(65535*2)
'0x1fffe'
>>>
>>> oct(255)
'0377'
>>> oct(23094823l)
'0130063047L'
>>> oct(65535*2)
'0377776'

ASCII Conversion

Python also provides functions to go back and forth between ASCII (American Standard Code for
Information Interchange) characters and their ordinal integer values. Each character is mapped to a
unique number in a table numbered from 0 to 255. This number does not change for all computers
using the ASCII table, providing consistency and expected program behavior across different systems.
chr() takes a single-byte integer value and returns a one-character string with the equivalent ASCII
character. ord() does the opposite, taking a single ASCII character in the form of a string of length
one and returns the corresponding ASCII value as an integer:

>>> ord('a')
97
>>> ord('A')

65
>>> ord('0')
48

>>> chr(97)
'a'
>>> chr(65L)
'A'
>>> chr(48)
'0'

Table 5.6 shows all built-in functions for integer types.

Table 5.6. Integer Type Built-in Functions

function operation

hex(num) converts num to hexadecimal and return as string

oct(num) converts num to octal and return as string

chr(num) takes ASCII value num and returns ASCII character as string; 0 <= num <= 255 only

ord(chr) takes ASCII chr and returns corresponding ordinal ASCII value; chr must be a string of length 1

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/96#11.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=96

Programming > Core Python Programming > 5. Numbers > Related Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172034243132145254063137

Related Modules

There are a number of modules in the Python standard library that add-on to the functionality of the
operators and built-in functions for numeric types. Table 5.7 lists the key modules for use with numeric
types. Refer to the literature or online documentation for more information on these modules.

Table 5.7. Numeric Type Related Modules

module contents

array implements array types… a restricted sequence type

math/cmath supplies standard C library mathematical functions; most functions available in math are implemented
for complex numbers in the cmath module

operator contains numeric operators available as function calls, i.e., operator.sub(m, n) is equivalent to
the difference (m - n) for numbers m and n

random is default RNG module for Python… obsoletes rand and whrandom

For advanced numerical and scientific mathematics applications, there is also a well known external
module called NumPy which may be of interest to you.

NOTE

The random module is the general-purpose place to go if you are looking for random numbers.
The random number generator (RNG), based on the Wichmann-Hill algorithm, comes seeded with
the current timestamp and is ready to go as soon as it has loaded. Here are four of the most
commonly used functions in the random module:

randint() takes two integer values and returns a random integer between those values inclusive

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=97
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A16%3A22+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=97&now=5%2F29%2F2002+9%3A16%3A22+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/97#1.html

uniform() does almost the same thing as randint(), but returns a float and is inclusive only of the smaller
number (exclusive of the larger number)

random() works just like uniform() except that the smaller number is fixed at 0.0, and the larger number is
fixed at 1.0

choice() given a sequence (see Chapter 6), randomly selects and returns a sequence item

We have now come to the conclusion of our tour of all of Python's numeric types. A summary of
operators and built-in functions for numeric types is given in Table 5.8.

Table 5.8. Operators and Built-in Functions for All Numeric Types

Operator/built-in Description int long float complex Result [a]

abs() absolute value • • • • numbera[a]

chr() character • • string

coerce() numeric coercion • • • • tuple

complex() complex conversion • • • • complex

divmod() division/modulo • • • • tuple

float() float conversion • • • • float

hex() hexadecimal string • • string

int() int conversion • • • • int

long() long conversion • • • • long

oct() octal string • • string

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/97#2.html

ord() ordinal (string) int

pow() exponentiation • • • • number

round() float rounding • float

** [b] exponentiation • • • • number

+ [c] no change • • • • number

- [c] negation • • • • number

~ [c] bit inversion • • int/long

** [b] exponentiation • • • • number

* multiplication • • • • number

/ division • • • • number

% modulo/remainder • • • • number

+ addition • • • • number

- subtraction • • • • number

<< bit left shift • • int/long

>> bit right shift • • int/long

& bitwise AND • • int/long

^ bitwise XOR • • int/long

| bitwise OR • • int/long

[a] a result of "number" indicates any of the four numeric types

[b] has a unique relationship with unary operators; see Section 5.5.3 and Table 5.2

[c] unary operator

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/95#4.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/95#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=97

Programming > Core Python Programming > 5. Numbers > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172034243133000097237097

Exercises

The exercises in this chapter may first be implemented as applications. Once full functionality and
correctness have been verified, we recommend that the reader convert his or her code to functions
which can be used in future exercises. On a related note, one style suggestion is to not use print
statements in functions. Instead, have the functions return the appropriate value and have the caller
perform any output desired. This keeps the code adaptable and reusable.

1: Integers. Name the differences between Python's plain and long integers.

2: Operators. (a) Create a function to take two numbers (any type) and output their sum.

(b) Write another function, but output the product of two given numbers.

3: Standard Type Operators. Take test score input from the user and output letter grades
according to the following grade scale/curve:

A: 90 – 100

B: 80 – 89

C: 70 – 79

D: 60 – 69

F: < 60

4: Modulus. Determine whether a given year is a leap year, using the following formula: a
leap year is one that is divisible by four, but not by one hundred, unless it is also divisible
by four hundred. For example, 1992, 1996, and 2000 are leap years, but 1967 and 1900 are
not. The next leap year falling on a century is 2400.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=98
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A16%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=98&now=5%2F29%2F2002+9%3A16%3A34+PM

5: Modulus. Calculate the number of basic American coins given a value less than 1 dollar. A
penny is worth 1 cent, a nickel is worth 5 cents, a dime is worth 10 cents, and a quarter is
worth 25 cents. It takes 100 cents to make 1 dollar. So given an amount less than 1 dollar
(if using floats, convert to integers for this exercise), calculate the number of each type of
coin necessary to achieve the amount, maximizing the number of larger denomination
coins. For example, given $0.76, or 76 cents, the correct output would be "3 quarters and 1
penny." Output such as "76 pennies" and "2 quarters, 2 dimes, 1 nickel, and 1 penny" are
not acceptable.

6: Arithmetic. Create a calculator application. Write code that will take two numbers and an
operator in the format: N1 OP N2, where N1 and N2 are floating point or integer values,
and OP is one of the following: +, -, *, /, %, **, representing addition,
subtraction, multiplication, division, modulus/remainder, and exponentiation, respectively,
and displays the result of carrying out that operation on the input operands.

7: Sales Tax. Take a monetary amount (i.e., floating point dollar amount [or whatever
currency you use]), and determine a new amount figuring all the sales taxes you must pay
where you live.

8: Geometry. Calculate the area and volume of:

(a) squares and cubes

(b) circles and spheres

9: Style. Answer the following numeric format questions:

(a) Why does 17 + 32 give you 49, but 017 + 32 give you 47 and 017 + 032 give you 41, as
indicated in the examples below?

>>> 17 + 32
49
>>> 017+ 32
47
>>> 017 + 032
41

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#11.html

(b) Why does 56l + 78l give you 134L and not 1342, as indicated in the example below?

 >>> 56l + 78l
134L

10: Conversion. Create a pair of functions to convert Fahrenheit to Celsius temperature values.
C = (F - 32) * (5 / 9) should help you get started.

11: Modulus. (a) Using loops and numeric operators, output all even numbers from 0 to 20.

(b) Same as part (a), but output all odd numbers up to 20.

(c) From parts (a) and (b), what is an easy way to tell the difference between even and odd
numbers?

(d) Using part (c), write some code to determine if one number divides another. In your
solution, ask the user for both numbers and have your function answer "yes" or "no" as to
whether one number divides another by returning 1 or 0, respectively.

12: Limits. Determine the largest and smallest ints, longs, floats, and complex numbers that
your system can handle.

13: Conversion. Write a function that will take a time period measured in hours and minutes
and return the total time in minutes only.

14: Bank account interest. Create a function to take an interest percentage rate for a bank
account, say, a Certificate of Deposit (CD). Calculate and return the Annual Percentage
Yield (APY) if the account balance was compounded daily.

15: GCD and LCM. Determine the greatest common divisor and least common multiple of a
pair of integers.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#12.html

16: Home finance. Take an opening balance and a monthly payment. Using a loop, determine
remaining balances for succeeding months, including the final payment. "Payment 0"
should just be the opening balance and schedule monthly payment amount. The output
should be in a schedule format similar to the following (the numbers used in this example
are for illustrative purposes only):

Enter opening balance: 100.00
Enter monthly payment: 16.13

 Amount Remaining
Pymt# Paid Balance
----- ------ ---------
 0 $ 0.00 $100.00
 1 $16.13 $ 83.87
 2 $16.13 $ 67.74
 3 $16.13 $ 51.61
 4 $16.13 $ 35.48
 5 $16.13 $ 19.35
 6 $16.13 $ 3.22
 7 $ 3.22 $ 0.00

17: *Random numbers. Read up on the random module and do the following problem:
Generate a list of a random number (1 < N <= 100) of random numbers (0 <= n <= 231 -1).
Then randomly select a set of these numbers (1 <= N <= 100), sort them, and display this
subset.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=98

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172034243130099214131155

Chapter 6. Sequences: Strings, Lists, and Tuples
Chapter Topics

● Introduction to Sequences

● Strings

● Lists

● Tuples

The next family of Python types we will be exploring are those whose items are ordered and
sequentially accessible via index offsets into the set. This group, known as sequences, includes the
types: strings, lists, and tuples. We will first describe the general and common features followed by a
closer examination of each type. We will first introduce all operators and built-in functions that apply
to sequence types, then cover each sequence type individually. For each sequence type, we will provide
the following information:

● Introduction

● Operators

● Built-in Functions

● Built-in Methods (if applicable)

● Special Features (if applicable)

● Related Modules (if applicable)

We will conclude this chapter with a reference chart that summarizes all the operators and built-in
functions which apply to all sequence types. Let us begin by taking a high-level overview and examine
the operators and built-in functions applicable to all sequence types.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=100
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A16%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=100&now=5%2F29%2F2002+9%3A16%3A47+PM

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=100

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Sequences

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172034243131212129127126

Sequences

Sequence types all share the same access model: ordered set with sequentially-indexed offsets to get to
each element. Multiple elements may be achieved by using the slice operators which we will explore in this
chapter. The numbering scheme used starts from zero (0) and ends with one less the length of the
sequence—the reason for this is because we began at 0. Figure6-1 illustrates how sequence items are
stored.

Figure 6.1. How Sequence Elements Are Stored and Accessed

Operators

A list of all the operators applicable to all sequence types is given in Table6.1. The operators appear in
hierarchical order from highest to lowest with the levels alternating between shaded and unshaded.

Table 6.1. Sequence Type Operators

Sequence Operator Function
seq[ind] element located at index ind of seq

seq[ind1:ind2] elements from index ind1 to ind2 of seq

seq * expr seq repeated expr times

seq1 + seq2 concatenates sequences seq1 and seq2

obj in seq tests if obj is a member of sequence seq
obj not in seq tests if obj is not a member of sequence seq

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=101
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A16%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=101&now=5%2F29%2F2002+9%3A16%3A58+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/101#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/101#3.html

Membership (in, not in)

Membership test operators are used to determine whether an element is in or is a member of a sequence.
For strings, this test is whether a character is in a string, and for lists and tuples, it is whether an object is an
element of those sequences. The in and not in operators are Boolean in nature; they return the integer
one if the membership is confirmed and zero otherwise.

The syntax for using the membership operators is as follows:

obj [not] in
 sequence

Concatenation (+)

This operation allows us to take one sequence and join it with another sequence of the same type. The
syntax for using the concatenation operator is as follows:

sequence1 + sequence2

The resulting expression is a new sequence which contains the combined contents of sequences sequence1
and sequence2.

Repetition (*)

The repetition operator is useful when consecutive copies of sequence elements are desired. The syntax for
using the membership operators is as follows:

sequence * copies_int

The number of copies, copies_int, must be a plain integer. It cannot even be a long. As with the
concatenation operator, the object returned is newly allocated to hold the contents of the multiply-replicated
objects.

Starting in Python 1.6, copies_int can also be a long.

Slices ([], [:])

Sequences are structured data types whose elements are placed sequentially in an ordered manner. This
format allows for individual element access by index offset or by an index range of indices to "grab" groups
of sequential elements in a sequence. This type of access is called slicing, and the slicing operators allow us
to perform such access.

The syntax for accessing an individual element is:

sequence[index]

sequence is the name of the sequence and index is the offset into the sequence where the desired element is
located. Index values are either positive, ranging from 0 to the length of the sequence less one, i.e., 0 <=
index <= len(sequence) -1, or negative, ranging from -1 to the negative length of the sequence, -
len(sequence), i.e., -len(sequence) <= index <= -1. The difference between the positive
and negative indexes is that positive indexes start from the beginning of the sequences and negative indexes
begin from the end.

Accessing a group of elements is similar. Starting and ending indexes may be given, separated by a colon
(:). The syntax for accessing a group of elements is:

sequence [[starting_index]: [ending_index]]

Using this syntax, we can obtain a "slice" of elements in sequence from the starting_index up to but
not including the element at the ending_index index. Both starting_index and ending_index
are optional, and if not provided, the slice will go from the beginning of the sequence or until the end of the
sequence, respectively.

In Figures 6-2 to 6-6, we take an entire sequence (of soccer players) of length 5, and explore how to take
various slices of such a sequence.

Figure 6.2. Entire sequence: sequence or sequence [:]

Figure 6.3. Sequence slice: sequence [0:3] or sequence [:3]

Figure 6.4. Sequence slice: sequence [2:5] or sequence [2:]

Figure 6.5. Sequence slice: sequence [1:3]

Figure 6.6. Sequence slice: sequence [3]

We will take a closer look at slicing when we cover each sequence type.

Built-in Functions

Conversion

The list(), str(), and tuple() built-in functions are used to convert from any sequence type to
another. Table 6.2 lists the sequence type conversion functions.

Table 6.2. Sequence Type Conversion Built-in Functions

Function Operation
list (seq) converts seq to list

str (obj) converts obj to string

tuple (seq) converts seq to tuple

We use the term "convert" loosely. It does not actually convert the argument object into another type; recall
that once Python objects are created, we cannot change their identity or their type. Rather, these functions
just create a new sequence of the requested type, populate it with the members of the argument object, and
pass that new sequence back as the return value. This follows a similar vein to the concatenation and
repetition operations described in Section 6.1.1.

The str() function is most popular when converting an object into something printable and works with
other types of objects, not just sequences. The list() and tuple() functions are useful to convert from

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/101#15.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/101#2.html

one to another (lists to tuples and vice versa). However, although those functions are applicable for strings
as well since strings are sequences, using tuple() and list() to turn strings into tuples or lists is not
common practice.

Operational

Python provides the following operational built-in functions for sequence types (see Table 6.3).

We are now ready to take a tour through each sequence type and will start our journey by taking a look at
Python strings.

Table 6.3. Sequence Type Operational Built-in Functions

Function Operation
len (seq) returns length (number of items) of seq

max (seq) returns "largest" element in seq

min (seq) returns "smallest" element in seq

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/101#17.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=101

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Strings

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172035020057202074084200

Strings

Strings are amongst the most popular types in Python. We can create them simply by enclosing
characters in quotes. Python treats single quotes the same as double quotes. This contrasts with most
other scripting languages, which use single quotes for literal strings and double quotes to allow
escaping of characters. Python uses the "raw string" operator to create literal quotes, so no
differentiation is necessary. Other languages such as C use single quotes for characters and double
quotes for strings. Python does not have a character type; this is probably another reason why single
and double quotes are the same.

Nearly every Python application uses strings in one form or another. Strings are a literal or scalar type,
meaning they are treated by the interpreter as a singular value and are not containers which hold other
Python objects. Strings are immutable, meaning that changing an element of a string requires creating a
new string. Strings are made up of individual characters, and such elements of strings may be accessed
sequentially via slicing.

How to Create and Assign Strings

Creating strings is as simple as assigning a value to a variable:

>>> aString = 'Hello World!'
>>> anotherString = "Python is cool!"
>>> print aString
Hello World!
>>> print anotherString
Python is cool!
>>> aBlankString = ''
>>> print aBlankString
''

How to Access Values(Characters and Substrings) in Strings

Python does not support a character type; these are treated as strings of length one, thus also considered
a substring. To access substrings, use the square brackets for slicing along with the index or indices to

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=102
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A17%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=102&now=5%2F29%2F2002+9%3A17%3A55+PM

obtain your substring:

>>> aString = 'Hello World!'
>>> aString[0]
'H'
>>> aString[1:5]
'ello'
>>> aString[6:]
'World!'

How to Update Strings

You can "update" an existing string by (re)assigning a variable to another string. The new value can be
related to its previous value or to a completely different string altogether.

>>> aString = aString[:6] + 'Python!'
>>> aString
'Hello Python!'
>>> aString = 'different string altogether'
>>> aString
'different string altogether'

Like numbers, strings are not mutable, so you cannot change an existing string without creating a new
one from scratch. That means that you cannot update individual characters or substrings in a string.
However, as you can see above, there is nothing wrong with piecing together part of your old string and
assigning it to a new string.

How to Remove Characters and Strings

To repeat what we just said, strings are immutable, so you cannot remove individual characters from an
existing string. What you can do, however, is to empty the string, or to put together another string
which drops the pieces you were not interested in.

Let us say you want to remove one letter from "Hello World!"… the (lowercase) letter "l," for example:

>>> aString = 'Hello World!'
>>> aString = aString[:3] + aString[4:]

>>> aString
'Helo World!'

To clear or remove a string, you assign an empty string or use the del statement, respectively:

>>> aString = ''

>>> aString
''
>>> del aString

In most applications, strings do not need to be explicitly deleted. Rather, the code defining the string
eventually terminates, and the string is automatically garbage-collected.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=102

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples > Strings and Operators See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172044044177162147127137

Strings and Operators

Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including the standard types. We will take a look at
how some of those apply to strings. For a brief introduction, here are a few examples using strings:

>>> str1 = 'abc'
>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> str1 < str2
1
>>> str2 != str3
1
>>> (str1 < str3) and (str2 == 'xyz')
0

When using the value comparison operators, strings are compared lexicographically (ASCII value order).

Sequence Operators

Slices ([] and [:])

Earlier in Section 6.1.1, we examined how we can access individual or a group of elements from a sequence. We will apply that
knowledge to strings in this section. In particular, we will look at:

● Counting forward

● Counting backward

● Default/missing indexes

For the following examples, we use the single string 'abcd'. Provided in the figure is a list of positive and negative indexes that
indicate the position in which each character is located within the string itself.

Using the length operator, we can confirm that its length is 4:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=103
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A18%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=103&now=5%2F29%2F2002+9%3A18%3A08+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/101#2.html

>>> string = 'abcd'
>>> len(string)
4

When counting forward, indexes start at 0 to the left and end at one less than the length of the string (because we started from
zero). In our example, the final index of our string is

final index = len(string) - 1
 = 4 - 1
 = 3

We can access any substring within this range. The slice operator with a single argument will give us a single character, and the
slice operator with a range, i.e., using a colon (:), will give us multiple consecutive characters. Again, for any ranges
[start:end], we will get all characters starting at offset start up to, but not including, the character at end. In other
words, for all characters x in the range [start : end], start<= x < end.

 >>> string[0]
'a'
>>> string[1:3]
'bc'
>>> string[2:4]
'cd'
>>> string[4]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: string index out of range

Any index outside our valid index range (in our example, 0 to 3) results in an error. Above, our access of string[2:4] was
valid because that returns characters at indexes 2 and 3, i.e., 'c' and 'd', but a direct access to the character at index 4 was
invalid.

When counting backward, we start at index -1 and move toward the beginning of the string, ending at negative value of the length
of the string. The final index (the first character) is located at:

 final index = -len(string)
 = -4

>>> string[-1]
'd'
>>> string[-3:-1]
'bc'
>>> string[-4]
'a'

When either a starting or an ending index is missing, they default to the beginning or end of the string, respectively.

>>> string[2:]
'cd'
>>> string[1:]
'bcd'
>>> string[:-1]
'abc'
>>> string[:]
'abcd'

Notice how the omission of both indices gives us a copy of the entire string.

Membership (in, not in)

The membership question asks whether a character (string of length one) appears in a string. A one is returned if that character
appears in the string and zero otherwise. Note that the membership operation is not used to determine if a substring is within a
string. Such functionality can be accomplished by using the string methods or string module functions find() or index() (and
their brethren rfind() and rindex()).

Here are a few more examples of strings and the membership operators.

>>> 'c' in 'abcd'
1
>>> 'n' in 'abcd'
0
>>> 'n' not in 'abcd'
1

In Example 6-1, we will be using the following predefined strings found in the string module:

>>> import string
>>> string.uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.lowercase
'abcdefghijklmnopqrstuvwxyz'
>>> string.letters
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.digits
'0123456789'

Example 6-1 is a small script called idcheck.py which checks for valid Python identifiers. As we now know, Python identifiers
must start with an alphabetic character. Any succeeding characters may be alphanumeric. The example also shows use of the
string concatenation operator (+) introduced later in this section.

Running this script several times produces the following output:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/103#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/103#7.html

% python idcheck.py
Welcome to the Identifier Checker v1.0
Testees must be at least 2 chars long.
Identifier to test? counter
okay as an identifier
%
% python idcheck.py
Welcome to the Identifier Checker v1.0
Testees must be at least 2 chars long.
Identifier to test? 3d_effects
invalid: first symbol must be alphabetic

Let us take apart the application line by line:

Lines 3–6

Import the string module and use some of the predefined strings to put together valid alphabetic and numeric identifier strings
which we will test against.

Example 6.1. ID Check (idcheck.py)

Tests for identifier validity. First symbol must be alphabetic and remaining symbols must be alphanumeric. This tester program
only checks identifiers which are at least two characters in length.

 <$nopage>
001 1 #!usr/bin/env python
002 2
003 3 import string
004 4
005 5 alphas = string.letters + '_'
006 6 nums = string.digits
007 7
008 8 print 'Welcome to the Identifier Checker v1.0'
009 9 print 'Testees must be at least 2 chars long.'
010 10 inp = raw_input('Identifier to test? ')
011 11
012 12 if len(inp) > 1:
013 13
014 14 if inp[0] not in alphas:
015 15 print '''invalid: first symbol must be
016 16 alphabetic'''
017 17 else: <$nopage>
018 18 for otherChar in inp[1:]:
019 19
020 20 if otherChar not in alphas + nums:
021 21 print '''invalid: remaining
022 22 symbols must be alphanumeric'''
023 23 break <$nopage>
024 24 else: <$nopage>
025 25 print "okay as an identifier"
026 <$nopage>

Lines 8–12

Print the salutation and prompt for user input. The if statement on line twelve filters out all statements shorter than two characters
in length.

Lines 14–16

Check to see if the first symbol is alphabetic. If it is not, display the output indicating the result and perform no further processing.

Lines 17–18

Otherwise, loop to check the other characters, starting from the second symbol to the end of the string.

Lines 20–23

Check to see if each remaining symbol is alphanumeric. Note how we use the concatenation operator (see below) to create the set
of valid characters. As soon as we find an invalid character, display the result and perform no further pocessing by exiting the loop
with break.

NOTE

In general, repeat performances of operations or functions as arguments in a loop are unproductive as far as performance is
concerned.

 while
i < len(string):
print 'character %d is:', string[i]

The loop above wastes valuable time recalculating the length of string string. This function call occurs for each loop
iteration. If we simply save this value once, we can rewrite our loop so that it is more productive.

length = len(string)
while i < length:
 print 'character %d is:', string[i]

The same applies for a loop in the application in Example 6-1.

 for
otherChar in input[1:]:
 if otherChar not in alphas + nums:
 :

The for loop beginning on line 19 contains an if statement that concatenates a pair of strings. These strings do not change
throughout the course of the application, yet this calculation must be performed for each loop iteration. If we save the new
string first, we can then reference that string rather than make the same calculations over and over again:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/103#7.html

alphnums = alphas + nums
for otherChar in input[1:]:
 if otherChar not in alphnums:
 :

Lines 24–25

It may be somewhat premature to show you a for-else loop statement, but we are going to give it a shot anyway. (For a full
treatment, see Chapter 8). The else statement, for a for loop is optional and, if provided, will execute if the loop finished in
completion without being "broken" out of by break. In our application, if all remaining symbols check out okay, then we have a
valid identifier name. The result is displayed to indicate as such, completing execution.

This application is not without its flaws however. One problem is that the identifiers tested must have length greater than 1. Our
application as-is is not reflective of the true range of Python identifiers, which may be of length 1. Another problem with our
application is that it does not take into consideration Python keywords, which are reserved names which cannot be used for
identifiers. We leave these two tasks as exercises for the reader (see Exercise 6-2.).

Concatenation (+)

We can use the concatenation operator to create new strings from existing ones. We have already seen the concatenation operator
in action above in Example 6-1. Here are a few more examples:

>>> 'Spanish' + 'Inquisition'
'SpanishInquisition'
>>>
>>> 'Spanish' + ' ' + 'Inquisition'
'Spanish Inquisition'
>>>
>>> s = 'Spanish' + ' ' + 'Inquisition' + ' Made Easy'
>>> s
Spanish Inquisition Made Easy'
>>>
>>> import string
>>> string.upper(s[:3] + s[20])
'SPAM'

The last example illustrates using the concatenation operator to put together a pair of slices from string s, the "Spa" from
"Spanish" and the "M" from "Made." The extracted slices are concatenated and then sent to the string.upper() function to
convert the new string to all uppercase letters.

Repetition (*)

The repetition operator creates new strings, concatenating multiple copies of the same string to accomplish its functionality:

>>> 'Ni!' * 3
'Ni!Ni!Ni!'

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/120#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/103#7.html

>>>
>>> '*'*40'
'**'
>>>
>>> print '-' * 20, 'Hello World!', '-' * 20
-------------------- Hello World! --------------------
>>> who = 'knights'
>>> who * 2
'knightsknights'
>>> who
'knights'

As with any standard operator, the original variable is unmodified, as indicated in the final examples above.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=103

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
String-only Operators

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172044044179211038032227

String-only Operators

Format Operator (%)

One of Python's coolest features is the string format operator. This operator is unique to strings and
makes up for the pack of having functions from C's printf() family. In fact, it even uses the same
symbol, the percent sign (%), and supports all the printf() formatting codes.

The syntax for using the format operator is as follows:

format_string % (arguments_to_convert)

The format_string on the left-hand side is what you would typically find as the first argument to
printf(), the format string with any of the embedded % codes. The set of valid codes is given in
Table6.4. The arguments_to_convert parameter matches the remaining arguments you would
send to printf(), namely the set of variables to convert and display.

Table 6.4. Format Operator Conversion Symbols

Format Symbol Conversion
%c character
%s string conversion via str() prior to formatting
%i signed decimal integer
%d signed decimal integer
%u unsigned decimal integer
%o octal integer
%x hexadecimal integer (lowercase letters)
%X hexadecimal integer (UPPERcase letters)
%e exponential notation (with lowercase 'e')
%E exponential notation (with UPPERcase 'E')

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=104
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A18%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=104&now=5%2F29%2F2002+9%3A18%3A24+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/104#2.html

%f floating point real number
%g the shorter of %f and %e
%G the shorter of %f and %E

Python supports two formats for the input arguments. The first is a tuple (introduced in Section 2.8,
formally in 6.15), which is basically the set of arguments to convert, just like for C's printf(). The
second format which Python supports is a dictionary (Chapter 7). A dictionary is basically a set of
hashed key-value pairs. The keys are requested in the format_string, and the corresponding
values are provided when the string is formatted.

Converted strings can either be used in conjunction with the print statement to display out to the user
or saved into a new string for future processing or displaying to a graphical user interface.

Other supported symbols and functionality are listed in Table 6.5.

Table 6.5. Format Operator Auxiliary Directives

Symbol Functionality
* argument specifies width or precision
- left justification
+ display the sign
<sp> leave a blank space before a positive number
add the octal leading zero ('0') or hexadecimal leading '0x' or '0X', depending on whether

'x' or 'X' were used.
0 pad from left with zeros (instead of spaces)
% '%%' leaves you with a single literal '%'

(var) mapping variable (dictionary arguments)
m.n. m is the minimum total width and n is the number of digits to display after the decimal point (if appl.)

As with C's printf(), the asterisk symbol (*) may be used to dynamically indicate the width and
precision via a value in argument tuple. Before we get to our examples, one more word of caution: long
integers are more than likely too large for conversion to standard integers, so we recommend using
exponential notation to get them to fit.

Here are some examples using the string format operator:

Hexadecimal Output

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/104#3.html

>>> "%x" % 108
'6c'
>>>
>>> "%X" % 108
'6C'
>>>
>>> "%#X" % 108
'0X6C'
>>>
>>> "%#x" % 108
'0x6c'

Floating Point and Exponential Notation Output

>>>
>>> '%f' % 1234.567890
'1234.567890'
>>>
>>> '%.2f' % 1234.567890
'1234.57'
>>>
>>> '%E' % 1234.567890
'1.234568E+03'
>>>
>>> '%e' % 1234.567890
'1.234568e+03'
>>>
>>> '%g' % 1234.567890
'1234.57'
>>>
>>> '%G' % 1234.567890
'1234.57'
>>>
>>> "%e" % (1111111111111111111111L)
'1.111111e+21'

Integer and String Output

>>> "%+d" % 4

'+4'
>>>
>>> "%+d" % -4
'-4'
>>>
>>> "we are at %d%%" % 100
'we are at 100%'
>>>
>>> 'Your host is: %s' % 'earth'
'Your host is: earth'
>>>
>>> 'Host: %s\tPort: %d' % ('mars', 80)
'Host: marsPort: 80'
>>>
>>> num = 123
>>> 'dec: %d/oct: %#o/hex: %#X' % (num, num, num)
'dec: 123/oct: 0173/hex: 0X7B'
>>>
>>> "MM/DD/YY = %02d/%02d/%d" % (2, 15, 67)
'MM/DD/YY = 02/15/67'
>>>
>>> w, p = 'web', 'page'
>>> 'http://xxx.yyy.zzz/%s/%s.html' % (w, p)
'http://xxx.yyy.zzz/web/page.html'

The previous examples all use tuple arguments for conversion. Below, we show how to use a dictionary
argument for the format operator:

>>> 'There are %(howmany)d %(lang)s Quotation Symbols' % \
… {'lang': 'Python', 'howmany': 3}
'There are 3 Python Quotation Symbols'

Amazing Debugging Tool

The string format operator is not only a cool, easy-to-use, and familiar feature, but a great and useful
debugging tool as well. Practically all Python objects have a string presentation (either evaluatable
from repr() or '', or printable from str()). The print statement automatically invokes the
str() function for an object. This gets even better. When you are defining your own objects, there are
hooks for you to create string representations of your object such that repr() and str() (and ''

and print) return an appropriate string as output. And if worse comes to worst and neither repr()
or str() is able to display an object, the Pythonic default is to at least give you something of the
format:

<… something that is useful …>.

Raw String Operator (r / R)

The purpose of raw strings, introduced to Python in version 1.5, is to counteract the behavior of the
special escape characters that occur in strings (see the subsection below on what some of these
characters are). In raw strings, all characters are taken verbatim with no translation to special or non-
printed characters.

This feature makes raw strings absolutely convenient when such behavior is desired, such as when
composing regular expressions (see the re module documentation). Regular expressions (REs) are
strings which define advanced search patterns for strings and usually consist of special symbols to
indicate characters, grouping and matching information, variable names, and character classes. The
syntax for REs contains enough symbols already, but when you have to insert additional symbols to
make special characters act like normal characters, you end up with a virtual "alphanumersymbolic"
soup! Raw strings lend a helping hand by not requiring all the normal symbols needed when composing
RE patterns.

The syntax for raw strings is exactly the same as for normal strings with the exception of the raw string
operator, the letter "r," which precedes the quotation marks. The "r" can be lowercase (r) or
uppercase (R) and must be placed immediately preceding the first quote mark.

>>> print r'\n'
\n
>>>
>>>print '\n'
>>>
>>>print r'werbac'
werbac
>>>
>>>print r'webbac\n'
webbac\n
>>>
>>> print r'fglkjfg\][123=091'
fglkjfg\\][123=091

>>>
>>> import re
>>> aFloatRE = re.compile(R'([+-]?\d+(\.\d*)?([eE][+-
]?\d+)?))
>>> match = aFloatRE.search('abcde')
>>> print "our RE matched:", match.group(1)
''
>>> match = aFloatRE.search('-1.23e+45')
>>> print 'our RE matched:', match.group(1)
'-1.23e+45'

Unicode String Operator (u/U)

The Unicode string operator, uppercase (U) and lowercase (u), introduced with Unicode string support
in Python 1.6, takes standard strings or strings with Unicode characters in them and converts them to a
full Unicode string object. More details on Unicode strings are available in Section 6.7.4. In addition,
Unicode support is available in the new string methods (Section 6.6) and the new regular expression
engine. Here are some examples:

u'abc' U+0061 U+0062 U+0063
u'\u1234' U+1234
u'abc\u1234\n' U+0061 U+0062 U+0063 U+1234 U+0012

The Unicode operator can also accept raw Unicode strings if used in conjunction with the raw string
operator discussed in the previous section. The Unicode operator must precede the raw string operator.

ur 'Hello\nWorld!'

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/107#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=104

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Built-in Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172044044178014075074208

Built-in Functions

Standard Type Functions

cmp()

As with the value comparison operators, the cmp() built-in function also performs a lexicographic
comparison for strings.

>>> str1 = 'abc'
>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> cmp(str1, str2)
-11
>>> cmp(str3, str1)
23
>>> cmp(str2, 'lmn')
0

Sequence Type Functions

len()

>>> str1 = 'abc'
>>> len(str1)
3
>>> len('Hello World!')
12

The len() built-in function returns the number of characters in the string as expected.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=105
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A18%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=105&now=5%2F29%2F2002+9%3A18%3A39+PM

max() and min()

>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> max(str2)
'n'
>>> min(str3)
'x'

Although more useful with other sequence types, the max() and min() built-in functions do operate
as advertised, returning the greatest and least characters (lexicographic order), respectively.

String Type Function [raw_input()]

The built-in raw_input() function prompts the user with a given string and accepts and returns a
user-input string. Here is an example using raw_input():

>>> user_input = raw_input("Enter your name: ")
Enter your name: John Doe
>>>
>>> user_input
'John Doe'
>>>
>>> len(user_input)
8

Earlier, we indicated that strings in Python do not have a terminating NUL character like C strings. We
added in the extra call to len() to show you that what you see is what you get.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=105

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
String Built-in Methods

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172044044181139064060063

String Built-in Methods

String methods were recently added to Python, introduced in version 1.6 (and in JPython 1.1), and
tweaked for 2.0. These methods are intended to replace most of the functionality in the string
module as well as to bring new functionality to the table. Table 6.6 shows all the current methods for
strings. All string methods should fully support Unicode strings. And some are applicable only to
Unicode strings.

Table 6.6. String Type Built-in Methods

Value Description
string.capitalize() capitalizes first letter of string

string.center(width) returns a space-padded string with
the original string centered to a total
of width columns

string.count(str, beg= 0,end=len(string)) counts how many times str occurs in
string, or in a substring of string if
starting index beg and ending index
end are given

string.encode(encoding='UTF-8', errors='strict')[a] returns encoded string version of string;
on error, default is to raise a
ValueError unless errors is given
with 'ignore' or 'replace'.

string.endswith(str, beg=0, end=len(string))[b] determines if string or a substring of
string (if starting index beg and
ending index end are given) ends with
str; returns 1 if so, and 0 otherwise

string.expandtabs(tabsize=8) expands tabs in string to multiple
spaces; defaults to 8 spaces per tab if
tabsize not provided

string.find(str, beg=0 end=len(string)) determine if str occurs in string, or
in a substring of string if starting
index beg and ending index end are
given; returns index if found and -1
otherwise

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=106
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A18%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=106&now=5%2F29%2F2002+9%3A18%3A49+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/106#1.html

string.index(str, beg=0, end=len(string)) same as find(), but raises an
exception if str not found

string.isa1num()[a][b][c] returns 1 if string has at least 1
character and all characters are
alphanumeric and 0 otherwise

string.isalpha()[a][b][c] returns 1 if string has at least 1
character and all characters are
alphabetic and 0 otherwise

string.isdecimal()[b][c][d] returns 1 if string contains only
decimal digits and 0 otherwise

string.isdigit()[b][c] returns 1 if string contains only digits
and 0 otherwise

string.islower()[b][c] returns 1 if string has at least 1
cased character and all cased
characters are in lowercase and 0
otherwise

string.isnumeric()[b][c][d] returns 1 if string contains only
numeric characters and 0 otherwise

string.isspace()[b][c] returns 1 if string contains only
whitespace characters and 0 otherwise

string.istitle()[b][c] returns 1 if string is properly
"titlecased" (see title()) and 0
otherwise

string.isupper()[b][c] returns 1 if string has at least one
cased character and all cased
characters are in uppercase and 0
otherwise

string.join(seq) merges (concatenates) the string
representations of elements in
sequence seq into a string, with
separator string

string.ljust(width) returns a space-padded string with
the original string left-justified to a total
of width columns

string.lower() converts all uppercase letters in
string to lowercase

string.lstrip() removes all leading whitespace in
string

string.replace(str1, str2, num=string.count(str1)) replaces all occurrences of str1 in
string with str2, or at most num
occurrences if num given

string.rfind(str, beg=0,end=len(string)) same as find(), but search
backwards in string

string.rindex(str, beg=0, end=len(string)) same as index(), but search
backwards in string

string.rjust(width) returns a space-padded string with
the original string right-justified to a
total of width columns.

string.rstrip() removes all trailing whitespace of
string

string.split(str="", num=string.count(str)) splits string according to delimiter
str (space if not provided) and returns
list of substrings; split into at most num
substrings if given

string.splitlines(num=string.count('\n'))[b][c] splits string at all (or num)
NEWLINEs and returns a list of each
line with NEWLINEs removed

string.startswith(str, beg=0,end=len(string))[b][c] determines if string or a substring of
string (if starting index beg and
ending index end are given) starts with
substring str; returns 1 if so, and 0
otherwise

string.strip([obj]) performs both lstrip() and
rstrip() on string

string.swapcase() inverts case for all letters in string

string.title()[b][c] returns "titlecased" version of string,
that is, all words begin with uppercase,
and the rest are lowercase (also see
istitle())

string.translate(str, del="") translates string according to
translation table str(256 chars),
removing those in the del string

string.upper() converts lowercase letters in string to
uppercase

string.zfill (width) returns original string left-padded
with zeros to a total of width
characters; intended for numbers,
zfill() retains any sign given (less
one zero)

[a] applicable to Unicode strings only in 1.6, but to all string types in 2.0.

[b] not available as a string module function in 1.5.2

[c] not available as a method in JPython 1.1

[d] applicable to Unicode strings only

Using JPython, we will show some examples of methods available for strings:

>>> quest = 'what is your favorite color?'
>>> quest.capitalize()
'What is your favorite color?'
>>>
>>> quest.center(40)
' what is your favorite color? '
>>>
>>> quest.count('or')
2
>>>
>>> quest.endswith('blue')
0
>>>
>>> quest.endswith('color?')
1
>>>
>>> quest.find('or', 30)
-1
>>>
>>> quest.find('or', 22)
25
>>
>>> quest.index('or', 10)
16
>>>
>>> ':'.join(quest.split())
'what:is:your:favorite:color?'
>>> quest.replace('favorite color', 'quest')
>>>
'what is your quest?'
>>>
>>> quest.upper()
'WHAT IS YOUR FAVORITE COLOR?'

The most complex example shown above is the one with split() and join(). We first call
split() on our string, which, without an argument, will break apart our string using spaces as the
delimiter. We then take this list of words and call join() to merge our words again, but with a new
delimiter, the colon. Notice that we used the split() method for our string, and the join() method
for single-character string ':'.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=106

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Special Features of Strings

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172044044180128159205027

Special Features of Strings

Special or Control Characters

Like most other high-level or scripting languages, a backslash paired with another single character
indicates the presence of a "special" character, usually a non-printable character, and that this pair of
characters will be substituted by the special character. These are the special characters we discussed
above that will not be interpreted if the raw string operator precedes a string containing these
characters.

In addition to the well-known characters such as NEWLINE (\n) and (horizontal) TAB (\t),
specific characters via their ASCII values may be used as well: \OOO or \xXX where OOO and XX are
their respective octal and hexadecimal ASCII values. Here are the base 10, 8, and 16 representations of
0, 65, and 255:

 ASCII ASCII ASCII
decimal 0 65 255

octal \000 \101 \177

hexadecimal \x00 \x41 \xFF

Special characters, including the backslash-escaped ones, can be stored in Python strings just like
regular characters.

Another way that strings in Python are different from those in C is that Python strings are not
terminated by the NUL (\000) character (ASCII value 0). NUL characters are just like any of the other
special backslash-escaped characters. In fact, not only can NUL characters appear in Python strings,
but there can be any number of them in a string, not to mention that they can occur anywhere within the
string. They are no more special than any of the other control characters. Table6.7 represents a
summary of the escape characters supported by most versions of Python.

Table 6.7. String Literal Backslash Escape Characters

/X Oct Dec Hex Char Description
\0 000 0 0x00 NUL Null character

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=107
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A18%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=107&now=5%2F29%2F2002+9%3A18%3A58+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/107#2.html

\a 007 7 0x07 BEL Bell
\b 010 8 0x08 BS Backspace
\t 011 9 0x09 HT Horizontal Tab
\n 012 10 0x0A LF Linefeed/Newline
\v 013 11 0x0B VT Vertical Tab
\f 014 12 0x0C FF Form Feed
\r 015 13 0x0D CR Carriage Return
\e 033 27 0x1B ESC Escape
\" 042 34 0x22 " Double quote
\' 047 39 0x27 ' Single quote/apostrophe
\\ 134 92 0x5C \ Backslash

And as mentioned before, explicit ASCII octal or hexadecimal values can be given, as well as escaping
a NEWLINE to continue a statement to the next line. All valid ASCII character values are between 0
and 255 (octal 0177, hexadecimal 0XFF).

\OOO octal value OOO (range is 0000 to 0177)
\xXX 'x' plus hexadecimal value XX (range is 0X00 to 0xFF)
\ escape NEWLINE for statement continuation

One use of control characters in strings is to serve as delimiters. In database or Internet/Web
processing, it is more than likely that most printable characters are allowed as data items, meaning that
they would not make good delimiters.

It becomes difficult to ascertain whether or not a character is a delimiter or a data item, and by using a
printable character such as a colon (:) as a delimiter, you are limiting the number of allowed characters
in your data, which may not be desirable.

One popular solution is to employ seldomly used, non-printable ASCII values as delimiters. These
make the perfect delimiters, freeing up the colon and the other printable characters for more important
uses.

Triple Quotes

Although strings can be represented by single or double quote delimitation, it is often difficult to
manipulate strings containing special or non-printable characters, especially the NEWLINE character.
Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including verbatim
NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes (used in pairs,
naturally):

>>> para_str = """this is a long string that is made up of
… several lines and non-printable characters such as
… TAB (\t) and they will show up that way when displayed.
… NEWLINEs within the string, whether explicitly given like
… this within the brackets [\n], or just a NEWLINE within
… the variable assignment will also show up.
… """

Triple quote lets the developer avoid playing quote and escape character games, all the while bringing
at least a small chunk of text closer to WYSIWIG (what you see is what you get) format.

An example below shows you what happens when we use the print statement to display the contents
of this string. Note how every single special character has been converted to its printed form, right
down to the last NEWLINE at the end of the string between the "up." and closing triple quotes. Also
note that NEWLINEs occur either with an explicit carriage return at the end of a line or its escape code
(\n):

>>> print para_str
this is a long string that is made up of
several lines and non-printable characters such as
TAB () and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [
], or just a NEWLINE within
the variable assignment will also show up.

We introduced the len() built-in sequence type function earlier, which, for strings, gives us the total
number of characters in a string.

>>> len(para_str)
307

Upon applying that function to our string, we get a result of 307, which includes the NEWLINE and
TAB characters. Another way to look at the string within the interactive interpreter is by just giving the
interpreter the name of the object in question. Here, we will see the "internal" representation of the

string, without the special characters being converted to printable ones. If that last NEWLINE we
looked at above (after the final word "up" and before the closing triple quotes) is still elusive to you,
take a look at the way the string is represented internally below. You will observe that the last character
of the string is the aforementioned NEWLINE.

>>> para_str

'this is a long string that is made up of\012several lines
and non-printable characters such as\012TAB (\011) and
they will show up that way when displayed.\012NEWLINEs
within the string, whether explicitly given like\012this
within the brackets [\012], or just a NEWLINE
within\012the variable assignment will also show up.\012\'

String Immutability

In Section 4.7.2, we discussed how strings are immutable data types, meaning that their values cannot
be changed or modified. This means that if you do want to update a string, either by taking a substring,
concatenating another string on the end, or concatenating the string in question to the end of another
string, etc., a new string object must be created for it.

This sounds more complicated than it really is. Since Python manages memory for you, you won't
really notice when this occurs. Any time you modify a string or perform any operation that is contrary
to immutability, Python will allocate a new string for you. In the following example, Python allocates
space for the strings, 'abc' and 'def'. But when performing the addition operation to create the
string 'abcdef', new space is allocated automatically for the new string.

>>> 'abc' + 'def'
'abcdef'

Assigning values to variables is no different:

>>> string = 'abc'
>>> string = string + 'def'
>>> string
'abcdef'

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/85#4.html

In the above example, it looks like we assigned the string 'abc' to string, then appended the
string 'def' to string. To the naked eye, strings look mutable. What you cannot see, however, is
the fact that a new string was created when the operation "s + 'def'" was performed, and that the
new object was then assigned back to s. The old string of 'abc' was deallocated.

Once again, we can use the id() built-in function to help show us exactly what happened. If you
recall, id() returns the "identity" of an object. This value is as close to a "memory address" as we can
get in Python.

>> string = 'abc'
>>>
>>> id(string)
135060856
>>>
>>> string = string + 'def'
>>> id(string)
135057968

Note how the identities are different for the string before and after the update. Another test of
mutability is to try to modify individual characters or substrings of a string. We will now show how
any update of a single character or a slice is not allowed:

>>> string
'abcdef'
>>>
>>> string[2] = 'C'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __setitem__
>>>
>>> string[3:6] = 'DEF'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __setslice__

Both operations result in an error. In order to perform the actions that we want, we will have to create

new strings using substrings of the existing string, then assign those new strings back to string:

>>> string
'abcdef'
>>>
>>> string = string[0:2] + 'C' + string[3:]
>>> string
'abCdef'
>>>
>>> string[0:3] + 'DEF'
'abCDEF'
>>>
>>> string = string[0:3] + 'DEF'
>>> string
'abCDEF'

So for immutable objects like strings, we make the observation that only valid expressions on the left-
hand side of an assignment (to the left of the equals sign [=]) must be the variable representation of an
entire object such as a string, not single characters or substrings. There is no such restriction for the
expression on the right-hand side.

Unicode Support

Unicode string support, introduced to Python in version 1.6, is used to convert between multiple double-
byte character formats and encodings, and include as much functionality to manage these strings as
possible. With the addition of string methods (see Section 6.6), Python strings are fully-featured to
handle a much wider variety of applications requiring Unicode string storage, access, and manipulation.
At the time of this writing, the exact Python specifications have not been finalized. We will do our best
here to give an overview of native Unicode 3.0 support in Python:

unicode() Built-in Function

The Unicode built-in function should operate in a manner similar to that of the Unicode string operator
(u/U). It takes a string and returns a Unicode string.

encode() Built-in Methods

The encode() built-in methods take a string and return an equivalent encoded string. encode()
exists as methods for both regular and Unicode strings in 2.0, but only for Unicode strings in 1.6.

Unicode Type

There is a new Unicode type named unicode that is returned when a Unicode string is sent as an
argument to type(), i.e., type(u'')

Unicode Ordinals

The standard ord() built-in function should work the same way. It was enhanced recently to support
Unicode objects. The new unichr() built-in function returns a Unicode object for character
(provided it is a 32-bit value); a ValueError exception is raised, otherwise.

Coercion

Mixed-mode string operations require standard strings be converted to Unicode objects.

Exceptions

UnicodeError is defined in the exceptions module as subclass of ValueError. All exceptions
related to Unicode encoding/decoding should be subclasses of UnicodeError. Also see the string
encode() method.

Table 6.8. Unicode Codecs/Encodings

codec Description
utf-8 8-bit variable length encoding (default encoding)
utf-16 16-bit variable length encoding (little/big endian)
utf-16-le utf-16 but explicitly little endian
utf-16-be utf-16 but explicitly big endian
ascii 7-bit ASCII codepage
iso-8859-1 ISO 8859-1 (Latin 1) codepage
unicode-escape (see Python Unicode Constructors for a definition)
raw-unicode-escape (see Python Unicode Constructors for a definition)
native dump of the internal format used by Python

RE Engine Unicode-aware

The new regular expression engine should be Unicode aware. See the re Code Module sidebar in the
next section (6.8).

String Format Operator

For Python format strings: '%s' does str(u) for Unicode objects embedded in Python strings, so the
output will be u.encode (<default encoding>). If the format string is an Unicode object,
all parameters are coerced to Unicode first and then put together and formatted according to the format
string. Numbers are first converted to strings and then to Unicode. Python strings are interpreted as
Unicode strings using the <default encoding>. Unicode objects are taken as is. All other string
formatters should work accordingly. Here is an example:

u"%s %s" % (u"abc", "abc") ? u"abc abc"

Specific information regarding Python's support of Unicode strings can be found in the
Misc/unicode.txt of the distribution. The latest version of this document is always available
online at:

http://www.starship.python.net/~lemburg/unicode-proposal.txt

For more help and information on Python's Unicode strings, see the Python Unicode Tutorial at:

http://www.reportlab.com/il8n/python_unicode_tutorial.html

No Characters or Arrays in Python

We mentioned in the previous section that Python does not support a character type. We can also say
that C does not support string types explicitly. Instead, strings in C are merely arrays of individual
characters. Our third fact is that Python does not have an "array" type as a primitive (although the
array module exists if you really have to have one). Implementing strings as character arrays is also
deemed unnecessary due to the sequential access ability of strings.

In choosing between single characters and strings, Python wisely uses strings as types. It is much easier
manipulating the larger entity as a "blob" since most applications operate on strings as a whole rather
than individual characters. Applications will convert strings to integers, ask users to input strings,
perform regular expression matches on substrings, search files for specific strings, and will even sort a
set of strings like names, etc. How often are individual characters operated on, except for searches (i.e.,
search-and-replace, search-for-delimiter, etc.)? Probably not often as far as most applications are
concerned.

http://www.starship.python.net/~lemburg/unicode-proposal.txt
http://www.reportlab.com/il8n/python_unicode_tutorial.html

However, such functionality should still be available to the Python programmer. Search-and-replacing
can be done with regular expressions and the re module, searching for and breaking up strings based
on delimiters can be accomplished with split(), searching for substrings can be accomplished
using find() and rfind(), and just plain old character membership in a string can be verified with
the in and not in sequence operators.

We are going to quickly revisit the chr() and ord() built-in functions that convert between ASCII
integer values and their equivalent characters, and describe one of the "features" of C that has been lost
to Python because characters are not integer types in Python as they are in C.

One feature of C which is lost is the ability to perform numerical calculations directly on characters,
i.e., 'A' + 3. This is allowed in C because both 'A' as a char and 3 as an int are integers (1-byte
and 2/4-bytes, respectively), but would be a type mismatch in Python because 'A' is a string, 3 is a plain
integer, and no such addition (+) operation exists between numeric and string types.

>>> 'B'
'B'
>>> 'B' + 1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation
>>>
>>> chr('B')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation
>>>
>>> ord('B')
66
>>> ord('B') + 1
67
>>> chr(67)
'C'
>>> chr(ord('B') + 1)
'C'

Our failure scenario occurred when we attempted to increase the ASCII value of 'B' by 1 to get 'C' by
addition. Rather than 1-byte integer arithmetic, our solution in Python involves using the chr() and

ord() built-in functions.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=107

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Related Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172045119248031164184143

Related Modules

Table 6.9 lists the key related modules for strings that are part of the Python standard library.

Table 6.9. Related Modules for String Types (-Unix only)

Module Contents
string string manipulation and utility functions
re regular expressions: powerful string pattern matching
struct convert strings to/from binary data format
c/StringIO string buffer object which behaves like a file
crypt

performs one-way encryption cipher
rotor provides multi-platform en/decryption services

NOTE

There are many utility and manipulation functions out there which deal with strings. You may be
familiar with some of them if you have programmed in other high-level languages like C, C++, and
Java. Python has tried to integrate the most popular functionality into its operators and built-in
functions. Nevertheless, they cannot all be integrated into the language. This is where the string
module comes in. The string module provides a set of constants as well as module functions that
provide additional support for strings.

Some of the key functions in the string module include: ato*()— three functions which
convert from strings to three numeric types, split()—splits up a string into a list of strings,
join()— does the reverse of split(): merges a list of strings into a single one, and
find()—searches for substrings.

Refer to the string module documentation for more information and usage of string module
attributes. Starting in version 1.6 of Python, many of the functions in the string module have
been implemented as string methods, a new feature of strings which begins the journey of

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=108
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A19%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=108&now=5%2F29%2F2002+9%3A19%3A11+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/108#1.html

obsoleting this module. We introduced you to these methods in Section 6.6.

NOTE

Regular expressions (REs) provide advanced pattern matching scheme for strings. Using a separate
syntax which describes these patterns, you can effectively use them as "filters" when passing in the
text to perform the searches on. These filters allow you to extract the matched patterns as well as
perform find-and-replace or divide up strings based on the patterns that you describe.

The re module, introduced in Python 1.5, obsoletes the original regex and regsub modules
from earlier releases. It includes a major upgrade in terms of Python's support for regular
expressions, adopting the complete Perl syntax for REs. In Python 1.6, the RE engine has been
rewritten, for performance improvements as well as support for Unicode strings.

Some of the key functions in the re module include: compile()—compiles an RE expression into
a reusable RE object, match()—attempts to match a pattern from the beginning of a string,
search()—searches for any matching pattern in the string, and sub()—performs a search-and-
replace of matches. Some of these functions return match objects with which you can access saved
group matches (if any were found). All of Chapter 15 is dedicated to regular expressions.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=108

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Summary of String Highlights

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172045119250249106154008

Summary of String Highlights

Consists of Characters Delimited by Quotation Marks

You can think of a string as a Python data type which you can consider as an array or contiguous set of
characters between any pair of Python quotation symbols, or quotes. The two most common quote
symbols for Python are the single quote, a single forward apostrophe ('), and the double quotation
mark ("). The actual string itself consists entirely of those characters in between and not the quote
marks themselves.

Having the choice between two different quotation marks is advantageous because it allows one type of
quote to serve as a string delimiter while the other can be used as characters within the string without
the need for special escape characters. Strings enclosed in single quotes may contain double quotes as
characters and vice versa:

>>> quote1 = 'George said, "Good day Madam. How are we today?"'
>>> print quote1
George said, "Good day Madam. How are we today?"
>>> quote2 = "Martha replies, 'We are fine, thank you.'"
>>> print quote2
Martha replies, 'We are fine, thank you.'

Python Does not Support a Separate Character Type

Strings are the only literal sequence type, a sequence of characters. However, characters are not a type,
so strings are the lowest-level primitive for character storage and manipulation. Most applications tend
to deal with strings as a whole and singular entity. To that end, Python provides a good amount of
string utilities in the form of operators, built-in functions, and the contents of the string module.
However, Python is flexible, allowing access to individual or groups of characters, if desired. Also see
Section 6.7.1. Characters are simply strings of length one.

String Format Operator (%) Provides printf()-like Functionality

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=109
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A19%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=109&now=5%2F29%2F2002+9%3A19%3A30+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/107#1.html

In Section 6.4.1, we highlighted the printf()-like string format operator which provides a familiar
interface to formatting data for output, whether to the screen or elsewhere.

Triple Quotes

In Section 6.7.2, we introduced the notion of triple quotes, which are strings that can have special
embedded characters like NEWLINEs and TABs. Triple-quoted strings are delimited by pairs of three
single (' ' ') or double (""") quotation marks.

Raw Strings Allow for Special Characters to be Taken Verbatim

In Section 6.4.2, we introduced raw strings and discussed how they do not interpret special characters
escaped with the backslash. This makes raw strings ideal for situations where strings must be taken
verbatim, for example, when describing regular expressions.

Unlike C strings, Python strings do not Terminate with NUL or '\0'

One of the problems in C is running off the end of your string into memory that does not belong to you.
This occurs when strings in C are not properly terminated with the NUL or '\0' character, which has the
ASCII value of zero. Along with managing memory for you, Python also removes this little burden or
annoyance. Strings in Python do not terminate with NUL, and you do not have to worry about adding
them on. Strings consist entirely of the characters that were designated and nothing more.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/104#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/107#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/104#8.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=109

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Lists

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172045119253098246000201

Lists

Like strings, lists provide sequential storage through an index offset and access to single or consecutive
elements through slices. However, the comparisons usually end there. Strings consist only of characters
and are immutable (cannot change individual elements) while lists are flexible container objects which
hold an arbitrary number of Python objects. Creating lists is simple; adding to lists is easy, too, as we
see in the following examples.

The objects that you can place in a list can include standard types and objects as well as user-defined
ones. Lists can contain different types of objects and are more flexible than an array of C structs or
Python arrays (available through the external array module) because arrays are restricted to containing
objects of a single type. Lists can be populated, empty, sorted, and reversed. Lists can be grown and
shrunk. They can be taken apart and put together with other lists. Individual or multiple items can be
inserted, updated, or removed at will.

Tuples share many of the same characteristics of lists and although we have a separate section on
tuples, many of the examples and list functions are applicable to tuples as well. The key difference is
that tuples are immutable, i.e., read-only, so any operators or functions which allow updating lists, such
as using the slice operator on the left-hand side of an assignment, will not be valid for tuples.

How to Create and Assign Lists

Creating lists is as simple as assigning a value to a variable. You handcraft a list (empty or with
elements) and perform the assignment. Lists are delimited by surrounding square brackets ([]).

>>> aList = [123, 'abc', 4.56, ['inner', 'list'], 7-9j]
>>> anotherList = [None, 'something to see here']
>>> print aList
[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]
>>> print anotherList
[None, 'something to see here']
>>> aListThatStartedEmpty = []
>>> print aListThatStartedEmpty
[]

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=110
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A19%3A41+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=110&now=5%2F29%2F2002+9%3A19%3A41+PM

How to Access Values in Lists

Slicing works similar to strings; use the square bracket slice operator ([]) along with the index or
indices.

>>> aList[0]
123
>>> aList[1:4]
['abc', 4.56, ['inner', 'list']]
>>> aList[:3]
[123, 'abc', 4.56]
>>> aList[3][1]
'list'

How to Update Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the
assignment operator, and you can add to elements in a list with the append() method:

>>> aList
[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]
>>> aList[2]
4.56
>>> aList[2] = 'float replacer'
>>> aList
[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]
>>>
>>> anotherList.append("hi, i'm new here")
>>> print anotherList
[None, 'something to see here', "hi, i'm new here"]
>>> aListThatStartedEmpty.append('not empty anymore')
>>> print aListThatStartedEmpty
['not empty anymore']

How to Remove List Elements and Lists

To remove a list element, you can use either the del statement if you know exactly which element(s)

you are deleting or the remove() method if you do not know.

>>> aList
[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]
>>> del aList[1]
>>> aList
[123, 'float replacer', ['inner', 'list'], (7-9j)]
>>> aList.remove(123)
>>> aList
['float replacer', ['inner', 'list'], (7-9j)]

You can also use the pop() method to remove and return a specific object from a list.

Normally, removing an entire list is not something application programmers do. Rather, they tend to let
it go out of scope (i.e., program termination, function call completion, etc.) and be garbage-collected,
but if they do want to explicitly remove an entire list, use the del statement:

del aList

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=110

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples > Operators See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204172045119252238092082101

Operators

Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including the standard types. We
will take a look at how some of those apply to lists.

>>> list1 = ['abc', 123]
>>> list2 = ['xyz', 789]
>>> list3 = ['abc', 123]
>>> 1ist1 < list2
1
>>> list2 < list3
0
>>> (list2 > list3) and (list1 == list3)
1

When using the value comparison operators, comparing numbers and strings is straightforward, but not so much
for lists, however. List comparisons are somewhat tricky, but logical. The comparison operators use the same
algorithm as the cmp() built-in function. The algorithm basically works like this: the elements of both lists are
compared until there is a determination of a winner. For example, in our example above, the output of 'abc'
versus 'xyz' is determined immediately, with 'abc' < 'xyz', resulting in list1 < list2 and
list2 >= list3. Tuple comparisons are performed in the same manner as lists.

Sequence Type Operators

Slices ([] and [:])

Slicing with lists is very similar to strings, but rather than using individual characters or substrings, slices of
lists pull out an object or a group of objects which are elements of the list operated on. Focusing specifically on
lists, we make the following definitions:

>>> num_list = [43, -1.23, -2, 6.19e5]
>>> str_list = ['jack', 'jumped', 'over', 'candlestick']
>>> mixup_list = [4.0, [1, 'x'], 'beef', -1.9+6j]

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=111
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A19%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=111&now=5%2F29%2F2002+9%3A19%3A54+PM

Slicing operators obey the same rules regarding positive and negative indexes, starting and ending indexes, as
well as missing indexes, which default to the beginning or to the end of a sequence.

>>> num_list[1]
-1.23
>>>
>>> num_list[1:]
[-1.23, -2, 619000.0]
>>>
>>> num_list[2:-1]
[-2]
>>>
>>> str_list[2]
'over'
>>> str_list[:2]
['jack', 'jumped']
>>>
>>> mixup_list
[4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>> mixup_list[1]
[1, 'x']

Unlike strings, an element of a list might also be a sequence, implying that you can perform all the sequences
operations or execute any sequence built-in functions on that element. In the example below, we show that not
only can we take a slice of a slice, but we can also change it, and even to an object of a different type. You will
also notice the similarity to multi-dimensional arrays.

>>> mixup_list[1][1]
'x'
>>> mixup_list[1][1] = -64.875
>>> mixup_list
[4.0, [1, -64.875], 'beef', (-1.9+6j)]

Here is another example using num_list:

>>> num_list
[43, -1.23, -2, 6.19e5]
>>>
>>> num_list[2:4] = [16.0, -49]
>>>

>>> num_list
[43, -1.23, 16.0, -49]
>>>
>>> num_list[0] = [65535L, 2e30, 76.45-1.3j]
>>>
>>> num_list
[[65535L, 2e+30, (76.45-1.3j)], -1.23, 16.0, -49]

Notice how, in the last example, we replaced only a single element of the list, but we replaced it with a list. So
as you can tell, removing, adding, and replacing things in lists are pretty free-form. Keep in mind that in order
to splice elements of a list into another list, you have to make sure that the left-hand side of the assignment
operator (=) is a slice, not just a single element.

Membership (in, not in)

With strings, the membership operator determined whether a single character is a member of a string. With lists
(and tuples), we can check whether an object is a member of a list (or tuple).

>>> mixup_list
[4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>>
>>> 'beef' in mixup_list
1
>>>
>>> 'x' in mixup_list
0
>>>
>>> 'x' in mixup_list[1]
1
>>> num_list
[[65535L, 2e+030, (76.45-1.3j)], -1.23, 16.0, -49]
>>>
>>> -49 in num_list
1
>>>
>>> 34 in num_list
0
>>>
>>> [65535L, 2e+030, (76.45-1.3j)] in num_list
1

Note how 'x' is not a member of mixup_list. That is because 'x' itself is not actually a member of

mixup_list. Rather, it is a member of mixup_uplist[1], which itself is a list. The membership
operator is applicable in the same manner for tuples.

Concatenation (+)

The concatenation operator allows us to join multiple lists together. Note in the examples below that there is a
restriction of concatenating like objects. In other words, you can concatenate only objects of the same type. You
cannot concatenate two different types even if both are sequences.

>>> num_list = [43, -1.23, -2, 6.19e5]
>>> str_list = ['jack', 'jumped', 'over', 'candlestick']
>>> mixup_list = [4.0, [1, 'x'], 'beef', -1.9+6j]
>>>
>>> num_list + mixup_list
[43, -1.23, -2, 619000.0, 4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>>
>>> str_list + num_list
['jack', 'jumped', 'over', 'candlestick', 'park', 43, -1.23, -2, 619000.0]

As we will discover in Section 6.13, starting in Python 1.5.2, you can use the extend() method in place of
the concatenation operator to append the contents of a list to another. Using extend() is advantageous over
concatenation because it actually appends the elements of the new list to the original, rather than creating a new
list from scratch like + does. extend() is also the method used by the new augmented assignment or in-place
concatenation operator (+=) which debuted in Python 2.0.

We would also like to point out that the concatenation operator does not facilitate adding individual elements to
a list. The upcoming example illustrates a case where attempting to add a new item to the list results in failure.

>>> num_list + 'new item'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation

This example fails because we had different types to the left and right of the concatenation operator. A
combination of (list + string) is not valid. Obviously, our intention was to add the 'new item' string to the
list, but we did not go about it the proper way. Fortunately, we have a solution:

Use the append() list built-in method (we will formally introduce append() and all other built-in methods
in Section 6.13):

>>> num_list.append('new item')

Repetition (*)

Use of the repetition operator may make more sense with strings, but as a sequence type, lists and tuples can
also benefit from this operation, if needed:

>>> num_list * 2
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0]
>>>
>>> num_list * 3
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0]

A new augmented assignment in-place repetition operator was also added to Python 2.0.

List Type Operators

There are currently no special list-only operators in Python. Lists can be used with most object and sequence
operators. In addition, list objects have their own methods.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=111

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Built-in Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175201138163167203157254

Built-in Functions

Standard Type Functions

cmp()

In Section 4.6.1, we introduced the cmp() built-in function with examples of comparing numbers and
strings. But how would cmp() work with other objects such as lists and tuples, which can contain not
only numbers and strings, but other objects like lists, tuples, dictionaries, and even user-created
objects?

>>> list1, list2 = [123, 'xyz'], [456, 'abc']
>>> cmp(list1, list2)
-1
>>>
>>> cmp(list2, list1)
1
>>> list3 = list2 + [789]
>>> list3
[456, 'abc', 789]
>>>
>>> cmp(list2, list3)
-1

Compares are straightforward if we are comparing two objects of the same type. For numbers and
strings, the direct values are compared, which is trivial. For sequence types, comparisons are somewhat
more complex, but similar in manner. Python tries its best to make a fair comparison when one cannot
be made, i.e., when there is no relationship between the objects or when types do not even have
compare functions, then all bets are off as far as obtaining a "logical" decision.

Before such a drastic state is arrived at, more safe-and-sane ways to determine an inequality are
attempted. How does the algorithm start? As we mentioned briefly above, elements of lists are iterated
over. If these elements are of the same type, the standard compare for that type is performed. As soon
as an inequality is determined in an element compare, that result becomes the result of the list compare.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=112
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A20%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=112&now=5%2F29%2F2002+9%3A20%3A02+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/87#1.html

Again, these element compares are for elements of the same type. As we explained earlier, when the
objects are different, performing an accurate or true comparison becomes a risky proposition.

When we compare list1 with list2, both lists are iterated over. The first true comparison takes
place between the first elements of both lists, i.e., 123 vs. 456. Since 123 < 456, list1 is
deemed "smaller."

If both values are the same, then iteration through the sequences continues until either a mismatch is
found, or the end of the shorter sequence is reached. In the latter case, the sequence with more elements
is deemed "greater." That is the reason why we arrived above at list2 < list3. Tuples are
compared using the same algorithm. We leave this section with a summary of the algorithm highlights:

● Compare elements of both lists.

● If elements are of the same type, perform the compare and return the result.

● If elements are different types, check to see if they are numbers.

❍ If numbers, perform numeric coercion if necessary and compare.

❍ If either element is a number, then the other element is "larger" (numbers are "smallest").

❍ Otherwise, types are sorted alphabetically by name.

● If we reached the end of one of the lists, the longer list is "larger."

● If we exhaust both lists and share the same data, the result is a tie, meaning that 0 is returned.

Sequence Type Functions

len()

For strings, len() gives the total length of the string, as in the number of characters. For lists (and
tuples), it will not surprise you that len() returns the number of elements in the list (or tuple).
Container objects found within count as a single item. Our examples below use some of the lists
already defined above in previous sections.

>>> len(num_list)
4
>>>
>>> len(num_list*2)

8
>>>
>>> len(str_list[:4])
4
>>>
>>> len(str_list[:-1])
4
>>>
>>> len(mixup_list+num_list)
8

max() and min()

max() and min() did not have a significant amount of usage for strings since all they did was to find
the "largest" and "smallest" characters (lexicographically) in the string. For lists (and tuples), their
functionality is more defined. Given a list of like objects, i.e., numbers or strings only, max() and
min() could come in quite handy. Again, the quality of return values diminishes as mixed objects
come into play. However, more often than not, you will be using these functions in a situation where
they will provide the results you are seeking. We present a few examples using some of our earlier-
defined lists.

>>> max(str_list)
'park'
>>>
>>> max(num_list)
[65535L, 2e+30, (76.45-1.3j)]
>>> max(mixup_list)
'beef'
>>> min(mixup_list)
(-1.9+6j)
>>>
>>> min(str_list)
'candlestick'
>>>
>>> min(num_list)
-49

list() and tuple()

The list() and tuple() methods take sequence types and convert them to lists and tuples,
respectively. Although strings are also sequence types, they are not commonly used with list() and
tuple(). These built-in functions are used more often to convert from one type to the other., i.e.,
when you have a tuple that you need to make a list (so that you can modify its elements) and vice versa.

>>> aList = ['tao', 93, 99, 'time']
>>> aTuple = tuple(aList)
>>> print aList
['tao', 93, 99, 'time']
>>>
>>> print aTuple
('tao', 93, 99, 'time')
>>>
>>> back2aList = list(aTuple)
>>> back2aList
['tao', 93, 99, 'time']
>>> back2aList == aList
1
>>> back2aList is aList
0

Neither list() nor tuple() performs true conversions (also see Section 6.1.2). In other words, the
list you passed to tuple() does not turn into a list, and the tuple you give to list() does not really
become a list. Instead, these built-in functions create a new object of the destination type and populate
it with the same elements as the original sequence. In the last two examples above, although the data
set for both lists is the same (hence satisfying ==), neither variable points to the same list (thus failing
is).

List Type Built-in Functions

There are currently no special list-only built-in functions in Python. Lists can be used with most object
and sequence built-in functions. In addition, list objects have their own methods.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/101#13.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=112

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
List Type Built-in Methods

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175201138162144208147034

List Type Built-in Methods

Lists in Python have methods. We will go over methods more formally in an introduction to object-
oriented programming in Chapter 13, but for now, think of methods as functions or procedures that
apply only to specific objects. So the methods described in this section behave just like built-in
functions except that they operate only on lists. Since these functions involve the mutability (or
updating) of lists, none of them is applicable for tuples.

You may recall our earlier discussion of accessing object attributes using the dotted attribute notation:
object.attribute. List methods are no different, using list.method([arguments]).
We use the dotted notation to access the attribute (here it is a function), then use the function operators
(()) in a functional notation to invoke the methods.

Types that have methods generally have an attribute called object.__methods__ which name all
the methods that are supported by that type. In our case for lists, list.__methods__ serves this
purpose:

>>> [].__methods__
['append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

Table6.10 shows all the current methods currently available for lists. Of these methods, extend()
and pop() made their debut in Python 1.5.2. Some examples of using various list methods are shown
below.

Table 6.10. List Type Built-in Methods

List Method Operation
list.append(obj) appends object obj to list

list.count(obj) returns count of how many times obj occurs in list

list.extend(seq)[a] appends the contents of seq to list

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=113
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A20%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=113&now=5%2F29%2F2002+9%3A20%3A16+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/113#1.html

list.index(obj) returns the lowest index in list that obj appears

list.insert(index, obj) inserts object obj into list at offset index

list.pop(obj=list[-1])[a] removes and returns last object or obj from list

list.remove(obj) removes object obj from list

list.reverse() reverses objects of list in place

list.sort([func]) sorts objects of list, use compare func if given

[a] new as of Python 1.5.2

>>> music_media = [45]
>>> music_media
[45]
>>>
>>> music_media.insert(0, 'compact disc')
>>> music_media
['compact disc', 45]
>>>
>>> music_media.append('long playing record')
>>> music_media
['compact disc', 45, 'long playing record']
>>>
>>> music_media.insert(2, '8-track tape')
>>> music_media
['compact disc', 45, '8-track tape', 'long playing record']

In the preceeding example, we initiated a list with a single element, then checked the list as we either
inserted elements within the list, or appended new items at the end. Let's now determine if elements are
in a list as well as how to find out the location of where items are in a list. We do this by using the in
operator and index() method.

>>> 'cassette' in music_media
0
>>> 'compact disc' in music_media
1
>>> music_media.index(45)
1
>>> music_media.index('8-track tape')
2
>>> music_media.index('cassette')

Traceback (innermost last):
 File "<interactive input>", line 0, in ?
ValueError: list.index(x): x not in list

Oops! What happened in that last example? Well, it looks like using index() to check if items are in
a list is not a good idea, because we get an error. It would be safer to check using the membership
operator in (or not in) first, and then using index() to find the element's location. We can put the
last few calls to index() in a single for loop like this:

for eachMediaType in (45, '8-track tape', 'cassette'):
 if eachMediaType in music_media:
 print music_media.index(eachMediaType)

This solution helps us avoid the error we encountered above because index() is not called unless the
object was found in the list. We will find out later how we can take charge if the error occurs, instead
of bombing out as we did above.

We will now test drive sort() and reverse(), methods that will sort and reverse the elements of
a list, respectively.

>>> music_media
['compact disc', 45, '8-track tape', 'long playing record']
>>> music_media.sort()
>>> music_media
[45, '8-track tape', 'compact disc', 'long playing record']
>>> music_media.reverse()
>>> music_media
['long playing record', 'compact disc', '8-track tape', 4

One caveat about the sort() and reverse() methods is that these will perform their operation on a
list in place, meaning that the contents of the existing list will be changed. There is no return value
from either of these methods.

Oh, and if you are an algorithm connoisseur, the default sorting algorithm employed by the sort()
method is a randomized version of QuickSort. We defer all other explanation to the portion of the

source code where you can find out more information on the sorting algorithm
(Objects/listobject.c).

The new extend() method will take the contents of one list and append its elements to another list:

>>> new_media = ['24/96 digital audio disc', 'DVD Audio
disc', 'Super Audio CD']
>>> music_media.extend(new_media)
>>> music_media
['long playing record', 'compact disc', '8-track tape',
45, '24/96 digital audio disc', 'DVD Audio disc', 'Super
Audio CD']

The argument to extend() can be any sequence object starting in Python 1.6—the sequence is
converted to a list by performing the equivalent to list() and then its contents appended to the
original list. In 1.5.2, the argument was required to be a list.

pop() will either return the last or requested item from a list and return it to the caller. We will see the
new pop() method in Section 6.14.1 as well as in the Exercises.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/114#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=113

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Special Features of Lists

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175201138160122254082110

Special Features of Lists

Creating Other DataStructures Using Lists

Because of their container and mutable features, lists are fairly flexible and it is not very difficult to
build other kinds of data structures using lists. Two that we can come up with rather quickly are stacks
and queues.

The two code samples in this section use the pop() method which became reality in Python 1.5.2. If
you are using an older system, this function is easily duplicated in Python. (See Exercise 6-17.)

Stack

A stack is a last-in-first-out (LIFO) data structure which works similar to a cafeteria dining plate spring-
loading mechanism. Consider the plates as objects. The first object off the stack is the last one you put
in. Every new object gets "stacked" on top of the newest objects. To "push" an item on a stack is the
terminology used to mean you are adding onto a stack. Likewise, to remove an element, you "pop" it
off the stack. The following example shows a menu-driven program which implements a simple stack
used to store strings:

Example 6.2. Using Lists as a Stack (stack.py)

This simple script uses lists as a stack to store and retrieve strings entered through this menu-driven
text application using only the append() and pop() list methods.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 stack = []
004 4
005 5 def pushit():
006 6 stack.append(raw_input('Enter new string: '))
007 7
008 8 def popit():
009 9 if len(stack) == 0:
010 10 print 'Cannot pop from an empty stack!'

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=114
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A20%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=114&now=5%2F29%2F2002+9%3A20%3A30+PM

011 11 else: <$nopage>
012 12 print 'Removed [', stack.pop(), ']'
013 13
014 14 def viewstack():
015 15 print str(stack)
016 16
017 17 def showmenu():
018 18 prompt = """
019 19 p(U)sh
020 20 p(O)p
021 21 (V)iew
022 22 (Q)uit
023 23
024 24 Enter choice: """
025 25
026 26 done = 0
027 27 while not done:
028 28
029 29 chosen = 0
030 30 while not chosen:
031 31 try: <$nopage>
032 32 choice = raw_input(prompt)[0]
033 33 except (EOFError, KeyboardInterrupt):
034 34 choice = 'q'
035 35 print 'nYou picked: [%s]' % choice
036 36 if choice not in 'uovq':
037 37 print 'invalid option, try again'
038 38 else:
039 39 chosen = 1
040 40
041 41 if choice == 'q': done = 1
042 42 if choice == 'u': pushit()
043 43 if choice == 'o': popit()
044 44 if choice == 'v': viewstack()
045 45
046 46 if __name__ == '__main__':
047 47 showmenu()
048 <$nopage>

Lines 1–3

In addition to the Unix startup line, we take this opportunity to clear the stack (a list).

Lines 5–6

The pushit() function adds an element (a string prompted from the user) to the stack.

Lines 8–12

The popit() function removes an element from the stack (the more recent one). An error occurs
when trying to remove an element from an empty stack. In this case, a warning is sent back to the user.

Lines 14–15

The viewstack() function displays a printable string representation of the list.

Lines 17–44

The entire menu-driven application is controlled from the showmenu() function. Here, the user is
prompted with the menu options. Once the user makes a valid choice, the proper function is called. We
have not covered exceptions and try-except statement in detail yet, but basically that section of the
code allows a user to type ^D (EOF, which generates an EOFError) or ^C (interrupt to quit, which
generates a KeyboardInterrupt error), both of which will be processed by our script in the same
manner as if the user had typed the 'q' to quit the application. This is one place where the exception-
handling feature of Python comes in extremely handy.

Lines 46–47

This part of the code starts up the program if invoked directly. If this script was imported as a module,
only the functions and variables would have been defined, but the menu would not show up. For more
information regarding line 46 and the __name__ variable, see Section 3.4.1.

Here is a sample execution of our script:

% stack.py

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: Python

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/74#5.html

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: is

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: cool!

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: v

You picked: [v]
['Python', 'is', 'cool!']

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed [cool!]

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed [is]

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed [Python]

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Cannot pop from an empty stack!

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: ^D

You picked: [q]

Queue

A queue is a first-in-first-out (FIFO) data structure which works like a single-file supermarket or bank
teller line. The first person in line is the first one served (and hopefully the first one to exit). New
elements join by being "enqueued" at the end of the line, and elements are removed from the front by
being "dequeued." The following code shows how, with a little modification from our stack script, we
can implement a simple queue using lists.

Example 6.3. Using Lists as a Queue (queue.py)

This simple script uses lists as a queue to store and retrieve strings entered through this menu-driven
text application, using only the append() and pop() list methods.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 queue = []
004 4
005 5 def enQ():
006 6 queue.append(raw_input('Enter new string: '))
007 7
008 8 def deQ():
009 9 if len(queue) == 0:
010 10 print 'Cannot dequeue from empty queue!'
011 11 else: <$nopage>
012 12 print 'Removed [', queue.pop(0), ']'
013 13
014 14 def viewQ():
015 15 print str(queue)
016 16
017 17 def showmenu():
018 18 prompt = """
019 19 (E)nqueue
020 20 (D)equeue
021 21 (V)iew
022 22 (Q)uit
023 23
024 24 Enter choice: """
025 25
026 26 done = 0
027 27 while not done:
028 28
029 29 chosen = 0
030 30 while not chosen:
031 31 try: <$nopage>
032 32 choice = raw_input(prompt)[0]
033 33 except (EOFError, KeyboardInterrupt):
034 34 choice = 'q'
035 35 print '\nYou picked: [%s]' % choice
036 36 if choice not in 'devq':
037 37 print 'invalid option, try again'
038 38 else: <$nopage>
039 39 chosen = 1

040 40
041 41 if choice == 'q': done = 1
042 42 if choice == 'e': enQ()
043 43 if choice == 'd': deQ()
044 44 if choice == 'v': viewQ()
045 45
046 46 if __name__ == '__main__':
047 47 showmenu()
048 <$nopage>

Because of the similarities of this script with the stack.py script, we will describe only in detail the
lines which have changed significantly:

Lines 5–6

The enQ() function works exactly like pushit(), only the name has been changed.

Lines 8–12

The key difference between the two scripts lies here. The deQ() function, rather than taking the most
recent item as popitem() did, takes the oldest item on the list, the first element.

We present some output here as well:

% queue.py
(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: e

You picked: [e]
Enter new queue element: Bring out

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: e

You picked: [e]

Enter new queue element: your dead!

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: v

You picked: [v]
['Bring out', 'your dead!']

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
Removed [Bring out]

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
 Removed [your dead!]

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
Cannot dequeue from empty queue!

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: ^D
You picked: [q]

Subclassing from "Lists"

Earlier in this text, we described how types are not classes in Python, so you cannot derive subclasses
from them (see the Core Note in Section 4.2). As a proxy, the Python standard library includes two
modules containing class wrappers around two types, lists and dictionaries, from which you can
subclass. These are the UserList and UserDict modules. Once you are familiar with classes, you
can take these already-implemented classes to create your own subclasses from lists and dictionaries
and add whatever functionality you wish. These modules are part of the Python standard library. See
Section 6.18 for more information.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=114

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Tuples

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175201138167208223137006

Tuples

Tuples are another container type extremely similar in nature to lists. The only visible difference
between tuples and lists is that tuples use parentheses and lists use square brackets. Functionally. there
is a more significant difference, and that is the fact that tuples are immutable.

Our usual modus operandi is to present the operators and built-in functions for the more general
objects, followed by those for sequences and conclude with those applicable only for tuples, but
because tuples share so many characteristics with lists, we would be duplicating much of our
description from the previous section. Rather than providing much repeated information, we will
differentiate tuples from lists as they apply to each set of operators and functionality, then discuss
immutability and other features unique to tuples.

How to Create and Assign Tuples

Creating and assigning lists are practically identical to lists, with the exception of empty tuples. These
require a trailing comma (,) enclosed in the tuple delimiting parentheses (()).

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)
>>> anotherTuple = (None, 'something to see here')
>>> print aTuple
 (123, 'abc', 4.56, ['inner', 'tuple'], (7-9j))
>>> print anotherTuple
 (None, 'something to see here')
>>> emptiestPossibleTuple = (None,)
>>> print emptiestPossibleTuple
(None,)

How to Access Values in Tuples

Slicing works similar to lists: Use the square bracket slice operator ([]) along with the index or
indices.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=115
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A20%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=115&now=5%2F29%2F2002+9%3A20%3A47+PM

>>> aTuple>>> aList[1:4]
('abc', 4.56, ['inner', 'tuple'])
>>> aTuple[:3]
(123, 'abc', 4.56)
>>> aTuple[3][1]
'tuple'

How to Update Tuples

Like numbers and strings, tuples are immutable which means you cannot update them or change values
of tuple elements. In Sections 6.2 and 6.3.2, we were able to take portions of an existing string to create
a new string. The same applies for tuples.

>>> aTuple = aTuple[0], aTuple[1], aTuple[-1]
>>> aTuple
(123, 'abc', (7-9j))
>>> tup1 = (12, 34.56)
>>> tup2 = ('abc', 'xyz')
>>> tup3 = tup1 + tup2
>>> tup3
(12, 34.56, 'abc', 'xyz')

How to Remove Tuple Elements and Tuples

Removing individual tuple elements is not possible. There is, of course, nothing wrong with putting
together another tuple with the undesired elements discarded.

To explicitly remove an entire list, just use the del statement:

del aTuple

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/103#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=115

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Tuple Operators and Built-in Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175201138166113167152098

Tuple Operators and Built-in Functions

Standard and Sequence TypeOperators and Built-in Functions

Object and sequence operators and built-in functions act the exact same way toward tuples as they do
with lists. You can still take slices of tuples, concatenate and make multiple copies of tuples, validate
membership, and compare tuples:

Creation, Repetition, Concatenation

>>> t = (['xyz', 123], 23, -103.4)
>>> t
(['xyz', 123], 23, -103.4)
>>> t * 2
(['xyz', 123], 23, -103.4, ['xyz', 123], 23, -103.4)
>>> t = t + ('free', 'easy')
>>> t
(['xyz', 123], 23, -103.4, 'free', 'easy')

Membership, Slicing

>>> 23 in t
1
>>> 123 in t
0
>>> t[0][1]
123
>>> t[1:]
 (23, -103.4, 'free', 'easy')

Built-in Functions

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=116
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A20%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=116&now=5%2F29%2F2002+9%3A20%3A59+PM

>>> str(t)
(['xyz', 123], 23, -103.4, 'free', 'easy')
>>> len(t)
5
>>> max(t)
'free'
>>> min(t)
-103.4
>>> cmp(t, (['xyz', 123], 23, -103.4, 'free', 'easy'))
0
>>> list(t)
[['xyz', 123], 23, -103.4, 'free', 'easy']

Operators

>>> (4, 2) < (3, 5)
0
>>> (2, 4) < (3, -1)
1
>>> (2, 4) == (3, -1)
0
>>> (2, 4) == (2, 4)
1

Tuple Type Operators and Built-in Functions and Methods

Like lists, tuples have no operators or built-in functions for themselves. All of the list methods
described in the previous section were related to a list object's mutability, i.e., sorting, replacing,
appending, etc. Since tuples are immutable, those methods are rendered superfluous, thus
unimplemented.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=116

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Special Features of Tuples

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175200043198189067183085

Special Features of Tuples

How are Tuples Affected by Immutability?

Okay, we have been throwing around this word "immutable" in many parts of the text. Aside from its
computer science definition and implications, what is the bottom line as far as applications are concerned?
What are all the consequences of an immutable data type?

Of the three standard types which are immutable—numbers, strings, and tuples—tuples are the most
affected. A data type that is immutable simply means that once an object is defined, its value cannot be
updated, unless, of course, a completely new object is allocated. The impact on numbers and strings is not
as great since they are scalar types, and when the sole value they represent is changed, that is the intended
effect, and access occurs as desired. The story is different with tuples, however.

Because tuples are a container type, it is often desired to change a single or multiple elements of that
container. Unfortunately, this is not possible. Slice operators cannot show up on the left-hand side of an
assignment. Recall this is no different for strings, and that slice access is used for read access only.

Immutability does not necessarily mean bad news. One bright spot is that if we pass in data to an API with
which we are not familiar, we can be certain that our data will not be changed by the function called. Also,
if we receive a tuple as a return argument from a function that we would like to manipulate, we can use the
list() built-in function to turn it into a mutable list.

Tuples Are Not Quite So "Immutable"

Although tuples are defined as immutable, this does not take away from their flexibility. Tuples are not
quite as immutable as we made them out to be. What do we mean by that? Tuples have certain behavioral
characteristics that make them seem not as immutable as we had first advertised.

For example, we can join strings together to form a larger string. Similarly, there is nothing wrong with
putting tuples together to form a larger tuple, so concatenation works. This process does not involve
changing the smaller individual tuples in any way. All we are doing is joining their elements together.
Some examples are presented here:

>>> s = 'first'
>>> s = s + ' second'
>>> s

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=117
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A21%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=117&now=5%2F29%2F2002+9%3A21%3A09+PM

'first second'
>>>
>>> t = ('third', 'fourth')
>>> t
('third', 'fourth')
>>>
>>> t = t + ('fifth', 'sixth')
>>> t
('third', 'fourth', 'fifth', 'sixth')

The same concept applies for repetition. Repetition is just concatenation of multiple copies of the same
elements. In addition, we mentioned in the previous section that one can turn a tuple into a mutable list with
a simple function call. Our final feature may surprise you the most. You can "modify" certain tuple
elements. Whoa. What does that mean?

Although tuple objects themselves are immutable, this fact does not preclude tuples from containing
mutable objects which can be changed.

>>> t = (['xyz', 123], 23, -103.4)
>>> t
(['xyz', 123], 23, -103.4)
>>> t[0][1]
123
>>> t[0][1] = ['abc', 'def']
>> t
(['xyz', ['abc', 'def']], 23, -103.4)

In the above example, although t is a tuple, we managed to "change" it by replacing an item in the first
tuple element (a list). We replaced t[0][1], formerly an integer, with a list ['abc', 'def'].
Although we modified only a mutable object, in some ways, we also "modified" our tuple.

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e., brackets for lists,
parentheses for tuples, etc., default to tuples, as indicated in these short examples:

>>> 'abc', -4.24e93, 18+6.6j, 'xyz'
('abc', -4.24e+093, (18+6.6j), 'xyz')
>>>
>>> x, y = 1, 2

>>> x, y
(1, 2)

Any function returning multiple objects (also no enclosing symbols) is a tuple. Note that enclosing symbols
change a set of multiple objects returned to a single container object. For example:

def foo1():
 :
 return
 obj1, obj2, obj3
def foo2():
 :
 return [obj1, obj2, obj3]
def foo3():
 :
 return (obj1, obj2, obj3)

In the above examples, foo1() calls for the return of three objects, which come back as a tuple of three
objects, foo2() returns a single object, a list containing three objects, and foo3() returns the same thing
as foo1(). The only difference is that the tuple grouping is explicit.

Explicit grouping of parentheses for expressions or tuple creation is always recommended to avoid
unpleasant side effects:

>>> 4, 2 < 3, 5 # int, comparison, int
(4, 1, 5)
>>> (4, 2) < (3, 5) # tuple comparison
0

In the first example, the less than (<) operator took precedence over the comma delimiter intended for the
tuples on each side of the less than sign. The result of the evaluation of 2 < 3 became the second element
of a tuple. Properly enclosing the tuples enables the desired result.

Single Element Tuples

Ever try to create a tuple with a single element? You tried it with lists, and it worked, but then you tried and
tried with tuples, but cannot seem to be able to do it.

>>> ['abc']
['abc']
>>> type(['abc']) # a list
<type 'list'>
>>>
>>> [123]
[123]
>>> type([123]) # also a list
<type 'list'>
>>>
>>> ('xyz')
'xyz'
>>> type(('xyz')) # a string, not a tuple
<type 'string'>
>>>
>>> (456)
456
>>> type((456)) # an int, not a tuple
<type 'int'>

It probably does not help your case that the parentheses are also overloaded as the expression grouping
operator. Parentheses around a single element take on that binding role rather than as a delimiter for tuples.
The workaround is to place a trailing comma (,) after the first element to indicate that this is a tuple and not
a grouping.

>>> ('xyz',)
('xyz',)
>>> (456,)
(456,)

NOTE

One of the questions in the Python FAQ (6.15) asks, "Why are there separate tuple and list data types?"
That question can also be rephrased as, "Do we really need two sequence types?" One reason why
having lists and tuples is a good thing occurs in situations where having one is more advantageous than
having the other.

One case in favor of an immutable data type is if you were manipulating sensitive data and were
passing a mutable object to an unknown function (perhaps an API that you didn't even write!). As the

engineer developing your piece of the software, you would definitely feel a lot more secure if you knew
that the function you were calling could not alter the data.

An argument for a mutable data type is where you are managing dynamic data sets. You need to be able
to create them on the fly, slowly or arbitrarily adding to them, or from time to time, deleting individual
elements. This is definitely a case where the data type must be mutable. The good news is that with the
list() and tuple() built-in conversion functions, you can convert from one type to the other
relatively painlessly

list() and tuple() are functions which allow you to create a tuple from a list and vice versa.
When you have a tuple and want a list because you need to update its objects, the list() function
suddenly becomes your best buddy. When you have a list and want to pass it into a function, perhaps an
API, and you do not want anyone to mess with the data, the tuple() function comes in quite useful.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=117

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Related Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175200043196103185095010

Related Modules

Table6.11 lists the key related modules for sequence types. This list includes the array module to
which we briefly alluded earlier. These are similar to lists except for the restriction that all elements
must be of the same type. The copy module (see optional Section 6.19 below) performs shallow and
deep copies of objects. The operator module, in addition to the functional equivalents to numeric
operators, also contains the same four sequence types. The types module is a reference of type
objects representing all types which Python supports, including sequence types. Finally, the
UserList module contains a full class implementation of a list object. Because Python types cannot
be subclassed, this module allows users to obtain a class that is list-like in nature, and derive new
classes or functionality. If you are unfamiliar with object-oriented programming, we highly recommend
reading Chapter 13.

Table 6.11. Related Modules for Sequence Types

Module Contents
array features the array restricted mutable sequence type which requires all of its elements to be of

the same type
copy provides functionality to perform shallow and deep copies of objects (see 6.19 below for more

information)
operator contains sequence operators available as function calls, i.e. operator.concat(m, n) is

equivalent to the concatenation (m + n) for sequences m and n.
types contains type objects for all supported Python types
UserList wraps a list object (including operators and methods) into a class which can be used for

derivation (also see Section 6.18)

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=118
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A21%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=118&now=5%2F29%2F2002+9%3A21%3A21+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/118#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=118

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
*Shallow and Deep Copies

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175200043197177173247184

*Shallow and Deep Copies

Earlier in Section 3.5, we described how object assignments are simply object references. This means
that when you create an object, then assign that object to another variable, Python does not copy the
object. Instead, it copies only a reference to the object. For example:

>>> aList = [[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> anotherList = aList
>>> aList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>>
>>> anotherList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]

Above, a list of two elements is created and its reference assigned to aList. When aList is
assigned to anotherList, the contents of the list reference by aList are not copied when
anotherList is created. Rather, anotherList "copies" the reference from aList, not the data.
We can confirm this by taking a look at the identities of the objects that both references point to:

>>> id(aList)
1191872
>>> id(anotherList)
1191872

A shallow copy of an object is defined to be a newly-created object of the same type as the original
object whose contents are references to the elements in the original object. In other words, the copied
object itself is new, but the contents are not. Shallow copies of sequence objects may be taken one of
two ways: (1) taking a complete slice using the slice operator, or (2) using the copy() function of the
copy module, as indicated in the example below:

>>> thirdList = aList[:]
>>> thirdList

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=119
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A21%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=119&now=5%2F29%2F2002+9%3A21%3A31+PM

[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> id(thirdList)
1192232
>>>
>>> import copy
>>> fourthList = copy.copy(aList)
>>> fourthList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> id(fourthList)
1192304

The thirdList list is created using the slice operator to take an entire slice (both starting and ending
indices are absent). We also present the new object's identity to confirm its disassociation with the
original object. Likewise for the creation of the fourthList list. This time, we use the
copy.copy() function to perform the same feat. However, the elements of these lists are still only
references to the original object's elements.

>>> id(aList[0]), id(aList[1]), id(aList[2])
(1064072, 1191920, 1191896)
>>> id(thirdList[0]), id(thirdList[1]), id(thirdList[2])
(1064072, 1191920, 1191896)
>>> id(fourthList[0]), id(fourthList[1]), id(fourthList[2])
(1064072, 1191920, 1191896)

We pull the identities of these objects to confirm our hypothesis. In order to obtain a full or deep copy
of the object—creating a new container but containing references to completely new copies
(references) of the element in the original object—we need to use the copy.deepcopy() function.

>>> lastList = copy.deepcopy(aList)
>>> lastList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> id(lastList)
1193248
>>> id(lastList[0]), id(lastList[1]), id(lastList[2])
(1192280, 1193128, 1193104)

There are a few notes and caveats to making copies to keep in mind. The first is that non-container
types (i.e., numbers, strings, and other "atomic" objects like code, type, and xrange objects) are not
copied. Shallow copies of sequences are all done using complete slices. Mapping types, which will be
covered in Chapter 8, are copied using the dictionary copy method. Finally, deep copies of tuples are
not made if they contain only atomic objects. If we changed each of the small lists in the larger list
above to all tuples, we would have performed only a shallow copy, even though we requested a deep
copy.

NOTE

The shallow and deep copy operations that we just described are found in the copy module. There
are really only two functions to use from this module: copy()—creates shallow copy, and
deepcopy()—creates a deep copy.

Sequence types provide various mechanisms for ordered storage of data. Strings are a general medium
for carrying data, whether it be displayed to a user, stored on a disk, transmitted across the network, or
be a singular container for multiple sources of information. Lists and tuples provide container storage
that allows for simple manipulation and access of multiple objects, whether they by Python data types
or user-defined objects. Individual or groups of elements may be accessed as slices via sequentially-
ordered index offsets. Together, these data types provide flexible and easy-to-use storage tools in your
Python development environment. We conclude this chapter with a summary of operators, built-in
functions and methods for sequence types given as Table6.12.

Table 6.12. Sequence Type Operators, Built-in Functions and Methods

Operator, built-in function or method String List Tuple
[] (list creation) •
() •
'' •
append() •
capitalize() •
center() •
chr() •
cmp() • • •
count() • •
encode() •
endswith() •
expandtabs() •

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/119#1.html

extend() •
find() •
hex() •
index() • •
insert() • •
isdecimal() •
isdigit() •
islower() •
isnumeric() •
isspace() •
istitle() •
isupper() •
join() •
len() • • •
list() • • •
ljust() •
lower() •
lstrip() •
max() • • •
min() • • •
oct() •
ord() •
pop() •
raw_input() •
remove() •
replace() •
repr() • •
reverse() •
rfind() •
rindex() •
rjust() •
rstrip() •
sort() •
split() •
splitlines() •
startswith() •
str() • • •
strip() •
swapcase() •
split() •

title() •
tuple() • • •
type() • • •
upper() •
zfill() •
. (attributes) • •
[] (slice) • • •
[:] • • •
* • • •
% •
+ • • •
in • • •
not in • • •

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=119

Programming > Core Python Programming > 6. Sequences: Strings, Lists, and Tuples >
Exercises

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175200043194169082000143

Exercises

1: Strings. Are there any string methods or functions in the string module that will help me
determine if a string is part of a larger string?

2: String Identifiers. Modify the idcheck.py script in Example 6-1 such that it will
determine the validity of identifiers of length 1 as well as be able to detect if an identifier is
a keyword. For the latter part of the exercise, you may use the keyword module
(specifically the keyword.kwlist list) to aid in your cause.

3: Sorting.

(a) Enter a list of numbers and sort the values in largest-to-smallest order.

(b) Do the same thing, but for strings and in reverse alphabetical (largest-to-smallest
lexicographic) order.

4: Arithmetic. Update your solution to the test score exercise in the previous chapter such that
the test scores are entered into a list. Your code should also be able to come up with an
average score. See Exercises 2-9 and 5-3.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=120
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A21%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=120&now=5%2F29%2F2002+9%3A21%3A43+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#14.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#14.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#15.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/103#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/68#8.html

5: Strings.

(a) Display a string one character-at-a-time forward and backward as well.

(b) Determine if two strings match (without using comparison operators or the cmp() built-
in function) by scanning each string. EXTRA CREDIT: Add case-insensitivity to your
solution.

(c) Determine if a string is palindromic (the same backwards as it is for wards). EXTRA
CREDIT: add code to suppress symbols and white space if you want to process anything
other than strict palindromes.

(d) Take a string and append a backwards copy of that string, making a palindrome.

6: Strings. Create the equivalent to string.strip(): Take a string and remove all
leading and trailing whitespace. (Use of string.*strip() defeats the purpose of this
exercise.)

7: Debugging. Take a look at the code we present in Example 6.4 (buggy.py).

(a) Study the code and describe what this program does. Add a comment to every place you
see a comment sign (#). Run the program.

(b) This problem has a big bug in it. It fails on inputs of 6, 12, 20, 30, etc., not to mention
any even number in general. What is wrong with this program?

(c) Fix the bug in (b).

Example 6.4. buggy program(buggy.py)

This is the program listing for Exercise 6-7. You will determine what this program does,
add comments where you see "#"s, determine what is wrong with it, and provide a fix for
it.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 #
004 4 import string

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/120#3.html

005 5
006 6 #
007 7 num_str = raw_input('Enter a number: ')
008 8
009 9 #
010 10 num_num = string.atoi(num_str)
011 11
012 12 #
013 13 fac_list = range(1, num_num+1)
014 14 print "BEFORE:", 'fac_list'
015 15
016 16 #
017 17 i = 0
018 18
019 19 #
020 20 while i < len(fac_list):
021 21
022 22 #
023 23 if num_num % fac_list[i] == 0:
024 24 del fac_list[i]
025 25
026 26 #
027 27 i = i + 1
028 28
029 29 #
030 30 print "AFTER:", 'fac_list'
031 <$nopage>

8: Lists. Given an integer value, return a string with the equivalent English text of each digit.
For example, an input of 89 results in "eight nine" being returned. EXTRA CREDIT:
return English text with proper usage, i.e., "eighty-nine." For this part of the exercise,
restrict values to be between zero and a thousand.

9: Conversion. Create a sister function to your solution for Exercise 6-13 to take the total
number of minutes and return the same time interval in hours and minutes, maximizing on
the total number of hours.

10: Strings. Create a function that will return another string similar to the input string, but with
its case inverted. For example, input of "Mr. Ed" will result in "mR. eD" as the output
string.

11: Conversion.

(a) Create a program that will convert from an integer to an Internet Protocol (IP) address
in the four octet format of WWW.XXX.YYY.ZZZ.

(b) Update your program to be able to do the vice versa of the above.

12: Strings.

(a) Create a function called findchr(), with the following declaration:

 def findchr(string, char)

findchr() will look for character char in string and return the index of the first
occurrence of char, or -1 if that char is not part of string. You cannot use
string.*find() or string.*index() functions or methods.

(b) Create another function called rfindchr() which will find the last occurrence of a
character in a string. Naturally this works similarly to findchr() but it starts its search
from the end of the input string.

(c) Create a third function called subchar() with the following declaration:

 def subchr(string, origchar, newchar)

subchr() is similar to findchr() except that whenever origchar is found, it is
replaced by newchar. The modified string is the return value.

13: Strings. The string module contains three functions, atoi(), atol(), and
atof(), that convert strings to integers, long integers, and floating point numbers,
respectively. As of Python 1.5, the Python built-in functions int(), long(), and
float() can also perform the same tasks, in addition to complex() which can turn a
string into a complex number. (Prior to 1.5 however, those built-in functions converted
only between numeric types.)

An atoc() was never implemented in the string module, so that is your task here.
atoc() takes a single string as input, a string representation of a complex number, i.e., '-
1.23e+4-5.67j', and returns the equivalent complex number object with the given
value. You cannot use eval(), but complex() is available. However, you can use
only complex() with the following restricted syntax: complex(real, imag) where
real and imag are floating point values. See Table 6.4 for more information regarding
the use of complex().

14: *Random numbers. Design a "rock, paper, scissors" game, sometimes called
"Rochambeau," a game you may have played as a kid. If you don't know the rules, they
are: at the same time, both you and your opponent have to pick from one of the following:
rock, paper, or scissors using specified hand motions. The winner is determined by these
rules, which form somewhat of a fun paradox: (a) the paper covers the rock, (b) the rock
breaks the scissors, (c) the scissors cut the paper. In your computerized version, the user
enters his/her guess, the computer randomly chooses, and your program should indicate a
winner or draw/tie. NOTE: the most algorithmic solutions use the fewest number of if
statements.

15: Conversion.

(a) Given a pair of dates in some recognizable standard format such as MM/DD/YY or
DD/MM/YY, determine the total number of days that fall between both dates.

(b) Given a person's birth date, determine the total number of days that person has been
alive, including all leap days.

(c) Armed with the same information from part (b) above, determine the number of days
remaining until that person's next birthday.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/104#2.html

16: Matrices. Process the addition and multiplication of a pair of M by N matrices.

17: Methods. Implement a function called my pop(), which is similar to the list pop()
method. Take a list as input, remove the last object from the list and return it.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=120

Programming > Core Python Programming > 7. Dictionaries See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175200043195135239181101

Chapter 7. Dictionaries
Chapter Topics

● Introduction to Dictionaries

● Operators

● Built-in Functions

● Built-in Methods

● Dictionary Keys

In this chapter, we focus on Python's single mapping type, dictionaries. We present the various
operators and built-in functions which can be used with dictionaries. We conclude this chapter by
introducing some of the standard library modules which deal with dictionaries.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=122
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A21%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=122&now=5%2F29%2F2002+9%3A21%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=122

Programming > Core Python Programming > 7. Dictionaries > Introduction to Dictionaries See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175203013152020015011053

Introduction to Dictionaries

The last standard type to add to our repertoire is the dictionary, the sole mapping type in Python. A
dictionary is mutable and is another container type that can store any number of Python objects,
including other container types. What makes dictionaries different from sequence type containers like
lists and tuples is the way the data is stored and accessed.

Sequence types use numeric keys only (numbered sequentially as indexed offsets from the beginning of
the sequence). Mapping types may use most other object types as keys, strings being the most common.
Unlike sequence type keys, mapping keys are often, if not directly, associated with the data value that
is stored. But because we are no longer using "sequentially-ordered" keys with mapping types, we are
left with an unordered collection of data. As it turns out, this does not hinder our use because mapping
types do not require a numeric value to index into a container to obtain the desired item. With a key,
you are "mapped" directly to your value, hence the term "mapping type." The most common data
structure that maps keys with associated values are hash tables.

NOTE

Sequence types use sequentially-ordered numeric keys as index offsets to store your data in an
array format. The index number usually has nothing to do with the data value that is being stored.
There should also be a way to store data based on another, associated value such as a string. We
do this all the time in everyday living. You file people's phone numbers in your address book based
on last name, you add events to your calendar or appointment book based on date and time, etc.
For each of these examples, an associated value to a data item was your key.

Hash tables are a data structure that does exactly what we described. They store each piece of data,
called a value, based on an associated data item, called a key. Together, these are known as key-
value pairs. The hash table algorithm takes your key, performs an operation on it, called a hash
function, and based on the result of the calculation, chooses where in the data structure to store
your value. Where any one particular value is stored depends on what its key is. Because of this
randomness, there is no ordering of the values in the hash table. You have an unordered collection
of data.

The only kind of ordering you can obtain is by key. You can request a dictionary's keys, which is
returned to you as a list. From there, you can call the list's sort() method to order that data set.
This is only one type of ordering you can perform on your keys. In any case, once you have
determined that the set of keys is "sorted" to your satisfaction, their associated values may be

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=123
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A22%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=123&now=5%2F29%2F2002+9%3A22%3A05+PM

retrieved from the dictionary. Hash tables generally provide good performance because lookups
occur fairly quickly once you have a key. For a sequential access data structure, you must march
down to the correct index location and then retrieve the value. Naturally, performance is based on
the type of hash function used.

Python dictionaries are implemented as resizeable hash tables. If you are familiar with Perl, then we
can say that dictionaries are similar to Perl's associative arrays or hashes.

We will now take a closer look at Python dictionaries. The syntax of a dictionary entry is
key:value. Also, dictionary entries are enclosed in braces ({ }).

How to Create and Assign Dictionaries

Creating dictionaries simply involves assigning a dictionary to a variable, regardless of whether the
dictionary has elements or not:

>>> dict1 = {}
>>> dict2 = {'name': 'earth', 'port': 80}
>>> dict1, dict2
({}, {'port': 80, 'name': 'earth'})

How to Access Values in Dictionaries

To access dictionary elements, you use the familiar square brackets along with the key to obtain its
value:

>>> dict2['name']
'earth'
>>>
>>> print 'host %s is running on port %d' % \
… (dict2['name'], dict2['port'])
host earth is running on port 80

Dictionary dict1 is empty while dict2 has two data items. The keys in dict2 are 'name' and
'port', and their associated value items are 'earth' and 80, respectively. Access to the value is

through the key, as you can see from the explicit access to the 'name' key.

If we attempt to access a data item with a key which is not part of the dictionary, we get an error:

>>> dict2['server']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: server

In this example, we tried to access a value with the key 'server' which, as you know, does not exist
from the code above. The best way to check if a dictionary has a specific key is to use the dictionary's
has_key() method. We will introduce all of a dictionary's methods below. The Boolean
has_key() method will return a 1 if a dictionary has that key and 0 otherwise.

>>> dict2.has_key('server')
0
>>> dict2.has_key('name')
1
>>> dict2['name']
'earth'

Once the has_key() method has given the okay, meaning that a key exists, then you can access it
without having to worry about getting the KeyError, similar to what happened above. Let us take a
look at another dictionary example, using keys other than strings:

>>> dict3 = {}
>>> dict3[1] = 'abc'
>>> dict3['1'] = 3.14159
>>> dict3[3.2] = 'xyz'
>>> dict3
{3.2: 'xyz', 1: 'abc', '1': 3.14159}

Rather than adding each key-value pair individually, we could have also entered all the data for dict3
at the same time:

dict3 = { 3.2: 'xyz', 1: 'abc', '1': 3.14159 }

Creating the dictionary with a set key-value pair can be accomplished if all the data items are known in
advance (obviously). The goal of the examples using dict3 is to illustrate the variety of keys that you
can use. If we were to pose the question of whether a key for a particular value should be allowed to
change, you would probably say, "No." Right?

Not allowing keys to change during execution makes sense if you think of it this way: Let us say that
you created a dictionary element with a key and value. Somehow during execution of your program,
the key changed, perhaps due to an altered variable. When you went to retrieve that data value again
with the original key, you got a KeyError (since the key changed), and you had no idea how to
obtain your value now because the key had somehow been altered. Because of this reason, keys must
be immutable, so numbers and strings are fine, but lists and other dictionaries are not. (See Section
7.5.2 for why keys must be immutable.)

How to Update Dictionaries

You can update a dictionary by adding a new entry or element (i.e., a key-value pair), modifying an
existing entry, or deleting an existing entry (see below for more details on removing an entry).

>>> dict2['name'] = 'venus' # update existing entry
>>> dict2['port'] = 6969 # update existing entry
>>> dict2['arch'] = 'sunos5' # add new entry
>>>
>>> print 'host %(name)s is running on port %(port)d' % dict2
host venus is running on port 6969

If the key does exist, then its previous value will be overridden by its new value. The print statement
above illustrates an alternative way of using the string format operator (%), specific to dictionaries.
Using the dictionary argument, you can shorten the print request somewhat because naming of the
dictionary occurs only once, as opposed to occurring for each element using a tuple argument.

You may also add the contents of an entire dictionary to another dictionary by using the update()
built-in method. We will introduce this methods later on in this chapter in Section 7.4.

How to Remove Dictionary Elements and Dictionaries

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/127#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/127#2.html

Removing an entire dictionary is not a typical operation. Generally, you either remove individual
dictionary elements or clear the entire contents of a dictionary. However, if you really want to
"remove" an entire dictionary, use the del statement (introduced in Section 3.5.6). Here are some
deletion examples for dictionaries and dictionary elements:

del dict1['name'] # remove entry with key 'name'

dict1.clear() # remove all entries in dict1

del dict1 # delete entire dictionary

NOTE

You may recall that there are two ways to delete an entry from a list, using the del statement or
using the list. remove() method. Then you must be wondering, why do lists have a remove
entry method but not dictionaries? One simple answer is that to remove a element from a list is a
two-step effort. You must first find the index (a.k.a. the key) where the data item is located and then
call the del statement. The remove() method was written to perform both steps, leaving the
programmer with a single step. With dictionaries, you already have the key; there is no need to
perform a lookup. You just call del once. Creating a dictionary method to remove an entry will
provide you with a functional interface.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/75#6.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=123

Programming > Core Python Programming > 7. Dictionaries > Operators See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175203013153020200174255

Operators

Dictionaries do not support sequence operations such as concatenation and repetition, although an
update() built-in method exists that populates one dictionary with the contents of another.
Dictionaries do not have a "membership" operator either, but the has_key() built-in method
basically performs the same task.

Standard Type Operators

Dictionaries will work with all of the standard type operators. These were introduced in Chapter 4, but
we will present some examples of how to use them with dictionaries here:

>>> dict4 = { 'abc': 123 }
>>> dict5 = { 'abc': 456 }
>>> dict6 = { 'abc': 123, 98.6: 37 }
>>> dict7 = { 'xyz': 123 }
>>> dict4 < dict5
1
>>> (dict4 < dict6) and (dict4 < dict7)
1
>>> (dict5 < dict6) and (dict5 < dict7)
1
>>> dict6 < dict7
0

How are all these comparisons performed? Like lists and tuples, the process is a bit more complex than
it is for numbers and strings. The algorithm is detailed below in Section 7.3.1.

Dictionary Key-lookup Operator ([])

The only operator specific to dictionaries is the key-lookup operator, which works very similar to the
single element slice operator for sequence types.

For sequence types, an index offset is the sole argument or subscript to access a single element of a

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=124
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A22%3A15+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=124&now=5%2F29%2F2002+9%3A22%3A15+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/124#1.html

sequence. For a dictionary, lookups are by key, so that is the argument rather than an index. The key-
lookup operator is used for both assigning values to and retrieving values from a dictionary:

dict[k] = v # set value 'v' in dictionary with key 'k'
dict[k] # lookup value in dictionary with key 'k'

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=124

Programming > Core Python Programming > 7. Dictionaries > Built-in Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175203013154167154070116

Built-in Functions

Standard Type Functions [type(), str(), and cmp()]

The type() built-in function, when operated on a dictionary, reveals an object of the dictionary type.
The str() built-in function will produce a printable string representation of a dictionary. These are
fairly straightfoward.

In each of the last three chapters, we showed how the cmp() built-in function worked with numbers,
strings, lists, and tuples. So how about dictionaries? Comparisons of dictionaries are based on an
algorithm which starts with sizes first, then keys, and finally values. In our example below, we create
two dictionaries and compare them, then slowly modify the dictionaries to show how these changes
affect their comparisons:

>>> dict1 = {}
>>> dict2 = { 'host': 'earth', 'port': 80 }
>>> cmp(dict1, dict2)
-1
>>> dict1['host'] = 'earth'
>>> cmp(dict1, dict2)
-1

In the first comparison, dict1 is deemed smaller because dict2 has more elements (2 items vs. 0
items). After adding one element to dict1, it is still smaller (2 vs. 1), even if the item added is also in
dict2.

>>> dict1['port'] = 8080
>>> cmp(dict1, dict2)
1
>>> dict1['port'] = 80
>>> cmp(dict1, dict2)
0

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=125
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A22%3A27+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=125&now=5%2F29%2F2002+9%3A22%3A27+PM

After we add the second element to dict1, both dictionaries have the same size, so their keys are
then compared. At this juncture, both sets of keys match, so comparison proceeds to checking their
values. The values for the 'host' keys are the same, but when we get to the 'port' key, dict2 is
deemed larger because its value is greater than that of dict1's 'port' key (8080 vs. 80). When
resetting dict2's 'port' key to the same value as dict1's 'port' key, then both dictionaries
form equals: They have the same size, their keys match, and so do their values, hence the reason that 0
is returned by cmp().

>>> dict1['prot'] = 'tcp'
>>> cmp(dict1, dict2)
1
>>> dict2['prot'] = 'udp'
>>> cmp(dict1, dict2)
-1

As soon as an element is added to one of the dictionaries, it immediately becomes the "larger one," as
in this case with dict1. Adding another key-value pair to dict2 can tip the scales again, as both
dictionaries' sizes match and comparison progresses to checking keys and values.

>>> cdict = { 'fruits':1 }
>>> ddict = { 'fruits':1 }
>>> cmp(cdict, ddict)
0
>>> cdict['oranges'] = 0
>>> ddict['apples'] = 0
>>> cmp(cdict, ddict)
14

Our final example reminds as that cmp() may return values other than -1, 0, or 1. The algorithm
pursues comparisons in the zzfollowing order:

(1) Compares Dictionary Sizes

If the dictionary lengths are different, then for cmp(dict1, dict2), cmp() will return a positive
number if dict1 is longer and a negative number of dict2 is longer. In other words, the dictionary

with more keys is greater, i.e.,

len(dict1) > len(dict2) ? dict1 > dict2

(2) Compares Dictionary Keys

If both dictionaries are the same size, then their keys are compared; the order in which the keys are
checked is the same order as returned by the keys() method. (It is important to note here that keys
which are the same will map to the same locations in the hash table. This keeps key-checking
consistent.) At the point where keys from both do not match, they are directly compared and cmp()
will return a positive number if the first differing key for dict1 is greater than the first differing key
of dict2.

(3) Compares Dictionary Values

If both dictionary lengths are the same and the keys match exactly, the values for each key in both
dictionaries are compared. Once the first key with non-matching values is found, those values are
compared directly. Then cmp() will return a positive number if, using the same key, the value in
dict1 is greater than that of the value in dict2.

(4) Exact Match

If we have reached this point, i.e., the dictionaries have the same length, the same keys, and the same
values for each key, then the dictionaries are an exact match and 0 is returned.

Figure7-1 illustrates the dictionary compare algorithm we just outlined above.

Figure 7-1. How Dictionaries are Compared

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/125#6.html

Mapping Type Function [len()]

Similar to the sequence type built-in function, the mapping type len() built-in returns the total
number of items, that is, key-value pairs, in a dictionary:

>>> dict2 = { 'name': 'earth', 'port': 80 }
>>> dict2
{'port': 80, 'name': 'earth'}
>>> len(dict2)
2

We mentioned earlier that dictionary items are unordered. We can see that above, when referencing
dict2, the items are listed in reverse order from which they were entered into the dictionary.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=125

Programming > Core Python Programming > 7. Dictionaries > Built-in Methods See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175203013156140173184086

Built-in Methods

Table 7.1 lists the methods for dictionary objects. The clear(), copy(), get(), and
update() methods were added recently in Python 1.5. setdefault() was introduced in 2.0.

Table 7.1. Dictionary Type Methods

dictionary method Operation
dict.clear[a] () removes all elements of dictionary dict

dict.copy[a]() returns a (shallow [b]) copy of dictionary dict

dict.get(key, default=None)[a] for key key, returns value or default if key not in dictionary
(note that default's default is None)

dict.has_key(key) returns 1 if key in dictionary dict, 0 otherwise

dict.items() returns a list of dict's (key, value) tuple pairs

dict.keys() returns list of dictionary dict's keys

dict.setdefault key, default=None)[c] similar to get(), but will set dict[key]=default if key
is not already in dict

dict.update(dict2)[a] adds dictionary dict2's key-values pairs to dict

dict.values() returns list of dictionary dict's values

[a] new as of Python 1.5

[b] more information regarding shallow and deep copies can be found in Section 6.19

[c] new as of Python 2.0

Below, we showcase some of the more common dictionary methods:

>>> dict2 = { 'name': 'earth', 'port': 80 }
>>> dict2.has_key('name')
1
>>>
>>> dict2['name']

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=126
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A22%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=126&now=5%2F29%2F2002+9%3A22%3A44+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/126#1.html

'earth'
>>>
>>> dict2.has_key('number')
0

The has_key() method is Boolean, indicating whether the given key is valid for the dictionary the
method is operating on. Attempting to access a non-existent key will result in an exception
(KeyError) as we saw at the beginning of this chapter in Section 7.1. Mapping types do not support
the in and not in operators as sequences do, so has_key() is our best bet.

Other useful dictionary methods focus entirely on their keys and values. These are keys(), which
returns a list of the dictionary's keys, values(), which returns a list of the dictionary's values, and
items(), which returns a list of (key, value) tuple pairs. These are useful for when you wish to
iterate through a dictionary's keys or values, albeit in no particular order.

>>> dict2.keys()
['port', 'name']
>>>
>>> dict2.values()
[80, 'earth']
>>>
>>> dict2.items()
[('port', 80), ('name', 'earth')]
>>>
>>> for eachKey in dict2.keys():
… print 'dict2 key', eachKey, 'has value',
dict2[eachKey]
…
dict2 key port has value 80
dict2 key name has value earth

The keys() method is fairly useful when used in conjunction with a for loop to retrieve a
dictionary's values as it returns a list of a dictionary's keys. However, because its items are unordered,
imposing some type of order is usually desired. Below, we present the same the loop, but sort the keys
(using the list's sort() method) before retrieval.

>>> dict2Keys = dict2.keys()

>>> dict2Keys.sort()
>>> for eachKey in dict2Keys:
… print 'dict2 key', eachKey, 'has value',
dict2[eachKey]
…
dict2 key name has value earth
dict2 key port has value 80

The update() method can be used to add the contents of one directory to another. Any existing
entries with duplicate keys will be overridden by the new incoming entries. Non-existent ones will be
added. All entries in a dictionary can be removed with the clear() method.

>>> dict2= { 'host':'earth', 'port':80 }
>>> dict3= { 'host':'venus', 'server':'http' }
>>> dict2.update(dict3)
>>> dict2
{'server': 'http', 'port': 80, 'host': 'venus'}
>>> dict3.clear()
>>> dict3
{}

The copy() method simply returns a copy of a dictionary. Note that this is a shallow copy only.
Again, see Section 6.19 regarding shallow and deep copies. Finally, the get() method is similar to
using the key-lookup operator ([]), but allows you to provide a default value returned if a key does
not exist. If a key does not exist and a default value is not given, then None is returned. This is a more
flexible option than just using key-lookup because you do not have to worry about an exception being
raised if a key does not exist.

>>> dict4 = dict2.copy()
>>> dict4
{'server': 'http', 'port': 80, 'host': 'venus'}
>>> dict4.get('host')
'venus'
>>> dict4.get('xxx')
>>> type(dict4.get('xxx'))
<type 'None'>
>>> dict4.get('xxx', 'no such key')
'no such key'

Python 2.0 introduces a new dictionary built-in method, setdefault(), which is intended on
making code shorter by collapsing a common idiom: you want to check if a dictionary has a key. If it
does, you want its value. If the dictionary does not have the key you are seeking, you want to set a
default value and then return it. That is precisely what setdefault() does:

>>> myDict = { 'host': 'earth', 'port': 80 }
>>> myDict.keys()
['host', 'port']
>>> myDict.items()
[('host', 'earth'), ('port', 80)]
>>> myDict.setdefault('port', 8080)
80
>>> myDict.setdefault('prot', 'tcp')
'tcp'
>>> myDict.items()
[('prot', 'tcp'), ('host', 'earth'), ('port', 80)]

For more information, take a look at the "What's New in 2.0" online document. The URL is available in
the Online Resources section of the Appendix and on the CD-ROM.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=126

Programming > Core Python Programming > 7. Dictionaries > Dictionary Keys See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175203013157019136225165

Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, i.e., from standard
objects to user-defined objects. However, the same cannot be said of keys.

More Than One Entry per Key Not Allowed

One rule is that you are constrained to having only one entry per key. In other words, multiple values
per the same key are not allowed. (Container objects such as lists, tuples, and other dictionaries are
fine.) When key collisions are detected (meaning duplicate keys encountered during assignment), the
last assignment wins.

>>> dict1 = {' foo':789, 'foo': 'xyz'}
>>> dict1
{'foo': 'xyz'}
>>>
>>> dict1['foo'] = 123
>>> dict1
{'foo': 123}

Rather than producing an error, Python does not check for key collisions because that would involve
taking up memory for each key-value pair assigned. In the above example where the key 'foo' is
given twice on the same line, Python applies the key-value pairs from left to right. The value 789 may
have been set at first, but is quickly replaced by the string 'xyz'. When assigning a value to a non-
existent key, the key is created for the dictionary and value added, but if the key does exist (a collision),
then its current value is replaced. In the above example, the value for the key 'foo' is replaced twice;
in the final assignment, 'xyz' is replaced by 123.

Keys Must Be Immutable

As we mentioned earlier in Section 7.1, most Python objects can serve as keys—only mutable types
such as lists and dictionaries are disallowed. In other words, types that compare by value rather than by
identity cannot be used as dictionary keys. A TypeError will occur if a mutable type is given as the
key:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=127
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A22%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=127&now=5%2F29%2F2002+9%3A22%3A56+PM

>>> dict[[3]] = 14
Traceback (innermost last):
 File "<stdin>," line 1, in ?
TypeError: unhashable type

Why must keys be immutable? The hash function used by the interpreter to calculate where to store
your data is based on the value of your key. If the key was a mutable object, its value could be changed.
If a key changes, the hash function will map to a different place to store the data. If that was the case,
then the hash function could never reliably store or retrieve the associated value. Immutable keys were
chosen for the very fact that their values cannot change. (Also see the Python FAQ question 6.18.)

We know that numbers and strings are allowed as keys, but what about tuples? We know they are
immutable, but in Section 6.17.2, we hinted that they might not be as immutable as they can be. The
clearest example of that was when we modified a list object which was one of our tuple elements. To
allow tuples as valid keys, one more restriction must be enacted: Tuples are valid keys only if they only
contain immutable arguments like numbers and strings.

We conclude this chapter on dictionaries by presenting a program (userpw.py as in Example 7.1),
which manages user name and passwords in a mock login entry database system. This script accepts
new users given that they provide a login name and a password. Once an "account" has been set up, an
existing user can return as long as they give their login and correct password. New users cannot create
an entry with an existing login name.

Example 7.1. Dictionary Example (userpw.py)

This application manages a set of users who join the system with a login name and a password. Once
established, existing users can return as long as they remember their login and password. New users
cannot create an entry with someone else's login name.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 db = {}
004 4
005 5 def newuser():
006 6 prompt = 'login desired: '
007 7 while 1:
008 8 name = raw_input(prompt)
009 9 if db.has_key(name):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/107#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/127#3.html

010 10 prompt = 'name taken, try another: '
011 11 continue <$nopage>
012 12 else: <$nopage>
013 13 break <$nopage>
014 14 pwd = raw_input('passwd: ')
015 15 db[name] = pwd
016 16
017 17 def olduser():
018 18 name = raw_input('login: ')
019 19 pwd = raw_input('passwd: ')
020 20 passwd = db.get(name)
021 21 if passwd == pwd:
022 22 pass <$nopage>
023 23 else: <$nopage>
024 24 print 'login incorrect'
025 25 return <$nopage>
026 26
027 27 print 'welcome back', name
028 28
029 29 def showmenu():
030 30 prompt = """
031 31 (N)ew User Login
032 32 (E)xisting User Login
033 33 (Q)uit
034 34
035 35 Enter choice: """
036 36
037 37 done = 0
038 38 while not done:
039 39
040 40 chosen = 0
041 41 while not chosen:
042 42 try: <$nopage>
043 43 choice = raw_input(prompt)[0]
044 44 except (EOFError, KeyboardInterrupt):
045 45 choice = 'q'
046 46 print '\nYou picked: [%s]' % choice
047 47 if choice not in 'neq':
048 48 print 'invalid option, try again'
049 49 else: <$nopage>
050 50 chosen = 1
051 51
052 52 if choice == 'q': done = 1

053 53 if choice == 'n': newuser()
054 54 if choice == 'e': olduser()
055 55
056 56 if __name__ == '__main__':
057 57 showmenu()
058 <$nopage>

Lines 1 – 3

After the UNIX-startup line, we initialize the program with an empty user database. Because we are not
storing the data anywhere, a new user database is created every time this program is executed.

Lines 5 – 15

The newuser() function is the code that serves new users. It checks to see if a name has already been
taken, and once a new name is verified, the user is prompted for his or her password (no encryption
exists in our simple program), and his or her password is stored in the dictionary with his or her user
name as the key.

Lines 17 – 27

The olduser() function handles returning users. If a user returns with the correct login and
password, a welcome message is issued. Otherwise, the user is notified of an invalid login and returned
to the menu. We do not want an infinite loop here to prompt for the correct password because the user
may have inadvertently entered the incorrect menu option.

Lines 29 – 54

The real controller of this script is the showmenu() function. The user is presented with a friendly
menu. The prompt string is given using triple quotes because it takes place over multiple lines and is
easier to manage on multiple lines than on a single line with embedded '\n' symbols. Once the menu
is displayed, it waits for valid input from the user and chooses which mode of operation to follow based
on the menu choice. The try-except statements we describe here are the same as for the
stack.py and queue.py examples from the last chapter (see Section 6.14.1).

Lines 56 – 57

Here is the familiar code which will only call showmenu() to start the application if the script was
involved directly (not imported).

Here is a sample execution of our script:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/114#1.html

% userpw.py

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: n

You picked: [n]
login desired: king arthur
passwd: grail

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: e

You picked: [e]
login: sir knight
passwd: flesh wound
login incorrect

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: e

You picked: [e]
login: king arthur
passwd: grail
welcome back king arthur

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: ^D
You picked: [q]

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=127

Programming > Core Python Programming > 7. Dictionaries > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175202199139030046143245

Exercises

1: Dictionary Methods. What dictionary method would we use to combine two dictionaries
together?

2: Dictionary Keys. We know that dictionary values can be arbitrary Python objects, but what
about the keys? Try using different types of objects as the key other than numbers or
strings. What worked for you and what didn't? As for the failures, why do you think they
didn't succeed?

3: Dictionary and List Methods.

(a) Create a dictionary and display its keys alphabetically.

(b) Now display both the keys and values sorted in alphabetical order by the key.

(c) Same as part (b), but sorted in alphabetical order by the value. (Note: this generally has
no practical purpose in dictionaries or hash tables in general because most access and
ordering [if any] is based on the keys. This is merely an exercise.)

4: Creating Dictionaries. Given a pair of identically-sized lists, say, [1, 2, 3, …], and
['abc', 'def', 'ghi', …], process all that list data into a single dictionary that
looks like: {1: 'abc', 2: 'def', 3: 'ghi', …}.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=128
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A23%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=128&now=5%2F29%2F2002+9%3A23%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#17.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#17.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#17.html

5: userpw2.pw. Following problem deals with the program in Example 7.1 a manager of a
database of name-password key-value pairs.

(a) Update the script so that a timestamp is also kept with the password indicating date and
time of last login. This interface should prompt for login and password and indicate a
successful or failed login as before, but if successful, it should update the last login
timestamp. If the login occurs within four hours of the last login, tell the user, "You already
logged in at: <last_login_timestamp>."

(b) Add an "administration" menu to include the following two menu options: (1) remove a
user and (2) display a list of all users in the system and their passwords

(c) The passwords are currently not encrypted. Add password-encryption if so desired (see
the crypt, rotor, or other cryptographic modules)

(d) Add a GUI interface, i.e., Tkinter, on top of this application.

6: Lists and Dictionaries. Create a crude stock portfolio database system: There should be at
least four data columns: stock ticker symbol, number of shares, purchase price, and current
price (you can add more if you wish). Have the user input values for each column to create
a single row. Each row should be created as list. Another all-encompassing list will hold all
these rows. Once the data is entered, prompt the user for one column to use as the sort
metric. Extract the data values of that column into a dictionary as keys, with their
corresponding values being the row that contains that key. Be mindful that the sort metric
must have non-coincidental keys or else you will lose a row because dictionaries are not
allowed to have more than one value with the same key. You may also choose to have
additional calculated output, such as percentage gain/loss, current portfolio values, etc.

7: Inverting Dictionaries. Take a dictionary as input and return one as output, but the values
are now the keys and vice versa.

8: Human Resources. Create a simple name and employee number dictionary application.
Have the user enter a list of names and employee numbers. Your interface should allow a
sorted output (sorted by name) that displays employee names followed by their employee
numbers. EXTRA CREDIT: come up with an additional feature that allows for output to be
sorted by employee numbers.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/127#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#18.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#18.html

9: Translations.

(a) Create a character translator (that works similar to the Unix tr command). This
function, which we will call tr(), takes three strings as arguments: source, destination,
and base strings, and has the following declaration:

def tr(srcstr, dststr, string)

srcstr contains the set of characters you want "translated," dststr contains the set of
characters to translate to, and string is the string to perform the translation on. For
example, if srcstr == 'abc', dststr == 'mno', and string ==
'abcdef', then tr() would output 'mno-def'. Note that len(srcstr) ==
len(dststr). For this exercise, you can use the chr() and ord() built-in functions,
but they are not necessary to arrive at a solution.

(b) Add a new flag argument to this function to perform case-insensitive translations.

(c) Update your solution so that it can process character deletions. Any extra characters in
srcstr which are beyond those which could be mapped to characters in dststr should
be filtered. In other words, these characters are mapped to no characters in dststr, and
are thus filtered from the modified string which is returned. For example, if srcstr ==
'abcdef', dststr == 'mno', and string == 'abcdefghi', then tr()
would output 'mnoghi'. Note now that len(srcstr) >= len(dststr).

10: Encryption. Using your solution to the previous problem, and create a "rot13" translator.
"rot13" is an old and fairly simplistic encryption routine where by each letter of the
alphabet is rotated 13 characters. Letters in the first half of the alphabet will be rotated to
the equivalent letter in the second half and vice versa, retaining case. For example, 'a' goes
to 'n' and 'X' goes to 'K'. Obviously, numbers and symbols are immune from translation.

(b) Add an application on top of your solution to prompt the user for strings to encrypt (and
decrypt on reapplication of the algorithm), as in the following examples:

% rot13.py
Enter string to rot13: This is a short sentence.
Your string to en/decrypt was: [This is a short

sentence.].
The rot13 string is: [Guvf vf n fubeg fragrapr.].
%
% rot13.py
Enter string to rot13: Guvf vf n fubeg fragrapr.
Your string to en/decrypt was: [Guvf vf n fubeg
fragrapr.].
The rot13 string is: [This is a short sentence.].

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=128

Programming > Core Python Programming > 8. Conditionals and Loops See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175202199136113188160200

Chapter 8. Conditionals and Loops
Chapter Topics

● if statement

● else statement

● elif statement

● while statement

● for statement

❍ range() built-in function

● break statement

● continue statement

● pass statement

● else statement… take two

The primary focus of this chapter are Python's conditional and looping statements, and all their related
components. We will take a close look at if, while, for, and their friends else, elif,
break, continue, and pass.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=130
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A23%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=130&now=5%2F29%2F2002+9%3A23%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=130

Programming > Core Python Programming > 8. Conditionals and Loops > if statement See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175202199137183049253097

if statement

The if statement for Python will seem amazingly familiar; it is made up of three main components:
the keyword itself, an expression which is tested for its truth value, and a code suite to execute if the
expression evaluates to non-zero or true. The syntax for an if statement:

if
 expression:
 expr_true_suite

The suite of the if clause, expr_true_suite, will be executed only if the above conditional
expression results in a Boolean true value. Otherwise, execution resumes at the next statement
following the suite.

Multiple Conditional Expressions

The Boolean operators and, or, and not can be used to provide multiple conditional expressions or
perform negation of expressions in the same if statement.

if not warn and (system_load >= 10):
 print "WARNING: losing resources"
 warn = warn + 1

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the header
statement:

if (make_hard_copy == 1): send_data_to_printer()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=131
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A23%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=131&now=5%2F29%2F2002+9%3A23%3A35+PM

Single line if statements such as the above are valid syntax-wise; however, although it may be
convenient, it may make your code more difficult to read, so I recommend you indent the suite on the
next line. Another good reason is that if you must add another line to the suite, you have to move that
line down to the next anyway.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=131

Programming > Core Python Programming > 8. Conditionals and Loops > else Statement See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175202199142239018118184

else Statement

Like other languages, Python features an else statement that can be paired with an if statement. The
else statement identifies a block of code to be executed if the conditional expression of the if
statement resolves to a false Boolean value. The syntax is what you expect:

if
 expression:
 expr_true_suite
else:
 expr_false_suite

Now the obligatory usage example:

if passwd == user.passwd:
 ret_str = "password accepted"
 id = user.id
 valid = 1
else:
 ret_str = "invalid password entered… try again!"
 valid = 0

Dangling else Avoidance

Python's design of using indentation rather than braces for code block delimitation not only helps to
enforce code correctness, but it even aids implicitly in avoiding potential problems in code that is
syntactically correct. One of those such problems is the (in)famous "dangling else" problem, a semantic
optical illusion.

We present some C code here to illustrate our example (which is also illuminated by K&R and other
programming texts):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=132
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A23%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=132&now=5%2F29%2F2002+9%3A23%3A47+PM

/* dangling-else in C */
if (balance > 0.00)
 if (((balance - amt) > min_bal) && (atm_cashout() == 1))
 printf("Here's your cash; please take all bills.\n");
else
 printf("Your balance is zero or negative.\n");

The question is, which if does the else belong to? In the C language, the rule is that the else stays
with the closest if. In our example above, although indented for the outer if statement, the else
statement really belongs to the inner if statement because the C compiler ignores superfluous
whitespace. As a result, if you have a positive balance but is below the minimum, you will get the
horrid (and erroneous) message that your balance is either zero or negative.

Although solving this problem may be facile due to the simplistic nature of the example, any larger
sections of code embedded within this framework may be a hair-pulling experience to root out. Python
puts up guardrails to not necessarily prevent you from driving off the cliff, but to steer you away from
danger. The same example in Python will result in one of the following choices (one of which is
correct):

if (balance > 0.00):
 if ((balance - amt) > min_bal) and (atm_cashout() == 1):
 print "here's your cash; please take all bills."
else:
 print "your balance is zero or negative"

or

if (balance > 0.00):
 if ((balance - amt) > min_bal) and (atm_cashout() == 1):
 print "here's your cash; please take all bills."
 else:
 print "your balance is zero or negative"

Python's use of indentation forces the proper alignment of code, giving the programmer the ability to
make a conscious decision as to which if an else statement belongs to. By limiting your choices and

thus reducing ambiguities, Python encourages you to develop correct code the first time. It is
impossible to create a dangling-else problem in Python.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=132

Programming > Core Python Programming > 8. Conditionals and Loops > elif (a.k.a. else-if
) Statement

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175202199143109011240040

elif (a.k.a. else-if) Statement

elif is the Python else-if statement. It allows one to check multiple expressions for truth value
and execute a block of code as soon as one of the conditions evaluates to true. Like the else, the
elif statement is optional. However, unlike else, for which there can be at most one statement,
there can be an arbitrary number of elif statements following an if.

if
 expression1:
 expr1_true_suite
elif
 expression2:
 expr2_true_suite
 :
elif
 expressionN:
 exprN_true_suite
else:
 none_of_the_above_suite

At this time, Python does not currently support switch or case statements as in other languages.
Python syntax does not present roadblocks to readability in the presence of a good number of if-
elif statements.

if (user.cmd == 'create'):
 action = "create item"
 valid = 1

elif (user.cmd == 'delete'):
 action = 'delete item'
 valid = 1

elif (user.cmd == 'quit'):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=133
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A23%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=133&now=5%2F29%2F2002+9%3A23%3A58+PM

 action = 'quit item'
 valid = 1

else:
 action = "invalid choice… try again!"
 valid = 0

Python presents an elegant alternative to the switch/case statement in the for statement. Using
for, one can "simulate" switches by cycling through each potential "case," and take action when
warranted. (See Section 8.5.3.)

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/135#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=133

Programming > Core Python Programming > 8. Conditionals and Loops > while Statement See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175205161207111123052085

while Statement

Python's while is the first looping statement we will look at in this chapter. In fact, it is a conditional
looping statement. In comparison with an if statement where a true expression will result in a single
execution of the if clause suite, the suite in a while clause will be executed continuously in a loop
until that condition is no longer satisfied.

General Syntax

Here is the general syntax for a while loop:

while
 expression:
 suite_to_repeat

The suite_to_repeat clause of the while loop will be executed continuously in a loop until
expression evaluates to Boolean false. This type of looping mechanism is often used in a counting
situation, such as the example in the next subsection.

Counting Loops

count = 0
while (count < 9):
 print 'the index is:', count
 count = count + 1

The suite here, consisting of the print and increment statements, is executed repeatedly until count is
no longer less than 9. With each iteration, the current value of the index count is displayed and then
bumped up by 1. If we take this snippet of code to the Python interpreter, entering the source and
seeing the resulting execution would look something like:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=134
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A24%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=134&now=5%2F29%2F2002+9%3A24%3A08+PM

>>> count = 0
>>> while (count < 9):
… print 'the index is:', count
… count = count + 1
…
the index is: 0
the index is: 1
the index is: 2
the index is: 3
the index is: 4
the index is: 5
the index is: 6
the index is: 7
the index is: 8

Infinite Loops

One must use caution when using while loops because of the possibility that this condition never
resolves to a false value. In such cases, we would have a loop that never ends on our hands. These
"infinite" loops are not necessarily bad things… many communications "servers" that are part of client-
server systems work exactly in that fashion. It all depends on whether or not the loop was meant to run
forever, and if not, whether the loop has the possibility of terminating; in other words, will the
expression ever be able to evaluate to false?

while 1:
 handle, indata = wait_for_client_connect()
 outdata = process_request(indata)
 ack_result_to_client(handle, outdata)

For example, the piece of code above was set deliberately to never end because the value 1 will never
evaluate to Boolean false. The main point of this server code is to sit and wait for clients to connect,
presumably over a network link. These clients send requests which the server understands and
processes. After the request has been serviced, a return value or data is returned to the client who may
either drop the connection altogether or send another request. As far as the server is concerned, it has
performed its duty to this one client and returns to the top of the loop to wait for the next client to come
along. You will find out more about client-server computing in the Networking and Web Programming
chapters 16 and 19).

Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single statement, it may be
placed on the same line as the while header. Here is an example of a one-line while clause:

while not ready: ready = is_data_ready()

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=134

Programming > Core Python Programming > 8. Conditionals and Loops > for Statement See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175205161206104062154197

for Statement

The other looping mechanism in Python comes to us in the form of the for statement. Unlike the traditional
conditional looping for statement found in mainstream third-generation languages (3GLs) like C, Fortran, or
Pascal, Python's for is more akin to a scripting language's iterative foreach loop.

General Syntax

Iterative loops index through individual elements of a set and terminate when all the items are exhausted. Python's
for statement iterates only through sequences, as indicated in the general syntax here:

for
 iter_var in sequence:
 suite_to_repeat

The sequence sequence will be iterated over, and with each loop, the iter_var iteration variable is set to the
current element of the sequence, presumably for use in suite_to_repeat.

Used with Sequence Types

In this section, we will see how the for loop works with the different sequence types. The examples will include
string, list, and tuple types.

>>> for eachLetter in 'Names':
… print 'current letter:', eachLetter
…
current letter: N
current letter: a
current letter: m
current letter: e
current letter: s

When iterating over a string, the iteration variable will always consist of only single characters (strings of length
1). Such constructs may not necessarily be useful. When seeking characters in a string, more often than not, the
programmer will either use in to test for membership, or one of the string module functions or string methods to
check for substrings.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=135
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A24%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=135&now=5%2F29%2F2002+9%3A24%3A17+PM

One place where seeing individual characters does come in handy is during the debugging of sequences in a for
loop in an application where you are expecting strings or entire objects to show up in your print statements. If
you see individual characters, this is usually a sign that you received a single string rather than a sequence of
objects.

There are two basic ways of iterating over a sequence:

Iterating by Sequence Item

>>> nameList ['Walter', "Nicole", 'Steven', 'Henry']
>>> for eachName in nameList:
… print eachName, "Lim"
…
Walter Lim
Nicole Lim
Steven Lim
Henry Lim

In the above example, a list is iterated over, and for each iteration, the eachName variable contains the list
element that we are on for that particular iteration of the loop.

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence itself:

>>> nameList = ['Shirley', "Terry", 'Joe', 'Heather', 'Lucy']
>>> for nameIndex in range(len(nameList)):
… print "Liu,", nameList[nameIndex]
…
Liu, Shirley
Liu, Terry
Liu, Joe
Liu, Heather
Liu, Lucy

Rather than iterating through the elements themselves, we are iterating through the indices of the list.

We employ the assistance of the len() built-in function, which provides the total number of elements in the tuple
as well as the range() built-in function (which we will discuss in more detail below) to give us the actual
sequence to iterate over.

>>> len(nameList)
5
>>> range(len(nameList))
[0, 1, 2, 3, 4]

Using range(), we obtain a list of the indexes that nameIndex iterates over; and using the slice/subscript
operator ([]), we can obtain the corresponding sequence element.

Those of you who are performance pundits will no doubt recognize that iteration by sequence item wins over
iterating via index. If not, this is something to think about. (See Exercise 8-13).

Switch/Case Statement Proxy

Earlier in Section 8.3, we introduced the if-elif-else construct and indicated that Python did not support a
switch/case statement. In many cases, an incredibly long set of if-elif-else statements can be replaced
by a for loop, which contains the "case" items in a sequence which is iterated over. We present a modified
version of the example in Section 8.3, moving all the elif statements into the for loop:

for cmd in ('add', 'delete', 'quit'):
 if cmd == user.cmd:
 action = cmd + " item"
 valid = 1
 break
else:
 action = "invalid choice… try again!"
 valid = 0

You are now probably glad to see that there is some kind of substitute for the lack of a switch/case statement
in Python, but do you realize that using a list gives you even more power as a programmer? In other languages, the
elements of a case statement are constant and a static part of the code. By using lists in Python, not only can these
elements be variables, but they can also be dynamic and changed during run-time!

Final note, it may have surprised you to see an else statement at the end there.Yes, else statements can be used
with for loops. In this case, the else clause is executed only if the for loop finished to completion. More on
else coming up in Section 8.9.

range() [and xrange()] Built-in Function(s)

We mentioned above during our introduction to Python's for loop that it is an iterative looping mechanism.
Python also provides a tool that will let us use the for statement in a traditional pseudo-conditional setting, i.e.,
when counting from one number to another and quitting once the final number has been reached or some condition

is no longer satisfied.

The built-in function range() can turn your foreach-like for-loop back into one that you are more familiar
with, i.e., counting from zero to ten, or counting from 10 to 100 in increments of 5.

range() Full Syntax

Python presents two different ways to use range(). The full syntax requires that two or all three integer
arguments are present:

range(start, end, step=1)

range() will then return a list where for any k, start <= k < end and k iterates from start to end in
increments of step. step cannot be 0, or else an error condition will occur.

>>> range(2, 19, 3)
[2, 5, 8, 11, 14, 17]

If step is omitted and only two arguments given, step takes a default value of 1.

>>> range(3,7)
[3, 4, 5, 6]

Let's take a look at an example used in the interpreter environment:

>>> for eachVal in range(2, 19, 3):
… print "value is:", eachVal
…
value is: 2
value is: 5
value is: 8
value is: 11
value is: 14
value is: 17

Our for loop now "counts" from two to nineteen, incrementing by steps of three. If you are familiar with C, then
you will notice the direct correlation between the arguments of range() and those of the variables in the C for

loop:

/* equivalent loop in C */
for (eachVal = 2; eachVal < 19; i += 3) {
 printf("value is: %d\n", eachVal);
}

Although it seems like a conditional loop now (checking if eachVal<19), reality tells us that range() takes
our conditions and generates a list that meets our criteria, which in turn, is used by the same Python for
statement.

range() Abbreviated Syntax

range() also has a simple format, which takes one or both integer arguments:

range(start=0, end)

Given both values, this shortened version of range() is exactly the same as the long version of range() taking
two parameters with step defaulting to 1. However, if given only a single value, start defaults to zero, and
range() returns a list of numbers from zero up to the argument end:

>>> range(5)
[0, 1, 2, 3, 4]

We will now take this to the Python interpreter and plug in for and print statements to arrive at:

>>> for count in range(5):
… print count
…
0
1
2
3
4

Once range() executes and produces its list result, our expression above is equivalent to the following:

>>> for count in [0, 1, 2, 3, 4]:
… print count

NOTE

Now that you know both syntaxes for range(), one nagging question you may have is, why not just combine
the two into a single one that looks like this?

range(start=0, end, step=1)# invalid

This syntax will work for a single argument or all three, but not two. It is illegal because the presence of step
requires start to be given. In other words, you cannot provide end and step in a two-argument version
because they will be (mis)interpreted as start and end.

xrange() Function for Limited Memory Situations

xrange() is similar to range() except that if you have a really large range list, xrange() may come in more
handy because it does not have to make a complete copy of the list in memory. This built-in was made for
exclusive use in for loops. It doesn't make sense outside a for loop. Also, as you can imagine, the performance
will not be as good because the entire list is not in memory.

Now that we've covered all the loops Python has to offer, let us take a look at the peripheral commands that
typically go together with loops. These include statements to abandon the loop (break) and to immediately begin
the next iteration (continue).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=135

Programming > Core Python Programming > 8. Conditionals and Loops > break
Statement

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175205161204112035189020

break Statement

The break statement in Python terminates the current loop and resumes execution at the next
statement, just like the traditional break found in C. The most common use for break is when some
external condition is triggered (usually by testing with an if statement), requiring a hasty exit from a
loop. The break statement can be used in both while and for loops.

count = num / 2
while count > 0:
 if (num % count == 0):
 print count, 'is the largest factor of', num
 break
 count = count - 1

The task of this piece of code is to find the largest divisor of a given number num. We iterate through
all possible numbers that could possibly be factors of num, using the count variable and
decrementing for every value that does NOT divide num. The first number that evenly divides num is
the largest factor, and once that number is found, we no longer need to continue and use break to
terminate the loop.

phone2remove = '555-1212'
for eachPhone in phoneList:
 if eachPhone == phone2remove:
 print "found", phone2remove, '… deleting'
 deleteFromPhoneDB(phone2remove)
 break

The break statement here is used to interrupt the iteration of the list. The goal is to find a target
element in the list, and, if found, to remove it from the database and break out of the loop.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=136
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A24%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=136&now=5%2F29%2F2002+9%3A24%3A31+PM

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=136

Programming > Core Python Programming > 8. Conditionals and Loops > continue
Statement

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175205161204120181141125

continue Statement

NOTE

Whether in Python, C, Java, or any other structured language which features the continue
statement, there is a misconception among some beginning programmers that the traditional
continue statement "immediately starts the next iteration of a loop." While this may seem to be
the apparent action, we would like to clarify this somewhat invalid supposition. Rather than
beginning the next iteration of the loop when a continue statement is encountered, a continue
statement terminates or discards the remaining statements in the current loop iteration and goes
back to the top.

If we are in a conditional loop, the conditional expression is checked for validity before beginning
the next iteration of the loop. Once confirmed, then the next iteration begins. Likewise, if the loop
were iterative, a determination must be made as to whether there are any more arguments to iterate
over. Only when that validation has completed successfully can we begin the next iteration.

The continue statement in Python is not unlike the traditional continue found in other high-level
languages. The continue statement can be used in both while and for loops. The while loop is
conditional, and the for loop is iterative, so using continue is subject to the same requirements (as
highlighted in the Core Note above) before the next iteration of the loop can begin. Otherwise, the loop
will terminate normally.

valid = 0
count = 3
while count > 0:
 input = raw_input("enter password")
 # check for valid passwd
 for eachPasswd in passwdList:
 if input == eachPasswd:
 valid = 1
 break
 if not valid: # (or valid == 0)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=137
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A24%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=137&now=5%2F29%2F2002+9%3A24%3A39+PM

 print "invalid input"
 count = count - 1
 continue
 else:
 break

In this combined example using while, for, if, break, and continue, we are looking at
validating user input. The user is given three opportunities to enter the correct password; otherwise, the
valid variable remains a false value of 0, which presumably will result in appropriate action being
taken soon after.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=137

Programming > Core Python Programming > 8. Conditionals and Loops > pass Statement See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175205161202075198139182

pass Statement

One Python statement not found in C is the pass statement. Because Python does not use curly braces
to delimit blocks of code, there are places where code is syntactically required. We do not have the
equivalent empty braces or single semicolon the way C has to indicate "do nothing." If you use a
Python statement that expects a sub-block of code or suite, and one is not present, you will get a syntax
error condition. For this reason, we have pass, a statement that does absolutely nothing—it is a true
NOP, to steal the "No OPeration" assembly code jargon. Style- and development-wise, pass is also
useful in places where your code will eventually go, but has not been written yet (e.g., in stubs for
example):

def foo_func():

 pass

or

if user_choice == 'do_calc':

 pass

else:

 pass

This code structure is helpful during the development or debugging stages because you want the
structure to be there while the code is being created, but you do not want it to interfere with the other
parts of the code that have been completed already. In places where you want nothing to execute, pass
is a good tool to have in the box.

Another popular place is with exception handling, which we will take a look at in Chapter 10; this is
where you can track an error if it occurs, but take no action if it is not fatal (you just want to keep a

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=138
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A24%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=138&now=5%2F29%2F2002+9%3A24%3A50+PM

record of the event or perform an operation under the covers if an error occurs).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=138

Programming > Core Python Programming > 8. Conditionals and Loops > else
Statement… Take Two

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175205161202066055196234

else Statement… Take Two

In C (as well as in most other languages), you will not find an else statement outside the realm of
conditional statements, yet Python bucks the trend again by offering these in while or for loops.
How do they work? When used with loops, an else clause will be executed only if a loop finishes to
completion, meaning they were not abandoned by break.

One popular example of else usage in a while statement is in finding the largest factor of a number.
We have implemented a function which performs this task, using the else statement with our while
loop. The showMaxFactor() function in Example 8.1 (maxFact.py) utilizes the else statement
as part of a while loop.

Example 8.1. while-else Loop Example (maxFact.py)

This program displays the largest factors for numbers between 10 and 20. If the number is prime,
the script will indicate that as well.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def showMaxFactor(num):
004 4 count = num / 2
005 5 while count > 1:
006 6 if (num % count == 0):
007 7 print 'largest factor of %d is %d' % \
008 8 (num, count)
009 9 break <$nopage>
010 10 count = count - 1
011 11 else: <$nopage>
012 12 print num, "is prime"
013 13
014 14 for eachNum in range(10, 21):
015 15 showMaxFactor(eachNum)
016 <$nopage>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=139
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A24%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=139&now=5%2F29%2F2002+9%3A24%3A59+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/139#1.html

The loop beginning on line 3 in showMaxFactor() counts down from half the amount (starts
checking if two divides the number, which would give the largest factor). The loop decrements each
time (line 10) through until a divisor is found (lines 6–9). If a divisor has not been found by the time
the loop decrements to 1, then the original number must be prime. The else clause on lines 11–12
takes care of this case. The main part of the program on lines 14–15 fires off the requests to
showMaxFactor() with the numeric argument.

Running our program results in the following output:

largest factor of 10 is 5
11 is prime
largest factor of 12 is 6
13 is prime
largest factor of 14 is 7
largest factor of 15 is 5
largest factor of 16 is 8
17 is prime
largest factor of 18 is 9
19 is prime
largest factor of 20 is 10

Likewise, a for loop can have a post-processing else. It operates exactly the same way as for a
while loop. As long as the for loop exits normally (not via break), the else clause will be
executed. We saw such an example in Section 8.5.3.

Table 8.1 summarizes which conditional or looping statements auxiliary statements can be used.

Table 8.1. Auxiliary Statements to Loops and Conditionals

 Loops and Conditionals
Auxiliary Statements if while for

elif •
else • • •
break • •
continue • •
pass[a] • • •

[a] pass is valid anywhere a suite is required (also includes elif, else, class, def, try, except,

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/135#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/139#2.html

finally)

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=139

Programming > Core Python Programming > 8. Conditionals and Loops > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175204055035117210164078

Exercises

1: Conditionals. Study the following code:

statement A
if x > 0:
 # statement B
 pass

elif x < 0:
 # statement C
 pass

else:
 # statement D
 pass

statement E

(a) Which of the statements above (A, B, C, D, E) will be executed if x < 0?

(b) Which of the statements above will be executed if x == 0?

(c) Which of the statements above will be executed if x > 0?

2: Loops. Write a program to have the user input three (3) numbers: (f)rom, (t)o, and
(i)ncrement. Count from f to t in increments of i, inclusive of f and t. For example, if the
input is f == 2, t == 24, and i == 4, the program would output: 2, 6, 10, 14, 18, 22.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=140
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A25%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=140&now=5%2F29%2F2002+9%3A25%3A11+PM

3: range(). What argument(s) could we give to the range() built-in function if we
wanted the following lists to be generated?

(a)[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

(b)[3, 6, 9, 12, 15, 18]

(c)[-20, 200, 420, 640, 860]

4: Prime Numbers. We presented some code in this chapter to determine a number's largest
factor or if it is prime. Turn this code into a Boolean function called isprime() such that
the input is a single value, and the result returned is 1 if the number is prime and 0
otherwise.

5: Factors. Write a function called getfactors() that takes a single integer as an
argument and returns a list of all its factors, including 1 and itself.

6: PrimeFactorization. Take your solutions for isprime() and getfactors() in the
previous problems and create a function that takes an integer as input and returns a list of
its prime factors. This process, known as prime factorization, should output a list of factors
such that if multiplied together, they will result in the original number. Note that there
could be repeats in the list. So if you gave an input of 20, the output would be [2, 2, 5].

7: Perfect Numbers. A perfect number is one whose factors (except itself) sum to itself. For
example, the factors of 6 are 1, 2, 3, and 6. Since 1 + 2 + 3 is 6, it (6) is considered a
perfect number. Write a function called isperfect() which takes a single integer input
and outputs 1 if the number is perfect and 0 otherwise.

8: Factorial. The factorial of a number is defined as the product of all values from one to that
number. A shorthand for N factorial is N! where N! == factorial (N) == 1 * 2 * 3 * … * (N-
2) * (N-1) * N!. So 4! == 1 * 2 * 3 * 4. Write a routine such that given N, the value N! is
returned.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#20.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#21.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#21.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#21.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#21.html

9: Fibonacci Numbers. The Fibonacci number sequence is 1, 1, 2, 3, 5, 8, 13, 21, etc. In other
words, the next value of the sequence is the sum of the previous two values in the
sequence.

10: Text Processing. Determine the total number of vowels, consonants, and words (separated
by spaces) in a text sentence. Ignore special cases for vowels and consonants such as "h,"
"y," "qu," etc.

11: Text Processing. Write a program to ask the user to input a list of names, in the format
"Last Name, First Name," i.e., last name, comma, first name. Write a function that
manages the input so that when/if the user types the names in the wrong order, i.e., "First
Name Last Name," the error is corrected, and the user is notified. This function should also
keep track of the number of input mistakes. When the user is done, sort the list, and display
the sorted names in "Last Name, First Name" order.

EXAMPLE input and output: (you don't have to do it this way exactly)

% nametrack.py
Enter total number of names: 5

Please enter name 0: Smith, Joe
Please enter name 1: Mary Wong
>> Wrong format… should be Last, First
>> You have done this 1 time(s) already. Fixing input…
Please enter name 2: Hamilton, Gerald
Please enter name 3: Royce, Linda
Please enter name 4: Winston Salem
>> Wrong format… should be Last, First
>> You have done this 2 time(s) already. Fixing input…

The sorted list (by last name) is:
 Hamilton, Gerald
 Royce, Linda
 Salem, Winston
 Smith, Joe
 Wong, Mary

12: (Integer) Bit Operators. Write a program that takes begin and end values and prints out a
decimal, binary, octal, hexadecimal chart like below. If any of the characters are printable
ASCII characters, then print those, too. If none is, you may omit the ASCII column header.

SAMPLE OUTPUT 1

Enter begin value: 9
Enter end value: 18
DEC BIN OCT HEX

 9 01001 11 9
 10 01010 12 a
 11 01011 13 b
 12 01100 14 c
 13 01101 15 d
 14 01110 16 e
 15 01111 17 f
 16 10000 20 10
 17 10001 21 11
 18 10010 22 12
SAMPLE OUTPUT 2

Enter begin value: 26
Enter end value: 41
DEC BIN OCT HEX ASCII

 26 011010 32 1a
 27 011011 33 1b
 28 011100 34 1c
 29 011101 35 1d
 30 011110 36 1e
 31 011111 37 1f
 32 100000 40 20
 33 100001 41 21 !
 34 100010 42 22 "
 35 100011 43 23 #
 36 100100 44 24 $
 37 100101 45 25 %
 38 100110 46 26 &
 39 100111 47 27 '
 40 101000 50 28 (
 41 101001 51 29)

13: Performance. In Section 8.5.2, we examined two basic ways of iterating over a sequence:
(1) by sequence item, and (2) via sequence index. We pointed out at the end that the latter
does not perform as well over the long haul (on my system here, a test suite shows
performance is nearly twice as bad [83% worse]). Why do you think that is, and what are
the reasons?

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/135#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=140

Programming > Core Python Programming > 9. Files and Input/Output See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175204055032080223003142

Chapter 9. Files and Input/Output
Chapter Topics

● File Objects

❍ File Built-in Function

❍ File Built-in Methods

❍ File Built-in Attributes

● Standard Files

● Command-line Arguments

● File System

● File Execution

● Persistent Storage

● Related Modules

This chapter is intended to give you an in-depth introduction on the use of files and related input/output
capabilities of Python. We introduce the file object (its built-in function, and built-in methods and
attributes), review the standard files, discuss accessing the file system, hint at file execution, and briefly
mention persistent storage and modules in the standard library related to "file-mania."

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=142
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A25%3A26+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=142&now=5%2F29%2F2002+9%3A25%3A26+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=142

Programming > Core Python Programming > 9. Files and Input/Output > File Objects See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175204055038217010189254

File Objects

File objects can be used not only to access normal disk files, but also any other type of "file" that uses
that abstraction. Once the proper "hooks" are installed, you can access other objects with file-like
interfaces in the same manner you would access normal files.

The open() built-in function (see below) returns a file object which is then used for all succeeding
operations on the file in question. There are a large number of other functions which return a file or file-
like object. One primary reason for this abstraction is that many input/output data structures prefer to
adhere to a common interface. It provides consistency in behavior as well as implementation. Operating
systems like Unix even feature files as an underlying and architectural interface for communication.
Remember, files are simply a contiguous sequence of bytes. Anywhere data needs to be sent usually
involves a byte stream of some sort, whether the stream occurs as individual bytes or blocks of data.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=143
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A25%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=143&now=5%2F29%2F2002+9%3A25%3A42+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=143

Programming > Core Python Programming > 9. Files and Input/Output > File Built-in
Function [open()]

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175204055039071133032084

File Built-in Function [open()]

As the key to opening file doors, the open() built-in function provides a general interface to initiate
the file input/output (I/O) process. open() returns a file object on a successful opening of the file or
else results in an error situation. When a failure occurs, Python generates or raises an IOError
exception—we will cover errors and exceptions in the next chapter. The basic syntax of the open()
built-in function is:

file_object = open(file_name, access_mode='r', buffering=-1)

The file_name is a string containing the name of the file to open. It can be a relative or absolute/full
pathname. The access_mode optional variable is also a string, consisting of a set of flags indicating
which mode to open the file with. Generally, files are opened with the modes "r," "w," or "a,"
representing read, write, and append, respectively.

Any file opened with mode "r" must exist. Any file opened with "w" will be truncated first if it exists,
and then the file is (re)created. Any file opened with "a" will be opened for write. If the file exists, the
initial position for file (write) access is set to the end-of-file. If the file does not exist, it will be created,
making it the same as if you opened the file in "w" mode. If you are a C programmer, these are the
same file open modes used for the C library function fopen().

There are other modes supported by fopen() that will work with Python's open(). These include
the "+" for read-write access and "b" for binary access. One note regarding the binary flag: "b" is
antiquated on all Unix systems which are POSIX-compliant (including Linux) because they treat all
files as "binary" files, including text files. Here is an entry from the Linux manual page for fopen(),
which is from where the Python open() function is derived:

The mode string can also include the letter "b" either as a last character or as a character
between the characters in any of the two-character strings described above. This is
strictly for compatibility with ANSI C3.159-1989 ("ANSI C") and has no effect; the "b"
is ignored on all POSIX conforming systems, including Linux. (Other systems may treat
text files and binary files differently, and adding the "b" may be a good idea if you do I/O
to a binary file and expect that your program may be ported to non-Unix environments.)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=144
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A25%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=144&now=5%2F29%2F2002+9%3A25%3A53+PM

You will find a complete list of file access modes, including the use of "b" if you choose to use it, in
Table9.1. If access_mode is not given, it defaults automatically to "r."

The other optional argument, buffering, is used to indicate the type of buffering that should be
performed when accessing the file. A value of 0 means no buffering should occur, a value of 1 signals
line buffering, and any value greater than 1 indicates buffered I/O with the given value as the buffer
size. The lack of or a negative value indicates that the system default buffering scheme should be used,
which is line buffering for any teletype or tty-like device and normal buffering for everything else.
Under normal circumstances, a buffering value is not given, thus using the system default.

Table 9.1. Access Modes for File Objects

File Mode Operation
r open for read
w open for write (truncate if necessary)
a open for write (start at EOF, create if necessary)
r+ open for read and write
w+ open for read and write (see "w" above)
a+ open for read and write (see "a" above)
rb open for binary read
wb open for binary write (see "w" above)
ab open for binary append (see "a" above)
rb+ open for binary read and write (see "r+" above)
wb+ open for binary read and write (see "w+" above)
ab+ open for binary read and write (see "a+" above)

Here are some examples for opening files:

fp = open('/etc/motd') #open file for read
fp = open('test', 'w') #open file for write
fp = open('data', 'r+') #open file for read/write
fp = open('c:\io.sys', 'rb') #open binary file for read

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/144#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=144

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 9. Files and Input/Output > File Built-in
Methods

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175207178023026015231045

File Built-in Methods

Once open() has completed successfully and returned a file object, all subsequent access to the file
transpires with that "handle." File methods come in four different categories: input, output, movement
within a file, which we will call "intra-file motion," and miscellaneous. A summary of all file methods
can be found in Table 9.3. We will now go over each category.

Input

The read() method is used to read bytes directly into a string, reading at most the number of bytes
indicated. If no size is given, the default value is set to -1, meaning that the file is read to the end. The
readline() method reads one line of the open file (reads all bytes until a NEWLINE character is
encountered). The NEWLINE character is retained in the returned string. The readlines() method
is similar, but reads all remaining lines as strings and returns a list containing the read set of lines. The
readinto() method reads the given number of bytes into a writable buffer object, the same type of
object returned by the unsupported buffer() built-in function. (Since buffer() is not supported,
neither is readinto()).

Output

The write() built-in method has the opposite functionality as read() and readline(). It takes a
string which can consist of one or more lines of text data or a block of bytes and writes the data to the
file. writelines() operates on a list just like readlines(), but takes a list of strings and writes
them out to a file. NEWLINE characters are not inserted between each line; so if desired, they must be
added to the end of each line before writelines() is called.

This is easily accomplished in Python 2.0 with a list comprehension:

>>> output=['1stline', '2ndline', 'the end']
>>> [x + '\n' for x in output]
['1stline\012', '2ndline\012', 'the end\012']

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=145
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A26%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=145&now=5%2F29%2F2002+9%3A26%3A04+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/145#7.html

Note that there is no "writeline()" method since it would be equivalent to calling write() with a
single line string terminated with a NEWLINE character.

Intra-file Motion

The seek() method (analogous to the fseek() function in C) moves the file pointer to different
positions within the file. The offset in bytes is given along with a relative offset location called
whence. A value of 0 indicates distance from the beginning of a file (note that a position measured
from the beginning of a file is also known as the absolute offset), a value of 1 indicates movement from
the current location in the file, and a value of 2 indicates that the offset is from the end of the file. If you
have used fseek() as a C programmer, the values 0, 1, and 2 correspond directly to the constants
SEEK_SET, SEEK_CUR, and SEEK_END, respectively. Use of the seek() method comes to play
when opening a file for read and write access.

tell() is a complementary method to seek(); it tells you the current location of the file—in bytes
from the beginning of the file.

Others

The close() method completes access to a file by closing it. The Python garbage collection routine
will also close a file when the file object reference has decreased to zero. One way this can happen is
when only one reference exists to a file, say, fp = open(), and fp is reassigned to another file
object before the original file is explicitly closed. Good programming style suggests closing the file
before reassignment to another file object.

The fileno() method passes back the file descriptor to the open file. This is an integer argument that
can be used in lower-level operations such as those featured in the os module. The flush() method.
isatty() is a Boolean built-in method that returns 1 if the file is a tty-like device and 0 otherwise.
The truncate() method truncates the file to 0 or the given size bytes.

File Method Miscellany

We will now reprise our first file example from Chapter 2:

filename = raw_input('Enter file name: ')
file = open(filename, 'r')
allLines = file.readlines()
file.close()
for eachLine in allLines:
 print eachline,

We originally described how this program differs from most standard file access in that all the lines are
read ahead of time before any display to the screen occurs. Obviously, this is not advantageous if the file
is large. In those cases, it may be a good idea to go back to the tried-and-true way of reading and
displaying one line at a time:

filename = raw_input('Enter file name: ')
file = open(filename, 'r')
done = 0
while not done:
 aLine = file.readline()
 if aLine != " ":
 print aLine,
 else:
 done = 1
file.close()

In this example, we do not know when we will reach the end of the file, so we create a Boolean flag
done, which is initially set for false. When we reach the end of the file, we will reset this value to true
so that the while loop will exit. We change from using readlines()to read all lines to
readline(), which reads only a single line. readline() will return a blank line if the end of the
file has been reached. Otherwise, the line is displayed to the screen.

We anticipate a burning question you may have… "Wait a minute! What if I have a blank line in my
file? Will Python stop and think it has reached the end of my file?" The answer is, of course, no. A blank
line in your file will not come back as a blank line. Recall that every line has one or more line separator
characters at the end of the line, so a "blank line" would consist of a NEWLINE character or whatever
your system uses. So even if the line in your text file is "blank," the line which is read is not blank,
meaning your application would not terminate until it reaches the end-of-file.

NOTE

One of the inconsistencies of operating systems is the line separator character which their file
systems support. On Unix, the line separator is the NEWLINE (\n) character. For the Macintosh, it
is the RETURN (\r), and DOS and Windows uses both (\r\n). Check your operating system to
determine what your line separator(s) are.

Other differences include the file pathname separator (Unix uses '/', DOS and Windows use '\', and
the Macintosh uses ':'), the separator used to delimit a set of file pathnames, and the denotations for

the current and parent directories.

These inconsistencies generally add an irritating level of annoyance when creating applications that
run on all three platforms (and more if more architectures and operating systems are supported).
Fortunately, the designers of the os module in Python have thought of this for us. The os module
has five attributes which you may find useful. They are listed below in Table 9.2.

Table 9.2. os Module Attributes to Aid in Multi-platform Development

os Module Attribute Description
linesep string used to separate lines in a file
sep string used to separate file pathname components
pathsep string used to delimit a set of file pathnames
curdir string name for current working directory
pardir string name for parent (of current working directory)

Regardless of your platform, these variables will be set to the correct values when you import the os
module. One less headache to worry about.

We would also like to remind you that the comma placed at the end of the print statement is to
suppress the NEWLINE character that print normally adds at the end of output. The reason for this is
because every line from the text file already contains a NEWLINE. readline() and
readlines()do not strip off any whitespace characters in your line (see exercises.) If we omitted the
comma, then your text file display would be doublespaced one NEWLINE which is part of the input and
another added by the print statement.

Before moving on to the next section, we will show two more examples, the first highlighting output to
files (rather than input), and the second performing both file input and output as well as using the
seek() and tell() methods for file positioning.

filename = raw_input('Enter file name: ')
file = open(filename, 'w')
done = 0
while not done:
 aLine = raw_input("Enter a line ('.' to quit): ")
 if aLine != ".":
 file.write(aLine + '\n')
 else:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/145#6.html

 done = 1
file.close()

This piece of code is practically the opposite of the previous. Rather than reading one line at a time and
displaying it, we ask the user for one line at a time, and send them out to the file. Our call to the
write() method must contain a NEWLINE because raw_input() does not preserve it from the
user input. Because it may not be easy to generate an end-of-file character from the keyboard, the
program uses the period (.) as its end-of-file character, which, when entered by the user, will terminate
input and close the file.

Our final example opens a file for read and write, creating the file scratch (after perhaps truncating an
already-existing file). After writing data to the file, we move around within the file using seek(). We
also use the tell() method to show our movement.

>>> f = open('/tmp/x', 'w+')
>>> f.tell()
0
>>> f.write('test line 1\n') # add 12-char string [0–11]
>>> f.tell()
12
>>> f.write('test line 2\n') # add 12-char string [12–23]
>>> f.tell() # tell us current file location (end))
24
>>> f.seek(-12, 1) # move back 12 bytes
>>> f.tell() # to beginning of line 2
12
>>> f.readline()
'test line 2\012'
>>> f.seek(0, 0) # move back to beginning
>>> f.readline()
'test line 1\012'
>>> f.tell() # back to line 2 again
12
>>> f.readline()
'test line 2\012'
>>> f.tell() # at the end again
24
>>> f.close() # close file

Table9.3 lists all the built-in methods for file objects:

Table 9.3. Methods for File Objects

File Object Method Operation
file.close() close file

file.fileno() return integer file descriptor (FD) for file

file.flush() flush internal buffer for file

file.isatty() return 1 if file is a tty-like device, 0 otherwise

file.read (size=-1) read all or size bytes of file as a string and return it

file.readinto(buf, size)[a] read size bytes from file into buffer buf

file.readline() read and return one line from file (includes trailing "\n")

file.readlines() read and returns all lines from file as a list (includes all trailing "\n"
characters)

file.seek(off, whence) move to a location within file, off bytes offset from whence (0 ==
beginning of file, 1 == current location, or 2 == end of file)

file.tell() return current location within file

file.truncate(size=0) truncate file to 0 or size bytes

file.write(str) write string str to file

file.writelines(list) write list of strings to file

[a] unsupported method introduced in Python 1.5.2 (other implementations of file-like objects do not include this method)

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/145#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=145

Programming > Core Python Programming > 9. Files and Input/Output > File Built-in
Attributes

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175207178022223037158122

File Built-in Attributes

File objects also have data attributes in addition to its methods. These attributes hold auxiliary data
related to the file object they belong to, such as the file naFme (file.name), the mode with which
the file was opened (file.mode), whether the file is closed (file.closed), and a flag indicating
whether an additional space character needs to be displayed before successive data items when using
the print statement (file.softspace).Table 9.4 lists these attributes along with a brief
description of each.

Table 9.4. Attributes for File Objects

File Object Attribute Description
file.closed 1 if file is closed, 0 otherwise
file.mode access mode with which file was opened
file.name name of file

file.softspace
0 if space explicitly required with print, 1 otherwise; rarely used by the
programmer—generally for internal use only

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=146
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A26%3A14+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=146&now=5%2F29%2F2002+9%3A26%3A14+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/146#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=146

Programming > Core Python Programming > 9. Files and Input/Output > Standard Files See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175207178021130147207179

Standard Files

There are generally three standard files which are made available to you when your program starts.
These are standard input (usually the keyboard), standard output (buffered output to the monitor or
display), and standard error (unbuffered output to the screen). (The "buffered" or "unbuffered" output
refers to that third argument to open()). These files are named stdin, stdout, and stderr and
take after their names from the C language. When we say these files are "available to you when your
program starts," that means that these files are pre-opened for you, and access to these files may
commence once you have their file handles.

Python makes these file handles available to you from the sys module. Once you import sys, you
have access to these files as sys.stdin, sys.stdout, and sys.stderr. The print
statement normally outputs to sys.stdout while the raw_input() built-in function receives its
input from sys.stdin.

We will now take yet another look at the "Hello World!" program so that you can compare the
similarities and differences between using print/raw_input() and directly with the file names:

print

print 'Hello World!'

sys.stdout.write()

import sys
sys.stdout.write('Hello World!' + '\n)

Notice that we have to explicitly provide the NEWLINE character to sys.stdout's write()
method. In the input examples below, we do not because readline() executed on sys.stdin
preserves the readline. raw_input() does not, hence we will allow print to add its NEWLINE.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=147
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A26%3A22+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=147&now=5%2F29%2F2002+9%3A26%3A22+PM

raw_input()

aString = raw_input('Enter a string: ')
print aString

sys.stdin.readline()

import sys
sys.stdout.write('Enter a string: ')
aString = sys.stdin.readline()
sys.stdout.write(aString)

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=147

Programming > Core Python Programming > 9. Files and Input/Output > Command-line
Arguments

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175207178020032022153183

Command-line Arguments

The sys module also provides access to any command-line arguments via the sys.argv. Command-
line arguments are those arguments given to the program in addition to the script name on invocation.
Historically, of course, these arguments are so named because they are given on the command-line
along with the program name in a text-based environment like a Unix- or DOS-shell. However, in an
IDE or GUI environment, this would not be the case. Most IDEs provide a separate window with which
to enter your "command-line arguments." These, in turn, will be passed into the program as if you
started your application from the command-line.

Those of you familiar with C programming may ask, "Where is argc?" The strings "argv" and "argv"
stand for "argument count" and "argument vector," respectively. The argv variable contains an array
of strings consisting of each argument from the command-line while the argc variable contains the
number of arguments entered. In Python, the value for argc is simply the number of items in the
sys.argv list, and the first element of the list, sys.argv[0], is always the program name.
Summary:

● sys.argv is the list of command-line arguments

● len(sys.argv) is the number of command-line arguments (a.k.a. argc)

Let us create a small test program called argv.py with the following lines:

import sys

print 'you entered', len(sys.argv), 'arguments…'
print 'they were:', str(sys.argv)

Here is an example invocation and output of this script:

% argv.py 76 tales 85 hawk
you entered 5 arguments…

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=148
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A26%3A32+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=148&now=5%2F29%2F2002+9%3A26%3A32+PM

they were: ['argv.py', '76', 'tales', '85', 'hawk']

Are command-line arguments useful? Unix commands are typically programs which take input,
perform some function, and send output as a stream of data. This data is usually sent as input directly to
the next program, which does some other type of function or calculation and sends the new output to
another program, and so on. Rather than saving the output of each program and potentially taking up a
good amount of disk space, the output is usually "piped" in to the next program as its input. This is
accomplished by providing data on the command-line or through standard input. When a program
displays or sends output to the standard output file, the result would be displayed on the screen—unless
that program is also "piped" to another program, in which case that standard output file is really the
standard input file of the next program. I assume you get the drift by now!

Command-line arguments allow a programmer or administrator to start a program perhaps with
different behavioral characteristics. Much of the time, this execution takes place in the middle of the
night and run as a batch job without human interaction. Command-line arguments and program options
enable this type of functionality. As long as there are computers sitting idle at night and plenty of work
to be done, there will always be a need to run programs in the background on our very expensive
"calculators."

Python features a getopt module that helps you parse command-line options and arguments.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=148

Programming > Core Python Programming > 9. Files and Input/Output > File System See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175207178019253058074117

File System

Access to your file system occurs mostly through the Python os module. This module serves as the
primary interface to your operating system facilities and services from Python. The os module is
actually a front-end to the real module that is loaded, a module that is clearly operating system-
dependent. This "real" module may be one of the following: posix (Unix), nt (Windows), mac
(Macintosh), dos (DOS), os2 (OS/2), etc. You should never import those modules directly. Just
import os and the appropriate module will be loaded, keeping all the underlying work hidden from
sight. Depending on what your system supports, you may not have access to some of the attributes
which may be available in other operating system modules.

In addition to managing processes and the process execution environment, the os module performs
most of the major file system operations that the application developer may wish to take advantage of.
These features include removing and renaming files, traversing the directory tree, and managing file
accessibility. Table 9.5 lists some of the more common file or directory operations available to you
from the os module.

A second module that performs specific pathname operations is also available. The os.path module
is accessible through the os module. Included with this module are functions to manage and
manipulate file pathname components, obtain file or directory information, and make file path
inquiries. Table 9.6 outlines some of the more common functions in os.path.

These two modules allow for consistent access to the file system regardless of platform or operating
system. The program in Example 9.1 (ospathex.py) test drives some of these functions from the os
and os.path modules.

Table 9.5. os Module File/Directory Access Functions

os Module File/Directory Function Operation
File Processing
remove()/unlink() delete file
rename() rename file
*stat()[a] return file statistics

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=149
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A26%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=149&now=5%2F29%2F2002+9%3A26%3A40+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/149#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/149#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/149#4.html

symlink() create symbolic link
utime() update timestamp
Directories/Folders
chdir() change working directory
listdir() list files in directory
getcwd() return current working directory
mkdir()/makedirs() create directory(ies)
rmdir()/removedirs() remove directory(ies)

Access/Permissions (available only on Unix or Windows

)
access()

verify permission modes
chmod()

change permission modes

umask() set default permission modes

[a] includes stat(), lstat(), xstat()

Table 9.6. os.path Module Pathname Access Functions

os.path Pathname Function Operation
Separation
basename() remove directory path and return leaf name
dirname() remove leaf name and return directory path
join() join separate components into single pathname
split() return (dirname(), basename()) tuple
splitdrive() return (drivename, pathname) tuple
splitext() return (filename, extension) tuple
Information
getatime() return last file access time
getmtime() return last file modification time
getsize() return file size (in bytes)
Inquiry

exists() does pathname (file or directory) exist?
isdir() does pathname exist and is a directory?
isfile() does pathname exist and is a file?
islink() does pathname exist and is a symbolic link?
samefile() do both pathnames point to the same file?

Example 9.1. os & os.path Modules Example (ospathex.py)

This code exercises some of the functionality found in the os and os.path modules. It creates a
test file, populates a small amount of data in it, renames the file, and dumps its contents. Other
auxiliary file operations are performed as well, mostly pertaining to directory tree traversal and file
pathname manipulation.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import os
004 4 for tmpdir in ('/tmp', 'c:/windows/temp'):
005 5 if os.path.isdir(tmpdir):
006 6 break
007 7 else: <$nopage>
008 8 print 'no temp directory available'
009 9 tmpdir = ''
010 10
011 11 if tmpdir:
012 12 os.chdir(tmpdir)
013 13 cwd = os.getcwd()
014 14 print '*** current temporary directory'
015 15 print cwd
016 16
017 17 print '*** creating example directory…'
018 18 os.mkdir('example')
019 19 os.chdir('example')
020 20 cwd = os.getcwd()
021 21 print '*** new working directory:'
022 22 print cwd
023 23 print '*** original directory listing:'
024 24 print os.listdir(cwd)
025 25
026 26 print '*** creating test file…'
027 27 file = open('test', 'w')
028 28 file.write('foo\n')
029 29 file.write('bar\n')

030 30 file.close()
031 31 print '*** updated directory listing:'
032 32 print os.listdir(cwd)
033 33
034 34 print "*** renaming 'test' to 'filetest.txt'"
035 35 os.rename('test', 'filetest.txt')
036 36 print '*** updated directory listing:'
037 37 print os.listdir(cwd)
038 38
039 39 path = os.path.join(cwd, os.listdir (cwd)[0])
040 40 print '*** full file pathname'
041 41 print path
042 42 print '*** (pathname, basename) =='
043 43 print os.path.split(path)
044 44 print '*** (filename, extension) =='
045 45 print os.path.splitext(os.path.basename (path))
046 46
047 47 print '*** displaying file contents:'
048 48 file = open(path)
049 49 allLines = file.readlines()
050 50 file.close()
051 51 for eachLine in allLines:
052 52 print eachLine,
053 53
054 54 print '*** deleting test file'
055 55 os.remove(path)
056 56 print '*** updated directory listing:'
057 57 print os.listdir(cwd)
058 58 os.chdir(os.pardir)
059 59 print '*** deleting test directory'
060 60 os.rmdir('example')
061 61 print '*** DONE'
062 <$nopage>

Running this program on a Unix platform, we get the following output:

% ospathex.py
*** current temporary directory
/tmp
*** creating example directory…
*** new working directory:
/tmp/example

*** original directory listing:
[]
*** creating test file…
*** updated directory listing:
['test']
*** renaming 'test' to 'filetest.txt'
*** updated directory listing:
['filetest.txt']
*** full file pathname:
/tmp/example/filetest.txt
*** (pathname, basename) ==
('/tmp/example', 'filetest.txt')
*** (filename, extension) ==
('filetest', '.txt')
*** displaying file contents:
foo
bar
*** deleting test file
*** updated directory listing:
[]
*** deleting test directory
*** DONE

Running this example from a DOS window results in very similar execution:

C:\>python ospathex.py
*** current temporary directory
c:\windows\temp
*** creating example directory…
*** new working directory:
c:\windows\temp\example
*** original directory listing:
[]
*** creating test file…
*** updated directory listing:
['test']
*** renaming 'test' to 'filetest.txt'
*** updated directory listing:
['filetest.txt']
*** full file pathname:
c:\windows\temp\example\filetest.txt

*** (pathname, basename) ==
('c:\\windows\\temp\\example', 'filetest.txt')
*** (filename, extension) ==
('filetest', '.txt')
*** displaying file contents:
foo
bar
*** deleting test file
*** updated directory listing:
[]
*** deleting test directory
*** DONE

Rather than providing a line-by-line explanation here, we will leave it to the reader as an exercise.
However, we will walk through a similar interactive example (including errors) to give you a feel for
what it is like to execute this script one step at a time. We will break into the code every now and then
to describe the code we just encountered.

>>> import os
>>> os.path.isdir('/tmp')
1
>>> os.chdir('/tmp')
>>> cwd = os.getcwd()
>>> cwd
'/tmp'

This first block of code consists of importing the os module (which also grabs the os.path module).
We verify that '/tmp' is a valid directory and change to that temporary directory to do our work.
When we arrive, we call the getcwd() method to tell us where we are.

>>> os.mkdir('example')
>>> cwd = os.getcwd()
>>> cwd
'/tmp/example'
>>>
>>> os.listdir()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: function requires at least one argument
>>>

>>> os.listdir(cwd)
[]

Next, we create a subdirectory in our temporary directory, after which we will use the listdir()
method to confirm that the directory is indeed empty (since we just created it). The problem with our
first call to listdir() was that we forgot to give the name of the directory we want to list. That
problem is quickly remedied on the next line of input.

>>> file = open('test', 'w')
>>> file.write('foo\n')
>>> file.write('bar\n')
>>> file.close()
>>> os.listdir(cwd)
['test']

We then create a test file with two lines and verify that the file has been created by listing the directory
again afterwards.

>>> os.rename('test', 'filetest.txt')
>>> os.listdir(cwd)
['filetest.txt']
>>>
>>> path = os.path.join(cwd, os.listdir(cwd)[0])
>>> path
'/tmp/example/filetest.txt'
>>>
>>> os.path.isfile(path)
1
>>> os.path.isdir(path)
0
>>>
>>> os.path.split(path)
('/tmp/example', 'filetest.txt')
>>>
>>> os.path.splitext(os.path.basename(path))
('filetest', '.ext')

This section is no doubt an exercise of os.path functionality, testing join(), isfile(),
isdir() which we have seen earlier, split(), basename(), and splitext(). We also call

the rename() function from os.

>>> file = open(path)
>>> file.readlines()
>>> file.close()
>>>
>>> for eachLine in allLines:
… print eachLine,
…
foo
bar

This next piece of code should be familiar to the reader by now, since this is the third time around. We
open the test file, read in all the lines, close the file, and display each line, one at a time.

>>> os.remove(path)
>>> os.listdir(cwd)
[]
>>> os.chdir(os.pardir)
>>> os.rmdir('example')

This last segment involves the deletion of the test file and test directory concluding execution. The call
to chdir() moves us back up to the main temporary directory where we can remove the test directory
(os.pardir contains the parent directory string ".." for Unix and Windows; the Macintosh uses
"::"). It is not advisable to remove the directory that you are in.

NOTE

As you can tell from our lengthy discussion above, the os and os.path modules provide different
ways to access the file system on your computer. Although our study in this chapter is restricted to
file access only, the os module can do much more. It lets you manage your process environment,
contains provisions for low-level file access, allows you to create and manage new processes, and
even enables your running Python program to "talk" directly to another running program. You may
find yourself a common user of this module in no time. Read more about the os module in Chapter
14.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=149

Programming > Core Python Programming > 9. Files and Input/Output > File Execution See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175206119229187035095111

File Execution

Whether we want to simply run an operating system command, invoke a binary executable, or another
type of script (perhaps a shell script, Perl, or Tcl/Tk), this involves executing another file somewhere
else on the system. Even running other Python code may call for starting up another Python interpreter,
although that may not always be the case. In any regard, we will defer this subject to Chapter 14. Please
proceed there if you are interested in how to start other programs, perhaps even communicating with
them, and for general information regarding Python's execution environment.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=150
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A27%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=150&now=5%2F29%2F2002+9%3A27%3A08+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=150

Programming > Core Python Programming > 9. Files and Input/Output > Persistent
Storage Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175206119228063180223092

Persistent Storage Modules

In many of the exercises in this text, user input is required for those applications. After many iterations,
it may be somewhat frustrating being required to enter the same data repeatedly. The same may occur if
you are entering a significant amount of data for use in the future. This is where it becomes useful to
have persistent storage, or a way to archive your data so that you may access it at a later time instead of
having to re-enter all of that information. When simple disk files are no longer acceptable and full
relational database management systems (RDBMSs) are overkill, simple persistent storage fills the gap.
The majority of the persistent storage modules deals with storing strings of data, but there are ways to
archive Python objects as well.

pickle and marshal Modules

Python provides a variety of modules which implement minimal persistent storage. One set of modules
(marshal and pickle) allows for pickling of Python objects. Pickling is the process whereby
objects more complex than primitive types can be converted to a binary set of bytes that can be stored
or transmitted across the network, then be converted back to their original object forms. Pickling is also
known as flattening, serializing, or marshalling. Another set of modules (dbhash/bsddb, dbm,
gdbm, dumbdbm) and their "manager" (anydbm) can provide persistent storage of Python strings
only. The last module (shelve) can do both.

As we mentioned before, both marshal and pickle can flatten Python objects. These modules do
not provide "persistent storage" per se, since they do not provide a namespace for the objects, nor can
they provide concurrent write access to persistent objects. What they can do, however, is to pickle
Python objects to allow them to be stored or transmitted. Storage, of course, is sequential in nature (you
store or transmit objects one after another). The difference between marshal and pickle is that
marshal can handle only simple Python objects (numbers, sequences, mapping, and code) while
pickle can transform recursive objects, objects that are multi-referenced from different places, and
user-defined classes and instances. The pickle module is also available in a turbo version called
cPickle, which implements all functionality in C.

DBM-style Modules

The *db* series of modules writes data in the traditional DBM format. There are a large number of
different implementations: dbhash/bsddb, dbm, gdbm, and dumbdbm. We highly recommend

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=151
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A27%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=151&now=5%2F29%2F2002+9%3A27%3A16+PM

the use of the anydbm module, which detects which DBM-compatible modules are installed on your
system and uses the "best" one at its disposal. The dumbdbm module is the most limited one, and is the
default used if none of the other packages are available. These modules do provide a namespace for
your objects, using objects which behave similar to a combination of a dictionary object and a file
object. The one limitation of these systems is that they can store only strings. In other words, they do
not serialize Python objects.

shelve Module

Finally, we have a somewhat more complete solution, the shelve module. The shelve module uses
the anydbm module to find a suitable DBM module, then uses cPickle to perform the pickling
process. The shelve module permits concurrent read access to the database file, but not shared
read/write access. This is about as close to persistent storage as you will find in the Python standard
library. There may other external extension modules which implement "true" persistent storage. The
diagram in Figure 9-1 shows the relationship between the pickling modules and the persistent storage
modules, and how the shelve object appears to be the best of both worlds.

Figure 9.1. Python Modules for Serialization and Persistency

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/151#4.html

NOTE

The pickle module allows you to store Python objects directly to a file without having to convert
them to strings or to necessarily write them out as binary files using low-level file access. Instead,
the pickle module creates a Python-only binary version which allows you to cleanly read and
write objects in their entirety without having to worry about all the file details. All you need is a
valid file handle, and you are ready to read or write objects from or to disk.

The two main functions in the pickle module are dump() and load(). The dump() function
takes a file handle and a data object and saves the object in a format it understands to the given
file. When a pickled object is loaded from disk using load(), it knows exactly how to restore that
object to its original configuration before it was saved to disk. We recommend you take a look at
pickle and its "smarter" brother shelve, which gives you dictionary-like functionality so there
is even less file overhead on your part.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=151

Programming > Core Python Programming > 9. Files and Input/Output > Related Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175206119230038081228006

Related Modules

There are plenty of other modules related to files and input/output, all of which work on most of the
major platforms. Table9.7 lists some of the file-related modules.

Table 9.7. Related File Modules

Module(s) Contents
fileinput iterates over lines of multiple input text files
getopt provides command-line argument parsing/manipulation
glob/fnmatch provides Unix-style wildcard character matching
gzip/zlib/zipfile[a] allows file access to include automatic de/compression
shutil offers high-level file access functionality
c/StringIO implements file-like interface on top of string objects
tempfile generates temporary file names or files

[a] new in Python 1.6

The fileinput module iterates over a set of input files and reads their contents one line at a time,
allowing you to iterate over each line, much like the way the Perl (< >) operator works without any
provided arguments. File names that are not explicitly given will be assumed to be provided from the
command-line.

The glob and fnmatch modules allow for file name pattern-matching in the good old fashioned
Unix shell-style, for example, using the asterisk (*) wildcard character for all string matches and the (
?) for matching single characters.

The gzip and zlib modules provide direct file access to the zlib compression library. The gzip
module, written on top of the zlib module, allows for standard file access, but provides for automatic
gzip-compatible compression and decompression. Note that if you are compiling your Python
interpreter, you have to enable the zlib module to be built (by editing the Modules/Setup file). It
is not turned on by default. The new zipfile module, also requiring the zlib module, allows the
programmer to create, modify, and read zip archive files.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=152
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A27%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=152&now=5%2F29%2F2002+9%3A27%3A31+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/152#1.html

The shutil module furnishes high-level file access, performing such functions as copying files,
copying file permissions, and recursive directory tree copying, to name a few.

The tempfile module can be used to generate temporary file names and files.

In our earlier chapter on strings, we described the StringIO module (and its C-compiled companion
cStringIO), and how it overlays a file interface on top of string objects. This interface includes all of
the standard methods available to regular file objects.

The modules we mentioned in the Persistent Storage section above (Section 9.9) include examples of a
hybrid file- and dictionary-like object.

Some other Python modules which generate file-like objects include network and file socket objects
(socket module), the popen*() file objects that connect your application to other running
processes (os and popen2 modules), the fdopen() file object used in low-level file access (os
module), and opening a network connection to an Internet web server via its Uniform Resource Locator
(URL) address (urllib module). Please be aware that not all standard file methods may be
implemented for these objects. Likewise, they may provide functionality in addition to what is
available for regular files.

Refer to the documentation for more details on these file access-related modules.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=152

Programming > Core Python Programming > 9. Files and Input/Output > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175206119225201075252073

Exercises

1: File Filtering. Display all lines of a file, except those that start with a pound sign (#), the
comment character for Python, Perl, Tcl, and most other scripting languages.

2: File Access. Prompt for a number N and file F, and display the first N lines of F.

3: File Information. Prompt for a filename and display the number of lines in that text file.

4: File Access. Write a "pager" program. Your solution should prompt for a file name, and
display the text file 25 lines at a time, pausinLg each time to ask the user to "press a key to
continue."

5: Test Scores. Update your solution to the test scores problems (Exercises 5–3 and 6–4) by
allowing a set of test scores be loaded from a file. We leave the file format to your
discretion.

6: File Comparison. Write a program to compare two text files. If they are different, give the
line and column numbers in the files where the first difference occurs.

7: Parsing Files. Windows users: create a program that parses a Windows .ini file. Unix
users: create a program that parses the /etc/services file. All other platforms: create a
program that parses an system file with some kind of structure to it.

8: Module Introspection. Extract module attribute information. Prompt the user for a module
name (or accept it from the command-line). Then, using dir() and other built-in
functions, extract all its attributes, and display their names, types, and values.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=153
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A27%3A41+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=153&now=5%2F29%2F2002+9%3A27%3A41+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#23.html

9: "PythonDoc." Go to the directory where your Python standard library modules are located.
Examine each .py file and determine whether a __doc__ string is available for that
module. If so, format it properly and catalog it. When your program has completed, it
should present a nice list of those modules which have documentation strings and what
they are. There should be a trailing list showing which modules do not have documentation
strings (the shame list). EXTRA CREDIT: extract documentation for all classes and
functions within the standard library modules.

10: Home Finances. Create a home finance manager. Your solution should be able to manage
savings, checking, money market, certificate of deposit (CD), and similar accounts.
Provide a menu-based interface to each account as well as operations such as deposits,
withdrawals, debits, and credits. An option should be given to a user to remove transactions
as well. The data should be stored to file when the user quits the application (but randomly
during execution for backup purposes).

11: Web Site Addresses.

(a)Write a URL bookmark manager. Create a text-driven menu-based application which
allows the user to add, update, or delete entries. Entries include a site name, Website URL
address, and perhaps a one-line description (optional). Allow search functionality so that a
search "word" looks through both names and URLs for possible matches. Store the data to
a disk file when the user quits the application, and load up the data when the user restarts.

(b)Upgrade your solution to part (a) by providing output of the bookmarks to a legible and
syntactically correct HTML file (.htm or .html) so that users can then point their
browser to this output file and be presented with a list of their bookmarks. Another feature
to implement is allowing the creation of "folders" to allow grouping of related bookmarks.
EXTRA CREDIT: Read the literature on regular expressions and the Python re module.
Add regular expression validation of URLs that users enter into their database.

12: Users and Passwords.

(a)Do Exercise 7-5, which keeps track of usernames and passwords. Update your code to
support a "last login time." See the documentation for the time module to obtain
timestamps for when users "login" to the system. Also, create the concept of an
"administrative" user which can dump a list of all the users, their passwords (you can add
encryption on top of the passwords if you wish), and their last login times. The database
should be stored to disk, one line at a time, with fields delimited by colons (:), i.e.,
"joe:boohoo:953176591.145," for each user. The number of lines in the file will
be the number of users which are part of your system.

(b)Further update your example such that instead of writing out one line at a time, you
"pickle" the entire database object and write that out instead. Read the documentation on
the pickle module to find out how to "flatten" or "serialize" your object, as well as how
to perform I/O using picked objects. With the addition of this new code, your solution
should take up fewer lines than your solution in part (a).

13: Command-line arguments.

(a)What are they, and why might they be useful?

(b)Write code to display the command-line arguments which were entered.

14: Logging Results. Convert your calculator program (Exercise 5-6) to take input from the
command-line, i.e.,

% calc.py 1 + 2

Output the result only. Also, write each expression and result to a disk file. Issuing a
command of…

% calc.py print

… will cause the entire contents of the "register tape" to be dumped to the screen and file

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#24.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#24.html

reset/truncated. Here is an example session:

% calc.py 1 + 2
3
% calc.py 3 ^ 3
27
% calc.py print
1 + 2
3
3 ^ 3
27
% calc.py print
%

15: Copying Files. Prompt for two file names (or better yet, use command-line arguments).
The contents of the first file should be copied to the second file.

16: Text Processing. You are tired of seeing lines on your e-mail wrap because people type
lines which are too long for your mail reader application. Create a program to scan a text
file for all lines longer than 80 characters. For each of the offending lines, find the closest
word before 80 characters and break the line there, inserting the remaining text to the next
line (and pushing the previous next line down one). When you are done, there should no
longer be lines longer than 80 characters.

17: Text Processing. Create a crude and elementary text file editor. Your solution is menu-
driven, with the following options: (1) create file [prompt for file name and any number of
lines of input], (2) display file [dump its contents to the screen], (3) edit file (prompt for
line to edit and allow user to make changes), (4) save file, and (5) quit.

18: Searching Files. Obtain a byte value (0-255) and a file name. Display the number of times
that byte appears in the file.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#25.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#25.html

19: Generating Files. Create a sister program to the previous problem. Create a binary data file
with random bytes, but one particular byte will appear in that file a set number of times.
Obtain the following three values: (1) a byte value (0–255), (2) the number of times that
byte should appear in the data file, and (3) the total number of bytes that make up the data
file. Your job is to create that file, randomly scatter the request byte across the file, and to
ensure that there are no duplicates and that the file contains exactly the number of
occurrences that byte was requested for, and that the resulting data file is exactly the size
requested.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=153

Programming > Core Python Programming > 10. Errors And Exceptions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175206119224211141058020

Chapter 10. Errors And Exceptions
Chapter Topics

● What Are Exceptions?

● Exceptions in Python

● Detecting and Handling Exceptions

❍ try-except Statement

❍ Exception Arguments

❍ else Statement

❍ try-finally Statement

● Exceptions Are Classes

● Raising Exceptions

❍ raise Statement

● Assertions

❍ assert Statement

● Standard Exceptions

● Creating Exceptions

● Why Exceptions (Now)?

● Why Exceptions at All?

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=155
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A27%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=155&now=5%2F29%2F2002+9%3A27%3A54+PM

● Related Modules

Errors are an everyday occurrence in the life of a programmer. In days hopefully long since past, errors
were either fatal to the program (or perhaps the machine) or produced garbage output that was neither
recognized as valid input by other computers or programs nor by the humans who submitted the job to
be run. Any time an error occurred, execution was halted until the error was corrected and code was re-
executed. Over time, demand surged for a "softer" way of dealing with errors other than termination.
Programs evolved such that not every error was malignant, and when they did happen, more diagnostic
information was provided by either the compiler or the program during run-time to aid the programmer
in solving the problem as quickly as possible. However, errors are errors, and any resolution usually
took place after the program or compilation process was halted. There was never really anything a
piece of code could do but exit and perhaps leave some crumbs hinting at a possible cause—until
exceptions and exception handling came along.

Although we have yet to cover classes and object-oriented programming in Python, many of the
concepts presented here involve classes and class instances.[1] We conclude the chapter with an optional
section on how to create your own exception classes. Older versions of Python utilized string
exceptions, which are not common any more. We recommend using only class-based exceptions for all
future development.

[1] As of Python 1.5, all standard exceptions are implemented as classes. If new to classes, instances, and other object-
oriented terminology, the reader should check Chapter 13 for clarification.

This chapter begins by exposing the reader to exceptions, exception handling, and how they are
supported in Python. We also describe how programmers can generate exceptions within their code.
Finally, we reveal how programmers can create their own exception classes.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=155

Programming > Core Python Programming > 10. Errors And Exceptions > What Are
Exceptions?

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175193246039021105133192

What Are Exceptions?

Errors

Before we get into details about what exceptions are, let us review what errors are. In the context of
software, errors are either syntactical or logical in nature. Syntax errors indicate errors with the
construct of the software and cannot be executed by the interpreter or compiled correctly. These errors
must be repaired before execution can occur.

Once programs are semantically correct, the only errors which remain are logical. Logical errors can
either be caused by lack of or invalid input, or, in other cases, by the logic's not being able to generate,
calculate, or otherwise produce the desired results based on the input. These errors are sometimes
known as domain and range failures, respectively.

When errors are detected by Python, the interpreter indicates that it has reached a point where
continuing to execute in the current flow is no longer possible. This is where exceptions come into the
picture.

Exceptions

Exceptions can best be described as action that is taken outside of the normal flow of control because
of errors. This action comes in two distinct phases, the first being the error which causes an exception
to occur, and the second being the detection (and possible resolution) phase.

The first phase takes place when an exception condition (sometimes referred to as exceptional
condition) occurs. Upon detection of an error and recognition of the exception condition, the interpreter
performs an operation called raising an exception. Raising is also known as triggering, throwing, or
generating, and is the process whereby the interpreter makes it known to the current control flow that
something is wrong. Python also supports the ability of the programmer's to raise exceptions. Whether
triggered by the Python interpreter or the programmer, exceptions signal that an error has occurred. The
current flow of execution is interrupted to process this error and take appropriate action, which happens
to be the second phase.

The second phase is where exception handling takes place. Once an exception is raised, a variety of
actions can be invoked in response to that exception. These can range anywhere from ignoring the
error, logging the error but otherwise taking no action, performing some corrective measures and

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=156
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A28%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=156&now=5%2F29%2F2002+9%3A28%3A04+PM

aborting the program, or alleviating the problem to allow for resumption of execution. Any of these
actions represents a continuation, or an alternative branch of control. The key is that the programmer
can dictate how the program operates when an error occurs.

As you may have already concluded, errors during run-time are primarily caused by external reasons,
such as poor input, a failure of some sort, etc. These causes are not under the direct control of the
programmer, who can anticipate only a few of the errors and code the most general remedies.

Languages like Python which support the raising and—more importantly—the handling of exceptions
empowers the developer by placing them in a more direct line of control when errors occur. The
programmer not only has the ability to detect errors, but also to take more concrete and remedial
actions when they occur. Due to the ability to manage errors during run-time, application robustness is
increased.

Exceptions and exception handling are not new concepts, as they are also present in Ada, Modula-3,
C++, Eiffel, and Java. The origins of exceptions probably come from operating systems code which
handles exceptions such as system errors and hardware interruptions. Exception handling as a software
tool made its debut in the mid-1960s with PL/1 being the first major programming language that
featured exceptions. Like some of the other languages supporting exception handling, Python is
endowed with the concepts of a "try" block and "catching" exceptions and, in addition, provides for
more "disciplined" handling of exceptions. By this we mean that you can create different handlers for
different exceptions, as opposed to a general "catch-all" code where you may be able to detect the
exception which occurred in a post-mortem fashion.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=156

Programming > Core Python Programming > 10. Errors And Exceptions > Exceptions in
Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175193246038104068157061

Exceptions in Python

As you were going through some of the examples in the previous chapters, you no doubt noticed what
happens when your program "crashes" or terminates due to unresolved errors. A "traceback" notice
appears along with a notice with as much diagnostic information as the interpreter can give you,
including the error name, reason, and perhaps even the line number near or exactly where the error
occurred. All errors have a similar format, regardless of whether running within the Python interpreter
or standard script execution, providing a consistent error interface. All errors, whether they be
syntactical or logical, result from behavior incompatible with the Python interpreter and cause
exceptions to be raised.

Let us take a look at some exceptions now.

NameError: attempt to access an undeclared variable

>>> foo
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
NameError: foo

NameError indicates access to an uninitialized variable. The offending identifier was not found in the
Python interpreter's symbol table. We will be discussing namespaces in an upcoming chapter, but as an
introduction, regard them as "address books" linking names to objects. Any object which is accessible
should be listed in a namespace. Accessing a variable entails a search by the interpreter, and if the
name requested is not found in any of the namespaces, a NameError exception will be generated.

ZeroDivisionError: division by any numeric zero

>>> 12.4/0.0
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
ZeroDivisionError: float division

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=157
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A28%3A14+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=157&now=5%2F29%2F2002+9%3A28%3A14+PM

Our example above used floats, but in general, any numeric division-by-zero will result in a
ZeroDivisionError exception.

SyntaxError: Python interpreter syntax error

>>> for
 File "<string>", line 1
 for
 ^
SyntaxError: invalid syntax

SyntaxError exceptions are the only ones which do not occur at run-time. They indicate an
improperly constructed piece of Python code which cannot execute until corrected. These errors are
generated at compile-time, when the interpreter loads and attempts to convert your script to Python
bytecode. These may also occur as a result of importing a faulty module.

IndexError: request for an out-of-range index for sequence

>>> aList = []
>>> aList[0]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range

IndexError is raised when attempting to access an index which is outside the valid range of a
sequence.

KeyError: request for a non-existent dictionary key

>>> aDict = {'host': 'earth', 'port': 80}
>>> print aDict['server']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: server

Mapping types such as dictionaries depend on keys to access data values. Such values are not retrieved
if an incorrect/nonexistent key is requested. In this case, a KeyError is raised to indicate such an
incident has occurred.

IOError: input/output error

>>> f = open("blah")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
IOError: [Errno 2] No such file or directory: 'blah'

Attempting to open a non-existent disk file is one example of an operating system input/output (I/O)
error. Any type of I/O error raises an IOError exception.

AttributeError: attempt to access an unknown object attribute

>>> class myClass:
… pass
…
>>> myInst = myClass()
>>> myInst.bar = 'spam'
>>> myInst.bar
'spam'
>>> myInst.foo
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: foo

In our example, we stored a value in myInst.bar, the bar attribute of instance myInst. Once an
attribute has been defined, we can access it using the familiar dotted-attribute notation, but if it has not,
as in our case with the foo (non-)attribute, an AttributeError occurs.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=157

Programming > Core Python Programming > 10. Errors And Exceptions > Detecting and Handling Exceptions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175193246037188184124002

Detecting and Handling Exceptions

Exceptions can be detected by incorporating them as part of a try statement. Any code suite of a try statement will be
monitored for exceptions.

There are two main forms of the try statement: try-except and try-finally. These statements are mutually exclusive,
meaning that you pick only one of them. A try statement is either accompanied by one or more except clauses or exactly one
finally clause. (There is no such thing as a hybrid "try-except-finally.")

try-except statements allow one to detect and handle exceptions. There is even an optional else clause for situations where
code needs to run only when no exceptions are detected. Meanwhile, try-finally statements allow only for detection and
processing of any obligatory clean-up (whether or not exceptions occur), but otherwise has no facility in dealing with exceptions.

try-except Statement

The try-except statement (and more complicated versions of this statement) allows you to define a section of code to monitor
for exceptions and also provides the mechanism to execute handlers for exceptions.

The syntax for the most general try-except statement looks like this:

try:
 try_suite # watch for exceptions here
except
 Exception:
 except_suite # exception-handling code

Let us give one example, then explain how things work. We will use our IOError example from above. We can make our code
more robust by adding a try-except "wrapper" around the code:

>>> try:
… f = open('blah')
… except IOError:
… print 'could not open file'
…
could not open file

As you can see, our code now runs seemingly without errors. In actuality, the same IOError still occurred when we attempted to
open the nonexistent file. The difference? We added code to both detect and handle the error. When the IOError exception was
raised, all we told the interpreter to do was to output a diagnostic message. The program continues and does not "bomb out" as our
earlier example—a minor illustration of the power of exception handling. So what is really happening codewise?

During run-time, the interpreter attempts to execute all the code within the try statement. If an exception does not occur when the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=158
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A28%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=158&now=5%2F29%2F2002+9%3A28%3A28+PM

code block has completed, execution resumes past the except statement. When the specified exception named on the except
statement does occur, control flow immediately continues in the handler (all remaining code in the try clause is skipped). In our
example above, we are catching only IOError exceptions. Any other exception will not be caught with the handler we specified.
If, for example, you want to catch an OSError, you have to add a handler for that particular exception. We will elaborate on the
try-except syntax more as we progress further in this chapter.

NOTE

The remaining code in the try suite from the point of the exception is never reached (hence never executed). Once an
exception is raised, the race is on to decide on the continuing flow of control. The remaining code is skipped, and the search
for a handler begins. If one is found, the program continues in the handler.

If the search is exhausted without finding an appropriate handler, the exception is then propagated to the caller's level for
handling, meaning the stack frame immediately preceding the current one. If there is no handler at the next higher level, the
exception is yet again propagated to its caller. If the top level is reached without an appropriate handler, the exception is
considered unhandled, and the Python interpreter will display the traceback and exit.

Wrapping a Built-in Function

We will now present an interactive example—starting with the bare necessity of detecting an error, then building continuously on
what we have to further improve the robustness of our code. The premise is in detecting errors while trying to convert a numeric
string to a proper (numeric object) representation of its value.

The float() built-in function has a primary purpose of converting any numeric type to a float. In Python 1.5, float() was
given the added feature of being able to convert a number given in string representation to an actual float value, obsoleting the use
of the atof() function of the string module. Readers with older versions of Python may still use string.atof(),
replacing float(), in the examples we use here.

>>> float(12345)
12345.0
>>> float('12345')
12345.0
>>> float('123.45e67')
1.2345e+069

Unfortunately, float() is not very forgiving when it comes to bad input:

>>> float('abcde')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 float('abcde')
ValueError: invalid literal for float(): abcde
>>>
>>> float(['this is', 1, 'list'])
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 float(['this is', 1, 'list'])
TypeError: object can't be converted to float

Notice in the errors above that float() does not take too kindly to strings which do not represent numbers or non-strings.
Specifically, if the correct argument type was given (string type) but that type contained an invalid value, the exception raised
would be ValueError because it was the value that was improper, not the type. In contrast, a list is a bad argument altogether,
not even being of the correct type; hence, TypeError was thrown.

Our exercise is to call float() "safely," or in a more "safe manner," meaning that we want to ignore error situations because
they do not apply to our task of converting numeric string values to floating point numbers, yet are not severe enough errors that
we feel the interpreter should abandon execution. To accomplish this, we will create a "wrapper" function, and, with the help of
try-except, create the environment that we envisioned. We shall call it safe_float(). In our first iteration, we will scan
and ignore only ValueErrors, because they are the more likely culprit. TypeErrors rarely happen since somehow a non-
string must be given to float().

def safe_float(object):
 try:
 return float(object)
 except ValueError:
 pass

The first step we take is to just "stop the bleeding." In this case, we make the error go away by just "swallowing it." In other
words, the error will be detected, but since we have nothing in the except suite (except the pass statement, which does nothing
but serve as a syntactical placeholder for where code is supposed to go), no handling takes place. We just ignore the error.

One obvious problem with this solution is that we did not explicitly return anything to the function caller in the error situation.
Even though None is returned (when a function does not return any value explicitly, i.e., completing execution without
encountering a return object statement), we give little or no hint that anything wrong took place. The very least we should do
is to explicitly return None so that our function returns a value in both cases and makes our code somewhat easier to understand:

def safe_float(object):
 try:
 retval = float(object)
 except ValueError:
 retval = None
 return retval

Bear in mind that with our change above, nothing about our code changed except that we used one more local variable. In
designing a well-written application programmer interface (API), you may have kept the return value more flexible. Perhaps you
documented that if a proper argument was passed to safe_float(), then indeed, a floating point number would be returned,
but in the case of an error, you chose to return a string indicating the problem with the input value. We modify our code one more
time to reflect this change:

def safe_float(object):
 try:
 retval = float(object)
 except ValueError:

 retval = 'could not convert non-number to float'
 return retval

The only thing we changed in the example was to return an error string as opposed to just None. We should take our function out
for a "test drive" to see how well it works so far:

>>> safe_float('12.34')
12.34
>>> safe_float('bad input')
'could not convert non-number to float'

We made a good start—now we can detect invalid string input, but we are still vulnerable to invalid objects being passed in:

>>> safe_float({'a': 'Dict'})
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "safeflt.py", line 28, in safe_float
 retval = float(object)
TypeError: object can't be converted to float

We will address this final shortcoming momentarily, but before we further modify our example, we would like to highlight the
flexibility of the try-except syntax, especially the except statement, which comes in a few more flavors.

try Statement with Multiple excepts

Earlier in this chapter, we introduced the following general syntax for except:

except
 Exception:
 suite_for_exception_Exception

The except statement in such formats specifically detects exceptions named Exception. You can chain multiple except
statements together to handle different types of exceptions with the same try:

except
 Exception1:
 suite_for_exception_Exception1
except
 Exception2:
 suite_for_exception_Exception2
 :

This same try clause is attempted, and if there is no error, execution continues, passing all the except clauses. However, if an
exception does occur, the interpreter will look through your list of handlers attempting to match the exception with one of your
handlers (except clauses). If one is found, execution proceeds to that except suite.

Our safe_float() function has some brains now to detect specific exceptions. Even smarter code would handle each
appropriately. To do that, we have to have separate except statements, one for each exception type. That is no problem as
Python allows except statements can be chained together. Any reader familiar with popular third-generation languages (3GLs)
will no doubt notice the similarities to the switch/case statement which is absent in Python. We will now create separate
messages for each error type, providing even more detail to the user as to the cause of his or her problem:

def safe_float(object):
 try:
 retval = float(object)
 except ValueError:
 retval = 'could not convert non-number to float'
 except TypeError:
 retval = 'object type cannot be converted to float'
 return retval

Running the code above with erroneous input, we get the following:

>>> safe_float('xyz')
'could not convert non-number to float'
>>> safe_float(())
'argument must be a string'
>>> safe_float(200L)
200.0
>>> safe_float(45.67000)
45.67

except Statement with Multiple Exceptions

We can also use the same except clause to handle multiple exceptions. except statements which process more than one
exception require that the set of exceptions be contained in a tuple:

except (Exception1, Exception2):
 suite_for_Exception1_and_Exception2

The above syntax example illustrates how two exceptions can be handled by the same code. In general, any number of exceptions
can follow an except statement as long as they are all properly enclosed in a tuple:

except (Exception1[, Exception2[, … ExceptionN…]]):
 suite_for_exceptions_Exception1_to_ExceptionN

If for some reason, perhaps due to memory constraints or dictated as part of the design that all exceptions for our
safe_float() function must be handled by the same code, we can now accommodate that requirement:

def safe_float(object):
 try:
 retval = float(object)
 except (ValueError, TypeError):
 retval = 'argument must be a number or numeric string'
 return retval

Now there is only the single error string returned on erroneous input:

>>> safe_float('Spanish Inquisition')
'argument must be a number or numeric string'
>>> safe_float([])
'argument must be a number or numeric string'
>>> safe_float('1.6')
1.6
>>> safe_float(1.6)
1.6
>>> safe_float(932)
932.0

try-except with No Exceptions Named

The final syntax for try-except we are going to present is one which does not specify an exception on the except header line:

try:
 try_suite # watch for exceptions here
except:
 except_suite # handles all exceptions

Although this code "catches the most exceptions," it does not promote good Python coding style. One of the chief reasons is that it
does not take into account the potential root causes of problems which may generate exceptions. Rather than investigating and
discovering what types of errors may occur and how they may be prevented from happening, this type of code "turns the blind
eye," thereby ignoring the possible causes (and remedies). Also see the Core Style featured in this section.

NOTE

The try-except statement has been included in Python to provide a powerful mechanism for programmers to track down
potential errors and to perhaps provide logic within the code to handle situations where it may not otherwise be possible, for
example in C. The main idea is to minimize the number of errors and still maintain program correctness. As with all tools, they
must be used properly.

One incorrect use of try-except is to serve as a giant bandage over large pieces of code. By that we mean putting large
blocks, if not your entire source code, within a try and/or have a large generic except to "filter" any fatal errors by

ignoring them:

this is really bad code
try:
 large_block_of_code #
bandage of large piece of code
except:
 pass #
blind eye ignoring all errors

Obviously, errors cannot be avoided, and the job of try-except is to provide a mechanism whereby an acceptable problem
can be remedied or properly dealt with, and not be used as a filter. The construct above will hide many errors, but this type of
usage promotes a poor engineering practice that we certainly cannot endorse.

Bottom line: Avoid using try-except around a large block of code with a pass just to hide errors. Instead, handle specific
exceptions and enclose only deserving code in your try clause, as evidenced by some of the constructs we used for the
safe_float() example in this section.

"Exceptional Arguments"

No, the title of this section has nothing to do with having a major fight. Instead, we are referring to the fact that exception may
have arguments are passed along to the exception handler when they are raised. When an exception is raised, parameters are
generally provided as an additional aid for the exception handler. Although arguments to exceptions are optional, the standard
built-in exceptions do provide at least one argument, an error string indicating the cause of the exception.

Exception parameters can be ignored in the handler, but the Python provides syntax for saving this value. To access any provided
exception argument, you must reserve a variable to hold the argument. This argument is given on the except header line and
follows the exception type you are handling. The different syntaxes for the except statement can be extended to the following:

single exception
except
 Exception, Argument:
 suite_for_Exception_with_Argument

multiple exceptions
except (Exception1, Exception2, …, ExceptionN), Argument:
 suite_for_Exception1_to_ExceptionN_with_Argument

Unless a string exception (see Section 10.4) was raised, Argument is a class instance containing diagnostic information from the
code raising the exception. The exception arguments themselves go into a tuple which is stored as an attribute of the class
instance, an instance of the exception class from which it was instantiated. In the first alternate syntax above, Argument would
be an instance of the Exception class.

For most standard built-in exceptions, that is, exceptions derived from StandardError, the tuple consists of a single string
indicating the cause of the error. The actual exception name serves as a satisfactory clue, but the error string enhances the meaning
even more. Operating system or other environment type errors, i.e., IOError, will also include an operating system error

number which precedes the error string in the tuple. Whether an Argument is merely a string or a combination of an error
number and a string, calling str(Argument) should present a human-readable cause of an error.

The only caveat is that not all exceptions raised in third-party or otherwise external modules adhere to this standard protocol (or
error string or (error number, error string). We recommend to follow such a standard when raising your own exceptions (see Core
Style note).

NOTE

When you raise built-in exceptions in your own code, try to follow the protocol established by the existing Python code as far
as the error information that is part of the tuple passed as the exception argument. In other words, if you raise a
ValueError, provide the same argument information as when the interpreter raises a ValueError exception, and so on.
This helps keep the code consistent and will prevent other code which uses your module from breaking.

The example below is when an invalid object is passed to the float() built-in function, resulting in a TypeError exception:

>>> try:
… float(['float() does not', 'like lists', 2])
… except TypeError, diag:# capture diagnostic info
… pass
…
>>> type(diag)
<type 'instance'>
>>>
>>> print diag
object can't be converted to float

The first thing we did was cause an exception to be raised from within the try statement. Then we passed cleanly through by
ignoring but saving the error information. Calling the type() built-in function, we were able to confirm that our exception was
indeed an instance. Finally, we displayed the error by calling print with our diagnostic exception argument.

To obtain more information regarding the exception, we can use the special __class__ instance attribute which identifies which
class an instance was instantiated from. Class objects also have attributes, such as a documentation string and a string name which
further illuminate the error type:

>>> diag # exception instance object
<exceptions.TypeError instance at 8121378>
>>> diag.__class__ # exception class object
<class exceptions.TypeError at 80f6d50>
>>> diag.__class__.__doc__ # exception class documentation string
'Inappropriate argument type.'
>>> diag.__class__.__name__ # exception class name
'TypeError'

As we will discover in Chapter 13—Classes and OOP—the special instance attribute __class__ exists for all class instances,
and the __doc__ class attribute is available for all classes which define their documentation strings.

We will now update our safe_float() one more time to include the exception argument which is passed from the interpreter
from within float() when exceptions are generated. In our last modification to safe_float(), we merged both the
handlers for the ValueError and TypeError exceptions into one because we had to satisfy some requirement. The problem,
if any, with this solution is that no clue is given as to which exception was raised nor what caused the error. The only thing
returned is an error string which indicated some form of invalid argument. Now that we have the exception argument, this no
longer has to be the case.

Because each exception will generate its own exception argument, if we chose to return this string rather than a generic one we
made up, it would provide a better clue as to the source of the problem. In the following code snippet, we replace our single error
string with the string representation of the exception argument.

def safe_float(object):
 try:
 retval = float(object)
 except (ValueError, TypeError), diag:
 retval = str(diag)
 return retval

Upon running our new code, we obtain the following (different) messages when providing improper input to safe_float(),
even if both exceptions are managed by the same handler:

>>> safe_float('xyz')
'invalid literal for float(): xyz'
>>> safe_float({})
'object can't be converted to float'

Using Our Wrapped Function in an Application

We will now feature safe_float() in a mini application which takes a credit card transaction data file (carddata.txt) and
reads in all transactions, including explanatory strings. Here are the contents of our example carddata.txt file:

% cat carddata.txt
carddata.txt
previous balance
25
debits
21.64
541.24
25
credits
-25
-541.24
finance charge/late fees
7.30
5

Our program, cardrun.py, is given in Example 10.1.

Example 10.1. Credit Card Transactions (cardrun.py)

We use safe_float() to process a set of credit card transactions given in a file and read in as strings. A log file tracks the
processing.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import types
004 4
005 5 def safe_float(object):
006 6 'safe version of float()'
007 7 try: <$nopage>
008 8 retval = float(object)
009 9 except (ValueError, TypeError), diag:
010 10 retval = str(diag)
011 11 return retval
012 12
013 13 def main():
014 14 'handles all the data processing'
015 15 log = open('cardlog.txt', 'w')
016 16 try: <$nopage>
017 17 ccfile = open('carddata.txt', 'r')
018 18 except IOError:
019 19 log.write('no txns this month\n')
020 20 log.close()
021 21 return <$nopage>
022 22
023 23 txns = ccfile.readlines()
024 24 ccfile.close()
025 25 total = 0.00
026 26 log.write('account log:\n')
027 27
028 28 for eachTxn in txns:
029 29 result = safe_float(eachTxn)
030 30 if type(result) == types.FloatType:
031 31 total = total + result
032 32 log.write('data… processed\n')
033 33 else: <$nopage>
034 34 log.write('ignored: %s' % result)
035 35 print '$%.2f (new balance)' % (total)
036 36 log.close()
037 37
038 38 if __name__ == '__main__':
039 39 main()
040 <$nopage>

Lines 1 – 3

The script starts by importing the types modules, which contains Type objects for the Python types. That is why we direct them
to standard error instead.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/158#8.html

Lines 5 – 11

This chunk of code contains the body of our safe_float() function.

Lines 13 – 36

The core part of our application performs three major tasks: (1) read the credit card data file, (2) process the input, and (3) display
the result. Lines 16–24 perform the extraction of data from the file. You will notice that there is a try-except statement
surrounding the file open.

A log file of the processing is also kept. In our example, we are assuming the log file can be opened for write without any
problems. You will find that our progress is kept by the log. If the credit card data file cannot be accessed, we will assume there
are no transactions for the month (lines 18–21).

The data is then read into the txns (transactions) list where it is iterated over in lines 28–34. After every call to
safe_float(), we check the result type using the types module. The types module contains items of each type, named
appropriately typeType, so that direct comparisons can be performed with results that determine an object's type. In our
example, we check to see if safe_float() returns a string or float. Any string indicates an error situation with a string that
could not be converted to a number, while all other values are floats which can be added to the running subtotal. The final new
balance is then displayed as the final line of the main() function.

Lines 38 – 39

These lines represent the general "start only if not imported" functionality.

Upon running our program, we get the following output:

% cardrun.py
$58.94 (new balance)

Taking a peek at the resulting log file (cardlog.txt), we see that it contains the following log entries after cardrun.py
processed the transactions found in carddata.txt:

% cat cardlog.txt
account log:
ignored: invalid literal for float(): # carddata.txt
ignored: invalid literal for float(): previous balance
data… processed
ignored: invalid literal for float(): debits
data… processed
data… processed
data… processed
ignored: invalid literal for float(): credits
data… processed
data… processed
ignored: invalid literal for float(): finance charge/
late fees
data… processed
data… processed

else Clause

We have seen the else statement with other Python constructs such as conditionals and loops. With respect to try-except
statements, its functionality is not that much different from anything else you have seen: The else clause executes if no
exceptions were detected in the preceding try suite.

All code within the try suite must have completed successfully (i.e., concluded with no exceptions raised) before any code in the
else suite begins execution. Here is a short example in Python pseudocode:

import 3rd_party_module

log = open('logfile.txt', 'w')

try:
 3rd_party_module.function()
except:
 log.write("*** caught exception in module\n")
else:
 log.write("*** no exceptions caught\n")

log.close()

In the above example, we import an external module and test it for errors. A log file is used to determine whether there were
defects in the third-party module code. Depending on whether an exception occurred during execution of the external function, we
write differing messages to the log.

try-except Kitchen Sink

We can combine all the varying syntaxes that we have seen so far in this chapter to highlight all the different ways you can use
try-except-else:

try:
 try_suite

except
 Exception1:
 suite_for_Exception1

except (Exception2, Exception3, Exception4):
 suite_for_Exceptions_2_3_and_4

except
 Exception5, Argument5:
 suite_for_Exception5_plus_argument

except (Exception6, Exception7), Argument67:
 suite_for_Exceptions6_and_7_plus_argument

except:
 suite_for_all_other_exceptions

else:
 no_exceptions_detected_suite

try-finally Statement

The try-finally statement differs from its try-except brethren in that it is not used to handle exceptions. Instead it is used
to maintain consistent behavior regardless of whether or not exceptions occur. The finally suite executes regardless of an
exception being triggered within the try suite.

try:
 try_suite
finally:
 finally_suite # executes regardless of
exceptions

When an exception does occur within the try suite, execution jumps immediately to the finally suite. When all the code in the
finally suite completes, the exception is re-raised for handling at the next higher layer. Thus it is common to see a try-
finally nested as part of a try-except suite.

One place where we can add a try-finally statement is by improving our code in cardrun.py so that we catch any
problems which may arise from reading the data from the carddata.txt file. In the current code in Example 10.1, we do not
detect errors during the read phase (using readlines()):

try:
 ccfile = open('carddata.txt')
except IOError:
 log.write('no txns this month\n')
 log.close()
 return

txns = ccfile.readlines()
ccfile.close()

It is possible for readlines() to fail for any number of reasons, one of which is if carddata.txt was a file on the network
(or a floppy) that became inaccessible. Regardless, we should improve this piece of code so that the entire input of data is enclosed
in the try clause:

try:
 ccfile = open('carddata.txt')
 txns = ccfile.readlines()
 ccfile.close()

except IOError:
 log.write('no txns this month\n')
 log.close()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/158#8.html

 return

All we did was to move the readlines() and close() method calls to the try suite. Although our code is more robust now,
there is still room for improvement. Notice what happens if there was an error of some sort. If the open succeeds but for some
reason the readlines() call does not, the exception will continue with the except clause. No attempt is made to close the
file. Wouldn't it be nice if we closed the file regardless of whether an error occurred or not? We can make it a reality using try-
finally:

try:
 ccfile = open('carddata.txt')
 try:
 txns = ccfile.readlines()
 finally:
 ccfile.close()
except IOError:
 log.write('no txns this month\n')
 log.close()
 return

Now our code is more robust than ever. Let us take a look at another familiar example, calling float() with an invalid value.
We will use print statements to show you the flow of execution within the try-except and try-finally clauses. We
present tryfin.py in Example 10.2.

Example l0.2. Testing the try-finally Statement (tryfin.py)

This small script simply illustrates the flow of control when using a try-finally statement embedded within the try clause
of a try-except statement.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 try: <$nopage>
004 4 print 'entering 1st try'
005 5 try: <$nopage>
006 6 print 'entering 2nd try'
007 7 float('abc')
008 8
009 9 finally: <$nopage>
010 10 print 'doing finally'
011 11
012 12 except ValueError:
013 13 print 'handling ValueError'
014 14
015 15 print 'finishing execution'
016 <$nopage>

Running this code, we get the following output:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/158#16.html

% tryfin.py
entering 1st try
entering 2nd try
doing finallyhandling ValueError
finishing execution

One final note: If the code in the finally suite raises another exception, or is aborted due to a return,break, or
continue statement, the original exception is lost and cannot be re-raised. Quick review: The try-finally statement
presents a way to detect errors but ignore other than cleanup, and passes the exception up to higher layers for possible handling.

NOTE

Currently, continue statements inside a try suite are not allowed due to the current implementation of the Python
bytecode generator (see FAQ 6.28). This restriction has been lifted in JPython, however.

The proper workaround is to use an if-else in place of a continue. A more interesting solution involves creating a
special exception handler to issue the continue (since continue statements are fine inside an except clause), as
illustrated by the following Python pseudocode:

create our own exception (see section 10.9)

class Continue(Exception):
 pass

begin our loop
some_loop: pseudocode for a loop

 # try clause inside some_loop
 try:
 if

skip_rest_of_loop_expr:
 raise Continue

 …code we do not want executed
 if skip_rest_of_loop_expr is true…

 except Continue: # continue proxy (as except clause)
 continue # start next some_loop iteration

 except
 SomeError: # handle
real exceptions
 :

We will look at the raise statement later on in this chapter, but, as you can probably tell, raise is the statement that lets
programmers explicitly raise exceptions in Python.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=158

Programming > Core Python Programming > 10. Errors And Exceptions > *Exceptions as
Strings

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175193246035228203128059

*Exceptions as Strings

Prior to Python 1.5, standard exceptions were implemented as strings. However, this became limiting in
that it did not allow for exceptions to have any relationships to each other. With the advent of exception
classes, this is no longer the case. As of 1.5, all standard exceptions are now classes. It is still possible
for programmers to generate their own exceptions as strings, but we recommend using exception
classes from now on.

For backwards compatibility, it is possible to revert to string-based exceptions. Starting the Python
interpreter with the command-line option -X will provide you with the standard exceptions as strings.
This feature will be obsoleted beginning with Python 1.6.

If you must use string exceptions, we will now show you how to do it right. The following piece of
code may or may not work:

this may not work… risky!
try:

 :
 raise 'myexception'
 :
except 'myexception'
 suite_to_handle_my_string_exception
except:
 suite_for_other_exceptions

The reason why the above code may not work is because exceptions are based on object identity as
opposed to object value (see Section 10.5.1). There are two different string objects above, both with the
same value. To rectify the potential problem, create a static string object with which to use:

this is a little bit better
myexception = 'myexception'
try:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=159
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A28%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=159&now=5%2F29%2F2002+9%3A28%3A45+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/160#1.html

 :
 raise myexception
 :
except myexception:
 suite_to_handle_my_string_exception
except:
 suite_for_other_exceptions

With this update, the same string object is used. However, if you are going to use this code, you might
as well use an exception class. Substitute the myexception assignment above with:

this is the best choice
class MyException(Exception):
 pass
 :
try:
 :

 raise MyException
 :

except MyException:
 suite_to_handle_my_string_exception
except:
 suite_for_other_exceptions

So you see, there really is no reason not to use exception classes from now on when creating your own
exceptions. Be careful, however, because you may end up using an external module which may still
have exceptions implemented as strings.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=159

Programming > Core Python Programming > 10. Errors And Exceptions > *Exceptions as
Classes

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175193246034064175168015

*Exceptions as Classes

As we mentioned above, as of Python 1.5, all standard exceptions are now identified using classes.
User-defined, class-based exceptions have been around for longer than that (since Python 1.2!), but
until 1.5, the standard exceptions remained implemented as strings, mostly for backwards
compatibility. However, there are a number of advantages that classes bring to the table, and these
reasons were what finally led to all standard exceptions being converted from strings to class-based.

Selection via Object Identity

The search for an exception handler (checking each except clause) is accomplished via object
identity and not object value. That means that if you are using string exceptions, the string object used
in the except clause must be the same as the string exception that is raised. Two different string
objects, even if they contain exactly the same string, constitute different exceptions!

Using classes simplifies this selection mechanism because exception classes are, for the most part,
static. When referring to an exception, you are really accessing a class object that is a built-in identifier
and stays constant throughout the course of execution. Whether using IndexError in an except
clause or in a raise statement, you can be sure that they are both referencing the same class object so
that a corresponding handler will be found.

Relationship Between Exceptions

Utilizing classes also allows for a hierarchical structure of exceptions. There are two consequences of
employing this construct:

Promotes Grouping of Related Exceptions

When errors were simply strings, there was no interrelationship between any pair of errors. Although
most errors are unrelated, some are very closely related, such as IndexError—offset into a sequence
with an invalid index, and KeyError—indexing into a map with an invalid key. String exceptions
allow these exceptions to be related in context or description only and do not recognize any more than
that codewise.

Class-based exceptions allow such a relationship. Both exceptions now are subclassed from a common

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=160
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A28%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=160&now=5%2F29%2F2002+9%3A28%3A57+PM

ancestor, the LookupError exception. If your application defined a new class with a lookup-related
error, it is now possible for you to create yet another related exception simply by also subclassing from
LookupError, or even IndexError or KeyError.

The complete set of Python exceptions and class hierarchy can be found in Table 10.2

Simplifies Detection

With class-based exceptions, handler code can detect an entire exception class "tree" (i.e., an ancestor
exception class as well as all derived subclasses). As an example, let us say that you just want to catch
any general arithmetic error in your program. Our code may be structured something like the following:

try:
 code_to_scan_for_math_errors
except FloatingPointError:
 print "math exception found"
except ZeroDivisionError:
 print "math exception found"
except OverflowError:
 print "math exception found"

Since the handlers for each exception are the same, we can shorten the code to:

try:
 code_to_scan_for_math_errors
except (FloatingPointError, ZeroDivisionError, OverflowError):
 print "math exception found"

However, this solution is not as all-encompassing as it could be, is a little messy perhaps with all three
exceptions listed, and does not take into account future expansion. What if the next version of Python
comes with a new arithmetic exception, or perhaps you create such a new exception for your
application? The code we have above would be out-of-date and inaccurate.

The solution is to reference a base class in your except clause. Because your new exceptions (as well
as FloatingPointError, ZeroDivisionError, and OverflowError) are all subclassed
from the ArithmeticError exception class, you can reference ArithmeticError which can
then scan for all ArithmeticError exceptions as well as all exceptions derived from

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/163#1.html

ArithmeticError. Updating our code one more time, we present the most flexible solution here:

try:
 code_to_scan_for_math_errors
except ArithmeticError:
 print "math exception found"

Now your code can handle all pre-existing ArithmeticError exceptions as well as any you may
create subclassed from ArithmeticError. Care must be taken, however, when handling both
classes and superclasses with the same try statement. Observe both of the following examples:

try:
 code_to_scan_for_math_errors
except ArithmeticError:
 print "math exception found"
except ZeroDivisionError:
 print "division by zero error"

try:
 code_to_scan_for_math_errors
except ZeroDivisionError:
 print "division by zero error"
except ArithmeticError:
 print "math exception found"

Exception handlers are mutually-exclusive, meaning that once a handler is found for an exception (or a
base class), it is handled immediately without searching further. In the first example, a
ZeroDivisionError will be handled only by the first except statement, producing an output of
"math exception found." The except clause for ZeroDivisionError will not be reached.

The second example may prove to be more useful, as a specific arithmetic error
(ZeroDivisionError) is handled first, leaving the general ArithmeticError handler to take
care of any other exception derived from ArithmeticError.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=160

Programming > Core Python Programming > 10. Errors And Exceptions > Raising
Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175192054106048080082113

Raising Exceptions

The interpreter was responsible for raising all of the exceptions which we have seen so far. These exist
as a result of encountering an error during execution. A programmer writing an API may also wish to
throw an exception on erroneous input, for example, so Python provides a mechanism for the
programmer to explicitly generate an exception: the raise statement.

raise Statement

The raise statement is quite flexible with the arguments which it supports, translating to a large
number of different formats supported syntactically. The general syntax for raise is:

raise [Exception [, args [, traceback]]]

The first argument, Exception, is the name of the exception to raise. If present, it must either be a
string, class, or instance (more below). Exception must be given if any of the other arguments
(arguments or traceback) are present. A list of all Python standard exceptions is given in Table 10.2.

The second expression contains optional args (a.k.a. parameters, values) for the exception. This value
is either a single object or a tuple of objects. When exceptions are detected, the exception arguments
are always returned as a tuple. If args is a tuple, then that tuple represents the same set of exception
arguments which are given to the handler. If args is a single object, then the tuple will consist solely
of this one object (i.e., a tuple with one element). In most cases, the single argument consists of a string
indicating the cause of the error. When a tuple is given, it usually equates to an error string, an error
number, and perhaps an error location, such as a file, etc.

The final argument, traceback, is also optional (and rarely used in practice), and, if present, is the
traceback object used for the exception—normally a traceback object is newly created when an
exception is raised. This third argument is useful if you want to re-raise an exception (perhaps to point
to the previous location from the current). Arguments which are absent are represented by the value
None.

The most common syntax used is when Exception is a class. No additional parameters are ever

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=161
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A29%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=161&now=5%2F29%2F2002+9%3A29%3A09+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/163#1.html

required, but in this case, if they are given, can be a single object argument, a tuple of arguments, or an
exception class instance. If the argument is an instance, then it can be an instance of the given class or a
derived class (subclassed from a pre-existing exception class). No additional arguments (i.e., exception
arguments) are permitted if the argument is an instance.

What happens if the argument is an instance? No problems arise if instance is an instance of the
given exception class. However, if instance is not an instance of the class nor an instance of a
subclass of the class, then a new instance of the exception class will be created with exception
arguments copied from the given instance. If instance is an instance of a subclass of the exception
class, then the new exception will be instantiated from the subclass, not the original exception class.

If the additional parameter to the raise statement used with an exception class is not an
instance—instead, it is a singleton or tuple—then the class is instantiated and args is used as the
argument list to the exception. If the second parameter is not present or None, then the argument list
is empty.

If Exception is an instance, then we do not need to instantiate anything. In this case, additional
parameters must not be given or must be None. The exception type is the class which instance
belongs to; in other words, this is equivalent to raising the class with this instance, i.e., raise
instance.__class__, instance.

Use of string exceptions is deprecated in favor of exception classes, but if Exception is a string, then
it raises the exception identified by string, with any optional parameters (args) as arguments.

Finally, the raise statement by itself without any parameters is a new construct, introduced in Python
1.5, and causes the last exception raised in the current code block to be re-raised. If no exception was
previously raised, a TypeError exception will occur, because there was no previous exception to re-
raise.

Due to the many different valid syntax formats for raise (i.e., Exception can be either a class,
instance, or a string), we provide Table 10.1 to illuminate all the different ways which raise can be
used.

Table 10.1. Using the raise Statement

raise syntax Description
raise exclass raise an exception, creating an instance of exclass (without any exception

arguments)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/161#2.html

raise exclass() same as above since classes are now exceptions; invoking the class name
with the function call operator instantiates an instance of exclass, also with
no arguments

raise exclass, args same as above, but also providing exception arguments args, which can be
a single argument or a tuple

raise exclass(args) same as above

raise exclass, args, tb same as above, but provides traceback object tb to use
raise exclass, instance raise exception using instance (normally an instance of exclass); if

instance is an instance of a subclass of exclass, then the new exception
will be of the subclass type (not of exclass type); if instance is not an
instance of exclass nor an instance of a subclass of exclass, then a new
instance of exclass will be created with exception arguments copied from
instance

raise instance raise exception using instance: the exception type is the class which
instantiated instance; equivalent to raise instance.__class__,
instance (same as above)

raise string (archaic) raises string exception
raise string, args same as above, but raises exception with args
raise string, args, tb same as above, but provides traceback object tb to use
raise (new in 1.5) re-raises previously raised exception; if no exception was

previously raised, a TypeError is raised

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=161

Programming > Core Python Programming > 10. Errors And Exceptions > Assertions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175192054107016109100135

Assertions

Assertions are diagnostic predicates which must evaluate to Boolean true; otherwise, an exception is raised to indicate
that the expression is false. These work similarly to the assert macros which are part of the C language preprocessor,
but in Python these are run-time constructs (as opposed to pre-compile directives).

If you are new to the concept of assertions, no problem. The easiest way to think of an assertion is to liken it to a
raise-if statement (or to be more accurate, a raise-if-not statement). An expression is tested, and if the
result comes up false, an exception is raised.

Assertions are carried out by the assert statement, the newest keyword to Python, introduced in version 1.5.

assert Statement

The assert statement evaluates a Python expression, taking no action if the assertion succeeds (similar to a pass
statement), but otherwise raises an AssertionError exception. The syntax for assert is:

assert
 expression[, arguments]

Here are some examples of the use of the assert statement:

assert 1 == 1
assert (2 + 2) == (2 * 2)
assert len(['my list', 12]) < 10
assert range(3) == [0, 1, 2]

AssertionError exceptions can be caught and handled like any other exception using the try-except
statement, but if not handled, they will terminate the program and produce a traceback similar to the following:

>>> assert 1 == 0
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AssertionError

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=162
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A29%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=162&now=5%2F29%2F2002+9%3A29%3A19+PM

Like the raise statement we investigated in the previous section, we can provide an exception argument to our
assert command:

>>> assert 1 == 0, 'One does not equal zero silly!'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AssertionError: One does not equal zero silly!

Here is how we would use a try-except statement to catch an AssertionError exception:

try:
 assert 1 == 0, 'One does not equal zero silly!'
except AssertionError, args:
 print '%s: %s' % (args.__class__.__name__, args)

Executing the above code from the command-line would result in the following output:

AssertionError: One does not equal zero silly!

To give you a better idea of how assert works, imagine how the assert statement may be implemented in
Python if written as a function. It would probably look something like this:

def assert(expr, args=None):
 if __debug__ and not expr:
 raise AssertionError, args

The first if statement confirms the appropriate syntax for the assert, meaning that expr should be an expression. We
compare the type of expr to a real expression to verify. The second part of the function evaluates the expression and
raises AssertionError, if necessary. The built-in variable __debug__ is 1 under normal circumstances, 0
when optimization is requested (command line option -O).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=162

Programming > Core Python Programming > 10. Errors And Exceptions > Standard
Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175192054104165152183238

Standard Exceptions

Table 10.2 lists all of Python's current set of standard exceptions. All exceptions are loaded into the
interpreter as a built-in so they are ready before your script starts or by the time you receive the
interpreter prompt, if running interactively.

All standard/built-in exceptions are derived from the root class Exception. There are currently two
immediate subclasses of Exception: SystemExit and StandardError. All other built-in
exceptions are subclasses of StandardError. Every level of indentation of an exception listed in
Table 10.2 indicates one level of exception class derivation.

Table 10.2. Python Standard Exceptions

Exception Name Description
Exception[a] root class for all exceptions
SystemExit request termination of Python interpreter
StandardError[a] base class for all standard built-in exceptions

ArithmeticError[a] base class for all numeric calculation errors

FloatingPointError[a] error in floating point calculation
OverflowError calculation exceeded maximum limit for numerical type
ZeroDivisionError division (or modulus) by zero error (all numeric types)
AssertionError[a] failure of assert statement
AttributeError no such object attribute
EOFError end-of-file marker reached without input from built-in
EnvironmentError[b] base class for operating system environment errors
IOError failure of input/output operation
OSError[b] operating system error

WindowsError[c] MS Windows system call failure
ImportError failure to import module or object
KeyboardInterrupt user interrupted execution (usually by typing ^C)
LookupError[a] base class for invalid data lookup errors

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=163
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A29%3A27+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=163&now=5%2F29%2F2002+9%3A29%3A27+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/163#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/163#1.html

IndexError no such index in sequence
KeyError no such key in mapping
MemoryError out-of-memory error (non-fatal to Python interpreter)
NameError undeclared/uninitialized object (non-attribute)
UnboundLocalError[c] access of an uninitialized local variable
RuntimeError generic default error during execution
NotImplementedError[b] unimplemented method
SyntaxError error in Python syntax
IndentationError[d] improper indentation

TableError[d] improper mixture of TABs and spaces
SystemError generic interpreter system error
TypeError invalid operation for type
ValueError invalid argument given
UnicodeError[c] Unicode related error

[a] Prior to Python 1.5, the exceptions denoted did not exist. All earlier exceptions were string-based.

[b] New as of Python 1.5.2

[c] New as of Python 1.6

[d] New as of Python 2.0

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=163

Programming > Core Python Programming > 10. Errors And Exceptions > *Creating
Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175192054105059111212080

*Creating Exceptions

Although the set of standard exceptions is fairly wide-ranging, it may be advantageous to create your
own exceptions. One situation is where you would like additional information from what a standard or
module-specific exception provides. We will present two examples, both related to IOError.

IOError is a generic exception used for input/output problems which may arise from invalid file
access or other forms of communication. Suppose we wanted to be more specific in terms of
identifying the source of the problem. For example, for file errors, we want to have a FileError
exception which behaves like IOError, but with a name that has more meaning when performing
file operations.

Another exception we will look at is related to network programming with sockets. The exception
generated by the socket module is called socket.error and is not a built-in exception. It is
subclassed from the generic Exception exception. However, the exception arguments from
socket.error closely resemble those of IOError exceptions, so we are going to define a new
exception called NetworkError which subclasses from IOError but contains at least the
information provided by socket.error.

Like classes and object-oriented programming, we have not formally covered network programming at
this stage, but skip ahead to Chapter 16 if you need to.

We now present a module called myexc.py with our newly-customized exceptions FileError and
NetworkError. The code is in Example 10.3

Example 10.3. Creating Exceptions (myexc.py)

This module defines two new exceptions, FileError and NetworkError, as well as
reimplements more diagnostic versions of open() [myopen()]and socket.connect()
[myconnect()]. Also included is a test function [test()] that is run if this module is executed
directly.

 <$nopage>
001 1 #!/usr/bin/env python

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=164
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A29%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=164&now=5%2F29%2F2002+9%3A29%3A35+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/164#1.html

002 2
003 3 import os, socket, errno, types, tempfile
004 4
005 5 class NetworkError(IOError):
006 6 pass <$nopage>
007 7
008 8 class FileError(IOError):
009 9 pass <$nopage>
010 10
011 11 def updArgs(args, newarg=None):
012 12
013 13 if type(args) == types.InstanceType:
014 14 myargs = []
015 15 for eachArg in args:
016 16 myargs.append(eachArg)
017 17 else: <$nopage>
018 18 myargs = list(args)
019 19
020 20 if newarg:
021 21 myargs.append(newarg)
022 22
023 23 return tuple(myargs)
024 24
025 25 def fileArgs(file, mode, args):
026 26
027 27 if args[0] == errno.EACCES and \
028 28 'access' in dir(os):
029 29 perms = ''
030 30 permd = { 'r': os.R_OK, 'w': os.W_OK,
031 31 'x': os.X_OK}
032 32 pkeys = permd.keys()
033 33 pkeys.sort()
034 34 pkeys.reverse()
035 35
036 36 for eachPerm in 'rwx':
037 37 if os.access(file, permd[eachPerm]):
038 38 perms = perms + eachPerm
039 39 else: <$nopage>
040 40 perms = perms + '-'
041 41
042 42 if type(args) == types.InstanceType:
043 43 myargs = []
044 44 for eachArg in args:

045 45 myargs.append(eachArg)
046 46 else: <$nopage>
047 47 myargs = list(args)
048 48
049 49 myargs[1] = "'%s' %s (perms: '%s')" % \
050 50 (mode, myargs[1], perms)
051 51
052 52 myargs.append(args.filename)
053 53
054 54 else: <$nopage>
055 55 myargs = args
056 56
057 57 return tuple(myargs)
058 58
059 59 def myconnect(sock, host, port):
060 60
061 61 try: <$nopage>
062 62 sock.connect((host, port))
063 63
064 64 except socket.error, args:
065 65 myargs = updArgs(args)# conv inst2tuple
066 66 if len(myargs) == 1:# no #s on some errs
067 67 myargs = (errno.ENXIO, myargs[0])
068 68
069 69 raise NetworkError, \
070 70 updArgs(myargs, host + ':' + str(port))
071 71
072 72 def myopen(file, mode='r'):
073 73
074 74 try: <$nopage>
075 75 fo = open(file, mode)
076 76
077 77 except IOError, args:
078 78 raise FileError, fileArgs(file, mode, args)
079 79
080 80 return fo
081 81
082 82 def testfile():
083 83
084 84 file = mktemp()
085 85 f = open(file, 'w')
086 86 f.close()
087 87
088 88 for eachTest in ((0, 'r'), (0100, 'r'), \

089 89 0400, 'w'), (0500, 'w')):
090 90 try: <$nopage>
091 91 os.chmod(file, eachTest[0])
092 92 f = myopen(file, eachTest[1])
093 93
094 94 except FileError, args:
095 95 print "%s: %s" % \
096 96 (args.__class__.__name__, args)
097 97 else: <$nopage>
098 98 print file, "opened ok… perm ignored"
099 99 f.close()
100 100
101 101 os.chmod(file, 0777)# enable all perms
102 102 os.unlink(file)
103 103
104 104 def testnet():
105 105 s = socket.socket(socket.AF_INET, \
106 106 socket.SOCK_STREAM)
107 107
108 108 for eachHost in ('deli', 'www'):
109 109 try: <$nopage>
110 110 myconnect(s, 'deli', 8080)
111 111 except NetworkError, args:
112 112 print "%s: %s" % \
113 113 (args.__class__.__name__, args)
114 114
115 115 if __name__ == '__main__':
116 116 testfile()
117 117 testnet()
118 <$nopage>

Lines 1 – 3

The Unix start-up script and importation of the socket, os, errno, types, and tempfile
modules help us start this module.

Lines 5 – 9

Believe it or not, these five lines make up our new exceptions. Not just one, but both of them. Unless
new functionality is going to be introduced, creating a new exception is just a matter of subclassing
from an already-existing exception. In our case, that would be IOError. EnvironmentError,
from which IOError is derived would also work, but we wanted to convey that our exceptions were
definitely I/O-related.

We chose IOError because it provides two arguments, an error number and an error string. File-
related [uses open()] IOError exceptions even support a third argument which is not part of the
main set of exception arguments, and that would be the file name. Special handling is done for this
third argument which lives outside the main tuple pair and has the name filename.

Lines 11 – 23

The entire purpose of the updArgs() function is to "update" the exception arguments. What we mean
here is that the original exception is going to provide us a set of arguments. We want to take these
arguments and make them part of our new exception, perhaps embellishing or adding a third argument
(which is not added if nothing is given— None is a default argument which we will study in the next
chapter). Our goal is to provide the more informative details to the user so that if and when errors
occur, the problems can be tracked down as quickly as possible.

Lines 25 – 57

The fileArgs() function is used only by myopen() [see below]. In particular, we are seeking error
EACCES, which represents "permission denied." We pass all other IOError exceptions along
without modification (lines 54–55). If you are curious about ENXIO, EACCES, and other system
error numbers, you can hunt them down by starting at file /usr/include/sys/errno.h on a
Unix system, or C:\Msdev\include\Errno.h if you are using Visual C++ on Windows.

In line 27, we are also checking to make sure that the machine we are using supports the
os.access() function, which helps you check what kind of file permissions you have for any
particular file. We do not proceed unless we receive both a permission error as well as the ability to
check what kind of permissions we have. If all checks out, we set up a dictionary to help us build a
string indicating the permissions we have on our file.

The Unix file system uses explicit file permissions for the user, group (more than one user can belong
to a "group"), and other (any user other than the owner or someone in the same group as the owner) in
read, write, and execute ('r', 'w', 'x') order. Windows supports some of these permissions.

Now it is time to build the permission string. If the file has a permission, its corresponding letter shows
up in the string, otherwise a dash (-) appears. For example, a string of "rw-" means that you have
read and write access to it. If the string reads "r-x", you have only read and execute access; "---"
means no permission at all.

After the permission string has been constructed, we create a temporary argument list. We then alter the
error string to contain the permission string, something which standard IOError exception does not
provide. "Permission denied" sometimes seems silly if the system does not tell you what permissions

you have to correct the problem. The reason, of course, is security. When intruders do not have
permission to access something, the last thing you want them to see is what the file permissions are,
hence the dilemma. However, our example here is merely an exercise, so we allow for the temporary
"breach of security." The point is to verify whether or not the os.chmod() functions call affected file
permissions the way they are supposed to.

The final thing we do is to add the file name to our argument list and return the set of arguments as a
tuple.

Lines 59 – 70

Our new myconnect() function simply wraps the standard socket method connect() to provide
an IOError-type exception if the network connection fails. Unlike the general socket.error
exception, we also provide the host name and port number as an added value to the programmer.

For those new to network programming, a host name and port number pair are analogous to an area
code and telephone number when you are trying to contact someone. In this case, we are trying to
contact a program running on the remote host, presumably a server of some sort; therefore, we require
the host's name and the port number that the server is listening on.

When a failure occurs, the error number and error string are quite helpful, but it would be even more
helpful to have the exact host-port combination as well, since this pair may be dynamically-generated
or retrieved from some database or name service. That is the value-add we are bestowing to our version
of connect(). Another issue arises when a host cannot be found. There is no direct error number
given to us by the socket.error exception, so to make it conform to the IOError protocol of
providing an error number-error string pair, we find the closest error number that matches. We choose
ENXIO.

Lines 72 – 80

Like its sibling myconnect(), myopen() also wraps around an existing piece of code. Here, we
have the open() function. Our handler catches only IOError exceptions. All others will pass
through and on up to the next level (when no handler is found for them). Once an IOError is caught,
we raise our own error and customized arguments as returned from fileArgs().

Lines 82 – 102

We shall perform the file testing first, here using the testfile() function. In order to begin, we
need to create a test file that we can manipulate by changing its permissions to generate permission
errors. The tempfile module contains code to create temporary file names or temporary files
themselves. We just need the name for now and use our new myopen() function to create an empty

file. Note that if an error occurred here, there would be no handler, and our program would terminate
fatally—the test program should not continue if we cannot even create a test file.

Our test uses four different permission configurations. A zero means no permissions at all, 0100 means
execute-only, 0400 indicates read-only, and 0500 means read- and execute-only (0400 + 0100). In all
cases, we will attempt to open a file with an invalid mode. The os.chmod() function is responsible
for updating a file's permission modes. (NOTE: these permissions all have a leading zero in front,
indicating that they are octal [base 8] numbers.)

If an error occurs, we want to display diagnostic information similar to the way the Python interpreter
performs the same task when uncaught exceptions occur, and that is giving the exception name
followed by its arguments. The __class__ special variable provides the class object for which an
instance was created from. Rather than displaying the entire class name here (myexc.FileError),
we use the class object's __name__ variable to just display the class name (FileError), which is
also what you see from the interpreter in an unhandled error situation. Then the arguments which we
arduously put together in our wrapper functions follow.

If the file opened successfully, that means the permissions were ignored for some reason. We indicate
this with a diagnostic message and close the file. Once all tests have been completed, we enable all
permissions for the file and remove it with the os.unlink() function. os.remove() is equivalent
to os.unlink().)

Lines 104 – 113

The next section of code (testnet()) tests our NetworkError exception. A socket is a
communication endpoint with which to establish contact with another host. We create such an object,
then use it in an attempt to connect to a host with no server to accept our connect request and a host not
on our network.

Lines 115 – 117

We want to execute our test*() functions only when invoking this script directly, and that is what
the code here does. Most of the scripts given in this text utilize the same format.

Running this on a Unix machine, we get the following output:

% myexc.py
FileError: [Errno 13] 'r' Permission denied (perms: '---'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'r' Permission denied (perms: '--x'):
 '/usr/tmp/@18908.1'

FileError: [Errno 13] 'w' Permission denied (perms: 'r--'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r-x'):
 '/usr/tmp/@18908.1'
NetworkError: [Errno 146] Connection refused: 'deli:8080'
NetworkError: [Errno 6] host not found: 'www:8080'

The results are slightly different on a Windows machine:

D:\python>python myexc.py
C:\WINDOWS\TEMP\~-195619-1 opened ok… perms ignored
C:\WINDOWS\TEMP\~-195619-1 opened ok… perms ignored
FileError: [Errno 13] 'w' Permission denied (perms: 'r–x'):
 'C:\\WINDOWS\\TEMP\\~-195619-1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r–x'):
 'C:\\WINDOWS\\TEMP\\~-195619-1'
NetworkError: [Errno 10061] winsock error: 'deli:8080'
NetworkError: [Errno 6] host not found: 'www:8080'

You will notice that Windows does not support read permissions on files, which is the reason why the
first two file open attempts succeeded. Your mileage may vary (YMMV) on your own machine and
operating system.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=164

Programming > Core Python Programming > 10. Errors And Exceptions > Why Exceptions
(Now)?

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175192054110034250200140

Why Exceptions (Now)?

There is no doubt that errors will be around as long as software is around. The difference in today's fast-
paced computing world is that our execution environments have changed, and so has our need to adapt
error-handling to accurately reflect the operating context of the software which we develop. Modern-
day applications generally run as self-contained graphical user interfaces (GUIs) or in a client-server
architecture such as the Web.

The ability to handle errors at the application level has become even more important recently in that
users are no longer the only ones directly running applications. As the Internet and online electronic
commerce become more pervasive, web servers will be the primary users of application software. This
means that applications cannot just fail or crash outright anymore, because if they do, system errors
translate to browser errors, and these in turn lead to frustrated users. Losing eyeballs means losing
advertising revenue and potentially significant amounts of irrecoverable business.

If errors do occur, they are generally attributed to some invalid user input. The execution environment
must be robust enough to handle the application-level error and be able to produce a user-level error
message. This must translate to a "non-error" as far as the web server is concerned because the
application must complete successfully, even if all it does is return an error message to present to the
user as a valid hypertext markup language (HTML) web page displaying the error.

If you are not familiar with what I am talking about, does a plain web browser screen with the big black
words saying, "Internal Server Error" sound familiar? How about a fatal error that brings up a pop-up
that declares "Document contains no data"? As a user, do either of these phrases mean anything to you?
No, of course not (unless you are an Internet software engineer), and to the average user, they are an
endless source of confusion and frustration. These errors are a result of a failure in the execution of an
application. The application either returns invalid hypertext transfer protocol (HTTP) data or terminates
fatally, resulting in the web server throwing its hands up into the air, saying, "I give up!"

This type of faulty execution should not be allowed, if at all possible. As systems become more
complex and involve more apprentice users, additional care should be taken to ensure a smooth user
application experience. Even in the face of an error situation, an application should terminate
successfully, as to not affect its execution environment in a catastrophic way. Python's exception
handling promotes mature and correct programming.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=165
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A29%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=165&now=5%2F29%2F2002+9%3A29%3A46+PM

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=165

Programming > Core Python Programming > 10. Errors And Exceptions > Why Exceptions
at All?

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204175192054111011101107056

Why Exceptions at All?

If the above section was not motivation enough, imagine what Python programming might be like
without program-level exception handling. The first thing that comes to mind is the loss of control
client programmers have over their code. For example, if you created an interactive application which
allocates and utilizes a large number of resources, if a user hit ^C or other keyboard interrupt, the
application would not have the opportunity to perform clean-up, resulting in perhaps loss of data, or
data corruption. There is also no mechanism to take alternative action such as prompting the users to
confirm whether they really want to quit or if they hit the control key accidentally.

Another drawback would be that functions would have to be rewritten to return a "special" value in the
face of an error situation, for example, None. The engineer would be responsible for checking each
and every return value from a function call. This may be cumbersome because you may have to check
return values which may not be of the same type as the object you are expecting if no errors occurred.
And what if your function wants to return None as a valid data value? Then you would have to come up
with another return value, perhaps a negative number. We probably do not need to remind you that
negative numbers may be valid in a Python context, such as an index into a sequence. As a programmer
of application programmer interfaces (APIs), you would then have to document every single return
error your users may encounter based on the input received. Also, it is difficult (and tedious) to
propagate errors (and reasons) of multiple layers of code.

There is no simple propagation like the way exceptions do it. Because error data needs to be
transmitted upwards in the call hierarchy, it is possible to misinterpret the errors along the way. A
totally unrelated error may be stated as the cause when in fact it had nothing to do with the original
problem to begin with. We lose the bottling-up and safekeeping of the original error that exceptions
provide as they are passed from layer to layer, not to mention completely losing track of the data we
were originally concerned about! Exceptions simplify not only the code, but the entire error
management scheme which should not play such a significant role in application development. And
with Python's exception handling capabilities, it does not have to.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=166
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A29%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=166&now=5%2F29%2F2002+9%3A29%3A58+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=166

Programming > Core Python Programming > 10. Errors And Exceptions > Exceptions and the sys Module See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174054034005193195016053

Exceptions and the sys Module

An alternative way of obtaining exception information is by accessing the exc_info() function in the sys module. This
function provides a 3-tuple of information, more than what we can achieve by simply using only the exception argument. Let
us see what we get using sys.exc_info():

>>> try:
… float('abc123')
… except:
… import sys
… exc_tuple = sys.exc_info()
…
>>> print exc_tuple
(<class exceptions.ValueError at f9838>, <exceptions.ValueError instance at 122fa8>,
<traceback object at 10de18>)
>>>
>>> for eachItem in exc_tuple:
… print eachItem
…
exceptions.ValueError
invalid literal for float(): abc123
<traceback object at 10de18>

What we get from sys.exc_info() in a tuple are:

● exception class object

● (this) exception class instance object

● traceback object

The first two items we are familiar with: the actual exception class and this particular exception's instance (which is the same
as the exception argument which we discussed in the previous section). The third item, a traceback object, is new. This object
provides the execution context of where the exception occurred. It contains information such as the execution frame of the
code that was running and the line number where the exception occurred.

In older versions of Python, these three values were available in the sys module as sys.exc_type,
sys.exc_value, and sys.exc_traceback. Unfortunately, these three are global variables and not thread-safe. We
recommend using sys.exc_info() instead.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=167
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A30%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=167&now=5%2F29%2F2002+9%3A30%3A08+PM

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=167

Programming > Core Python Programming > 10. Errors And Exceptions > Related
Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174054034004076184000157

Related Modules

The classes found in module Lib/exceptions.py are automatically loaded as built-in names on
start-up, so no explicit import of this module is ever necessary. We recommend you take a look at this
source code to familiarize yourself with Python's exceptions and how they interrelate and interoperate.
Starting with 2.0, exceptions are now built into the interpreter (see Python/exceptions.c).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=168
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A30%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=168&now=5%2F29%2F2002+9%3A30%3A19+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=168

Programming > Core Python Programming > 10. Errors And Exceptions > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174054034006118048133039

Exercises

1: Raising Exceptions. Which of the following can RAISE exceptions during program
execution? Note that this question does not ask what may CAUSE exceptions.

a) the user

b) the interpreter

c) the program

d) all of the above

e) only (b) and (c)

f) only (a) and (c)

2: Raising Exceptions. Referring to the list in the problem above, which could raise exceptions
while running within the interactive interpreter?

3: Keywords. Name the keyword(s) which is(are) used to raise exceptions.

4: Keywords. What is the difference between try-except and try-finally?

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=169
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A30%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=169&now=5%2F29%2F2002+9%3A30%3A31+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#27.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#27.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#28.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#28.html

5: Exceptions. Name the exception that would result from executing the following pieces of
Python code from within the interactive interpreter (refer back to Table 10.2 for a list of all
built-in exceptions):

a)

>>> if 3 < 4 then: print '3 IS less than 4!'

b)

>>> aList = ['Hello', 'World!', 'Anyone', 'Home?']
>>> print 'the last string in aList is:', aList[len(aList)]

c)

>>> x

d)

>>> x = 4 % 0

e)

>>> import math
>>> i = math.sqrt(-1)

6: Improving open(). Create a wrapper for the open() function. When a program opens a
file successfully, a file handle will be returned. If the file open fails, rather than generating
an error, return None to the callers so that they can open files without an exception handler.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/163#1.html

7: Exceptions. What is the difference between Python pseudocode snippets (a) and (b)? Answer
in the context of statements A and B, which are part of both pieces of code. (Thanks to
Guido for this teaser!)

a)

try:
 statement_A
except …:
 …
else:
 statement_B

b)

try:
 statement_A
 statement_B
except …:
 …

8: Improving raw_input(). In the beginning of this chapter, we presented a "safe" version
of the float() built-in function to detect and handle two different types of exceptions
which float() generates. Likewise, the raw_input() function can generate two
different exceptions, either EOFError or KeyboardInterrupt on end-of-file (EOF) or
cancelled input, respectively. Create a wrapper function, perhaps safe_input(); rather
than raising an exception if the user entered EOF (^D in Unix or ^Z in DOS) or attempted to
break out using ^C, have your function return None that the calling function can check for.

9: Improving math.sqrt(). The math module contains many functions and some
constants for performing various mathematics-related operations. Unfortunately, this module
does not recognize or operate on complex numbers, which is the reason why the cmath
module was developed. Rather than suffering the overhead of importing an entire module for
complex numbers which you do not plan on using in your application, you want to just use
the standard arithmetic operators which work fine with complex numbers, but really want
just a square root function that can provide a complex number result when given a negative
argument. Create a function, perhaps safe_sqrt(), which wraps math.sqrt(), but
is smart enough to handle a negative parameter and return a complex number with the
correct value back to the caller.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=169

Programming > Core Python Programming > 11. Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174054034001157032085143

Chapter 11. Functions
Chapter Topics

● What are Functions?

● Calling Functions

● Creating Functions

● Passing Functions

● Formal Arguments

● Variable-length Arguments

● Functional Programming

● Variable Scope

● Recursion

We were introduced to functions in Chapter 2 and have seen them created and called throughout the
text. In this chapter, we will look beyond the basics and give you a full treatment of all the other
features associated with functions. In addition to the expected behavior, functions in Python support a
variety of invocation styles and argument types, including some functional programming interfaces.
We conclude this chapter with a look at Python's scoping as well as take an optional side trip into the
world of recursion.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=171
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A30%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=171&now=5%2F29%2F2002+9%3A30%3A43+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=171

Programming > Core Python Programming > 11. Functions > What Are Functions? See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174054034000073184164173

What Are Functions?

Functions are the structured or procedural programming way of organizing the logic in your programs.
Large blocks of code can be neatly segregated into manageable chunks, and space is saved by putting
oft-repeated code in functions as opposed to multiple copies everywhere—this also helps with
consistency because changing the single copy means you do not have to hunt for and make changes to
multiple copies of duplicated code. The basics of functions in Python are not much different from those
of other languages with which you may be familiar. After a bit of review here in the early part of this
chapter, we will focus on what else Python brings to the table.

Functions can appear in different ways… here is a sampling profile of how you will see functions
created, used, or otherwise referenced:

declaration/definition def foo(): print 'bar'
function object/reference foo

function call/invocation foo()

Functions vs. Procedures

Functions are often compared to procedures. Both are entities which can be invoked, but the traditional
function or "black box," perhaps taking some or no input parameters, performs some amount of
processing and concludes by sending back a return value to the caller. Some functions are Boolean in
nature, returning a "yes" or "no" answer, or, more appropriately, a non-zero or zero value, respectively.
Procedures, often compared to functions, are simply special cases, functions which do not return a
value. As you will see below, Python procedures are implied functions because the interpreter
implicitly returns a default value of None.

Return Values and Function Types

Functions may return a value back to its caller and those which are more procedural in nature do not
explicitly return anything at all. Languages which treat procedures as functions usually have a special
type or value name for functions that "return nothing." These functions default to a return type of
"void" in C, meaning no value returned. In Python, the equivalent return object type is None.

The hello() function acts as a procedure in the code below, returning no value. If the return value is
saved, you will see that its value is None:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=172
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A30%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=172&now=5%2F29%2F2002+9%3A30%3A55+PM

>>> def hello():
… print 'hello world'
>>>
>>> res = hello()
hello world
>>> res
>>> print res
None
>>> type(res)
<type 'None'>

Also, like most other languages, you may return only one value/object from a function in Python. One
difference is that in returning a container type, it will seem as if you can actually return more than a
single object. In other words, you can't leave the grocery store with multiple items, but you can throw
them all in a single shopping bag which you walk out of the store with, perfectly legal.

def foo():
 return ['xyz', 1000000, -98.6]

def bar():
 return 'abc', [42, 'python', "Guido"

The foo() function returns a list, and the bar() function returns a tuple. Because of the tuple's
syntax of not requiring the enclosing parentheses, it creates the perfect illusion of returning multiple
items. If we were to properly enclose the tuple items, the definition of bar() would look like:

def bar():
 return ('abc', [4-2j, 'python'], "Guido")

As far as return values are concerned, tuples can be saved in a number of ways. The following three
ways of saving the return values are equivalent:

>>> aTuple = bar()
>>> x, y, z = bar()

>>> (a, b, c) = bar()
>>>
>>> aTuple
('abc', [(4-2j), 'python'], 'Guido')
>>> x, y, z
('abc', [(4-2j), 'python'], 'Guido')
>>> (a, b, c)
('abc', [(4-2j), 'python'], 'Guido')

In the assignments for x, y, z, and a, b, c, each variable will receive its corresponding return
value in the order the values are returned. The aTuple assignment takes the entire implied tuple
returned from the function. Recall that a tuple can be "unpacked" into individual variables or not at all
and its reference assigned directly to a single variable. (Refer back to Section 6.17.3 for a review.)

Many languages which support functions maintain the notion that a function's type is the type of its
return value. In Python, no direct type correlation can be made since Python is dynamically-typed and
functions can return values of different types. Because overloading is not a feature, the programmer can
use the type() built-in function as a proxy for multiple declarations with different signatures
(multiple prototypes of the same overloaded function which differ based on its arguments).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/117#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=172

Programming > Core Python Programming > 11. Functions > Calling Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174055131034058209235140

Calling Functions

Function Operator

Functions are called using the same pair of parentheses that you are used to. In fact, some consider ((
)) to be a two-character operator, the function operator. As you are probably aware, any input
parameters or arguments must be placed between these calling parentheses. Parentheses are also used
as part of function declarations to define those arguments. Although we have yet to formally study
classes and object-oriented programming, you will discover that the function operator is also used in
Python for class instantiation.

Keyword Arguments

The concept of keyword arguments applies only to function invocation. The idea here is for the caller
to identify the arguments by parameter name in a function call. This specification allows for arguments
to be missing or out-of-order because the interpreter is able to use the provided keywords to match
values to parameters.

For a simple example, imagine a function foo() which has the following pseudocode definition:

def foo(x):
 foo_suite # presumably does so processing with 'x'

Standard calls to foo(): foo(42) foo('bar') foo(y)

Keyword calls to foo(): foo(x=42) foo(x='bar') foo(x=y)

For a more realistic example, let us assume you have a function called net_conn() and you know
that it takes two parameters, say, host and port:

def net_conn(host, port):
 net_conn_suite

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=173
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A31%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=173&now=5%2F29%2F2002+9%3A31%3A05+PM

Naturally, we can call the function giving the proper arguments in the correct positional order which
they were declared:

net_conn('kappa', 8080)

The host parameter gets the string 'kappa' and port gets 8080. Keyword arguments allow out-of-
order parameters, but you must provide the name of the parameter as a "keyword" to have your
arguments match up to their corresponding argument names, as in the following:

net_conn(port=8080, host='chino')

Keyword arguments may also be used when arguments are allowed to be "missing." These are related
to functions which have default arguments, which we will introduce in the next section.

Default Arguments

Default arguments are those which are declared with default values. Parameters which are not passed
on a function call are thus allowed and are assigned the default value. We will cover default arguments
more formally in Section 11.5.2

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=173

Programming > Core Python Programming > 11. Functions > Creating Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174055131035069209107001

Creating Functions

def Statement

Functions are created using the def statement, with a syntax like the following:

def
 function_name(arguments):
 "function_documentation_string"
 function_body_suite

The header line consists of the def keyword, the function name, and a set of arguments (if any). The remainder of the
def clause consists of an optional but highly-recommended documentation string and the required function body suite.
We have seen many function declarations throughout this text, and here is another:

def helloSomeone(who):
 'returns a salutory string customized with the input'
 return "Hello" + str(who)

Declaration vs. Definition

Some programming languages differentiate between function declarations and function definitions. A function
declaration consists of providing the parser with the function name, and the names (and traditionally the types) of its
arguments, without necessarily giving any lines of code for the function, which is usually referred to as the function
definition.

In languages where there is a distinction, it is usually because the function definition may belong in a physically different
location in the code from the function declaration. Python does not make a distinction between the two, as a function
clause is made up of a declarative header line which is immediately followed by its defining suite.

Forward References

Like some other high-level languages, Python does not permit you to reference or call a function before it has been
declared. We can try a few examples to illustrate this:

def foo():
 print 'in foo()'
 bar()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=174
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A31%3A14+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=174&now=5%2F29%2F2002+9%3A31%3A14+PM

If we were to call foo() here, it will fail because bar() has not been declared yet:

>>> foo()
in foo()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in foo
NameError: bar

We will now define bar(), placing its declaration before foo()'s declaration:

def bar():
 print 'in bar()'

def foo():
 print 'in foo()'
 bar()

Now we can safely call foo() with no problems:

>>> foo()
in foo()
in bar()

In fact, we can even declare foo() before bar():

def foo():
 print 'in foo()'
 bar()

def bar():
 print 'in bar()'

Amazingly enough, this code still works fine with no forward referencing problems:

>>> foo()
in foo()

in bar()

This piece of code is fine because even though a call to bar() (from foo()) appears before bar()'s definition,
foo() itself is not called before bar() is declared. In other words, we declared foo(), then bar(), and then called
foo(), but by that time, bar() existed already, so the call succeeds.

Notice that the output of foo() succeeded before the error came about. NameError is the exception that is always
raised when any uninitialized identifiers are accessed.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=174

Programming > Core Python Programming > 11. Functions > Passing Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174055131032148041004252

Passing Functions

The concept of function pointers is an advanced topic when learning a language such as C, but not
Python where functions are like any other object. They can be referenced (accessed or aliased to other
variables), passed as arguments to functions, be elements of container objects like lists and dictionaries,
etc. The one unique characteristic of functions which may set them apart from other objects is that they
are callable, i.e., can be invoked via the function operator. (There are other callables in Python. For
more information see Chapter 14)

In the description above, we noted that functions can be aliases to other variables. Because all objects
are passed by reference, functions are no different. When assigning to another variable, you are
assigning the reference to the same object; and if that object is a function, then all aliases to that same
object are invokable:

>>> def foo():
… print 'in foo()'
…
>>> bar = foo
>>> bar()
in foo()

When we assigned foo to bar, we are assigning the same function object to bar, thus we can
invoke bar() in the same way we call foo(). Be sure you understand the difference between "foo"
(reference of the function object) and "foo()" (invocation of the function object)

Taking our reference example a bit further, we can even pass functions in as arguments to other
functions for invocation:

>>> def bar(argfunc):
… argfunc()
…
>>> bar(foo)
in foo()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=175
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A31%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=175&now=5%2F29%2F2002+9%3A31%3A23+PM

Note that it is the function object foo that is being passed to bar().bar() is the function that
actually calls foo() (which has been aliased to the local variable argfunc in the same way that we
assigned foo to bar in the previous example). Now let us examine a more realistic example,
numconv.py, whose code is given in Example 11.1.

Example 11.1. Passing and Calling (Built-in) Functions (numconv.py)

A more realistic example of passing functions as arguments and invoking them from within the
function. This script simply converts a sequence of numbers to the same type using the conversion
function that is passed in. In particular, the test() function passes in a built-in function int(),
long(), or float() to perform the conversion.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def convert(func, seq):
004 4 'conv. sequence of numbers to same type'
005 5 newSeq = []
006 6 for eachNum in seq:
007 7 newSeq.append(func(eachNum))
008 8 return newSeq
009 9
010 10 def test():
011 11 'test function for numconv.py'
012 12 myseq = (123, 45.67, -6.2e8, 999999999L)
013 13 print convert(int, myseq)
014 14 print convert(long, myseq)
015 15 print convert(float, myseq)
016 16
017 17 if __name__ == '__main__':
018 18 test()
019 <$nopage>

If we were to run this program, we would get the following output:

% numconv.py
[123, 45, -620000000, 999999999]
[123L, 45L, -620000000L, 999999999L]
[123.0, 45.67, -620000000.0, 999999999.0]

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/175#1.html

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=175

Programming > Core Python Programming > 11. Functions > Formal Arguments See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174055131033057119161122

Formal Arguments

A Python function's set of formal arguments consists of all parameters passed to the function on
invocation for which there is an exact correspondence to those of the argument list in the function
declaration. These arguments include all required arguments (passed to the function in correct
positional order), keyword arguments (passed in- or out-of-order, but which have keywords present to
match their values to their proper positions in the argument list), and all arguments which have default
values which may or may not be part of the function call. For all of these cases, a name is created for
that value in the (newly-created) local namespace and can be accessed as soon as the function begins
execution.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=176
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A31%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=176&now=5%2F29%2F2002+9%3A31%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=176

Programming > Core Python Programming > 11. Functions > Positional Arguments See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174055131038074115052185

Positional Arguments

These are the standard vanilla parameters that we are all familiar with. Positional arguments must be
passed in the exact order that they are defined for the functions that are called. Also, without the
presence of any default arguments (see next section), the exact number of arguments passed to a
function (call) must be exactly the number declared:

>>> def foo(who): # defined for only 1 argument
… print 'Hello', who
…
>>> foo() # 0 arguments… BAD
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: not enough arguments; expected 1, got 0
>>>
>>> foo('World!') # 1 argument… WORKS
Hello World!
>>>
>>> foo('Mr.', 'World!')# 2 arguments… BAD
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: too many arguments; expected 1, got 2

The foo() function has one positional argument. That means that any call to foo() must have
exactly one argument, no more, no less. You will become extremely familiar with TypeError
otherwise. Note how informative the Python errors are. As a general rule, all positional arguments for a
function must be provided whenever you call it. They may be passed into the function call in position
or out-of-position, granted that a keyword argument is provided to match it to its proper position in the
argument list (review Section 11.2.2). Default arguments, however, do not have to be provided because
of their nature.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=177
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A31%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=177&now=5%2F29%2F2002+9%3A31%3A45+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/173#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=177

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 11. Functions > Default Arguments See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174055131039166095191176

Default Arguments

Default arguments are parameters which are defined to have a default value if one is not provided in the function call for that
argument. Such definitions are given in the function declaration header line. C++ and Java are other languages which support
default arguments and whose declaration syntax is shared with Python: The argument name is followed by an “assignment of
its default value. This assignment is merely a syntactical way of indicating that this assignment will occur if no value is passed
in for that argument.

The syntax for declaring variables with default values in Python is such that all positional arguments must come before any
default arguments:

def
 function_name(posargs, defarg1=dval1,
defarg2=dval2,…):
 "function_documentation_string"
 function_body_suite

Each default argument is followed by an assignment statement of its default value. If no value is given during a function call,
then this assignment is realized.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=178
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A31%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=178&now=5%2F29%2F2002+9%3A31%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=178

Programming > Core Python Programming > 11. Functions > Why Default Arguments? See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174052240193090038139193

Why Default Arguments?

Default arguments add a wonderful level of robustness to applications because they allow for some
flexibility that is not offered by the standard positional parameters. That gift comes in the form of
simplicity for the applications programmer. Life is not as complicated when there are a fewer number
of parameters that one needs to worry about. This is especially helpful when one is new to an API
interface and does not have enough knowledge to provide more targeted values as arguments.

The concept of using default arguments is analogous to the process of installing software on your
computer. How often does one chose the "default install" over the "custom install?" I would say
probably almost always. It is a matter of convenience and know-how, not to mention a timesaver. And
if you are one of those gurus who always chooses the custom install, please keep in mind that you are
one of the minority.

Another advantage goes to the developer, who is given more control over the software they create for
their consumers. When providing default values, they can selectively choose the "best" default value
possible, thereby hoping to give the user some freedom of not having to make that choice. Over time,
as the user becomes more familiar with the system or API, they may eventually be able to provide their
own parameter values, no longer requiring the use of "training wheels."

Here is one example where a default argument comes in handy and has some usefulness in the growing
electronic commerce industry:

>>> def taxMe(cost, rate=0.0825):
… return cost + (cost * rate)
…
>>> taxMe(100)
108.25
>>>
>>> taxMe(100, 0.05)
105.0

In the example above, the taxMe() function takes the cost of an item and produces a total sale
amount with sales tax added. The cost is a required parameter while the tax rate is a default argument
(in our example, 8¼ %). Perhaps you are an online retail merchant, with most of your customers

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=179
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A32%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=179&now=5%2F29%2F2002+9%3A32%3A02+PM

coming from the same state or county as your business. Consumers from locations with different tax
rates would like to see their purchase totals with their corresponding sales tax rates. To override the
default, all you have to do is provide your argument value, such as the case with taxMe(100,
0.05) in the above example. By specifying a rate of 5%, you provided an argument as the rate
parameter, thereby overriding or bypassing its default value of 0.0825.

All required parameters must be placed before any default arguments. Why? Simply because they are
mandatory, whereas default arguments are not. Syntactically, it would be impossible for the interpreter
to decide which values match which arguments if mixed modes were allowed. A SyntaxError is
raised if the arguments are not given in the correct order:

>>> def taxMe2(rate=0.0825, cost):
… return cost * (1.0 + rate)
…
SyntaxError: non-default argument follows default argument

Let us take a look at keyword arguments again, using our old friend net_conn().

def net_conn(host, port):
 net_conn_suite

As you will recall, this is where you can provide your arguments out-of-order (positionally) if you
name the arguments. With the above declarations, we can make the following (regular) positional or
keyword argument calls:

• net_conn('kappa', 8000)
• net_conn(port=8080, host='chino')

However, if we bring default arguments into the equation, things change, though the above calls are
still valid. Let us modify the declaration of net_conn() such that the port parameter has a default
value of 80 and add another argument named stype (for server type) with a default value of 'tcp':

def net_conn(host, port=80, stype='tcp'):
 net_conn_suite

We have just expanded the number of ways we can call net_conn(). The following are all valid
calls to net_conn():

• net_conn('phaze', 8000, 'udp') # no def args used
• net_conn('kappa') # both def args used
• net_conn('chino', stype='icmp') # use port def arg
• net_conn(stype='udp', host='solo') # use port def arg
• net_conn('deli', 8080) # use stype def arg
• net_conn(port=81, host='chino') # use stype def arg

What is the one constant we see in all of the above examples? The sole required parameter, host.
There is no default value for host, thus it is expected in all calls to net_conn().

Keyword arguments calling prove useful for being able to provide for out-of-order positional
arguments, but, coupled with default arguments, they can also be used to "skip over" missing
arguments as well, as evidenced from our examples above.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=179

Programming > Core Python Programming > 11. Functions > Default Function Object
Argument Example

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174052240192225070007125

Default Function Object Argument Example

We will now present yet another example of where a default argument may prove beneficial. The
grabweb.py script, given in Example 11.2 is a simple script whose main purpose is to grab a web
page from the Internet and temporarily store it to a local file for analysis. This type of application can
be used to test the integrity of a website's pages or to monitor the load on a server (by measuring
connectability or download speed). The process() function can be anything we want, presenting an
infinite number of uses. The one we chose for this exercise displays the first and last non-blank lines of
the retrieved web page. Although this particular example may not prove too useful in the real world,
you can imagine what kinds of applications you can build on top of this code.

Example 11.2. Grabbing Web Pages (grabweb.py)

This script downloads a webpage (defaults to local www server) and displays the first and last non-
blank lines of the HTML file. Flexibility is added due to both default arguments of thedownload()
function which will allow overriding with different URLs or specification of a different processing
function.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from urllib import urlretrieve
004 4 from string import strip
005 5
006 6 def firstnonblank(lines):
007 7 for eachLine in lines:
008 8 if strip(eachLine) == '':
009 9 continue <$nopage>
010 10 else: <$nopage>
011 11 return eachLine
012 12
013 13 def firstlast(webpage):
014 14 f = open(webpage)
015 15 lines = f.readlines()
016 16 f.close()
017 17 print firstnonblank(lines),

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=180
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A32%3A14+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=180&now=5%2F29%2F2002+9%3A32%3A14+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/180#1.html

018 18 lines.reverse()
019 19 print firstnonblank(lines),
020 20
021 21 def download(url='http://www', \
022 22 process=firstlast):
023 23 try: <$nopage>
024 24 retval = urlretrieve(url)[0]
025 25 except IOError:
026 26 retval = None
027 27 if retval: # do some
028 processing
029 28 process(retval)
030 29
031 30 if __name__ == '__main__':
032 31 download()
033 <$nopage>

Running this script in our environment gives the following output, although your mileage will
definitely vary since you will be viewing a completely different web page altogether.

% grabweb.py
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final
//EN">
</HTML>

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=180

Programming > Core Python Programming > 11. Functions > Variable-length Arguments See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174052240195243164235109

Variable-length Arguments

There may be situations where your function is required to process an unknown number of arguments.
These are called variable-length argument lists. Variable-length arguments are not named explicitly in
function declarations because the number of arguments is unknown before run-time (and even during
execution, the number of arguments may be different on successive calls), an obvious difference from
formal arguments (positional and default) which are named in function declarations. Python supports
variable-length arguments in two ways because function calls provide for both keyword and non-
keyword argument types.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=181
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A32%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=181&now=5%2F29%2F2002+9%3A32%3A25+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=181

Programming > Core Python Programming > 11. Functions > Non-keyword Variable Arguments
(Tuple)

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174052240194210217068034

Non-keyword Variable Arguments (Tuple)

When a function is invoked, all formal (required and default) arguments are assigned to their corresponding local
variables as given in the function declaration. The remaining non-keyword variable arguments are inserted in
order into a tuple for access. Perhaps you are familiar with "varargs" in C (i.e., va_list, va_arg, and the
ellipsis […]). Python provides equivalent support—iterating over the tuple elements is the same as using
va_arg in C. For those who are not familiar with C or varargs, they just represent the syntax for accepting a
variable (not fixed) number of arguments passed in a function call.

The variable-length argument tuple must follow all positional and default parameters, and the general syntax for
functions with tuple or non-keyword variable arguments is as follows:

def
 function_name([formal_args,]
*vargs_tuple):
"function_documentation_string"
 function_body_suite

The asterisk operator (*) is placed in front of the variable that will hold all remaining arguments once all the
formal parameters have been exhausted, if any. The tuple is empty if there are no additional arguments given.

As we saw earlier, a TypeError exception is generated whenever an incorrect number of arguments is given in
the function invocation. By adding a variable argument list variable at the end, we can handle the situation when
more than enough arguments are passed to the function because all the extra (non-keyword) ones will be added to
the variable argument tuple. (The extra keyword arguments require a keyword variable argument parameter [see
the next section].)

As expected, all formal arguments must precede informal arguments for the same reason that positional
arguments must come before keyword arguments.

def tupleVarArgs(arg1, arg2='defaultB', *theRest):
 'display regular args and non-keyword variable args'
 print 'formal arg 1:', arg1
 print 'formal arg 2:', arg1
 for eachXtrArg in theRest:
 print 'another arg:', eachXtrArg

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=182
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A32%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=182&now=5%2F29%2F2002+9%3A32%3A35+PM

We will now invoke this function to show how variable argument tuples work:

>>> tupleVarArgs('abc')
formal arg 1: abc
formal arg 2: defaultB
>>>
>>> tupleVarArgs(23, 4.56)
formal arg 1: 23
formal arg 2: 4.56
>>>
>>> tupleVarArgs('abc', 123, 'xyz', 456.789)
formal arg 1: abc
formal arg 2: 123
another arg: xyz
another arg: 456.789

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=182

Programming > Core Python Programming > 11. Functions > Keyword Variable
Arguments (Dictionary)

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174052240197139120155099

Keyword Variable Arguments (Dictionary)

In the case where we have a variable number or extra set of keyword arguments, these are placed into a
dictionary where the "keyworded" argument variable names are the keys, and the arguments are their
corresponding values. Why must it be a dictionary? Because a pair of items is given for every
argument—the name of the argument and its value—so it is a natural fit to use a dictionary to hold
these arguments. Here is the syntax of function definitions which use the variable argument dictionary
for extra keyword arguments:

def

function_name([formal_args,][*vargst,] **vargsd):
 function_documentation_string
 function_body_suite

To differentiate keyword variable arguments from non-keyword informal arguments, a double asterisk
(**) is used. The ** is overloaded so it should not be confused with exponentiation. The keyword
variable argument dictionary should be the last parameter of the function definition prepended with the
'**'. We now present an example of how to use such a dictionary:

def dictVarArgs(arg1, arg2='defaultB', **theRest):
 'display 2 regular args and keyword variable args'
 print 'formal arg1:', dictVarArgs
 print 'formal arg2:', arg2
 for eachXtrArg in theRest.keys():
 print 'Xtra arg %s: %s' % \
 (eachXtrArg, str(theRest[eachXtrArg]))

Executing this code in the interpreter, we get the following output:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=183
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A32%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=183&now=5%2F29%2F2002+9%3A32%3A48+PM

>>> dictVarArgs(1220, 740.0, c='grail'
formal arg1: 1220
formal arg2: 740.0
Xtra arg c: grail
>>>
>>> dictVarArgs(arg2='tales', c=123, d='poe',
a='mystery')
formal arg1: mystery
formal arg2: tales
Xtra arg c: 123
Xtra arg d: poe
>>>
>>> dictVarArgs('one', d=10, e='zoo', men=('freud',
'gaudi'))
formal arg1: one
formal arg2: defaultB
Xtra arg men: ('freud', 'gaudi')
Xtra arg d: 10
Xtra arg e: zoo

Both keyword and non-keyword variable arguments may be used in the same function as long as the
keyword dictionary is last and is preceded by the non-keyword tuple, as in the following example:

def newfoo(arg1, arg2, *nkw, **kw):
 display regular args and all variable args'
 print 'arg1 is:', arg1
 print 'arg2 is:', arg2
 for eachNKW in nkw:
 print 'additional non-keyword arg:', eachNKW
 for eachKW in kw.keys():
 print "additional keyword arg '%s': %s" % \
 (eachKW, kw[eachKW])

Calling our function within the interpreter, we get the following output:

>>> newfoo('wolf', 3, 'projects', freud=90, gamble=96)
arg1 is: wolf
arg2 is: 3

additional non-keyword arg: projects
additional keyword arg 'freud': 90
additional keyword arg 'gamble': 96

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=183

Programming > Core Python Programming > 11. Functions > Calling Functions with
Variable Argument Objects

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174052240196220139181116

Calling Functions with Variable Argument Objects

Python 1.6 introduces the ability to explicitly provide groups of variable arguments, both a non-
keyword tuple and/or a keyword dictionary. In each of the above examples of variable arguments, the
variable arguments provided for in the invocation include individual arguments (see all the examples in
the preceding section). Prior to 1.6, this was the only way to call a function with a variable number of
arguments.

Function calls have the added ability to take a tuple with contents that will go straight to the non-
keyword variable argument tuple and a dictionary containing key-value pairs to add to the keyword
variable argument dictionary. The tuple and dictionary may be joined in the function call by those
variable arguments that were given the original way, listed individually. The general function
invocation full syntax for variable arguments supported by Python starting with 1.6 is:

function_name(formal_args, *nonKWtuple, **KWdict)

In the previous section, we saw that the '*' and '**' constructs are already accepted for function
declarations, but now they are valid for function calls as well!

We will now use our friend newfoo() defined in the previous section to test the new calling syntax.
Our first call to newfoo() will use the old-style method of listing all arguments individually, even the
variable arguments which follow all the formal arguments:

>>> newfoo(10, 20, 30, 40, foo=50, bar=60)
arg1 is: 10
arg2 is: 20
additional non-keyword arg: 30
additional non-keyword arg: 40
additional keyword arg 'foo': 50
additional keyword arg 'bar': 60

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=184
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A32%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=184&now=5%2F29%2F2002+9%3A32%3A59+PM

We will now make a similar call; however, instead of listing the variable arguments individually, we
will put the non-keyword arguments in a tuple and the keyword arguments in a dictionary to make the
call:

>>> newfoo(2, 4, *(6, 8), **{'foo': 10, 'bar': 12})
arg1 is: 2
arg2 is: 4
additional non-keyword arg: 6
additional non-keyword arg: 8
additional keyword arg 'foo': 10
additional keyword arg 'bar': 12

Finally, we will make another call but build our tuple and dictionary outside of the function invocation:

>>> aTuple = (6, 7, 8)
>>> aDict = {'z': 9}
>>> newfoo(1, 2, 3, x=4, y=5, *aTuple, **aDict)
arg1 is: 1
arg2 is: 2
additional non-keyword arg: 3
additional non-keyword arg: 6
additional non-keyword arg: 7
additional non-keyword arg: 8
additional keyword arg 'z': 9
additional keyword arg 'x': 4
additional keyword arg 'y': 5

Notice how our tuple and dictionary arguments make only a subset of the final tuple and dictionary
received within the function call. The additional non-keyword value '3' and keyword pairs for 'x'
and 'y' were also included in the final argument lists even though they were not part of the '*' and
'**' variable argument parameters.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=184

Programming > Core Python Programming > 11. Functions > Functional Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174053205052252195245219

Functional Programming

Python is not and will probably not ever claim to be a functional programming language, but it does
support a number of valuable functional programming constructs. There are also some which behave
like functional programming mechanisms but may not be traditionally considered as such. What Python
does provide comes in the form of four built-in functions and lambda expressions.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=185
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A33%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=185&now=5%2F29%2F2002+9%3A33%3A11+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=185

Programming > Core Python Programming > 11. Functions > Anonymous Functions and
lambda

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174053205052244094182030

Anonymous Functions and lambda

Python allows one to create anonymous functions using the lambda keyword. They are "anonymous"
because they are not declared in the standard manner, i.e., using the def statement. (Unless assigned to
a local variable, such objects do not create a name in any namespace either.) However, as functions,
they may also have arguments. An entire lambda "statement" represents an expression, and the body of
the lambda expression must also be given on the same line as the declaration. We now present the
syntax for anonymous functions using lambda:

lambda [arg1[, arg2, … argN]]: expression

Arguments are optional, and if used, are usually part of the expression as well.

NOTE

Calling lambda with an appropriate expression yields a function object which can be used like
any other function. They can be passed to other functions, aliased with additional references, be
members of container objects, and as callable objects, be invoked (with any arguments, if
necessary). When called, these objects will yield a result equivalent to the same expression if given
the same arguments. They are indistinguishable from functions which return the evaluation of an
equivalent expression.

Before we look at any examples using lambda, we would like to review single-line statements and
then show the resemblances to lambda expressions.

def true():
 return 1

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=186
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A33%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=186&now=5%2F29%2F2002+9%3A33%3A19+PM

The above function takes no arguments and always returns 1. Single line functions in Python may be
written on the same line as the header. Given that, we can rewrite our true() function so that it looks
something like the following.

def true(): return 1

We will present the named functions in this manner for the duration of this chapter because it helps one
visualize their lambda equivalents. For our true() function, the equivalent lambda expression (no
arguments, returns 1) is:

lambda :1

Usage of the named true() function is fairly obvious, but not for lambda. Do we just use it as is,
or do we need to assign somewhere? A lambda function by itself serves no purpose, as we see here:

>>> lambda :1
<function <lambda> at f09ba0>

In the above example, we simply created a lambda function, but did not save it anywhere nor did we
call it. The reference count for this function object is set to 1 on creation of the function object, but
because no reference is saved, goes back down to zero and garbage-collected. To keep the object
around, we can save it into a variable and invoke it any time after. Perhaps now is a good opportunity:

>>> true = lambda :1
>>> true()
1

Assigning it looks much more useful here. Likewise, we can assign lambda expressions to a data
structure such as a list or tuple where, based on some input criteria, we can choose which function to
execute as well as what the arguments would be. (In the next section, we will show how to use
lambda expressions with functional programming constructs.)

Let us now design a function that takes two numeric or string arguments and returns the sum for
numbers or the concatenated string. We will show the standard function first, followed by its unnamed
equivalent.

def add(x, y): return x + y? lambda x, y: x + y

Default and variable arguments are permitted as well, as indicated in the following examples:

def usuallyAdd2(x, y=2): return x+y ? lambda x, y=2: x+y
def showAllAsTuple(*z): return z ? lambda *z: z

Seeing is one thing, so we will now try to make you believe by showing how you can try them in the
interpreter:

>>> a = lambda x, y=2: x + y
>>> a(3)
5
>>> a(3,5)
8
>>> a(0)
2
>>> a(0,9)
9
>>>
>>> b = lambda *z: z
>>> b(23, 'zyx')
(23, 'zyx')
>>> b(42)
(42,)

One final word on lambda. Although it appears that lambda's are a one-line version of a function,
they are not equivalent to "inline" statements in C++, whose purpose is bypassing function stack
allocation during invocation for performance reasons. A lambda expression works just like a function,
creating a frame object when called.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=186

Programming > Core Python Programming > 11. Functions > Built-in Functions: apply(),
filter(), map(), reduce()

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174053205055217125088143

Built-in Functions: apply(), filter(), map(), reduce()

In this section, we will look at the apply(), filter(), map(), and reduce() built-in
functions as well as give some examples to show how they can be used. These functions provide the
functional programming features found in Python. A summary of these functions is given in Table
11.1. All take a function object to somehow invoke.

Table 11.1. Functional Programming Built-in Functions

Built-in Function Description
apply(func[, nkw][, kw]) call func with optional arguments, nkw for non-keyword arguments and

kw for keyword arguments; the return value is the return value of the
function call

filter(func, seq) invokes Boolean function func iteratively over each element of seq;
returns a sequence for those elements for which func returned true

map(func, seq1[, seq2…]) applies function func to each element of given sequences(s) and
provides return values in a list; if func is None, func behaves as the
identity function, returning a list consisting of n- tuples for sets of
elements of each sequence

reduce(func, seq[, init]) applies binary function func to elements of sequence seq, taking a pair
at a time (previous result and next sequence item), continually applying
the current result with the next value to obtain the succeeding result,
finally reducing our sequence to a single return value; if initial value init
given, first compare will be of init and first sequence element rather than
the first two sequence elements

As you may imagine, lambda functions fit nicely into applications using any of these functions
because all of them take a function object with which to execute, and lambda provides a mechanism
for creating functions on the fly.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=187
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A33%3A27+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=187&now=5%2F29%2F2002+9%3A33%3A27+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/187#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/187#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=187

Programming > Core Python Programming > 11. Functions > * apply() See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174053205054004235083191

*apply()

The first built-in function we are looking at is apply(). The apply() function is the most basic of
the four and is simply used to pass in a function object along with any parameters. apply() will then
invoke that function with the given arguments. There is no special magic here; apply() works
exactly the way you think it does, so the following pair of calls are practically identical:

foo(3, 'pyramid') ? apply(foo, (3, 'pyramid'))

Alternatively, the arguments can be stored in a tuple, and then the function can be called with
apply():

args = (4, 'eve', 79)
apply(foo, args)

Note this is not the same as foo(args) which is calling foo() with a single argument (a tuple).
Rather, using apply() means calling foo() with three arguments, the elements of the tuple.

If you wanted to call the built-in function dir() from the interpreter, you could either execute it
directly, or use apply(). In this example, they both have the same effect since no arguments are
involved.

dir() ? apply(dir)

Below, we perform both function calls in the interpreter to show you they produce identical results:

>>> dir()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=188
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A33%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=188&now=5%2F29%2F2002+9%3A33%3A39+PM

['__builtins__', '__doc__', '__name__']
>>>
>>> apply(dir)
['__builtins__', '__doc__', '__name__']

You may be wondering… why would I ever need to use apply() when I can just make a function
call? Is there ever a need to do the following? Not only does it require more typing on my part, but the
syntax is more complicated.

apply() can be used as an effective tool in certain situations. One scenario where apply() comes
in handy is when you need to call a function, but its arguments are generated dynamically. Such
situations usually involve assembling an argument list. In our math game in Example 11.3
(matheasy.py), we generate a two-item argument list to send to the appropriate arithmetic
function.

The matheasy.py application is basically an arithmetic math quiz game for children where an
arithmetic operation is randomly chosen between addition, subtraction, and multiplication. We use the
functional equivalents of these operators, add(), sub(), and mul(), all found in the operator
module. We then generate the list of arguments (two, since these are binary operators/operations). Then
random numbers are chosen as the operands. Since we do not want to support negative numbers in this
more elementary edition of this application, we sort our list of two numbers in largest-to-smallest order,
then call apply() with this argument list and the randomly-chosen arithmetic operator to obtain the
correct solution to the posed problem. apply() makes a good choice for our application for two
reasons:

Example 11.3. Arithmetic Game Using apply()(matheasy.py)

Randomly chooses numbers and an arithmetic function, displays the question, and verifies the
results. Shows answer after three wrong tries and does not continue until the user enters the correct
answer.

 <$nopage>
001 1 #!/usr/bin/env python
002 2 from string import lower
003 3 from operator import add, sub, mul
004 4 from random import randint, choice
005 5
006 6 ops = { '+': add, '-': sub, '*': mul }
007 7 MAXTRIES = 2
008 8

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/188#1.html

009 9 def doprob():
010 10 op = choice('+-*')
011 11 nums = [randint(1,10), randint(1,10)]
012 12 nums.sort() ; nums.reverse()
013 13 ans = apply(ops[op], nums)
014 14 pr = '%d %s %d = ' % (nums[0], op, nums[1])
015 15 oops = 0
016 16 while 1:
017 17 try: <$nopage>
018 18 if int(raw_input(pr)) == ans:
019 19 print 'correct'
020 20 break <$nopage>
021 21 if oops == MAXTRIES:
022 22 print 'answer\n%s%d'%(pr,ans)
023 23 else: <$nopage>
024 24 print 'incorrect… try again'
025 25 oops = oops + 1
026 26 except (KeyboardInterrupt, \
027 27 EOFError, ValueError):
028 28 print 'invalid input… try again'
029 29
030 30 def main():
031 31 while 1:
032 32 doprob()
033 33 try: <$nopage>
034 34 opt = lower(raw_input('Again? '))
035 35 except (KeyboardInterrupt, EOFError):
036 36 print ; break <$nopage>
037 37 if opt and opt[0] == 'n':
038 38 break <$nopage>
039 39
040 40 if __name__ == '__main__':
041 41 main()
042 <$nopage>

● Argument list hand-built

● Function randomly chosen

Since we do not know what our arguments are nor do we know what function we will be calling for
each math question posed to the user, apply() makes for a flexible solution.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=188

Programming > Core Python Programming > 11. Functions > Lines 1 - 4 See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174053205048045090080000

Lines 1 - 4

Our code begins with the usual Unix start-up line, which, we repeat, will be harmlessly ignored on all
non-Unix systems. What follows are three from-import statements which load string.lower()
for case-insensitive input verification, random.randint() for choosing the arithmetic operands,
random.choice() for picking the arithmetic operation, and all the arithmetic operations we need
from the operator module.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=189
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A33%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=189&now=5%2F29%2F2002+9%3A33%3A51+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=189

Programming > Core Python Programming > 11. Functions > Lines 6 - 7 See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174053205048037078225104

Lines 6 - 7

The global variables we use in this application are a set of operations and their corresponding
functions, and a value indicating how many times (three: 0, 1, 2) we allow the user to enter an incorrect
answer before we reveal the solution. The function dictionary uses the operator's symbol to index into
the dictionary, pulling out the appropriate arithmetic function.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=190
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A33%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=190&now=5%2F29%2F2002+9%3A33%3A59+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=190

Programming > Core Python Programming > 11. Functions > Lines 9 - 28 See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174050111184152120035151

Lines 9 - 28

The doprob() function is the core engine of the application. It randomly picks an operation and
generates the two operands, sorting them from largest-to-smallest order in order to avoid negative
numbers for subtraction problems. It then invokes apply() to call the math function with the values,
calculating the correct solution. The user is then prompted with the equation and given three
opportunities to enter the correct answer.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=191
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A34%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=191&now=5%2F29%2F2002+9%3A34%3A07+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=191

Programming > Core Python Programming > 11. Functions > Lines 30-41 See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174050111185146024196057

Lines 30-41

The main driver of the application is main(), called from the top-level if the script is invoked
directly. If imported, the importing function either manages the execution by calling doprob(), or
calls main() for program control. main() simply calls doprob() to engage the user in the main
functionality of the script and prompts the user to quit or to try another problem.

Since the values and operators are chosen randomly, each execution of matheasy.py should be
different. Here is what we got today (oh, and your answers may vary as well!):

% matheasy.py
7 - 2 = 5
correct
Try another? ([y]/n)
7 * 6 = 42
correct
Try another? ([y]/n)
7 * 3 = 20
incorrect… try again
7 * 3 = 22
incorrect… try again
7 * 3 = 23
sorry… the answer is
7 * 3 = 21
7 * 3 = 21
correct
Try another? ([y]/n)
7 - 5 = 2
correct
Try another? ([y]/n) n

Another useful application of apply() comes in terms of debugging or performance measurement.
You are working on functions that need to be fully tested or run through regressions every night, or that
need to be timed over many iterations for potential improvements. All you need to do is to create a

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=192
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A34%3A15+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=192&now=5%2F29%2F2002+9%3A34%3A15+PM

diagnostic function that sets up the test environment, then calls the function in question. Because this
system should be flexible, you want to allow the testee function to be passed in as an argument. So a
pair of such functions, timeit() and testit(), would probably be useful to the software
developer today.

We will now present the source code to one such example of a testit() function (see Example
11.4). We will leave a timeit() function as an exercise for the reader (see Exercise 11.12 at end of
chapter).

This module provides an execution test environment for functions. The testit() function takes a
function and arguments, then invokes that function with the given arguments under the watch of an
exception handler. If the function completes successfully, a return value of 1 packaged withthe return
value of the function is sent back to the caller. Any failure returns a status of 0 and the cause of the
exception. (Exception is the root class for all exceptions; review Chapter 10 for details.)

Example 11.4. Testing Functions (testit.py)

testit() invokes a given function with its arguments, returning a 1 packaged with the return
value of the function on success and 0 with the cause of the exception on failure.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def testit(func, *nkwargs, **kwargs):
004 4
005 5 try:
006 6 retval = apply(func, nkwargs, kwargs)
007 7 result = (1, retval)
008 8 except Exception, diag:
009 9 result = (0, str(diag))
010 10 return result
011 11
012 12 def test():
013 13 funcs = (int, long, float)
014 14 vals = (1234, 12.34, '1234', '12.34')
015 15
016 16 for eachFunc in funcs:
017 17 print '-' * 20
018 18 for eachVal in vals:
019 19 retval = testit(eachFunc, \
020 20 eachVal)
021 21 if retval[0]:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/192#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/192#1.html

022 22 print '%s(%s) =' % \
023 23 (eachFunc.__name__, 'eachVal'), retval[1]
024 24 else: <$nopage>
025 25 print '%s(%s) = FAILED:' % \
026 26 (eachFunc.__name__, 'eachVal'), retval[1]
027 27
028 28 if __name__ == '__main__':
029 29 test()
030 <$nopage>

The unit tester function test() runs a set of numeric conversion functions on an input set of four
numbers. There are two failure cases in this test set to confirm such functionality. Here is the output of
running the script:

% testit.py

int(1234) = 1234
int(12.34) = 12
int('1234') = 1234
int('12.34') = FAILED: invalid literal for int(): 12.34

long(1234) = 1234L
long(12.34) = 12L
long('1234') = 1234L
long('12.34') = FAILED: invalid literal for long(): 12.34

float(1234) = 1234.0
float(12.34) = 12.34
float('1234') = 1234.0
float('12.34') = 12.34

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=192

Programming > Core Python Programming > 11. Functions > filter() See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174050111186022088139118

filter()

The second built-in function we examine in this chapter is filter(). Imagine going to an orchard
and leaving with a bag of apples you picked off the trees. Wouldn't it be nice if you could run the entire
bag through a filter to keep just the good ones? That is the main premise of the filter() function.

Given a sequence of objects and a "filtering" function, run each item of the sequence through the filter,
and keep only the ones that the function returns true for. The filter() function calls the given
Boolean function for each item of the provided sequence. Each item for which filter() returns a
non-zero (true) value is appended to a list. The object that is returned is a "filtered" sequence of the
original.

If we were to code filter() in pure Python, it might look something like this:

def filter(bool_func,
 sequence):
filtered_seq = []
for eachItem in
 sequence:
 if apply(bool_func, (eachItem,)):
 filtered_seq.append(eachItem)
 return filtered_seq

One way to to understand filter() better is by visualizing its behavior. Figure11-1 attempts to do
just that.

Figure 11-1. How the filter() Built-in Function Works

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=193
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A34%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=193&now=5%2F29%2F2002+9%3A34%3A25+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/193#1.html

In Figure11-1, we observe our original sequence at the top, items seq[0], seq[1], … seq[N-
1] for a sequence of size N. For each call to bool_func(), i.e., bool_func(seq[0]),
bool_func(seq[1]), etc, a return value of 0 or 1 comes back (as per the definition of a Boolean
function—ensure that indeed your function does return 0 or 1). If bool_func() returns true for any
sequence item, that element is inserted into the return sequence. When iteration over the entire
sequence has been completed, filter() returns the newly-created sequence.

We present below a script which shows one way to use filter() to obtain a short list of random odd
numbers. The script generates a larger set of random numbers first, then filters out all the even
numbers, leaving us with the desired dataset. When we first coded this example, oddnogen.py
looked like the following:

from random import randint

def odd(n):
return n % 2

def main():
allNums = []
for eachNum in range(10):
 allNums.append(randint(1, 101))
oddNums = filter(odd, allNums)
print len(oddNums), oddNums

if __name__ == \q__main__\q:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/193#1.html

 main()

The script consists of two functions: odd(), a Boolean function which determined if an integer was
odd (true) or even (false), and main(), the primary driving component. The purpose of main() is to
generate ten random numbers between one and a hundred; then filter() is called to remove all the
even numbers. Finally, the set of odd numbers is displayed, preceded by the size of our filtered list.

Importing and running this module several times, we get the following output:

>>> import oddnogen
>>> oddnogen.main()
4 [9, 33, 55, 65]
>>>
>>> oddnogen.main()
5 [39, 77, 39, 71, 1]
>>>
>>> oddnogen.main()
6 [23, 39, 9, 1, 63, 91]
>>>
>>> oddnogen.main()
5 [41, 85, 93, 53, 3]

On second glance, we realize that the odd() function can be replaced by a lambda expression to pass
to filter(), and it is this modification which gives us our final oddnogen.py script. The code is
given in Example 11.5.

Example 11.5. Odd Number Generator (oddnogen.py)

This simple program generates ten random numbers between one and one hundred, then filters out
all the even ones. The program then displays the total number filtered out and the resulting list of
odd numbers.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from random import randint
004 4
005 5 def main():

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/193#2.html

006 6
007 7 allNums = []
008 8 for eachNum in range(10):
009 9 allNums.append(randint(1, 100))
010 10 oddNums = filter(lambda n: n % 2, allNums)
011 11 print len(oddNums), oddNums
012 12
013 13 if __name__ == '__main__':
014 14 main()
015 <$nopage>

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=193

Programming > Core Python Programming > 11. Functions > map() See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174050111188071080213172

map()

The map() built-in function is similar to filter() in that it can process a sequence through a
function. However, unlike filter(), map() "maps" the function call to each sequence item and
returns a list consisting of all the return values.

In its simplest form, map() takes a function and sequence, applies the function to each item of the
sequence, and creates a return value list that is comprised of each application of the function. So if your
mapping function is to add 2 to each number that comes in and you feed that function to map() along
with a list of numbers, the resulting list returned is the same set of numbers as the original, but with 2
added to each number. If we were to code how this simple form of map() works in Python, it might
look something like the code below and is illustrated in Figure11-2

Figure 11-2. How the map() Built-in Function Works

def map(func, seq):
mapped_seq = []

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=194
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A34%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=194&now=5%2F29%2F2002+9%3A34%3A42+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/194#1.html

for eachItem in
 seq:
 mapped_seq.append(apply(func, eachItem))
 return mapped_seq

We can whip up a few quick lambda functions to show you how map() works on real data:

>>> map((lambda x: x+2), [0, 1, 2, 3, 4, 5])
[2, 3, 4, 5, 6, 7]
>>>
>>> map(lambda x: x**2, [0, 1, 2, 3, 4, 5])
[0, 1, 4, 9, 16, 25]
>>>
>>> map((lambda x: x**2), range(6))
[0, 1, 4, 9, 16, 25]

The more general form of map() can take more than a single sequence as its input. If this is the case,
then map() will iterate through each sequence in parallel. On the first invocation, it will bundle the
first element of each sequence into a tuple, apply the func function to it, and return the result as a
tuple into the mapped_seq mapped sequence that is finally returned as a whole when map() has
completed execution.

Figure11-2 illustrated how map() works with a single sequence. If we used map() with M sequences
of N objects each, our previous diagram would be converted to something like the diagram presented in
Figure11-3

Figure 11-3. How the map() Built-in Function Works with > 1 Sequence

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/194#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/194#2.html

For example, let us consider the following call to map():

>>> map(lambda x, y: x + y, [1,3,5], [2,4,6])
[3, 7, 11]

In the above example, the number of sequences, M, is two. The lists [1, 3, 5] and [2, 4, 6] are our
sequences. And each of these sequences has cardinality or size three, or N. The result then consists of
the following:

Let:

f(x, y) \xba x + y,
seq0 = [1, 3, 5], and
seq1 = [2, 4, 6]

Then:

 map(f, seq0, seq1)
= [f(seq0[0], seq1[0]), f(seq0[1], seq1[1]), \
 f(seq0[2], seq1[2])
= [1 + 2, 3 + 4, 5 + 6]
= [3, 7, 11]

Also, map() can also take None as the function argument. If None is used instead of a real function
object, map() will take that clue to default to the identity function, meaning that the resulting map will
be of the same one as the sequence you passed in. If more than one sequence is passed in, then the
resulting list will consist of a tuple with one element from each sequence. Here are a few more
examples of using map() with multiple sequences, including one with None passed in as the map()
function:

>>> map(lambda x, y: (x+y, x-y), [1,3,5], [2,4,6])
[(3, -1), (7, -1), (11, -1)]
>>> map(lambda x, y: (x+y, x*y), [1,3,5], [2,4,6])
[(3, 2), (7, 12), (11, 30)]
>>> map(None, [1,3,5], [2,4,6])
[(1, 2), (3, 4), (5, 6)]

This idiom is so commonly used that a new built-in function, Zip(), which does the same thing (given
sequences of identical size), was added in Python 2.0.

Now these "real-time" examples are nice, but we should also show you some code that you can use in
real life. In the next example, we created a text file called map.txt, which has a few lines of text
surrounded by whitespace. We will use the script strupper.py, given in Example 11.6, to strip all
the leading and trailing whitespace by passing each line to string.strip() and converting all text
to uppercase using string.upper(). The output of this script will show you the file contents
before our manipulation and what the lines look like after we are finished:

Example 11.6. Text File Processing (strupper.py)

strupper.pytakes an existing text file, strips all leading and trailing whitespace, and converts all
the text to uppercase.

 <$nopage>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/194#3.html

001 1 #!/usr/bin/env python
002 2
003 3 from string import strip, upper
004 4
005 5 f = open('map.txt')
006 6 lines = f.readlines()
007 7 f.close()
008 8
009 9 print 'BEFORE:\n'
010 10 for eachLine in lines:
011 11 print '[%s]' % eachLine[:-1]
012 12
013 13 print '\nAFTER:\n'
014 14 for eachLine in map(upper, \
015 15 map(strip, lines)):
016 16 print '[%s]' % eachLine
017 <$nopage>

% strupper.py
BEFORE:

[Apply function to every item of list and return a]
[list of the results. If additional list arguments are]
[passed, function must take that many arguments and is]
[applied to the items of all lists in parallel.]

AFTER:

[APPLY FUNCTION TO EVERY ITEM OF LIST AND RETURN A]
[LIST OF THE RESULTS. IF ADDITIONAL LIST ARGUMENTS ARE]
[PASSED, FUNCTION MUST TAKE THAT MANY ARGUMENTS AND IS]
[APPLIED TO THE ITEMS OF ALL LISTS IN PARALLEL.]

Notice that only leading and trailing whitespace is removed. Extra whitespace in the middle of a string
such as the last sentence is left as-is.

Our final example in this chapter deals with processing numbers. In particular, assume we have a text
file full of numeric dollar amounts. Let us say that these numbers are to go on your income tax form,
but you want to round them all to the nearest dollar amount. Here are the contents of our test text file
round.txt:

98.76
90.69
51.36
50.89
28.34
49.64
6.87
36.95
59.25
55.96

We now present in Example 11.7 the code to rounder.py, a script which strips the trailing
NEWLINE character and rounds all the values to the nearest dollar (converting the data from strings to
floats first, of course).

Example 11.7. Text File Number Crunching (rounder.py)

rounder.py takes a set of floating point values stored in a text file, and rounds them to the closest
whole number. The exercise is to simulate taking numbers destined for income taxes and rounding
them to the nearest dollar.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 f = open('round.txt')
004 4 values = map(float, f.readlines())
005 5 f.close()
006 6
007 7 print 'original\trounded'
008 8 for eachVal in map(None, values, \
009 9 map(round, values)):
010 10 print '%6.02f\t\t%6.02f' % eachVal
011 <$nopage>

The first thing that this script does is to call map(), sending each line to the float() built-in
function, thereby converting the string values to numeric ones while ignoring any leading or trailing
whitespace.

Finally, the main part of the code will now present the original values as well as the rounded ones. This
is accomplished by sending the values to the round() built-in function via map(). At the same

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/194#4.html

time, we call map() with a None function—implying identity which does nothing but merge its
sequence arguments into a single list consisting of tuples, each containing one value from each
sequence. (Starting in 2.0, we could have also used the zip() function, as indicated earlier in this
section.) In our case, this constitutes an original value and a rounded value. The for loop thus iterates
over this list of tuples, each tuple representing the original and rounded values, which are then
displayed to the user in a nice and readable format.

Executing the rounder.py script, we get the following output:

% rounder.py
original rounded
 98.76 99.00
 90.69 91.00
 51.36 51.00
 50.89 51.00
 28.34 28.00
 49.64 50.00
 6.87 7.00
 36.95 37.00
 59.25 59.00
 55.96 56.00

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=194

Programming > Core Python Programming > 11. Functions > reduce() See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174051007161119069149062

reduce()

The final functional programming piece is reduce(), which takes a binary function (a function that
takes two values, performs some calculation and returns one value as output), a sequence, and an
optional initializer, and methodologically "reduces" the contents of that list down to a single value,
hence its name.

It does this by taking the first two elements of the sequence and passing them to the binary function to
obtain a single value. It then takes this value and the next item of the sequence to get yet another value,
and so on until the sequence is exhausted and one final value is computed.

You may try to visualize reduce() as the following equivalence example:

reduce(func, [1, 2, 3]) = func(func(1, 2), 3)

Some argue that the "proper functional" use of reduce() requires only one item to be taken at a time
for reduce(). In our first iteration above, we took two items because we did not have a "result"
from the previous values (because we did not have any previous values). This is where the optional
initializer comes in. If the initializer is given, then the first iteration is performed on the initializer and
the first item of the sequence, and follows normally from there.

If we were to try to implement reduce() in pure Python, it might look something like this:

def reduce(bin_func, seq, init=None):

 lseq = list(seq) # convert to list

 if init == None: # initializer?
 res = lseq.pop(0) # no
 else:
 res = init # yes

 for item in lseq: # reduce sequence
 res = bin_func(res, item) # apply function

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=195
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A35%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=195&now=5%2F29%2F2002+9%3A35%3A06+PM

 return res # return result

This may be the most difficult of the four conceptually, so we should again show you an example as
well as a functional diagram (see Figure11-4). The "hello world" of reduce() is its use of a simple
addition function or its lambda equivalent seen earlier in this chapter:

Figure 11-4. How the reduce() Built-in Function Works

• def sum(x,y): return x,y
• lambda x,y: x+y

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/195#1.html

Given a list, we can get the sum of all the values by simply creating a loop, iteratively going through
the list, adding the current element to a running subtotal, and be presented with the result once the loop
has completed:

allNums = range(5) # [0, 1, 2, 3, 4]
total = 0
for eachNum in allNums:
 total = sum(total, eachNum) # total = total + eachNum
print 'the total is:', total

Making this code real in the interpreter looks like this:

>>> def sum(x,y): return x+y
>>> allNums = range(5)
>>> total = 0
>>> for eachNum in allNums:
... total = sum(total, eachNum)
...
>>> print 'the total is:' total
the total is: 10

Using a lambda function, we argue that we can accomplish the same task on a single line using
reduce():

>>> print 'the total is:', reduce((lambda x,y: x+y), range(5))
the total is: 10

The reduce() function performs the following mathematical operations given the input above:

((0 + 1) + 2) + 3) + 4)? 10

It takes the first two elements of the list (0 and 1), calls sum() to get 1, then calls sum() again with

that result and the next item 2, gets the result from that, pairs it with the next item 3 and calls sum(),
and finally takes the entire subtotal and calls sum() with 4 to obtain 10, which is the final return
value.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=195

Programming > Core Python Programming > 11. Functions > Variable Scope See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174051007162116113121233

Variable Scope

The scope of an identifier is defined to be the portion of the program where its declaration applies, or what we refer to
as "variable visibility." In other words, it is like asking yourself in which parts of a program do you have access to a
specific identifier. Variables either have local or global scope.

Global vs. Local Variables

Variables defined within a function have local scope, and those which are at the highest level in a module have global
or nonlocal scope.

In their famous "dragon" book on compiler theory, Aho, Sethi, and Ullman summarize it this way:

"The portion of the program to which a declaration applies is called the scope of that declaration. An occurrence of a
name in a procedure is said to be local to the procedure if it is in the scope of a declaration within the procedure;
otherwise, the occurrence is said to be nonlocal."

One characteristic of global variables is that unless deleted, they have a lifespan that lasts as long as the script that is
running and whose values are accessible to all functions, whereas local variables, like the stack frame they reside in,
live temporarily, only as long as the functions they are defined in are currently active. When a function call is made,
its local variables come into scope as they are declared. At that time, a new local name is created for that object, and
once that function has completed and the frame deallocated, that variable will go out of scope.

global_str = 'foo'
def foo():
 local_str = 'bar'
 return global_str + local_str

In the above example, global_str is a global variable while local_str is a local variable. The foo() function
has access to both global and local variables while the main block of code has access only to global variables.

NOTE

When searching for an identifier, Python searches the local scope first. If the name is not found within the local
scope, then an identifier must be found in the global scope or else a NameError exception is raised.

A variable's scope is related to the namespace in which it resides. We will cover namespaces formally in the next
chapter; it suffices to say for now that namespaces are just naming domains which maps names to objects, a
virtual set of what variable names are currently in use, if you will. The concept of scope relates to the namespace
search order that is used to find a variable. All names in the local namespace are within the local scope when a

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=196
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A35%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=196&now=5%2F29%2F2002+9%3A35%3A30+PM

function is executing. That is the first namespace searched when looking for a variable. If it is not found there,
then perhaps a globally-scoped variable with that name can be found. These variables are stored (and searched)
in the global and built-in namespaces.

It is possible to "hide" or override a global variable just by creating a local one. Recall that the local namespace
is searched first, being in its local scope. If the name is found, the search does not continue to search for a
globally-scoped variable, hence overriding any matching name in either the global or built-in namespaces.

Also, be careful when using local variables with the same names as global variables. If you use such names in a
function (to access the global value) before you assign the local value, you will get an exception (NameError or
UnboundLocalError), depending on which version of Python you are using.

global Statement

Global variable names can be overridden by local variables if they are declared within the function. Here is another
example, similar to the first, but the global and local nature of the variable is not as clear.

def foo():
 print "\ncalling foo()…"
 bar = 200
 print "in foo(), bar is", bar
bar = 100
print "in __main__, bar is", bar
foo()
print "\nin __main__, bar is (still)", bar

It gave the following output:

in __main__, bar is 100
calling foo()…
in foo(), bar is 200
in __main__, bar is (still) 100

Our local bar pushed the global bar out of the local scope. To specifically reference a named global variable, one
must use the global statement. The syntax for global is:

global
 var1[, var2[, … varN]]]

Modifying the example above, we can update our code so that we use the global version of is_this_global
rather than create a new local variable.

>>> is_this_global = "xyz"
>>> def foo():
… global is_this_global
… this_is_local = 'abc'
… is_this_global = 'def'
… print this_is_local + is_this_global
…
>>> foo()
abcdef
>>> print is_this_global
def

Number of Scopes

Python syntactically supports multiple levels of functional nesting; however, a maximum of two scopes is imposed: a
function's local scope and the global scope. Even as more levels of functional nesting exist, you are not able to access
more than two scopes.

def foo():
 m = 3
 def bar():
 n = 4
 print m + n
 print m
 bar()

>>> foo()
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
 File "<interactive input>", line 7, in foo
 File "<interactive input>", line 5, in bar
NameError: m

The access to foo()'s local variable m within function bar() is illegal because m is declared local to foo(). The
only scopes accessible from bar() are bar()'s local scope and the global scope. foo()'s local scope is not
included in that short list of two. Note that the output for the "print m" statement succeeded, and it is the function
call to bar() that fails. (Note: this may change for future versions of Python.)

Other Scope Characteristics

Scope and lambda

Python's lambda expressions follow the same scoping rules as standard functions. A lambda expression defines a
new scope, just like a function definition, so the scope is inaccessible to any other part of the program except for that
local lambda/function.

Those lambda expressions declared local to a function are accessible only within that function; however, the
expression in the lambda statement has the same scope access as the function. In other words, they have access to
global variables, but neither has access to each other's local scopes. You can also think of a function and a lambda
expression as siblings.

>>> x = 10
>>> def foo():
… y = 5
… bar = lambda :x+y
… print bar()
… y = 8
… print bar()
…
>>> foo()
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
 File "<interactive input>", line 4, in foo
 File "<interactive input>", line 3, in <lambda>
NameError: y

In the example above, although the lambda expression was created in the local scope of foo(), it has access to
only two scopes: its local scope and the global scope (also see Section 11.8.3). We can correct it by placing a local
variable z within the lambda expression that references the function local variable y.

>>> x = 10
>>> def foo():
… y = 5
… bar = lambda z:x+z
… print bar(y)
…
… y = 8
… print bar(y)
…
>>> foo()
15
18

Variable Scope and Namespaces

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/196#3.html

From our study in this chapter, we can see that at any given time, there are either one or two active scopes—no more,
no less. Either we are at the top-level of a module where we have access only to the global scope, or we are executing
in a function where we have access to its local scope as well as the global scope. How do namespaces relate to scope?

From the Core Note in Section 11.8.1, we can also see that at any given time, there are either two or three active
namespaces. From within a function, the local scope encompasses the local namespace, the first place a name is
searched for. If the name exists here, then checking the global scope (global and built-in namespaces) is skipped.
From the global scope (outside of any function), a name lookup begins with the global namespace. If no match is
found, the search proceeds to the built-in namespace.

We will now present a script with mixed scope everywhere, Example 11.8. We leave it as an exercise to the reader to
determine the output of the program.

Example 11.8. Variable Scope (scope.py)

Local variables hide global variables, as indicated in this variable scope program. What is the output of this
program? (And why?)

 <$nopage>
001 1 #!/usr/bin/env python
002 2 j, k = 1, 2
003 3
004 4 def proc1():
005 5
006 6 j, k = 3, 4
007 7 print "j == %d and k == %d" % (j, k)
008 8 k = 5
009 9
010 10 def proc2():
011 11
012 12 j = 6
013 13 proc1()
014 14 print "j == %d and k == %d" % (j, k)
015 15
016 16
017 17 k = 7
018 18 proc1()
019 19 print "j == %d and k == %d" % (j, k)
020 20
021 21 j = 8
022 22 proc2()
023 23 print "j == %d and k == %d" % (j, k)
024 <$nopage>

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/196#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/196#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=196

Programming > Core Python Programming > 11. Functions > *Recursion See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174051007165093001224179

*Recursion

A function is recursive if it contains a call to itself. Aho, Sethi, and Ullman define, "[a] procedure is
recursive if a new activation can begin before an earlier activation of the same procedure has ended." In
other words, a new invocation of the same function occurs within that function before it finished.

Recursion is used extensively in language recognition as well as in mathematical applications that use
recursive functions. Earlier in this text, we took a first look at the factorial function where we defined:

N! = factorial(N) = 1 * 2 * 3 … * N

We can also look at factorial this way:

factorial(N) = N!
 = N * (N-1)!
 = N * (N-1) * (N-2)!

 = N * (N-1) * (N-2) … * 3 * 2 * 1

We can now see that factorial is recursive because factorial(N) = N * factorial(N-1).
In other words, to get the value of factorial(N), one needs to calculate factorial(N-1).
Furthermore, to find factorial(N-1), one needs to computer factorial(N-2), and so on.

We now present the recursive version of the factorial function:

def factorial(n):
 if n == 0 or n == 1:# 0! = 1! = 1
 return 1
 else:
 return (n * factorial(n-1))

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=197
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A35%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=197&now=5%2F29%2F2002+9%3A35%3A45+PM

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=197

Programming > Core Python Programming > 11. Functions > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174051007164253053075245

Exercises

1: Arguments. Compare the following three functions:

def countToFour1():
 for eachNum in range(5):
 print eachNum,

def countToFour2(n):
 for eachNum in range(n, 5):
 print eachNum,

def countToFour3(n=1):
 for eachNum in range(n, 5):
 print eachNum,

What do you think will happen as far as output from the program, given the following input
values? Enter the output into Table 11.1 below. Write in "ERROR" if you think one will
occur with the given input or " NONE" if there is no output.

Table 11.2. Output chart for Problem 11-1

Input countToFour1 countToFour2 countToFour3

2
4
5
(nothing)

2: Functions. Combine your solutions for Exercise 5-2. such that you create a combination
function which takes the same pair of numbers and returns both their sum and product at the
same time.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=198
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A35%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=198&now=5%2F29%2F2002+9%3A35%3A56+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/187#1.html

3: Functions. In this exercise, we will be implementing the max() and min() built-in
functions.

(a) Write simple functions max2() and min2() that take two items and return the larger
and smaller item, respectively. They should work on arbitrary Python objects. For example,
max2(4, 8) and min2(4, 8) would each return 8 and 4, respectively.

(b) Create new functions my_max() and my_min() that use your solutions in part (a) to
recreate max() and min(). These functions return the largest and smallest item of non-
empty sequences, respectively. Test your solutions for numbers and strings.

4: Return values. Create a complementary function to your solution for Exercise 5-13. Create a
function that takes a total time in minutes and returns the equivalent in hours and minutes.

5: Default arguments. Update the sales tax script you created in Exercise 5-7 such that a sales
tax rate is no longer required as input to the function. Create a default argument using your
local tax rate if one is not passed in on invocation.

6: Variable-length arguments. Write a function called printf(). There is one positional
argument, a format string. The rest are variable arguments that need to be displayed to
standard output based on the values in the format string, which allows the special string
format operator directives such as %d, %f, etc. HINT: the solution is trivial—there is no
need to implement the string operator functionality, but you do need to use the string format
operator (%) explicitly.

7: Functional programming with map(). Given a pair of identically-sized lists, say [1, 2,
3, …], and ['abc', 'def', 'ghi', …], merge both lists into a single list
consisting of tuples of elements of each list so that our result looks like: {[(1, 'abc'),
(2, 'def'), (3, 'ghi'), …}. (Although this problem is similar in nature to a
problem in Chapter 6, there is no direct correlation between their solutions.)

8: Functional programming with filter(). Use the code you created for Exercise 5-4 to
determine leap years. Update your code so that it is a function if you have not done so
already. Then write some code to take a list of years and return a list of only leap years.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#30.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#30.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#30.html

9: Functional programming with reduce(). Review the code in Section 11.7.2 that illustrated
how to sum up a set of numbers using reduce(). Modify it to create a new function called
average() that calculates the simple average of a set of numbers.

10: Functional programming with filter(). In the Unix file system, there are always two
special files in each folder/directory: '.' indicates the current directory and '..' represents the
parent directory. Given this knowledge, take a look at the documentation for the
os.listdir() function and describe what this code snippet does:

files = filter(lambda x: x and x[0] != '.', os.listdir(folder))

11: Functional programming with map(). Write a program that takes a file name and "cleans"
the file by removing all leading and trailing whitespace from each line. Read in the original
file and write out a new one, either creating a new file or overwriting the existing one. Give
your user the option to pick which of the two to perform.

12: Passing functions. Write a sister function to the testit() function described in this
chapter. Rather than testing execution for errors, timeit() will take a function object
(along with any arguments), and time how long it takes to execute the function. Return the
following values: function return value, time elapsed. You can use time.clock() or
time.time(), whichever provides you with greater accuracy.

13: Functional programming with reduce() and Recursion. In Chapter 8, we looked at N
factorial or N! as the product of all numbers from 1 to N.

(a)Take a minute to write a small, simple function called mult(x, y) that takes x and y
and returns their product.

(b) Use the mult() function you created in part (a)along with reduce() to calculate
factorials.

(c) Discard the use of mult() completely and use a lambda expression instead.

(d) In this chapter, we presented a recursive solution to finding N! Use the timeit()
function you completed in the problem above and time all three versions of your factorial

function (iterative, reduce(), and recursive). Explain any differences in performance,
anticipated and actual.

14: *Recursion. We also looked at Fibonacci numbers in Chapter 8. Rewrite your previous
solution for calculating Fibonacci numbers (Exercise 8-9) so that it now uses recursion.

15: *Recursion. Rewrite your solution to Exercise 6-5 which prints a string backwards to use
recursion. Use recursion to print a string forward and backward.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=198

Programming > Core Python Programming > 12. Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174048203104096003091051

Chapter 12. Modules
Chapter Topics

● What Are Modules?

● Modules and Files

● Namespaces

● Importing Modules

● Importing Module Attributes

● Module Built-in Functions

● Packages

● Other Features of Modules

This chapter focus on Python modules and how data is imported from modules into your programming
environment. We will also take a look at packages. Modules are a way to organize Python code, and
packages help you organize modules. We will conclude this chapter with a look at other related aspects
of modules.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=200
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A36%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=200&now=5%2F29%2F2002+9%3A36%3A07+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=200

Programming > Core Python Programming > 12. Modules > What are Modules? See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174048203105147158168030

What are Modules?

A module allows you to logically organize your Python code. When code gets to be large enough, the
tendency is to break it up into organized pieces which can still interact with each other at a functioning
level. These pieces generally have attributes which have some relation to each other, perhaps a single
class with its member data variables and methods, or maybe a group of related, yet independently
operating functions. These pieces should be shared, so Python allows a module the ability to "bring in"
and use attributes from other modules to take advantage of work that has been done, maximizing code
reusability. This process of associating attributes from other modules with your module is called
importing. Self-contained and organized pieces of Python code that can be shared—in a nutshell, that
describes a module.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=201
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A36%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=201&now=5%2F29%2F2002+9%3A36%3A16+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=201

Programming > Core Python Programming > 12. Modules > Modules and Files See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174048203106010085032232

Modules and Files

If modules represent a logical way to organize your Python code, then files are a way to physically
organize modules. To that end, each file is considered an individual module, and vice versa. The file
name of a module is the module name appended with the .py file extension. There are several aspects
we need to discuss with regards to what the file structure means to modules. Unlike other languages in
which you import classes, in Python you import modules or module attributes.

Namespaces

We will discuss namespaces in detail later in this chapter, but the basic concept of a namespace is an
individual set of mappings from names to objects. As you are no doubt aware, module names play an
important part in the naming of their attributes. The name of the attribute is always prepended with the
module name. For example, the atoi() function in the string module is called
string.atoi(). Because only one module with a given name can be loaded into the Python
interpreter, there is no intersection of names from different modules; hence, each module defines its
own unique namespace. If I created a function called atoi() in my own module, perhaps
mymodule, its name would be mymodule.atoi(). So even if there is a name conflict for an
attribute, the fully-qualified name—referring to an object via dotted attribute notation—prevents an
exact and conflicting match.

Search Path and Path Search

The process of importing a module requires a process called a path search. This is the procedure of
checking "predefined areas" of the file system to look for your mymodule.py file in order to load the
mymodule module. These predefined areas are no more than a set of directories that are part of your
Python search path. To avoid the confusion between the two, think of a path search as the pursuit of a
file through a set of directories, the search path.

There may be times where importing a module fails:

>>> import xxx
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ImportError: No module named xxx

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=202
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A36%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=202&now=5%2F29%2F2002+9%3A36%3A24+PM

When this error occurs, the interpreter is telling you it cannot access the requested module, and the
likely reason is that the module you desire is not in the search path, leading to a path search failure.

A default search path is automatically defined either in the compilation or installation process. This
search path may be modified in one of two places.

One is the PYTHONPATH environment variable set in the shell or command-line interpreter that
invokes Python. The contents of this variable consist of a colon-delimited set of directory paths. If you
want the interpreter to use the contents of this variable, make sure you set or update it before you start
the interpreter or run a Python script.

Once the interpreter has started, you can access the path itself which is stored in the sys module as the
sys.path variable. Rather than a single string that is colon-delimited, the path has been "split" into a
list of individual directory strings. Below is an example search path for a Unix machine. Your mileage
will definitely vary as you go from system to system.

>>> sys.path
['', '/usr/local/lib/python1.5/', '/usr/local/lib/
python1.5/plat-sunos5', '/usr/local/lib/python1.5/
lib-tk', '/usr/local/lib/python1.5/lib-dynload']

Bearing in mind that this is just a list, we can definitely take our liberty with it and modify it at our
leisure. If you know of a module you want to import, yet its directory is not in the search path, by all
means use the list's append() method to add it to the path, like so:

sys.path.append('/home/wesc/py/lib')

Once this is accomplished, you can then load your module. As long as one of the directories in the
search path contains the file, then it will be imported. Of course, this adds the directory only to the end
of your search path. If you want to add it elsewhere, such as in the beginning or middle, then you have
to use the insert() list method for those. In our examples above, we are updating the sys.path
attribute interactively, but it will work the same way if run as a script.

Here is what it would look like if we ran into this problem interactively:

>>> import sys
>>> import mymodule
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named mymodule
>>>
>>> sys.path.append('/home/wesc/py/lib')
>>> sys.path
['', '/usr/local/lib/python1.5/', '/usr/local/lib/
python1.5/plat-sunos5', '/usr/local/lib/python1.5/
lib-tk', '/usr/local/lib/python1.5/lib-dynload', '/home/
wesc/py/lib']
>>>
>>> import mymodule
>>>

On the flip side, you may have too many copies of a module. In the case of duplicates, the interpreter
will load the first module it finds with the given name while rummaging through the search path in
sequential order.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=202

Programming > Core Python Programming > 12. Modules > Namespaces See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174048203107243054142176

Namespaces

A namespace is a mapping of names (identifiers) to objects. The process of adding a name to a
namespace consists of binding the identifier to the object (and increasing the reference count to the
object by one). The Python Language Reference also includes the following definitions: "changing the
mapping of a name is called rebinding[, and] removing a name is unbinding."

As briefly introduced in the last chapter, there are either two or three active namespaces at any given
time during execution. These three namespaces are the local, global, and built-ins namespaces, but
local namespaces come and go during execution, hence the "two or three" we just alluded to. The
names accessible from these namespaces as dependent on their loading order, or the order in which the
namespaces are brought into the system.

The Python interpreter loads the built-ins namespace first. This consists the names in the
__builtins__ module. Then the global namespace for the executing module is loaded, which then
becomes the active namespace when the module begins execution. Thus we have our two active
namespaces.

NOTE

The __builtins__ module should not be confused with the __builtin__ module. The names,
of course, are so similar that it tends to lead to some confusion among new Python programmers
who have gotten this far. The __builtins__ module consists of a set of built-in names for the
built-ins namespace. Most, if not all, of these names come from the __builtin__ module, which
is a module of the built-in functions, exceptions, and other attributes. In standard Python execution,
__builtins__ contains all the names from __builtin__. The only time there is a difference
is when executing in restricted mode. (Restricted execution is covered formally in Chapter 14.) In
restricted mode, __builtins__ only consists of a subset of the attributes from __builtin__
which can be accessed from within a restricted environment.

When a function call is made during execution, the third, a local, namespace is created. We can use the
globals() and locals() built-in functions to tell us which names are in which namespaces. We
will discuss both functions in more detail later on in this chapter.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=203
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A36%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=203&now=5%2F29%2F2002+9%3A36%3A33+PM

Namespaces vs. Variable Scope

Okay, now that we know what namespaces are, how do they relate to variable scope again? They seem
extremely similar. The truth is, you are quite correct.

Namespaces are purely mappings between names and objects, but scope dictates how or rather, where,
one can access these names based on the physical location from within your code. We illustrate the
relationship between namespaces and variable scope in Figure 12-1.

Figure 12.1. Namespaces vs. Variable Scope

Notice that each of the namespaces is a self-contained unit. But looking at the namespaces from the
scoping point of view, things appear different. All names within the local namespace are within my
local scope. Any name outside my local scope is in my global scope.

Also keep in mind that during the execution of the program, the local namespaces and scope are
transient because function calls come and go, but the global and built-ins namespaces remain.

Our final thought to you in this section is, when it comes to namespaces, ask yourself the question,
"Does it have it?" And for variable scope, ask, "Can I see it?"

Name Lookup, Scoping, and Overriding

So how do scoping rules work in relationship to namespaces? It all has to do with name lookup. When

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/203#2.html

accessing an attribute, the interpreter must find it in one of the three namespaces. The search begins
with the local namespace. If the attribute is not found there, then the global namespace is searched. If
that is also unsuccessful, the final frontier is the built-ins namespace. If the exhaustive search fails, you
get the familiar:

>>> foo
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: foo

Notice how the figure features the foremost-searched namespaces "shadowing" namespaces which are
searched afterwards. This is to try to convey the effect of overriding. This is the process whereby
names may be taken out-of-scope because a more local namespace contains a name. Take a look at the
following piece of code that was introduced in the previous chapter:

def foo():
 print "\ncalling foo()…"
 bar = 200
 print "in foo(), bar is", bar

bar = 100
print "in __main__, bar is", bar
foo()

When we execute this code, we get the following output:

in __main__, bar is 100

calling foo()…
in foo(), bar is 200

The bar variable in the local namespace of foo() overrode the global bar variable. Although bar
exists in the global namespace, the lookup found the one in the local namespace first, hence
"overriding" the global one. For more information regarding scope, please go back to Section 11.8 in
the last chapter.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=203

Programming > Core Python Programming > 12. Modules > Importing Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174048203109224094163109

Importing Modules

Importing a module requires the use of the import statement, whose syntax is:

import
 module1[, module2[, … moduleN]]

When this statement is encountered by the interpreter, the module is imported if found in the search path. Scoping
rules apply, so if imported from the top-level of a module, it has global scope; if imported from a function, it has local
scope.

When a module is imported the first time, it is loaded and executed.

Module "Executed" When Loaded

One effect of loading a module is that the imported module is "executed," that is, the top-level portion of the imported
module is directly executed. This usually includes setting up of global variables as well as performing the class and
function declarations, and if there is a check for __name__ to do more on direct script invocation, that is executed
too.

Of course, this type of execution may or may not be the desired effect. If not, you will have to put as much code as
possible into functions. Suffice it to say that good module programming style dictates that only function and/or class
definitions should be at the top-level of a module.

Importing vs. Loading

A module is loaded only once, regardless of the number of times it is imported. This prevents the module "execution"
from happening over and over again if multiple imports occur. If your module imports the sys module, and so do
five of the other modules you import, it would not be wise to load sys (or any other module) each time! So rest
assured, loading happens only once, on first import.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=204
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A36%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=204&now=5%2F29%2F2002+9%3A36%3A53+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=204

Programming > Core Python Programming > 12. Modules > Importing Module Attributes See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174049228074064209159047

Importing Module Attributes

It is possible to import specific module elements into your own module. By this, we really mean importing
specific names from the module into the current namespace. For this purpose, we can use the from-
import statement, whose syntax is:

from
 module
 import
 name1[, name2[, … nameN]]

Names Imported into Current Namespace

Calling from-import brings the name into the current namespace, meaning that you do not use the
attribute/dotted notation to access the module identifier. For example, to access a variable named var in
module module that was imported with:

from
 module
 import
 var

we would use var by itself. There is no need to reference the module since you just imported.

It is also possible to import all the names from the module into the current namespace using the following
from-import statement:

from
 module
 import *

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=205
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A37%3A03+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=205&now=5%2F29%2F2002+9%3A37%3A03+PM

NOTE

In practice, using from module import * is considered poor style because it "pollutes" the current
namespace and has the potential of overriding names in the current namespace; however, it is extremely
convenient if a module has many variables which are often accessed, or if the module has a very long
name.

We recommend using this form in only two situations. The first is where the target module has many
attributes that would make it inconvenient to type in the module name over and over again. Two prime
examples of this are the Tkinter (Python/Tk) and NumPy (Numeric Python) modules, and perhaps the
socket module. The other place where it is acceptable to use from module import * is within the
interactive interpreter, to save on the amount of typing.

Names Imported into Importer's Scope

Another side effect of importing only names from other modules is that the names are now part of the scope
of the importing module.This means that changes to the variable affect only the local copy and not the
original in the imported module's namespace. In other words, the binding is now local rather than across
namespaces.

Below, we present the code to two modules: an importer, impter.py, and an importee, imptee.py.
Currently, imptr.py uses the from-import statement which creates only local bindings.

#############
imptee.py
#############
foo = 'abc'
def show():
 print 'foo from imptee:', foo

#############
impter.py
#############
from imptee import foo, show
show()
foo = 123
print 'foo from impter:', foo
show()

Upon running the importer, we discover that the importee's view of its foo variable has not changed even
though we modified it in the importer.

foo from imptee: abc
foo from impter: 123
foo from imptee: abc

The only solution is to use import and fully-qualified identifier names using the attribute/dotted notation.

#############
impter.py
#############
import imptee
imptee.show()
imptee.foo = 123
print 'foo from impter:', imptee.foo
imptee.show()

Once we make the update and change our references accordingly, we now have achieved the desired effect.

foo from imptee: abc
foo from impter: 123
foo from imptee: 123

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=205

Programming > Core Python Programming > 12. Modules > Module Built-in Functions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174049228075106082086182

Module Built-in Functions

The importation of modules has some functional support from the system. We will look at those now.

__import__()

The __import__() function is new as of Python 1.5, and it is the function that actually does the
importing, meaning that the import statement invokes the __import__() function to do its work.
The purpose of making this a function is to allow for overriding it if one is inclined to develop his or
her own importation algorithm.

The syntax of __import__() is:

__import__(module_name[, globals[, locals[, fromlist]]]

The module_name variable is the name of the module to import, globals is the dictionary of
current names in the global symbol table, locals is the dictionary of current names in the local
symbol table, and fromlist is a list of symbols to import the way they would be imported using the
from-import statement.

The globals, locals, and fromlist arguments are optional, and if not provided, default to
globals(), locals(), and [], respectively.

Calling 'import sys' can be accomplished with

sys = __import__('sys')

globals() and locals()

The globals() and locals() built-in functions return dictionaries of the global and local

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=206
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A37%3A14+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=206&now=5%2F29%2F2002+9%3A37%3A14+PM

namespaces, respectively, of the caller. From within a function, the local namespace represents all
names defined for execution of that function, which is what locals() will return. globals(), of
course, will return those names globally accessible to that function.

From the global namespace, however, globals() and locals() return the same dictionary
because the global namespace is as local as you can get while executing there. Here is a little snippet of
code that calls both functions from both namespaces:

def foo():
 print '\ncalling foo()…'
 aString = 'bar'
 anInt = 42
 print "foo()'s globals:", globals().keys()
 print "foo()'s locals:", locals().keys()

print "__main__'s globals:", globals().keys()
print "__main__'s locals:", locals().keys()
foo()

We are going to ask for the dictionary keys only because the values are of no consequence here (plus
they make the lines wrap even more in this text). Executing this script, we get the following output:

% namespaces.py
__main__'s globals: ['__doc__', 'foo', '__name__',
'__builtins__']
__main__'s locals: ['__doc__', 'foo', '__name__',
'__builtins__']

calling foo()…
foo()'s globals: ['__doc__', 'foo', '__name__',
'__builtins__']
foo()'s locals: ['anInt', 'aString']

reload()

The reload() built-in function performs another import on a previously imported module. The
syntax of reload() is:

reload(module)

module is the actual module you want to reload. There are some criteria to using the reload()
module. The first is that the module must have been imported in full (not by using from-import),
and it must have loaded successfully. The second rule follows from the first, and that is the argument to
reload() is the module itself and not a string containing the module name, i.e., it must be something
like reload(sys) instead of reload('sys').

Also, code in a module is executed when it is imported, but only once. A second import does not re-
execute the code, it just binds the module name. Thus reload() makes sense, as it overrides this
default behavior.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=206

Programming > Core Python Programming > 12. Modules > Packages See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174049228072020001127037

Packages

A package is a hierarchical file directory structure that defines a single Python application environment
that consists of modules and subpackages. Packages were added to Python 1.5 to aid with a variety of
problems including:

● Adding hierarchical organization to flat namespace

● Allowing developers to group-related modules

● Allowing distributors to ship directories vs. bunch of files

● Helping resolve conflicting module names

Along with classes and modules, packages use the familiar attribute/dotted attribute notation to access
their elements. Importing modules within packages use the standard import and from-import
statements.

Directory Structure

The example package directory structure below is available for you to experiment with on the CD-ROM
accompanying this book. Just browse the code samples and navigate to Chapter 12.

Phone/
 __init__.py
 Voicedta/
 __init__.py
 Pots.py
 Isdn.py
 Fax/
 __init__.py
 G3.py
 Mobile/
 __init__.py
 Analog.py
 Digital.py

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=207
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A37%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=207&now=5%2F29%2F2002+9%3A37%3A25+PM

 Pager/
 __init__.py
 Numeric.py

Phone is top-level package and Voicedta, etc., are subpackages. Import subpackages by using
import like this:

import Phone.Mobile.Analog

Phone.Mobile.Analog.dial()

Alternatively, you can use from-import in a variety of ways:

The first way is importing just the top-level subpackage and referencing down the subpackage tree using
the attribute/dotted notation:

from Phone import Mobile

Mobile.Analog.dial('4 555–1212')

Further more, we can do down one more subpackage for referencing:

from Phone.Mobile import Analog

Analog.dial('555–1212')

In fact, you can go all the way down in the subpackage tree structure:

from Phone.Mobile.Analog import dial

dial('555–1212')

In our above directory structure hierarchy, we observe a number of __init__.py files. These are
initializer modules that are required when using from-import to import subpackages, but should
otherwise exist though they can remain empty.

Using from-import with Packages

Packages also support the from-import all statement:

from
 package.module
 import *

However, such a statement is too operating system filesystem-dependent for Python to make the
determination which files to import. Thus the __all__ variable in __init__.py is required. This
variable contains all the module names that should be imported when the above statement is invoked if
there is such a thing. It consists of a list of module names as strings.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=207

Programming > Core Python Programming > 12. Modules > Other Features of Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174049228073040039251126

Other Features of Modules

Auto-loaded Modules

When the Python interpreter starts up in standard mode, some modules are loaded by the interpreter for
system use. The only one that affects you is the __builtin__ module, which normally gets loaded
in as the __builtins__ module.

The sys.modules variable consists of a dictionary of modules that the interpreter has currently
loaded (in full and successfully) into the interpreter. The module names are the keys, and the location
from which they were imported are the values.

For example, in Windows, the sys.modules variable contains a large number of loaded modules, so
we will shorten the list by requesting only the module names. This is accomplished by using the
dictionary's keys() method:

>>> import sys
>>> sys.modules.keys()
['os.path', 'os', 'exceptions', '__main__', 'ntpath',
'strop', 'nt', 'sys', '__builtin__', 'site',
'signal', 'UserDict', 'string', 'stat']

The loaded modules for Unix are quite similar:

>>> import sys
>>> sys.modules.keys()
['os.path', 'os', 'readline', 'exceptions',
'__main__', 'posix', 'sys', '__builtin__', 'site',
'signal', 'UserDict', 'posixpath', 'stat']

Preventing Attribute Import

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=208
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A37%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=208&now=5%2F29%2F2002+9%3A37%3A33+PM

If you do not want module attributes imported when a module is imported with "from module
import *", begin the name, and prepend the underscore (_) to their names. Names in the imported
module that begin with an underscore (_) are not imported. This minimal level of data hiding does not
apply if the entire module is imported.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=208

Programming > Core Python Programming > 12. Modules > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174049228078191146090069

Exercises

1: PathSearch vs. SearchPath. What is the difference between a path search and a search path?

2: Importing Attributes. Assume you have a function called foo() in your module
mymodule. What are the two ways of import this function into your namespace for
invocation?

3: Importing. What are the differences between using "import module" and "from
module import *"?

4: Namespaces vs. Variable Scope. How are namespaces and variable scopes different from
each other?

5: Using__import__().

(a) Use __import__() to import a module into your namespace. What is the correct
syntax you finally used to get it working?

(b) Same as above, but use __import__() to import only specific names from modules.

6: Extended Import. Create a new function called importAs(). This function will import a
module or module into your namespace, but with a name you specify, not its original name.
For example, calling newname=importAs('mymodule'), will import the module
mymodule, but the module and all its elements are accessible only as newname or
newname.attr. You will discover that this is the exact functionality provided by the new
extended import syntax introduced in Python 2.0.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=209
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A37%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=209&now=5%2F29%2F2002+9%3A37%3A44+PM

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=209

Programming > Core Python Programming > 13. Classes and OOP See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174049228079091116100211

Chapter 13. Classes and OOP
Chapter Topics

● Introduction

● Object-Oriented Programming

● Classes

● Instances

● Binding and Method Invocation

● Subclassing, Derivation, and Inheritance

● Built-in Functions

● Types vs. Classes/Instances

● Customizing Classes with Special Methods

● Privacy

● Delegation and Wrapping

● Related Modules

Classes finally introduce the notion of object-oriented programming (OOP) to our picture. We will first
present a high-level overview, covering all the main aspects of using classes and OOP in Python. The
remainder of the chapter covers all the details on classes, class instances, and methods. We will also
describe derivation or subclassing in Python and what its inheritance model is. Finally, Python provides
special attributes which allow the programmer to customize classes with special functionality,
including those which overload operators and emulate Python types. We will show you how to
implement some of these special methods to customize your class to attain type-like behavior.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=211
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A37%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=211&now=5%2F29%2F2002+9%3A37%3A56+PM

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=211

Programming > Core Python Programming > 13. Classes and OOP > Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174062198208075092084114

Introduction

Before we get into the nitty-gritty of OOP and classes, we begin with a high-level overview, then
present some simple examples to get you "warmed up." If you are new to object-oriented programming,
you may wish to merely skim this section first, then begin the formal reading in Section 13.2. This
section is targeted more to those already familiar with the concepts, who simply want to see "how it's
done" in Python.

The main two entities in Python object-oriented programming are classes and class instances (see
Figure13-1).

Figure 13.1. The factory manufacturing machines on the left are analogous to classes, while each toy
produced are instances of their respective classes. Although each instance has the basic underlying

structure, individual attributes like color or feet can be changed—these are similar to instance
attributes.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=212
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A38%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=212&now=5%2F29%2F2002+9%3A38%3A06+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/212#1.html

Classes and Instances

Classes and instances are related to each other: classes provide the definition of an object, and instances
are "the real McCoy," the objects specified in the class definition brought to life.

Here is an example of how to create a class:

class MyNewObjectType:
 'define MyNewObjectType class'
 class_suite

The keyword is class, followed by the class name. What follows is the suite of code that defines the
class. This usually consists of various definitions and declarations. The process of creating an instance
is called instantiation, and it is carried out like this (note the conspicuous absence of a new keyword):

myFirstObject = MyNewObjectType()

The class name is given as an "invocation," using the familiar function operators (()). You then
typically assign that newly-created instance to a variable. The assignment is not required syntactically,
but if you do not save your instance to a variable, it will be of no use and will be automatically garbage-
collected because there would no references to that instance. What you would be doing is allocating
memory, then immediately deallocating it.

Classes can be as simple or as complicated as you wish them to be. At a very minimum, classes can be
used as "namespace containers." By this, we mean that you can store data into variables and group
them in such a way that they have all share the same relationship—a named relationship using the
standard Python dotted-attribute notation. For example, you may have a class without any inherent
attributes and merely use such a class to provide a namespace for data, giving your class characteristics
similar to records in Pascal or structures in C, or, in other words, use the class as simply a container
object with shared naming.

Here is one example of such a class:

class MyData:
 pass

Recall that the pass statement is used where code is required syntactically, but no operation is desired.
In this case, the required code is the class suite, but we do not wish to provide one. The class we just
defined has no methods or any other attributes. We will now create an instance to use the class simply
as a namespace container.

>>> mathObj = MyData()
>>> mathObj.x = 4
>>> mathObj.y = 5
>>> mathObj.x + mathObj.y
9
>>> mathObj.x * mathObj.y
20

We could have used variables "x" and "y" to accomplish the same thing, but in our case, mathObj.x
and mathObj.y are related by the instance name, mathObj. This is what we mean by using classes
as namespace containers. mathObj.x and mathObj.y are known as instance attributes because
they are only attributes of their instance object (mathObj), not of the class (MyData).

Methods

One way we can improve our use of classes is to add functions to them. These class functions are
known by their more common name, methods. In Python, methods are defined as part of the class
definition, but can be invoked only by an instance. In other words, the path one must take to finally be
able to call a method goes like this: (1) define the class (and the methods), (2) create an instance, and
finally, (3) invoke the method from that instance. Here is an example class with a method:

class MyDataWithMethod: # define the class
 def printFoo(self): # define the method
 print 'You invoked printFoo()!'

You will notice the self argument, which must be present in all method invocations. That argument,
representing the instance object, is passed to the method implicitly by the interpreter when you invoke
a method via an instance, so you, yourself, do not have to worry about passing anything in. Now we
will instantiate the class and invoke the method once we have an instance:

>>> myObj = MyDataWithMethod() # create the instance
>>> myObj.printFoo() # now invoke the method
You invoked printFoo()!

We conclude this introductory section by giving you a slightly more complex example of what you can
do with classes (and instances) and also introducing you to the special method __init__() as well
as subclassing and inheritance.

For those of you who are already familiar with object-oriented programming, __init__() is the
class constructor. If you are new to the world of OOP, a constructor is simply a special method which
is called during instantiation that defines additional behavior that should occur when a class is
instantiated, i.e., setting up initial values or running some preliminary diagnostic code—basically

performing any special tasks or setup after the instance is created but before it is returned from the
instantiation call.

(We will add print statements to our methods to better illustrate when certain methods are called. It
is generally not typical to have input or output statements in functions unless output is a predetermined
characteristic of the body of code.)

Creating a Class (Class Definition)

class AddrBookEntry: # class definition
 'address book entry class'
 def __init__(self, nm, ph): # define constructor
 self.name = nm # set inst .attr .1
 self.phone = ph # set inst .attr .2
 print 'Created instance for:', self.name

 def updatePhone(self, newph): # define method
 self.phone = newph
 print 'Updated phone# for:', self.name

In the definition for the AddrBookEntry class, we define two methods: __init__() and
updatePhone(). __init__() is called when instantiation occurs, that is, when
AddrBookEntry() is invoked. You can think of such an instantiation call to be an implicit call to
__init__() because the arguments given in the call to AddrBookEntry() are exactly the same as
those that are received by __init__().

Recall that the self (instance object) argument is passed in automatically by the interpreter when the
method is invoked from an instance, so in our __init__() above, the only required arguments are
nm and ph, representing the name and telephone number, respectively. __init__() sets these two
instance attributes on instantiation so that they are available to the programmer by the time the instance
is returned from the instantiation call.

As you may have surmised, the purpose of the updatePhone() method is to replace an address
book entry's telephone number attribute.

Creating Instances (Instantiation)

>>> john = AddrBookEntry('John Doe', '408-555-1212')

Created instance for: John Doe
>>> jane = AddrBookEntry('Jane Doe', '650-555-1212')
Created instance for: Jane Doe

These are our instantiation calls which, in turn, invoke __init__(). Recall that an instance object is
passed in automatically as self. So in your head, you can replace self in methods with the name of
the instance. In the first case, when object john is instantiated, it is john.name that is set, as you can
confirm below.

Also, without the presence of default arguments, both parameters to __init__() are required as part
of the instantiation invocation.

Accessing Instance Attributes

>>> john
<__main__.AddrBookEntry instance at 80ee610>
>>> john.name
'John Doe'
>>> john.phone
'408-555-1212'
>>> jane.name
'Jane Doe'
>>> jane.phone
'650-555-1212'

Once our instance was created, we can confirm that our instance attributes were indeed set by
__init__() during instantiation. Calling the instance within the interpreter tells us what kind of
object it is. (We will discover later how we can customize our class so that rather than seeing the
default <…> Python object string, a more desired output can be customized.)

Method Invocation (via Instance)

>>> john.updatePhone('415-555-1212')
Updated phone# for: John Doe
>>> john.phone
'415-555-1212'

The updatePhone() method requires one explicit argument: the new phone number. We check our
instance attribute right after the call to updatePhone(), making sure that it did what was
advertised.

So far, we have invoked only a method via an instance, as in the above example. These are known as
bound methods in Python. Binding is just a Python term to indicate whether we have an instance to
invoke a method.

Creating a Subclass

Subclassing with inheritance is a way to create and customize a new class type with all the features of
an existing class but without modifying the original class definition. The new subclass can be
customized with special functionality unique only to that new class type. Aside from its relationship to
its parent or base class, a subclass has all the same features as any regular class and is instantiated in
the same way as all other classes. Note below that a parent class is part of the subclass declaration:

class AddrBookEntryWithEmail(AddrBookEntry): # define subclass
 'update address book entry class'
 def __init__(self, nm, ph, em): # new __init__
 AddrBookEntry.__init__(self, nm, ph) # base class cons.
 self.email = em
 def updateEmail(self, newem): # define method
 self.email = newem
 print 'Updated e-mail address for:', self.name

We will now create our first subclass, AddrBookEntryWithEmail. In Python, when classes are
derived, subclasses inherit the base class attributes, so in our case, we will not only define the methods
__init__() and updateEmail(), but AddrBookEntryWithEmail will also inherit the
updatePhone() method from AddrBookEntry.

Each subclass must define its own constructor if desired, otherwise, the base class constructor will be
called. However, if a subclass overrides a base class constructor, the base class constructor will not be
called automatically—such a request must be made explicitly as we have above. For our subclass, we
make an initial call to the base class constructor before performing any "local" tasks, hence the call to
AddrBookEntry.__init__() to set the name and phone number. Our subclass sets one
additional instance attribute, the e-mail address, which is set by the remaining line of our constructor.

Note how we have to explicitly pass the self instance object to the base class constructor because we

are not invoking that method from an instance. We are invoking that method from an instance of a
subclass. Because we are not invoking it via an instance, this unbound method call requires us to pass
an acceptable instance (self) to the method.

We close out this section with examples of how to create an instance of the subclass, accessing its
attributes, and invoking its methods, including those inherited from the parent class.

Using a Subclass

>>> john = AddrBookEntryWithEmail('John Doe, '408-555-
1212', 'john@spam.doe')
Created instance for: John Doe
>>> john
<__main__.AddrBookEntryWithEmail instance at 80ef6f0>
>>> john.name
'John Doe'
>>> john.phone
'408-555-1212'
>>> john.email
'john@spam.doe'
>>> john.updatePhone('415-555-1212')
Updated phone# for: John Doe
>>> john.phone
'415-555-1212'
>>> john.updateEmail('john@doe.spam')
Updated e-mail address for: John Doe
>>> john.email
'john@doe.spam'

NOTE

Class names traditionally being with a capital letter. This is the standard convention that will help
you identify classes, especially during instantiation (which would look like a function call
otherwise). In particular, data attributes should sound like data value names, and methods names
should indicate action towards a specific object or value. Another way to phrase this is: Use nouns
for data value names and predicates (verbs plus direct objects) for methods. The data items are the
objects you, the programmer, are acting on, and the methods should indicate what action the
programmer wants to perform on the object.

In the classes we defined above, we attempted to follow this guideline, with data values such as

"name," "phone," and "email," and actions such as "updatePhone" and "updateEmail." Other good
examples for values include "data," "amount," or "balance;" some recommended method names
include "getValue," "setValue," and "clearDataset." Classes should also be well named; some of
those good names include "AddrBookEntry," "RepairShop," etc.

We hope that you now have some understanding of how object-oriented programming is accomplished
using Python. The remaining sections of this chapter will take you deeper into all the facets of object-
oriented programming and Python classes and instances.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=212

Programming > Core Python Programming > 13. Classes and OOP > Object-oriented
Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174062198210023102053188

Object-oriented Programming

The evolution of programming has taken us from a sequence of step-by-step instructions in a single
flow of control to a more organized approach whereby blocks of code could be cordoned off into
named subroutines and defined functionality. Structured or procedural programming lets us organize
our programs into logical blocks, often repeated or reused. Creating applications becomes a more
logical process; actions are chosen which meet the specifications, then data is created to be subjected to
those actions. Deitel & Deitel refer to structured programming as "action-oriented" due to the fact that
logic must be "enacted" on data which has no associated behaviors.

However, what if we could impose behavior on data? What if we were able to create or program a
piece of data modeled after real-life entities which embodies both data characteristics along with
behaviors? If we were then able to access the data attributes via a set of defined interfaces (a.k.a. a set
of accessor functions), such as an automated teller machine (ATM) card or a personal check to access
your bank account, then we would have a system of "objects" where each could interact not only with
itself, but also with other objects in a larger picture.

Object-oriented programming takes this evolutionary step by enhancing structured programming to
enable a data/behavior relationship: Data and logic are now described by a single abstraction with
which to create these objects. Real-world problems and entities are stripped down to their bare
essentials, providing that abstraction from which they can be coded or implemented into objects and be
able to interact with other objects in the system which models and hopefully solves these problems.
Classes provide the definitions of such objects, and instances are realizations of such definitions. Both
are vital components for object-oriented design (OOD), which simply means to build your system
architected in an object-oriented fashion.

Relationship between OOD and OOP

Object-oriented design does not specifically require an object-oriented programming language. Indeed,
OOD can be performed in purely structural languages such as C, but this requires more effort on the
part of the programmer who must build data types with object qualities and characteristics. Naturally,
OOP is simplified when a language has built-in OO properties that enable smoother and more rapid
development of OO programs.

Conversely, an object-oriented language does not necessarily force one to write OO programs. C++ can
be used simply as a "better C." As you are no doubt aware, neither classes nor OOP are required for

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=213
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A38%3A29+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=213&now=5%2F29%2F2002+9%3A38%3A29+PM

everyday Python programming. Even though it is a language which is object-oriented by design and
which has constructs to support OOP, Python does not restrict nor require you to write OO code for
your application. Rather, OOP is a powerful tool which is at your disposal when you are ready to
evolve, learn, transition, or otherwise move towards OOP. The creator of Python often refers to this
phenomena as being able to "see the forest through the trees."

Real-world Problems

One of the most important reasons to consider working in OOD is that it provides a direct approach to
modeling and solving real-world problems and situations. For example, let us attempt to model an
automobile mechanic shop where you would take your car in for repair. There are two general entities
we would have to create: humans who interact with and in such a "system," and a physical location for
the activities which define a mechanic shop. Since there are more of and different types of the former,
we will describe them first, then conclude with the latter.

A class called Person would be created to represent all humans involved in such an activity. Instances
of Person would include the Customer, the Mechanic, and perhaps the Cashier. Each of
these instances would have similar as well as unique behaviors. For example, all would have the
talk() method as a means of vocal communication as well as a drive_car() method. Only the
Mechanic would have the repair_car() method and only the Cashier would have a
ring_sale() method. The Mechanic will have a repair_certification attribute while all
Persons would have a drivers_license attribute.

Finally, all of these instances would be participants in one overseeing class, called the RepairShop,
which would have operating_hours, a data attribute which accesses time functionality to
determine when Customers can bring in their vehicles and when Employees such as Mechanics
and Cashiers show up for work. The RepairShop might also have a AutoBay class which would
have instances such as SmogZone, TireBrakeZone, and perhaps one called
GeneralRepair.

The point of our fictitious RepairShop is to show one example of how classes and instances plus
their behaviors can be used to model a true-to-life scenario. You can probably also imagine classes
such as an Airport, a Restaurant, a ChipFabPlant, a Hospital, or even a
MailOrderMusic business, all complete with their own participants and functionality.

*Buzzword-compliance

For those of you who are already familiar with all the lingo associated with OOP, here is how Python
stacks up:

Abstraction/Implementation

Abstraction refers to the modeling of essential aspects, behavior, and characteristics of real-world
problems and entities, providing a relevant subset as the definition of a programmatic structure which
can realize such models. Abstractions not only contain the data attributes of such a model, but also
define interfaces with that data. An implementation of such an abstraction is the realization of that data
and the interfaces which go along with it. Such a realization should remain hidden from and irrelevant
to the client programmer. Class objects in Python provide the ability to create such abstractions, and
implementation details are left to the designer.

Encapsulation/Interfaces

Encapsulation describes the concept of data/information hiding and providing interfaces or accessor
functions to the data attributes. Direct access to data by any client, bypassing the interfaces, goes
against the principles of encapsulation, but the programmer is free to allow such access. As part of the
implementation, the client should not even know how the data attributes are architected within the
abstraction. In Python, all class attributes are public, but names may be "mangled" to discourage
unauthorized access, but otherwise not prevented. It is up to the designer to provide the appropriate
interfaces to the data so that the client programmer does not have to resort to manipulating the
encapsulated data attributes.

Composition

Composition extends our description of classes, enabling multiple yet distinct classes to be combined
into a larger entity to solve a real-world problem. Composition describes a singular, complex system
such as a class made up of other, smaller components such as other classes, data attributes, and
behaviors, all of which are combined, embodying "has-a" relationships. For example, the
RepairShop "has a" Mechanic (hopefully at least one) and also "has a" Customer (again,
hopefully at least one).

These components are composed either via association, meaning that access to subcomponents is
granted (for the RepairShop, a customer may enter and request a SmogCheck, the client
programmer interfacing with components of the RepairShop), or aggregation, encapsulating
components which are then accessed only via defined interfaces, and again, hidden from the client
programmer. Continuing our example, the client programmer may be able to make a SmogCheck
request on behalf of the Customer, but has no ability to interact with the SmogZone part of the
RepairShop which is accessed only via internal controls of the RepairShop when the
smogCheckCar() method is called. Both forms of composition are supported in Python.

Derivation/Inheritance/Hierarchy

Derivation describes the creation of subclasses, new classes which retain all desired data and behavior
of the existing class type but permit modification or other customization, all without having to modify
the original class definition. Inheritance describes the means by which attributes of a subclass are

"bequeathed from" an ancestor class. From our earlier example, a Mechanic may have more car skill
attributes than a Customer, but individually, each "is a" Person, so it is valid to invoke the
talk() method, which is common to all instances of Person, for either of them. Hierarchy
describes multiple "generations" of derivation which can be depicted graphically as a "family tree,"
with successive subclasses having relationships with ancestor classes.

Generalization/Specialization

Generalization describes all the traits a subclass has with its parent and ancestor classes, so subclasses
are considered to have an "is-a" relationship with ancestor classes because a derived object (instance) is
an "example" of an ancestor class. For example, a Mechanic "is a" Person, a Car "is a"
Vehicle, etc. In the family tree diagram we alluded to above, we can draw lines from subclasses to
ancestors indicating "is-a" relationships. Specialization is the term which describes all the
customization of a subclass, i.e., what attributes which make it differ from its ancestor classes.

Polymorphism

The concept of polymorphism describes how objects can be manipulated and accessed using attributes
and behaviors they have in common without regard to their specific class. Polymorphism indicates the
presence of dynamic (a.k.a. late, run-time) binding, allowing for overloading and run-time type
determination and verification. Many OO languages use "signatures" to determine which version of an
overloaded method to call, but since Python calls are universal or generic without type determination,
overloading is unnecessary and is not supported in the language.

Introspection/Reflection

Introspection is what gives you, the programmer, the ability to perform an activity such as "manual
type checking." Also called reflection, this property describes how information about a particular object
can be accessed by itself during run-time. Would it not be great to have the ability to take an object
passed to you and be able to find out what it is capable of? This is a powerful feature which you will
encounter frequently in this chapter. The dir() and type() built-in functions would have a very
difficult time working if Python did not support for some sort of introspection capability. Keep an eye
out for these calls as well as for special attributes like __dict__, __name__, __doc__,
__members__, and __methods__. You may even be familiar with some of them already!

NOTE

In other object-oriented programming languages, the term "object" may refer specifically to class
instances, even more so when all data types of those languages are classes. Not so with Python.
Because data types in Python are not classes, not all objects are, therefore, class instances.

Some languages also consider defining a class to be synonymous with creating a new type. Again,

this is not the case with Python, but it is similar. Python has a fixed number of predefined types and
these remain constant. (Creating a new type in Python is a non-trivial task, requiring
implementation as an extension, and it is out of the scope of this text.) When creating classes, you
can give them behavior characteristics of types but they are not considered types.

However, Python is an object-oriented programming language and considers all entities
generically as objects because they do share some common semantics, yet are still distinct enough
to be different types of objects. In summary, classes, instances, and types are not related to each
other (with the exception that a class defines an object which is realized as an instance, another
type of object).

Bottom line: (all) classes are class objects, (all) instances are instance objects, neither are types,
and everything is an object. Also see the Core Note in Section 13.5.1.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/216#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=213

Programming > Core Python Programming > 13. Classes and OOP > Classes See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180024228156016206217188240240204174062198212142209026187

Classes

Recall that a class is a data structure that we can use to define objects which hold together data values
and behavioral characteristics. Classes are entities which are the programmatic form of an abstraction
for a real-world problem, and instances are realizations of such objects. One analogy is to liken classes
to blueprints or molds with which to make real objects (instances). So why the term "class?" The term
most likely originates from using classes to identify and categorize biological families of species to
which specific creatures belong and can be derived into similar yet distinct subclasses. Many of these
features apply to the concept of classes in programming.

In Python, class declarations are very similar to function declarations, a header line with the
appropriate keyword followed by a suite as its definition, as indicated below:

def functionName(args):
 'function documentation string'
 function_suite

class
 ClassName:
 'class documentation string"
 class_suite

The fact that such a declaration is "larger" than a standard type declaration should be proof that classes
in Python are much more than standard types. A class is like a Python container type on steroids. Not
only can it hold multiple data items but it can also support its own set of functions, which we have seen
before, called methods. You may be asking what other advantages classes have over standard container
types such as lists and dictionaries.

Standard types are fixed, cannot be customized, and come with a hard-coded set of attributes. Data
types also do not provide individual namespaces for objects nor can they be used to derive "sub-types."
Objects contained in lists are unrelated except for the name of their container. Its members are accessed
only via an index offset into an array-like data structure. All lists have the same set of methods. The
same goes for dictionaries, which also have a common set of methods and provide key access to their
members (who are also unrelated except for their container name).

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=214
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F29%2F2002+9%3A38%3A41+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=214&now=5%2F29%2F2002+9%3A38%3A41+PM

In this section, we will take a close look at classes and what types of attributes they have. Just
remember to keep in mind that even though classes are objects (everything in Python is an object), they
are not realizations of the objects they are defining. We will look at instances in the next chapter, so
stay tuned for that. For now, the limelight is strictly beamed on class objects.

When you create a class, you are practically creating your own kind of data entity. All instances of that
class are similar, but classes differ from each other (and so will instances of different classes by
nature). Rather than playing with toys that came from the manufacturer and were bestowed upon you as
gifts, why not design and build your own toys to play with?

Creating Classes

Python classes are created using the class keyword. In the simple form of class declarations, the
name of the class immediately follows the keyword:

class ClassName:
 'class documentation string'
 class_suite

class_suite consists of all the component statements, defining class members, data attributes, and
functions. Classes are generally defined at the top-level of a module so that instances of a class can be
created anywhere in a piece of source code where the class is defined.

Declaration vs. Definition

As with Python functions, there is no distinction between declaring and defining classes because they
occur simultaneously, i.e., the definition (the class suite) immediately follows the declaration (header
line with the class keyword) and the always recommended, but optional, documentation string.
Likewise, all methods must also be defined at this time. If you are familiar with the OOP terms, Python
does not support pure virtual functions (à la C++) or abstract methods (as in Java), which coerce the
programmer to define a method in a subclass.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=214

Programming > Core Python Programming > 13. Classes and OOP > Class Attributes See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231201184007120074054175

Class Attributes

What is an attribute? An attribute is a data or functional element which belongs to another object and is
accessed via the familiar dotted-attribute notation. Some Python types such as complex numbers have
data attributes (real and imag), while others such as lists and dictionaries have methods (functional
attributes).

One interesting side note about attributes is that when you are accessing an attribute, it is also an object
and may have attributes of its own which you can then access, leading to a chain of attributes, i.e.,
myThing.subThing.subSubThing, etc. Some familiar examples are:

• sys.stdout.write('foo')
• print myModule.myClass.__doc__
• myList.extend(map(upper, open('x').readlines()))

Class attributes are tied only to the classes in which they are defined, and since instance objects are the
most commonly used objects in everyday OOP, instance data attributes are the primary data attributes
you will be using. Class data attributes are useful only when a more "static" data type is required which
is independent of any instances, hence the reason we are making the next section advanced, optional
reading.

In the succeeding subsection, we will briefly describe how methods in Python are implemented and
invoked. In general, all methods in Python have the same restriction: They require an instance before
they can be called.

*Class Data Attributes

Data attributes are simply variables of the class we are defining. They can be used like any other
variable in that they are set when the class is created and can be updated either by methods within the
class or elsewhere in the main part of the program.

Such attributes are better known to OO programmers as static members, class variables, or static data.
They represent data that is tied to the class object they belong to and are independent of any class
instances. If you are a Java or C++ programmer, this type of data is the same as placing the static

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=215
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A14%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=215&now=5%2F30%2F2002+8%3A14%3A07+PM

keyword in front of a variable declaration.

Static members are generally used only to track values associated with classes. In most circumstances,
you would be using instance attributes rather than class attributes. We will compare the differences
between class and instance attributes when we formally introduce instances.

Here is an example of using a class data attribute (foo):

>>> class C:
… foo = 100
>>> print C.foo
0
>>> C.foo = C.foo + 1
>>> print C.foo
101

Note that nowhere in the code above do you see any references to class instances.

Methods

A method, such as the myNoActionMethod method of the MyClass class in the example below, is
simply a function defined as part of a class definition (thus making methods class attributes). This
means that myMethod applies only to objects (instances) of MyClass type. Note how
myNoActionMethod is tied to its instance because invocation requires both names in the dotted
attribute notation:

>>> class MyClass:
 def myNoActionMethod(self):
 pass

>>> myInstance = MyClass()
>>> myInstance.myNoActionMethod()

Any call to myNoActionMethod by itself as a function fails:

>>> myNoActionMethod()

Traceback (innermost last):
 File "<stdin>", line 1, in ?
 myNoActionMethod()
NameError: myNoActionMethod

A NameError exception is raised because there is no such function in the global namespace. The
point is to show you that myNoactionMethod is a method, meaning that it belongs to the class and
is not a name in the global namespace. If myNoActionMethod was defined as a function at the top-
level, then our call would have succeeded.

We show you below that even calling the method with the class object fails.

>>> MyClass.myNoActionMethod()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 MyClass.myNoActionMethod()
TypeError: unbound method must be called with class
instance 1st argument

This TypeError exception may seem perplexing at first because you know that the method is an
attribute of the class and so are wondering why there is a failure. We will explain this next.

Binding (Bound and Unbound Methods)

In keeping with OOP tradition, Python imposes the restriction that methods cannot be invoked without
instances. An instance must be used to perform method calls. This restriction describes Python's
concept of binding, where methods must be bound (to an instance) in order to be invoked directly.
Unbound methods may also be called, but an instance object must be provided explicitly in order for
the invocation to succeed. However, regardless of binding, methods are inherently attributes of the
class they are defined in, even if they are almost always invoked via an instance. We will further
explore bound and unbound methods later in Section 13.7.

Static Methods

Python does not support static methods (a.k.a. static member functions), functions which are associated
only with a class and not with any particular instances. They are either functions which help manage
static class data or are global functions which have some sort of functionality related to the class they
are defined in. Since Python does not support static methods, a standard global function is the

workaround when static method functionality is desired. More details on how this is accomplished can
be found in Section 13.7.2.

Determining Class Attributes

There are two ways to determine what attributes a class has. The simplest way is to use the dir()
built-in function. An alternative is to access the class dictionary attribute __dict__, one of a number
of special attributes that is common to all classes. Let us take a look at an example:

>>> class MyClass:
… 'MyClass class definition'
… myVersion = '1.1' # static data
… def showMyVersion(self): # method
… print MyClass.myVersion
…

Using the class defined above, let us use dir() and the special class attribute __dict__ to see this
class's attributes:

>>> dir(MyClass)
['__doc__', '__module__', 'showMyVersion', 'myVersion']
>>>
>>> MyClass.__dict__
{'__doc__': None, 'myVersion': 1, 'showMyVersion':
<function showMyVersion at 950ed0>, '__module__':
'__main__'}

As you can tell, dir() returns a list of an object's attributes while __dict__ is a dictionary, with the
attribute names as keys and whose values are the data values of the corresponding attributes.

The output also reveals two familiar attributes of our class MyClass, showMyVersion and
myVersion, as well as a couple of new ones. These attributes, __doc__ and __module__, are
special class attributes which all classes have (in addition to __dict__). The vars() built-in
function returns the contents of a class's __dict__ attribute when passed the class object as its
argument.

Special Class Attributes

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/218#2.html

For any class C, Table 13.1 represents a list of all the special attributes of C:

Table 13.1. Special Class Attributes

C.__name__ string name of class C

C.__doc__ documentation string for class C

C.__bases__ tuple of class C's parent classes

C.__dict__ attributes of C

C.__module__ module where C is defined (new in 1.5)

Using the class MyClass we just defined above, we have the following:

>>> MyClass.__name__
'MyClass'
>>> MyClass.__doc__
'MyClass class definition'
>>> MyClass.__bases__
()
>>> MyClass.__dict__
{'__doc__': None, 'myVersion': 1, 'showMyVersion':
<function showMyVersion at 950ed0>, '__module__':
'__main__'}
>>> MyClass.__module__
'__main__'

__name__ is the string name for a given class. This may come in handy in cases where a string is
desired rather than a class object. Even some built-in types have this attribute, and we will use one of
them to showcase the usefulness of the __name__ string.

The type object is an example of one built-in type that has a __name__ attribute. Recall that type()
returns a type object when invoked. There may be cases where we just want the string indicating the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/215#7.html

type rather than an object. We can use the __name__ attribute of the type object to obtain the string
name. Here is an example:

>>> stype = type('What is your quest?')
>>> stype # stype is a type object
<type 'string'>
>>> stype.__name__ # get type as a string
'string'
>>>
>>> type(3.14159265) # also a type object
<type 'float'>
>>> type(3.14159265).__name__ # get type as a string
'float'

__doc__ is the documentation string for the class, similar to the documentation string for functions
and modules, and must be the first unassigned string succeeding the header line. The documentation
string is not inherited by derived classes, as an indication that they must contain their own
documentation strings.

__bases__ deals with inheritance which we will cover later in this chapter; it contains a tuple which
consists of a class's parent classes.

The aforementioned __dict__ attribute consists of a dictionary containing the data attributes of a
class. When accessing a class attribute, this dictionary is searched for the attribute in question. If it is
not found in __dict__, the hunt continues in the dictionary of base classes, in "depth-first search"
order. The set of base classes is searched in sequential order, left-to-right in the same order as they are
defined as parent classes in a class declaration. Modification of a class attribute affects only the current
class's dictionary; no base class __dict__ attributes are ever modified.

Python supports class inheritance across modules, so to better clarify a class's description, the
__module__ was introduced in version 1.5 so that a class name is fully qualified with its module. We
present the following example:

>>> class C:
… pass
…
>>> C
<class __main__.C at 81201f0>
>>> C.__module__

'__main__'

The fully-qualified name of class C is "__main__.C", i.e. source_module.class_name. If
class C was located in an imported module, such as mymod, we would see the following:

>>> from mymod import C
>>> C # class C in Python 1.5.2
<class mymod.C at 8120be0>
>>> C.__module__
'mymod'

In previous versions of Python without the special attribute __module__, it was much more difficult
to ascertain the location of a class simply because classes did not use their fully-qualified names. For
example, if we were to perform the same module import and access the class, you can see that no
source module name for class C is available:

>>> from mymod import C
>>> C # class C in Python 1.4
<class C at 8120be0>

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=215

Programming > Core Python Programming > 13. Classes and OOP > Instances See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231201184002150223194107

Instances

Whereas a class is a data structure definition type, an instance is a declaration of a variable of that type. In other words,
instances are classes brought to life. Once a blueprint is provided, the next step to bring them to fruition. Instances are
the objects which are used primarily during execution, and all instances are of type "instance."

Instantiation: Creating Instances by Invoking Class Object

Most other OO languages provide a new keyword with which to create an instance of a class. Python's approach is
much simpler. Once a class has been defined, creating an instance is no more difficult that calling a function—literally.
Instantiation is realized with use of the function operator, as in the following example:

>>> class MyClass: # define class
… pass
>>> myInstance = MyClass() # instantiate class
>>> type(MyClass) # class is of class type
<type 'class'>
>>> type(myInstance) # instance is of
instance type
<type 'instance'>

NOTE

The use of the term "type" in Python may perhaps differ from the general connotation of an instance being of the
type of class it was created from. In Chapter 4, we introduced all Python objects as data entities with three
characteristics: an ID, a type, and a value. An object's type dictates the behavioral properties of such objects in the
Python system, and these types are a subset of all types which Python supports.

User-defined "types" such as classes are categorized in the same manner. Classes share the same type, but have
different IDs and values (their class definitions). The fact that all classes are defined with the same syntax, that they
can be instantiated, and that all have the same core properties leads to the conclusion that they have common
characteristics which allow them to fall under the same category. Classes are unique objects which differ only in
definition, hence they are all the same "type" in Python. Class instances follow the same argument.

Do not let Python's nomenclature fool you; instances are most assuredly related to the class they were instantiated
from and would not have any other relationship to other instances (unless they were of a subclass or base class).

To avoid confusion, keep the following in mind: When you are defining a class, you are not creating a new type. You
are just defining a unique class type, but it is still a class. When you instantiate classes, the resulting object is
always an instance. Even though instances may be instantiated from different classes, they are still (generically)
class instances.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=216
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A14%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=216&now=5%2F30%2F2002+8%3A14%3A51+PM

As you can see, creating instance myInstance of class MyClass consists of "calling" the class: MyClass(). The
return object of the call is an instance object. We also verified the data types of MyClass and myInstance using
type(): MyClass is a class object and myInstance is an instance object. To take this even further, we tell you
now that all classes are of the same type (type class), and all instances are of the same type (type instance). (You can
verify this using the type() built-in function.)

__init__() Constructor Method

When the class is invoked, the first step in the instantiation process is to create the instance object. Once the object is
available, a check to see if a constructor has been implemented is called. By default, no special actions are enacted on
the instance without the overriding of the constructor, the special method __init__(). Any special action desired
requires the programmer to implement __init__(), overriding its default behavior. If __init__() has not been
implemented, the object is then returned and the instantiation process is complete.

However, if __init__() has been implemented, then that special method is invoked and the instance object passed
in as the first argument (self), just like a standard method call. Any arguments passed to the class invocation call are
passed on to __init__(). You can practically envision the call to create the class as a call to the constructor.

__init__() is one of many special methods which can be defined for classes. Some of these special methods are
predefined with inaction as their default behavior (such as __init__()) and must be overridden for customization
while others should be implemented on an as-needed basis. We will go over special methods in Section 13.13 later on in
this chapter.

__del__() Destructor Method

Likewise, there is an equivalent destructor special method called __del__(). However, due to the way Python
manages garbage collection of objects (by reference counting), this function is not executed until all references to an
instance object have been removed. Destructors in Python are methods which provide special processing before
instances are deallocated and are not commonly implemented since instances are seldom deallocated explicitly.

NOTE

Python does not provide any internal mechanism to track how many instances of a class have been created nor to
keep tabs on what they are. You can explicitly add some code to the class definition and perhaps __init__() and
__del__() if such functionality is desired. The best way is to keep track of the number of instances using a static
member. It would be dangerous to keep track of instance objects by saving references to them, because you must
manage these references properly or else your instances will never be deallocated (because of your extra reference
to them)! An example follows:

 class myClass:
 count = 0 # use static data for count
 def __init__(self): # constructor, incr. count
 myClass.count = myClass.count + 1
 def __del__(self): # destructor, decr. count

 myClass.count = myClass.count - 1
 assert myClass > 0 # cannot have < 0 instances
 def howMany(self): # return count
 return myClass.count
>>> a = myClass()
>>> b = myClass()
>>> b.howMany()
2
>>> a.howMany()
2
>>> del b
>>> a.howMany()
1
>>> del a
>>> myClass.count
0

In the following example, we create (and override) both the __init__() and __del__() constructor and destructor
functions, respectively, then instantiate the class and assign more aliases to the same object. The id() built-in function
is then used to confirm that all three aliases reference the same object. The final step is to remove all the aliases by
using the del statement and discovering when and how many times the destructor is called.

>>> class C: # class declaration
 def __init__(self): # constructor
 print 'initialized'
 def __del__(self): # destructor
 print 'deleted'

>>> c1 = C() # instantiation
initialized
>>> c2 = c1 # create additional alias
>>> c3 = c1 # create a third alias
>>> id(c1), id(c2), id(c3) # all refer to same object
(11938912, 11938912, 11938912)
>>> del c1 # remove one reference
>>> del c2 # remove another reference
>>> del c3 # remove final reference
deleted # destructor finally invoked

Notice how, in the above example, the destructor was not called until all references to the instance of class C were
removed, i.e., when the reference count has decreased to zero. If for some reason your __del__() method is not
being called when you are expecting it to be invoked, this means that somehow your instance object's reference count is
not zero, and there may be some other reference to it that you are not aware of that is keeping your object around.

Also note that the destructor is called exactly once, the first time the reference count goes to zero and the object
deallocated. This makes sense because any object in the system is allocated and deallocated only once.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=216

Programming > Core Python Programming > 13. Classes and OOP > Instance Attributes See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231200013193077175125255

Instance Attributes

Instances have only data attributes (methods are strictly class attributes) and are simply data values
which you want to be associated with a particular instance of any class and are accessible via the
familiar dotted-attribute notation. These values are independent of any other instance or of the class it
was instantiated from. When an instance is deallocated, so are its attributes.

"Instantiating" Instance Attributes (or, Creating a Better Constructor)

Instance attributes can be set any time after an instance has been created, in any piece of code that has
access to the instance. However, one of the key places where such attributes are set is in the
constructor, __init__().

Constructor First Place to Set Instance Attributes

The constructor is the earliest place that instance attributes can be set because __init__() is the first
method called after instance objects have been created. There is no earlier opportunity to set instance
attributes. Once __init__() has finished execution, the instance object is returned, completing the
instantiation process.

Default Arguments Provide Default Instance Setup

One can also use __init__() along with default arguments to provide an effective way in preparing
an instance for use in the real world. In many situations, the default values represent the most common
cases for setting up instance attributes, and such use of default values precludes them from having to be
given explicitly to the constructor. We also outlined some of the general benefits of default arguments
in Section 11.5.2.

Example 13.1 shows how we can use the default constructor behavior to help us calculate some sample
total room costs for lodging at hotels in some of America's large metropolitan areas.

The main purpose of our code is to help someone figure out the daily hotel room rate, including any
state sales and room taxes. The default is for the general area around San Francisco, which has an 8.5%
sales tax and a 10% room tax. The daily room rate has no default value, thus it is required for any
instance to be created.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=217
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A15%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=217&now=5%2F30%2F2002+8%3A15%3A08+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/173#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/217#4.html

The setup work is done after instantiation by __init__() in lines 4–8, and the other core part of our
code is the calcTotal() method, lines 10–14. The job of __init__() is to set the values needed
to determine the total base room rate of a hotel room (not counting room service, phone calls, or other
incidental items). calcTotal() is then used to either determine the total daily rate or for an entire
stay if the number of days is provided. The round() built-in function is used to round the calculation
to the closest penny (two decimal places). Here is some sample usage of this class:

Example 13.1. Using Default Arguments with Instantiation (hotel.py)

Class definition for a fictitious hotel room rate calculator. The __init__() constructor method
initializes several instance attributes. A calcTotal() method is used to determine either a total
daily room rate, or the total room cost for an entire stay.

 <$nopage>
001 1 class HotelRoomCalc:
002 2 'Hotel room rate calculator'
003 3
004 4 def __init__(self, rt, sales=0.085, rm=0.1):
005 5 '''HotelRoomCalc default arguments:
006 6 sales tax == 8.5% and room tax == 10%'''
007 7 self.salesTax = sales
008 8 self.roomTax = rm
009 9 self.roomRate = rt
010 10
011 11 def calcTotal(self, days=1):
012 12 'Calculate total; default to daily rate'
013 13 daily = round((self.roomRate * \
014 14 (1 + self.roomTax + self.salesTax)), 2)
015 15 return float(days) * daily
016 <$nopage>

>>> sfo = HotelRoomCalc(299) # new instance
>>> sfo.calcTotal() # daily rate
354.32
>>> sfo.calcTotal(2) # 2-day rate
708.64
>>> sea = HotelRoomCalc(189, 0.086, 0.058) # new instance
>>> sea.calcTotal()
216.22
>>> sea.calcTotal(4)
864.88
>>> wasWkDay = HotelRoomCalc(169, 0.045, 0.02) # new instance

>>> wasWkEnd = HotelRoomCalc(119, 0.045, 0.02) # new instance
>>> wasWkDay.calcTotal(5) + wasWkEnd.calcTotal() # 7-day rate
1026.69

The first two hypothetical examples were San Francisco, which used the defaults, and then Seattle,
where we provided different sales tax and room tax rates. The final example, Washington, D.C.,
extended the general usage by calculating a hypothetical longer stay: a five-day weekday stay plus a
special rate for one weekend day, assuming a Sunday departure to return home.

Do not forget that all the flexibility you get with functions, such as default arguments, apply to methods
as well. The use of variable-length arguments is another good feature to use with instantiation (based
on an application's needs, of course).

Constructor Should Return None

As you are now aware, invoking a class object with the function operator creates a class instance,
which is the object returned on such an invocation, as in the following example:

>>> class MyClass:
… pass
>>> myInstance = MyClass()
>>> myInstance
<__main__.MyClass instance at 95d390>

If a constructor is defined, it should not return any object because the instance object is automatically
returned after the instantiation call. Correspondingly, __init__() should not return any object (or
return None); otherwise, there is a conflict of interest because only the instance should be returned.
Attempting to return any object other than None will result in a TypeError exception:

>>> class MyClass:
… def __init__(self):
… print 'initialized'
… return 1
…
>>> myInstance = MyClass()
initialized
Traceback (innermost last):
 File "<stdin>", line 1, in ?

 myInstance = MyClass()
TypeError: __init__() should return None

Determining Instance Attributes

The dir() built-in function can be used to show all instance attributes in the same manner that it can
reveal class attributes:

>>> class C:
… pass
>>> c = C()
>>> c.foo = 'roger'
>>> c.bar = 'shrubber'
>>> dir(c)
['bar', 'foo']

Similar to classes, instances also have a __dict__ special attribute (also accessible by calling
vars() and passing it an instance), which is a dictionary representing its attributes:

>>> c.__dict__
{'foo': 'roger', 'bar': 'shrubber'}

Special Instance Attributes

Instances have only two special attributes (see Table 13.2). For any instance I:

Table 13.2. Special Instance Attributes

I.__class__ class from which I is instantiated

I.__dict__ attributes of I

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/217#8.html

We will now take a look at these special instance attributes using the class C and its instance c:

>>> class C: # define class
… pass
…
>>> c = C() # create instance
>>> dir(c) # instance has no attributes
[]
>>> c.__dict__ # yep, definitely no attributes
{}
>>> c.__class__ # class that instantiated us
<class __main__.C at 948230>

As you can see, c currently has no data attributes; but we can add some and recheck the __dict__
attribute to make sure they have been added properly:

>>> c.foo = 1
>>> c.bar = 'SPAM'
>>> '%d can of %s please' % (c.foo, c.bar)
'1 can of SPAM please'
>>> dir(c)
['bar', 'foo']
>>> c.__dict__
{'foo': 1, 'bar': 'SPAM'}

The __dict__ attribute consists of a dictionary containing the attributes of an instance. The keys are
the attribute names, and the values are the attributes' corresponding data values. You will only find
instance attributes in this dictionary—no class attributes nor special attributes.

NOTE

Although the __dict__ attributes for both classes and instances are mutable, it is recommended
that you not modify these dictionaries unless or until you know exactly what you are doing. Such
modification contaminates your OOP and may have unexpected side effects. It is more acceptable
to access and manipulate attributes using the familiar dotted-attribute notation. One of the few
cases where you would modify the __dict__ attribute directly is when you are overriding the
__setattr__ special method. Implementing __setattr__() is another adventure story on

its own, full of traps and pitfalls such as infinite recursion and corrupted instance objects—but that
is another tale for another time.

Built-in Type Attributes

Built-in types also have attributes, and although they are technically not class instance attributes, they
are sufficiently similar to get a brief mention here. Type attributes do not have an attribute dictionary
like classes and instances (__dict__), so how do we figure out what attributes built-in types have?
The convention for built-in types is to use two special attributes, __methods__ and
__members__, to outline any methods and/or data attributes. Complex numbers are one example of
a built-in type with both methods and attributes, so we will use its __methods__ and
__members__ to help us hunt down its attributes:

>>> aComplex = (1+2j) # create a complex number
>>> type(aComplex) # display its type
<type 'complex'>
>>> aComplex.__members__ # reveal its data attributes
['imag', 'real']
>>> aComplex.__methods__ # reveal its methods
['conjugate']

Now that we know what kind of attributes a complex number has, we can access the data attributes and
call its methods:

>>> aComplex.imag
2.0
>>> aComplex.real
1.0
>>> aComplex.conjugate()
(1-2j)

Attempting to access __dict__ will fail because that attribute does not exist for built-in types:

>>> aComplex.__dict__

Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __dict__

Our final remark for this section is to note that the __members__ and __methods__ special
attributes is simply a convention. New types defined in external or third-party extension modules may
not choose to implement them, although it is highly recommended.

Instance Attributes vs. Class Attributes

We first described class data attributes in Section 13.4.1. As a brief reminder, class attributes are
simply data values associated with a class and not any particular instances like instance attributes are.
Such values are also referred to as static members because their values stay constant, even if a class is
invoked due to instantiation multiple times. No matter what, static members maintain their values
independent of instances unless explicitly changed. Comparing instance attributes to class attributes is
almost like the comparison between automatic and static variables, if you are familiar with these
concepts from other languages.

There are a few aspects of class attributes versus instance attributes that should be brought to light. The
first is that you can access a class attribute with either the class or an instance, provided that the
instance does not have an attribute with the same name.

Access to Class Attributes

Class attributes can be accessed via a class or an instance. In the example below, when class C is
created with the version class attribute, naturally access is allowed using the class object, i.e.,
C.version. When instance c is created, Python provides a default, read-only instance attribute
which is an alias to the class attribute, i.e., c.version:

>>> class C: # define class
… version = 1.0 # static member
…
>>> c = C() # instantiation
>>> C.version # access via class
1.0
>>> c.version # access via instance
1.0
>>> C.version = C.version + .1 # update (only) via class
>>> C.version # class access
1.1

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/215#1.html

>>> c.version # instance access, which
1.1 # also reflected change

However, access via to a class attribute via an instance attribute is strictly read-only (see below for
what happens if you try to update one), so we can only update the value when referring to it using the
class, as in the C.version increment statement above. Attempting to set or update the class attribute
using the instance name is not allowed and will create an instance attribute.

Assignment Creates Local Instance Attribute

Any type of assignment of a local attribute will result in the creation and assignment of an instance
attribute, just like a regular Python variable. If a class attribute exists with the same name, it is
overridden in the instance:

>>> dir(C)
['__doc__', '__module__', 'version']
>>> dir(c)
[]
>>> c.version = 100 # attempt to update class attr
>>> c.version
100
>>> C.version # nope, class attr unchanged
1.1
>>> dir(c) # confirm new instance attr created
['version']

In the above code snippet, a new instance attribute named version is created, overriding the
reference to the class attribute. However, the class attribute itself is unscathed and still exists in the
class domain and can still be accessed as a class attribute, as we can see above.

To confirm that a new instance attribute was added, the call to dir() in the above code snippet
reveals no attributes for instance c, while class C had three attributes (__doc__, __module__,
and version). Calling dir() again on c after the assignment yields one new attribute, version.

What would happen if we delete this new reference? To find out, we will use the del statement on
c.version.

>>> del c.version # delete instance attribute
>>> dir(c)
[]
>>> c.version # can now access class attr again
1.1

Now let us try to update the class attribute again, but this time, we will just try an innocent increment:

>>> c.version = c.version + 1.0
>>> c.version
2.1
>>> dir(c)
['version']
>>> C.version
1.1

It is still a "no go." We again created a new instance attribute while leaving the original class attribute
intact. The expression on the right-hand side of the assignment evaluates the original class variable,
adds 1.0 to it, and assigns it to a newly-created instance attribute. Note that the following is an
equivalent assignment, but it may perhaps provide more clarification:

c.static = C.static + 1.0

Class Attributes More Persistent

Static members, true to their name, hang around while instances (and their attributes) come and go
(hence independent of instances). Also, if a new instance is created after a class attribute has been
modified, the updated value will be reflected:

>>> class C:
… spam = 100 # class attribute
…
>>> c1 = C() # create an instance
>>> c1.spam # access class attr thru inst.
100
>>> C.spam = C.spam + 100 # update class attribute
>>> C.spam # see change in attribute

200
>>> c1.spam # confirm change in attribute
200
>>> c2 = C() # create another instance
>>> c2.spam # verify class attribute
200
>>> del c1 # remove one instance
>>> C.spam = C.spam + 200 # update class attribute again
>>> c2.spam # verify that attribute changed
400

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=217

Programming > Core Python Programming > 13. Classes and OOP > Binding and Method
Invocation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231200013195213104036005

Binding and Method Invocation

Now we need to readdress the Python concept of binding, which is associated only with method
invocation. We will first review the facts about methods. First, a method is simply a function defined as
part of a class. This means that methods are class attributes (not instance attributes). Second, methods
can be invoked only when there is an instance of the class in which the method was defined. When
there is an instance present, the method is considered bound. Without an instance, a method is
considered unbound. And third, the first argument in any method definition is the variable self,
which represents the instance object which invokes the method.

NOTE

The variable self is used in class instance methods to reference the instance which the method is
bound to. Because a method's instance is always passed as the first argument in any method call,
self is the name that was chosen to represent the instance. You are required to put self in the
method declaration (you may have noticed this already) but do not need to actually use the instance
(self) within the method.

If you do not use self in your method, you might consider creating a regular function instead,
unless you have a particular reason not to. After all, your code, because it does not use the instance
object in any way, "unlinks" its functionality from the class, making it seem more like a general
function.

We will now create a class C with a method called showSelf() which will display more
information about the instance object that was just created:

>>> class C:
… def showSelf(self):
… self
… type(self)
… id(self)

>>> c = C()
>>> c.showSelf()
<__main__.C instance at 94abe0>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=218
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A15%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=218&now=5%2F30%2F2002+8%3A15%3A24+PM

<type 'instance'>
9743328

Now let us take a look directly at the instance to see if the information matches—and it does:

>>> c
<__main__.C instance at 94abe0>
>>> type(c)
<type 'instance'>
>>> id(c)
9743328

In other object-oriented languages, self is named this.

Invoking Bound Methods

Methods, bound or not, is made up of the same code. The only difference is whether there is an
instance present so that the method can be invoked. Recall that even though self is required as the
first argument in every method declaration, it never needs to be passed explicitly when you invoke it
from an instance. The interpreter automatically performs that task for you.

Once again, here is an example of invoking a bound method, first found in Section 13.4.2:

>>> class MyClass:
… def myNoActionMethod(self):
… pass
…
>>>
>>> myInstance = MyClass() # create instance
>>> myInstance.myNoActionMethod() # invoke method

To invoke a method, use the name of the instance and the name of the method in dotted attribute
notation followed by the function operator and any arguments.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/224#14.html

Also in Section 13.4.2, we briefly noted the failure of invoking the method with the class name. The
cause of this failure is that no instance was given to the method. Without invoking a method using an
instance (and having that instance passed automatically as self to the method), the interpreter
complained that self was not passed in. What we did wrong was to invoke an unbound method
without an instance.

Invoking Unbound Methods

There are generally two reasons a programmer might attempt to invoke an unbound method. One is
when a programmer is trying to implement static methods (which is not supported in Python), and the
other is when a specific instance of the class defining the method is not available. We begin our tale by
describing a workaround to the lack of static method support in Python.

Static Method Workaround

Static methods are generally desired in two different scenarios. The first is a situation where a
programmer wants to keep his or her global or local namespace "pure," by not adding another function
to the corresponding namespace. Or secondly, perhaps it is a small or insignificant function which is
somehow related to the class he wants to define it in, or maybe it is a function that helps manage static
data. The first case presents a relatively weak argument, but there is some merit for the latter case, this
static member management function. Here, we simply want to invoke the method in a functional sense
(meaning independent of instances) in order to update static data.

>>> class C:
… version = 1.0 # static data attribute
… def updateVersion(self, newv):
… C.version = newv # update static data
…

And of course, invoking this method without an instance gives us the same TypeError exception we
have seen before:

>>> C.updateVersion(2.0)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 C.updateVersion()
TypeError: unbound method must be called with class
instance 1st argument

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/224#14.html

The only workaround, which may be unpleasant, is to give up and move the function to the global
domain which has access to class C (and thus the attributes of C). We can obtain the desired
functionality:

>>> def updateVersion(newv):
… C.version = newv
…
>>> updateVersion(2.0)
>>> C.version
2.0

One problem with using a global function as the solution is that you do not get the "feel" that
updateVersion() is a class method, because it is not. The desire is to call
C.updateVersion() or something. Yes, there are other, more sinister workarounds which new
Python programmers should avoid because, to paraphrase from the Python FAQ, "[if] you don't
understand why you'd ever want to do this, that's because you are pure of mind, and you probably never
will want to do it! This is dangerous trickery, [and] not recommended when avoidable."

Convenient Instance Unavailable

When a bound method is invoked, for example, instance.method(x, y), the interpreter would
be executing the equivalent of method(instance, x, y), as in the following example:

>>> class MyData:
… def myMethod(self, arg):
… print 'called myMethod with:', arg
…
>>>
>> myInstance = MyData()
>>> myInstance.myMethod('grail')
called myMethod with: grail

The call myInstance.myMethod('grail') results in the equivalent call of
myMethod(myInstance, 'grail'), which matches the function signature,
myMethod(self, arg).

However, invoking an unbound method does not work quite as well. Since there is no bound instance,
the method call will fail because the call would be simply method(x, y) rather than
method(instance, x, y). Here is the error one more time:

>>> MyData.myMethod(932)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 MyData.myMethod(932)
TypeError: unbound method must be called with class
instance 1st argument

Notice that the TypeError exception states, "unbound method must be called with class instance 1st
argument." Ah, that's the problem. The first argument passed to the method was an integer, not a class
instance. The function signatures did not match, i.e., myMethod(932) versus myMethod(self,
arg). What if we did pass an instance as the first argument (to make the signatures match)?

>>> MyData.myMethod(myInstance, 932)
called myMethod with: 932

Presto! It now works. So an interesting result of having an instance is that you can now invoke an
unbound method if you explicitly provide the instance so that the call is method(instance, x,
y).

This is all rather nice, but what if there is no instance nearby for us to use? What if in the above
example, we had not created the myInstance object? Well, then we would not have been able to
invoke myMethod() then. Does this ever happen? The answer is yes and comes into play in Section
13.9 below. Such situations require the invocation of a base class method from the method of a derived
class. We've already seen it once, in the "Creating a Subclass" subsection of Section 13.1.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=218

Programming > Core Python Programming > 13. Classes and OOP > Composition See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231200013197015018216166

Composition

Once a class is defined, the goal is to use it as a model programmatically, embedding this object
throughout your code, intermixing use with other data types and the logical flow of execution. There
are two ways of utilizing classes in your code. The first is composition. This is where different classes
are mingled with and into other classes for added functionality and code reusability. You may perhaps
create instances of your class inside a larger class, containing other attributes and methods enhancing
the use of the original class object. The other way is with derivation and discussed in the next section.

For example, let us imagine an enhanced design of the address book class we created at the beginning
of the chapter. If, during the course of our design, we created separate classes for names, addresses,
etc., we would want to integrate that work into our AddrBookEntry class, rather than have to
redesign each of those supporting classes. We have the added advantages of time and effort saved, as
well as more consistent code—when bugs are fixed in that same piece of code, that change is reflected
in all the applications which reuse that code.

Such as a class would perhaps contain Name and Phone instances, not to mention others like
StreetAddress, Phone (home, work, telefacsimile, pager, mobile, etc.), Email (home, work,
etc.), and possibly a few Date instances (birthday, wedding, anniversary, etc.). Here is a simple
example with some of the classes mentioned above:

class NewAddrBookEntry: # class definition
 'new address book entry class'
 def __init__(self, nm, ph): # define constructor
 self.name = Name(nm) # create Name instance
 self.phone = Phone(ph) # create Phone instance
 print 'Created instance for:', self.name

The NewAddrBookEntry class is a composition of itself and other classes. This defines a "has-a"
relationship between a class and other classes it is composed of. For example, our
NewAddrBookEntry class "has a" Name class instance and a Phone instance, too.

Creating composite objects enables such additional functionality and make sense because the classes
have nothing in common. Each class manages its own namespace and behavior. When there are more

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=219
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A15%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=219&now=5%2F30%2F2002+8%3A15%3A44+PM

intimate relationships between objects, a more elegant solution is the concept of derivation.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=219

Programming > Core Python Programming > 13. Classes and OOP > Subclassing and Derivation See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231200013196028115033058

Subclassing and Derivation

Composition works fine when classes are distinct and are a required component of larger classes, but when you desire "the
same class but with some tweaking," derivation is a more logical option.

One of the more powerful aspects of OOP is the ability to take an already-defined class and extend it or make modifications
to it without affecting other pieces of code in the system that use the currently-existing classes. OOD allows for class features
to be "inherited" by "descendant" classes or "subclasses." These subclasses "derive" the core of their attributes from "base"
(a.k.a. ancestor, super) classes. In addition, this derivation may be extended for multiple generations. Classes involved in a
one-level derivation (or are adjacent vertically in a class tree diagram) have a "parent" and "child" class relationship. Those
classes which derive from the same parent (or are adjacent horizontally in a class tree diagram) have a "sibling" relationship.
Parent and all higher-level classes are considered ancestors.

Using our example from the previous section, let us imagine having to create different types of address books. We are talking
about more than just creating multiple instances of address books—in this case, all objects have everything in common. What
if we wanted a BusinessAddressBook class whose entries would contain more work-related attributes such as job
position, phone number, and e-mail address? This would differ from a PersonalAddressBook class which would
contain more family-oriented information such as home address, relationship, birthday, etc.

For both of these cases, we do not want to design these classes from scratch, because it would duplicate the work already
accomplished to create the generic AddressBook class. Wouldn't it be nice to subsume all the features and
characteristics of the AddressBook class and add specialized customization for your new, yet related, classes? This is
the entire motivation and desire for class derivation.

Creating Subclasses

As we have seen earlier, the general syntax for declaring a base class looks like this:

class
 ClassName:
 'optional class documentation string'
 class_suite

Derived classes are declared much like their parent class; however, a list of base classes to inherit from are given after the
class name:

class
 SubClassName (ParentClass1[,
ParentClass2, …]):
 'optional class documentation string'
 class_suite

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=220
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A15%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=220&now=5%2F30%2F2002+8%3A15%3A56+PM

We have already seen some examples of classes and subclasses so far, but here is another simple example:

>>> class Parent: # define parent class
… def parentMethod(self):
… print 'calling parent method'

>>> p = Parent() # instance of parent
>>> dir(Parent) # parent class attributes
['__doc__', '__module__', 'parentMethod']
>>> p.parentMethod()
calling parent method
>>>
>>> class Child(Parent): # define child class
… def childMethod(self):
… print 'calling child method'

>>> c = Child() # instance of child
>>> dir(Child) # child class attributes
['__doc__', '__module__', 'childMethod']
>>> c.childMethod() # child calls its method
calling child method
>>> c.parentMethod() # calls parent's method
calling parent method

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=220

Programming > Core Python Programming > 13. Classes and OOP > Inheritance See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231203005073168108087143

Inheritance

Inheritance describes how the attributes of base classes are "bequeathed" to a derived class. A subclass
inherits attributes of any of its base classes whether they be data attributes or methods.

We present an example below. P is a simple class with no attributes. C is a class with no attributes which
derives from (and therefore is a subclass of) P:

>>> class P: # parent class
… pass
>>> class C(P): # child class
… pass
>>>
>>> c = C() # instantiate child
>>> c.__class__ # child "is a" parent
<class __main__.C at 8120c98>
>>> C.__bases__ # child's parent class(es)
(<class __main__.P at 811fc98>,)

Because P has no attributes, nothing was inherited by C. Let us make our example more useful by giving
P some attributes:

>>> class P: # parent class
… 'P class'
… def __init__(self):
… print 'created an instance of', \
… self.__class__.__name__
…
>>> class C(P): # child class
… pass

We now create P with a documentation string (__doc__) and a constructor which will execute when we

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=221
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A16%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=221&now=5%2F30%2F2002+8%3A16%3A11+PM

instantiate P, as in this interactive session:

>>> p = P() # parent instance
created an instance of P
>>> p.__class__ # class that created us
<class __main__.P at 811f900>
>>> P.__bases__ # parent's parent class(es)
()
>>> P.__doc__ # parent's doc string
'P class'
>>> dir(P) # parent class attributes
['__doc__', '__init__', '__module__']

The "created an instance" output comes directly from __init__(). We also display some more about
the parent class P for your information. Since P is not a subclass, its __bases__ attribute is empty. We
will now instantiate C, showing you how the __init__() (constructor) method is inherited with its
execution:

>>> c = C() # child instance
created an instance of C
>>> c.__class__ # class that created us
<class __main__.C at 812c1b0>
>>> C.__bases__ # child's parent class(es)
(<class __main__.P at 811f900>,)
>>> C.__doc__ # child's doc string
>>>
>>> dir(C) # child class attributes
['__doc__', '__module__']

C has no declared method __init__(), yet there is still output when instance c of class C is created.
The reason is that C inherits __init__() from P. The __bases__ tuple now lists P as its parent
class.

You will notice that some special data attributes are not inherited, the most notable of which is
__doc__. Each class should have its own documentation string. It does not make sense inheriting
special class attributes because the values generally relate to one specific class.

__bases__ Class Attribute

We briefly introduced the __bases__ class attribute in Section 13.4.4, which is a tuple containing the
set of parent classes for any (sub)class. Note that we specifically state "parents" as opposed to all base
classes (which includes all ancestor classes). Classes which are not derived will have an empty
__bases__ attribute. Let us look at an example of how to make use of __bases__.

>>> class A: pass # define class A
…
>>> class B(A): pass # subclass of A
…
>>> class C(B): pass # subclass of B (and indirectly, A)
…
>>> class D(A,B): pass # subclass of A and B
…
>>> C.__bases__
(<class __main__.B at 8120c90>,)
>>> D.__bases__
(<class __main__.A at 811fc90>, <class __main__.B at 8120c90>)

In the example above, although C is a derived class of both A (through B) and B, C's parent is B, as
indicated in its declaration, so only B will show up in C.__bases__. On the other hand, D inherits
from two classes, A and B. (Multiple inheritance is covered in Section 13.10.4.)

Overriding Methods through Inheritance

Let us create another function in P that we will override in its child class:

>>> class P:
… def foo(self):
… print 'Hi, I am P-foo()'
…
>>> p = P()
>>> p.foo()
Hi, I am P-foo()

Now let us create the child class C, subclassed from parent P:

>> class C(P):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/215#6.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/221#4.html

… def foo(self):
… print 'Hi, I am C-foo()'
…
>>> c = C()
>>> c.foo()
Hi, I am C-foo()

Although C inherits P's foo() method, it is overridden because C defines its own foo() method. One
reason for overriding methods is because you may want special or different functionality in your subclass.
Your next obvious question then must be, "Can I call a base class method which I overrode in my
subclass?"

The answer is yes, but this is where you will have to invoke an unbound base class method, explicitly
providing the instance of the subclass, as we do here:

>>> P.foo(c)
Hi, I am P-foo()

Notice that we already had an instance of P called p from above, but that is nowhere to be found in this
example. We do not need an instance of P to call a method of P because we have an instance of a subclass
of P which we can use, c.

NOTE

When deriving a class with a constructor __init__(), if you do not override __init__(), it
will be inherited and automatically invoked. But if you do override __init__() in a subclass, the
base class __init__() method is not invoked automatically when the subclass is instantiated.

>>> class P:
… def __init__(self):
… print "calling P\xd5 s constructor"
…
>>> class C(P):
… def __init__(self):
… print "calling C\xd5 s constructor"
…
>>> c = C()
created an instance of C

If you want the base class __init__() invoked, you need to do that explicitly in the same manner
as we just described, calling the base class (unbound) method with an instance of the subclass.
Updating our class C appropriately results in the following desired execution:

>>> class C(P):
… def __init__(self):
… P.__init__(self)
… print "calling C's constructor"
…
>>> c = C()
calling P's constructor
calling C's constructor

In the above example, we call the base class __init__() method before the rest of the code in our
own __init__() method. It is fairly common practice (if not mandatory) to initialize base classes
for setup purposes, then proceed with any local setup. This rule makes sense because you want the
inherited object properly initialized and "ready" by the time the code for the derived class constructor
runs, because it may require or set inherited attributes.

Those of you familiar with C++ would call base class constructors in a derived class constructor
declaration by appending a colon to the declaration followed by calls to any base class constructors.
Java programmers have no choice—base class constructors must always be called as the first thing
that happens in derived class constructors. Python's use of the base class name to invoke a base class
method is directly comparable to Java's when using the keyword super.

Deriving Standard Types

One limitation is that Python types are not classes, meaning that we cannot derive subclasses from them.
Not all is lost though, because of the many different special default attribute methods we can implement
to emulate the standard types (see the Core Note in Section 4.2 as well as Sections 6.14.2 and 13.12).

Multiple Inheritance

Python allows for subclassing from multiple base classes. This feature is commonly known as "multiple
inheritance." Python supports a limited form of multiple inheritance whereby a depth-first searching
algorithm is employed to collect the attributes to assign to the derived class. Unlike other Python

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/114#14.html

algorithms which override names as they are found, multiple inheritance takes the first name that is found.

Our example below consists of a pair of parent classes, a pair of children classes, and one grandchild
class.

class P1: # parent class 1
 def foo(self):
 print 'called P1-foo()'

class P2: # parent class 2
 def foo(self):
 print 'called P2-foo()'
 def bar(self):
 print 'called P2-bar()'

class C1(P1,P2): # child 1 der. from P1, P2
 pass

class C2(P1,P2): # child 2 der. from P1, P2
 def foo(self):
 print 'called C2-foo()'
 def bar(self):
 print 'called C2-bar()'

class GC(C1,C2): # define grandchild class
 pass # derived from C1 and C2

Upon executing the above declarations in the interactive interpreter, we can confirm that only the first
attributes encountered are used.

>> gc = GC()
>>> gc.foo() # GC ? C1 ? P1
called P1-foo()
>>> gc.bar() # GC ? C1 ? P1 ? P2
called P2-bar()

Again, you can always call a specific method by invoking the method using its fully-qualified name and
providing a valid instance:

>>> C2.foo(gc)
called C2-foo()

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=221

Programming > Core Python Programming > 13. Classes and OOP > Built-in Functions for
Classes, Instances, and Other Objects

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231203005074078234144246

Built-in Functions for Classes, Instances, and Other Objects

issubclass()

The issubclass() Boolean function determines if one class is a subclass or descendant of another
class. It has the following syntax:

issubclass(sub, sup)

issubclass() returns 1 if the given subclass sub is indeed a subclass of the superclass sup. This
function allows for an "improper" subclass, meaning that a class is viewed as a subclass of itself, so the
function returns 1 if sub is either the same class as sup or derived from sup. (A "proper" subclass is
strictly a derived subclass of a class.)

If we were to implement the issubclass() built-in function ourselves, it may look something like
the following:

def my_issubclass(sub, sup):
 if sub is sup or sup in sub.__bases__:
 return 1
 for cls in sub.__bases__:
 if my_issubclass(cls, sup):
 return 1
 else:
 return 0
 return 0

We first check to see if they are both the same class. Since we allow for improper subclasses, then we
would indicate a successful inquiry if both classes are the same. We also return 1 if sup is a parent
class of sub. This check is accomplished by looking at the __bases__ attribute of sub.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=222
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A16%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=222&now=5%2F30%2F2002+8%3A16%3A24+PM

If both of those tests fail, then we need to start moving up the family tree to see if sup is an ancestor of
sub. This is accomplished by checking the parent classes of sub to see if they are subclasses of
sup. If that fails, then we check the grandparent classes, and so on, moving up the tree to see if any of
those classes are subclasses of sup. This is a depth-first recursive check where all ancestors are
checked. If all return a negative result, we return 0 for failure.

isinstance()

The isinstance() Boolean function is useful for determining if an object is an instance of a given
class and has the following syntax:

isinstance(obj1, obj2)

isinstance() returns 1 if obj1 is an instance of class obj2 or is an instance of a subclass of
obj2, as indicated in the following examples:

>>> class C1: pass
…
>>> class C2: pass
…
>>> c1 = C1()
>>> c2 = C2()
>>> isinstance(c1, C1)
1
>>> isinstance(c2, C1)
0
>>> isinstance(c1, C2)
0
>>> isinstance(c2, C2)
1
>>> isinstance(C2, c2)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 isinstance(C2, c2)
TypeError: second argument must be a class

Note that the second argument should be a class; otherwise, you get a TypeError. The only
exception is if the second argument is a type object. This is allowed because you can also use

isinstance() to check if an object obj1 is of the type obj2, i.e.,

>>> isinstance(4, type(4))
1
>>> isinstance(4, type(''))
0
>>> isinstance('4', type(''))
1

If we were to implement the isinstance() built-in function ourselves, it may look something like
the following:

def my_isinstance(obj1, obj2):
 if obj2 is type(type(0)): # check if obj2 is type obj
 return type(obj1) is obj2
 if obj1.__class__ is obj2: # check if obj1 inst of obj2
 return 1
return my_issubclass(obj1.__class__, obj2)

isinstance() may appear simpler than issubclass(), but you will notice that we use
issubclass(). Without it, we would have to reimplement issubclass(), so in actuality,
isinstance() is a bit longer than issubclass().

Our rendition of isinstance() works like this: We first check to see if we are dealing with objects
and types by confirming whether obj2 is a type object. If so, then we perform the check and return the
result. Otherwise, we are dealing with classes and instances, so the test proceeds to check if instance
obj1 is actually a real instance of class obj2. If it is, then we are done. Otherwise, we recursively
check to see if the class of which obj1 is an instance is a descendant of obj2. If it is, then we return
1 for yes and 0 otherwise.

Proxy for Missing Functionality

Both is*() built-in functions (issubclass() and isinstance()) are new to Python as of
version 1.5. Prior to 1.5, you would have to implement them yourself, as we did above, as well as
create your own routine which proxies for the missing functions. While new functions are not always
part of Python updates, it is quite possible that due to uncontrollable forces, you are required to use
older versions of Python which do not support the new functionality. The solution would be to

implement your own solutions and integrate them into your code so that your system at least behaves
like a more recent version of the interpreter.

We present one possible solution below, which attempts to import the __builtin__ module
(hopefully loading issubclass() and isinstance()), but if not, creates aliases for our
homebrewed functions which reference the code we implemented above:

if '__builtins__' not in dir() and __import__ in dir():
 __builtins__ = __import__('__builtin__')

if 'issubclass' not in dir(__builtins__):
 issubclass = my_issubclass

if 'isinstance' not in dir(__builtins__):
 isinstance = my_isinstance

We will now invoke these functions on the classes and instance we defined in the previous section.
Recall that the P* classes are parent classes, the C* classes are child classes, and the GC class is the
"grandchild" class.

>>> for eachCls in (P1, P2, C1, C2, GC):
… print "is GC subclass of", eachCls.__name__, '?', \
… issubclass(GC, eachCls)
… print "is 'gc' an instance of", eachCls, '?', \
… isinstance(gc, eachCls)

is GC subclass of P1 ? 1
is 'gc' an instance of __main__.P1 ? 1
is GC subclass of P2 ? 1
is 'gc' an instance of __main__.P2 ? 1
is GC subclass of C1 ? 1
is 'gc' an instance of __main__.C1 ? 1
is GC subclass of C2 ? 1
is 'gc' an instance of __main__.C2 ? 1
is GC subclass of GC ? 1
is 'gc' an instance of __main__.GC ? 1

hasattr(), getattr(), setattr(), delattr()

The *attr() functions can work with all kinds of objects, not just classes and instances. However,
since they are most often used with those objects, we present them here.

The hasattr(obj, attr) function is Boolean and its only function is to determine whether or not
an object has a particular attribute, presumably used as a check before actually trying to access that
attribute. The getattr() and setattr() functions retrieve and assign values to object attributes,
respectively. getattr() will raise an AttributeError exception if you attempt to read an object
that does not have the requested attribute. setattr() will either add a new attribute to the object or
replace a pre-existing one. The delattr() function removes an attribute from an object.

Here are some examples using all the *attr() BIFs:

>>> class myClass:
… def __init__(self):
… self.foo = 100
…
>>> myInst = myClass()
>>> dir(myInst)
['foo']
>>> hasattr(myInst, 'foo')
1
>>> getattr(myInst, 'foo')
100
>>> hasattr(myInst, 'bar')
0
>>> setattr(myInst, 'bar', 'my attr')
>>> dir(myInst)
['bar', 'foo']
>>> getattr(myInst, 'bar')
'my attr'
>>> delattr(myInst, 'foo')
>>> dir(myInst)
['bar']
>>> hasattr(myInst, 'foo')
0

dir()

We first experienced dir() in Exercises 2-12, 2-13, and 4-7. In those exercises, we used dir() to

give us information about all the attributes of a module. We now know that dir() can be applied to
any other objects with attributes—these include classes, class instances, files, lists, complex numbers,
and so on. As long as an object has a __dict__ attribute dictionary, and/or the __members__ and
__methods__ lists, dir() will work. Built-in types do not have a __dict__ attribute dictionary
and rely primarily on __members__ and __methods__ as a convention:

>>> dir(3+3j) # complex number attributes
['conjugate', 'imag', 'real']
>>>
>>> (3+3j).__dict__
Traceback (innermost last):
File "<stdin>", line 1, in ?
AttributeError: __dict__
>>>
>>> (3+3j).__members__
['imag', 'real']
>>>
>>> (3+3j).__methods__
['conjugate']
>>>
>>> f = open('/etc/motd')
>>> dir(f) # file oject attributes
['close', 'closed', 'fileno', 'flush', 'isatty', 'mode',
'name', 'read', 'readinto', 'readline', 'readlines',
'seek', 'softspace', 'tell', 'truncate', 'write',
'writelines]
>>> f.__dict__
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __dict__
>>> f.__members__
['closed', 'mode', 'name', 'softspace']
>>> f.__methods__
['close', 'fileno', 'flush', 'isatty', 'read',
'readinto', 'readline', 'readlines', 'seek', 'tell',
'truncate', 'write', 'writelines]
>>> f.close()

vars()

The vars() built-in function is similar to dir() except that any object given as the argument must
have a __dict__ attribute. vars() will return a dictionary of the attributes (keys) and values of the
given object based on the values in its __dict__ attribute. If the object provided does not have such
an attribute, an TypeError exception is raised. If no object is provided as an argument to vars(),
it will display the dictionary of attributes (keys) and the values of the local namespace, i.e.,
locals(). We present below an example of calling vars() with a class instance:

>>> class C:
… pass

>>> c=C()
>>> c.foo = 100
>>> c.bar = 'Python'
>>> c.__dict__
{'foo': 100, 'bar': 'Python'}
>>> vars(c)
{'foo': 100, 'bar': 'Python'}

Table 13.3 summarizes the built-in functions for classes and class instances.

Table 13.3. Built-in Functions for Classes, Instances, and Other Objects

Built-in Function Description

issubclass(sub, sup) returns 1 if class sub is a subclass of class sup, 0 otherwise

isinstance(obj1, obj2) returns 1 if instance obj1 is an instance of class obj2 or is an instance of a
subclass of obj2; will also return 1 if obj1 is of type obj2

hasattr(obj, attr) returns 1 if obj has attribute attr (given as a string)

getattr(obj, attr) retrieves attribute attr of obj; same as return obj.attr; AttributeError
exception raised if attr is not an attribute of obj

setattr(obj, attr, val) sets attribute attr of obj to value val, overriding any previously-existing
attribute value, otherwise, attribute is created; same as obj.attr = val

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/222#7.html

delattr(obj, attr) removes attribute attr (given as a string) from obj; same as del obj.attr

dir(obj=None) returns a list of the attributes of obj; if obj not given, dir() displays local
namespace attributes, i.e., locals().keys()

vars(obj=None) returns a dictionary of the attributes and values of obj; if obj not given, vars()
displays local namespace dictionary (attributes and values), i.e., locals()

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=222

Programming > Core Python Programming > 13. Classes and OOP > Type vs.
Classes/Instances

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231203005076026102103025

Type vs. Classes/Instances

Unlike languages such as Java, Python standard types are not classes and variables are not instances of
such classes. Rather, they are simply primitive types that do not allow for direct derivation. (As it turns
out, a class is simply a specific type of primitive built-in that does allow for derivation.)

Python supports a fixed number of built-in types; thus, even instances themselves are of a singular type
("instance"), and classes are all of type "class." (Also review the Core Note earlier in this chapter which
posed the issue of why instances are all of the same type.)

Subclassing of standard types is not possible, though often desired. Python provides for some elegant
solutions, one of which is to create a new class which has the behavior of a standard type. This allows
for the most flexibility because you are in control of your new type at all times. The other solution
allows for the use of a pre-existing type by "wrapping" a standard type in a class. (We will address
wrapping in Section 13.15). By "wrapping," we mean provide the standard type as the data object of
the class and provide accessor methods which allow for the same type of functionality. This is also a
perfect mechanism for designing and developing a custom data type for an application, which will be
our focus for the upcoming section.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=223
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A16%3A41+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=223&now=5%2F30%2F2002+8%3A16%3A41+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=223

Programming > Core Python Programming > 13. Classes and OOP > Customizing Classes
with Special Methods

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231203005077001244116058

Customizing Classes with Special Methods

We covered two important aspects of methods in preceding sections of this chapter, the first being that
methods must be bound (to an instance of their corresponding class) before they can be invoked. The
other important matter is that there are two special methods which provide the functionality of
constructors and destructors, namely __init__() and __del__() respectively.

In fact, __init__() and __del__() are part of a set of special methods which can be
implemented. Some have the predefined default behavior of inaction while others do not and should be
implemented where needed. These special methods allow for a powerful form of extending classes in
Python. In particular, they allow for:

● Emulating standard types

● Overloading operators

Special methods enable classes to emulate standard types by overloading standard operators such as +,
*, and even the slicing subscript and mapping operator []. As with most other special reserved
identifiers, these methods begin and end with a double underscore (__). Table 13.4 presents a list of
all special methods and their descriptions.

Table 13.4. Special Methods for Customizing Classes

Special Method Description

Core

C.__init__(self[, arg1, …]) constructor (with any optional arguments)

C.__del__(self) destructor

C.__repr__(self) evaluatable string representation; repr() built-in and '' operator

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=224
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A16%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=224&now=5%2F30%2F2002+8%3A16%3A56+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/224#1.html

C.__str__(self) printable string representation; str() built-in and print statement

C.__cmp__(self, obj) object comparison; cmp() built-in

C.__call__(self, *args) denote callable instances

C.__nonzero__(self) define false value for object

C.__len__(self) "length" (appropriate for class); len() built-in

Attributes

C.__getattr__(self, attr) get attribute; getattr() built-in

C.__setattr__(self, attr, val) set attribute; setattr() built-in

C.__delattr__(self, attr) delete attribute; del statement

Customizing Classes / Emulating Types

Numeric Types: binary operators[a]

C.__*add__(self, obj) addition; + operator

C.__*sub__(self, obj) subtraction; - operator

C.__*mul__(self, obj) multiplication; * operator

C.__*div__(self, obj) division; / operator

C.__*mod__(self, obj) modulo/remainder; % operator

C.__*divmod__(self, obj) division and modulo; divmod() built-in

C.__*pow__(self, obj[, mod]) exponentiation; pow() built-in; ** operator

C.__*lshift__(self, obj) left shift; << operator

C.__*rshift__(self, obj) right shift; >> operator

C.__*and__(self, obj) bitwise AND; & operator

C.__*or__(self, obj) bitwise OR; | operator

C.__*xor__(self, obj) bitwise XOR; ^ operator

Numeric Types: unary operators

C.__neg__(self) unary negation

C.__pos__(self) unary no-change

C.__abs__(self) absolute value; abs() built-in

C.__invert__(self) bit inversion; ~ operator

Numeric Types: numeric conversion

C.__complex__(self, com) convert to complex; complex() built-in

C.__int__(self) convert to int; int() built-in

C.__long__(self) convert to long; long() built-in

C.__float__(self) convert to float; float() built-in

Numeric Types: base representation (string)

C.__oct__(self) octal representation; oct()built-in

C.__hex__(self) hexadecimal representation; hex() built-in

Numeric Types: numeric coercion

C.__coerce__(self, num) coerce to same numeric type; coerce() built-in

Sequence Types[a]

C.__len__(self) number of items in sequence

C.__getitem__(self, ind) get single sequence element

C.__setitem__(self, ind, val) set single sequence element

C.__delitem__(self, ind) delete single sequence element

C.__getslice__(self, ind1, ind2) get sequence slice

C.__setslice__(self, i1, i2, val) set sequence slice

C.__delslice__(self, ind1, ind2) delete sequence slice

C.__contains__(self, val)[b] test sequence membership; in keyword

C.__*add__(self, obj) concatenation; + operator

C.__*mul__(self, obj) repetition; * operator

Mapping Types

C.__len__(self) number of items in mapping

C.__hash__(self) hash function value

C.__getitem__(self, key) get value with given key

C.__setitem__(self, key, val) set value with given key

C.__delitem__(self, key) delete value with given key

[a] "*" either nothing (self OP obj), "r" (obj OP self), or (new in 2.0) "i" for in-place operation, i.e., __add__,

__radd__, or __iadd__

[b] New in 1.6

The "Core" group of special methods denotes the basic set of special methods which can be
implemented without emulation of any specific types. The "Attributes" group helps manage instance
attributes of your class. The "Numeric Types" set of special methods can be used to emulate various
numeric operations, including those of the standard (unary and binary) operators, conversion, base
representation, and coercion. There are also special methods to emulate sequence and mapping types.
Implementation of some of these special methods will overload operators so that they work with
instances of your class type.

Numeric binary operators in the table annotated with a wildcard asterisk in their names are so denoted
to indicate that there are multiple versions of those methods with slight differences in their name. The
asterisk either symbolizes no additional character in the string, or a single "r" to indicate a right-hand-
side operation. Without the "r," the operation occurs for cases which are of the format self OP obj;
the presence of the "r" indicates the format obj OP self. For example, __add__(self, obj) is
called for self + obj, and __radd__(self, obj) would be invoked for obj + self.

Augmented assignment, new in Python 2.0, introduces the notion of "in-place" operations. An "i" in
place of the asterisk implies a combination left-hand side operation plus an assignment, as in self =
self OP obj. For example, __iadd__(self, obj) is called for self = self + obj.

Simple Class Customization Example (oPair)

For our first example, let us create a simple class consisting of an ordered pair (x, y) of numbers.
We will represent this data in our class as a 2-tuple. In the code snippet below, we define the class with
a constructor that takes a pair of values and stores them as the data attribute of our oPair class:

class oPair: # ordered pair
 def __init__(self, obj1, obj2): # constructor
 self.data = (obj1, obj2) # assign attribute

Using this class, we can instantiate our objects:

>>> myPair = oPair(6, -4) # create instance
>>> myPair # calls repr()
<oPair instance at 92bb50>
>>> print myPair # calls str()

<oPair instance at 92bb50>

Unfortunately, neither print (using str()) nor the actual object's string representation (using
repr()) reveals much about our object. One good idea would be to implement either __str__() or
__repr__(), or both so that we can "see" what our object looks like. In other words, when you
want to display your object, you actually want to see something meaningful rather than the generic
Python object string (<object type at id>). We want to see an ordered pair (tuple) with the
current data values in our object. Without further ado, let us implement __str__() so that the
ordered pair is displayed:

def __str__(self): # str() string representation
 return str(self.data) # convert tuple to string

__repr__ = __str__ # repr() string representation

Since we also want to use the same piece of code for __repr__(), rather than copying the code
verbatim, we use our sense of code reusability and simply create an alias to __str__(). Now our
output has been greatly improved:

>>> myPair = oPair(-5, 9)# create instance
>>> myPair # repr() calls __repr__()
(-5, 9)
>>> print myPair # str() calls __str__()
(-5, 9)

What is the next step? Let us say we want our objects to interact. For example, we can define the
addition operation of two oPair objects, (x1, y1) and (x2, y2), to be the sum of each
individual component. Therefore, the "sum" of two oPair objects is defined as a new object with the
values (x1 + x2, y1 + y2). We implement the __add__() special method in such a way that
we calculate the individual sums first, then call the class constructor to return a new object. Finally, we
alias __add__ as __radd__ since the order does not matter—in other words, numeric addition is
commutative. The definitions of __add__ and __radd__ are featured below:

def __add__(self, other): # add two oPair objects

 return self.__class__(self.data[0] + other.data[0],
 self.data[1] + other.data[1])

The new object is created by invoking the class as in any normal situation. The only difference is that
from within the class, you typically would not invoke the class name directly. Rather, you take
__class__ attribute of self which is the class from which self was instantiated and invoke that.
Because self.__class__ is the same as oPair, calling self.__class__() is the same as
calling oPair().

Now we can perform additions with our newly-overloaded operators. Reloading our updated module,
we create a pair of oPair objects and "add" them, producing the sum you see below:

>>> pair1 = oPair(6, -4)
>>> pair2 = oPair(-5, 9)
>>> pair1 + pair2
(1, 5)

A TypeError exception occurs when attempting to use an operator for which the corresponding
special method(s) has(have) not been implemented yet:

>>> pair1 * pair2
Traceback (innermost last):
 File "<stdin", line 1, in ?
 pair1 * pair2
TypeError: __mul__ nor __rmul__ defined for these operands

Obviously, our result would have been similar if we had not implemented __add__ and __radd__.
The final example is related to existing data which we may want to use. Let us say that we have some 2-
tuples floating around in our system, and in order to create oPair objects with them currently, we
would have to split them up into individual components to instantiate an oPair object:

aTuple = (-3, -1)
pair3 = oPair(aTuple[0], aTuple[1])

But rather than splitting up the tuple and creating our objects as in the above, wouldn't it be nice if we
could just feed this tuple into our constructor so that it can handle it there? The answer is yes, but not
by overloading the constructor as the case may be with other object-oriented programming languages.
Python does not support overloading of callables, so the only way to work around this problem is to
perform some manual introspection with the type() built-in function.

In our update to __init__() below, we add an initial check to see if what we have is a tuple. If it is,
then we just assign it directly to the data attribute. Otherwise, this would mean a "regular" instantiation,
meaning that we expect a pair of numbers to be passed.

def __init__(self, obj1, obj2=None):# constructor
 if type(obj1) == type(()): # tuple type
 self.data = obj1
 else:
 if obj2 == None: # part of values
 raise TypeError, \
 'oPair() requires tuple or numeric pair'
 self.data = (obj1, obj2)

Note in the above code that we needed to give a default value of None to obj2. This allows only one
object to be passed in if it is a tuple. What we do not want is to allow only the creation of an oPair
type without a second value, hence our additional check to see if obj2 is None in the else clause.
We can now make our call in a more straightforward manner:

aTuple = (-3, -1)
pair3 = oPair(aTuple)
>>> pair3
(-3, -1)
>>> pair3 + pair1
(3, -5)

Hopefully, you now have a better understanding of operator overloading, why you would want to do it,
and how you can implement special methods to accomplish that task. If you are interested in a more
complex customization, continue with the optional section below.

*More Complex Class Customization Example (NumStr)

Let us create another new class, NumStr, consisting of a number-string ordered pair, called n and s,
respectively, using integers as our number type. Although the "proper" notation of an ordered pair is
(n, s), we choose to represent our pair as [n :: s] just to be different. Regardless of the
notation, these two data elements are inseparable as far as our model is concerned. We want to set up
our new class, called NumStr, with the following characteristics:

Initialization

The class should be initialized with both the number and string; if either (or both) is missing, then 0 and
the empty string should be used, i.e., n=0 and s='', as defaults.

Addition

We define the addition operator functionality as adding the numbers together and concatenating the
strings; the tricky part is that the strings must be concatenated in the correct order. For example, let
NumStr1 = [n1 :: s1] and NumStr2 = [n2 :: s2]. Then NumStr1 + NumStr2 is
performed as [n1 + n2 :: s1 + s2] where + represents addition for numbers and concatenation
for strings.

Multiplication

Similarly, we define the multiplication operator functionality as multiplying the numbers together and
repeating or concatenating the strings, i.e., NumStr1 * NumStr2 = [n1 * n2 :: s1 *
s2].

False Value

This entity has a false value when the number has a numeric value of zero and the string is empty, i.e.,
when NumStr = [0 :: ''].

Comparisons

Comparing a pair of NumStr objects, i.e., [n1 :: s1] vs. [n2 :: s2], we find 9 different
combinations (i.e., n1 > n2 and s1 < s2, n1 == n2 and s1 > s2, etc.) We use the normal
numeric and lexicographic compares for numbers and strings, respectively, i.e., the ordinary
comparison of cmp(obj1, obj2) will return an integer less than zero if obj1 < obj2, greater
than zero if obj1 > obj2, or equal to zero if the objects have the same value.

The solution for our class is to add both of these values and return the result. The interesting thing is
that cmp() does not like to return values other than -1, 0, 1, so even if the sum turns out to be -2 or 2,
cmp() will still return -1 or 1, respectively. A value of 0 is returned if both sets of numbers and strings

are the same, or if the comparisons offset each other, i.e., (n1 < n2) and (s1 > s2) or vice versa.

Given the above criteria, we present the code below for numstr.py:

Example 13.2. Emulating Types with Classes (numstr.py)

 <$nopage>
001 1 # !/usr/bin/env python
002 2
003 3 class NumStr:
004 4
005 5 def __init__(self, num=0, string=''):# constr.
006 6 self.__num = num
007 7 self.__string = string
008 8
009 9 def __str__(self): # define for str()
010 10 return \xd4 [%d :: %s]' % \
011 11 self.__num, \xd4 self.__string\xd4)
012 12 __repr__ = __str__
013 13
014 14 def __add__(self, other): # define for s+o
015 15 if isinstance(other, NumStr):
016 16 return self.__class__(self.__num + \
017 17 other.__num, \
018 18 self.__string + other.__string)
019 19 else: <$nopage>
020 20 raise TypeError, \
021 21 'illegal argument type for built-in operation'
022 22
023 23 def __radd__(self, other): # define for o+s
024 24 if isinstance(other, NumStr):
025 25 return self.__class__(other.num + \
026 26 self.num, other.str + self.str)
027 27 else: <$nopage>
028 28 raise TypeError, \
029 29 'illegal argument type for built-in operation'
030 30
031 31 def __mul__(self, num): # define for o*n
032 32 if type(num) == type(0):
033 33 return self.__class__(self.__num * num,\
034 34 self.__string * num)
035 35 else: <$nopage>
036 36 raise TypeError, \

037 37 'illegal argument type for built-in operation'
038 38
039 39 def __nonzero__(self): # reveal tautology
040 40 return self.__num or len(self.__string)
041 41
042 42 def __norm_cval(self, cmpres): # normalize cmp()
043 43 return cmp(cmpres, 0)
044 44
045 45 def __cmp__(self, other): # define for cmp()
046 46 nres = self.__norm_cval(cmp(self.__num, \
047 47 other.__num))
048 48 sres = self.__norm_cval(cmp(self.__string, \
049 49 other.__string))
050 50
051 51 if not (nres or sres): return 0 # both 0
052 52 sum = nres + sres
053 53 if not sum: return None # one <,one>
054 54 return sum
055 <$nopage>

Here is an example execution of how this class works:

>>> a = NumStr(3, 'foo')
>>> b = NumStr(3, 'goo')
>>> c = NumStr(2, 'foo')
>>> d = NumStr()
>>> e = NumStr(string='boo')
>>> f = NumStr(1)
>>> a
[3 :: 'foo']
>>> b
[3 :: 'goo']
>>> c
[2 :: 'foo']
>>> d
[0 :: '']
>>> e
[0 :: 'boo']
>>> f
[1 :: '']
>>> a < b
1
>>> b < c

0
>>> a == a
1
>>> b * 2
[6 :: 'googoo']
>>> a * 3
[9 :: 'foofoofoo']
>>> e + b
[3 :: 'boogoo']
>>> if d: 'not false'
…
>>> if e: 'not false'
…
'not false'
>>> cmp(a,b)
-1
>>> cmp(a,c)
1
>>> cmp(a,a)
0

Line-by-line Explanation

Lines 3–7

The constructor __init__() function sets up our instance initializing itself with the values passed in
to the class instantiator NumStr(). If either value is missing, the attribute takes on the default false
value of either zero or the empty string, depending on the argument.

One significant oddity is the use of double underscores to name our attributes. As we will find out in
the next section, this is used to enforce a level, albeit elementary, of privacy. Programmers importing
our module will not have straightforward access to our data elements. We are attempting to enforce one
of the encapsulation properties of OO design by permitting access only though accessor functionality.
If this syntax appears odd or uncomfortable to you, you can remove all double underscores from the
instance attributes, and the examples will still work exactly in the same manner.

All attributes which begin with a double underscore (__) are "mangled" so that these names are not as
easily accessible during run-time. They are not, however, mangled in such a way so that it cannot be
easily reverse-engineered. In fact, the mangling pattern is fairly well-known and easy to spot. The main
point is to prevent the name from being accidentally used when being imported by an external module
where conflicts may arise. The name is changed to a new identifier name containing the class name to

ensure that it does not get "stepped on" unintentionally. For more information, check out Section 13.14
on privacy.

Lines 9–12

We choose the string representation of our ordered pair to be "[num :: 'str']" so it is up to
__str__() to provide that representation whenever str() is applied to our instance and when the
instance appears in a print statement. Because we want to emphasize that the second element is a
string, it is more visually convincing if the users view the string surrounded by quotation marks. To
that end, we call repr() using the single back quotation marks to give the evaluatable version of a
string, which does have the quotation marks:

>>> print a
[3 :: 'foo']

Not calling repr() on self.__string (leaving the back quotations off) would result in the string
quotations being absent. For the sake of argument, let us effect this change for learning purposes.
Removing the backquotes, we edit the return statement so that it now looks like this:

return '[%d :: %s]' % (self.__num, self.__string)

Now calling print again on an instance results in:

>>> print a
[3 :: foo]

How does that look without the quotations? Not as convincing that "foo" is a string, is it? It looks more
like a variable. The author is not as convinced either. (We quickly and quietly back out of that change
and pretend we never even touched it.)

The first line of code after the __str__() function is the assignment of that function to another
special method name, __repr__. We made a decision that an evaluatable string representation of our
instance should be the same as the printable string representation. Rather than defining an entirely new
function which is a duplicate of __str__(), we just create an alias, copying the reference.

When you implement __str__(), it is the code that is called by the interpreter if you ever apply the
str() built-in function using that object as an argument. The same goes for __repr__() and
repr().

How would our execution differ if we chose not to implement __repr__()? If the assignment is
removed, only the print statement (which calls str() will show us the contents of our object. The
evaluatable string representation defaults to the Python standard of
<…some_object_information…>.

>>> print a # calls str(a)
[3 :: 'foo']
>>> a # calls repr(a)
<NumStr.NumStr instance at 122640>

Lines 14–29

One feature we would like to add to our class is the addition operation, which we described earlier. One
of Python's features as far as customizing classes goes is the fact that we can overload operators to
make these types of customizations more "realistic." Invoking a function such as "add(obj1,
obj2)" to "add" objects obj1 and obj2 may seem like addition, but is it not more compelling to be
able to invoke that same operation using the plus sign (+) like this? ? obj1 + obj2

Overloading the plus sign requires the implementation of two functions, __add__() and
__radd__(), as explained in more detail in the previous section. The __add__() function takes
care of the SELF + OTHER case, but we need to define __radd__() to handle the OTHER + SELF
scenario. The numeric addition is not affected as much as the string concatenation is because order
matters.

The addition operation adds each of the two components, with the pair of results forming a new
object—created as the results are passed to a call for instantiation as calling self.__class__()
(again, also previously explained above). Any object other than a like type should result in a
TypeError exception, which we raise in such cases.

Lines 31–37

We also overload the asterisk [by implementing __mul__()] so that both numeric multiplication and
string repetition are performed, resulting in a new object, again created via instantiation. Since
repetition allows only an integer to the right of the operator, we must enforce this restriction as well.
We also do not define __rmul__() for the same reason.

Lines 39–40

Python objects have a concept of having a Boolean value at any time. For the standard types, objects
have a false value when they are either a numeric equivalent of zero or an empty sequence or mapping.
For our class, we have chosen that both its numeric value must be zero and the string empty in order
for any such instance to have a false value. We override the __nonzero__() method for this
purpose. Other objects such as those which strictly emulate sequence or mapping types use a length of
zero as a false value. In those cases, you would implement the __len__() method to effect that
functionality.

Lines 39–54

__norm_cval() is not a special method. Rather, it is a helper function to our overriding of
__cmp__(); its sole purpose is to convert all positive return values of cmp() to 1, and all negative
values to -1. cmp() normally returns arbitrary positive or negative values (or zero) based on the result
of the comparison, but for our purposes, we need to restrict the return values to only -1, 0, and 1.
Calling cmp() with integers will give us the result we need, being equivalent to the following snippet
of code:

def __norm_cval(self, cmpres):
 if cmpres < 0:
 return -1
 elif cmpres > 0:
 return 1
 else:
 return 0

The actual comparison of two like objects consists of comparing the numbers and the strings, and
returning the sum of the comparisons. You may have noticed in the code above that we prepended a
double underscore (__) in front of our data attributes. This directive provides a light form of privacy.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=224

Programming > Core Python Programming > 13. Classes and OOP > Privacy See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231202153041135146141026

Privacy

Attributes in Python are, by default, "public" all the time, accessible by both code within the module
and modules that import the module containing the class.

Many OO languages provide some level of privacy for the data and provide only accessor functions to
provide access to the values. This is known as implementation hiding and is a key component to the
encapsulation of the object. Most OO languages provide "access specifiers" to restrict who has access
to member functions.

Python 1.5 introduces an elementary form of privacy for class elements (attributes or methods).
Attributes which begin with a double underscore (__) are mangled during run-time so direct access is
thwarted. In actuality, the name is prepended with an underscore followed by the class name. For
example, let us take the self.__num attribute found in Example 13.2 (numstr.py). After the
mangling process, the identifier used to access that data value is now self._NumStr__num.
Adding the class name to the newly-mangled result will prevent it from clashing with the same name in
either ancestor or descendant classes.

Although this provides some level of privacy, the algorithm is also in the public domain and can be
defeated easily. It is more of a protective mechanism for importing modules that do not have direct
access to the source code or for other code within the same module.

One way to prevent the source code from being accessed is to allow only access to the byte-compiled
.pyc file. For example, a software company shipping Python software may choose to provide only the
.pyc files. This helps to ensure that no one can maliciously gain programmatic access to private
variables and methods.

As we discovered in Chapter 12, simple module-level privacy is provided by using a single underscore
character prefixing an attribute name. This prevents a module attribute from being imported with
"from mymodule import *".

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=225
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A17%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=225&now=5%2F30%2F2002+8%3A17%3A31+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/224#11.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=225

Programming > Core Python Programming > 13. Classes and OOP > Delegation See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231202153046039057030079

Delegation

Wrapping

"Wrapping" is a term you will hear often in the Python programming world. It is a generic moniker to describe
the packaging of an existing object, whether it be a data type or a piece of code, adding new, removing
undesired, or otherwise modifying existing functionality to the existing object.

The subclassing or derivation of a standard type in Python is not allowed; however, you can wrap any type as
the core member of a class so that the new object's behavior mimics all existing behavior of the data type that
you want, does not do what you do not want it to do, and perhaps does something a little extra. This is called
"wrapping a type." In the Appendix, we will discuss how to extend Python, another form of wrapping.

Wrapping consists of defining a class whose instances have the core behavior of a standard type. In other
words, it not only sings and dances now, but also walks and talks like our original type. Figure13-2 attempts to
illustrate what a type wrapped in a class looks like. The core behavior of a standard type is in the center of the
figure, but it is also enhanced by new or updated functionality, and perhaps even by different methods of
accessing the actual data.

Figure 13.2. Wrapping a Type

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=226
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A17%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=226&now=5%2F30%2F2002+8%3A17%3A42+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#2.html

Class Object (which behaves like a type)

You may also wrap classes, but this does not make as much sense because there is already a mechanism for
taking an object and wrapping it in a manner as described above for a standard type. How would you take an
existing class, mimic the behavior you desire, remove what you do not like, and perhaps tweak something to
make the class perform differently from the original class? That process, as we discussed recently, is
derivation. We wrap only types because they cannot be subclassed.

Implementing Delegation

Delegation is a characteristic of wrapping that you can utilize which simplifies the process with regards to
dictating functionality.

Delegation is a form of wrapping which takes advantage of pre-existing functionality to maximize code reuse.
Wrapping a type generally consists of some sort of customization to the existing type. As we mentioned
before, this "tweaking" comes in the form of new, modified, or removed functionality compared to the original
product. Everything else should "remain the same," or keep its existing functionality and behavior. Delegation
is the process whereby all the updated functionality is handled as part of the new class, but the existing
functionality is "delegated" to the default attributes of the object.

The key to implementing delegation is to override the __getattr__() method with code containing a call
to the built-in getattr() function. Specifically, getattr() is invoked to obtain the default object
attribute (data attribute or method) and return it for access or invocation. The way the special method
__getattr__() works is that when an attribute is searched for, any local ones are found first (the
customized ones). If the search fails, then __getattr__() is invoked, which then calls getattr() to
obtain an object's default behavior.

In other words, when an attribute is referenced, the Python interpreter will attempt to find that name in the
local namespace, such as a customized method or local instance attribute. If it is not found in the local
dictionary, then the class namespace is searched, just in case a class attribute was accessed. Finally, if both
searches fail, the hunt begins to delegate the request to the original object, and that is when
__getattr__() is invoked.

Simple Example Wrapping Any Object

Let us take a look at an example. We present below a class which wraps nearly any object, providing basic
functionality as string representations with repr() and str(). Additional customization comes in the form
of the get() method, which removes the wrapping and returns the raw object. All remaining functionality is
delegated to the object's native attributes as retrieved by __getattr__() when necessary.

Here's an example wrapping class:

class WrapMe:

 def __init__(self, obj):
 self.__data = obj

 def get(self):
 return self.__data

 def __repr__(self):
 return 'self.__data'

 def __str__(self):
 return str(self.__data)

 def __getattr__(self, attr):
 return getattr(self.__data, attr)

In our first example, we will use complex numbers, because of all Python's numeric types, complex numbers
are the only one with attributes, data attributes as well as its conjugate() built-in method. Remember that
attributes can be both data attributes as well as functions or methods. Again, we chose complex numbers
because it is an example of a standard which has both attribute types. Here is an example with a complex
number:

>>> wrappedComplex = WrapMe(3.5+4.2j)
>>> wrappedComplex # wrapped object [repr()]
[repr()]
(3.5+4.2j)
>>> wrappedComplex.real # real attribute
3.5
>>> wrappedComplex.imag # imaginary attribute
42.2
>>> wrappedComplex.conjugate() # conjugate() method
(3.5–4.2j)
>>> wrappedComplex.get() # actual object
(3.5+4.2j)

Once we create our wrapped object type, we obtain a string representation, silently using the call to repr()
by the interactive interpreter. We then proceed to access all three complex number attributes, none of which is
defined for our class. All three accesses are delegated to the object's attributes via the getattr() method.
The final access to our example object is to retrieve an attribute that is defined for our object, the get()
method which returns the actual data object that we wrapped.

Our next example using our wrapping class uses a list. We will create the object, then perform multiple
operations, delegating each time to list methods.

>>> wrappedList = WrapMe([123, 'foo', 45.67])
>>> wrappedList.append(\xd4 bar\xd5)
>>> wrappedList.append(123)
>>> wrappedList
[123, 'foo', 45.67, 'bar', 123]
>>> wrappedList.index(45.67)
2
>>> wrappedList.count(123)
2
>>> wrappedList.pop()
123
>>> wrappedList
[123, 'foo', 45.67, 'bar']

Notice that although we are using a class instance for our examples, they exhibit behavior extremely similar to
the data types which they wrap. Be aware, however, that only existing attributes can delegated.

Special behaviors which are not in a type's method list will not be accessible since they are not attributes. One
example is the slicing operations of lists which are built-in to the type and not available as an attribute like the
append() method for example. Another way of putting it is that the slice operator ([]) is part of the
sequence type and is not implemented through the __getitem__() special method.

>>> wrappedList[3]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "wrapme.py", line 21, in __getattr__
 return getattr(self.data, attr)
AttributeError: __getitem__

The AttributeError exception results from the fact that the slice operator invokes the __getitem__()
method, and __getitem__() is not defined as a class instance method nor is it a method of list objects.
Recall that getattr() is called only when an exhaustive search through an instance's or class's dictionaries
fails to find a successful match. As you can see above, the call to getattr() is the one which fails,
triggering the exception.

However, we can always cheat by accessing the real object [with our get() method] and its slicing ability
instead:

>>> realList = wrappedList.get()

>>> realList[3]
'bar'

You probably have a good idea now why we implemented the get() method—just for cases like this where
we need to obtain access to the original object. We can bypass assigning local variable (realList) by
accessing the attribute of the object directly from the access call:

>>> wrappedList.get()[3]
'bar'

The get() method returns the object which is then immediately indexed to obtain the sliced subset.

>>> f = WrapMe(open('/etc/motd'))
>>> f
<open file '/etc/motd', mode 'r' at 80e95e0>
>>> f.readline()
'Have a lot of fun…\012'
>>> f.tell()
21
>>> f.seek(0)
>>> print f.readline(),
Have a lot of fun…
>>> f.close()
>>> f
<closed file '/etc/motd', mode 'r' at 80e95e0>

Once you become familiar with an object's attributes, you begin to understand where certain pieces of
information originate and are able to duplicate functionality with your newfound knowledge:

>>> print "<%s file %s, mode %s at %x>" % \
… (f.closed and 'closed' or 'open', "f.name",
"f.mode", id(f.get()))
<closed file '/etc/motd', mode 'r' at 80e95e0>

This concludes the sampling of our simple wrapping class. We have only just begun to touch on class
customization with type emulation. You will discover that there are an infinite number of enhancements you
can make to further increase the usefulness of your code. One such enhancement would be to add timestamps

to objects. In the next subsection, we will add another dimension to our wrapping class: time.

Updating Our Simple Wrapping Class

Creation time, modification time, and access time are familiar attributes of files, but nothing says that you
cannot add this type of information to objects. After all, certain applications may benefit from these additional
pieces of information.

If you are unfamiliar with using these three pieces of chronological data, we will attempt to clarify them. The
creation time (or "ctime") is the time of instantiation, the modification time (or "mtime") refers to the time that
the core data was updated [accomplished by calling the new set() method], and the access time (or "atime")
is the timestamp of when the data value of the object was last retrieved or an attribute was accessed.

Proceeding to updating the class we defined earlier, we create the module twrapme.py, given in Example
13.3.

How did we update the code? Well, first, you will notice the addition of three new methods:
gettimeval(), gettimestr(), and set(). We also added lines of code throughout which update
the appropriate timestamps based on the type of access performed.

The gettimeval() method takes a single character argument, either "c," "m," or "a," for create, modify, or
access time, respectively, and returns the corresponding time that is stored as a float value. gettimestr()
simply returns a pretty-printable string version of the time as formatted by the time.ctime() function.

Let us take a test drive of our new module. We have already seen how delegation works, so we are going to
wrap objects without attributes to highlight the new functionality we just added.

Example 13.3. Wrapping Standard Types (twrapme.py)

Class definition which wraps any built-in type, adding time attributes; get(), set(), and string
representation methods; and delegating all remaining attribute access to those of the standard type.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from time import time, ctime
004 4
005 5 class TimedWrapMe:
006 6
007 7 def __init__(self, obj):
008 8 self.__data = obj
009 9 self.__ctime = self.__mtime = \
010 10 self.__atime = time()
011 11
012 12 def get(self):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#7.html

013 13 self.__atime = time()
014 14 return self.__data
015 15
016 16 def gettimeval(self, t_type):
017 17 if type(t_type) != type('') or \
018 18 t_type[0] not in 'cma':
019 19 raise TypeError, \
020 20 "argument of 'c', 'm', or 'a' req'd"
021 21 return eval('self._%s__%stime' % \
022 22 (self.__class__.__name__, t_type[0]))
023 23
024 24 def gettimestr(self, t_type):
025 25 return ctime(self.gettimeval(t_type))
026 26
027 27 def set(self, obj):
028 28 self.__data = obj
029 29 self.__mtime = self.__atime = time()
030 30
031 31 def __repr__(self):# rep()
032 32 self.__atime = time()
033 33 return \xd4 self.__data\xd4
034 34
035 35 def __str__(self):# str()
036 36 self.__atime = time()
037 37 return str(self.__data)
038 38
039 39 def __getattr__(self, attr):# delegate
040 40 self.__atime = time()
041 41 return getattr(self.__data, attr)
042 <$nopage>

>>> timeWrappedObj = TimedWrapMe(932)
>>> timeWrappedObj.gettimestr('c')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('m')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('a')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj
932
>>> timeWrappedObj.gettimestr('c')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('m')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('a')

'Wed Apr 26 20:48:05 2000'

You will notice that when an object is first wrapped, the creation, modification, and last access times are all
the same. Once we access the object, the access time is updated, but not the others. If we use set() to
replace the object, the modification and last access times are updated. One final read access to our object
concludes our example.

>>> timeWrappedObj.set('time is up!')
>>> timeWrappedObj.gettimestr('m')
'Wed Apr 26 20:48:35 2000'
>>> timeWrappedObj
'time is up!'
>>> timeWrappedObj.gettimestr('c')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('m')
'Wed Apr 26 20:48:35 2000'
>>> timeWrappedObj.gettimestr('a')
'Wed Apr 26 20:48:46 2000'

Wrapping a Specific Object with Enhancements

The next example represents a class which wraps a file object. Our class will behave exactly in the same
manner as a regular file object with one exception: In write mode, only strings in all capital letters are written
to the file.

The problem we are trying to solve here is for a case where you are writing text files whose data is to be read
by an old mainframe computer. Many older style machines are restricted to uppercase letters for processing, so
we want to implement a file object where all text written to the file is automatically converted to uppercase
without the programmer's having to worry about it. In fact, the only noticeable difference is that rather than
using the open() built-in function, a call is made to instantiate the capOpen class. Even the parameters are
exactly the same as for open().

Example 13.4 represents that code, written as capOpen.py. Let us take a look at an example of how to use
this class:

Example 13.4. Wrapping a File Object (capOpen.py)

This class extends on the example from Python FAQ 4.48, providing a file-like object which customizes the
write() method while delegating the rest of the functionality to the file object.

 <$nopage>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#9.html

001 1 #!/usr/bin/env python
002 2
003 3 from string import upper
004 4
005 5 class capOpen:
006 6 def __init__(self, fn, mode='r', buf=-1):
007 7 self.file = open(fn, mode, buf)
008 8
009 9 def __str__(self):
010 10 return str(self.file)
011 11
012 12 def __repr__(self):
013 13 return 'self.file'
014 14
015 15 def write(self, line):
016 16 self.file.write(upper(line))
017 17
018 18 def __getattr__(self, attr):
019 19 return getattr(self.file, attr)
020 <$nopage>

>>> f = capOpen('/tmp/xxx', 'w')
>>> f.write('delegation example\n')
>>> f.write('faye is good\n')
>>> f.write('at delegating\n')
>>> f.close()
>>> f
<closed file '/tmp/xxx', mode 'w' at 12c230>

As you can see above, the only call out of the ordinary is the first one to capOpen() rather than open().
All other code is identical to what you would do if you were interacting with a real file object rather than a
class instance which behaves like a file object. All attributes other than write() have been delegated to the
file object. To confirm the success of our code, we load up the file and display its contents. (Note that we can
use either open() or capOpen(), but chose only capOpen() because we have been working with this
example.)

>>> f = capOpen('/tmp/xxx')
>>> allLines = f.readlines()
>>> for eachLine in allLines:
… print eachLine,
…
DELEGATION EXAMPLE

FAYE IS GOOD
AT DELEGATING

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=226

Programming > Core Python Programming > 13. Classes and OOP > Related Modules and
Documentation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231197152117169126208171

Related Modules and Documentation

Python has several classes which extend the existing functionality of the core language which we have
described in this chapter. The User* modules are like pre-cooked meals, ready to eat. We mentioned
how classes have special methods which, if implemented, can customize classes so that when wrapped
around a standard type, they can give instances type-like qualities.

UserList and UserDict, along with the new UserString (introduced in Python 1.6), represent
modules that define classes that act as wrappers around list, dictionary, and string objects, respectively.
The primary objective of these modules is to provide the desired functionality for you so that you do
not have to implement them yourself, and to serve as base classes which are appropriate for subclassing
and further customization. Python already provides an abundance of useful built-in types, but the added
ability to perform "built-it yourself" typing makes it an even more powerful language.

In Chapter 4, we introduced Python's standard as well as other built-in types. The types module is a
great place to learn more about Python's types as well as those which are out of the scope of this text.
The types module also defines type objects which can be used to make comparisons. (Such
comparisons are popular in Python because it does not support method overloading—this keeps the
language simple, yet there are tools that add functionality to a part of the language where it had
appeared to be lacking.)

The following piece of code checks to see if the object data is passed into the foo function as an
integer or string, and does not allow any other type (raises an exception):

def foo(data):
 if type(data) == type(0):
 print 'you entered an integer'
 elif type(data) == type(''):
 print 'you entered a string'
 else:
 raise TypeError, 'only integers or strings!'

Although the above code is effective, you may also use attributes of the types module instead for

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=227
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A18%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=227&now=5%2F30%2F2002+8%3A18%3A09+PM

more clarity:

from types import *
def foo(data):
 if type(data) == IntType:
 print 'you entered an integer'
 elif type(data) == StringType:
 print 'you entered a string'
 else:
 raise TypeError, 'only integers or strings!'

The last related module is the operator module. This module provides functional versions of most
of Python's standard operators. There may be occasions where this type of interface proves more
versatile than hard-coding use of the standard operators.

Given below is one example. As you look through the code, imagine the extra lines of code which
would have been required if individual operators had been part of the implementation:

>>> from operator import * # import all operators
>>> vec1 = [12, 24]
>>> vec2 = [2, 3, 4]
>>> opvec = (add, sub, mul, div) # using +, -, *, /
>>> for eachOp in opvec: # loop thru operators
… for i in vec1:
… for j in vec2:
… print '%s(%d, %d) = %d' % \
… (eachOp.__name__, i, j, eachOp(i, j))
…
add(12, 2) = 14
add(12, 3) = 15
add(12, 4) = 16
add(24, 2) = 26
add(24, 3) = 27
add(24, 4) = 28
sub(12, 2) = 10
sub(12, 3) = 9
sub(12, 4) = 8
sub(24, 2) = 22
sub(24, 3) = 21
sub(24, 4) = 20

mul(12, 2) = 24
mul(12, 3) = 36
mul(12, 4) = 48
mul(24, 2) = 48
mul(24, 3) = 72
mul(24, 4) = 96
div(12, 2) = 6
div(12, 3) = 4
div(12, 4) = 3
div(24, 2) = 12
div(24, 3) = 8
div(24, 4) = 6

The code snippet above defines three vectors, two containing operands and the last representing the set
of operations the programmer wants to perform on each pair of available operands. The outermost loop
iterates through each operation while the inner pair of loops creates every possible combination of
ordered pairs from elements of each operand vector. Finally, the print statement simply applies the
current operator with the given arguments.

A list of the modules we described above is given in Table 13.5.

Table 13.5. Class Related Modules

Module Description

UserList provides a class wrapper around list objects

UserDict provides a class wrapper around dictionary objects

UserString[a] provides a class wrapper around string objects; also included is a MutableString subclass which
provides that kind of functionality, if so desired

types defines names for all Python object types as used by the standard Python interpreter

operator processes site-specific modules or packages

[a] new in Python 1.6

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/227#1.html

There are plenty of class and object-oriented programming related questions in the Python FAQ. In
Section 13.5.3, we noted how it was dangerous to track instances by keeping references to them. For
more information on this phenomenon, see Python FAQ 4.17. Most of the relevant questions on classes
and object-oriented programming are found in Sections 4 and 6 of the FAQ.

The code of Example 13.4 is inspired by the code implemented in Python FAQ 4.48. This FAQ
includes a short example of wrapping a file object and modifying the write() method. Our version
represents a complete class that can be used like a file object rather than simply passing in an existing
(and open) file object. The one caveat to our class is that it applies only to files which use the
write() method; therefore, we also refer the reader to Exercise 13–16, where the writelines()
method is also implemented.

Finally, we point out again, the Python Library and Language Reference manuals are invaluable
sources of related material.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/216#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#9.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=227

Programming > Core Python Programming > 13. Classes and OOP > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231197152118169168125025

Exercises

1: Programming. Name some benefits of object-oriented programming over older forms of
programming.

2: Functions vs. Methods. What are the differences between functions and methods?

3: Customizing Classes. Create a class to format floating point values to monetary amounts.
In this exercise, we will use United States currency, but feel free to implement your own.

Preliminary work: Create a function called dollarize() which takes a floating point
value and returns that value as a string properly formatted with symbols and rounded to
obtain a financial amount. For example: dollarize(1234567.8901) ?
'$1,234,567.89' The dollarize() function should allow for commas, such as 1,000,000,
and dollar signs. Any negative sign should appear to the left of the dollar sign. Once you
have completed this task, then you are ready to convert it into a useful class called
MoneyFmt.

The MoneyFmt class contains a single data value, the monetary amount, and has five
methods (feel free to create your own outside of this exercise). The __init__()
constructor method initializes the data value, the update() method replaces the data value
with a new one, the __nonzero__() method is Boolean, returning 1 (true) if the data
value is non-zero, the __repr__() method returns the amount as a float, and the
__str__() method displays the value in the string-formatted manner that
dollarize() does.

(a) Fill in the code to the update() method so that it will update the data value.

(b) Use the work you completed for dollarize() to fill in the code for the
__str__() method.

(c) Fix the bug in the __nonzero__() method, which currently thinks that any value

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=228
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A18%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=228&now=5%2F30%2F2002+8%3A18%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#32.html

less than one, i.e., fifty cents ($0.50), has a false value.

(d) EXTRA CREDIT: Allow the user to optionally specify an argument indicating the
desire for seeing less-than and greater-than pairs for negative values rather than the
negative sign. The default argument should use the standard negative sign.

You will find the code skeleton for moneyfmt.py presented as Example 13.5. You will
find a fully-documented (yet incomplete) version of moneyfmt.py on the CD-ROM. If
we were to import the completed class within the interpreter, execution should behave
similar to the following:

>>> import moneyfmt
>>>
>>> cash = moneyfmt.MoneyFmt(123.45)
>>> cash
123.45
>>> print cash
$123.45
>>>
>>> cash.update(100000.4567)
>>> cash
100000.4567
>>> print cash
$100,000.46
>>>
>>> cash.update(-0.3)
>>> cash
-0.3
>>> print cash
-$0.30
>>> repr(cash)
'-0.3'
>>> 'cash'
'-0.3'
>>> str(cash)
'-$0.30'

Example 13.5. Money Formatter (moneyfmt.py)

String format class designed to "wrap" floating point values to appear as monetary
amounts with the appropriate symbols.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/228#2.html

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 class MoneyFmt:
004 4
005 5 def __init__(self, value=0.) # constructor
006 6
007 7 self.value = float(value)
008 8
009 9 def update(self, value=None) # allow updates
010 10 ###
011 11 ### (a) complete this function
012 12 ###
013 13
014 14 def __repr__(self): # display as a float
015 15 return 'self.value'
016 16
017 17 def __str__(self): # formatted display
018 18 val = ''
019 19
020 20 ###
021 21 ### (b) complete this function… do NOT
022 22 ### forget about negative numbers!!
023 23 ###
024 24
025 25 return val
026 26
027 27 def __nonzero__(self): # boolean test
028 28 ###
029 29 ### (c) find and fix the bug
030 30 ###
031 31
032 32 return int(self.value)
033 <$nopage>

4: User Registration. Create a user database (login, password, and last login timestamp) class
(see problems 7–5 and 9–12) which manages a system requiring users to login before
access to resources is allowed. This database class manages its users, loading any
previously-saved user information on instantiation and providing accessor functions to add
or update database information. If updated, the database will save the new information to
disk as part of its deallocation (see __del__()).

5: Geometry. Create a Point class that consists of an ordered pair (x, y) representing a
point's location on the X and Y axes. X and Y coordinates are passed to the constructor on
instantiation and default to the origin for any missing coordinate.

6: Geometry. Create a line/line segment class which has length and slope behaviors, in
addition to the main data attributes, a pair of points (see previous problem). You should
override the __repr__() method (and str(), if you want) so that the string
representing a line (or line segment) are a pair of tuples, ((x1, y1), (x2, y2)).
Summary:

__repr__ length display points as pair of tuples return length of line segment—do not use "len"
since that is supposed tobe an integer

slope return slope of line segment (or Noneif applicable)

7: Date class. Provide interface to a time module where users can request dates in a few
(given) date formats such as "MM/DD/YY," "MM/DD/YYYY," "DD/MM/YY,"
"DD/MM/YYYY," "Mon DD, YYYY," or the standard Unix date of "Day Mon DD,
HH:MM:SS YYYY." Your class should maintain a single value of date and create an
instance with the given time. If not given, default to the current time at execution.
Additional methods:

update() changes the data value to reflect time given or current time as a default

display() takes format indicator and displays date in requested format:

'MDY' -> MM/DD/YY

'MDYY' -> MM/DD/YYYY

'DMY' -> DD/MM/YY

'DMYY' -> DD/MM/YYYY

'MODYY' -> Mon DD, YYYY

If no format is given, default to system/ctime() format. EXTRA CREDIT: Merge the
use of this class into Exercise 6-15.

8: Stack class. A stack is a data structure with last-in-first-out (LIFO) characteristics. Think
of a stack of cafeteria trays. The first one in the spring-loaded device is the last one out,
and the last one in is the first one out. Your class will have the expected push() (add an
item to the stack) and pop() (remove an item from the stack) methods. Add an
isempty() Boolean method that returns 1 if the stack is empty and 0 otherwise, and a
peek() method that returns the item at the top of the stack without popping it off.

Note that if you are using a list to implement your stacks, the pop() method is already
available as of Python 1.5.2. Create your new class so that it contains code to detect if the
pop() method is available. If so, call the built-in one; otherwise, it should execute your
implementation of pop(). You should probably use a list object; if you do, do not worry
about implementing any list functionality (i.e., slicing). Just make sure that your Stack
class can perform both of the operations above correctly. See Section 13.16 and Example
6.2 for motivation.

9: Queue class. A queue is a data structure that has first-in-first-out (FIFO) characteristics. A
queue is like a line where items are removed from the front and added to the rear. The class
should support the following methods:

enqueue()—adds a new element to the end of a list dequeue()—returns the first
element and removes it from the list

See the previous problem and Example 6.3 for motivation.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/114#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/114#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/114#11.html

10: Stacks and Queues. Write a class which defines a data structure that can behave as both a
queue (FIFO) or a stack (LIFO), somewhat similar in nature to arrays in PERL. There are
four methods that should be implemented:

shift()—returns the first element and removes it from the list, similar to the earlier
dequeue() function.

unshift()—"pushes" a new element to the front or head of the list.

push()—adds a new element to the end of a list, similar to the enqueue() and push()
methods from previous problems.

pop()returns the last element and removes it from the list. It works exactly the same way
as pop() from before.

Also see Exercises 13-8 and 13-9.

11: Electronic Commerce. You need to create the foundations of an e-commerce engine for a
B2C (business-to-consumer) retailer. You need to have a class for a customer called
User, a class for items in inventory called Item, and a shopping cart class called
Cart. Items go in Carts, and Users can have multiple Carts. Also, multiple items can
go into Carts, including more than one of any single item.

12: Chat Rooms. You have been pretty disappointed at the current quality of chat room
applications and vow to create your own, start-up a new Internet company, obtain venture
capital funding, integrate advertisement into your chat program, quintuple revenues in a six-
month period, go public, and retire. However, none of this will happen if you do not have a
pretty cool chat application.

There are three classes you would need: a Message class containing a message string and
any additional information such as broadcast or single recipient, a User class that contains
all the information for a person entering your chat rooms. To really wow the VCs to get
your start-up capital, you add a class Room that represents a more sophisticated chat
system where users can create separate "rooms" within the chat area and invite others to
join. EXTRA CREDIT:

Develop graphical user interface (GUI) applications for the users.

13: Stock portfolio class. For each company, your database tracks the name, ticket symbol,
purchase date, purchase price, # of shares. Methods include: Add new symbol, remove
symbol, and YTD or Annual Return performance for any or all symbols given a current
price (and date).

14: DOS. Write a Unix interface shell for DOS machines. You present the user a command-
line where he or she can type in Unix commands, and you interpret them and output
accordingly, i.e., the "ls" command calls "dir" to give a list of filenames in a directory,
"more" uses the same command (paginating through a text file), "cat" calls "type," "cp"
calls "copy," "mv" calls "ren," and "rm" invokes "del," etc.

15: Delegation. In our final comments regarding the capOpen class of Example 13.4 where
we proved that our class wrote out the data successfully, we noted that we could use either
capOpen() or open() to read the file text. Why? Would anything change if we used
one or the other?

16: Delegation and Functional Programming.

(a) Implement a writelines() method for the capOpen class of Example 13.4. Your new
function will take a list of lines and write them out converted to uppercase, similar to the
way the regular writelines() method differs from write(). Note that once you are done,
writelines() is no longer "delegated" to the file object.

(b) Add an argument to the writelines() method that determines whether a NEWLINE
should be added to every line of the list. This argument should default to a value of 0 for no
NEWLINEs.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#33.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#9.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#9.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=228

Programming > Core Python Programming > 14. Execution Environment See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004231197152112234227006041

Chapter 14. Execution Environment
Chapter Topics

● Callable Objects

● Code Objects

● Statements and Built-in Functions

● Executing Other Programs

● Restricted Execution

● Terminating Execution

● Related Modules

There are multiple ways in Python to run a command or execute a file on disk. It all depends on what
you are trying to accomplish. There are many possible scenarios during execution:

● Remain executing within our current script

● Create and manage a subprocess

● Execute an external command or program

● Execute a command which requires input

● Invoke a command across the network

● Execute a command creating output which requires processing

● Execute another Python script

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=230
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A18%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=230&now=5%2F30%2F2002+8%3A18%3A53+PM

● Execute a command or program in a secure environment

● Execute a set of dynamically-generated Python statements

● Import a Python module (and executing its top-level code)

There are built-ins and external modules which can provide any of the functionality described above.
The programmer must decide which tool to pick from the box based on the application which requires
implementation. This chapter sketches a potpourri of many of the aspects of the execution environment
within Python; however, we will not discuss how to start the Python interpreter or the different
command-line options. Readers seeking information on invoking or starting the Python interpreter
should review Chapter 2.

Our tour of Python's execution environment consists of looking at "callable" objects and following up
with a lower-level peek at code objects. We will then take a look at what Python statements and built-in
functions are available to support the functionality we desire. The ability to execute other programs
gives our Python script even more power, as well as being a resource-saver because certainly it is
illogical to reimplement all this code, not to mention the loss of time and manpower. Python provides
many mechanisms to execute programs or commands external to the current script environment, and
we will run through the most common options. Next, we give a brief overview of Python's restricted
execution environment, and finally, the different ways of terminating execution (other than letting a
program run to completion). We begin our tour of Python's execution environment by looking at
"callable" objects.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=230

Programming > Core Python Programming > 14. Execution Environment > Callable
Objects

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228147163053241134031082

Callable Objects

A number of Python objects are what we describe as "callable," meaning any object which can be
invoked with the function operator "()". The function operator is placed immediately following the
name of the callable to invoke it. For example, the function "foo" is called with "foo()". You
already know this. Callables may also be invoked via functional programming interfaces such as
apply(), filter(), map(), and reduce(), all of which we discussed in Chapter 11.
Python has four callable objects: functions, methods, classes, and some class instances. Keep in mind
that any additional references or aliases of these objects are callable, too.

Functions

The first callable object we introduced was the function. There are three types of different function
objects, the first being the Python built-in functions.

Built-in Functions (BIFs)

BIFs are generally written as extensions in C or C++, compiled into the Python interpreter, and loaded
into the system as part of the first (built-in) namespace. As mentioned in previous chapters, these
functions are found in the __builtin__ module and are imported into the interpreter as the
__builtins__ module. In restricted execution modes, only a subset of these functions is available.
(See Section 14.6 for more details on restricted execution.)

All BIFs come with the attributes given in Table 14.1.

Table 14.1. Built-in Function Attributes

BIF Attribute Description
bif.__doc__ documentation string

bif.__name__ function name as a string

bif.__self__ set to None (reserved for built-in methods)

You can verify these attributes by using the dir() built-in function, as indicated below using the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=231
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A20%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=231&now=5%2F30%2F2002+8%3A20%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/231#3.html

type() BIF as our example:

>>> dir(type)
['__doc__', '__name__', '__self__']

Internally, built-in functions are represented as the same type as built-in methods, so invoking the
type() built-in function on a built-in function or method outputs "builtin_function_or_method," as
indicated in the following example:

>>> type(type)
<type 'builtin_function_or_method'>

User-defined Functions (UDFs)

The second type of function is the user-defined function. These are generally defined at the top-level
part of a module and hence are loaded as part of the global namespace (once the built-in namespace has
been established). Functions may also be defined in other functions; however, the function at the
innermost level does not have access to the containing function's local scope. As indicated in previous
chapters, Python currently supports only two scopes: the global scope and a function's local scope. All
the names defined in a function, including parameters, are part of the local namespace.

All UDFs come with the attributes listed in Table 14.2.

Table 14.2. User-defined Function Attributes

UDF Attribute Description
udf.__doc__ documentation string (also udf.func_doc)

udf.__name__ function name as a string (also udf.func_name)

udf.func_code byte-compiled code object

udf.func_defaults default argument tuple

udf.func_globals global namespace dictionary; same as calling globals(x) from within function

Internally, user-defined functions are of the type "function," as indicated in the following example by
using type():

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/231#5.html

>>> def foo(): pass
>>> type(foo)
<type 'function'>

lambda Expressions (Functions named "<lambda>")

Lambda expressions are the same as user-defined functions with some minor differences. Although
they yield function objects, lambda expressions are not created with the def statement and instead are
created using the lambda keyword.

Because lambda expressions do not provide the infrastructure for naming the code which are tied to
them, lambda expressions must be called either through functional programming interfaces or have
their reference be assigned to a variable, and then they can be invoked directly or again via functional
programming. This variable is merely an alias and is not the function object's name.

Function objects created by lambda also share all the same attributes as user-defined functions, with
the only exception resulting from the fact that they are not named; the __name__ or func_name
attribute is given the string "<lambda>".

Using the type() built-in function, we show that lambda expressions yield the same function objects
as user-defined functions:

>>> lambdaFunc = lambda x: x * 2
>>> lambdaFunc(100)
200
>>> type(lambdaFunc)
<type 'function'>

In the example above, we assign the expression to an alias. We can also invoke type() directly on a
lambda expression:

>>> type (lambda: 1)
<type 'function'>

Let's take a quick look at UDF names, using lambdaFunc above and foo from the preceding
subsection:

>>> foo.__name__
'foo'
>>> lambdaFunc.__name__
'<lambda>'

Methods

In the previous chapter, we discovered methods, functions which are defined as part of a class—these
are user-defined methods. Many Python data types such as lists and dictionaries also have methods,
known as built-in methods. To further show this type of "ownership," methods are named with or
represented alongside the object's name via the dotted-attribute notation.

Built-in Methods (BIMs)

We discussed in the previous section how built-in methods are similar to built-in functions. Only built-
in types (BITs) have BIMs. As you can see below, the type() built-in function gives the same output
for built-in methods as it does for built-in functions—note how we have to provide a built-in type
(object or reference) in order to access a BIM:

>>> type([].append)
<type 'builtin_function_or_method'>

Furthermore, both BIMs and BIFs share the same attributes, too. The only exception is that now the
__self__ attribute points to a Python object (for BIMs) as opposed to None (for BIFs):

Table 14.3. Built-in Method Attributes

BIM Attribute Description
bim.__doc__ documentation string

bim.__name__ function name as a string

bim.__self__ object the method is bound to

By convention, a BIT should have the following lists of its BIMs and (built-in) attributes.

Table 14.4. Built-in Type Attributes

BIT Attribute Description
bit.__methods__ list of (built-in) methods

bit.__members__ list of (built-in) data attributes

Recall that for classes and instances, their data and method attributes can be obtained by using the
dir() built-in function with that object as the argument to dir(). Apparently, BITs have two
attributes that list their data and method attributes. Attributes of BITs may be accessed with either a
reference or an actual object, as in these examples:

>>> aList = ['on', 'air']
>>> aList.append('velocity')
>>> aList
['on', 'air', 'velocity']
>>> aList.insert(2, 'speed')
>>> aList
['on', 'air', 'speed', 'velocity']
>>>
>>> [].__methods__
['append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']
>>> [3, 'headed', 'knight'].pop()
'knight'

It does not take too long to discover, however, that using an actual object to access its methods does not
prove very useful functionally, as in the last example. No reference is saved to the object, so it is
immediately garbage-collected. The only thing useful you can do with this type of access is to use it to
display what methods (or members) a BIT has.

User-defined Methods (UDMs)

User-defined methods are contained in class definitions and are merely "wrappers" around standard
functions, applicable only to the class they are defined for. They may also be called by subclass
instances if not overridden in the subclass definition.

As explained in the previous chapter, UDMs are associated with class objects (unbound methods), but

can be invoked only with class instances (bound methods). Regardless of whether they are bound or
not, all UDMs are of the same type, "instance method," as seen in the following calls to type():

>>> class C: # define class
… def foo(self): pass # define UDM
…
>>> c = C() # instantiation
>>> type(C.foo) # type of unbound method
<type 'instance method'>
>>> type(c.foo) # type of bound method
<type 'instance method'>

UDMs have the following attributes:

Table 14.5. User-defined Method Attributes

UDM Attribute Description
udm.__doc__ documentation string

udm.__name__ method name as a string

udm.im_class class which method is associated with

udm.im_func function object for method (see UDFs)

udm.im_self associated instance if bound, None if unbound

Accessing the object itself will reveal whether you are referring to a bound or an unbound method. As
you can also see below, a bound method reveals to which instance object a method is bound:

>>> C.foo # unbound method object
<unbound method C.foo>
>>>
>>> c.foo # bound method object
<method C.foo of C instance at 122c78>
>>> c # instance foo()'s bound to
<__main__.c instance at 122c78>

Classes

The callable property of classes allows instances to be created. "Invoking" a class has the effect of
creating an instance, better known as instantiation. Classes have default constructors which perform no
action, basically consisting of a pass statement. The programmer may choose to customize the
instantiation process by implementing an __init__() method. Any arguments to an instantiation
call are passed on to the constructor:

>>> class C:
 def __init__(self, *args):
 print 'instantiated with these arguments:\n', args

>>> c1 = C() # invoking class to instantiate c1
instantiated with these arguments:
()
>>> c2 = C('The number of the counting shall be', 3)
instantiated with these arguments:
('The number of the counting shall be', 3)

We are already familiar with the instantiation process and how it is accomplished, so we will keep this
section brief. What is new, however, is how to make instances callable.

Class Instances

Python provides the __call__() special method for classes which allows a programmer to create
objects (instances) which are callable. By default, the __call__() method is not implemented,
meaning that most instances are not callable. However, if this method is overridden in a class
definition, instances of such a class are made callable. Calling such instance objects is equivalent to
invoking the __call__() method. Naturally, any arguments given in the instance call are passed as
arguments to __call__().

You also have to keep in mind that __call__() is still a method, so the instance object itself is
passed in as the first argument to __call__() as self. In other words, if foo is an instance, then
foo() has the same effect as foo.__call__(foo)—the occurrence of foo as an
argument—simply the reference to self that is automatically part of every method call. If
__call__() has arguments, i.e., __call__(self, arg), then foo(arg) is the same as
invoking foo.__call__(foo, arg). We present below an example of a callable instance, using
a similar example to the previous section:

>>> class C:

… def __call__(self, *args):
… print "I'm callable! Called with args:\n", args
…

>>> c = C() # instantiation
>>> c # our instance
<__main__.C instance at babd30>
>>> callable(c) # instance is callable
1
>>> c() # instance invoked
I'm callable! Called with arguments:
()
>>> c(3) # invoked with 1 arg
I'm callable! Called with arguments:
(3,)
>>> c(3, 'no more, no less') # invoked with 2 args
I'm callable! Called with arguments:
(3, 'no more, no less')

We close this subsection with a note that class instances cannot be made callable unless the
__call__() method is implemented as part of the class definition.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=231

Programming > Core Python Programming > 14. Execution Environment > Code Objects See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228146003101006218094196

Code Objects

Callables are a crucial part of the Python execution environment, yet are only one element of a larger
landscape. The grander picture consists of Python statements, assignments, expressions, even modules.
These other "executable objects" do not have the ability to be invoked like callables. Rather, these
objects are the smaller pieces of the puzzle which make up executable blocks of code called code
objects.

At the heart of every callable is a code object which consists of statements, assignments, expressions,
and other callables. Looking at a module means viewing one large code object which contains all the
code found in the module, which can then be dissected into statements, assignments, expressions, and
callables which recurse to another layer as they contain their own code objects.

In general, code objects can be executed as part of function or method invocations or using either the
exec statement or eval() built-in function. A bird's eye view of a Python module also reveals a
single code object representing all lines of code that make up that module.

If any Python code is to be executed, that code must first be converted to byte-compiled code (a.k.a.
bytecode). This is precisely what code objects are. They do not contain any information about their
execution environment, however, and that is why callables exist, to "wrap" a code object and provide
that extra information.

Recall, from the previous section, the udf.func_code attribute for a UDFs? Well, guess what? That
is a code object. Or how about the udm.im_func function object for UDMs? Since that is also a
function object, it also has its own udm.im_func.func_code code object. So you can see that
function objects are merely wrappers for code objects, and methods are wrappers for function objects.
You can start anywhere and dig. When you get to the bottom, you will have arrived at a code object.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=232
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A21%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=232&now=5%2F30%2F2002+8%3A21%3A21+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=232

Programming > Core Python Programming > 14. Execution Environment > Executable Object
Statements and Built-in Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228146003100134192208091

Executable Object Statements and Built-in Functions

Python provides a number of built-in functions supporting callables and executable objects, including the
exec statement. These functions let the programmer execute code objects as well as generate them using the
compile() built-in function and are listed in Table 14.6.

Table 14.6. Executable Object Statements and Built-in Functions

Built-in Function or Statement Description
callable(obj) determines if obj is callable; returns 1 if so, 0 otherwise
compile(string, file, type) creates a code object from string of type type; file is where

the code originates from (usually set to ?)
eval(obj, globals=globals(),
locals=locals())

evaluates obj, which is either a expression compiled into a code
object or a string expression; global and/or local namespace
dictionaries may also be provided, otherwise, the defaults for the
current environment will be used

exec obj execute obj, a single Python statement or set of statements,
either in code object or string format; obj may also be a file object
(opened to a valid Python script)

input(prompt='') equivalent to eval(raw_input(prompt=''))
intern(string) request intern of string

callable()

callable() is a Boolean function which determines if an object type can be invoked via the function
operator (()). It returns 1 if the object is callable and 0 otherwise. Here are some sample objects and what
callable returns for each type:

>>> callable(dir) # built-in function
1
>>> callable(1) # integer
0
>>> def foo(): pass
…
>>> callable(foo) # user-defined function
1
>>> callable('bar') # string

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=233
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A21%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=233&now=5%2F30%2F2002+8%3A21%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/233#1.html

0
>>> class C: pass
…
>>> callable(C) # class
1

compile()

compile() is a function which allows the programmer to generate a code object on the fly, that is, during
run-time. These objects can then be executed or evaluated using the exec statement or eval() built-in
function. It is important to bring up the point that both exec and eval() can take string representations of
Python code to execute. When executing code given as strings, the process of byte-compiling such code must
occur every time. The compile() function provides a one-time byte-code compilation of code so that the
precompile does not have to take place with each invocation. Naturally, this is an advantage only if the same
pieces of code are executed more than once. In these cases, it is definitely better to precompile the code.

All three arguments to compile() are required, with the first being a string representing the Python code to
compile. The second string, although required, is usually set to the empty string. This parameter represents the
file name (as a string) where this code object is located or can be found. Normal usage is for compile() to
generate a code object from a dynamically-generated string of Python code—code which obviously does not
read from an existing file.

The last argument is a string indicating the code object type. There are three possible values:

'eval' evaluatable expression [to be used with eval()]
'single' single executable statement [to be used with exec]
'exec' group of executable statements [to be used with exec]

Evaluatable Expression

>>> eval_code = compile('100 + 200', '', 'eval')
>>> eval(eval_code)
300

Single Executable Statement

>>> single_code = compile('print "hello world!"', '', 'single')
>>> single_code
<code object ? at 120998, file "", line 0>
>>> exec single_code

hello world!

Group of Executable Statements

>>> exec_code = compile("""
… req = input('Count how many numbers? ')
… for eachNum in range(req):
… print eachNum
… """, '', 'exec')
>>> exec exec_code
Count how many numbers? 6
0
1
2
3
4
5

eval()

eval() evaluates an expression, either as a string representation or a pre-compiled code object created via
the compile() built-in. This is the first argument to eval(). The second and third parameters, both
optional, represent the objects in the global and local namespaces, respectively. If these arguments are not
given, they default to objects returned by globals() and locals(), respectively. Take a look at the
following example:

>>> eval('932')
932
>>> int('932')
932

We see that in this case, both eval() and int() yield the same result: an integer with the value 932. The
paths they take are somewhat different, however. eval() takes the string in quotes and evaluates it as a
Python expression. int() takes a string representation of an integer and converts it to an integer. It just so
happens that the string consists exactly of the string 932, which as an expression yields the value 932, and that
932 is also the integer represented by the string "932." Things are not the same, however, when we use a pure
string expression:

>>> eval('100 + 200')
300
>>> int('100 + 200')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int(): 100 + 200

In this case, eval() takes the string and evaluates "100 + 200" as an expression, which, after performing
integer addition, yields the value 300. The call to int() fails because the string argument is not a string
representation of an integer—there are invalid literals in the string, namely, the spaces and "+" character.

One simple way to envision how the eval() function works is to imagine that the quotation marks around
the expression are invisible and think, "If I were the Python interpreter, how would I view this expression?" In
other words, how would the interpreter react if the same expression were entered interactively? The output
after pressing the RETURN or ENTER key should be the same as what eval() will yield.

exec

Like eval(), the exec statement also executes either a code object or a string representing Python code.
Similarly, precompiling oft-repeated code with compile() helps improve performance by not having to go
through the bytecode compilation process for each invocation. The exec statement takes exactly one
argument, as indicated here with its general syntax:

exec
 obj

The executed object (obj) can be either a single statement or a group of statements, and either may be
compiled into a code object (with "single" or "exec," respectively) or it can be just the raw string. Below is an
example of multiple statements being sent to exec as a single string:

>>> exec """
… x = 0
… print 'x is currently:', x
… while x < 5:
… x = x + 1
… print 'incrementing x to:', x
… """
x is currently: 0
incrementing x to: 1
incrementing x to: 2

incrementing x to: 3
incrementing x to: 4
incrementing x to: 5

Finally, exec can also accept a valid file object to a (valid) Python file. If we take the code in the multi-line
string above and create a file called xcount.py, then we could also execute the same code with the
following:

>>> f = open('xcount.py') # open the file
>>> exec f # execute the file
x is currently: 0
incrementing x to: 1
incrementing x to: 2
incrementing x to: 3
incrementing x to: 4
incrementing x to: 5
>>> exec f # try execution again
>>> # oops, it failed… why?

Note that once execution has completed, a successive call to exec fails. Well, it really doesn't fail. It just
doesn't do anything, which may have caught you by surprise. In reality, exec has read all the data in the file
and is sitting at the end-of-file (EOF). When exec is called again with the same file object, there is no more
code to execute, so it does not do anything, hence the behavior seen above. How do we know that it is at EOF?

We use the file object's tell() method to tell us where we are in the file and then use
os.path.getsize() to tell us how large our xcount.py script was. As you can see, there is an exact
match:

>>> f.tell() # where are we in the file?
116
>>> f.close() # close the file
>>> from os.path import getsize
>>> getsize('xcount.py') # what is the file size?
116

Using Python to Generate and Execute Python Code Example

We now present code for the loopmake.py script, which is a simple computer-aided software engineering
(CASE) that generates and executes loops on-the-fly. It prompts the user for the various parameters (i.e., loop

type (while or for), type of data to iterate over [numbers or sequences]), generates the code string, and
executes it.

Example 14.1. Dynamically Generating and Executing Python Code (loopmake.py)

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 dashes = '\n' + '-' * 50 # dashed line
004 4 exec_dict = {
005 5
006 6 'f': """ # for loop
007 7 for %s in %s:
008 8 print %s
009 9 """,
010 10
011 11 's': """ # sequence while loop
012 12 %s = 0
013 13 %s = %s
014 14 while %s < len(%s):
015 15 print %s[%s]
016 16 %s = %s + 1
017 17 """,
018 18
019 19 'n': """ # counting while loop
020 20 %s = %d
021 21 while %s < %d:
022 22 print %s
023 23 %s = %s + %d
024 24 """
025 25 }
026 26
027 27 def main():
028 28
029 29 ltype = raw_input('Loop type? (For/While) ')
030 30 dtype = raw_input('Data type? (Number/Seq) ')
031 31
032 32 if dtype == 'n':
033 33 start = input('Starting value? ')
034 34 stop = input('Ending value (non-inclusive)? ')
035 35 step = input('Stepping value? ')
036 36 seq = str(range(start, stop, step))
037 37
038 38 else: <$nopage>
039 39 seq = raw_input('Enter sequence: ')
040 40
041 41 var = raw_input('Iterative variable name? ')

042 42
043 43 if ltype == 'f':
044 44 exec_str = exec_dict['f'] % (var, seq, var)
045 45
046 46 elif ltype == 'w':
047 47 if dtype == 's':
048 48 svar = raw_input('Enter sequence name? ')
049 59 exec_str = exec_dict['s'] % \
050 50 (var, svar, seq, var, svar, svar, var, var, var)
051 51
052 52 elif dtype == 'n':
053 53 exec_str = exec_dict['n'] % \
054 54 (var, start, var, stop, var, var, var, step)
055 55
056 56 print dashes
057 57 print 'Your custom-generated code:' + dashes
058 58 print exec_str + dashes
059 59 print 'Test execution of the code:' + dashes
060 60 exec exec_str
061 61 print dashes
062 62
063 63 if __name__ == '__main__':
064 64 main()
065 <$nopage>

Here are a few example executions of this script:

% loopmake.py
Loop type? (For/While) f
Data type? (Number/Sequence) n
Starting value? 0
Ending value (non-inclusive)? 4

Stepping value? 1
Iterative variable name? counter

--
The custom-generated code for you is:
--

for counter in [0, 1, 2, 3]:
 print counter

--
Test execution of the code:
--
0
1
2
3

--
% loopmake.py
Loop type? (For/While) w
Data type? (Number/Sequence) n
Starting value? 0
Ending value (non-inclusive)? 4
Stepping value? 1
Iterative variable name? counter

--
Your custom-generated code:
--

counter = 0
while counter < 4:
 print counter
 counter = counter + 1

--
Test execution of the code:
--
0
1
2
3

--

% loopmake.py
Loop type? (For/While) f
Data type? (Number/Sequence) s
Enter sequence: [932, 'grail', 3.0, 'arrrghhh']
Iterative variable name? eachItem

--
Your custom-generated code:
--

for eachItem in [932, 'grail', 3.0, 'arrrghhh']:
 print eachItem

--
Test execution of the code:
--
932
grail
3.0
arrrghhh

--
% loopmake.py
Loop type? (For/While) w
Data type? (Number/Sequence) s
Enter sequence: [932, 'grail', 3.0, 'arrrghhh']
Iterative variable name? eachIndex
Enter sequence name? myList

--
Your custom-generated code:
--

eachIndex = 0
myList = [932, 'grail', 3.0, 'arrrghhh']
while eachIndex < len(myList):
 print myList[eachIndex]
 eachIndex = eachIndex + 1

--
Test execution of the code:
--
932
grail
3.0
arrrghhh

--

Line-by-line Explanation

Lines 1 – 25

In this first part of the script, we are setting up two global variables. The first is a static string consisting of a
line of dashes (hence the name) and the second is a dictionary of the skeleton code we will need to use for the
loops we are going to generate. The keys are "f" for a for loop, "s" for a while loop iterating through a
sequence, and "n" for a counting while loop.

Lines 27 – 30

Here we prompt the user for the type of loop he or she wants and what data types to use.

Lines 32 – 36

Numbers have been chosen; they provide the starting, stopping, and incremental values. In this section of
code, we are introduced to the input() built-in function for the first time. As we shall see in Section 14.3.5,
input() is similar to raw_input() in that it prompts the user for string input, but unlike
raw_input(), input() also evaluates the input as a Python expression, rendering a Python object even
if the user typed it in as a string.

Lines 38 – 39

A sequence was chosen; enter the sequence here as a string.

Line 41

Get the name of the iterative loop variable that the user wants to use.

Lines 43 – 44

Generate the for loop, filling in all the customized details.

Lines 46 – 50

Generate a while loop which iterates through a sequence.

Lines 52– 54

Generate a counting while loop.

Lines 56 – 61

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/233#22.html

Output the generated source code as well as the resulting output from execution of the aforementioned
generated code.

Lines 63 – 64

Execute main() only if this module was invoked directly.

To keep the size of this script to a manageable size, we had to trim all the comments and error checking from
the original script. You can find both the original as well as an alternate version of this script on the CD-ROM
in the back of the text.

The extended version includes extra features such as not requiring enclosing quotation marks for string input,
default values for input data, and detection of invalid ranges and identifiers; it also does not permit built-in
names or keywords as variable names.

input()

The input() built-in function is the same as the composite of eval() and raw_input(), equivalent to
eval(raw_input()). Like raw_input(), input() has an optional parameter which represents a
string prompt to display to the user. If not provided, the string has a default value of the empty string.

Functionally, input() differs from raw_input() because raw_input() always returns a string
containing the user's input, verbatim. input() performs the same task of obtaining user input; however it
takes things one step further by evaluating the input as a Python expression. This means that the data returned
by input() is a Python object, the result of performing the evaluation of the input expression.

One clear example is when the user inputs a list. raw_input() returns the string representation of a list,
while input() returns the actual list:

>>> aString = raw_input('Enter a list: ')
Enter a list: [123, 'xyz', 45.67]
>>> aString
"[123, 'xyz', 45.67]"
>>> type(aString)
<type 'string'>

The above was performed with raw_input(). As you can see, everything is a string. Now let us see what
happens when we use input() instead:

>>> aList = input('Enter a list: ')

Enter a list: [123, 'xyz', 45.67]
>>> aList
[123, 'xyz', 45.67]
>>> type(aList)
<type 'list'>

Although the user input a string, input() evaluates that input as a Python object and returns the result of
that expression.

Interned Strings and intern()

For performance reasons, Python keeps an internal string table consisting of static string literals and identifier
strings whose purpose is to speed up dictionary lookups. By keeping these strings around, any time a reference
is made to either the same string literal, or to an identifier which bears a name that is in the table, no new
space needs to be allocated for that string, hence saving the time it takes for memory allocation. This
"interned" set of strings is not deallocated or garbage-collected until the interpreter exits.

Here is an example of an interned string:

>>> id('hello world')
1040072
>>> foo = 'hello world'
>>> id(foo)
1040072
>>> del foo
>>> id('hello world')
1040072

The string "hello world" is created in the first statement. The call to id() to reveal its identity was not
necessary since the string was created regardless of whether or not the call was made. We did so in the
example to immediately display its ID once it was created. Upon assigning this string to an identifier, we
observe with another call to id() that, indeed, foo is referencing the same string object, which has been
interned. If we remove the object, thereby decrementing the reference count, we see that this has no effect on
the string which has been interned.

One surprising aspect may be that the string "foo" itself was interned (as the string name of an identifier). If
we create two other strings, we can see that the "foo" string has an earlier ID than the newer strings, indicating
that it was created first.

>>> id('bar')

1053088
>>> id('foo')
1052968
>>> id('goo')
1053728

Python 1.5 saw the debut of the intern() built-in function, which lets the programmer explicitly request
that a string be interned. The syntax of intern(), as you may suspect, is:

intern(string)

The given string argument is the string to intern. intern() enters the string in the (global) table of
interned strings. If the string is not already in the interned string table, it is interned and the string is returned.
Otherwise, if the string is already there, it is simply returned.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=233

Programming > Core Python Programming > 14. Execution Environment > Executing
Other (Python) Programs

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228145120028211154087132

Executing Other (Python) Programs

When we discuss the execution of other programs, we distinguish between Python programs and all
other non-Python programs, which includes binary executables or other scripting language source code.
We will cover how to run other Python programs first, then how to use the os module to invoke
external programs.

Import

During run-time, there are a number of ways to execute another Python script. As we discussed in an
earlier chapter, importing a module the first time will cause the code at the top-level of that module to
execute. This is the behavior of Python importing, whether desired or not. We remind you that the only
code that belongs to the top-level of a module are global variables, and class and function declarations.

These should be followed by an if statement that checks __name__ to determine if a script is
invoked, i.e., "if __name__ == '__main__'". In these cases, your script can then execute the
main body of code, or, if this script was meant to be imported, it can run a test suite for the code in this
module.

One complication arises when the imported module itself contains import statements. If the modules
in these import statements have not been loaded yet, they will be loaded and their top-level code
executed, resulting in recursive import behavior. We present a simple example below. We have two
modules import1 and import2, both with print statements at their outermost level. import1
imports import2 so that when we import import1 from within Python, it imports and "executes"
import2 as well:

Here are the contents of import1.py:

import1.py
print 'loaded import1'
import import2

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=234
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A22%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=234&now=5%2F30%2F2002+8%3A22%3A18+PM

And here are the contents of import2.py:

import2.py
print 'loaded import2'

Here is the output when we import import1 from Python:

>>> import import1
loaded import1
loaded import2
>>>

Following our suggested workaround of checking the value of __name__, we can change the code in
import1.py and import2.py so that this behavior does not occur:

Here is the modified version of import1.py:

import1.py
import import2
if __name__ == '__main__':
 print 'loaded import1'

The following is the code for import2.py, changed in the same manner:

import2.py
if __name__ == '__main__'
 print 'loaded import2'

We no longer get any output when we import import1 from Python:

>>> import import1
>>>

Now it does not necessarily mean that this is the behavior you should code for all situations. There may
be cases where you want to display output to confirm a module import. It all depends on your situation.
Our goal is to provide pragmatic programming examples to prevent unintended side effects.

execfile()

It should seem apparent that importing a module is not the preferred method of executing a Python
script from within another Python script; that is not what the importing process is. One side effect of
importing a module is the execution of the top-level code.

Earlier in this chapter, we described how the exec statement can be used with a file object argument to
read the contents of a Python script and execute it. This can be accomplished with the following code
segment:

f = open(filename, 'r')
exec f
f.close()

The three lines can be replaced by a single call to execfile():

execfile(filename)

Although the code above does execute a module, it does so only in its current execution environment
(i.e., its global and local namespace). There may be a desire to execute a module with a different set of
global and local dictionaries instead of the default ones. For this purpose, we can use the
execfile() built-in function, whose syntax allows the programmer to specify the namespaces:

execfile(filename, globals=globals(), locals=locals())

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=234

Programming > Core Python Programming > 14. Execution Environment > Executing
Other (Non-Python) Programs

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228145120025111016023030

Executing Other (Non-Python) Programs

We can also execute non-Python programs from within Python. These include binary executables,
other shell scripts, etc. All that is required is a valid execution environment, i.e., permissions for file
access and execution must be granted, shell scripts must be able to access their interpreter (Perl, bash,
etc.), binaries must be accessible (and be of the local machine's architecture).

Finally, the programmer must bear in mind whether our Python script is required to communicate with
the other program that is to be executed. Some programs require input, others return output as well as
an error code upon completion (or both). Depending on the circumstances, Python provides a variety of
ways to execute non-Python programs. All of the functions discussed in this section can be found in the
os module. We provide a summary for you here in Table 14.7 (where appropriate, we annotate those
which are available only for certain platforms) and introduce them to you for the remainder of this
section.

As we get closer to the operating system layer of software, you will notice that the consistency of
executing programs, even Python scripts, across platforms starts to get a little dicey. We mentioned
above that the functions

Table 14.7. os Module Functions for External Program Execution (Unix only, Windows only)

os Module Function Description
system(cmd) execute program cmd given as string, wait for program

completion, and return the exit code (on Windows, the exit
code is always 0)

fork() create a child process which runs in parallel to the parent
process [usually used with exec*()]; return twice… once for
the parent and once for the child

execl(file, arg0, arg1…) execute file with argument list arg0, arg1, etc.

execv(file, arglist) same as execl() except with argument list (or tuple)
arglist

execle(file, arg0, arg1…, env) same as execl() but also providing environment variable
dictionary env

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=235
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A22%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=235&now=5%2F30%2F2002+8%3A22%3A40+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/235#1.html

execve(file, arglist, env) same as execle() except with argument list (or tuple)
arglist

execlp(cmd, arg0, arg1…) same as execl() but search for full file pathname of cmd in
user search path

execvp(cmd, arglist) same as execlp() except with argument list (or tuple)
arglist

execvpe(cmd, arglist, env) same as execvp() but also providing environment variable
dictionary env

spawn*(mode, file, args[, env]) depending on mode, spawn*() functions can duplicate the
functionality of fork(), exec*(), system(),
wait*(), and/or a combination of the aforementioned

popen(cmd, mode='r', buffering=-1) execute cmd string, returning a file-like object as a
communication handle to the running program, defaulting to
read mode and default system buffering

wait() wait for child process to complete [usually used with fork()
and exec*()]

waitpid(pid, options) wait for specific child process to complete [usually used with
fork() and exec*()]

described in this section are in the os module. Truth is, there are multiple os modules. For example,
the one for Unix is the posix module. The one for Windows is nt (regardless of which version of
Windows you are running; DOS users get the dos module), and the one for the Macintosh is the mac
module. Do not worry, Python will load the correct module when you call "import os". You should
never need to import a specific operating system module directly.

os.system()

The first function on our list is system(), a rather simplistic function which takes a system
command as a string name and executes it. Python execution is suspended while the command is being
executed. When execution has completed, the exit status will be given as the return value from
system() and Python execution resumes. This function is available for Unix and Windows only.

system() preserves the current standard files, including standard output, meaning that executing any
program or command displaying output will be passed on to standard output. Be cautious here because
certain applications such as common gateway interface (CGI) programs will cause web browser errors

if output other than valid hypertext markup language (HTML) strings are sent back to the client via
standard output. system() is generally used with commands producing no output, some of which
include programs to compress or convert files, mount disks to the system, or any other command to
perform a specific task that indicates success or failure via its exit status rather than communicating via
input and/or output. The convention adopted is an exit status of 0 indicating success and non-zero for
some sort of failure.

For the sake of providing an example, we will execute two commands which do have program output
from the interactive interpreter so that you can observe how system() works.

>>> import os
>>> result = os.system('cat /etc/motd')
Have a lot of fun…
>>> result
0
>>> result = os.system('uname -a')
Linux solo 2.2.13 #1 Mon Nov 8 15:08:22 CET 1999 i586 unknown
>>> result
0

You will notice the output of both commands as well as the exit status of their execution which we
saved in the result variable. Here is an example executing a DOS command:

>>> import os
>>> result = os.system('dir')

Volume in drive C has no label
Volume Serial Number is 43D1-6C8A
Directory of C:\WINDOWS\TEMP

. <DIR> 01-08-98 8:39a .

.. <DIR> 01-08-98 8:39a ..
 0 file(s) 0 bytes
 2 dir(s) 572,588,032 bytes free
>>> result
0

os.popen()

The popen() function is a combination of a file object and the system() function. It works
in the same way as system() does, but in addition, it has the ability to establish a one-way
connection to that program and then to access it like a file. If the program requires input, then you
would call popen() with a mode of 'w' to "write" to that command. The data that you send to the
program will then be received through its standard input. Likewise, a mode of 'r' will allow you to
spawn a command, then as it writes to standard output, you can read that through your file-like handle
using the familiar read*() methods of file object. And just like for files, you will be a good citizen
and close() the connection when you are finished.

In one of the system() examples we used above, we called the Unix uname program to give us some
information about the machine and operating system we are using. That command produced a line of
output that went directly to the screen. If we wanted to read that string into a variable and perform
internal manipulation or store that string to a log file, we could, using popen(). In fact, the code
would look like the following:

>>> import os
>>> f = os.popen('uname -a')
>>> data = f.readline()
>>> f.close()
>>> print data,
Linux solo 2.2.13 #1 Mon Nov 8 15:08:22 CET 1999 i586 unknown

As you can see, popen() returns a file-like object; also notice that readline(), as always,
preserves the newline character found at the end of a line of input text.

os.fork(), os.exec*(), os.wait*()

Without a detailed introduction to operating systems theory, we present a "light" introduction to
processes in this section. fork() takes your single executing flow of control known as a "process"
and creates a "fork-in-the-road," if you will. The interesting thing is that your system takes both
forks—meaning that you will have two consecutive and parallel running programs (running the same
code no less because both processes resume at the next line of code immediately succeeding the
fork() call).

The original process which called fork() is called the "parent" process, and the new process created
as a result of the call is known as the "child process." When the child process returns, its return value is
always zero; when the parent process returns, its return value is always the process identifier (a.k.a.

process ID, or "PID" for short) of the child process (so the parent can keep tabs on all its children). The
PIDs are the only way to tell them apart, too!

We mentioned that both processes will resume immediately after the call to fork(). Because the
code is the same, we are looking at identical execution if no other action is taken at this time. This is
usually not the intention. The main purpose for creating another process is to run another program, so
we need to take divergent action as soon as parent and child return. As we stated above, the PIDs differ,
so this is how we tell them apart:

The following snippet of code will look familiar to those who have experience managing processes.
However, if you are new, it may be difficult to see how it works at first, but once you get it, you get it.

ret = os.fork() # spawn 2 processes, both return
if ret == 0: # child returns with PID of 0
 child_suite # child code
else: # parent returns with child's PID
 parent_suite # parent code

The call to fork() is made in the first line of code. A new process called a child process is created.
The original process is called the parent process. The child process has its own copy of the virtual
memory address space and contains an exact replica of the parent's address space—yes, both processes
are nearly identical. Recall that fork() returns twice, meaning that both the parent and the child
return. You might ask, how can you tell them apart if they both return? When the parent returns, it
comes back with the PID of the child process. When the child returns, it has a return value of 0. This is
how we can differentiate both processes.

Using an if-else statement, we can direct code for the child to execute (i.e., the if clause) as well
as the parent (the else clause). The code for the child is where we can make a call to any of the
exec*() functions to run a completely different program or some function in the same program (as
long as both child and process take divergent paths of execution). The general convention is to let the
children do all the dirty work while the parent either waits patiently for the child to complete its task or
continues execution and checks later to see if the child finished properly.

All of the exec*() functions load a file or command and execute it with an argument list (either
individually given or as part of an argument list). If applicable, an environment variable dictionary can
be provided for the command. These variables are generally made available to programs to provide a
more accurate description of the user's current execution environment. Some of the more well-known
variables include the user name, search path, current shell, terminal type, localized language, machine
type, operating system name, etc.

All versions of exec*() will replace the Python interpreter running in the current (child) process with
the given file as the program to execute now. Unlike system(), there is no return to Python (since
Python was replaced). An exception will be raised if exec*() fails because the program cannot
execute for some reason.

The following code starts up a cute little game called "xbill" in the child process while the parent
continues running the Python interpreter. Because the child process never returns, we do not have to
worry about any code for the child after calling exec*(). Note that the command is also a required
first argument of the argument list.

ret = os.fork()

if ret == 0: # child code

 execvp('xbill', ['xbill'])

else: # parent code

 os.wait()

In this code, you also find a call to wait(). When children processes have completed, they need their
parents to clean up after them. This task, known as "reaping a child," can be accomplished with the
wait*() functions. Immediately following a fork(), a parent can wait for the child to complete
and do the clean-up then and there. A parent can also continue processing and reap the child later, also
using one of the wait*() functions.

Regardless of which method a parent chooses, it must be performed. When a child has finished
execution but has not been reaped yet, it enters a limbo state and becomes known as a "zombie"
process. It is a good idea to minimize the number of zombie processes in your system because children
in this state retain all the system resources allocated in their lifetimes, which do not get freed or
released until they have been reaped by the parent.

A call to wait() suspends execution (i.e., waits) until a child process (any child process) has
completed, terminating either normally or via a signal. wait() will then reap the child, releasing any
resources. If the child has already completed, then wait() just performs the reaping procedure.
waitpid() performs the same functionality as wait() with the additional arguments PID to specify
the process identifier to a specific child process to wait for, and options, which is normally zero or a set
of optional flags logically OR'd together. Refer to the Python, your operating system documentation, or
any general operating system textbook such as Silbershatz and Galvin, Tanenbaum and Woodhull, or
Stallings for more details.

os.spawn*()

The spawn*() family of functions work only in the world of Windows. Depending on the
mode chosen, spawn*() functions can duplicate the functionality of fork(), exec*(),
system(), wait*(), and/or a combination of those popular Unix functions. Both spawn() and
spawnve() were introduced in Python 1.5.2. For more information, go to the os module
documentation in the Python Library Reference manual.

Other Functions

Table 14.8 lists some of the functions (and their modules) which can perform some of the tasks
described.

Table 14-8. Various Functions for File Execution

File Object Attribute
Description (available only on Unix or Windows platforms)

popen2.popen2()

execute a file and open file read and write access from (stdout) and to (stdin) the
newly-created running program

popen2.popen3()

execute a file and open file read and write access from (stdout and stderr) and
(stdin) to the newly-created running program

commands.getoutput()
executes a file in a subprocess, return all output as a string

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/235#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=235

Programming > Core Python Programming > 14. Execution Environment > Restricted
Execution

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228145120024041136114244

Restricted Execution

Throughout this text, we have used only normal, unrestricted execution which provides general access
to all resources available to the Python interpreter. This includes, but is not limited to: disk file or
database access, establishing network connections, invoking other programs, etc.

There may be circumstances in which you want to impose restrictions on Python programs which
execute on your system. Scenarios which may require you to impose restrictions on some or all of the
above include: Python CGI applications, environments which allow for upload and execution of Python
scripts, anonymous FTP access which has installed the Python interpreter in the /bin directory, etc.

There are two primary modules which aid in setting up restricted environments. The first is Bastion,
which provides restricted access to your data. The primary method of utilizing Bastion is to instantiate
the Bastion class around your object, providing an attribute filter with which to provide or deny
access to your object's attributes.

We will not discuss Bastion in this text, but you may refer to the Python documentation or Beazley
for more information. Instead, we will focus our efforts primarily on the rexec module which creates
the restricted environment with which to execute untrusted Python code. We conclude our discussion
of Bastion by stating that it can be used in conjunction with rexec to provide a complete and
secure execution mechanism, restricting access to data as well as the run-time environment. (Both
modules are installed with Python as part of the standard library.)

The rexec module has a primary mission to restrict the execution environment of a Python script.
This module allows for a limited number of built-ins (functions and/or data attributes), imposes
restrictions on which modules can imported, which attributes can and cannot be accessed from the sys
and os modules, and wraps the most critical built-ins [i.e., open(), reload(), and
__import__()] with imposed restrictions.

You will recall that the __builtins__ module consists of all the attributes from the
__builtin__ module. If __builtins__ is the __builtin__ module, then this constitutes an
unrestricted environment:

>>> __builtins__

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=236
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A22%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=236&now=5%2F30%2F2002+8%3A22%3A58+PM

<module '__builtin__' (built-in)>

When we impose a restricted environment, __builtins__ will actually be a subset of the
__builtin__ module that is handpicked for the restricted environment and even becomes
"inaccessible" in that environment:

>>> __builtins__
<module '?' (built-in)>

The rexec module implements an RExec class with which to subclass and create your restricted
environment. This class has static members, which you override, that dictate what is and what is not
allowed in the "caged" or "sandboxed" environment. We present the static data attributes of the RExec
class in Table 14.9.

Table 14-9. RExec Class Attributes

Attribute Name Description
nok_builtin_names attributes that are not ok to include in __builtins__
ok_builtin_modules modules that can be imported
ok_path list of directories accessible in restricted environment
ok_posix_names attributes that are ok to import from os module
ok_sys_names attributes that are ok to import from sys module

Instances of your RExec subclass have a number of methods with which to execute restricted code
with. These are listed in Table 14.10.

Table 14-10. RExec Class Methods

Method Name Description
r_eval() restricted version of eval()
r_exc_info() restricted version of sys.exc_info()
r_exec() restricted version of exec
r_execfile() restricted version of execfile()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/236#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/236#2.html

r_import() restricted version of __import__()
r_open() restricted version of open()
r_reload() restricted version of reload()
r_unload() restricted version of del module

All of the r_*() methods except for r_exc_info() and r_open() are available as s_*(),
which behaves exactly the same as their r_*() counterparts with the exception of being granted
access to the standard files (standard input, output, and error). There are other methods available in
rexec, and we recommend that you refer to the Python documentation for more information.

We present a small example below consisting of a pair of files. The cager.py is the program
responsible for creating a restricted environment with which to safely execute another script,
caged.py. The restriction we are imposing in this example is to remove all the built-in attributes and
allow only a handful of them to be accessible in our restricted environment. To accomplish this, we
override the nok_builtin_names attribute, a tuple listing which attributes are not okay in the
restricted environment.

The code for cager.py is given in Example 14.2. And the code for caged.py is shown in Example
14.3.

Upon execution, we will see the output of caged.py, giving a list of built-in attributes that it does
have access to (compare this list with the code in cager.py), as well as an erroneous example of
what happens if we call a function that we do not have access to, such as eval():

Example 14.2. Creating a Restricted Environment (cager.py)

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import rexec
004 4
005 5 class YourSandbox(rexec.RExec):
006 6 nok_builtin_names = dir(__builtins__)
007 7 nok_builtin_names.remove('dir')
008 8 nok_builtin_names.remove('str')
009 9 nok_builtin_names.remove('vars')
010 10
011 11 r = YourSandbox()
012 12 r.r_execfile("caged.py")
013 <$nopage>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/236#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/236#4.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/236#4.html

Example 14.3. Executing Within a Restricted Environment (caged.py)

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 print 'Restricted to these built-in attributes:'
004 4 for eachBI in dir(__builtin__):
005 5 print '\t', each BI:
006 6 print '\nAll others inaccessible, i.e. eval():\n'
007 7 eval (123)
008 <$nopage>

% cager.py
Restricted to these built-in attributes:
 __builtins__
 __import__
 dir
 open
 reload
 str
 vars
All others inaccessible, i.e. eval():

Traceback (most recent call last):
 File "cager.py", line 12, in ?
 r.r_execfile("caged.py")
 File "/usr/lib/python2.0/rexec.py", line 261, in r_execfile
 return execfile(file, m.__dict__)
 File "caged.py", line 7, in ?
 eval(123)
NameError: There is no variable named 'eval'

r_*() functions such as r_open() (and their s_*() equivalents) automatically direct all calls to to
special wrappers which execute these functions with additional restrictions. For example, a call to
open() calls r_open() which allows only read mode. Attempting to open() a file for write would
result in an IOError exception:

IOError: can't open files for writing in restricted mode

You may even disallow this by overriding r_open(). Let us add the following method definition to
our YourSandbox class definition in cager.py:

def r_open(f, m='r', b=-1):
 raise IOError, 'sorry, no file access period'

When we try to open a file for reading or writing this time, we get:

IOError: sorry, no file access period

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=236

Programming > Core Python Programming > 14. Execution Environment > Terminating
Execution

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228144072049161134074105

Terminating Execution

Clean execution occurs when a program runs to completion, where all statements in the top-level of your
module finish execution and your program exits. There may be cases where you may want to exit from
Python sooner, such as a fatal error of some sort. Another case is when conditions are not sufficient to
continue execution.

In Python, there are varying ways to respond to errors. One is via exceptions and exception handling.
Another way is to construct a "cleaner" approach so that the main portions of code are cordoned off with
if statements to execute only in non-error situations, thus letting error scenarios terminate "normally."
However, you may also desire to exit to the calling program with an error code to indicate that such an
event has occurred.

sys.exit() and SystemExit

The primary way to exit a program immediately and return to the calling program is the exit()
function found in the sys module. The syntax for sys.exit() is:

sys.exit(status=0)

When sys.exit() is called, a SystemExit exception is raised. Unless monitored (in a try
statement with an appropriate except clause), this exception is generally not caught nor handled, and
the interpreter exits with the given status argument, which defaults to zero if not provided.
SystemExit is the only exception which is not viewed as an error. It simply indicates the desire to
exit Python.

One popular place to use sys.exit() is after an error is discovered in the way a command was
invoked. In particular, if the arguments are incorrect, invalid, or if there are an incorrect number of them.
The following Example 14.4 (args.py) is just a test script we created to require that a certain number
of arguments be given to the program before it can execute properly:

Executing this script we get the following output:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=237
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A23%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=237&now=5%2F30%2F2002+8%3A23%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/237#2.html

% args.py
At least 2 arguments required (incl. cmd name).
usage: args.py arg1 arg2 [arg3…]

% args.py XXX
At least 2 arguments required (incl. cmd name).
usage: args.py arg1 arg2 [arg3…]

% args.py 123 abc
number of args entered: 3
args (incl. cmd name) were: ['args.py', '123', 'abc']

% args.py -x -2 foo bar
number of args entered: 5
args (incl. cmd name) were: ['args.py', '-x', '-2', 'foo', 'bar']

Example 14.4. Exiting Immediately (args.py)

Calling sys.exit() causes the Python interpreter to quit. Any integer argument to exit() will be
the returned to the caller as the exit status, which has a default value of 0.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import sys
004 4
005 5 def usage():
006 6 print 'At least 2 arguments (incl. cmd name).'
007 7 print usage: args.py arg1 arg2 [arg3…]'
008 8 sys.exit(1)
009 9
010 10 argc = len(sys.argv)
011 11 if argc < 3:
012 12 usage()
013 13 print "number of args entered:", argc
014 14 print "args (incl. cmd name) were:", sys.argv
015 <$nopage>

Many command-line driven programs test the validity of the input before proceeding with the core
functionality of the script. If the validation fails at any point, a call is made to a usage() function to
inform the user what problem caused the error as well as a usage "hint" to aid the user so that he or she

will invoke the script properly the next time.

sys.exitfunc()

sys.exitfunc() is disabled by default, but can be overridden to provide additional functionality
which takes place when sys.exit() is called and before the interpreter exits. This function will not
be passed any arguments, so you should create your function to take no arguments.

As described in Beazley, if sys.exitfunc has already been overridden by a previously defined exit
function, it is good practice to also execute that code as part of your exit function. Generally, exit
functions are used to perform some type of shutdown activity, such as closing a file or network
connection, and it is always a good idea to complete these maintenance tasks, such as releasing
previously held system resources.

Here is an example of how to set up an exit function, being sure to execute one if one has already been
set:

 <$nopage>
001 <$nopage>import sys
002 <$nopage>
003 prev_exit_func = getattr(sys, 'exitfunc', None)
004 <$nopage>
005 <$nopage>def my_exit_func(old_exit = prev_exit_func):
006 # :
007 # perform cleanup
008 # :
009 if old_exit != None and callable(old_exit):
010 old_exit()
011 <$nopage>
012 sys.exitfunc = my_exit_func
013 <$nopage>

We execute the old exit function after our cleanup has been performed. The getattr() call simply
checks to see whether a previous exitfunc has been defined. If not, then None is assigned to
prev_exit_func; otherwise, prev_exit_func becomes a new alias to the exiting function,
which is then passed as a default argument to our new exit function, my_exit_func.

The call to getattr() could have been rewritten as:

 <$nopage>
001 <$nopage>if hasattr(sys, 'exitfunc'):

002 prev_exit_func = sys.exitfunc # getattr(sys, 'exitfunc')
003 <$nopage>else: <$nopage>
004 prev_exit_func = None
005 <$nopage>

os._exit() Function

The _exit() function of the os module should not be used in general practice. (It is platform-
dependent and available only on certain platforms anyway [Unix and Windows, to name a pair].) Its
syntax is:

 <$nopage>
001 os._exit(status)
002 <$nopage>

This function provides functionality opposite to that of sys.exit() and sys.exitfunc(),
exiting Python immediately without performing any cleanup (Python or programmer-defined) at all.
Unlike sys.exit(), the status argument is required. Exiting via sys.exit() is the preferred
method of quitting the interpreter.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=237

Programming > Core Python Programming > 14. Execution Environment > Related
Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228144072050131032050036

Related Modules

In Table 14.11 you will find a list of modules other than os and sys which relate to the execution
environment theme of this chapter.

Table 14.11. Execution Environment Related Modules

Module Description
popen2 provides additional functionality on top of os.popen(): provides ability to communicate via

standard files to the other process
commands provides additional functionality on top of os.system(): saves all program output in a

string which is returned (as opposed to just dumping output to the screen)
getopt processes options and command-line arguments in such applications
site processes site-specific modules or packages
findertools provides an interface to Macintosh finder functionality, such as launching an application (or a

document with its companion application)

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=238
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A23%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=238&now=5%2F30%2F2002+8%3A23%3A24+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/238#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=238

Programming > Core Python Programming > 14. Execution Environment > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228144072051114043142244

Exercises

1: Callable Objects. Name Python's callable objects.

2: exec vs. eval(). What is the difference between the exec statement and the eval()
built-in function?

3: input vs. raw.input(). What is the difference between the built-in functions
input() and raw_input()?

4: Execution Environment. Create a Python script that runs other Python scripts.

5: os.system(). Choose a familiar system command that performs a task without
requiring input and either outputs to the screen or does not output at all. Use the
os.system() call to run that program.

6: commands.getoutput(). Solve the previous problem using
commands.getoutput().

7: popen().Family. Choose another familiar system command that takes text from standard
input and manipulates or otherwise outputs the data. Use os.popen() to communicate
with this program. Where does the output go? Try using popen2.popen2() instead.

8: Restricted Execution. Create a restricted environment and display the contents of your
__builtins__ module to prove it.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=239
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A23%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=239&now=5%2F30%2F2002+8%3A23%3A35+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#35.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#36.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#36.html

9: Exit Function. Design a function to be called when your program exits. Install it as
sys.exitfunc(), run your program and show that your exit function was indeed
called.

10: Shells. Create a shell (operating system interface) program: Present a command-line
interface which accepts operating system commands for execution.

EXTRA CREDIT 1: support pipes (see the dup(), dup2(), and pipe() functions in the os
module). This piping procedure allows the standard output of one process to be connected
to the standard input of another.

EXTRA CREDIT 2: Support inverse pipes using parentheses, giving your shell a
functional programming-like interface.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=239

Programming > Core Python Programming > II: Advanced Topics See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228144072053075248146204

Part II: Advanced Topics
Last updated on 9/14/2001

Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=241
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A23%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=241&now=5%2F30%2F2002+8%3A23%3A51+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=241

Programming > Core Python Programming > 15. Regular Expressions See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228151074166146054249010

Chapter 15. Regular Expressions
Chapter Topics

● Introduction/Motivation

● Special Characters and Symbols

● Regular Expressions and Python

● re Module

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=243
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A24%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=243&now=5%2F30%2F2002+8%3A24%3A08+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=243

Programming > Core Python Programming > 15. Regular Expressions >
Introduction/Motivation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228151074163108018168055

Introduction/Motivation

Manipulating text/data is a big thing. If you don't believe me, look very carefully at what computers
primarily do today. Word processing, "fill-out-form" Web pages, streams of information coming from a
database dump, stock quote information, news feeds—the list goes on and on. Because we may not
know the exact text or data which we have programmed our machines to process, it becomes
advantageous to be able to express this text or data in patterns which a machine can recognize and take
action upon.

If I were running an electronic mail (e-mail) archiving company, and you were one of my customers
who requested all his or her e-mail sent and received last February, for example, it would be nice if I
could set a computer program to collate and forward that information to you, rather than having a
human being read through your e-mail and process your request manually. You would be horrified (and
infuriated) that someone would be rummaging through your messages, even if his or her eyes were
supposed to be looking only at timestamps. Another example request might be to look for a subject line
like "ILOVEYOU" indicating a virus-infected message and remove those e-mail messages from your
personal archive. So this begs the question of how can we program machines with the ability to look
for patterns in text.

Regular Expressions (REs) provide such an infrastructure for advanced text pattern matching,
extraction, and/or search-and-replace functionality. REs are simply strings which use special symbols
and characters to indicate pattern repetition or to represent multiple characters so that they can "match"
a set of strings with similar characteristics described by the pattern (Figure15.1). In other words, they
enable matching of multiple strings—an RE pattern that matched only one string would be rather
boring and ineffective, wouldn't you say?

Figure 15.1. You can use regular expressions, such as the one here which recognizes valid Python
identifiers. "[A-Za-z]\w+" means the first character should be alphabetic, i.e., either A–Z or a–z,

followed by at least one (+) alphanumeric character (\w). In our filter, notice how many strings go into
the filter, but the only ones to come out are the ones we asked for via the RE.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=244
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A24%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=244&now=5%2F30%2F2002+8%3A24%3A50+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/244#1.html

Python supports REs through the standard library re module. In this introductory subsection, we will
give you a brief and concise introduction. Due to its brevity, only the most common aspects of REs
used in every day Python programming will be covered. Your experience, will of course, vary. We
highly recommend reading any of the official supporting documentation as well as external texts on
this interesting subject. You will never look at strings the same way again!

NOTE

Throughout this chapter, you will find references to searching and matching. When we are strictly
discussing regular expressions with respect to patterns in strings, we will say "matching," referring
to the term pattern-matching. In Python terminology, there are two main ways to accomplish
pattern-matching: searching, i.e., looking for a pattern match in any part of a string, and matching,
i.e., attempting to match a pattern to an entire string (starting from the beginning). Searches are
accomplished using the search() function or method, and matching is done with the match()
function or method. In summary, we keep the term "matching" universal when referencing patterns,
and we differentiate between "searching" and "matching" in terms of how Python accomplishes
pattern-matching.

Your First Regular Expression

As we mentioned above, REs are strings containing text and special characters which describe a pattern
with which to recognize multiple strings. We also briefly discussed a regular expression alphabet and
for general text, the alphabet used for regular expressions is the set of all uppercase and lowercase
letters plus numeric digits. Specialized alphabets are also possible, for instance, one consisting of only
the characters "0" and "1." The set of all strings over this alphabet describes all binary strings, i.e., "0,"
"1," "00," "01," "10," "11," "100," etc.

Let us look at the most basic of regular expressions now to show you that although REs are sometimes
considered an "advanced topic," they can also be rather simplistic. Using the standard alphabet for
general text, we present some simple REs and the strings which their patterns describe. The following
regular expressions are the most basic, "true vanilla," as it were. They simply consist of a string pattern
which matches only one string, the string defined by the regular expression. We now present the REs
followed by the strings which match them:

RE Pattern String(s) Matched

foo foo

Python Python

abc123 abc123

The first regular expression pattern from the above chart is "foo." This pattern has no special symbols
to match any other symbol other than those described, so the only string which matches this pattern is
the string "foo." The same thing applies to "Python" and "abc123." The power of regular expressions
comes in when special characters are used to define character sets, subgroup matching, and pattern
repetition. It is these special symbols that allow a RE to match a set of strings rather than a single one.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=244

Programming > Core Python Programming > 15. Regular Expressions > Special Symbols
and Characters for REs

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228150016161174145033020

Special Symbols and Characters for REs

We will now introduce the most popular of the metacharacters, special characters and symbols, which
give regular expressions their power and flexibility. You will find the most common of these symbols
and characters in Table 15.1.

Table 15.1. Common Regular Expression Symbols and Special Characters

Notation Description Example RE
Symbols
re_string match literal string value re_string foo

re1|re2 match literal string value re1 or re2 foo|bar

. match any character (except NEWLINE) ::.+::

^ match start of string ^Dear

$ match end of string /bin/\w*sh$

* match 0 or more occurrences of preceding RE [A-Za-z]\w*

+ match 1 or more occurrences of preceding RE \d+\.|\.\d+

? match 0 or 1 occurrence(s) of preceding RE goo?

{N} match N occurrences of preceding RE \d{3}

{M,N} match from M to N occurrences of preceding RE \d{5,9}

[…] match any single character from character class [aeiou]

[..x–y..] match any single character in the range from x to y [0–9], [A-Za-z]

[^…] do not match any character from character class,
including any ranges, if present

[^aeiou], [^A-Za-z0–9_]

(*|+|?|{})? apply non-greedy versions of above
occurrence/repetition symbols (*, +, ?, {})

.*?\w

(…) match enclosed RE and save as subgroup (\d{3})?, f(oo|u)bar

Special Characters
\d match any decimal digit, same as [0–9] (\D is inverse

of \d: do not match any numeric digit)
data\d+.txt

\w match any alphanumeric character, same as [A-Za-
z0-9_] (\W is inverse of \w)

[A-Za-z_]\w+

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=245
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A25%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=245&now=5%2F30%2F2002+8%3A25%3A53+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/245#1.html

\s match any whitespace character, same as [
\n\t\r\v\f] (\S is inverse of \s)

of\sthe

\b match any word boundary (\B is inverse of \b) \bThe\b

\nn match saved subgroup nn (see (…) above) price: \16

\c match any special character c verbatim (i.e., without its
special meaning, literal)

\., \\, *

\A (\Z) match start (end) of string (also see ^ and $ above) \ADear

Matching more than one RE pattern with alternation (|)

The pipe symbol (|), a vertical bar on your keyboard, indicates an alternation operation, meaning
that it is used to choose from one of the different regular expressions which are separated by the pipe
symbol. For example, below are some patterns which employ alternation, along with the strings they
match:

RE Pattern Strings Matched
at|home at, home

r2d2|c3po r2d2, c3po

bat|bet|bit bat, bet, bit

With this one symbol, we have just increased the flexibility of our regular expressions, enabling the
matching of more than just one string. Alternation is also sometimes called union or logical OR.

Matching any single character (.)

The dot or period (.) symbol matches any single character except for NEWLINE (Python REs have a
compilation flag [S or DOTALL] which can override this to include NEWLINEs.). Whether letter,
number, whitespace not including "\n," printable, non-printable, or a symbol, the dot can match them
all.

RE Pattern Strings Matched
f.o any character between "f" and "o," e.g., fao,f9o, f#o, etc.
.. any pair of characters
.end any character before the string end

Q: "What if I want to match the dot or period character?"

A: In order to specify a dot character explicitly, you must escape its functionality with a
backslash, as in "\."

Matching from the beginning or end of strings or word boundaries (^/$)

There are also symbols and related special characters to specify searching for patterns at the beginning
and ending of strings. To match a pattern starting from the beginning, you must use the carat symbol (
^) or the special character \A (backslash-capital "A"). The latter is primarily for keyboards which do
not have the carat symbol, i.e., international. Similarly, the dollar sign ($) or \Z will match a pattern
from the end of a string.

Patterns which use these symbols differ from most of the others we describe in this chapter since they
dictate location or position. In the Core Note above, we noted that a distinction is made between
"matching," attempting matches of entire strings starting at the beginning, and "searching," attempting
matches from anywhere within a string. Because we are looking specifically at symbols and special
characters which deal with position, they make sense only when applied to searching.

That said, here are some examples of "edge-bound" RE search patterns:

RE Pattern Strings Matched
^From any string which starts with From
/bin/tcsh$ any string which ends with /bin/tcsh
^Subject: hi$ any string consisting solely of the string Subject: hi

Again, if you want to match either (or both) of these characters verbatim, you must use an escaping
backslash. For example, if you wanted to match any string which ended with a dollar sign, one possible
RE solution would be the pattern ".*\$$".

The \b and \B special characters will match the empty string, meaning that they can start performing
the match anywhere. The difference is that \b will match a pattern to a word boundary, meaning that a
pattern must be at the beginning of a word, whether there are any characters in front of it (word in the
middle of a string) or not (word at the beginning of a line). And likewise, \B will match a pattern only
if it appears starting in the middle of a word (i.e., not at a word boundary). Here are some examples:

RE Pattern Strings Matched
the any string containing the
\bthe any word which starts with the

\bthe\b matches only the word the
\Bthe any string which contains but does not begin with the

Creating character classes ([])

While the dot is good for allowing matches of any symbols, there may be occasions where there are
specific characters you want to match. For this reason, the bracket symbols ([]) were invented. The
regular expression will match from any of the enclosed characters. Here are some examples:

RE Pattern Strings Matched
b[aeiu]t bat, bet, bit, but

[cr][23][dp][o2] "r" or "c" then "2" or "3" followed by "d" or "p" and finally, either "o" or "2," e.g., c2do,
r3p2, r2d2, c3po, etc.

One side note regarding the RE "[cr][23][dp][o2]"—a more restrictive version of this RE would
be required to allow only "r2d2" or "c3po" as valid strings. Because brackets merely imply "logical
OR" functionality, it is not possible to use brackets to enforce such a requirement. The only solution is
to use the pipe, as in "r2d2|c3po".

For single character REs, though, the pipe and brackets are equivalent. For example, let's start with the
regular expression "ab" which matches only the string with an "a" followed by a "b." If we wanted
either a one-letter string, i.e., either "a" or a "b," we could use the RE "[ab]". Because "a" and "b" are
individual strings, we can also choose the RE "a|b". However, if we wanted to match the string with
the pattern "ab" followed by "cd," we cannot use the brackets because they work only for single
characters. In this case, the only solution is "ab|cd," similar to the "r2d2/c3po" problem just
mentioned.

Denoting ranges (-) and negation (^)

In addition to single characters, the brackets also support ranges of characters. A hyphen between a pair
of symbols enclosed in brackets is used to indicate a range of characters, e.g., A–Z, a–z, or 0–9 for
uppercase letters, lowercase letters, and numeric digits, respectively. This is a lexicographic range, so
you are not restricted to using just alphanumeric characters. Additionally, if a caret (^) is the first
character immediately inside the open left bracket, this symbolizes a directive to not match any of the
characters in the given character set.

RE Pattern Strings Matched
z.[0–9] "z" followed by any character then followed by a single digit
[r–u][env-y][us] "r" "s," "t" or "u" followed by "e," "n," "v," "w," "x," or "y" followed by "u" or "s"

[^aeiou]* zero or more (*symbol introduced in next subsection) non-vowels (EXERCISE: Why
do we say "non-vowels" rather than "consonants?")

[^\t\n]+ one or more (+symbol introduced in next subsection) characters up to, but not
including, the first TAB or NEWLINE encountered

["-a] in an ASCII system, all characters which fall between """ and "a," i.e., between
ordinals 34 and 97.

Multiple occurrence/repetition using closure operators (*, +, ?, { })

We will now introduce the most common RE notations, namely, the special symbols *, +, and ?, all
of which can be used to match single, multiple, or no occurrences of string patterns. The asterisk or star
operator (*) will match zero or more occurrences of the RE immediately to its left (in language and
compiler theory, this operation is known as the Kleene Closure). The plus operator (+) will match one
or more occurrences of an RE (known as Positive Closure), and the question mark operator (?) will
match exactly 0 or 1 occurrences of an RE.

There are also brace operators ({ }) with either a single value or a comma-separated pair of values.
These indicate a match of exactly N occurrences (for { N }) or a range of occurrences, i.e., {M, N}
will match from M to N occurrences. These symbols may also be escaped with the backslash, i.e., "*"
matches the asterisk, etc.

Finally, the question mark (?) is overloaded so that if it follows any of the following symbols, it will
direct the regular expression engine to match as few repetitions as possible.

Here are some examples using the closure operators:

RE Pattern Strings Matched
[dn]ot? "d" or "n," followed by an "o" and, at most, one "t" after that, i.e., do,

no, dot, not

0?[1–9] any numeric digit, possibly prepended with a "0," e.g., the set of
numeric representations of the months January to September,
whether single- or double-digits

[0–9]{15,16} fifteen or sixteen digits, e.g., credit card numbers
</?[^>]+> strings which match all valid (and invalid) HTML tags
[KQRBNP][a–h][1–8]-[a–h][1–8] Legal chess move in "long algebraic" notation (move only, no

capture, check, etc.), i.e., strings which start with any of "K," "Q,"
"R," "B," "N," or "P" followed by a hyphenated-pair of chess board
grid locations from "a1" to "h8" (and everything in between), with the
first coordinate indicating the former position and the second being
the new position.

Special characters representing character sets

We also mentioned that there are special characters which may represent character sets. Rather than
using a range of "0–9," you may simply use "\d" to indicate the match of any decimal digit. Another
special character "\w" can be used to denote the entire alphanumeric character class, serving as a
shortcut for "A–Za–z0–9_," and "\s" for whitespace characters. Uppercase versions of these strings
symbolizes a non-match, i.e., "\D" matches any non-decimal digit (same as "[^0–9]"), etc.

Using these shortcuts, we will present a few more complex examples:

RE Pattern Strings Matched
\w+-\d+ alphanumeric string and number separated by a hyphen
[A–Za–z]\w* alphabetic first character, additional characters (if present) can be alphanumeric

(almost equivalent to the set of valid Python identifiers [see exercises])
\d{3}-\d{3}-\d{4} (American) telephone numbers with an area code prefix, as in 800-555-1212
\w+@\w+\.com simple e-mail addresses of the form XXX@YYY.com

Note that all special characters, including all the ones mentioned before such as "\A," "\B," "\d,"
etc., may or may not have ASCII equivalents. To be sure you are using the regular expression versions,
it would be a safe bet to use raw strings to escape backslash functionality (see the Core Note later in
this chapter).

Also, the "\w" and "\W" alphanumeric character sets are affected by the L or LOCALE compilation flag
and in Python 1.6 and newer, by Unicode flags.

Designating groups with parentheses (())

Now, perhaps we have achieved the goal of matching a string and discarding non-matches, but in some
cases, we may also be more interested in the data that we did match. Not only do we want to know
whether the entire string matched our criteria, but whether we can also extract any specific strings or
substrings which were part of a successful match. The answer is yes. To accomplish this, surround any
RE with a pair of parentheses.

A pair of parentheses (()) can accomplish either (or both) of the below when used with regular
expressions:

1. grouping regular expressions

2. matching subgroups

One good example for wanting to group regular expressions is when you have two different REs with
which you want to compare a string. Another reason is to group an RE in order to use a repetition
operator on the entire RE (as opposed to an individual characters or character classes).

One side-effect of using parentheses is that the substring which matched the pattern is saved for future
use. These subgroups can be recalled for the same match or search, or extracted for post-processing.
Why are matches of subgroups important? The main reason is that there are times where you want to
extract the patterns you match, in addition to making a match.

For example, what if we decided to match the pattern "\w+-\d+" but wanted save the alphabetic first
part and the numeric second part individually? This may be desired because with any successful match,
we may want to see just what those strings were that matched our RE patterns. If we add parentheses to
both subpatterns, i.e., "(\w+)-(\d+)," then we can access each of the matched subgroups
individually. Subgrouping is preferred because the alternative is to write code to determine we have a
match, then execute another separate routine (which we also had to create) to parse the entire match
just to extract both parts. Why not let Python do it, since it is a supported feature of the re module,
instead of "reinventing the wheel"?

RE Pattern Strings Matched
\d+(\.\d*)? strings representing simple floating point number, that is, any

number of digits followed optionally by a single decimal point
and zero or more numeric digits, as in "0.004," "2," "75.," etc.

(Mr?s?\.)?[A–Z][a–z]* [A–Za–z-]+ first name and last name, with a restricted first name (must
start with uppercase; lowercase only for remaining letters, if
any), the full name prepended by an optional title of "Mr.,"
"Mrs.," "Ms.," or "M.," and a flexible last name, allowing for
multiple words, dashes, and uppercase letters

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=245

Programming > Core Python Programming > 15. Regular Expressions > REs and Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228149002076096081221043

REs and Python

Now that we know all about regular expressions, we can examine how Python currently supports
regular expressions through the re module. The re module was introduced to Python in version 1.5. If
you are using an older version of Python, you will have to use the now-obsolete regex and regsub
modules—these older modules are more Emacs-flavored, are not as full-featured, and are in many ways
incompatible with the current re module.

However, regular expressions are still regular expressions, so most of the basic concepts from this
section can be used with the old regex and regsub software. In contrast, the new re module supports
the more powerful and regular Perl-style (Perl5) REs, allows multiple threads to share the same
compiled RE objects, and supports named subgroups. In addition, there is a transition module called
reconvert to help developers move from regex/regsub to re. However, be aware that
although there are different flavors of regular expressions, we will primarily focus on the current
incarnation for Python.

The re engine was rewritten in 1.6 for performance enhancements as well as adding Unicode support.
The interface was not changed, hence the reason the module name was left alone. The new re
engine—known internally as sre —thus replaces the existing 1.5 engine—internally called pcre.

re Module: Core Functions and Methods

The chart in Table 15.2 lists the more popular functions and methods from the re module. Many of
these functions are also available as methods of compiled regular expression objects "regex objects"
and RE "match objects." In this subsection, we will look at the two main functions/methods, match()
and search(), as well as the compile() function. We will introduce several more in the next
section, but for more information on all these and the others which we do not cover, we refer you to the
Python documentation.

Table 15.2. Common Regular Expression Functions and Methods

Function/Method Description
re Module Function Only

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=246
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A26%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=246&now=5%2F30%2F2002+8%3A26%3A11+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/246#2.html

compile(pattern, flags=0) compile RE pattern with any optional flags and
return a regex object

re Module Functions and regex Object Methods
match(pattern, string, flags=0) attempt to match RE pattern to string with optional

flags; return match object on success, None on
failure

search(pattern, string, flags=0) search for first occurrence of RE pattern within
string with optional flags; return match object on
success, None on failure

findall(pattern, string) look for all (non-overlapping) occurrences of pattern
in string; return a list of matches (new as of Python
1.5.2)

split(pattern, string, max=0) split string into a list according to RE pattern
delimiter and return list of successful matches, splitting
at most max times (split all occurrences is the default)

sub(pattern, repl, string, max=0) replace all occurrences of the RE pattern in string
with repl, substituting all occurrences unless max
provided (also see subn() which, in addition, returns
the number of substitutions made)

Match Object Methods
group(num=0) return entire match (or specific subgroup num)
groups() return all matching subgroups in a tuple (empty if there

weren't any)

NOTE

In the previous chapter, we described how Python code is eventually compiled into bytecode which
is then executed by the interpreter. In particular, we mentioned that calling eval() or exec with
a code object rather than a string provides a significant performance improvement due to the fact
that the compilation process does not have to be performed. In other words, using precompiled
code objects is faster than using strings because the interpreter will have to compile it into a code
object (anyway) before execution.

The same concept applies to REs—regular expression patterns must be compiled into regex objects
before any pattern matching can occur. For REs which are compared many times during the course
of execution, we highly recommend using precompilation first because, again, REs have to be
compiled anyway, so doing it ahead of time is prudent for performance reasons. re.compile()
provides this functionality.

The module functions do cache the compiled objects, though, so it's not as if every search() and
match() with the same RE pattern requires compilation. Still, you save the cache lookups and do
not have to make function calls with the same string over and over. In Python 1.5.2, this cache held
up to 20 compiled RE objects, but in 1.6, due to the additional overhead of Unicode awareness, the

compilation engine is a bit slower, so the cache has been extended to 100 compiled regex objects.

Compiling REs with compile()

Almost all of the re module functions we will be describing shortly are available as methods for regex
objects. Remember, even with our recommendation, precompilation is not required. If you compile,
you will use methods; if you don't, you will just use functions. The good news is that either way, the
names are the same whether a function or a method. (This is the reason why there are module functions
and methods which are identical, i.e., search(), match(), etc., in case you were wondering.)
Since it saves one small step for most of our examples, we will use strings instead. We will throw in a
few with compilation though just so you know how it is done.

Optional flags may be given as arguments for specialized compilation. These flags allow for case-
insensitive matching, using system locale settings for matching alphanumeric characters, etc. Please
refer to the documentation for more details. These flags, some of which have been briefly mentioned
(i.e. DOTALL, LOCALE), may also be given to the module versions of match() and search() for
a specific pattern match attempt—these flags are mostly for compilation reasons, hence the reason why
they can be passed to the module versions of match() and search() which do compile an RE
pattern once. If you want to use these flags with the methods, they must already be integrated into the
compiled regex objects.

In addition to the methods below, regex objects also have some data attributes, two of which include
any compilation flags given as well as the regular expression pattern compiled.

Match objects and the group() and groups() Methods

There is another object type in addition to the regex object when dealing with regular expressions, the
match object. These objects are those which are returned on successful calls to match() or
search(). Match objects have two primary methods, group() and groups().

group() will either return the entire match, or a specific subgroup, if requested. groups() will
simply return a tuple consisting of only/all the subgroups. If there are no subgroups requested, then
groups() returns an empty tuple while group() still returns the entire match.

Python REs also allow for named matches, which are beyond the scope of this introductory section on
REs. We refer you to the complete re module documentation regarding all the more advanced details
we have omitted here.

Matching strings with match()

match() is the first re module function and RE object (regex object) method we will look at. The
match() function attempts to match the pattern to the string, starting at the beginning. If the match is
successful, a match object is returned, but on failure, None is returned. The group() method of a
match object can be used to show the successful match. Here is an example of how to use match()
[and group()]:

>>> m = re.match('foo', 'foo') # pattern matches string
>>> if m != None: # show match if successful
… m.group()
…
`foo'

The pattern "foo" matches exactly the string "foo." We can also confirm that m is an example of a
match object from within the interactive interpreter:

>>> m # confirm match object returned
<re.MatchObject instance at 80ebf48>

Here is an example of a failed match where None is returned:

>>> m = re.match('foo', 'bar')# pattern does not match string
>>> if m != None: m.group() # (1-line version of if clause)
…
>>>

The match above fails, thus None is assigned to m, and no action is taken due to the way we
constructed our if statement. For the remaining examples, we will try to leave out the if check for
brevity, if possible, but in practice it is a good idea to have it there to prevent AttributeError
exceptions (None is returned on failures, which does not have a group() attribute [method].)

A match will still succeed even if the string is longer than the pattern as long as the pattern matches
from the beginning of the string. For example, the pattern "foo" will find a match in the string "food on
the table" because it matches the pattern from the beginning:

>>> m = re.match('foo', 'food on the table')# match succeeds
>>> m.group()
'foo'

As you can see, although the string is longer than the pattern, a successful match was made from the
beginning of the string. The substring "foo" represents the match which was extracted from the larger
string.

We can even sometimes bypass saving the result altogether, taking advantage of Python's object-
oriented nature:

>>> re.match('foo', 'food on the table').group()
'foo'

Note from a few paragraphs above that an AttributeError will be generated on a non-match.

Looking for a pattern within a string with search() (searching vs. matching)

The chances are greater that the pattern you seek is somewhere in the middle of a string, rather than at
the beginning. This is where search() comes in handy. It works exactly in the same way as match
except that it searches for the first occurrence of the given RE pattern anywhere with its string
argument. Again, a match object is returned on success and None otherwise.

We will now illustrate the difference between match() and search(). Let us try a longer string
match attempt. This time, we will try to match our string "foo" to "seafood:"

>>> m = re.match('foo', 'seafood') # no match
>>> if m != None: m.group()
…
>>>

As you can see, there is no match here. match() attempts to match the pattern to the string from the
beginning, i.e., the "f" in the pattern is matched against the "s" in the string, which fails immediately.
However, the string "foo" does appear (elsewhere) in "seafood," so how do we get Python to say "yes?"
The answer is by using the search() function. Rather than attempting a match, search() looks for

the first occurrence of the pattern within the string. search() searches strictly from left to right.

>>> m = re.search('foo', 'seafood') # use search() instead
>>> if m != None: m.group()
…
'foo' # search succeeds where match failed
>>>

We will be using the match() and search() regex object methods and the group() and
groups() match object methods for the remainder of this subsection, exhibiting a broad range of
examples of how to use regular expressions with Python. We will be using almost all of the special
characters and symbols which are part of the regular expression syntax.

Matching more than one string (|)

In Section 15.2, we used the pipe in the RE "bat|bet|bit". Here is how we would use that RE with
Python:

>>> bt = 'bat|bet|bit' # RE pattern: bat, bet, bit
>>> m = re.match(bt, 'bat') # 'bat' is a match
>>> if m != None: m.group()
…
'bat'
>>> m = re.match(bt, 'blt') # no match for 'blt'
>>> if m != None: m.group()
…
>>> m = re.match(bt, 'He bit me!') # does not match string
>>> if m != None: m.group()
…
>>> m = re.search(bt, 'He bit me!')# found \qbit\q via search
>>> if m != None: m.group()
…
'bit'

Matching any single character (.)

In the examples below, we show that a dot cannot match a NEWLINE or a non-character, i.e., the

empty string:

>>> anyend = '.end'
>>> m = re.match(anyend, 'bend') # dot matches 'b'
>>> if m != None: m.group()
…
'bend'
>>> m = re.match(anyend, 'end') # no char to match
>>> if m != None: m.group()
…
>>> m = re.match(anyend, '\nend') # any char except \n
>>> if m != None: m.group()
…
>>> m = re.search('.end', 'The end.') # matches ' ' in search
>>> if m != None: m.group()
…
' end'

Below is an example of searching for a real dot (decimal point) in a regular expression where we
escape its functionality with a backslash:

>>> patt314 = '3.14' # RE dot
>>> pi_patt = '3\.14' # literal dot (dec. point)
>>> m = re.match(pi_patt, '3.14') # exact match
>>> if m != None: m.group()
…
'3.14'
>>> m = re.match(patt314, '3014') # dot matches '0'
>>> if m != None: m.group()
…
'3014'
>>> m = re.match(patt314, '3.14') # dot matches '.'
>>> if m != None: m.group()
…
'3.14'

Creating character classes ([])

Earlier, we had a long discussion regarding "[cr][23][dp][o2]" and how it differs from
"r2d2|c3po". With the examples below, we will show that "r2d2|c3po" is more restrictive than
"[cr][23][dp][o2]":

>>> m = re.match('[cr][23][dp][o2]', 'c3po')# matches \qc3po\q
>>> if m != None: m.group()
…
'c3po'
>>> m = re.match('[cr][23][dp][o2]', 'c2do')# matches 'c2do'
>>> if m != None: m.group()
…
'c2do'
>>> m = re.match('r2d2|c3po', 'c2do')# does not match 'c2do'
>>> if m != None: m.group()
…
>>> m = re.match('r2d2|c3po', 'r2d2')# matches 'r2d2'
>>> if m != None: m.group()
…
'r2d2'

Repetition, special characters, and grouping

The most common aspects of REs involve the use of special characters, multiple occurrences of RE
patterns, and using parentheses to group and extract submatch patterns. One particular RE we looked at
related to simple e-mail addresses ("\w+@\w+\.com"). Perhaps we want to match more e-mail
addresses than this RE allows. In order to support an additional hostname in front of the domain, i.e.,
"www.xxx.com" as opposed to accepting only "xxx.com" as the entire domain, we have to modify
our existing RE. To indicate that the hostname is optional, we create a pattern which matches the
hostname (followed by a dot), use the ? operator indicating zero or one copy of this pattern, and insert
the optional RE into our previous RE as follows: "\w+@(\w+\.)?\w+\.com". As you can see from
the examples below, either one or two names are now accepted in front of the ".com".

>>> patt = '\w+@(\w+\.)?\w+\.com'
>>> re.match(patt, 'nobody@xxx.com').group()
'nobody@xxx.com'
>>> re.match(patt, 'nobody@www.xxx.com').group()
'nobody@www.xxx.com'

Furthermore, we can even extend our example to allow any number of intermediate subdomain names
with the following pattern: "\w+@(\w+\.)*\w+\.com":

>>> patt = '\w+@(\w+\.)*\w+\.com'
>>> re.match(patt,
'nobody@www.xxx.yyy.zzz.com').group()
'nobody@www.xxx.yyy.zzz.com'

However, we must add the disclaimer that using solely alphanumeric characters does not match all the
possible characters which may make up e-mail addresses. The above RE patterns would not match a
domain such as "xxx-yyy.com" or other domains with "\W" characters.

Earlier, we discussed the merits of using parentheses to match and save subgroups for further
processing rather than coding a separate routine to manually parse a string after an RE match had been
determined. In particular, we discussed a simple RE pattern of an alphanumeric string and a number
separated by a hyphen, "\w+-\d+," and how adding subgrouping to form a new RE, "(\w+)-
(\d+)," would do the job. Here is how the original RE works:

>>> m = re.match('\w\w\w-\d\d\d', 'abc-123')
>>> if m != None: m.group()
…
'abc-123'

>>> m = re.match('\w\w\w-\d\d\d', 'abc-xyz')
>>> if m != None: m.group()
…
>>>

In the above code, we created an RE to recognize three alphanumeric characters followed by three
digits. Testing this RE on "abc-123," we obtained with positive results while "abc-xyz" fails. We
will now modify our RE as discussed before to be able to extract the alphanumeric string and number.
Note how we can now use the group() method to access individual subgroups or the groups()
method to obtain a tuple of all the subgroups matched:

>>> m = re.match('(\w\w\w)-(\d\d\d)', 'abc-123')
>>> m.group() # entire match

'abc-123'
>>> m.group(1) # subgroup 1
'abc'
>>> m.group(2) # subgroup 2
'123'
>>> m.groups() # all subgroups
('abc', '123')

As you can see, group() is used in the normal way to show the entire match, but can also be used to
grab individual subgroup matches. We can also use the groups() method to obtain a tuple of all the
substring matches.

Here is a simpler example showing different group permutations, which will hopefully make things
even more clear:

>>> m = re.match('ab', 'ab') # no subgroups
>>> m.group() # entire match
'ab'
>>> m.groups() # all subgroups
()
>>>
>>> m = re.match('(ab)', 'ab') # one subgroup
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.groups() # all subgroups
('ab',)
>>>
>>> m = re.match('(a)(b)', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'a'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('a', 'b')
>>>
>>> m = re.match('(a(b))', 'ab') # two subgroups
>>> m.group() # entire match

'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('ab', 'b')

Matching from the beginning and end of strings and on word boundaries

The following examples highlight the positional RE operators. These apply more for searching than
matching because match() always starts at the beginning of a string.

>>> m = re.search('^The', 'The end.') # match
>>> if m != None: m.group()
…
'The'
>>> m = re.search('^The', 'end. The') # not at beginning
>>> if m != None: m.group()
…
>>> m = re.search(r'\bthe', 'bite the dog')# at a boundary
>>> if m != None: m.group()
…
'the'
>>> m = re.search(r'\bthe', 'bitethe dog') # no boundary
>>> if m != None: m.group()
…
>>> m = re.search(r'\Bthe', 'bitethe dog') # no boundary
>>> if m != None: m.group()
…
'the'

You will notice the appearance of raw strings here. You may want to take a look at the Core Note
towards the end of the chapter for clarification on why they are here. In general, it is a good idea to use
raw strings with regular expressions.

Other re Module Functions and Methods

There are four other re module functions and regex object methods which we think you should be

aware of: findall(), sub(), subn(), and split().

Finding every occurrence with findall()

findall() is new to Python as of version 1.5.2. It looks for all non-overlapping occurrences of an
RE pattern in a string. It is similar to search() in that it performs a string search, but it differs from
match() and search() in that findall() always returns a list. The list will be empty if no
occurrences are found but if successful, it will consist of all matches found (grouped in left-to-right
order of occurrence).

>>> re.findall('car', 'car')
['car']
>>> re.findall('car', 'scary')
['car']
>>> re.findall('car', 'carry the barcardi to the car')
['car', 'car', 'car']

Subgroup searches result in a more complex list returned, and that makes sense, because subgroups are
a mechanism which will allow you to extract specific patterns from within your single regular
expression, such as matching an area code which is part of a complete telephone number, or a login
name which is part of an entire e-mail address.

For a single successful match, each subgroup match is a single element of the resulting list returned by
findall(); for multiple successful matches, each subgroup match is a single element in a tuple, and
such tuples (one for each successful match) are the elements of the resulting list. This part may sound
confusing at first, but if you try different examples, it will help clarify things.

Searching and replacing with sub() [and subn()]

There are two functions/methods for search-and-replace functionality: sub() and subn(). They are
both almost identical and replace all matched occurrences of the RE pattern in a string with some sort
of replacement. The replacement is usually a string, but it can also be a function which returns a
replacement string. subn() is exactly the same as sub(), but it also returns the total number of
substitutions made—both the newly-substituted string and the substitution count are returned as a 2-
tuple.

>>> re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
'attn: Mr. Smith\012\012Dear Mr. Smith,\012'
>>>

>>> re.subn('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
('attn: Mr. Smith\012\012Dear Mr. Smith,\012', 2)
>>>
>>> print re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
attn: Mr. Smith

Dear Mr. Smith,

>>> re.sub('[ae]', 'X', 'abcdef')
'XbcdXf'
>>> re.subn('[ae]', 'X' , 'abcdef')
('XbcdXf', 2)

Splitting (on delimiting pattern) with split()

The re module and RE object method split() work similar to its string counterpart, but rather than
splitting on a fixed string, it splits a string based on an RE pattern, adding some significant power to
string splitting capabilities. If you do not want the string split for every occurrence of the pattern, you
can specify the maximum number of splits by setting a value (other than zero) to the max argument.

If the delimiter given is not a regular expression which uses special symbols to match multiple patterns,
then re.split() works in exactly the same manner as string.split(), as illustrated in the
example below (which splits on a single colon):

>>> re.split(':', 'str1:str2:str3')
['str1', 'str2', 'str3']

But with regular expressions involved, we have an even more powerful tool. Take, for example, the
output from the Unix who command, which lists all the users logged into a system:

% who
wesc console Jun 20 20:33
wesc pts/9 Jun 22 01:38 (192.168.0.6)
wesc pts/1 Jun 20 20:33 (:0.0)
wesc pts/2 Jun 20 20:33 (:0.0)
wesc pts/4 Jun 20 20:33 (:0.0)
wesc pts/3 Jun 20 20:33 (:0.0)
wesc pts/5 Jun 20 20:33 (:0.0)

wesc pts/6 Jun 20 20:33 (:0.0)
wesc pts/7 Jun 20 20:33 (:0.0)
wesc pts/8 Jun 20 20:33 (:0.0)

Perhaps we want to save some user login information such as login name, teletype they logged in at,
when they logged in, and from where. Using string.split() on the above would not be effective,
since the spacing is erratic and inconsistent. The other problem is that there is a space between the
month, day, and time for the login timestamps. We would probably want to keep these fields together.

You need some way to describe a pattern such as, "split on two or more spaces." This is easily done
with regular expressions. In no time, we whip up the RE pattern "\s\s+," which does mean at least two
whitespace characters. Let's create a program called rewho.py that reads the output of the who
command, presumably saved into a file called whodata.txt. Our rewho.pyscript initially looks
something like this:

import re
f = open('whodata.txt', 'r')
for eachLine in f.readlines():
 print re.split('\s\s+', eachLine)
f.close()

We will now execute the who command, saving the output into whodata.txt, and then call
rewho.py and take a look at the results:

% who > whodata.txt
% rewho.py
['wesc', 'console', 'Jun 20 20:33\012']
['wesc', 'pts/9', 'Jun 22 01:38\011(192.168.0.6)\012']
['wesc', 'pts/1', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/2', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/4', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/3', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/5', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/6', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/7', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/8', 'Jun 20 20:33\011(:0.0)\012']

It was a good first try, but not quite correct. For one thing, we did not anticipate a single TAB (ASCII
\011) as part of the output (which looked like at least 2 spaces, right?), and perhaps we aren't really
keen on saving the NEWLINE (ASCII \012) which terminates each line. We are now going to fix
those problems as well as improve the overall quality of our application by making a few more
changes.

First, we would rather run the who command from within the script, instead of doing it externally and
saving the output to a whodata.txt file—doing this repeatedly gets tiring rather quickly. To
accomplish invoking another program from within ours, we call upon the os.popen() command,
discussed briefly in Section 14.5.2. Although os.popen() is available only on Unix systems, the
point is to illustrate the functionality of re.split(), which is available on all platforms.

We shall also employ the map() built-in function along with string.strip() to get rid of the
trailing NEWLINEs. Finally, we will add the detection of a single TAB as an additional, alternative
re.split() delimiter by adding it to the regular expression. Presented below in Example 15.1. is the
final version of our rewho.pyscript:

Example 15.1. Split Output of Unix who Command (rewho.py)

This script calls the who command and parses the input by splitting up its data along various types
of whitespace characters.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from os import popen
004 4 from re import split
005 5 from string import strip
006 6
007 7 f = popen('who', 'r')
008 8 for eachLine in map(strip, f.readlines()):
009 9 print split('\s\s+|\t', eachLine)
010 10 f.close()
011 <$nopage>

Running this script, we now get the following (correct) output:

% rewho.py
['wesc', 'console', 'Jun 20 20:33']
['wesc', 'pts/9', 'Jun 22 01:38', '(192.168.0.6)']

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/235#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/246#16.html

['wesc', 'pts/1', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/2', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/4', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/3', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/5', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/6', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/7', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/8', 'Jun 20 20:33', '(:0.0)']

A similar exercise can be achieved in a DOS/Windows environment using the dir command in place
of who.

NOTE

You may have seen the use of raw strings in some of the examples above. Regular expressions were
a strong motivation for the advent of raw strings. The reason is because of conflicts between ASCII
characters and regular expression special characters. As a special symbol, "\b" represents the
ASCII character for backspace, but "\b" is also a regular expression special symbol, meaning
"match" on a word boundary. In order for the RE compiler to not interpret a "\b" in your string as
a backspace, you need to escape it using the backslash, resulting in "\\b."

This can get messy, especially if you have a lot of special characters in your string, which adds to
the confusion. We were introduced to raw strings back in Section 6.4.2, and they can be (and are
often) used to help keep REs looking somewhat manageable. In fact, many Python programmers
swear by these and only use raw strings when defining regular expressions.

Here are some examples of differentiating between the backspace "\b" and the regular expression
"\b," with and without raw strings:

>>> m = re.match('\bblow', 'blow') # backspace, no match
>>> if m != None: m.group()
…
>>> m = re.match('\\bblow', 'blow') # escaped \, now it works
>>> if m != None: m.group()
…
'blow'
>>> m = re.match(r'\bblow', 'blow\q) # or use raw string instead
>>> if m != None: m.group()
…
'blow'

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/104#8.html

You may have recalled that we had no trouble using "\d" in our regular expressions without using
raw strings. That is because there is no ASCII equivalent special character, so the regular
expression compiler already knew you meant a decimal digit.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=246

Programming > Core Python Programming > 15. Regular Expressions > Regular Expression
Adventures

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228149002078137053040174

Regular Expression Adventures

We will now run through an in-depth example of the different ways of using regular expressions for string
manipulation. The first step is to come up with some code that actually generates some random (but-not-so-
random) data on which to operate. In Example 15.2, we present gendata.py, a script which generates a
data set. Although this program simply displays the generated set of strings to standard output, this output
may very well be redirected to a test file.

NOTE

Unix systems, as well as others, use architecture-size integers to represent the current time in seconds.
Since most systems today are 32-bit, the total amount of time recognized by any platform using this
mechanism is 232 seconds. Such integers are signed, so we really only have 231-1 seconds.

The current time is recognized as the number of seconds which have elapsed since time zero, which is
pegged at midnight, January 1, 1970. Moving forward to the maximum possible positive 32-bit signed
integer (231 - 1), we arrive at the "end of time," which evaluates to Tuesday morning, January 19, 2038
at 3:14 AM and 7 seconds using Universal Coordinated Time (UTC/GMT). Hopefully by then, we
would have discontinued the use of 32-bit systems. This phenomena is otherwise known as the Y2038
problem.)

Here is one way you could find out what the special date/time it is for your local time, using Python:

>>> import sys, time
>>> time.asctime(time.localtime(sys.maxint))# Pacific Time
'Mon Jan 18 19:14:07 2038'

sys.maxinthas the last possible second using a 32-bit integer. We feed that time in seconds to
time.localtime()to obtain the tuple for your/our local time (here we are on Pacific Time), and
finally, we ship that tuple off to time.asctime()to obtain the standard timestamp for the last
possible second. As you can see from our example, we are eight hours west of the Prime/Greenwich
Meridian.

This is not as much a Python Core Note as it is a general programming note, but should be nevertheless
discussed for common knowledge since it applies to all 32-bit systems with applications using on the C

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=247
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A26%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=247&now=5%2F30%2F2002+8%3A26%3A35+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/247#1.html

language, regardless of platform, i.e., UNIX and non-UNIX, which use UNIX-style dating. In the
gendata.py script coming up, we randomly generate integers, effectively generating random dates for
our application.

This script generates strings with three fields, delimited by a pair of colons, or a double-colon. The first
field is a random (32-bit) integer, which is converted to a date (see the accompanying Core Note). The next
field is a randomly-generated electronic mail (e-mail) address, and the final field is a set of integers
separated by a single dash (-).

Example 15.2. Data Generator for RE Exercises (gendata.py)

Create random data for regular expressions practice and output the generated data to the screen.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from random import randint,choice
004 4 from string import lowercase
005 5 from sys import maxint
006 6 from time import ctime
007 7
008 8 doms = ('com', 'edu', 'net', 'org', 'gov')
009 9
010 10 for i in range(randint(5, 10)):
011 11 dtint = randint(0, maxint-1) # pick date
012 12 dtstr = ctime(dtint) # date string
013 13
014 14 shorter = randint(4, 7) # login shorter
015 15 em = ''
016 16 for j in range(shorter): # generate login
017 17 em = em + choice(lowercase)
018 18
019 19 longer = randint(shorter, 12) # domain longer
020 20 dn = ''
021 21 for j in range(longer): # create domain
022 22 dn = dn + choice(lowercase)
023 23
024 24 print '%s::%s@%s.%s::%d-%d-%d' % (dtstr, em,
025 25 dn, choice(doms), dtint, shorter, longer)
026 <$nopage>

Running this code, we get the following output (your mileage will definitely vary) and store locally as the
file redata.txt:

Thu Jul 22 19:21:19 2004::izsp@dicqdhytvhv.edu::1090549279-4-11
Sun Jul 13 22:42:11 2008::zqeu@dxaibjgkniy.com::1216014131-4-11
Sat May 5 16:36:23 1990::fclihw@alwdbzpsdg.edu::641950583-6-10
Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8
Thu Jun 26 19:08:59 2036::ugxfugt@jkhuqhs.net::2098145339-7-7
Tue Apr 10 01:04:45 2012::zkwaq@rpxwmtikse.com::1334045085-5-10

You may or may not be able to tell, but the output from this program is ripe for regular expression
processing. Following our line-by-line explanation, we will implement several REs to operate on this data,
as well as leave plenty for the end-of-chapter exercises.

Line-by-line explanation

Lines 1 – 6

In our example script, we require the use of multiple modules. But since we are utilizing only one or two
functions from these modules, rather than importing the entire module, we choose in this case to import
only specific attributes from these modules. Our decision to use from-import rather than import was
based solely on this reasoning. The from-import lines succeed the UNIX start-up directive on line 1.

Line 8

doms is simply a set of higher-level domain names from which we will randomly pick for each randomly-
generated e-mail address.

Lines 10–12

Each time gendata.py executes, between 5 and 10 lines of output are generated. (Our script uses the
random.randint() function for all cases where we desire a random integer.) For each line, we choose
a random integer from the entire possible range (0 to 231 - 1 [sys.maxint]), then convert that integer to
a date using time.ctime().

Lines 14–22

The login name for the fake e-mail address should be between 4 and 7 characters in length. To put it
together, we randomly choose between 4 and 7 random lowercase letters, concatenating each letter to our
string one-at-a-time. The functionality of the random.choice() function is given a sequence, return a
random element of that sequence. In our case, the sequence is the set of all 26 lowercase letters of the
alphabet, string.lowercase.

We decided that the main domain name for the fake e-mail address should be between 4 and 12 characters
in length, but at least as long as the login name. Again, use random lowercase letters to put this name
together letter-by-letter.

Line 24–25

The key component of our script puts together all of the random data into the output line. The date string
comes first, followed by the delimiter. We then put together the random e-mail address by concatenating
the login name, the "@" symbol, the domain name, and a randomly chosen high-level domain. After the
final double-colon, we put together a random integer string using the original time chosen (for the date
string), followed by the lengths of the login and domain names, all separated by a single hyphen.

Matching a string

For the following exercises, create both permissive and restrictive versions of your REs. We recommend
you test these REs in a short application which utilizes our sample redata.txt file above (or use your
own generated data from running gendata.py). You will need to use it again when you do the exercises.

To test the RE before putting it into our little application, we will import the re module and assign one
sample line from redata.txt to a string variable data. These statements are constant across both
illustrated examples.

>>> import re
>>> data = Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8

In our first example, we will create a regular expression to extract (only) the days of the week from the
timestamps from each line of the data file redata.txt. We will use the following RE:

"^Mon|^Tue|^Wed|^Thu|^Fri|^Sat|^Sun"

This example requires that the string start with ("^" RE operator) any of the seven strings listed. If we were
to "translate" the above RE to English, it would read something like, “the string should start with "Mon,"
"Tue,"… , "Sat," or "Sun."

Alternatively, we can bypass all the carat operators with a single carat if we group the day strings like this:

"^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)"

The parentheses around the set of strings mean that one of these strings must be encountered for a match to
succeed. This is a "friendlier" version of the original RE which we came up with which did not have the
parentheses. Using our modified RE, we can take advantage of the fact that we can access the matched
string as a subgroup:

>>> patt = '^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)'
>>> m = re.match(patt, data)
>>> m.group() # entire match
'Thu'
>>> m.group(1) # subgroup 1
'Thu'
>>> m.groups() # all subgroups
('Thu',)

This feature may not seem as revolutionary as we have made it out to be for this example, but it definitely
advantageous in the next example or anywhere you provide extra data as part of the RE to help in the string
matching process, even though those characters may not be part of the string you are interested in.

Both of the above REs are the most restrictive, specifically requiring a set number of strings. This may not
work well in an internationalization environment where localized days and abbreviations are used. A looser
RE would be:"^\w{3}."This one requires only that a string begin with three consecutive alphanumeric
characters. Again, to translate the RE into English, the carat indicates "begins with," the "\w" means any
single alphanumeric character, and the "{3}" means that there should be 3 consecutive copies of the RE
which the "{3}" embellishes. Again, if you want grouping, parentheses should be used, i.e.,
"^(\w{3}):"

>>> patt = '^(\w{3})'
>>> m = re.match(patt, data)
>>> if m != None: m.group()
…
'Thu'
>>> m.group(1)
'Thu'

Note that an RE of "^(\w){3}" is not correct. When the "{3}" was inside the parentheses, the match for
3 consecutive alphanumeric characters was made first, then represented as a group. But by moving the
"{3}" outside, it is now equivalent to 3 consecutive single alphanumeric characters:

>>> patt = '^(\w){3}'
>>> m = re.match(patt, data)
>>> if m != None: m.group()
…
'Thu'
>>> m.group(1)
'u'

The reason why only the "u" shows up when accessing subgroup 1 is that subgroup 1 was being continually
replaced by the next character. In other words, m.group(1) started out as "T," then changed to "h," then
finally was replaced by "u." These are 3 individual (and overlapping) groups of a single alphanumeric
character, as opposed to a single group consisting of 3 consecutive alphanumeric characters.

In our next (and final) example, we will create a regular expression to extract the numeric fields found at
the end of each line of redata.txt.

Search vs. Match

Before we create any REs, however, we realize that these integer data items are at the end of the data
strings. This means that we have a choice of using either search or match. Initiating a search makes more
sense because we know exactly what we are looking for (set of 3 integers), that what we seek is not at the
beginning of the string, and that it does not make up the entire string. If we were to perform a match, we
would have to create an RE to match the entire line and use subgroups to save the data we are interested in.
To illustrate the differences, we will perform a search first, then do a match to show you that searching is
more appropriate.

Since we are looking for 3 integers delimited by hyphens, we create our RE to indicate as such: "\d+-\d+-
\d+". This regular expression means, “any number of digits (at least one, though) followed by a hyphen,
then more digits, another hyphen, and finally, a final set of digits. We test our RE now using search():

>>> patt = '\d+-\d+-\d+'
>>> re.search(patt, data).group() # entire match
'1171590364-6-8'

A match attempt, however, would fail. Why? Because matches start at the beginning of the string, the
numeric strings are at the rear. We would have to create another RE to match the entire string. We can be
lazy though, by using ".+" to indicate just an arbitrary set of characters followed by what we are really
interested in:

patt = '.+\d+-\d+-\d+'
>>> re.match(patt, data).group() # entire match
'Thu Feb 15 17:46:04
2007::uzifzf@dpyivihw.gov::1171590364-6-8'

This works great, but we really want the number fields at the end, not the entire string, so we have to use
parentheses to group what we want:

>>> patt = '.+(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'4-6-8'

Eek! What happened? We should have extracted "1171590364-6-8," not just "4-6-8". Where is the
rest of the first integer? The problem is that regular expressions are inherently "greedy." That means that
with wildcard patterns, regular expressions are evaluated in left-to-right order and try to "grab" as many
characters as possible which match the pattern. In our case above, the ".+" grabbed every single character
from the beginning of the string, including most of the first integer field we wanted. The "\d+" needed only
a single digit, so it got "4," while the ".+" matched everything from the beginning of the string up to that
first digit: "Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::117159036," as indicated below in Figure 15-
2.

Figure 15.2.

The solution is to use the "don't be greedy" operator, "?". It can be used after "*", "+", or "?". This directs
the regular expression engine to match as few characters as possible. So if we place a "?" after the ".+",

mailto:uzifzf@dpyivihw.gov
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/247#10.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/247#10.html

we obtain the desired result illustrated in Figure15-3.

Figure 15.3. Solving the Greedy Problem:? Requests Non-Greediness

>>> patt = '.+?(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'1171590364-6-8'

One final example. Let's say we want to pull out only the middle integer of the three-integer field. Here is
how we would do it (using a search so we don't have to match the entire string): "-(\d+)-". Trying out
this pattern, we get:

>>> patt = '-(\d+)-'
>>> m = re.search(patt, data)
>>> m.group() # entire match
'-6-'
>>> m.group(1) # subgroup 1
'6'

We barely touched upon the power of regular expressions, and in this limited space we have not been able
to give them justice. However, we hope that we have given an informative introduction so that you can add
this powerful tool to your programming skills. We suggest you refer to the documentation for more details
on how to use REs with Python. For more complete immersion into the world of regular expressions, we
recommend Mastering Regular Expressions by Jeffrey E. F. Friedl.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/247#11.html

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=247

Programming > Core Python Programming > 15. Regular Expressions > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228148019181129179016207

Exercises

Regular Expressions. Create regular expressions in Exercises 15-1 to 15-12 to:

1: Recognize the following strings: "bat," "bit," "but," "hat," "hit," or "hut."

2: Match any pair of words separated by a single space, i.e., first and last names.

3: Match any word and single letter separated by a comma and single space, as in last name,
first initial.

4: Match the set of all valid Python identifiers.

5: Match a street address according to your local format (keep your RE general enough to
match any number of street words, including the type designation). For example, American
street addresses use the format: 1180 Bordeaux Drive. Make your RE general enough to
support multi-word street names like: 3120 De la Cruz Boulevard.

6: Match simple Web domain names that begin with "www." and end with a ".com" suffix,
e.g., http://www.yahoo.com. EXTRA CREDIT if your RE also supports other high-level
domain names: .edu, .net, etc., e.g., http://www.ucsc.edu

7: Match the set of the string representations of all Python integers.

8: Match the set of the string representations of all Python longs.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=248
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A27%3A20+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=248&now=5%2F30%2F2002+8%3A27%3A20+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#38.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#39.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#40.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#40.html
http://www.yahoo.com/
http://www.ucsc.edu/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#41.html

9: Match the set of the string representations of all Python floats.

10: Match the set of the string representations of all Python complex numbers.

11: Match the set of all valid e-mail addresses (start with a loose RE, then try to tighten it as
much as you can, yet maintain correct functionality).

12: Match the set of all valid Web site addresses (URLs) (start with a loose RE, then try to
tighten it as much as you can, yet maintain correct functionality).

13: type(). The type() built-in function returns a type object which is displayed as a Pythonic-
looking string:

>>> type(0)
<type 'int'>
>>> type(.34)
<type 'loat'>
>>> type(dir)
<type 'builtin_function_or_method'>

Create an RE that would extract out the actual type name from the string. Your function
should take a string like this " <type 'int'>" and return 'int'. (Ditto for all other types,
i.e., 'float', 'builtin_function_or_method', etc.) Note: you are implement the value that is
stored in the __name__ attribute for classes and some built-in types.

14: Regular Expressions. In Section 15.2, we gave you the RE pattern which matched the
single- or double-digit string representations of the months January to September
("0?[1–9]"). Create the RE that represents the remaining three months in the standard
calendar.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/288#42.html

15: Regular Expressions. Also in Section 15.2, we gave you the RE pattern which matched
credit card (CC) numbers ("[0–9]{15,16}"). However, this pattern does not allow for
hyphens separating blocks of numbers. Create the RE that allows hyphens, but only in the
correct locations. For example, 15-digit CC numbers have a pattern of 4-6-5, indicating
four digits-hyphen-six digits-hyphen-five digits, and 16-digit CC numbers have a 4-4-4-4
pattern. Remember to "balloon" the size of the entire string correctly. EXTRA CREDIT:
there is a standard algorithm for determining whether a CC number is valid. Write some
code to not only recognize a correctly formatted CC number, but also a valid one.

The next set of problems (15–16 through 15–27) deal specifically with the data that is
generated by gendata.py Before approaching problems 15–17 and 15–18, you may
wish to do 15–16 and all the regular expressions first.

16: Update the code for gendata.py so that the data is written directly to redata.txt
rather than output to the screen.

17: Determine how many times each day of the week shows up for any incarnation of
redata.txt.(Alternatively, you can also count how many times each month of the year
was chosen.)

18: Ensure there is no data corruption in redata.txt by confirming that the first integer of
the integer field matches the timestamp given at the front of each output line.

Create regular expressions to:

19: Extract the complete timestamps from each line.

20: Extract the complete e-mail address from each line.

21: Extract only the months from the timestamps.

22: Extract only the years from the timestamps.

23: Extract only the time (HH:MM:SS) from the timestamps.

24: Extract only the login and domain names (both the main domain name and the high-level
domain together) from the e-mail address.

25: Extract only the login and domain names (both the main domain name and the high-level
domain) from the e-mail address.

26: Replace the e-mail address from each line of data with your e-mail address.

27: Extract the months, days, and years from the timestamps and output them in "Mon Day,
Year" format, iterating over each line only once.

For problems 15–28 and 15–29, recall the regular expression introduced in Section 15.2
which matched telephone numbers but allowed for an optional area code prefix: \d{3}-
\d{3}-\d{4} Update this regular expression so that:

28: Area codes (the first set of three-digits and the accompanying hyphen) are optional, i.e.,
your RE should match both 800-555-1212 as well as just 555-1212.

29: Either parenthesized or hyphenated area codes are supported, not to mention optional;
make your RE match 800-555-1212, 555-1212, and also (800) 555-1212.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=248

Programming > Core Python Programming > 16. Network Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228148019180156243023202

Chapter 16. Network Programming
Chapter Topics

● Introduction: Client-Server Architecture

● Sockets: Communication Endpoints

❍ Socket Addresses

❍ Connection-oriented vs. Connectionless Sockets

● Network Programming in Python

❍ socket Module

❍ Socket Object Methods

❍ TCP/IP Client and Server

❍ UDP/IP Client and Server

● Related Modules

In this section, we will take a brief look at network programming using sockets. We will first present
some background information on network programming, how sockets apply to Python, then show you
how to use some of Python's modules to build networked applications.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=250
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A27%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=250&now=5%2F30%2F2002+8%3A27%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=250

Programming > Core Python Programming > 16. Network Programming > Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228148019178209113110131

Introduction

What is Client-Server Architecture?

What is client-server architecture? It means different things to different people, depending on whom
you ask as well as whether you are describing a software or a hardware system. In either case, the
premise is simple: The server, a piece of hardware or software, is providing a "service" which is needed
by one or more clients, users of the service. Its sole purpose of existence is to wait for (client) requests,
service those clients, then wait for more requests.

Clients, on the other hand, contact a (predetermined) server for a particular request, send over any
necessary data, and wait for the server to reply, either completing the request or indicating the cause of
failure. While the server runs indefinitely processing requests, clients make a one-time request for
service, receive that service, and thus conclude their transaction. A client may make additional requests
at some later time, but these are considered separate transactions.

The most common notion of "client-server" today is illlustrated in Figure 16-1, a user or client
computer is retrieving information from a server across the Internet. Although such a system is indeed
an example of a client-server architecture, it isn't the only one. Furthermore, client-server architecture
can be applied to computer hardware as well as software.

Figure 16-1. Typical Conception of a Client-Server System on the Internet.

Hardware client-server architecture

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=251
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A27%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=251&now=5%2F30%2F2002+8%3A27%3A50+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/251#2.html

Print(er) servers are examples of hardware servers. They process incoming print jobs and send them to
a printer (or some other printing device) attached to such a system. Such a computer is generally
network-accessible and client machines would send print requests.

Another example of a hardware server is a file server. These are typically machines with large,
generalized storage capacity which is remotely-accessible to clients. Client machines "mount" the disks
from the server machine onto their local machine as if the disk itself were on the local machine. One of
the most popular network operating systems which support file servers is Sun Microsystems' Network
File System (NFS). If you are accessing a networked disk drive and cannot tell whether it is local or on
the network, then the client-server system has done its job. The goal is for the user experience to be
exactly the same as a local disk—the "abstraction" is normal disk access. It is up to the programmed
"implementation" to make it behave in such a manner.

Software client-server architecture

Software servers also run on a piece of hardware but do not have dedicated peripheral devices as
hardware servers do, i.e., printers, disk drives, etc. The primary services provided by software servers
include program execution, data transfer retrieval, aggregation, update, or other type of programmed or
data manipulation.

One of the more common software servers today is the Web server. A corporate machine is set up with
Web pages and/or Web applications, then the Web server is started. The job of such a server is to
accept client requests, send back Web pages to (Web) clients, i.e., browsers on users' computers, and
wait for the next client request. These servers are started with the expectation of "running forever,"
although they do not achieve that goal, they go for as long as possible unless stopped by some external
force, i.e., explicitly shut down or catastrophically due to hardware failure.

Database servers are another kind of software server. They take client requests for either storage or
retrieval, perform that service, then wait for more business. They are also designed to run "forever."

The last type of software server we will discuss are windows servers. These servers can almost be
considered hardware servers. They run on a machine with an attached display, such as a monitor of
some sort. Windows clients are actually programs which require a windowing environment with which
to execute. These are generally considered graphical user interface (GUI) applications. If they are
executed without a window server, i.e., in a text-based environment such as a DOS window or a Unix
shell, they are unable to start. Once a windows server is accessible, then things are fine.

Such an environment becomes even more interesting when networking comes into play. The usual
display for a windows client is the server on the local machine, but it is possible in some networked
windowing environments, such as the X Windows system, to choose another machine's window server
as a display. In such situations, you can be running a GUI program on one machine, but have it
displayed at another!

Bank tellers as servers?

One way to imagine how client-server architecture works is to create in your mind the image of a bank
teller who neither eats, sleeps, nor rests, serving one customer after another in a line that never seems to
end (see Figure 16-2). The line may be long or it may be empty on occasion, but at any given moment,
a customer may show up. Of course, such a teller was fantasy years ago, but automated teller machines
(ATMs) seem to come close to such a model now.

Figure 16-2. The bank teller in this diagram works "forever" serving client requests. The teller runs in
an infinite loop receiving requests, servicing them, and going back to serve or wait for another client.
There may be a long line of clients, or there may be none at all, but in either case, a server's work is

never done.

The teller is, of course, the server that runs in an infinite loop. Each customer is a client with a need
which requires servicing. Customers arrive and are serviced by the teller in a first-come-first-served
manner. Once a transaction has been completed, the client goes away while the server either serves the
next customer or sits and waits until one comes along.

Why is all this important? The reason is that this style of execution is how client-server architecture
works in a general sense. Now that you have the basic idea, let us adapt it to network programming,
which follows the software client-server architecture model.

Client-Server Network Programming

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/251#6.html

Before any servicing can be accomplished, a server must perform some preliminary setup procedures to
prepare for the work that lies ahead. A communication endpoint is created which allows a server to
"listen" for requests. One can liken our server to a company receptionist or switchboard operator who
answers calls on the main corporate line. Once the phone number and equipment are installed and the
operator arrives, the service can begin.

This process is the same in the networked world—once a communication endpoint has been
established, our listening server can now enter its infinite loop to wait for clients to connect and be
serviced. Of course, we must not forget to put that phone number on company letterhead, in
advertisements, or some sort of press release; otherwise, no one will ever call!

On a related note, potential clients must be made aware that this server exists to handle their
needs—otherwise, the server will never get a single request. Imagine creating a brand new Web site. It
may be the most super-duper, awesome, amazing, useful, and coolest Web site of all, but if the Web
address or Uniform Resource Locator (URL) is never broadcast or advertised in any way, no one will
ever know about it, and it will never see see the light of day. The same thing applies for the new
telephone number of corporate headquarters. No calls will ever be received if the number is not made
known to the public.

Now you have a good idea as to how the server works. You have gotten past the difficult part. The
client side stuff is much more simple than on the server side. All the client has to do is to create its
single communication endpoint, establish a connection to the server. The client can now make their
request, which includes any necessary exchange of data. Once the request has been serviced and the
client has received the result or some sort of acknowledgement, communication is terminated.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=251

Programming > Core Python Programming > 16. Network Programming > Sockets:
Communication Endpoints

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228155062032098094050116

Sockets: Communication Endpoints

What Are Sockets?

Sockets are computer networking data structures which embody the concept of the "communication
endpoint" described in the previous section. Networked applications must create sockets before any
type of communication can commence. They can be likened to telephone jacks, without which
engaging in communication is impossible.

Sockets originated in the 1970s from the University of California, Berkeley version of UNIX, known as
BSD UNIX. Therefore, you will sometimes hear these sockets referred to as "Berkeley sockets" or
"BSD sockets." Sockets were originally created for same-host applications where they would enable
one running program (a.k.a. a process) to communicate with another running program. This is known
as interprocess communication, or "IPC" for short.

One interesting historical note: Sockets were invented before networking existed. Despite what you
may have heard, sockets have not always been just for networked applications. These original sockets,
still in use today, are called UNIX sockets and have a "family name" of AF_UNIX, which stands for
"address family: UNIX." (Most popular platforms, including Python, use the term "address families"
and "AF" abbreviation while other systems may refer to address families as "domains" or "protocol
families" and use "PF" rather than "AF.") Because both processes run on the same machine, these
sockets are file-based, meaning that their underlying infrastructure is supported by the file system. This
makes sense because the file system is a shared constant between processes running on the same host.

When networking (utilizing the Internet Protocol [a.k.a. IP]) became a reality, researchers believed that
interprocess communication should still be able to take place, but rather than restricting both
applications to running on the same machine, why not enable a process on one machine to talk to a
process on a different machine? These newer, networked sockets have their own family name,
AF_INET, or "address family: Internet." There are other address families, all of which are either
specialized, antiquated, seldom used, or remain unimplemented. Of all address families, AF_INET is
now the most widely used. Python supports only the AF_UNIX and AF_INET families. Because of our
focus on network programming, we will be using AF_INET for most of the remaining part of this
chapter.

Socket Addresses: Host-port Pairs

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=252
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A28%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=252&now=5%2F30%2F2002+8%3A28%3A45+PM

If a socket is like a telephone jack, a piece of infrastructure that enables communication, then a
hostname and port number are like an area code and telephone number combination. Having the
hardware and ability to communicate doesn't do any good unless you know whom and where to "dial."
An Internet address is comprised of a hostname and port number pair, and such an address is required
for networked communication. It goes without saying that there should also be someone listening at the
other end; otherwise, you get the familiar, "DO-SO-DO" tones followed by "I'm sorry, that number is
no longer in service. Please check the number and try your call again." You have probably seen one
networking analogy during Web surfing, i.e., "Unable to contact server. Server is not responding or is
unreachable."

Valid port numbers range from 0–65535, although those less than 1024 are reserved for the system. If
you are using a Unix system, the list of reserved port numbers (along with servers/protocols and socket
types) is found in the /etc/services file. A list of well-known port numbers is accessible at this
Web site:

http://www.isi.edu/in-notes/iana/assignments/port-numbers

Connection-Oriented vs. Connectionless

Connection-Oriented

Regardless of which address family you are using, there are two different styles of socket connections.
The first type is connection-oriented. What this basically means is that a connection must be
established before communication can occur, such as calling a friend using the telephone system. This
type of communication is also referred to as a "virtual circuit" or "stream socket."

Connection-oriented communication offers sequenced, reliable, and unduplicated delivery of data, and
without record boundaries. That basically means that each message may be broken up into multiple
pieces, which are all guaranteed to arrive ("exactly-once" semantics means no loss or duplication of
data) at their destination to be, put back together and in order, and delivered to the waiting application.

The primary protocol which implements such connection types is the Transmission Control Protocol
(or better known by its acronym "TCP"). To create TCP sockets, one must use SOCK_STREAM as the
type of socket one wants to create. The SOCK_STREAM name for a TCP socket is based on one of its
denotations as stream socket. Because these sockets use the Internet Protocol to find hosts in the
network, the entire system generally goes by the combined names of both protocols (TCP and IP) or
"TCP/IP."

Connectionless

http://www.isi.edu/in-notes/iana/assignments/port-numbers

In stark contrast to virtual circuits is the datagram type of socket, which is connectionless. This means
that no connection is necessary before communication can begin. Here, there are no guarantees of
sequencing, reliability or non-duplication in the process of data delivery. Datagrams do preserve record
boundaries, however, meaning that entire messages are sent rather than being broken into pieces first,
like connection-oriented protocols.

Message delivery using datagrams can be compared to the postal service. Letters and packages may not
arrive in the order they were sent. In fact, they might not arrive at all! To add to the complication, in the
land of networking, duplication of messages is even possible.

So with all this negativity, why use datagrams at all? (There must be some advantage over using stream
sockets!) Because of the guarantees provided by connection-oriented sockets, a good amount of
overhead is required for their setup as well as in maintaining the virtual circuit connection. Datagrams
do not have this overhead and thus are "less expensive," usually providing better performance and may
be suitable for some types of applications.

The primary protocol which implements such connection types is the User Datagram Protocol (or better
known by its acronym "UDP"). To create UDP sockets, one must use SOCK_DGRAM as the type of
socket they want to create. The SOCK_DGRAM name for a UDP socket, as you can probably tell,
comes from the word "datagram." Because these sockets also use the Internet Protocol to find hosts in
the network, this system also has a more general name, going by the combined names of both of these
protocols (UDP and IP), or "UDP/IP."

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=252

Programming > Core Python Programming > 16. Network Programming > Network
Programming in Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228154178107060254245006

Network Programming in Python

Now that you know all about client-server architecture, sockets, and networking, let us try to bring this
concept to Python. The primary module we will be using in this section is the socket module. Found
within this module is the socket() function, which is used to create socket objects. Sockets also
have their own set of methods which enable socket-based network communication.

socket() Module Function

To create a socket, you must use the socket.socket() function, which has the general syntax:

socket (socket_family, socket_type, protocol=0)

The socket_family is either AF_UNIX or AF_INET, as explained earlier, and the socket_type
is either SOCK_STREAM or SOCK_DGRAM, also explained earlier. The protocol is usually left
out, defaulting to 0.

So to create a TCP/IP socket, you call socket.socket() like this:

tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Likewise, to create a UDP/IP socket you perform:

udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Since there are numerous socket module attributes, this is one of the exceptions where using "from
module import *" is acceptable because of the number of module attributes. If we applied "from

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=253
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A29%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=253&now=5%2F30%2F2002+8%3A29%3A02+PM

socket import *", we bring the socket attributes into our namespace, but our code is shortened
considerably, i.e.,

tcpSock = socket(AF_INET, SOCK_STREAM)

Once we have a socket object, all further interaction will occur using that socket object's methods.

Socket Object (Built-in) Methods

In Table 16.1, we present a list of the most common socket methods. In the next subsection, we will
create both TCP and UDP clients and servers, all of which use these methods. Although we are
focusing on Internet sockets, these methods have similar meanings when using Unix sockets.

Table 16.1. Common Socket Object Methods

Method Description
Server Socket Methods
s.bind() bind address (hostname, port number pair) to socket

s.listen() set up and start TCP listener

s.accept() passively accept TCP client connection, waiting until connection arrives
(blocking)

Client Socket Methods
s.connect() actively initiate TCP server connection
General Socket Methods
s.recv() receive TCP message

s.send() transmit TCP message

s.recvfrom() receive UDP message

s.sendto() transmit UDP message

s.close() close socket

Creating a TCP Server

We will first present some general pseudocode involved with creating a generic TCP server, then
describe in general what is going on. Keep in mind that this is only one way of designing your server.
Once you become comfortable with server design, you will be able to modify the pseudocode to
operate the way you want it to:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/253#3.html

ss = socket() # create server socket
ss.bind() # bind socket to address
ss.listen() # listen for connections
inf_loop: # server infinite loop
 cs = ss.accept() # accept client connection
 comm_loop: # communication loop
 cs.recv()/cs.send() # dialog (receive/send)
 cs.close() # close client socket
ss.close() # close server socket

All sockets are created using the socket.socket() function. Servers need to "sit on a port" and
wait for requests, so they all must "bind" to a local address. Because TCP is a connection-oriented
communication system, some infrastructure must be set up before a TCP server can begin operation. In
particular, TCP servers must "listen" for (incoming) connections. Once this setup process is complete, a
server can start its infinite loop.

A simple (single-threaded) server will then sit on an accept() call waiting for a connection. By
default, accept() is blocking, meaning that execution is suspended until a connection arrives.
Sockets do support a non-blocking mode; refer to the documentation or operating systems textbooks for
more details on why and how you would use non-blocking sockets.

Once a connection is accepted, a separate client socket is returned [by accept()] for the upcoming
message interchange. Using the new client socket is similar to handing off a customer call to a service
representative. When a client eventually does come in, the main switchboard operator takes the
incoming call and patches it through, using another line to the right person to handle their needs.

This frees up the main line, i.e., the original server socket so that the operator can resume waiting for
new calls (client requests) while the customer and the service representative he or she was connected to
carry on their own conversation. Likewise, when an incoming request arrives, a new communication
port is created to converse directly with that client while the main one is free to accept new client
connections.

NOTE

We do not implement this in our examples, but it is also fairly common to hand a client request off
to a thread or new process to complete the client processing. The SocketServer module, a high-
level socket communication module written on top of socket, supports both threaded and
spawned process handling of client requests. We refer the reader to the documentation to obtain
more information about the SocketServer module as well as the exercises in Chapter 17,
Multithreaded Programming.

Once the temporary socket is created, communication can commence, and both client and server
proceed to engage in a dialog of sending and receiving using this new socket until the connection is
terminated. This usually happens when one of the parties either closes its connection or sends an empty
string to its partner.

In our code, after a client connection is closed, the server goes back to wait for another client
connection. The final line of code, where we close the server socket, is never encountered since it is
supposed to run in an infinite loop. We leave this code in our example as a reminder to the reader that
calling the close() method is recommended when implementing an intelligent exit scheme for the
server, for example, a handler which detects some external condition whereby the server should be shut
down. In those cases, a close() method call is warranted.

In Example 16.1, we present tsTserv.py, a TCP server program which takes the data string sent
from a client and returns it timestamped (format: "[timestamp] data") back to the client.
("tsTserv" stands for timestamp TCP server. The other files are named in a similar manner.)

Example 16.1. TCP Timestamp Server (tsTserv.py)

Creates a TCP server which accepts messages from clients and returns them with a timestamp prefix.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4 from time import time, ctime
005 5
006 6 HOST = ''
007 7 PORT = 21567
008 8 BUFSIZ = 1024
009 9 ADDR = (HOST, PORT)
010 10
011 11 tcpSerSock = socket(AF_INET, SOCK_STREAM)
012 12 tcpSerSock.bind(ADDR)
013 13 tcpSerSock.listen(5)
014 14
015 15 while 1:
016 16 print 'waiting for connection…'
017 17 tcpClisock, addr = tcpSerSock.accept()
018 18 print '…connected from:', addr
019 19

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/253#5.html

020 20 while 1:
021 21 data = tcpCliSock.recv(BUFSIZ)
022 22 if not data: break <$nopage>
023 23 tcpCliSock.send('[%s] %s' % \
024 24 ctime(time()), data)
025 25
026 26 tcpCliSock.close()
027 27 tcpSerSock.close()
028 <$nopage>

Line-by-line

Lines 1–4

After the Unix start-up line, we import time.time(), time.ctime(), and all the attributes
from the socket module.

Lines 6–13

The HOST variable is blank, an indication to the bind() method that it can use any address that is
available. We also choose an arbitrarily random port number which does not appear to be used or
reserved by the system. For our application, we set the buffer size to 1K. You may vary this size based
on your networking capability and application needs. The argument for the listen() method is
simply a maximum number of incoming connection requests to accept before connections are turned
away or refused.

The TCP server socket (tcpSerSock) is allocated on line 11, followed by the calls to bind the socket
to the server's address and to start the TCP listener.

Lines 15–27

Once we are inside the server's infinite loop, we (passively) wait for a connection. When one comes in,
we enter the dialog loop where we wait for the client to send its message. If the message is blank, that
means that the client has quit, so we would break from the dialog loop, close the client connection, and
go back to wait for another client. If we did get a message from the client, then we format and return
the same data but prepended with the current timestamp. The final line (27) is never executed, but is
there as a reminder to the reader that a close() call should be made if a handler is written to allow
for a more graceful exit, as we discussed before.

Creating a TCP Client

Creating a client is much simpler than a server. Similar to our description of the TCP server, we will

present the pseudocode with explanations first, then show you the real thing.

cs = socket() # create client socket
cs.connect() # attempt server connection
comm_loop: # communication loop
 cs.send()/cs.recv() # dialog (send/receive)
cs.close() # close client socket

As we noted before, all sockets are created using socket.socket(). Once a client has a socket,
however, it can immediately make a connection to a server by using the socket's connect() method.
When the connection has been established, then it can participate in dialog with the server. Once the
client has completed its transaction, it may close its socket, terminating the connection.

We present the code for tsTclnt.py in Example 16.2; it connects to the server and prompts the user
for line-after-line of data. The server returns this data timestamped, which is presented to the user by
the client code.

Example 16.2. TCP Timestamp Client (tsTclnt.py)

Creates a TCP client which prompts the user for messages to send to the server, gets them back with
a timestamp prefix, and displays the results to the user.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4
005 5 HOST = 'localhost'
006 6 PORT = 21567
007 7 BUFSIZ = 1024
008 8 ADDR = (HOST, PORT)
009 9
010 10 tcpCliSock = socket(AF_INET, SOCK_STREAM)
011 11 tcpCliSock.connect(ADDR)
012 12
013 13 while 1:
014 14 data = raw_input('> ')
015 15 if not data: break <$nopage>
016 16 tcpCliSock.send(data)
017 17 data = tcpCliSock.recv(1024)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/253#11.html

018 18 if not data: break <$nopage>
019 19 print data
020 20
021 21 tcpCliSock.close()
022 <$nopage>

Line-by-line

Lines 1–3

After the Unix start-up line, we import all the attributes from the socket module.

Lines 5–11

The HOST and PORT variables refer to the server's hostname and port number. Since we are running
our test (in this case) on the same machine, HOST contains the local hostname (change it accordingly if
you are running your server on a different host). The port number PORT should be exactly the same as
what you set for your server (otherwise there won't be much communication[!]). We also choose the
same buffer size, 1K.

The TCP client socket (tcpCliSock) is allocated on line 10, followed by the call to connect to the
server.

Lines 13–21

The client also has an infinite loop, but it is not meant to run forever like the server's loop. The client
loop will exit on either of two conditions: If the user enters no input (line 15), or if the server somehow
quit and our call to the recv() method fails (line 18). Otherwise, in a normal situation, the user enters
in some string data, which is sent to the server for processing. The newly-timestamped input string is
then received and displayed to the screen.

Executing Our TCP Client-server Application

Now let's run the server and client programs to see how they work. Should we run the server first or the
client first? Naturally, if we ran the client first, no connection would be possible because there is no
server waiting to accept the request. The server is considered a "passive" partner because it has to
establish itself first and passively wait for a connection. A client on the other hand is an "active" partner
because it actively initiates a connection. In other words:

Start the server first (before any clients try to connect).

In our example running of the client and server, we use the same machine, but there is nothing to stop

us from using another host for the server. If this is the case, then just change the hostname. (It is rather
exciting when you get your first networked application running the server and client from different
machines!)

We now present the corresponding (input and) output from the client program, which exits with a
simple RETURN (or Enter key) keystroke with no data entered:

% tsTclnt.py
> hi
[Sat Jun 17 17:27:21 2000] hi
> spanish inquisition
[Sat Jun 17 17:27:37 2000] spanish inquisition
>
%

The server's output is mainly diagnostic:

% tsTserv.py
waiting for connection…
…connected from: ('127.0.0.1', 1040)
waiting for connection…

The "…connected from…" message was received when our client made its connection. The server
went back to wait for new clients while we continued receiving "service." When we exited from the
server, we had to break out of it, resulting in an exception. The best way to avoid such an error is to
create a more graceful exit, as we have been discussing.

NOTE

One way to create this "friendly" exit is to put the server's while loop inside the except clause
of a try-except statement and monitor for EOFError or KeyboardInterrupt exceptions.
Then in the except clause, you can make a call to close the server's socket.

The interesting thing about this simple networked application is that we are not only showing how our
data takes a round trip from the client to the server and back to the client, but we also use the server as
a sort of "time server," because the timestamp we receive is purely from the server.

Creating a UDP Server

UDP servers do not require as much setup as TCP servers because they are not connection-oriented.
There is virtually no work that needs to be done other than just waiting for incoming connections.

ss = socket() # create server socket
ss.bind() # bind server socket
inf_loop: # server infinite loop
 cs = ss.recvfrom()/ss.sendto() # dialog (receive/send)
ss.close() # close server socket

As you can see from the pseudocode, there is nothing extra other than the usual create-the-socket and
bind it to the local address (host/port pair). The infinite loop consists of receiving a message from a
client, returning a timestamped one, then going back to wait for another message. Again, the close()
method will not be reached due to the infinite loop, but serves as a reminder that it should be part of the
graceful or intelligent exit scheme we've been mentioning.

One other significant different between UDP and TCP servers is that because datagram sockets are
connectionless, there is no "handing off" of a client connection to a separate socket for succeeding
communication. These servers just accept messages and perhaps reply.

You will find the code to tsUserv.py in Example 16.3, a UDP version of the TCP server seen
earlier. It accepts a client message and returns it to the client timestamped.

Example 16.3. UDP Timestamp Server (tsUserv.py)

Creates a UDP server which accepts messages from clients and returns them with a timestamp
prefix.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4 from time import time, ctime
005 5
006 6 HOST = ''
007 7 PORT = 21567
008 8 BUFSIZ = 1024
009 9 ADDR = (HOST, PORT)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/253#18.html

010 10
011 11 udpSerSock = socket(AF_INET, SOCK_DGRAM)
012 12 udpSerSock.bind(ADDR)
013 13
014 14 while 1:
015 15 print 'waiting for message…'
016 16 data, addr = udpSerSock.recvfrom(BUFSIZ)
017 17 udpSerSock.sendto('[%s] %s' % \
018 18 (ctime(time()), data), addr)
019 19 print '…received from, returned to:', addr
020 20
021 21 udpSerSock.close()
022 <$nopage>

Line-by-line

Lines 1–4

After the Unix start-up line, we import time.time(), time.ctime(), and all the attributes
from the socket module, just like the TCP server setup.

Lines 6–12

The HOST and PORT variables are the same as before, and for all the same reasons. The call
socket() differs only in that we are now requesting a datagram/UDP socket type, but bind() is
invoked in the same way as in the TCP server version. Again, because UDP is connectionless, no call
to "listen() for incoming connections" is made here.

Lines 14–21

Once we are inside the server's infinite loop, we (passively) wait for a connection. When one comes in,
we process it (by adding a timestamp to it), then send it right back and go back to wait for another
message. The socket close() method is there for show only, as indicated before.

Creating a UDP Client

Of the four highlighted here in this section, the UDP client is the shortest bit of code which we will
look at. The pseudocode looks like this:

cs = socket() # create client socket
comm_loop: # communication loop
 cs.sendto()/cs.recvfrom() # dialog (send/receive)

cs.close() # close client socket

Once a socket object is created, we enter the dialog loop of exchanging messages with the server.
When communication is complete, the socket is closed.

The real client code, tsUclnt.py, is presented in Example 16.4.

Example 16.4. UDP Timestamp Client (tsUclnt.py)

Creates a UDP client which prompts the user for messages to send to the server, gets them back with
a timestamp prefix, and displays them back to the user.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4
005 5 HOST = 'localhost'
006 6 PORT = 21567
007 7 BUFSIZ = 1024
008 8 ADDR = (HOST, PORT)
009 9
010 10 udpCliSock = socket(AF_INET, SOCK_DGRAM)
011 11
012 12 while 1:
013 13 data = raw_input('> ')
014 14 if not data: break <$nopage>
015 15 udpCliSock.sendto(data, ADDR)
016 16 data, ADDR = udpCliSock.recvfrom(BUFSIZ)
017 17 if not data: break <$nopage>
018 18 print data
019 19
020 20 udpCliSock.close()
021 <$nopage>

Line-by-line

Lines 1–3

After the Unix start-up line, we import all the attributes from the socket module, again, just like in
the TCP version of the client.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/253#24.html

Lines 5–10

Because we are running the server on our local machine again, we use "localhost" and the same port
number on the client side, not to mention the same 1K buffer. We allocate our socket object in the same
way as the UDP server.

Lines 12–20

Our UDP client loop works almost exactly in the same manner as the TCP client. The only difference is
that we do not have to establish a connection to the UDP server first, we simply send a message to it
and await the reply. After the timestamped string is returned, we display it to the screen and go back for
more. When the input is complete, we break out of the loop and close the socket.

Executing Our UDP Client-Server Application

The UDP client behaves the same as the TCP client:

% tsUclnt.py
> hi
[Sat Jun 17 19:55:36 2000] hi
> spam! spam! spam!
[Sat Jun 17 19:55:40 2000] spam! spam! spam!
>
%

Likewise for the server:

% tsUserv.py
waiting for message…
… received from and returned to: ('27.0.0.1' 1025)
waiting for message…

In fact, we output the client's information because we can be receiving messages from multiple clients
and sending replies, and such output helps in telling us where messages came from. With the TCP
server, we know where messages come from because each client makes a connection. Note how the
messages says, "waiting for message" as opposed to "waiting for connection."

Other socket Module Functions

In addition to the socket.socket() function which creates a socket object, the socket module
features a whole host of other ancillary functions to aid you in your networked applications, as seen
below in Table 16.2.

Table 16.2. Other socket Module Functions

Function Name Description
fromfd() create a socket object from an open file descriptor
gethostname() return the current hostname
gethostbyname() map a hostname to its IP number
gethostbyaddr() map an IP number or hostname to DNS info
getservbyname() map a service name and a protocol name to a port number
getprotobyname() map a protocol name (e.g. 'tcp') to a number
ntohl()/ntohs() converts integers from network to host byte order
htonl()/htons() converts integers from host to network byte order
inet_aton() convert IP address octet string to 32-bit packed format
inet_ntoa() convert 32-bit packed format to IP address string
ssl() Secure Socket Layer support (must be configured); new in 1.6

For more information, we refer you to the socket Module documentation in the Python Library
Reference.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/253#31.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=253

Programming > Core Python Programming > 16. Network Programming > Related
Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228154178105007068194023

Related Modules

Table 16.3 lists some of the other Python modules which are related to network and socket
programming. The select module is usually used in conjunction with the socket module when
developing lower-level socket applications. It provides the select() function which manages sets of
socket objects. One of the most useful things it does is to take a set of sockets and listen for active
connections on them. The select() function will block until at least one socket is ready for
communication, and when that happens, it provides you with a set of which ones are ready for reading.
(It can also determine which are ready for writing, although that is not as common as the former
operation.)

Table 16.3. Network/Socket Programming Related Modules

Module Description
asyncore provides infrastructure to create networked applications which process clients

asynchronously
select manages multiple socket connections in a single-threaded network server application
SocketServer high-level module which provides server classes for networked applications, complete with

forking or threading varieties

The asyncore and SocketServer modules both provide higher-level functionality as far as create
servers are concerned. Written on top of the socket and/or select modules, they enable more rapid
development of client-server systems because all the lower-level code is handled for you. All you have
to do is to create or subclass the appropriate base classes, and you are on your way. As we mentioned
earlier, SocketServer even provides the capability of integrating threading or new processes into
the server for more parallelized processing of client requests.

The topics which we have covered in this chapter deal with network programming with sockets in
Python and how to create custom applications using lower-level protocol suites such as TCP/IP and
UDP/IP. If you want to develop higher-level Web and Internet applications, we strongly encourage you
to head to Chapter 19.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=254
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A29%3A20+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=254&now=5%2F30%2F2002+8%3A29%3A20+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/254#1.html

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=254

Programming > Core Python Programming > 16. Network Programming > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228154178104029179172088

Exercises

1: Sockets. What is the difference between connection-oriented versus connectionless?

2: Sockets. What is the difference between TCP and UDP?

3: Sockets. Between TCP and UDP, which type of servers accept connections and hands them
off to separate sockets for client communication?

4: Clients. Update the TCP (tsTclnt.py) and UDP (tsUclnt.py) clients so that the
server name is not hard-coded into the application. Allow the user to specify a hostname
and port number, and only use the default values if either or both parameters are missing.

5: Internetworking and Sockets. Implement Guido's sample TCP client/server programs found
in Section 7.2.2 of the Python Library Reference and get them to work. Set up the server,
then the client. An online version of the source is also available here:

http://www.python.org/doc/current/lib/Socket_Example.html

You decide the server is too boring. Update the server so that it can do much more,
recognizing the following commands:

date server will return its current date/timestamp, i.e., time.ctime(time.time())
os get OS info (os.name)
ls give a listing of the current directory (HINTS: os.listdir() lists a directory,

os.curdir is the current directory) EXTRA CREDIT: accept "ls dir" and return
dir's file listing

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=255
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A29%3A32+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=255&now=5%2F30%2F2002+8%3A29%3A32+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/124#2.html
http://www.python.org/doc/current/lib/socket_example.html

You do not need a network to do this assignment—your machine can talk to itself. Note:
After the server exits, the binding must be cleared before you can run it again. You may
experience "port already bound" errors. The operating system usually clears the binding
within 5 minutes, so be patient!

6: Daytime Service. Use the socket.getservbyname() to determine the port number
for the "daytime" service under the UDP protocol. Check the documentation for
getservbyname() to get the exact usage syntax (i.e.,
socket.getservbyname.__doc__). Now write an application which sends a
dummy message over and wait for the reply. Once you have received a reply from the
server, display it to the screen.

7: Half Duplex Chat. Create a simple, half-duplex chat program. By "half-duplex," we mean
that when a connection is made and the service starts, only one person can type. The other
participant must wait to get a message before he or she is prompted to enter a message.
Once a message is sent, then the sender must wait for a reply before being allowed to send
another message. One participant will be on the server side, while the other will be on the
client side.

8: Full Duplex Chat. Update your solution to the previous problem so that your chat service is
now full-duplex, meaning that both parties can send and receive independently of each
other.

9: Multi-User Full Duplex Chat. Further update your solution so that your chat service is
multi-user.

10: Multi-User Multi-Room Full Duplex Chat. Now make your chat service multi-user and
multi-room.

11: Web Client. Write a TCP client which connects to port 80 of your favorite Web site
(remove the "http://" and any trailing info; use only the hostname). Once a connection has
been established, send the HTTP command string "GET /\n" and write all the data that
the server returns to a file. (The GET command retrieves a Web page, the "/" file indicates
the file to get, and the "\n" sends the command to the server.) Examine the contents of the
retrieved file. What is it? How can you check to make sure the data you received is correct?
(Note: You may have to give one or two NEWLINEs of the command string. One usually
works.)

12: Sleep Server. Create a "sleep" server. A client will request to be "put to sleep" for a number
of seconds. The server will issue the command on behalf of the client, then return a
message to the client indicating success. The client should have slept or have been idle for
the exact time requested. This is a simple implementation of a "remote procedure call"
where a client's request invokes commands on another machine across the network.

13: Name Server. Design and implement a name server. Such a server is responsible for
maintaining a database of hostname-port number pairs; perhaps along with the string
description of the service that the corresponding servers provide. Take one or more existing
servers and have them "register" their service with your name server. (Note that these
servers are, in this case, clients of the name server.)

Every client that starts up has no idea where the server is that it is looking for. Also as
clients of the name server, these clients should send a request to the name server indicating
what type of service they are seeking. The name server, in reply, returns a hostname-port
number pair to this client, which then connects to the appropriate server to process its
request.

EXTRA CREDIT: (1) add caching to your name server for popular requests, (2) add
logging capability to your name server, keeping track of which servers have registered and
which services clients are requesting; (3) your name server should periodically "ping" the
registered hosts at their respective port numbers to ensure that the service is indeed up.
Repeated failures will cause a server to be delisted from the list of services.

You may implement real services for the servers which register for your name service, or
just use dummy servers (which merely acknowledge a request)

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=255

Programming > Core Python Programming > 17. Multithreaded Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228154178111237114240138

Chapter 17. Multithreaded Programming
Chapter Topics

● Introduction

● Threads and Processes

● Threads and Python

● thread Module

● threading Module

● Producer-Consumer Problem and the Queue Module

In this section, we will explore the different ways you can achieve more parallelism in your code by
using the multithreaded (MT) programming features found in Python. We will begin by differentiating
between processes and threads in the first few of sections of this chapter. We will then introduce the
notion of multithreaded programming. (Those of you already familiar with MT programming can skip
directly to Section 17.3.5.) The last section of this chapter lays out some examples of how to use the
threading and Queue modules to accomplish MT programming with Python.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=257
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A29%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=257&now=5%2F30%2F2002+8%3A29%3A43+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/260#6.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=257

Programming > Core Python Programming > 17. Multithreaded Programming >
Introduction/Motivation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004228154178110061147221039

Introduction/Motivation

Before the advent of multithreaded (MT) programming, running of computer programs consisted of a
single sequence of steps which were executed in synchronous order by the host's central processing unit
(CPU). This style of execution was the norm whether the task itself required the sequential ordering of
steps or if the entire program was actually an aggregation of multiple subtasks. What if these subtasks
were independent, having no causal relationship (meaning that results of subtasks do not affect other
subtask outcomes)? Is it not logical, then, to want to run these independent tasks all at the same time?
Such parallel processing could significantly improve the performance of the overall task. This is what
MT programming is all about.

MT programming is ideal for programming tasks that are asynchronous in nature, require multiple
concurrent activities, and where the processing of each activity may be nondeterministic, i.e., random
and unpredictable. Such programming tasks can be organized or partitioned into multiple streams of
execution where each has a specific task to accomplish. Depending on the application, these subtasks
may calculate intermediate results that could be merged into a final piece of output.

While CPU-bound tasks may be fairly straightforward to divide into subtasks and executed sequentially
or in a multithreaded manner, the task of managing a single-threaded process with multiple external
sources of input is not as trivial. To achieve such a programming task without multithreading, a
sequential program must use one or more timers and implement a multiplexing scheme.

A sequential program will need to sample each I/O (input/output) terminal channel to check for user
input; however, it is important that the program does not block when reading the I/O terminal channel
because the arrival of user input is nondeterministic, and blocking would prevent processing of other
I/O channels. The sequential program must use non-blocked I/O or blocked I/O with a timer (so that
blocking is only temporary).

Because the sequential program is a single thread of execution, it must juggle the multiple tasks that it
needs to perform, making sure that it does not spend too much time on any one task, and it must ensure
that user response time is appropriately distributed. The use of a sequential program for this type of
programming task often results in a complicated flow of control program that is difficult to understand
and maintain.

Using an MT program with a shared data structure such as a Queue (a multithreaded queue data
structure discussed later in this chapter), this programming task can be organized with a few threads

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=258
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A29%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=258&now=5%2F30%2F2002+8%3A29%3A56+PM

that have specific functions to perform:

1. UserRequestThread: responsible for reading client input, perhaps from an I/O channel. A
number of threads would be created by the program, one for each current client, with requests
being entered into the queue.

2. RequestProcessor: a thread that is responsible for retrieving requests from the queue and
processing them, providing output for yet a third thread.

3. ReplyThread: responsible for taking output destined for the user and either sending it back, if
in a networked application, or writing data to the local file system or database.

Organizing this programming task with multiple threads reduces the complexity of the program and
enables an implementation that is clean, efficient, and well-organized. The logic in each thread is
typically less complex because it has a specific job to do. For example, the UserRequestThread
simply reads input from a user and places the data into a queue for further processing by another
thread, etc. Each thread has its own job to do; and you merely have to design each type of thread to do
one thing and do it well. Use of threads for specific tasks is not unlike Henry Ford's assembly line
model for manufacturing automobiles.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=258

Programming > Core Python Programming > 17. Multithreaded Programming > Threads
and Processes

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229222111164193149039052

Threads and Processes

What Are Processes?

Computer programs are merely executables, binary (or otherwise), which reside on disk. They do not
take on a life of their own until loaded into memory and invoked by the operating system. A process
(sometimes called a heavyweight process) is a program in execution. Each process has its own address
space, memory, a data stack, and other auxiliary data to keep track of execution. The operating system
manages the execution of all processes on the system, dividing the time fairly between all processes.
Processes can also fork or spawn new processes to perform other tasks, but each new process has its
own memory, data stack, etc., and cannot generally share information unless interprocess
communication (IPC) is employed.

What Are Threads?

Threads (sometimes called lightweight processes) are similar to processes except that they all execute
within the same process, thus all share the same context. They can be thought of as "mini-processes"
running in parallel within a main process or "main thread."

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction pointer that
keeps track of where within its context it is currently running. It can be pre-empted (interrupted) and
temporarily put on hold (also known as sleeping) while other threads are running—this is called
yielding.

Multiple threads within a process share the same data space with the main thread and can therefore
share information or communicate with each other more easily than if they were separate processes.
Threads are generally executed in a concurrent fashion, and it is this parallelism and data sharing that
enable the coordination of multiple tasks. Naturally, it is impossible to run truly in a concurrent manner
in a single CPU system, so threads are scheduled in such a way that they run for a little bit, then yield
to other threads (going to the proverbial "back-of-the-line" to await getting more CPU time again).
Throughout the execution of the entire process, each thread performs its own, separate tasks, and
communicates the results with other threads as necessary.

Of course, such sharing is not without its dangers. If two or more threads access the same piece of data,
inconsistent results may arise because of the ordering of data access. This is commonly known as a
race condition. Fortunately, most thread libraries come with some sort of synchronization primitives

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=259
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A30%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=259&now=5%2F30%2F2002+8%3A30%3A16+PM

which allow the thread manager to control execution and access.

Another caveat is that threads may not be given equal and fair execution time. This is because some
functions block until they have completed. If not written specifically to take threads into account, this
skews the amount of CPU time in favor of such greedy functions.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=259

Programming > Core Python Programming > 17. Multithreaded Programming > Threads
and Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229222111166044227063049

Threads and Python

Global Interpreter Lock

Execution by Python code is controlled by the Python Virtual Machine (a.k.a. the interpreter main
loop), and Python was designed in such a way that only one thread of control may be executing in this
main loop, similar to how multiple processes in a system share a single CPU. Many programs may be
in memory, but only one is live on the CPU at any given moment. Likewise, although multiple threads
may be "running" within the Python interpreter, only one thread is being executed by the interpreter at
any given time.

Access to the Python Virtual Machine is controlled by a global interpreter lock (GIL). This lock is
what ensures that exactly one thread is running. The Python Virtual Machine executes in the following
manner in an MT environment:

● Set the GIL,

● Switch in a thread to run,

● Execute for a specified number of bytecode instructions,

● Put the thread back to sleep (switch out thread),

● Unlock the GIL, and,

● Do it all over again (rinse, lather, repeat).

When a call is made to external code, i.e., any C/C++ extension built-in function, the GIL will be
locked until it has completed (since there are no Python bytecodes to count as the interval). Extension
programmers do have the ability to unlock the GIL however, so you being the Python developer
shouldn't have to worry about your Python code locking up in those situations.

As an example, for any Python I/O-oriented routines (which invoke built-in operating system C code),
the GIL is released before the I/O call is made, allowing other threads to run while the I/O is being
performed. Code which doesn't have much I/O will tend to keep the processor (and GIL) to the full
interval a thread is allowed before it yields. In other words, I/O-bound Python programs stand a much

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=260
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A30%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=260&now=5%2F30%2F2002+8%3A30%3A34+PM

better chance of being able to take advantage of a multithreaded environment than CPU-bound code.

Those of you interested in the source code, the interpreter main loop, and the GIL can take a look at
eval_code2() routine in the Python/ceval.c file, which is the Python Virtual Machine.

Exiting Threads

When a thread completes execution of the function they were created for, they exit. Threads may also
quit by calling an exit function such as thread.exit(), or any of the standard ways of exiting a
Python process, i.e., sys.exit() or raising the SystemExit exception.

There are a variety of ways of managing thread termination. In most systems, when the main thread
exits, all other threads die without cleanup, but for some systems, they live on. Check your operating
system threaded programming documentation regarding their behavior in such occasions.

Main threads should always be good managers, though, and perform the task of knowing what needs to
be executed by individual threads, what data or arguments each of the spawned threads requires, when
they complete execution, and what results they provide. In so doing, those main threads can collate the
individual results into a final conclusion.

Accessing Threads From Python

Python supports multithreaded programming, depending on the operating system that it is running on.
It is supported on most versions of Unix, including Solaris and Linux, and Windows. Threads are not
currently available on the Macintosh platform. Python uses POSIX-compliant threads, or "pthreads," as
they commonly known.

By default, threads are not enabled when building Python from source, but are available for Windows
platforms automatically from the installer. To tell whether threads are installed, simply attempt to
import the thread module from the interactive interpreter. No errors occur when threads are
available:

>>> import thread
>>>

If your Python interpreter was not compiled with threads enabled, the module import fails:

>>> import thread
Traceback (innermost last):

 File "<stdin>", line 1, in ?
ImportError: No module named thread

In such cases, you may have to recompile your Python interpreter to get access to threads. This usually
involves invoking the configure script with the "--with-thread" option. Check the README file
for your distribution for specific instructions on how to compile Python with threads for your system.

Due to the brevity of this chapter, we will give you only a quick introduction to threads and MT
programming in Python. We refer you to the official documentation to get the full coverage of all the
aspects of the threading support which Python has to offer. Also, we recommended accessing any
general operating system textbook for more details on processes, interprocess communication, multi-
threaded programming, and thread/process synchronization. (Some of these texts are listed in the
appendix.)

Life Without Threads

For our first set of examples, we are going to use the time.sleep() function to show how threads
work. time.sleep() takes a floating point argument and "sleeps" for the given number of seconds,
meaning that execution is temporarily halted for the amount of time specified.

Let us create two "time loops," one which sleeps for 4 seconds and one that sleeps for 2 seconds,
loop0() and loop1(), respectively. (We use the names "loop0" and "loop1" as a hint that we will
eventually have a sequence of loops.) If we were to execute loop0() and loop1() sequentially in a
one-process or single-threaded program, as onethr.py does in Example 17.1, the total execution
time would be at least 6 seconds. There may or may not be a 1-second gap between the starting of
loop0() and loop1(), and other execution overhead which may cause the overall time to be
bumped to 7 seconds.

Example 17.1. Loops Executed by a Single Thread (onethr.py)

Executes two loops consecutively in a single-threaded program. One loop must complete before the
other can begin. The total elapsed time is the sum of times taken by each loop.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from time import sleep, time, ctime
004 4
005 5 def loop0():
006 6 print 'start loop 0 at:', ctime(time())

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/260#5.html

007 7 sleep(4)
008 8 print 'loop 0 done at:', ctime(time())
009 9
010 10 def loop1():
011 11 print 'start loop 1 at:', ctime(time())
012 12 sleep(2)
013 13 print 'loop 1 done at:', ctime(time())
014 14
015 15 def main():
016 16 print 'starting…'
017 17 loop0()
018 18 loop1()
019 19 print 'all DONE at:', ctime(time())
020 20
021 21 if __name__ == '__main__':
022 22 main()
023 <$nopage>

We can verify this by executing onethr.py, which gives the following output:

% onethr.py
starting…
start loop 0 at: Sun Aug 13 05:03:34 2000
loop 0 done at: Sun Aug 13 05:03:38 2000
start loop 1 at: Sun Aug 13 05:03:38 2000
loop 1 done at: Sun Aug 13 05:03:40 2000
all DONE at: Sun Aug 13 05:03:40 2000

Now, pretend that rather than sleeping, loop0() and loop1() were separate functions that
performed individual and independent computations, all working to arrive at a common solution.
Wouldn't it be useful to have them run in parallel to cut down on the overall running time? That is the
premise behind MT that we will now introduce you to.

Python Threading Modules

Python provides several modules to support MT programming, including the thread, threading,
and Queue modules. The thread and threading modules allow the programmer to create and
manage threads. The thread module provides the basic thread and locking support, while
threading provides high-level full-featured thread management. The Queue module allows the user
to create a queue data structure which can be shared across multiple threads. We will take a look at

these modules individually, present a good number of examples, and a couple of intermediate-sized
applications.

NOTE

We recommend avoiding the thread module for many reasons. The first is that the high-level
threading module is more contemporary, not to mention the fact that thread support in the
threading module is much improved and the use of attributes of the thread module may
conflict with using the threading module. Another reason is that the lower-level thread
module has a few synchronization primitives (actually only one) while threading has many.

However, in the interest of learning Python and threading in general, we do present some code
which uses the thread module. These pieces of code should be used for learning purposes only
and will give you a much better insight as to why you would want to avoid using the thread
module. These examples also show how our applications and thread programming improve as we
migrate to using more appropriate tools such as those available in the threading and Queue
modules.

Use of the thread module is recommended only for experts desiring lower-level thread access.
Those of you new to threads should look at the code samples to see how we can overlay threads
onto our time loop application and to gain a better understanding as to how these first examples
evolve to the main code samples of this chapter. Your first multithreaded application should utilize
threading and perhaps other high-level thread modules, if applicable.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=260

Programming > Core Python Programming > 17. Multithreaded Programming > thread
Module

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229222111161084016162077

thread Module

Let's take a look at what the thread module has to offer. In addition to being able to spawn threads,
the threadmodule also provides a basic synchronization data structure called a lock object (a.k.a.
primitive lock, simple lock, mutual exclusion lock, mutex, binary semaphore). As we mentioned
earlier, such synchronization primitives go hand-in-hand with thread management.

Listed in Table 17.1 are a list of the more commonly-used thread functions and LockType lock object
methods:

Table 17.1. thread Module and Lock Objects

Function/Method Description
thread Module Functions
start_new_thread(function, args, kwargs=None) spawns a new thread and execute function

with the given args and optional kwargs
allocate_lock() allocates LockType lock object
exit() instructs a thread to exit
LockType Lock Object Methods
acquire(wait=None) attempts to acquire lock object
locked() returns 1 if lock acquired, 0 otherwise
release() releases lock

The key function of the thread module is start_new_thread(). Its syntax is exactly that of the
apply() built-in function, taking a function along with arguments and optional keyword arguments.
The difference is that instead of the main thread executing the function, a new thread is spawned to
invoke the function.

Let's take our onethr.py example and integrate threading into it. By slightly changing the call to the
loop*() functions, we now present mtsleep1.py in Example 17.2.

Example 17.2. Using the thread Module (mtsleepl.py)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=261
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A30%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=261&now=5%2F30%2F2002+8%3A30%3A49+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/261#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/261#2.html

The same loops from onethr.py are executed, but this time using the simple multithreaded
mechanism provided by the thread module. The two loops are executed concurrently (with the
shorter one finishing first, obviously), and the total elapsed time is only as long as the slowest thread
rather than the total time for each separately.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import thread
004 4 from time import sleep, time, ctime
005 5
006 6 def loop0():
007 7 print 'start loop 0 at:', ctime(time())
008 8 sleep(4)
009 9 print 'loop 0 done at:', ctime(time())
010 10
011 11 def loop1():
012 12 print 'start loop 1 at:', ctime(time())
013 13 sleep(2)
014 14 print 'loop 1 done at:', ctime(time())
015 15
016 16 def main():
017 17 print 'starting threads…'
018 18 thread.start_new_thread(loop0, ())
019 19 thread.start_new_thread(loop1, ())
020 20 sleep(6)
021 21 print 'all DONE at:', ctime(time))
022 22
023 23 if __name__ == '__main__':
024 24 main()
025 <$nopage>

start_new_thread() requires the first two arguments, so that's the reason for passing in an empty
tuple even if the executing function requires no arguments.

Upon execution of this program, our output changes drastically. Rather than taking a full 6 or 7
seconds, our script now runs in 4, the length of time of our longest loop, plus any overhead.

% mtsleep1.py
starting threads…
start loop 0 at: Sun Aug 13 05:04:50 2000
start loop 1 at: Sun Aug 13 05:04:50 2000

loop 1 done at: Sun Aug 13 05:04:52 2000
loop 0 done at: Sun Aug 13 05:04:54 2000
all DONE at: Sun Aug 13 05:04:56 2000

The pieces of code that sleep for 4 and 2 seconds now occur concurrently, contributing to the lower
overall runtime.

The only other major change to our application is the addition of the "sleep(6)" call. Why is this
necessary? The reason is that if we did not stop the main thread from continuing, it would proceed to
the next statement, displaying "all done" and exit, killing both threads running loop0() and
loop1().

We did not have any code which told the main thread to wait for the child threads to complete before
continuing. This is what we mean by threads requiring some sort of synchronization. In our case, we
used another sleep() call as our synchronization mechanism. We used a value of 6 seconds because
we know that both threads (which take 4 and 2 seconds, as you know) should have completed by the
time the main thread has counted to 6.

You are probably thinking that there should be a better way of managing threads than creating that
extra delay of 6 seconds in the main thread. Because of this delay, the overall runtime is no better than
in our single-threaded version. Using sleep() for thread synchronization as we did is not reliable.
What if our loops had independent and varying execution times? We may be exiting the main thread
too early or too late. This is where locks come in.

Making yet another update to our code to include locks as well as getting rid of separate loop functions,
we get mtsleep2.py, presented in Example 17.3. Running it, we see that the output is similar to
mtsleep1.py. The only difference is that we did not have to wait the extra time for
mtsleep1.py to conclude. By using locks, we were able to exit as soon as both threads had
completed execution.

% mtsleep2.py
starting threads…
start loop 0 at: Sun Aug 13 16:34:41 2000
start loop 1 at: Sun Aug 13 16:34:41 2000
loop 1 done at: Sun Aug 13 16:34:43 2000
loop 0 done at: Sun Aug 13 16:34:45 2000
all DONE at: Sun Aug 13 16:34:45 2000

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/261#3.html

Example 17.3. Using thread and Locks (mtsleep2.py)

Rather than using a call to sleep() to hold up the main thread as in mtsleep1.py, the use of
locks makes more sense.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import thread
004 4 from time import sleep, time, ctime
005 5
006 6 loops = [4, 2]
007 7
008 8 def loop(nloop, nsec, lock):
009 9 print 'start loop', nloop, 'at:', ctime(time())
010 10 sleep(nsec)
011 11 print 'loop', nloop, 'done at:', ctime(time())
012 12 lock.release()
013 13
014 14 def main():
015 15 print 'starting threads…'
016 16 locks = []
017 17 nloops = range(len(loops))
018 18
019 19 for i in nloops:
020 20 lock = thread.allocate_lock()
021 21 lock.acquire()
022 22 locks.append(lock)
023 23
024 24 for i in nloops:
025 25 thread.start_new_thread(loop, \
026 26 (i, loops[i], locks[i]))
027 27
028 28 for i in nloops:
029 29 while locks[i].locked(): pass <$nopage>
030 30
031 31 print 'all DONE at:', ctime(time())
032 32
033 33 if __name__ == '__main__':
034 34 main()
035 <$nopage>

So how did we accomplish our task with locks? Let's take a look at the source code:

Line-by-line explanation

Lines 1–6

After the Unix start-up line, we import the thread module and a few familiar attributes of the time
module. Rather than hardcoding separate functions to count to 4 and 2 seconds, we will use a single
loop() function and place these constants in a list, loops.

Lines 8–12

The loop() function will proxy for the now-removed loop*() functions from our earlier examples.
We had to make some cosmetic changes to loop() so that it can now perform its duties using locks.
The obvious changes are that we need to be told which loop number we are as well as how long to
sleep for. The last piece of new information is the lock itself. Each thread will be allocated an acquired
lock. When the sleep() time has concluded, we will release the corresponding lock, indicating to the
main thread that this thread has completed.

Lines 14–34

The bulk of the work is done here in main() using three separate for loops. We first create a list of
locks, which we obtain using the thread.allocate_lock() function and acquire each lock with
the acquire() method. Acquiring a lock has the effect of "locking the lock." Once it's locked, we
add the lock to the lock list, locks. The next loop actually spawns the threads, invoking the loop()
function per thread, and for each thread, provides it with the loop number, the time to sleep for, and the
acquired lock for that thread. So why didn't we start the threads in the lock acquisition loop? There are
several reasons: (1) we wanted to synchronize the threads, so that "all the horses started out the gate"
around the same time, and (2) locks take a little bit of time to be acquired. If your thread executes "too
fast," it is possible that it completes before the lock has a chance to be acquired.

It is up to each thread to unlock its lock object when it has completed execution. The final loop just sits-
and-spins (pausing the main thread) until both locks have been released before continuing execution.
Since we are checking each lock sequentially, we may be at the mercy of all the slower loops if they
are more towards the beginning of the set of loops. In such cases, the majority of the wait time may be
for the first loop(s). When that lock is released, remaining locks may have already been unlocked
(meaning that corresponding threads have completed execution). The result is that the main thread will
fly through those lock checks without pause. Finally, you should be well aware that the final pair of
lines will execute main() only if we are invoking this script directly.

As hinted in the earlier Core Note, we presented the thread module only to introduce the reader to
threaded programming. Your MT application should use higher-level modules such as the
threading module, which we will now discuss.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=261

Programming > Core Python Programming > 17. Multithreaded Programming > threading
Module

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229223066050004198044014

threading Module

We will now introduce the higher-level threading module which gives you not only a Thread
class but also a wide variety of synchronization mechanisms to use to your heart's content. Table 17.2
represents a list of all the objects which are provided for in the threading module.

Table 17.2. threading Module Objects

threading Module Objects Description
Thread object which represents a single thread of execution
Lock primitive lock object (same lock object as in the thread module)
RLock re-entrant lock object provides ability for a single thread to (re)acquire an

already-held lock (recursive locking)
Condition condition variable object causes one thread to wait until a certain "condition"

has been satisfied by another thread, such as changing of state or of some
data value

Event general version of condition variables whereby any number of threads are
waiting for some event to occur and all will awaken when the event happens

Semaphore provides a "waiting area"-like structure for threads waiting on a lock

In this section, we will examine how to use the Thread class to implement threading. Since we have
already covered the basics of locking, we will not cover the locking primitives here. The Thread()
class also contains a form of synchronization, so explicit use of locking primitives is not necessary.

Thread Class

There are a variety of ways you can create threads using the Thread class. We cover three of them
here, all quite similar. Pick the one you feel most comfortable with, not to mention the most appropriate
for your application and future scalability (we like choice 3 the best):

1. Create Thread instance, passing in function

2. Create Thread instance, passing in callable class instance

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=262
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A31%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=262&now=5%2F30%2F2002+8%3A31%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#1.html

3. Subclass Thread and create subclass instance

Create Thread instance, passing in function

In our first example, we will just instantiate Thread, passing in our function (and its arguments) in a
manner similar to our previous examples. This function is what will be executed when we direct the
thread to begin execution. Taking our mtsleep2.py script and tweaking it, adding the use of
Thread objects, we have mtsleep3.py, shown in Example 17.4.

When we run it, we see output similar to its predecessors':

% mtsleep3.py
starting threads…
start loop 0 at: Sun Aug 13 18:16:38 2000
start loop 1 at: Sun Aug 13 18:16:38 2000
loop 1 done at: Sun Aug 13 18:16:40 2000
loop 0 done at: Sun Aug 13 18:16:42 2000
all DONE at: Sun Aug 13 18:16:42 2000

So what did change? Gone are the locks which we had to implement when using the thread module.
Instead, we create a set of Thread objects. When each Thread is instantiated, we dutifully pass in
the function (target) and arguments (args) and receive a Thread instance in return. The biggest
difference between instantiating Thread [calling Thread()] and invoking
thread.start_new_thread() is that the new thread does not begin execution right away. This
is a useful synchronization feature, especially when you don't want the threads to start immediately.

Example 17.4. Using the threading Module (mtsleep3.py)

The Thread class from the threading module has a join() method which lets the main thread
wait for thread completion.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading
004 4 from time import sleep, time, ctime
005 5
006 6 loops = [4, 2]
007 7

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#4.html

008 8 def loop(nloop, nsec):
009 9 print 'start loop', nloop, 'at:', ctime(time())
010 10 sleep(nsec)
011 11 print 'loop', nloop, 'done at:', ctime(time())
012 12
013 13 def main():
014 14 print 'starting threads…'
015 15 threads = []
016 16 nloops = range(len(loops))
017 17
018 18 for i in nloops:
019 19 t = threading.Thread(target=loop,
020 20 args=(i, loops[i]))
021 21 threads.append(t)
022 22
023 23 for i in nloops: # start threads
024 24 threads[i].start()
025 25
026 26 for i in nloops: # wait for all
027 27 threads[i].join(# threads to finish
028 28
029 29 print 'all DONE at:', ctime(time())
030 30
031 31 if __name__ == '__main__':
032 32 main()
033 <$nopage>

Once all the threads have been allocated, we let them go off to the races by invoking each thread's
start() method, but not a moment before that. And rather than having to manage a set of locks
(allocating, acquiring, releasing, checking lock state, etc.), we simply call the join() method for each
thread. join() will wait until a thread terminates, or, if provided, a timeout occurs. Use of join()
appears much cleaner than an infinite loop waiting for locks to be released (causing these locks to
sometimes be known as "spin locks").

One other important aspect of join() is that it does not need to be called at all. Once threads are
started, they will execute until their given function completes, whereby they will exit. If your main
thread has things to do other than wait for threads to complete (such as other processing or waiting for
new client requests), it should be all means do so. join() is useful only when you want to wait for
thread completion.

Create Thread instance, passing in callable class instance

A similar offshoot to passing in a function when creating a thread is to have a callable class and passing

in an instance for execution—this is the more OO approach to MT programming. Such a callable class
embodies an execution environment that is much more flexible than a function or choosing from a set
of functions. You now have the power of a class object behind you, as opposed to a single function or a
list/tuple of functions.

Adding our new class ThreadFunc to the code and making other slight modifications to
mtsleep3.py, we get mtsleep4.py, given in Example 17.5.

If we run mtsleep4.py, we get the expected output:

% mtsleep4.py
starting threads…
start loop 0 at: Sun Aug 13 18:49:17 2000
start loop 1 at: Sun Aug 13 18:49:17 2000
loop 1 done at: Sun Aug 13 18:49:19 2000
loop 0 done at: Sun Aug 13 18:49:21 2000
all DONE at: Sun Aug 13 18:49:21 2000

So what are the changes this time? The addition of the ThreadFunc class and a minor change to
instantiate the Thread object, which also instantiates ThreadFunc, our callable class. In effect, we
have a double instantiation going on here. Let's take a closer look at our ThreadFunc class.

We want to make this class general enough to use with other functions besides our loop() function,
so we added some new infrastructure, such as having this class hold the arguments for the function, the
function itself, and also a function name string. The constructor __init__() just sets all the values.

Example 17.5. Using Callable classes (mtsleep4.py)

In this example we pass in a callable class (instance) as opposed to just a function. It presents more
of an OO approach than mtsleep3.py.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading
004 4 from time import sleep, time, ctime
005 5
006 6 loops = [4, 2]
007 7

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#6.html

008 8 class ThreadFunc:
009 9
010 10 def __init__(self, func, args, name=''):
011 11 self.name = name
012 12 self.func = func
013 13 self.args = args
014 14
015 15 def __call__(self):
016 16 apply(self.func, self.args)
017 17
018 18 def loop(nloop, nsec):
019 19 print 'start loop', nloop, 'at:', ctime(time())
020 20 sleep(nsec)
021 21 print 'loop', nloop, 'done at:', ctime(time())
022 22
023 23 def main():
024 24 print 'starting threads…'
025 25 threads = []
026 26 nloops = range(len(loops))
027 27
028 28 for i in nloops: # create all threads
029 29 t = threading.Thread(\
030 30 target=ThreadFunc(loop, (i, loops[i]),
031 31 loop.__name__))
032 32 threads.append(t)
033 33
034 34 for i in nloops: # start all threads
035 35 threads[i].start()
036 36
037 37 for i in nloops: # wait for completion
038 38 threads[i].join()
039 39
040 40 print 'all DONE at:', ctime(time())
041 41
042 42 if __name__ == '__main__':
043 43 main()
044 <$nopage>

When the Thread code calls our ThreadFunc object when a new thread is created, it will invoke
the __call__() special method. Because we already have our set of arguments, we do not need to
pass it to the Thread() constructor, but do have to use apply() in our code now because we have
an argument tuple. Those of you who have Python 1.6 and higher can use the new function invocation
syntax described in Section 11.6.3 instead of using apply() on line 17:

self.res = self.func(*self.args)

Subclass Thread and create subclass instance

The final introductory example involves subclassing Thread(), which turns out to be extremely
similar to creating a callable class as in the previous example. Subclassing is a bit easier to read when
you are creating your threads (lines 28–29). We will present the code for mtsleep5.py in Example
17.6 as well as the output obtained from its execution, and leave it as an exercise for the reader to
compare mtsleep5.py to mtsleep4.py.

Here is the output for mtsleep5.py, again, just what we expected:

% mtsleep5.py
starting threads…
start loop 0 at: Sun Aug 13 19:14:26 2000
start loop 1 at: Sun Aug 13 19:14:26 2000
loop 1 done at: Sun Aug 13 19:14:28 2000
loop 0 done at: Sun Aug 13 19:14:30 2000
all DONE at: Sun Aug 13 19:14:30 2000

While the reader compares the source between the mtsleep4 and mtsleep5 modules, we want to
point out the most significant changes: (1) our MyThread subclass constructor must first invoke the
base class constructor (line 9), and (2) the former special method __call__() must be called run()
in the subclass.

We now modify our MyThread class with some diagnostic output and store it in a separate module
called myThread (see Example 17.7) and import this class for the upcoming examples. Rather than
simply calling apply() to run our functions, we also save the result to instance attribute
self.res, and create a new method to retrieve that value, getResult().

Example 17.6. Subclassing Thread (mtsleep5.py)

Rather than instantiating the Thread class, we subclass it. This gives us more flexibility in
customizing our threading objects and simplifies the thread creation call.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#8.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#8.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#9.html

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading
004 4 from time import sleep, time, ctime
005 5
006 6 loops = (4, 2)
007 7
008 8 class MyThread(threading.Thread):
009 9 def __init__(self, func, args, name=''):
010 10 threading.Thread.__init__(self)
011 11 self.name = name
012 12 self.func = func
013 13 self.args = args
014 14
015 15 def run(self):
016 16 apply(self.func, self.args)
017 17
018 18 def loop(nloop, nsec):
019 19 print 'start loop', nloop, 'at:', ctime(time())
020 20 sleep(nsec)
021 21 print 'loop', nloop, 'done at:', ctime(time())
022 22
023 23 def main():
024 24 print 'starting threads…'
025 25 threads = []
026 26 nloops = range(len(loops))
027 27
028 28 for i in nloops:
029 29 t = MyThread(loop, (i, loops[i]), \
030 30 loop.__name__)
031 31 threads.append(t)
032 32
033 33 for i in nloops:
034 34 threads[i].start()
035 35
036 36 for i in nloops:
037 37 threads[i].join()
038 38
039 39 print 'all DONE at:', ctime(time())'
040 40
041 41 if __name__ == '__main__':
042 42 main()
043 <$nopage>

Example 17.7. MyThread Subclass of Thread (myThread.py)

To generalize our subclass of Thread from mtsleep5.py, we move the subclass to a separate
module and add a getResult() method for callables which produce return values.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading
004 4 from time import time, ctime
005 5
006 6 class MyThread(threading.Thread):
007 7 def __init__(self, func, args, name=''):
008 8 threading.Thread.__init__(self)
009 9 self.name = name
010 10 self.func = func
011 11 self.args = args
012 12
013 13 def getResult(self):
014 14 return self.res
015 15
016 16 def run(self):
017 17 print 'starting', self.name, 'at:', \
018 18 ctime(time())
019 19 self.res = apply(self.func, self.args)
020 20 print self.name, 'finished at:', \
021 21 ctime(time())
022 <$nopage>

Fibonacci and factorial… take 2, plus summation

The mtfacfib.py script, given in Example 17.8, compares execution of the recursive Fibonacci,
factorial, and summation functions. This script runs all three functions in a single-threaded manner,
then performs the same task using threads to illustrate one of the advantages of having a threading
environment.

Example 17.8. Fibonacci, Factorial, Summation (mtfacfib.py)

In this MT application, we execute 3 separate recursive functions—first in a single-threaded
fashion, followed by the alternative with multiple threads.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#11.html

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from myThread import MyThread
004 4 from time import time, ctime, sleep
005 5
006 6 def fib(x):
007 7 sleep(0.005)
008 8 if x < 2: return 1
009 9 return (fib(x-2) + fib(x-1))
010 10
011 11 def fac(x):
012 12 sleep(0.1)
013 13 if x < 2: return 1
014 14 return (x * fac(x-1))
015 15
016 16 def sum(x):
017 17 sleep(0.1)
018 18 if x < 2: return 1
019 19 return (x + sum(x-1))
020 20
021 21 funcs = [fib, fac, sum]
022 22 n = 12
023 23
024 24 def main():
025 25 nfuncs = range(len(funcs))
026 26
027 27 print '*** SINGLE THREAD'
028 28 for i in nfuncs:
029 29 print 'starting', funcs[i].__name__, 'at:', \
030 30 ctime(time())
031 31 print funcs[i](n)
032 32 print funcs[i].__name__, 'finished at:', \
033 33 ctime(time())
034 34
035 35 print '\n*** MULTIPLE THREADS'
036 36 threads = []
037 37 for i in nfuncs:
038 38 t = MyThread(funcs[i], (n,),
039 39 funcs[i].__name__)
040 40 threads.append(t)
041 41
042 42 for i in nfuncs:

043 43 threads[i].start()
044 44
045 45 for i in nfuncs:
046 46 threads[i].join()
047 47 print threads[i].getResult()
048 48
049 49 print 'all DONE'
050 50
051 51 if __name__ == '__main__':
052 52 main()
053 <$nopage>

Running in single-threaded mode simply involves calling the functions one at a time and displaying the
corresponding the results right after the function call.

When running in multithreaded mode, we do not display the result right away. Because we want to
keep our MyThread class as general as possible (being able to execute callables which do and do not
produce output), we wait until the end to call the getResult() method to finally show you the
return values of each function call.

Because these functions execute so quickly (well, maybe except for the Fibonacci function), you will
noticed that we had to add calls to sleep() to each function to slow things down so that we can see
how threading may improve performance, if indeed the actual work had varying execution times—you
certainly wouldn't pad your work with calls to sleep(). Anyway, here is the output:

% mtfacfib.py
*** SINGLE THREAD
starting fib at: Sun Jun 18 19:52:20 2000
233
fib finished at: Sun Jun 18 19:52:24 2000
starting fac at: Sun Jun 18 19:52:24 2000
479001600
fac finished at: Sun Jun 18 19:52:26 2000
starting sum at: Sun Jun 18 19:52:26 2000
78
sum finished at: Sun Jun 18 19:52:27 2000

*** MULTIPLE THREADS
starting fib at: Sun Jun 18 19:52:27 2000
starting fac at: Sun Jun 18 19:52:27 2000
starting sum at: Sun Jun 18 19:52:27 2000
fac finished at: Sun Jun 18 19:52:28 2000

sum finished at: Sun Jun 18 19:52:28 2000
fib finished at: Sun Jun 18 19:52:31 2000
233
479001600
78
all DONE

Producer-Consumer Problem and the Queue Module

The final example illustrates the producer-consumer scenario where a producer of goods or services
creates goods and places it in a data structure such as a queue. The amount of time between producing
goods is non-deterministic, as is the consumer consuming the goods produced by the producer.

We use the Queue module to provide an interthread communication mechanism which allows threads
to share data with each other. In particular, we create a queue for the producer (thread) to place new
goods into and where the consumer (thread) can consume goods from.

In particular, we will use the following attributes from the Queue module (see Table 17.3).

Table 17.3. Common Queue Module Attributes

Function/Method Description
Queue Module Function
queue(size) creates a Queue object of given size
Queue Object Methods
qsize() returns queue size (approximate, since queue may be getting updated by other

threads)
empty() returns 1 if queue empty, 0 otherwise
full() returns 1 if queue full, 0 otherwise
put(item, block=0) puts item in queue, if block given (not 0), block until room is available

get(block=0) gets item from queue, if block given (not 0), block until an item is available

Without further ado, we present the code for prodcons.py, shown in Example 17.9.

Example 17.9. Producer-Consumer Problem (prodcons.py)

We feature an implementation of the Producer–Consumer problem using Queue objects and a
random number of goods produced (and consumed). The producer and consumer are

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#13.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#14.html

individually—and concurrently—executing threads.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from random import randint
004 4 from time import time, ctime, sleep
005 5 from Queue import Queue
006 6 from myThread import MyThread
007 7
008 8 def writeQ(queue):
009 9 print 'producing object for Q…',
010 10 queue.put('xxx', 1)
011 11 print "size now", queue.qsize()
012 12
013 13 def readQ(queue):
014 14 val = queue.get(1)
015 15 print 'consumed object from Q… size now', \
016 16 queue.qsize()
017 17
018 18 def writer(queue, loops):
019 19 for i in range(loops):
020 20 writeQ(queue)
021 21 sleep(randint(1, 3))
022 22
023 23 def reader(queue, loops):
024 24 for i in range(loops):
025 25 readQ(queue)
026 26 sleep(randint(2, 5))
027 27
028 28 funcs = [writer, reader]
029 29 nfuncs = range(len(funcs))
030 30
031 31 def main():
032 32 nloops = randint(2, 5)
033 33 q = Queue(32)
034 34
035 35 threads = []
036 36 for i in nfuncs:
037 37 t = MyThread(funcs[i], (q, nloops), \
038 38 funcs[i].__name__)
039 39 threads.append(t)
040 40

041 41 for i in nfuncs:
042 42 threads[i].start()
043 43
044 44 for i in nfuncs:
045 45 threads[i].join()
046 46
047 47 print 'all DONE'
048 48
049 49 if __name__ == '__main__':
050 50 main()
051 <$nopage>

Here is the output from one execution of this script:

% prodcons.py
starting writer at: Sun Jun 18 20:27:07 2000
producing object for Q… size now 1
starting reader at: Sun Jun 18 20:27:07 2000
consumed object from Q… size now 0
producing object for Q… size now 1
consumed object from Q… size now 0
producing object for Q… size now 1
producing object for Q… size now 2
producing object for Q… size now 3
consumed object from Q… size now 2
consumed object from Q… size now 1
writer finished at: Sun Jun 18 20:27:17 2000
consumed object from Q… size now 0
reader finished at: Sun Jun 18 20:27:25 2000
all DONE

As you can see, the producer and consumer do not necessarily alternate in execution. (Thank goodness
for random numbers!) Seriously though, real life is generally random and non-deterministic.

Line-by-line explanation

Lines 1–6

In this module, we will use the Queue.Queue object as well as our thread class
myThread.MyThread which we gave in Example 17.7. We will use random.randint() to
make production and consumption somewhat varied, and also grab the usual suspects from the time
module.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/262#9.html

Lines 8–16

The writeQ() and readQ() functions each have a specific purpose, to place an object in the
queue—we are using the string 'xxx' for example—and to consume a queued object, respectively.
Notice that we are producing one object and reading one object each time.

Lines 18–26

The writer() is going to run as a single thread who sole purpose is to produce an item for the queue,
wait for a bit, then do it again, up to the specified number of times, chosen randomly per script
execution. The reader() will do likewise, with the exception of consuming an item, of course.

You will notice that the random number of seconds that the writer sleeps is in general shorter than the
amount of time the reader sleeps. This is to discourage the reader from trying to take items from an
empty queue. By giving the writer a shorter time period of waiting, it is more likely that there will
already be an object for the reader to consume by the time their turn rolls around again.

Lines 28–29

These are just setup lines to set the total number of threads that are to be spawned and executed.

Lines 31–47

Finally, our main() function, which should look quite similar to the main() in all of the other
scripts in this chapter. We create the appropriate threads and send them on their way, finishing up when
both threads have concluded execution.

We infer from this example that a program that has multiple tasks to perform can be organized to use
separate threads for each of the tasks. This can result in a much cleaner program design than a single
threaded program that attempts to do all of the tasks.

In this chapter, we illustrated how a single-threaded process may limit an application's performance. In
particular, programs with independent, non-deterministic, and non-causal tasks which execute
sequentially can be improved by division into separate tasks executed by individual threads. Not all
applications may benefit from multithreading and its overheads, but now you are more cognizant of
Python's threading capability enough to use this tool to your advantage when appropriate.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=262

Programming > Core Python Programming > 17. Multithreaded Programming > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229223066048221007067232

Exercises

Processes vs. Threads. What are the differences between processes and threads?

Threads. If multiple threads are running on a single CPU system, how do they share the CPU?

Threads. Do you think anything significant happens if you have multiple threads on a multiple
CPU system? How do you think multiple threads run on these systems?

Threads and Files. Update your solution to Exercise 9-19 which obtains a byte value and a file
name, displaying the number of times that byte appears in the file. Let's suppose this is a really
big file. Multiple readers in a file is acceptable, so create multiple threads that count in different
parts of the file so that each thread is responsible for a certain part of the file. Collate the data
from each thread and provide the summed-up result. Use your timeit() code to time both the
single threaded version and your new multithreaded version and say something about the
performance improvement.

Threads, Files, and Regular Expressions. You have a very large mailbox file—if you don't have
one, put all of your e-mail messages together into a single text file. Your job is to take the
regular expressions you designed in Chapter 15 that recognizes e-mail addresses and Web site
URLs, and use them to convert all e-mail addresses and URLs in this large file into live links so
that when the new file is saved as a .html (or .htm)file, will show up in a Web browser as live
and clickable. Use threads to segregate the conversion process across the large text file and
collate the results into a single new .html file. Test the results on your Web browser to ensure
the links are indeed working.

Threads and Networking. Your solution to the chat service application in the previous chapter
(Exercises 16-7 to 16-10) may have required you to use heavyweight threads or processes as
part of your solution. Convert that to be multithreaded code.

*Threads and Web Programming. The Crawler in Example 19.1 is a single-threaded
application that downloads Web pages that would benefit from MT programming. Update
crawl.py (you could call it mtcrawl.py) such that independent threads are used to
download pages. Be sure to use some kind of locking mechanism to prevent conflicting access
to the links queue.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=263
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A31%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=263&now=5%2F30%2F2002+8%3A31%3A31+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/275#1.html

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=263

Programming > Core Python Programming > 18. GUI Programming with Tkinter See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229223066055061215021125

Chapter 18. GUI Programming with Tkinter
Chapter Topics

● Introduction

● Tkinter and Python Programming

❍ Tkinter Module

❍ Tk Widgets

● Tkinter Examples

❍ Label, Button and Scale Widgets

❍ An Intermediate Tk Example

● Related Modules and Other GUIs

In this chapter, we will give you a quick introduction to Graphical User Interface (GUI) programming
with Tkinter, Python's Tk graphics toolkit. GUI development has enough material to warrant its own
text (and it has!), but if you are somewhat new or want to learn more about it, or if you want to see how
it's done in Python, then this chapter is for you. We present four simple examples and one intermediate
example, and will defer a more complete tour of Tkinter to texts devoted purely to GUI programming
in Python.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=265
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A31%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=265&now=5%2F30%2F2002+8%3A31%3A44+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=265

Programming > Core Python Programming > 18. GUI Programming with Tkinter >
Introduction

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229220065141154045234123

Introduction

What Are Tcl, Tk, and Tkinter?

Tkinter is Python's default graphical user interface library. It is based on the Tk toolkit, originally
designed for the Tool Command Language (TCL). Due to Tk's popularity, it has been ported to a
variety of other scripting languages, including Perl (Perl/Tk) and Python (Tkinter). With the GUI
development portability and flexibility of Tk, along with the simplicity of scripting language integrated
with the power of systems language, you are given the tools to rapidly design and implement a wide
variety of commercial-quality GUI applications.

If you are new to GUI programming, you will be pleasantly surprised at how easy it is. You will also
find that Python, along with Tkinter, provide a fast and exciting way to build applications that are fun
(and perhaps useful) and that would have taken much longer if you had to program directly in C/C++
with the native windowing system's libraries. Once you have designed the application and the look-and-
feel that goes along with your program, you will use basic building blocks known as widgets to piece
together the desired components, and finally, to attach functionality to "make it real."

If you are an "old-hat" at using Tk, either with Tcl or Perl, you will find Python a refreshing way to
program GUIs, on top of that, it provides an even faster rapid prototyping system for building GUIs.
Remember that you also have Python's system-accessibility, networking functionality, XML, numerical
and visual processing, database access, and all the other standard library and third-party extension
modules.

Once you get Tkinter up on your system, it will take less than 15 minutes to get your first GUI app
running.

Getting Tkinter Installed and Working

Like threading, Tkinter is not necessarily turned on by default on your system. You can tell whether
Tkinter is available for your Python interpreter by attempting to import the Tkinter module. If
Tkinter is available, then no errors occur:

>>> import Tkinter
>>>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=266
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A32%3A03+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read1.asp?bookname=0130260363&snode=266&now=5%2F30%2F2002+8%3A32%3A03+PM

If your Python interpreter was not compiled with Tkinter enabled, the module import fails:

>>> import Tkinter
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "/usr/lib/python1.5/lib-tk/Tkinter.py", line 8, in ?
 import _tkinter # If this fails your Python may not
be configured for Tk
ImportError: No module named _tkinter

You may have to recompile your Python interpreter to get access to Tkinter. This usually involves
editing the Modules/Setup file and enabling all the correct settings to compile your Python
interpreter with hooks to Tkinter or choosing to have Tk installed on your system. Check the README
file for your Python distribution for specific instructions on getting Tkinter to compile on your system.
Be sure, after your compilation, that you start the new Python interpreter you just created; otherwise, it
will act just like your old one without Tkinter (and in fact, it is your old one).

Client-Server Architecture—Take 2

In the earlier chapter on network programming, we introduced the notion of client-server computing. A
windowing system is another example of a software server. These run on a machine with an attached
display, such as a monitor of some sort. There are clients too—programs which require a windowing
environment to execute, also known as GUI applications. Such applications cannot run without a
windows system.

The architecture becomes even more interesting when networking comes into play. Usually when a
GUI application is executed, it displays to the machine that it started on (via the windowing server), but
it is possible in some networked windowing environments, such as the X Windows system on Unix, to
choose another machine's window server to display to. In such situations, you can be running a GUI
program on one machine, but have it displayed at another!

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=266

Programming > Core Python Programming > 18. GUI Programming with Tkinter > Tkinter
and Python Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229220065142056014176112

Tkinter and Python Programming

Tkinter Module: Adding Tk to your Applications

So what do you need to do to have Tkinter as part of your application? Well, first of all, it is not
necessary to have an application already. You can create a pure graphical user interface if you want, but
it probably isn't too useful without some underlying software that does something interesting.

There are basically five main steps that are required to get your GUI up-and-running:

1. Import the Tkinter module (or from Tkinter import *).

2. Create a top-level windowing object which contains your entire GUI application.

3. Built all your GUI components (and functionality) on top (or "inside") of your top-level
windowing object).

4. Connect these GUI components to the underlying application code.

5. Enter the main event loop.

The first step is trivial: All GUIs which use Tkinter must import the Tkinter module. Getting access
to Tkinter is the first step (see the previous Section 18.1.2).

Introduction to GUI Programming

Before going to the examples, we will give you a brief introduction to GUI application development in
general. This will give you some of the background you need to move forward.

Setting up a GUI application is similar to an artist's producing a painting. Conventionally, there is a
single canvas onto which the artist must put all the work. The way it works is like this: You start with a
clean slate, a "top-level" windowing object on which you build the rest of your components. Think of it
as a foundation to a house or the easel for an artist. In other words, you have to pour the concrete or set
up your easel before putting together the actual structure or canvas on top of it. In Tkinter, this
foundation is known as the top-level window object.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=267
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A32%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=267&now=5%2F30%2F2002+8%3A32%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/266#2.html

In GUI programming, a top-level root windowing object contains all of the little windowing objects
that will be part of your complete GUI application. These can be text labels, buttons, list boxes, etc.
These individual little GUI components are known as widgets. So when we say create a top-level
window, we just mean that you need such a thing as a place where you put all your widgets. In Python,
this would typically look like the line below :

top = Tkinter.Tk() # or just Tk() with "from Tkinter import *"

The object returned by Tkinter.Tk() is usually referred to as the root object, hence the reason why
some applications use root rather than top to indicate as such. Top-level windows are those which
show up standalone as part of your application, and, yes, you may have more than one top-level
window for your GUI, but only one of them should be your root window. You may choose to
completely design all your widgets first, then add the real functionality, or do a little of this and a little
of that along the way. (This means mixing and matching steps 3 and 4 from our list above.)

Widgets may be standalone or be containers. If a widget "contains" other widgets, it is considered the
parent of those widgets. Accordingly, if a widget is "contained" in another widget, it's considered a
child of the parent, the parent being the next immediate enclosing container widget.

Usually, widgets have some associated behaviors, such as when a button is pressed, or text is filled into
a text field. These types of user behaviors are called events, and the actions that the GUI takes to
respond to such events are known as callbacks.

Actions may include the actual button press (and release), mouse movement, hitting the RETURN or
Enter key, etc. All of these are known to the system literally as events. The entire system of events
which occurs from the beginning to the end of a GUI application is what drives it. This is known as
event-driven processing.

One example of an event with a callback is a simple mouse move. Let's say the mouse pointer is sitting
somewhere on top of your GUI application. If the mouse is moved to another part of your application,
something has to cause the movement of the mouse on your screen so that it looks as if it is moving to
another location. These are mouse move events that the system must process to give you the illusion
(and reality) that your mouse is moving across the window. When you release the mouse, there are no
more events to process, so everything just sits there quietly on the screen again.

The event-driven processing nature of GUIs fits right in with client-server architecture. When you start
a GUI application, it must perform some setup procedures to prepare for the core execution, just as
when a network server has to allocate a socket and bind it to a local address. The GUI application must
establish all the GUI components, then draw (a.k.a. render or paint) them to the screen. Tk has a couple
of geometry managers which help position the widget in the right place; the main one which you will

use is called the packer. Once the packer has determined the sizes and alignments of all your widgets, it
will then place them on the screen for you.

When all of the widgets, including the top-level window finally appear on your screen, your GUI
application then enters a "server-like" infinite loop. This infinite loop involves waiting for a GUI event,
processing it, then going back to wait for the next event.

The final step we described above says to enter the main loop once all the widgets are ready. This is the
"server" infinite loop we have been referring to. In Tkinter, the code that does this is:

Tkinter.mainloop()

This is normally the last piece of sequential code your program runs. When the main loop is entered,
the GUI takes over execution from there. All other action is via callbacks, even exiting your
application. When you pull down the File menu to click on the Exit menu option or close the window
directly, a callback must be invoked to end your GUI application.

Top-level window: Tkinter.Tk()

We mentioned above that all main widgets are built into the top-level window object. This object is
created by the Tk class in Tkinter and is created via the normal instantiation:

>>> import Tkinter
>>> top = Tkinter.Tk()

Within this window, you place individual widgets or multiple-component pieces together to form your
GUI. So what kinds of widgets are there? We will now introduce the Tk widgets.

Tk Widgets

There are currently 15 types of widgets in Tk. We present these widgets as well as a brief description in
Table 18.1.

We won't go over the Tk widgets in detail as there is plenty of good documentation available on them,
either from the Tkinter topics page at the main Python Web site or the abundant number of Tcl/Tk
printed and online resources (some of which are available in the Appendix). However, we will present
several simple examples to help you get started.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/267#5.html

NOTE

GUI development really takes advantage of default arguments in Python because there are
numerous default actions in Tkinter widgets. Unless you know every single option available to you
for every single widget you are using, it's best to start out by setting only the parameters you are
aware of and letting the system handle the rest. These defaults were chosen carefully. If you do not
provide these values, do not worry about your applications appearing odd on the screen. They were
created with an optimized set of default arguments as a general rule, and only when you know how
to exactly customize your widgets should you use values other than the default.

Table 18.1. Tk Widgets

Widgets Description
Button similar to a Label but provides additional functionality for mouse overs, presses, and

releases as well as keyboard activity/events
Canvas provides ability to draw shapes (lines, ovals, polygons, rectangles); can contain images or

bitmaps
Checkbutton set of boxes of which any number can be "checked" (similar to HTML checkbox input)
Entry single-line text field with which to collect keyboard input (similar to HTML text input)
Frame pure container for other widgets
Label used to contain text or images
Listbox presents user list of choices to pick from
Menu actual list of choices "hanging" from a Menubutton that the user can choose from
Menubutton provides infrastructure to contain menus (pulldown, cascading, etc.)
Message similar to a Label, but displays multi-line text
Radiobutton set of buttons of which only one can be "pressed" (similar to HTML radio input)
Scale linear "slider" widget providing an exact value at current setting; with defined starting and

ending values
Scrollbar provides scrolling functionality to supporting widgets, i.e., Text, Canvas, Listbox, and

Entry

Text multi-line text field with which to collect (or display) text from user (similar to HTML
textarea)

Toplevel similar to a Frame, but provides a separate window container

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=267

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 18. GUI Programming with Tkinter > Tkinter Examples See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229221159255055158122116

Tkinter Examples

Label Widget

In Example 18.1, we present tkhello1.py, the Tkinter version of "Hello World!" In particular, it shows you how a
Tkinter application is set up and highlights the Label widget

Example 18.1. Label Widget Demo (tkhello1.py)

Our first Tkinter example is… what else? "Hello World!" In particular, we introduce our first widget, the Label.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import Tkinter
004 4
005 5 top = Tkinter.Tk()
006 6 label = Tkinter.Label(top, text='Hello World!')
007 7 label.pack()
008 8 Tkinter.mainloop()
009 <$nopage>

In the first line, we create our top-level window. That is followed by our Label widget containing the all-too-famous
string. We instruct the packer to manage and display our widget, and finally call mainloop() to run our GUI
application. Figure18-1 shows what you will see when you run this GUI application.

Figure 18-1. Tkinter Label Widget (tkhello1.py)

Button Widget

The next example is pretty much the same as the first. However, instead of a simple text label, we will create a button
instead. In Example 18.2 is the source code for tkhello2.py:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=268
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A33%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=268&now=5%2F30%2F2002+8%3A33%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#5.html

Example 18.2. ButtonWidget Demo (tkhello2.py)

This example is exactly the same as tkhello1.py except that rather than using a Label widget, we create a
Button widget.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import Tkinter
004 4
005 5 top = Tkinter.Tk()
006 6 quit = Tkinter.Button(top, text='Hello World!',
007 7 command=top.quit)
008 8 quit.pack()
009 9 Tkinter.mainloop()
010 <$nopage>

The first few lines are identical. Things differ only when we create the Button widget. Our button has one additional
parameter, the Tkinter.quit() method. This installs a callback to our button so that if it is pressed (and released), the
entire application will exit. The final two lines are the usual pack() and entering of the mainloop(). This simple
button application is shown in Figure18-2.

Figure 18-2. Tkinter Button Widget (tkhello2.py)

Label and Button Widgets

We combine tkhello1.py and tkhello2.py into tkhello3.py, a script which has both a label and a button. In
addition, we are providing more parameters now than before when we were comfortable using all the default arguments
which are automatically set for us. The source for tkhello3.py is given in Example 18.3.

Example 18.3. Label and Button Widget Demo (tkhello3.py)

This example features both a Label and a Button widget. Rather than primarily using default arguments when
creating the widget, we are able to specify more now that we know more about Button widgets and how to configure
them.

 <$nopage>

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#6.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#8.html

001 1 #!/usr/bin/env python
002 2
003 3 import Tkinter
004 4 top = Tkinter.Tk()
005 5
006 6 hello = Tkinter.Label(top, text='Hello World!')
007 7 hello.pack()
008 8
009 9 quit = Tkinter.Button(top, text='QUIT',
010 10 command=top.quit, bg='red', fg='white')
011 11 quit.pack(fill=Tkinter.X, expand=1)
012 12
013 13 Tkinter.mainloop()
014 <$nopage>

Besides additional parameters for the widgets, we also see some arguments for the packer. The fill parameter tells the
packer to let the QUIT button take up the rest of the horizontal real estate, and the expand parameter directs the packer to
visually fill out the entire horizontal landscape, stretching the button to the left and right sides of the window.

As you can see in Figure18-3, without any other instructions to the packer, the widgets are placed vertically (on top of
each other). Horizontal placement requires creating a new Frame object with which to add the buttons. That frame will
take the place of the parent object as a single child object (see the buttons in the listdir.py module, Example 18.5 in
Section 18.3.5).

Figure 18-3. Tkinter Label and Button Widgets (tkhello3.py)

Label, Button, and Scale Widgets

Our final trivial example, tkhello4.py, involves the addition of a Scale widget. In particular, the Scale is used to
interact with the Label widget. The Scale slider is a tool which controls the size of the text font in the Label widget.
The greater the slider position, the larger the font, and the same goes for a lesser position, meaning a smaller font. The
code for tkhello4.py is given in Example 18.4.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#9.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#14.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#13.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#11.html

New features of this script include a resize() callback function (lines 5–7), which is attached to the Scale. This is
the code that is activated when the slider on the Scale is moved, resizing the size of the text in the Label.

We also define the size (250×150) of the top-level window (line 10). The final difference between this script and the first
three is that we import the attributes from the Tkinter module into our namespace with "from Tkinter import
*." This is mainly due to the fact that this application is larger and involves a large number of references to Tkinter
attributes, which would otherwise require their fully-qualified names. The code is shortened a bit and perhaps may not
wrap as many lines without importing all the attributes locally.

Example 18.4. Label, Button, and Scale Demo (tkhello4.py)

Our final introductory widget example introduces the Scale widget and highlights how widgets can "communicate"
with each other using callbacks [such as resize()]. The text in the Label widget is affected by actions taken on the
Scale widget.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from Tkinter import * <$nopage>
004 4
005 5 def resize(ev=None):
006 6 label.config(font='Helvetica -%d bold' % \
007 7 scale.get())
008 8
009 9 top = Tk()
010 10 top.geometry('250×150')
011 11
012 12 label = Label(top, text='Hello World!',
013 13 font='Helvetica -12 bold')
014 14 label.pack(fill=Y, expand=1)
015 15
016 16 scale = Scale(top, from_=10, to=40,
017 17 orient=HORIZONTAL, command=resize)
018 18 scale.set(12)
019 19 scale.pack(fill=X, expand=1)
020 20
021 21 quit = Button(top, text='QUIT',
022 22 command=top.quit, activeforeground='white',
023 23 activebackground='red')
024 24 quit.pack()
025 25
026 26 mainloop()
027 <$nopage>

As you can see from Figure18-4, both the slider mechanism as well as the current set value show up in the main part of the
window.

Figure 18-4. Tkinter Label, Button, and Scale Widgets (tkhello4.py)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#12.html

Intermediate Tkinter Example

We conclude this section with a larger example, listdir.py. This application is a directory tree traversal tool. It starts
in the current directory and provides a file listing. Double-clicking on any other directory in the list causes the tool to
change to the new directory as well as replace the original file listing with the files from the new directory. The source
code is given below as Example 18.5.

Example 18.5. File System Traversal GUI (listdir.py)

This slightly more advanced GUI expands on the use of widgets, adding listboxes, text entry fields, and scrollbars to
our repertoire. There are also a good number of callbacks such as mouse clicks, key presses, and scrollbar action.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import os
004 4 from time import sleep
005 5 from Tkinter import * <$nopage>
006 6
007 7 class DirList:
008 8
009 9 def __init__(self, initdir=None):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#14.html

010 10 self.top = Tk()
011 11 self.label = Label(self.top,
012 12 text='Directory Lister' + ' v1.1')
013 13 self.label.pack()
014 14
015 15 self.cwd=StringVar(self.top)
016 16
017 17 self.dirl = Label(self.top, fg='blue',
018 18 font=('Helvetica', 12, 'bold'))
019 19 self.dirl.pack()
020 20
021 21 self.dirfm = Frame(self.top)
022 22 self.dirsb = Scrollbar(self.dirfm)
023 23 self.dirsb.pack(side=RIGHT, fill=Y)
024 24 self.dirs = Listbox(self.dirfm, height=15,
025 25 width=50, yscrollcommand=self.dirsb.set)
026 26 self.dirs.bind('<Double-1>', self.setDirAndGo)
027 27 self.dirsb.config(command=self.dirs.yview)
028 28 self.dirs.pack(side=LEFT, fill=BOTH)
029 29 self.dirfm.pack()
030 30
031 31 self.dirn = Entry(self.top, width=50,
032 32 textvariable=self.cwd)
033 33 self.dirn.bind('<Return>', self.doLS)
034 34 self.dirn.pack()
035 35
036 36 self.bfm = Frame(self.top)
037 37 self.clr = Button(self.bfm, text='Clear',
038 38 command=self.clrDir,
039 39 activeforeground='white',
040 40 activebackground='blue')
041 41 self.ls = Button(self.bfm,
042 42 text='List.Directory',
043 43 command=self.doLS,
044 44 activeforeground='white',
045 45 activebackground='green')
046 46 self.quit = Button(self.bfm, text='Quit',
047 47 command=self.top.quit,
048 48 activeforeground='white',
049 49 activebackground='red')
050 50 self.clr.pack(side=LEFT)
051 51 self.ls.pack(side=LEFT)
052 52 self.quit.pack(side=LEFT)
053 53 self.bfm.pack()
054 54
055 55 if initdir:
056 56 self.cwd.set(os.curdir)
057 57 self.doLS()
058 58
059 59 def clrDir(self, ev=None):
060 60 self.cwd.set('')
061 61

062 62 def setDirAndGo(self, ev=None):
063 63 self.last = self.cwd.get()
064 64 self.dirs.config(selectbackground='red')
065 65 check = self.dirs.get(self.dirs.curselection())
066 66 if
067 not check:
068 67 check = os.curdir
069 68 self.cwd.set(check)
070 69 self.doLS()
071 70
072 71 def doLS(self, ev=None):
073 72 error = ''
074 73 tdir = self.cwd.get()
075 74 if
076 not tdir: tdir = os.curdir
077 75
078 76 if
079 not os.path.exists(tdir):
080 77 error = tdir + ': no such file'
081 78 elif
082 not os.path.isdir(tdir):
083 79 error = tdir + ': not a directory'
084 80
085 81 if error:
086 82 self.cwd.set(error)
087 83 self.top.update()
088 84 sleep(2)
089 85 if not (hasattr(self, 'last') \
090 86 and self.last):
091 87 self.last = os.curdir
092 88 self.cwd.set(self.last)
093 89 self.dirs.config(\
094 90 selectbackground='LightSkyBlue')
095 91 self.top.update()
096 92 return <$nopage>
097 93
098 94 self.cwd.set(\
099 95 'FETCHING DIRECTORY CONTENTS…')
100 96 self.top.update()
101 97 dirlist = os listdir(tdir)
102 98 dirlist sort()
103 99 os.chdir(tdir)
104 100 self.dirl.config(text=os.getcwd())
105 101 self.dirs.delete(0, END)
106 102 self.dirs.insert(END, os.curdir)
107 103 self.dirs.insert(END, os.pardir)
108 104 for eachFile in dirlist:
109 105 self.dirs.insert(END, eachFile)
110 106 self.cwd.set(os.curdir)
111 107 self.dirs.config(\
112 108 selectbackground='LightSkyBlue')
113 109

114 110 def main():
115 111 d = DirList(os.curdir)
116 112 mainloop()
117 113
118 114 if __name__ == '__main__':
119 115 main()
120 <$nopage>

In Figure18-5, we present what this GUI looks like in a Windows environment:

Figure 18-5. List Directory GUI Application in Windows (listdir.py)

The Unix version of this application is given in Figure18-6.

Figure 18-6. List Directory GUI Application in UNIX (listdir.py)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#15.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/268#16.html

Line-by-line explanation

Lines 1–5

These first few lines contain the usual Unix start-up line and importation of the os module, the time.sleep()
function, and all attributes of the Tkinter module.

Lines 9–13

These lines define the constructor for the DirList class, an object which represents our application. The first Label we
create contains the main title of the application and the version number.

Lines 15–19

We declare a Tk variable named cwd to hold the name of the directory we are on—we will see where this comes in handy
later. Another Label is created to display the name of the current directory.

Lines 21–30

This section defines the core part of our GUI, the Listbox dirs, which contain the list of files of the directory that is
being listed. A Scrollbar is employed to allow the user to move through a listing if the number of files exceeds the
size of the Listbox. Both of these widgets are contained in a Frame widget. Listbox entries have a callback
(setdirandgo) tied to them using the Listbox bind() method.

Binding means to tie a keystroke, mouse action, or some other event to a call back to be executed when such an event is
generated by the user. setdirandgo() will be called if any item in the Listbox is doubleclicked. The Scrollbar
is tied to the Listbox by calling the Scrollbar.config() method.

Lines 32–35

We then create a text Entry field for the user to enter the name of the directory he or she wants to traverse to and see its
files listed in the Listbox. We add a RETURN or Enter key binding to this text entry field so that the user can hit
RETURN as an alternative to pressing a button. The same applies for the mouse binding we saw above in the Listbox.
When the user doubleclicks on a Listbox item, it has the same effect as the user's entering the directory name manually
into the text Entry field and pressing the "go" button.

Lines 37–54

We then define a Button frame (bfm) to hold our three buttons, a "clear" button (clr), "go" button (ls), and a "quit"
button (quit). Each button has its own different configuration and callbacks, if pressed.

Lines 56–58

The final part of the constructor initializes the GUI program, starting with the current working directory.

Lines 60–61

The clrDir() method clears the cwd Tk string variable, which contains the current directory which is "active." This
variable is used to keep track of what directory we are in and, more importantly, helps keep track of the previous directory
in case errors arise. You will notice the ev variables in the callback functions with a default value of None. Any such
values would be passed in by the windowing system. They may or may not be used in your callback.

Lines 63–71

The setDirAndGo() method sets the directory to traverse to and issues the call to the method that makes it all happen,
doLS().

Lines 73–108

doLS() is, by far, the key to this entire GUI application. It performs all the safety checks (e.g., is the destination a
directory and does it exist?). If there is an error, the last directory is reset to be the current directory. If all goes well, it
calls os.listdir() to get the actual set of files and replaces the listing in the Listbox. While the background work
is going on to pull in the new directory's information, the highlighted blue bar becomes a bright red. When the new
directory has been installed, it reverts to blue.

Lines 110–115

The last pieces of code in listdir.py represent the main part of the code. main() is executed only if this script is
invoked directly, and when main() runs, it creates the GUI application, then calls mainloop() to start the GUI, which
is passed control of the application.

We leave all other aspects of the application as an exercise to the reader, recommending that it is easier to view the entire
application as a combination of a set of widgets and functionality. If you see the individual pieces clearly, then the entire
script will not appear as daunting.

We hope that we have given you a good introduction to GUI programming with Python and Tkinter. Remember that the
best way to get familiar with Tkinter programming is by practicing and stealing a few examples! The Python distribution

comes with a large number of demonstration applications (see the Demo directory) that you can study. And as we
mentioned earlier, there is also an entire text devoted to Tkinter programming.

One final note: do you still doubt the ability of Tkinter to produce a commercial application? Take a close look at IDLE.
IDLE itself is a Tkinter application (written by Guido)!

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=268

Programming > Core Python Programming > 18. GUI Programming with Tkinter > Related
Modules and Other GUIs

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229219135124027219020075

Related Modules and Other GUIs

There are other GUI development systems which can be used with Python. We present the appropriate
modules along with their corresponding window systems in Table 18.2.

Table 18.2. GUI Systems Available Under Python

GUI Module or System Description
Other Tkinter Modules
Pmw Python Mega Widgets
Open Source
wxPython wxWindows
PyGTK GTK+/GNOME/Glade/GIMP
PyQt/PyKDE Qt/KDE
Commercial
win32ui Microsoft MFC
swing Sun Microsystems Java/Swing

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=269
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A35%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=269&now=5%2F30%2F2002+8%3A35%3A13+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/269#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=269

Programming > Core Python Programming > 18. GUI Programming with Tkinter >
Exercises

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229219135126107242034162

Exercises

Client-Server Architecture. Describe the roles of a windows (or windowing) server and a
windows client.

Object-Oriented Programming. Describe the relationship between child and parent windows.

Label widgets. Update the tkhello1.py script to display your own message instead of
"Hello World!"

Label and Button widgets. Update the tkhello3.py script so that there are three new
buttons in addition to the QUIT button. Pressing any of the three buttons will result in changing
the text label so that it will then contain the text of the Button (widget) that was pressed.

Label, Button, and Radiobutton widgets. Modify your solution to the previous
problem so that there are three Radiobuttons presenting the choices of text for the Label.
There are two buttons: the QUIT button and an "Update" button. When the Update button is
pressed, the text label will then be changed to contain the text of the selected Radiobutton.
If no Radiobutton has been checked, the Label will remain unchanged.

Label, Button, and Entry widgets. Modify your solution to the previous problem so that
the three Radiobuttons are replaced by a single Entry text field widget with a default
value of "Hello World!" (to reflect the initial string in the Label). The Entry field can be
edited by the user with a new text string for the Label which will be updated if the Update
button is pressed.

Label and Entry Widgets and Python I/O. Create a GUI application that provides an Entry
field where the user can provide the name of a text file. Open the file and read it, displaying its
contents in a Label. EXTRA CREDIT (Menus): replace the Entry widget with menu that
has a File Open option that pops up a window to allow the user to specify the file to read. Also
add an Exit or Quit option to the menu rather than having a QUIT button.

Simple Text Editor. Use your solution to the previous problem to create a simple text editor. A
file can be created from scratch or read and displayed into a Text widget which can be edited

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=270
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A35%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=270&now=5%2F30%2F2002+8%3A35%3A33+PM

by the user. When the user quits the application (either with the QUIT button or the Quit/Exit
menu option), the user is prompted whether to save the changes. EXTRA CREDIT: interface
your script to a spellchecker and add a button or menu option to spellcheck the file. The words
which are misspelled should be highlighted by using a different foreground or background color
in the Text widget.

Multithreaded Chat Applications. The chat programs from Chapters 13, 16, and 17 need
completion. Create a fully-functional multithreaded chat server. A GUI is not really necessary
for the server unless you want to create one as a front-end to its configuration, i.e., port number,
name, connection to a name server, etc. Create a multithreaded chat client which has separate
threads to monitor user input (and sends the message to the server for broadcast) and another
thread to accept incoming messages to display to the user. The client front-end GUI should have
two portions of the chat window: a larger section with multiple lines to hold all the dialog, and a
smaller text entry field to accept input from the user.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=270

Programming > Core Python Programming > 19. Web Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229219135121068194191075

Chapter 19. Web Programming
Chapter Topics

● Introduction

● Web Surfing with Python: Simple Web Clients

❍ urlparse and urllib Modules

● Advanced Web Clients

❍ Crawler/Spider/Robot

● CGI: Helping Web Servers Process Client Data

● Building CGI Applications

● Advanced CGI

● Creating Web Servers

● Related Modules

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=272
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A35%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=272&now=5%2F30%2F2002+8%3A35%3A49+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=272

Programming > Core Python Programming > 19. Web Programming > Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229216001101087021162189

Introduction

No Python book would be complete without discussing how to do Web programming, one of the main
avenues in which people discover Python. In fact, one of the very first Python books was named,
"Internet Programming with Python" (unfortunately out-of-print). This introductory chapter on web
programming will give you a quick and high-level overview of the kinds of things you can do with
Python on the Internet, from Web surfing to creating user feedback forms, from recognizing Uniform
Resource Locators to generating dynamic Web page output.

Web Surfing: Client-Server Computing (Again?!?)

Web surfing falls under the same client-server architecture umbrella that we have seen repeatedly. This
time, Web clients are browsers; applications allow users to seek documents on the World Wide Web.
On the other side are Web servers, processes which run on an information provider's host computers.
These servers wait for clients and their document requests, process them, and return the requested data.
As with most servers in a client-server system, Web servers are designed to run "forever." The Web
surfing experience is best illustrated by Figure19-1. Here, a user runs a Web client program such as a
browser and makes a connection to a Web server elsewhere on the Internet to obtain their information.

Figure 19-1. Web Client and Web Server on the Internet. A client sends a request out over the Internet
to the server, which then responds with the requested data back to the client.

Clients may issue a variety of requests to Web servers. Such requests may include obtaining a Web
page for viewing or submitting a form with data for processing. The request is then serviced by the
Web server, and the reply comes back to the client in a special format for display purposes.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=273
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A36%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=273&now=5%2F30%2F2002+8%3A36%3A13+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/273#2.html

The "language" which is spoken by Web clients and servers, the standard protocol used for Web
communication, is called HTTP, which stands for HyperText Transfer Protocol. HTTP is written "on
top of" the TCP and IP protocol suite, meaning that it relies on TCP and IP to carry out its lower-level
communication functionality. Its responsibility is not to route or deliver messages—TCP and IP handle
that—but to respond to client requests.

HTTP is known as a "stateless" protocol because it does not keep track of information from one client
request to the next, similar to the client-server architecture we have seen so far. The server stays
running, but client interactions are singular events structured in such a way that once a client request is
serviced, it quits. New requests can always be sent, but they are considered separate service requests.
Because of the lack of context per request, you may notice that some URLs have a long set of variables
and values chained as part of the request to provide some sort of state information. Another alternative
is the use of "cookies"—static data stored on the client side which generally contains state information
as well. In later parts of this chapter, we will look at how to use both long URLs and cookies to
maintain state information.

The Internet

The Internet is a moving and fluctuating "cloud" or "pond" of interconnected clients and servers
scattered around the globe. Communication between client and server consists of a series of
connections from one lily pad on the pond to another, with the last step connecting to the server. As a
client user, all this detail is kept hidden from your view. The abstraction is to have a direct connection
between you the client and the server you are "visiting," but the underlying HTTP, TCP, and IP
protocols are hidden underneath, doing all of the dirty work. Information regarding the intermediate
"nodes" is of no concern or consequence to the general user anyway, so it's good that the
implementation is hidden. Figure19-2 shows an expanded view of the Internet.

Figure 19-2. A Grand View of the Internet. The left side illustrates where you would find Web clients
while the right side hints as to where Web servers are typically located.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/273#4.html

As you can see from the figure, the Internet is made up of multiply-interconnected networks, all
working with some sense of (perhaps disjointed) harmony. The left half of the diagram is focused on
the Web clients, users who are either at home dialed-in to their Internet Service Provider (ISP) or at
work on their company's Local Area Network (LAN).

The right hand side of the diagram concentrates more on Web servers and where they can be found.
Corporations with larger Web sites will typically have an entire "Web server farm" located at their ISP.
Such physical placement is called colocation, meaning that a company's servers are "co-located" at an
ISP along with machines from other corporate customers. These servers are either all providing
different data to clients or are part of a redundant system with duplicated information designed for
heavy demand (high number of clients). Smaller corporate Web sites may not require as much
hardware and networking gear, and hence, may only have one or several colocated servers at their ISP.

In either case, most colocated servers are stored with a larger ISP sitting on a network backbone,
meaning that they have a "fatter" (meaning wider) and presumably faster connection to the
Internet—closer to the "core" of the Internet, if you will. This permits clients to access the servers
quickly—being on a backbone means clients do not have to hop across as many networks to access a
server, thus allowing more clients to be serviced within a given time period.

One should also keep in mind that although Web surfing is the most common Internet application, it is
not the only one and is certainly not the oldest. The Internet predates the Web by almost three decades.
Before the Web, the Internet was mainly used for educational and research purposes. Most of the
systems on the Internet run Unix, a multi-user operating system, and many of the original Internet
protocols are still around today.

Such protocols include telnet (allows for users to login to a remote host on the Internet and still in use
today), FTP (the File Transfer Protocol which enables users to share files and data via uploading or
downloading and also still in use today), gopher (the precursor to the Web search engine—a "gopher"-
like piece of software that "tunneled the Internet" looking for the data that you were interested in),
SMTP or Simple Mail Transfer Protocol (the protocol used for one of the oldest and most widely used
Internet applications: electronic mail), and NNTP (News-to-News Transfer Protocol).

Since one of Python's initial strengths was Internet programming, you will find support for all of the
protocols discussed above in addition to many others. We differentiate between "Internet
programming" and "Web programming" by stating that the latter pertains only to applications
developed specifically for Web applications, i.e., Web clients and servers, our focus for this chapter.
Internet programming covers a wider range of applications, including some of the Internet protocols we
previously mentioned, such as FTP, SMTP, etc., as well as network and socket programming in
general, as we discussed in a previous chapter.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=273

Programming > Core Python Programming > 19. Web Programming > Web Surfing with
Python: Creating Simple Web Clients

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229217069070068135012236

Web Surfing with Python: Creating Simple Web Clients

One thing to keep in mind is that a browser is only one type of Web client. Any application that makes
a request for data from a Web server is considered a "client." Yes, it is possible to create other clients
which retrieve documents or data off the Internet. One important reason to do this is that a browser
provides only limited capacity, i.e., it is used primarily for viewing and interacting with Web sites. A
client program, on the other hand, has the ability to do more—it can not only download data, it can also
store it, manipulate it, or perhaps even transmit it to another location or application.

Applications which use the urllib module to download or access information on the Web [using
either urllib.urlopen() or urllib.urlretrieve()] can be considered a simple Web
client. All you need to do is provide a valid Web address.

Uniform Resource Locators

Simple Web surfing involves using Web addresses called Uniform Resource Locators (URLs). Such
addresses are used to locate a document on the Web or to call a CGI program to generate a document
for your client. URLs are part of a larger set of identifiers known as URIs (Uniform Resource
Identifiers). This superset was created in anticipation of other naming conventions which have yet to be
developed. A URL is simply a URI which uses an existing protocol or scheme (i.e., http, ftp, etc.) as
part of its addressing. To complete this picture, we'll add that non-URL URIs are sometimes known as
URNs (Uniform Resource Names), but because URLs are the only URIs in use today, you really don't
hear much about URIs or URNs.

Like street addresses, Web addresses have some structure. An American street address usually is of the
form "number street designation," i.e., 123 Main Street. It differs from other countries, which have their
own rules. A URL is of the format:

prot_sch://net_loc/path;params?query#frag

Table 19.1 describes each of the components.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=274
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A37%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=274&now=5%2F30%2F2002+8%3A37%3A25+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/274#2.html

Table 19.1. Web Address Components

URL Component Description

prot_sch network protocol or download scheme

net_loc location of server (and perhaps user information)

path slash (/) delimited path to file or CGI application

params optional parameters

query ampersand (&) delimited set of "key=value" pairs

frag fragment to a specific anchor within document

net_loc can be broken down into several more components, some required, others optional. The
net_loc string looks like this:

user:passwd@host:port

These individual components are described in Table 19.2.

Table 19.2. Network Location Components

net_loc

Component Description

user user name or login

passwd user password

host name or address of machine running Web server [required]

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/274#3.html

port port number (if not 80, the default)

Of the four, the host name is the most important. The port number is necessary only if the Web
server is running on a different port number from the default. (If you aren't sure what a port number is,
go back to Chapter 16.)

User names and perhaps passwords are used only when making FTP connections, and even then, they
usually aren't necessary because the majority of such connections are "anonymous."

Python supplies two different modules, each dealing with URLs in completely different functionality
and capacities. One is urlparse, and the other is urllib. We will briefly introduce some of their
functions here.

urlparse Module

The urlparse module provides basic functionality with which to manipulate URL strings. These
functions include urlparse(), urlunparse(), and urljoin().

urlparse.urlparse()

urlparse() breaks up a URL string into some of the major components described above and has the
following syntax:

urlparse(urlstr, defProtSch=None, allowFrag=None)

urlparse() parses urlstr into a 6-tuple (prot_sch, net_loc, path, params,
query, frag). Each of these components has been described above. defProtSch indicates a
default network protocol or download scheme in case one is not provided in urlstr. allowFrag is
a flag that signals whether or not a fragment part of a URL is allowed. Here is what urlparse()
outputs when given a URL:

>>> urlparse.urlparse('http://www.python.org/doc/FAQ.html')
('http', 'www.python.org', '/doc/FAQ.html', '', '', '')

urlparse.urlunparse()

urlunparse() does the exact opposite of urlparse()—it merges a 6-tuple (prot_sch,
net_loc, path, params, query, frag)—urltup, which could be the output of
urlparse(), into a single URL string and returns it. Accordingly, we state the following
equivalence:

urlunparse(urlparse(urlstr)) = urlstr

You may have already surmised that the syntax of urlunparse() is as follows:

urlunparse(urltup)

urlparse.urljoin()

The urljoin() function is useful in cases where many related URLs are needed, for example, the
URLs for a set of pages to be generated for a Web site. The syntax for urljoin() is:

urljoin(baseurl, newurl, allowFrag=None)

urljoin() takes baseurl and joins its base path (net_loc plus the full path up to, but not
including, a file at the end) with newurl. For example:

>>> urlparse.urljoin('http://www.python.org/doc/FAQ.html', \
… 'current/lib/lib.htm')
'http://www.python.org/doc/current/lib/lib.html'

A summary of the functions in urlparse can be found in Table 19.3

Table 19.3. Core urlparse Module Functions

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/274#8.html

urlparse Functions Description

urlparse(urlstr, defProtSch=None, allowFrag=None) parses urlstr into separate components,
using defProtSch if the protocol or
scheme is not given in urlstr;
allowFrag determines whether a URL
fragment is allowed

urlunparse(urltup) unparses a tuple of URL data (urltup) into
a single URL string

urljoin(baseurl, newurl,allowFrag=None) merges the base part of the baseurl URL
with newurl to form a complete URL;
allowFrag is the same as for
urlparse()

urllib Module

NOTE

Unless you are planning on writing a more lower-level network client, the urllib module
provides all the functionality you need. urllib provides a high-level Web communication library,
supporting the basic Web protocols, HTTP, FTP, and Gopher, as well as providing access to local
files. Specifically, the functions of the urllib module are designed to download data (from the
Internet, local network, or local host) using the aforementioned protocols. Use of this module
generally obviates the need for using the httplib, ftplib, and gopherlib modules unless
you desire their lower-level functionality. In those cases, such modules can be considered as
alternatives. (Note: most modules named *lib are generally for developing clients of the
corresponding protocols. This is not always the case, however, as perhaps urllib should then be
renamed as "internetlib" or something similar!)

The urllib module provides functions to download data from given URLs as well as encoding and
decoding strings to make them suitable for including as part of valid URL strings. The functions
functions which we will be looking at in this upcoming section include: urlopen(),
urlretrieve(), quote(), quote_plus(), unquote(), unquote_plus(), and
urlencode().

We will also look at some of the methods available to the file-like object returned by urlopen().

urllib.urlopen()

urlopen() opens a Web connection to the given URL string and returns a file-like object. It has the
following syntax:

urlopen(urlstr, postQueryData=None)

urlopen() opens the URL pointed to by urlstr. If no protocol or download scheme is given, or if
a "file" scheme is passed in, urlopen() will open a local file.

For all HTTP requests, the normal request type is "GET." In these cases, the query string provided to
the Web server (key-value pairs encoded or "quoted," such as the string output of the urlencode()
function [see below]), should be given as part of urlstr.

If the "POST" request method is desired, then the query string (again encoded) should be placed in the
postQueryData variable. (For more information regarding the GET and POST request methods,
refer to any general documentation or texts on programming CGI applications—which we will also
discuss below. GET and POST requests are the two ways to "upload" data to a Web server.

When a successful connection is made, urlopen() returns a file-like object as if the destination was
a file opened in read mode. If our file object is f, for example, then our "handle" would support the
expected read methods such as f.read(), f.readline(), f.readlines(),
f.close(), and f.fileno().

In addition, a f.info() method is available which returns the MIME (Multipurpose Internet Mail
Extension) headers. Such headers give the browser information regarding which application can view
returned file types. For example, the browser itself can view HTML (Hypertext Markup Language) or
plain text type files as well as GIF (Graphics Interchange Format) and JPEG (Joint Photographic
Experts Group) graphics files. Other files such as multimedia or specific document types require
external applications in order to view.

Finally, a geturl() method exists to obtain the true URL of the final opened destination, taking into
consideration any redirection which may have occurred. A summary of these file-like object methods is
given in Table 19.4.

Table 19.4. urllib.urlopen() File-like Object Methods

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/274#11.html

urlopen() Object Methods Description

f. read ([bytes]) reads all or bytes bytes from f

f.readline() reads a single line from f

f.readlines() reads a all lines from f into a list

f.close() closes URL connection for f

f.fileno() returns file number of f

f.info() gets MIME headers of f

f.geturl() returns true URL opened for f

urllib.urlretrieve()

urlretrieve() will do some quick and dirty work for you if you are interested in working with a
URL document as a whole. Here is the syntax for urlretrieve():

urlretrieve(urlstr, localfile=None, downloadStatusHook=None)

Rather than reading from the URL like urlopen() does, urlretrieve() will simply download
the entire HTML file located at urlstr to your local disk. It will store the downloaded data into
localfile if given or a temporary file if not. If the file has already been copied from the Internet or
if the file is local, no subsequent downloading will occur.

The downloadStatusHook, if provided, is a function that is called after each block of data has
been downloaded and delivered. It is called with the following three arguments: number of blocks read
so far, the block size in bytes, and the total (byte) size of the file. This is very useful if you are
implementing "download status" information to the user in a text-based or graphical display.

urlretrieve() returns a 2-tuple, (filename, mime_hdrs). filename is the name of the
local file containing the downloaded data. mime_hdrs is the set of MIME headers returned by the
responding Web server. For more information, see the Message class of the mimetools module.

mime_hdrs is None for local files.

For an example using urlretrieve(), take a look at Example 11.2 (grabweb.py).

urllib.quote() and urllib.quote_plus()

The quote*() functions take URL data and "encodes" them so that they are "fit" for inclusion as part
of a URL string. In particular, certain special characters that are unprintable or cannot be part of valid
URLs acceptable to a Web server must be converted. This is what the quote*() functions do for you.
Both quote*() functions have the following syntax:

quote(urldata, safe='/')

Characters that are never converted include commas, underscores, periods and dashes as well as
alphanumerics. All others are subject to conversion. In particular, the disallowed characters are
changed to their hexadecimal ordinal equivalents prepended with a percent sign (%), i.e., "%xx" where
"xx" is the hexadecimal representation of a character's ASCII value. When calling quote*(), the
urldata string is converted to an equivalent string that can be part of a URL string. The safe string
should contain a set of characters which should also not be converted. The default is the slash (/).

quote_plus() is similar to quote() except that it also encodes spaces to plus signs (+). Here is
an example using quote() vs. quote_plus():

>>> name = 'joe mama'
>>> number = 6
>>> base = 'http://www/~foo/cgi-bin/s.py'
>>> final = '%s?name=%s&num=%d' % (base, name, number)
>>> final
'http://www/~foo/cgi-bin/s.py?name=joe mama&num=6'
>>>
>>> urllib.quote(final)
'http:%3a//www/%7efoo/cgi-bin/s.py%3fname%3djoe%20mama%26num%3d6'
>>>
>>> urllib.quote_plus(final)
'http%3a//www/%7efoo/cgi-bin/s.py%3fname%3djoe+mama%26num%3d6'

urllib.unquote() and urllib.unquote_plus()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/180#1.html

As you have probably guessed, the unquote*() functions do the exact opposite of the quote*()
functions—they convert all characters encoded in the "%xx" fashion to their ASCII equivalents. The
syntax of unquote*() is as follows:

unquote*(urldata)

Calling unquote() will decode all URL-encoded characters in urldata and return the resulting
string. unquote_plus() will also convert plus signs back to space characters.

urllib.urlencode()

urlencode(), recently added to Python (as of version 1.5.2) takes a dictionary of key-value pairs
and encodes them to be included as part of a query in a CGI request URL string. The pairs are in
"key=value" format and are delimited by ampersands (&). Furthermore, the keys and their values
are sent to quote_plus() for proper encoding. Here is an example output from urlencode():

>>> aDict = { 'name': 'Georgina Garcia', 'hmdir': '~ggarcia' }
>>> urllib.urlencode(aDict)
'name=Georgina+Garcia&hmdir=%7eggarcia'

There are other functions in urllib and urlparse which we did not have the opportunity to cover
here. Refer to the documentation for more information.

Secure Socket Layer support

The urllib module has been modified for Python 1.6 so that it now supports opening HTTP
connections using the Secure Socket Layer (SSL). The core change to add SSL is implemented in the
socket module. Consequently, the urllib and httplib modules were updated to support URLs
using the "https" connection scheme. Note, however, that as of time of publication, only HTTP requests
using SSL have been implemented. The future may see additional updates to the other protocols
supported by the urllib module, such as FTP.

A summary of the urllib functions discussed in this section can be found in Table 19.5.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/274#17.html

Table 19.5. Core urllib Module Functions

urllib Functions Description

urlopen(urlstr, postQueryData=None) opens the URL urlstr, sending the query data
in postQueryData if a POST request

urlretrieve(urlstr, localfileV=None,
downloadStatusHook=None)

downloads the file located at the urlstr URL
to localfile or a temporary file if
localfile not given; if present,
downloaStatusHook is a function which can
receive download statistics

quote(urldata, safe='/') encodes invalid URL characters of urldata;
characters in safe string are also not encoded

quote_plus(urldata, safe='/') same as quote() except encodes spaces as plus
signs

unquote(urldata) decodes encoded characters of urldata

unquote_plus(urldata) same as unquote() but converts plus signs to
spaces

urlencode(dict) encodes the key-value pairs of dict into a valid
string for CGI queries and encodes the key and
value strings with quote_plus()

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=274

Programming > Core Python Programming > 19. Web Programming > Advanced Web Clients See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229217069064035085158113

Advanced Web Clients

Web browsers are basic Web clients. They are used primarily for searching and downloading documents
from the Web. Advanced clients of the Web are those applications which do more than download single
documents from the Internet.

One example of an advanced Web client is a crawler (a.k.a. spider, robot). These are programs which
explore and download pages from the Internet for different reasons, some of which include:

● Indexing or cataloging into a large search engine such as Google, Alta Vista, or Yahoo!,

● Offline browsing—downloading documents onto a local hard disk and rearranging hyperlinks to
create almost a mirror image for local browsing,

● Downloading and storing for historical or archival purposes, or

● Web page caching to save superfluous downloading time on Web site revisits.

The crawler we present below, crawl.py, takes a starting Web address (URL), downloads that page
and all other pages whose links appear in succeeding pages, but only those which are in the same domain
as the starting page. Without such limitations, you will run out of disk space! The source for crawl.py
follows:

Example 19.1. An Advanced Web Client: a Web Crawler (crawl.py)

The crawler consists of two classes, one to manage the entire crawling process (Crawler), and one to
retrieve and parse each downloaded Web page (Retriever).

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from sys import argv
004 4 from os import makedirs, unlink
005 5 from os.path import dirname, exists, isdir, splitext
006 6 from string import replace, find, lower
007 7 from htmllib import HTMLParser
008 8 from urllib import urlretrieve

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=275
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A37%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=275&now=5%2F30%2F2002+8%3A37%3A49+PM

009 9 from urlparse import urlparse, urljoin
010 10 from formatter import DumbWriter, AbstractFormatter
011 11 from cStringIO import StringIO
012 12
013 13 class Retriever: # download Web pages
014 14
015 15 def __init__(self, url):
016 16 self.url = url
017 17 self.file = self.filename(url)
018 18
019 19 def filename(self, url, deffile='index.htm'):
020 20 parsedurl = urlparse(url, 'http:', 0)# parse path
021 21 path = parsedurl[1] + parsedurl[2]
022 22 text = splitext(path)
023 23 if ext[1] == '': # no file, use default
024 24 if newpath[-1] == '/':
025 25 path = path + deffile
026 26 else: <$nopage>
027 27 path = path + '/' + deffile
028 28 dir = dirname(path)
029 29 if not isdir(dir): # create archive dir if nec.
030 30 if exists(dir): unlink(dir)
031 31 makedirs(dir)
032 32 return path
033 33
034 34 def download(self): # download Web page
035 35 try: <$nopage>
036 36 retval = urlretrieve(self.url, self.file)
037 37 except IOError:
038 38 retval = ('*** ERROR: invalid URL "%s"' %\
039 39 self.url,)
040 40 return retval
041 41
042 42 def parseAndGetLinks(self): # parse HTML, save links
043 43 self.parser = HTMLParser(AbstractFormatter(\
044 44 DumbWriter(StringIO())))
045 45 self.parser.feed(open(self.file).read())
046 46 self.parser.close()
047 47 return self.parser.anchorlist
048 48
049 49 class Crawler: # manage entire crawling process
050 50
051 51 count = 0 # static downloaded page counter
052 52
053 53 def __init__(self, url):

054 54 self.q = [url]
055 55 self.seen = []
056 56 self.dom = urlparse(url)[1]
057 57
058 58 def getPage(self, url):
059 59 r = Retriever(url)
060 60 retval = r.download()
061 61 if retval[0] == '*': # error situation, do not parse
062 62 print retval, '… skipping parse'
063 63 return <$nopage>
064 64 Crawler.count = Crawler.count + 1
065 65 print '\n(', Crawler.count, ')'
066 66 print 'URL:', url
067 67 print 'FILE:', retval[0]
068 68 self.seen.append(url)
069 69
070 70 links = r.parseAndGetLinks() # get and process links
071 71 for eachLink in links:
072 72 if eachLink[:4] != 'http' and \
073 73 find(eachLink, '://') == -1:
074 74 eachLink = urljoin(url, eachLink)
075 75 print '* ', eachLink,
076 76
077 77 if find(lower(eachLink), 'mailto:') != -1:
078 78 print '… discarded, mailto link'
079 79 continue <$nopage>
080 80
081 81 if eachLink not in self.seen:
082 82 if find(eachLink, self.dom) == -1:
083 83 print '… discarded, not in domain'
084 84 else: <$nopage>
085 85 if eachLink not in self.q:
086 86 self.q.append(eachLink)
087 87 print '… new, added to Q'
088 88 else: <$nopage>
089 89 print '… discarded, already in Q'
090 90 else: <$nopage>
091 91 print '… discarded, already processed'
092 92
093 93 def go(self):# process links in queue
094 94 while self.q:
095 95 url = self.q.pop()
096 96 self.getPage(url)
097 97

098 98 def main():
099 99 if len(argv) > 1:
100 100 url = argv[1]
101 101 else: <$nopage>
102 102 try: <$nopage>
103 103 url = raw_input('Enter starting URL: ')
104 104 except (KeyboardInterrupt, EOFError):
105 105 url = ''
106 106
107 107 if not url: return <$nopage>
108 108 robot = Crawler(url)
109 109 robot.go()
110 110
111 111 if __name__ == '__main__':
112 112 main()
113 <$nopage>

Line-by-line (Class-by-class) explanation:

Lines 1– 11

The top part of the script consists of the standard Python Unix start-up line and the importation of various
module attributes which are employed in this application.

Lines 13 – 47

The Retriever class has the responsibility of downloading pages from the Web and parsing the links
located within each document, adding them to the "to-do" queue if necessary. A Retriever instance
object is created for each page which is downloaded from the net. Retriever consists of several
methods to aid in its functionality: a constructor (__init__()), filename(), download(), and
parseAndGetLinks().

The filename() method takes the given URL and comes up with a safe and sane corresponding file
name to store locally. Basically, it removes the "http://" prefix from the URL and uses the remaining
part as the file name, creating any directory paths necessary. URLs without trailing file names will be
given a default file name of "index.htm." (This name can be overridden in the call to filename()).

The constructor instantiates a Retriever object and stores both the URL string and the corresponding
file name returned by filename() as local attributes.

The download() method, as you may imagine, actually goes out to the net to download the page with
the given link. It calls urllib.urlretrieve() with the URL and saves it to the filename (the one
returned by filename()). If the download was successful, the parse() method is called to parse the

page just copied from the network, otherwise an error string is returned.

If the Crawler determines that no error has occurred, it will invoke the parseAndGetLinks()
method to parse newly-downloaded page and determine the cause of action for each link located on that
page.

Lines 49 – 96

The Crawler class is the "star" of the show, managing the entire crawling process, thus only one
instance is created for each invocation of our script. The Crawler consists of three items stored by the
constructor during the instantiation phase, the first of which is q, a queue of links to download. Such a
list will fluctuate during execution, shrinking as each page is processed and grown as new links are
discovered within each downloaded page.

The other two data values for the Crawler include seen, a list of all the links which "we have seen"
(downloaded) already. And finally, we store the domain name for the main link, dom, and use that value
to determine whether any succeeding links are part of the same domain.

Crawler also has of a static data item named count. The purpose of this counter is just to keep track
of the number of objects we have downloaded from the net. It is incremented for every page successfully
download.

Crawler has a pair of other methods in addition to its constructor, getPage() and go(). go() is
simply the method that is used to start the Crawler and is called from the main body of code. go()
consists of a loop that will continue to execute as long as there are new links in the queue which need to
be downloaded. The workhorse of this class though, is the getPage() method.

getPage() instantiates a Retriever object with the first link and lets it go off to the races. If the
page was downloaded successfully, the counter is incremented and the link added to the "already seen"
list. It looks recursively at all the links featured inside each downloaded page and determine whether any
more links should be added to the queue. The main loop in go() will continue to process links until the
queue is empty, at which time victory is declared.

Links which are: part of another domain, have already been downloaded, are already in the queue waiting
to be processed, or are "mailto:" links are ignored and not added to the queue.

Lines 98 – 112

main() is executed if this script is invoked directly and is the starting point of execution. Other modules
which import crawl.py will need to invoke main() to begin processing. main() needs a URL to
begin processing, If one is given on the command-line (for example which this script is invoked directly),
it will just go with the one given. Otherwise, the script enters interactive mode prompting the user for a

starting URL. With a starting link in hand, the Crawler is instantiated and away we go.

One sample invocation of crawl.py may look like:

% crawl.py
Enter starting URL: http://www.null.com/home/index.html

(1)
URL: http://www.null.com/home/index.html
FILE: www.null.com/home/index.html
* http://www.null.com/home/overview.html … new, added to Q
* http://www.null.com/home/synopsis.html … new, added to Q
* http://www.null.com/home/order.html … new, added to Q
* mailto:postmaster@null.com … discarded, mailto link
* http://www.null.com/home/overview.html … discarded, already in Q
* http://www.null.com/home/synopsis.html … discarded, already in Q
* http://www.null.com/home/order.html … discarded, already in Q
* mailto:postmaster@null.com … discarded, mailto link
* http://bogus.com/index.html … discarded, not in domain

(2)
URL: http://www.null.com/home/order.html
FILE: www.null.com/home/order.html
* mailto:postmaster@null.com … discarded, mailto link
* http://www.null.com/home/index.html … discarded, already processed
* http://www.null.com/home/synopsis.html … discarded, already in Q
* http://www.null.com/home/overview.html … discarded, already in Q

(3)
URL: http://www.null.com/home/synopsis.html
FILE: www.null.com/home/synopsis.html
* http://www.null.com/home/index.html … discarded, already processed
* http://www.null.com/home/order.html … discarded, already processed
* http://www.null.com/home/overview.html … discarded, already in Q

(4)
URL: http://www.null.com/home/overview.html
FILE: www.null.com/home/overview.html
* http://www.null.com/home/synopsis.html … discarded, already processed
* http://www.null.com/home/index.html … discarded, already processed
* http://www.null.com/home/synopsis.html … discarded, already processed
* http://www.null.com/home/order.html … discarded, already processed

After execution, a http://www.null.com directory would be created in the local file system, with a home
subdirectory. Within home, all the HTML files processed will be found there.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

http://www.null.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=275

Programming > Core Python Programming > 19. Web Programming > CGI: Helping Web
Servers Process Client Data

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229214167187174151068183

CGI: Helping Web Servers Process Client Data

Introduction to CGI

The Web was initially developed to be a global online repository or archive of (mostly educational and
research-oriented) documents. Such pieces of information generally come in the form of static text and
usually in HTML (HyperText Markup Language). [Many documents also exist in plain text, Adobe
Portable Document Format (PDF), or Extensible Markup Language (XML) format, a generalized
markup language.]

HTML is not as much of a language as it is a text formatter, indicating changes in font types, sizes, and
styles. The main feature of HTML is in its hypertext capability, document text that is in one way or
another highlighted to point to another document in a related context to the original. Such a document
can be accessed by a mouse click or other user selection mechanism. These (static) HTML documents
live on the Web server and are sent to clients when and if requested.

As the Internet and Web services evolved, there grew a need to process user input. Online retailers
needed to be able to take individual orders, and online banks and search engine portals needed to create
accounts for individual users. Thus fill-out forms were invented, and became the only way a Web site
can get specific information from users (until Java applets came along).This, in turn, required the
HTML now be generated on the fly, for each client submitting user-specific data.

Now Web servers are only really good at one thing, getting a user request for a file and returning that
file (i.e., an HTML file) to the client. They do not have the "brains" to be able to deal with user-specific
data such as those which come from fields. Not being their responsibility, Web servers farm out such
requests to external applications which create the dynamically-generated HTML that is returned to the
client.

The entire process begins when the Web server receives a client request (i.e., GET or POST) and calls
the appropriate application. It then waits for the resulting HTML—meanwhile, the client also waits.
Once the application has completed, it passes the dynamically-generated HTML back to the server,
who then (finally) forwards it back to the user. This process of the server receiving a form, contacting
an external application, receiving and returning the newly-generated HTML takes place through what is
called the Web server's Common Gateway Interface (CGI). An overview of how CGI works is
illustrated in Figure19-3, which shows you the execution and data flow, step-by-step from when a user
submits a form until the resulting Web page is returned.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=276
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A38%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=276&now=5%2F30%2F2002+8%3A38%3A06+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/276#2.html

Figure 19-3. Overview of how CGI Works. CGI represents the interaction between a web server and
the application which is required to process a user's form and generate the dynamic HTML that is

eventually returned.

Forms input from the client sent to a Web server may include processing and perhaps some form of
storage in a backend database. Just keep in mind that any time there are any user-filled fields and/or a
Submit button or image, it most likely involves some sort of CGI activity.

CGI applications which create the HTML are usually written in one of many higher-level programming
languages which have the ability to accept user data, process it, and return value HTML back to the
server. Today, these include: Perl, C, C++, or Python, to name a few. In this next section, we will look
at how to create CGI applications in Python, with the help of the cgi module.

CGI Applications

A CGI application is slightly different from a typical program. The primary differences are in the input,
output, and user interaction aspects of a computer program.

When a CGI script starts, it will have the additional functionality of retrieving the user-supplied data,
the input for the program comes from the data via the Web client, not a user on the server machine nor
a disk file.

The output differs in that any data sent to standard output will be sent back to the connected Web client
rather than to the screen, GUI window, or disk file. The data that is sent back must be a set of valid
headers followed by HTML. If it is not and the Web client is a browser, an error (specifically, an
Internal Server Error) will occur because Web clients such as browsers understand only valid HTTP
data (i.e., MIME headers and HTML).

Finally, as you can probably guess, there is no user interaction with the script. All communication
occurs among the Web client (on behalf of a user), the Web server, and the CGI application.

cgi Module

There is one primary class in the cgi module which does all the work: the FieldStorage class.
This class should be instantiated when a Python CGI script begins, as it will read in all the pertinent
user information from the Web client (via the Web server). Once this object has been instantiated, it
will consist of a dictionary-like object which has a set of key-value pairs. The keys are the names of the
form items that were passed in through the form while the values contain the corresponding data.

These values themselves can be one of three objects. They can be FieldStorage objects (instances)
as well as instances of a similar class called MiniFieldStorage, which is used in cases where no
file uploads or multiple part form data is involved. MiniFieldStorage instances contain only the
key-value pair of the name and the data. Lastly, they can be a list of such objects. This occurs when a
form contains more than one input item with the same field name.

For simple Web forms, you will usually find all MiniFieldStorage instances. All of our examples
below pertain only to this general case.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=276

Programming > Core Python Programming > 19. Web Programming > Building CGI
Application

See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004229214167184217227190176

Building CGI Application

Generating the Results Page

In Example 19.2, we present the code for a simple Web form, friends.htm.

Example 19.2. Static Form Web Page (friends.htm)

This HTML file presents a form to the user with an empty field for the user's name and a set of radio
buttons for the user to choose from.

 <$nopage>
001 1 <HTML><HEAD><TITLE>
002 2 Friends CGI Demo (static screen)
003 3 </TITLE></HEAD>
004 4 <BODY><H3>Friends list for: <I>NEW USER</I></H3>
005 5 <FORM ACTION="/cgi-bin/friends1.py">
006 6 Enter your Name:
007 7 <INPUT TYPE=text NAME=person SIZE=15>
008 8 <P>How many friends do you have?
009 9 <INPUT TYPE=radio NAME=howmany VALUE="0"> CHECKED> 0
010 10 <INPUT TYPE=radio NAME=howmany VALUE="10"> 10
011 11 <INPUT TYPE=radio NAME=howmany VALUE="25"> 25
012 12 <INPUT TYPE=radio NAME=howmany VALUE="50"> 50
013 13 <INPUT TYPE=radio NAME=howmany VALUE="100"> 100
014 14 <P><INPUT TYPE=submit></FORM></BODY></HTML>
015 <$nopage>

As you can see in the code, the form contains two input variables: person and howmany. The values of
these two fields will be passed to our CGI script, friends1.py.

You will notice in our example that we install our CGI script into the default cgi-bin directory (see
the "Action" link) on the local host. (If this information does not correspond with your development
environment, update the form action before attempting to test the Web page and CGI script.) Also,
because a METHOD subtag is missing from the form action, all requests will be of the default type,
GET. We choose the GET method because we do not have very many form fields, and also, we want

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=277
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A38%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=277&now=5%2F30%2F2002+8%3A38%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#2.html

our query string to show up in the "Location" (a.k.a. "Address," "Go To") bar so that you can see what
URL is sent to the server.

Let's take a look at the screen which is rendered by friends.htm in a Web browser. Figure19-4
illustrates what the page would look like using Netscape Communicator 4 in a UNIX environment,
while Figure19-5 is an example of using Microsoft IE5 on Windows.

Figure 19-4. Friends Form Page in Netscape4 on Unix (friends.htm)

The input is entered by the user and the "Submit" button is pressed. (Alternatively, the user can also
press the RETURN or Enter key within the text field to cause a similar effect.) When this occurs, the
script in Example 19.3, friends1.py, is executed via CGI.

Figure 19-5. Friends Form Page in IE5 on Windows (friends.htm)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#5.html

Example 19.3. Results Screen CGI code (friends1.py)

This CGI script grabs the person and howmany fields from the form and uses that data to create
the dynamically-generated results screen.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import cgi
004 4
005 5 reshtml = '''Content-Type: text/html\n
006 6 <HTML><HEAD><TITLE>
007 7 Friends CGI Demo (dynamic screen)
008 8 </TITLE></HEAD>
009 9 <BODY><H3>Friends list for: <I>%s</I></H3>
010 10 Your name is: %s<P>
011 11 You have %s friends.
012 12 </BODY></HTML>'''
013 13
014 14 form = cgi.FieldStorage()
015 15 who = form['person'].value

016 16 howmany = form['howmany'].value
017 17 print reshtml % (who, who, howmany)
018 <$nopage>

This script contains all the programming power to read the form input and process it, as well as return
the resulting HTML page back to the user. All the "real" work in this script takes place in only four
lines of Python code (lines 14–17).

The form variable is our FieldStorage instance, containing the values of the person and
howmany fields. We read these into the Python whoand howmany variables, respectively. The
reshtml variable contains the general body of HTML text to return, with a few fields filled in
dynamically, the data just read in from the form.

NOTE

One thing which always nails CGI beginners is that when sending results back to a CGI script, it
must return the appropriate HTTP headers first before any HTML. Furthermore, to distinguish
between these headers and the resulting HTML, several newline characters must be inserted
between both sets of data, as in line 5 of our friends1.py example as well as for the code in the
remaining part of the chapter.

One possible resulting screen appears in Figure19-6, assuming the user typed in "erick allen" as the
name and clicked on the "10 friends" radio button.

Figure 19-6. Friends Results Page in IE3 on Windows

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#6.html

The screen snapshot this time is represented by the older IE3 browser in a Windows environment.

If you are a Web site producer, you may be thinking, "Gee, wouldn't it be nice if I could automatically
capitalize this person's name, especially if they forgot?" This can easily be accomplished using Python
CGI. (And we shall do so soon!)

Notice how on a GET request that our form variables and their values are added to the form action
URL in the "Address" bar. Also, did you observe that the title for the friends.htm page has the
word "static" in it while the output screen from friends.py has the work "dynamic" in its title? We did
that for a reason: to indicate that friends.htm file is a static text file while the results page is
dynamically-generated. In other words, the HTML for the results page did not exist on disk as a text
file; rather, it was generated by our CGI script and returned it as if it was a local file.

In our next example, we will bypass static files altogether by updating our CGI script to be somewhat
more multifaceted.

Generating Form and Results Pages

We obsolete friends.html and merge it into friends2.py. The script will now generate both
the form page as well as the results page. But how can we tell which page to generate? Well, if there is
form data being sent to us, that means that we should be creating a results page. If we do not get any
information at all, that tells us that we should generate a form page for the user to enter his or her data.

Our new friends2.py script is shown in Example 19.4.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#8.html

Example 19.4. Generating Form and Results Pages (friends2.py)

Both friends.html and friends1.py are merged together as friends2.py. The resulting
script can now output both form and results pages as dynamically-generated HTML and has the
smarts to know which page to output.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import cgi
004 4
005 5 header = 'Content-Type: text/html\n\n'
006 6
007 7 formhtml = '''<HTML> <HEAD><TITLE>
008 8 Friends CGI Demo</TITLE></HEAD>
009 9 <BODY><H3>Friends list for: <I>NEW USER</I>></H3>
010 10 <FORM ACTION="/cgi-bin/friends2.py">
011 11 Enter your Name:
012 12 <INPUT TYPE=hidden NAME=action VALUE=edit>
013 13 <INPUT TYPE=text NAME=person SIZE=15>
014 14 <P>How many friends do you have?
015 15 %s
016 16 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
017 17
018 18 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
019 19
020 20 def showForm():
021 21 friends = ''
022 22 for i in [0, 10, 25, 50, 100]:
023 23 checked = ''
024 24 if i == 0:
025 25 checked = 'CHECKED'
026 26 friends = friends + fradio % \
027 27 (str(i), checked, str(i))
028 28
029 29 print header + formhtml % (friends)
030 30
031 31 reshtml = '''<HTML><HEAD><TITLE>
032 32 Friends CGI Demo</TITLE></HEAD>
033 33 <BODY><H3>Friends list for: <I>%s</I></H3>
034 34 Your name is: %s<P>
035 35 You have %s friends.

036 36 </BODY></HTML>'''
037 37
038 38 def doResults(who, howmany):
039 39 print header + reshtml % (who, who, howmany)
040 40
041 41 def process():
042 42 form = cgi.FieldStorage()
043 43 if form.has_key('person'):
044 44 who = form['person'].value
045 45 else: <$nopage>
046 46 who = 'NEW USER'
047 47
048 48 if form.has_key('howmany'):
049 49 howmany = form['howmany'].value
050 50 else: <$nopage>
051 51 howmany = 0
052 52
053 53 if form.has_key('action'):
054 54 doResults(who, howmany)
055 55 else: <$nopage>
056 56 showForm()
057 57
058 58 if __name__ == '__main__':
059 59 process()
060 <$nopage>

So what did we change in our script? Let's take a look at some of the blocks of code in this script.

Line-by-line explanation

Lines 1 – 5

In addition to the usual start-up and module import lines, we separate the HTTP MIME header from the
rest of the HTML body because we will use it for both types of pages (form page and results page)
returned and don't want to duplicate the text. We will add this header string to the corresponding
HTML body when it comes time for output to occur.

Lines 7 – 29

All of this code is related to the now-integrated friends.htm form page in our CGI script. We have
a variable for the form page text, formhtml, and we also have a string to build the list of radio
buttons, fradio. We could have duplicated this radio button HTML text as it is in friends.htm,
but we wanted to show how we could use Python to generate more dynamic output—see the for-loop

on lines 22–27.

The showForm() function has the responsibility of generating a form for user input. It builds a set of
text for the radio buttons, merges those lines of HTML into the main body of formhtml, prepends
the header to the form, and then returns the entire wad of data back to the client by sending the entire
string to standard output.

There are a couple of interesting things to note about this code. The first is the "hidden" variable in the
form called action, containing the value, "edit" on line 12. This field is the only way we can tell
which screen to display (i.e., the form page or the results page). We will see this field come into play in
lines 53–56.

Also, observe that we set the 0 radio button as the default by "checking" it within the loop that
generates all the buttons. This will also allow us to update the layout of the radio buttons and/or their
values on a single line of code (line 18) rather than over multiple lines of text. It will also offer some
more flexibility in letting the logic determine which radio button is checked—see the next update to our
script, friends3.py coming up.

Now you may be thinking, "Why do we need an action variable when I could just as well be
checking for the presence of person or howmany?" That is a valid question because yes, you could
have just used person or howmany in this situation.

However, the action variable is a more conspicuous presence, in as far as its name as well as what it
does—the code is easier to understand. The person and howmany variables are used for their values
while the action variable is used as a flag.

The other reason for creating action is that we will be using it again to help us determine which page
to generate. In particular, we will need to display a form with the resence of a person variable (rather
than a results page)—this will break your code if you are solely relying on there being a person
variable.

Lines 31 – 39

The code to display the results page is practically identical to that of friends1.py.

Lines 41 – 56

Since there are different pages which can result from this one script, we created an overall
process() function to get the form data and decide which action to take. The main portion of
process() will also look familiar to the main body of code in friends1.py. There are two
major differences, however.

Since the script may or may not be getting the expected fields (invoking the script the first time to
generate a form page, for example, will not pass any fields to the server), we need to "bracket" our
retrieval of the form fields with if statements to check if they are even there. Also, we mentioned the
action field above which helps us decide which page to bring up. The code that performs this
determination is in lines 53–56.

In Figure19-8 and Figure19-7, you will see first the form screen generated by our script (with a name
entered and radio button chosen), followed by the results page, also generated by our script.

Figure 19-8. Friends Form Page in Netscape4 on Windows

Figure 19-7. Friends Results Page in Netscape4 on Windows

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#14.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#15.html

If you look at the location or "Go to" bar, you will not see a URL referring to a static friends.htm
file as you did in Figure19-4 or Figure19-5 earlier.

Fully Interactive Web Sites

Our final example will complete the circle. As in the past, a user enters his or her information from the
form page. We then process the data and output a results page. Now we will add a link to the results
page that will allow the user to go back to the form page, but rather than presenting a blank form, we
will fill in the data that the user has already provided. We will also add some error processing to give
you an example of how it can be accomplished.

We now present our final update, friends3.py in Example 19.5.

Example 19.5. Full User Interaction and Error Processing (friends3.py)

By adding a link to return to the form page with information already provided, we have come "full
circle," giving the user a fully-interactive Web surfing experience. Our application also now
performs simple error checking which notifies the user if no radio button was selected.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import cgi
004 4 from urllib import quote_plus
005 5 from string import capwords
006 6
007 7 header = 'Content-Type: text/html\n\n'

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#17.html

008 8 url = '/cgi-bin/friends3.py'
009 9
010 10 errhtml = '''<HTML><HEAD><TITLE>
011 11 Friends CGI Demo</TITLE></HEAD>
012 12 <BODY><H3>ERROR</H3>
013 13 %s<P>
014 14 <FORM><INPUT TYPE=button VALUE=Back
015 15 ONCLICK="window.history.back()"></FORM <$nopage>
016 16 </BODY></HTML>'''
017 17
018 18 def showError(error_str):
019 19 print header + errhtml % (error_str)
020 20
021 21 formhtml = '''<HTML><HEAD><TITLE>
022 22 Friends CGI Demo</TITLE></HEAD>
023 23 <BODY><H3>Friends list for: <I>%s</I></H3>
024 24 <FORM ACTION="%s">
025 25 Your Name:
026 26 <INPUT TYPE=hidden NAME=action VALUE=edit>
027 27 <INPUT TYPE=text NAME=person VALUE="%s" SIZE=15>
028 28 <P>How many friends do you have?
029 29 %s
030 30 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
031 31
032 32 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
033 33
034 34 def showForm(who, howmany):
035 35 friends = ''
036 36 for i in [0, 10, 25, 50, 100]:
037 37 checked = ''
038 38 if str(i) == howmany:
039 39 checked = 'CHECKED'
040 40 friends = friends + fradio % \
041 41 (str(i), checked, str(i))
042 42 print header + formhtml % (who, url, who, friends)
043 43
044 44 reshtml = '''<HTML><HEAD><TITLE>
045 45 Friends CGI Demo</TITLE></HEAD>
046 46 <BODY><H3>Friends list for: <I>%s</I></H3>
047 47 Your name is: %s<P>
048 48 You have %s friends.
049 49 <P>Click here to edit your data again.
050 50 </BODY></HTML>'''

051 51
052 52 def doResults(who, howmany):
053 53 newurl = url + '?action=reedit&person=%s&howmany=%s'%\
054 54 (quote_plus(who), howmany)
055 55 print header + reshtml % (who, who, howmany, newurl)
056 56
057 57 def process():
058 58 error = ''
059 59 form = cgi.FieldStorage()
060 60
061 61 if form.has_key('person'):
062 62 who = capwords(form['person'].value)
063 63 else: <$nopage>
064 64 who = 'NEW USER'
065 65
066 66 if form.has_key('howmany'):
067 67 howmany = form['howmany'].value
068 68 else: <$nopage>
069 69 if form.has_key('action') and \
070 70 form['action'].value == 'edit':
071 71 error = 'Please select number of friends.'
072 72 else: <$nopage>
073 73 howmany = 0
074 74
075 75 if not error:
076 76 if form.has_key('action') and \
077 77 form['action'].value != 'reedit':
078 78 doResults(who, howmany)
079 79 else: <$nopage>
080 80 showForm(who, howmany)
081 81 else: <$nopage>
082 82 showError(error)
083 83
084 84 if __name__ == '__main__':
085 85 process()
086 <$nopage>

friends3.py is not too unlike friends2.py. We invite the reader to compare the differences;
we present a brief summary of the major changes for you here:

Abridged line-by-line explanation

Line 8

We take the URL out of the form because we now need it in two places, the results page being the new
customer.

Lines 10 – 19, 69 – 71, 75 – 82

All of these lines deal with the new feature of having an error screen. If the user does not select a radio
button indicating the number of friends, the howmany field is not passed to the server. In such a case,
the showError() function returns the error page to the user.

The error page also features a JavaScript "Back" button. Because buttons are input types, we need a
form, but no action is needed because we are simply just going back one page in the browsing history.
Although our script currently supports (a.k.a. detects, tests for) only one type of error, we still use a
generic error variable in case we wanted to continue development of this script to add more error
detection in the future.

Lines 27, 38–41, 49, and 52–55

One goal for this script is to create a meaningful link back to the form page from the results page. This
is implemented as a link to give the user the ability to return to a form page to update the data her or
she entered, in case it was erroneous. The new form page makes sense only if it contains information
pertaining to the data that has already been entered by the user. (It is frustrating for users to reenter
their information from scratch!)

To accomplish this, we need to embed the current values into the updated form. In line 27, we add a
value for the name. This value will be inserted into the name field, if given. Obviously, it will be blank
on the initial form page. In Line 38–41, we set the radio box which corresponds to the number of
friends currently chosen. Finally, on lines 49 and the updated doResults() function on lines 52–55,
we create the link with all the existing information which "returns" the user to our modified form page.

Line 62

Finally, we added a simple feature that we thought would add a nice aesthetic touch. In the screens for
friends1.py and friends2.py, the text entered by the user as his or her name is taken
verbatim. You will notice in the screens above that if the user does not capitalize his or her names, that
is reflected in the results page. We added a call to the string.capwords() function to
automatically capitalize a user's name. The capwords() function will capitalize the first letter of
each word in the string that is passed in. This may or may not be a desired feature, but we thought that
we would share it with you so that you know that such functionality exists.

We will now present four screens which shows the progression of user interaction with this CGI form
and script.

In the first screen, shown in Figure19-9, we invoke friends3.py to bring up the now-familiar form
page. We enter a name "bar foo," but deliberately avoid checking any of the radio buttons. The
resulting error after submitting the form can be seen in the second screen (Figure19-10).

Figure 19-9. Friends Initial Form Page in Netscape3 on Windows

We click on the "Back" button, check the "50" radio button, and resubmit our form. The results page,
seen in Figure 19-11, is also familiar, but now has an extra link at the bottom. This link will take us
back to the form page.

Figure 19-11. Friends Results Page (Valid Input)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#23.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#23.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#24.html

The only difference between the new form page and our original is that all the data filled in by the user
is now set as the "default" settings, meaning that the values are already available in the form. We can
see this in Figure19-12.

Figure 19-10. Friends Error Page (invalid user input)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/277#26.html

Figure 19-12. Friends Updated Form Page with Current Information

Now the user is able to make changes to either of the fields and resubmit their form.

You will no doubt begin to notice that as our forms and data get more complicated, so does the
generated HTML, especially for complex results pages. If you ever get to a point where generating the
HTML text is interfering with your application, you may consider connecting with a Python module
such as HTMLgen, an external Python module which specializes in HTML generation.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=277

Programming > Core Python Programming > 19. Web Programming > Advanced CGI See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226055020068225150012240

Advanced CGI

We will now take a look at some of the more advanced aspects of CGI programming. These include: the use of
cookies—cached data saved on the client side, multiple values for the same CGI field and file upload using
multipart form submissions. To save space, we will show you all three of these features with a single application.
Let's take a look at multipart submissions first.

Multipart Form Submission and File Uploading

Currently, the CGI specifications only allow two types of form encodings, "application/x-www-form-urlencoded"
and "multipart/form-data." Because "application/x-www-form-urlencoded" is the default, there is never a need to
state the encoding in the FORM tag like this:

<FORM enctype="application/x-www-form-urlencoded" …>

But for multipart forms, you must explicitly give the encoding as:

<FORM enctype="multipart/form-data" …>

You can use either type of encoding for form submissions, but at this time, file uploads can only be performed with
the multipart encoding. Multipart encoding was invented by Netscape in the early days but since has been adopted
by Microsoft (starting with version 4 of Internet Explorer) as well as other browsers.

File uploads are accomplished using the file input type:

<INPUT type=file name=…>

This directive presents an empty text field with a button on the side which allows you to browse your file directory
structure for a file to upload. On most browsers, this button says "Browse," but your mileage may vary. (For
example, we will be using the Opera browser in our examples which has a button labeled with ellipses "…".)

When using multipart, your Web client's form submission to the server will look amazingly like (multipart) e-mail
messages with attachments. A separate encoding was needed because it just wouldn't be necessarily wise to
"urlencode" a file, especially a binary file. The information still gets to the server, but is just "packaged" in a

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=278
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A41%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=278&now=5%2F30%2F2002+8%3A41%3A13+PM

different way.

Regardless of whether you use the default encoding or the multipart, the cgi module will process them in the
same manner, providing keys and corresponding values in the form submission. You will simply access the data
through your FieldStorage instance as before.

Multivalued Fields

In addition for file uploads, we are also going to show you how to process fields with multiple values. The most
common case is when you have a set of checkboxes allowing a user to select from various choices. Each of the
checkboxes is labeled with the same field name, but to differentiate them, each will have a different value
associated with a particular checkbox.

As you know, the data from the user is sent to the server in key-value pairs during form submission. When more
than one checkbox is submitted, you will have multiple values associated with the same key. In these cases, rather
than being given a single MiniFieldStorage instance for your data, the cgi module will create a list of such
instances which you will iterate over to obtain the different values. Not too painful at all.

Cookies

Finally, we will use cookies in our example. If you are not familiar with cookies, they are just bits of data
information which a server at a Web site will request to be saved on the client side, e.g., the browser.

Because HTTP is a "stateless" protocol, information that has to be carried from one page to another can be
accomplished by using key-value pairs in the request as you have seen in the GET requests and screens earlier in
this chapter. Another way of doing it, as we have also seen before, is using hidden form fields, such as the action
variable in some of the later friends*.py scripts. These variables and their values are managed by the server
because the pages they return to the client must embed these in generated pages.

One alternative to maintaining persistency in state across multiple page views is to save the data on the client side
instead. This is where cookies come in. Rather than embedding data to be saved in the returned Web pages, a
server will make a request to the client to save a cookie. The cookie is linked to the domain of the originating
server (so a server cannot set nor override cookies from other Web sites) and has an expiration date (so your
browser doesn't become cluttered with cookies).

These two characteristics are tied to a cookie along with the key-value pair representing the data item of interest.
There are other attributes of cookies such as a domain subpath or a request that a cookie should only be delivered
in a secure environment.

By using cookies, we no longer have to pass the data from page to page to track a user. Although they have been
subject to a good amount of controversy over the privacy issue, most Web sites use cookies responsibly. To
prepare you for the code, a Web server requests a client store a cookie by sending the "Set-Cookie" header
immediately before the requested file.

Once cookies are set on the client side, requests to the server will automatically have those cookies sent to the
server using the HTTP_COOKIE environment variable. The cookies are delimited by semicolons and come in
"key=value" pairs. All your application needs to do to access the data values is to split the string several times (i.e.,

using string.split() or manual parsing). The cookies are delimited by semicolons (;), and each key-value
pair is separated by equal signs (=).

Like multipart encoding, cookies originated from Netscape, who implemented cookies and wrote up the first
specification which is still valid today. You can access this document at the following Web site:

http://www.netscape.com/newsref/std/cookie_spec.html

Once cookies are standardized and this document finally obsoleted, you will be able to get more current
information from Request for Comment documents (RFCs). The most current one for cookies at the time of
publication is RFC 2109.

Using Advanced CGI

We now present our CGI application, advcgi.py, which has code and functionality not too unlike the
friends3.py script seen earlier in this chapter. The default first page is a user fill-out form consisting of four
main parts: user-set cookie string, name field, checkbox list of programming languages, and file submission box.
An image of this screen can be seen in Figure19-13, this time using the Opera 4 browser in a Windows
environment.

Figure 19-13. Upload and Multivalue Form Page in Opera4 on Windows

http://www.netscape.com/newsref/std/cookie_spec.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/278#5.html

In a browser world dominated by the Netscape and Microsoft browsers, we seldom hear of others such as Opera
and Lynx, but they are out there! Opera, in particular, is known to have excellent footprint (memory size) and
speed characteristics.

Well, just so you aren't totally uncomfortable, let's take a peek at what the same form looks like from Netscape
running on Linux, as in Figure19-14. As you can see, Netscape uses "Browse" as the file upload label instead of
the ellipses. (The rest of the screens for this section will feature Opera.)

Figure 19-14. The Same Advanced CGI Form but in Netscape4 on Linux

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/278#6.html

From this form, we can enter our information, such as the sample data given in Figure19-15.

Figure 19-15. One Possible Form Submission in our Advanced CGI Demo

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/278#7.html

The data is submitted to the server using multipart encoding and is retrieved in the same manner on the server side
using the FieldStorage instance. The only tricky part is in retrieving the uploaded file. In our application, we
choose to iterate over the file, reading it line-by-line. It is also possible to read in the entire contents of the file if
you are not wary of its size.

Since this is the first occasion data is received by the server, it is at this time, when returning the results page back
to the client, that we use the "Set-Cookie:" header to cache our data in browser cookies.

In Figure19-16, you will see the results after submitting our form data. All the fields the user entered are shown on
the page. The contents of the filename given in the final dialog box was actually uploaded to the server and
displayed as well.

Figure 19-16. Results Page Generated and Returned by the Web Server

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/278#8.html

You will also notice the link at the bottom of the results page which returns us to the form page, again using the
same CGI script.

If we click on that link at the bottom, no form data is submitted to our script, causing a form page to be displayed.
Yet, as you can see from Figure 19-17, what shows up is anything but an empty form! Information previously
entered by the user shows up! How did we accomplish this with no form data (either hidden or as query arguments
in the URL)? The secret is that the data is stored on the client side in cookies, two in fact.

Figure 19-17. Form Page With Data Loaded from the Client Cookies

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/278#9.html

The user cookie holds the string of data typed in by the user in the "Enter cookie value" form field, and the user's
name, languages they are familiar with, and uploaded file are stored in the info cookie.

When the script detects no form data, it shows the form page, but before the form page has been created, it grabs
the cookies from the client (which are automatically transmitted by the client when the user clicks on the link) and
fills out the form accordingly. So when the form is finally displayed, all the previously entered information appears
to the user like magic.

We are sure you are eager to take a look at this application, so here it is, presented in Example 19-6.

Example 19.6. Advanced CGI Application (advcgi.py)

The crawler has one main class which does everything, AdvCGI. It has methods to show either form, error, or
results pages as well as those which read or write cookies from/to the client (a web browser).

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/278#10.html

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from cgi import FieldStorage
004 4 from os import environ
005 5 from cStringIO import StringIO
006 6 from urllib import quote, unquote
007 7 from string import capwords, strip, split, join
008 8
009 9 class AdvCGI:
010 10
011 11 header = 'Content-Type: text/html\n\n'
012 12 url = '/py/advcgi.py'
013 13
014 14 formhtml = '''<HTML><HEAD><TITLE>
015 15 Advanced CGI Demo</TITLE></HEAD>
016 16 <BODY><H2>Advanced CGI Demo Form</H2>
017 17 <FORM METHOD=post ACTION="%s ENCTYPE="multipart/form-data">
018 18 <H3>My Cookie Setting</H3>
019 19 <CODE>CPPuser = %s</CODE>
020 20 <H3>Enter cookie value

021 21 <INPUT NAME=cookie value="%s"> (<I>optional</I>)</H3>
022 22 <H3>Enter your name

023 23 <INPUT NAME=person VALUE="%s"> (<I>required</I>)</H3>
024 24 <H3>What languages can you program in?
025 25 (<I>at least one required</I>)</H3>
026 26 %s
027 27 <H3>Enter file to upload</H3>
028 28 <INPUT TYPE=file NAME=upfile VALUE="%s" SIZE=45>
029 29 <P><INPUT TYPE=submit>
030 30 </FORM></BODY></HTML>'''
031 31
032 32 langSet = ('Python', 'PERL', 'Java', 'C++', 'PHP',
033 33 'C', 'JavaScript')
034 34 langItem = \
035 35 '<INPUT TYPE=checkbox NAME=lang VALUE="%s"%s> %s\n'
036 36
037 37 def getCPPCookies(self):# read cookies from client
038 38 if environ.has_key('HTTP_COOKIE'):
039 39 for eachCookie in map(strip, \
040 40 split(environ['HTTP_COOKIE'], ';')):
041 41 if len(eachCookie) > 6 and \
042 42 eachCookie[:3] == 'CPP':
043 43 tag = eachCookie[3:7]
044 44 try: <$nopage>
045 45 self.cookies[tag] = \
046 46 eval(unquote(eachCookie[8:]))

047 47 except (NameError, SyntaxError):
048 48 self.cookies[tag] = \
049 49 unquote(eachCookie[8:])
050 50 else: <$nopage>
051 51 self.cookies['info'] = self.cookies['user'] = ''
052 52
053 53 if self.cookies['info'] != '':
054 54 self.who, langStr, self.fn = \
055 55 split(self.cookies['info'], ':')
056 56 self.langs = split(langStr, ',')
057 57 else: <$nopage>
058 58 self.who = self.fn = ' '
059 59 self.langs = ['Python']
060 60
061 61 def showForm(self): # show fill-out form
062 62 self.getCPPCookies()
063 63 langStr = ''
064 64 for eachLang in AdvCGI.langSet:
065 65 if eachLang in self.langs:
066 66 langStr = langStr + AdvCGI.langItem % \
067 67 (eachLang, ' CHECKED', eachLang)
068 68 else: <$nopage>
069 69 langStr = langStr + AdvCGI.langItem % \
070 70 (eachLang, '', eachLang)
071 71
072 72 if not self.cookies.has_key('user') or \
073 73 self.cookies['user'] == '':
074 74 cookStatus = '<I>(cookie has not been set yet)</I>'
075 75 userCook = ''
076 76 else: <$nopage>
077 77 userCook = cookStatus = self.cookies['user']
078 78
079 79 print AdvCGI.header + AdvCGI.formhtml % (AdvCGI.url,
080 80 cookStatus, userCook, self.who, langStr, self.fn)
081 81
082 82 errhtml = '''<HTML><HEAD><TITLE>
083 83 Advanced CGI Demo</TITLE></HEAD>
084 84 <BODY><H3>ERROR</H3>
085 85 %s<P>
086 86 <FORM><INPUT TYPE=button VALUE=Back
087 87 ONCLICK="window.history.back()"></FORM>
088 88 </BODY></HTML>'''
089 89
090 90 def showError(self):
091 91 print AdvCGI.header + AdvCGI.errhtml % (self.error)
092 92
093 93 reshtml = '''<HTML><HEAD><TITLE>
094 94 Advanced CGI Demo</TITLE></HEAD>

095 95 <BODY><H2>Your Uploaded Data</H2>
096 96 <H3>Your cookie value is: %s</H3>
097 97 <H3>Your name is: %s</H3>
098 98 <H3>You can program in the following languages:</H3>
099 99 %s
100 100 <H3>Your uploaded file…

101 101 Name: <I>%s</I>

102 102 Contents:</H3>
103 103 <PRE>%s</PRE>
104 104 Click here to return to form.
105 105 </BODY></HTML>'''
106 106
107 107 def setCPPCookies(self):# tell client to store cookies
108 108 or eachCookie in self.cookies.keys():
109 109 print 'Set-Cookie: CPP%s=%s; path=/' % \
110 110 (eachCookie, quote(self.cookies[eachCookie]))
111 111
112 112 def doResults(self):# display results page
113 113 MAXBYTES = 1024
114 114 langlist = ''
115 115 for eachLang in self.langs:
116 116 langlist = langlist + '%s
' % eachLang
117 117
118 118 filedata = ''
119 119 while len(filedata) < MAXBYTES:# read file chunks
120 120 data = self.fp.readline()
121 121 if data == '': break <$nopage>
122 122 filedata = filedata + data
123 123 else: # truncate if too long
124 124 filedata = filedata + \
125 125 '… <I>(file truncated due to size)</I>' <$nopage>
126 126 self.fp.close()
127 127 if filedata == '':
128 128 filedata = \
129 129 '<I>(file upload error or file not given)</I>' <$nopage>
130 130 filename = self.fn
131 131
132 132 if not self.cookies.has_key('user') or \
133 133 self.cookies['user'] == '':
134 134 cookStatus = '<I>(cookie has not been set yet)</I>' <$nopage>
135 135 userCook = ''
136 136 else: <$nopage>
137 137 userCook = cookStatus = self.cookies['user']
138 138
139 139 self.cookies['info'] = join([self.who, \
140 140 join(self.langs, ','), filename], ':')
141 141 self.setCPPCookies()
142 142 print AdvCGI.header + AdvCGI.reshtml % \

143 143 (cookStatus, self.who, langlist,
144 144 filename, filedata, AdvCGI.url)
145 145
146 146 def go(self):# determine which page to return
147 147 self.cookies = {}
148 148 self.error = ''
149 149 form = FieldStorage()
150 150 if form.keys() == []:
151 151 self.showForm()
152 152 return <$nopage>
153 153
154 154 if form.has_key('person'):
155 155 self.who = capwords(strip(form['person'].value))
156 156 if self.who == '':
157 157 self.error = 'Your name is required. (blank)'
158 158 else: <$nopage>
159 159 self.error = 'Your name is required. (missing)'
160 160
161 161 if form.has_key('cookie'):
162 162 self.cookies['user'] = unquote(strip(\
163 163 form['cookie'].value))
164 164 else: <$nopage>
165 165 self.cookies['user'] = ''
166 166
167 167 self.langs = []
168 168 if form.has_key('lang'):
169 169 langdata = form['lang']
170 170 if type(langdata) == type([]):
171 171 for eachLang in langdata:
172 172 self.langs.append(eachLang.value)
173 173 else: <$nopage>
174 174 self.langs.append(langdata.value)
175 175 else: <$nopage>
176 176 self.error = 'At least one language required.'
177 177
178 178 if form.has_key('upfile'):
179 179 upfile = form["upfile"]
180 180 self.fn = upfile.filename or ''
181 181 if upfile.file:
182 182 self.fp = upfile.file
183 183 else: <$nopage>
184 184 self.fp = StringIO('(no data)')
185 185 else: <$nopage>
186 186 self.fp = StringIO('(no file)')
187 187 self.fn = ''
188 188
189 189 if not self.error:
190 190 self.doResults()

191 191 else: <$nopage>
192 192 self.showError()
193 193
194 194 if __name__ == '__main__':
195 195 page = AdvCGI()
196 196 page.go()
197 <$nopage>

advcgi.py looks strikingly similar to our friends3.py CGI scripts seen earlier in this chapter. It has form,
results, and error pages to return. In addition to all of the advanced CGI features which are part of our new script,
we are also using more of an object-oriented feel to our script by using a class with methods instead of just a set of
functions. The HTML text for our pages are now static data for our class, meaning that they will remain constant
across all instances—even though there is actually only one instance in our case.

Line-by-line (Block-by-block) explanation

Lines 1 – 7

The usual start-up and import lines appear here. The only module you may not be familiar with is cStringIO,
which we briefly introduced at the end of Chapter 10 and also used in Example 19-1.
cStringIO.StringIO() creates a file-like object out of a string so that access to the string is similar to
opening a file and using the handle to access the data.

Lines 9 – 12

After the AdvCGI class is declared, the header and url (static class) variables are created for use by the
methods displaying all the different pages.

Lines 14 – 80

All the code in this block is used to generate and display the form page. The data attributes speak for themselves.
getCPPCookies() obtains cookie information sent by the Web client, and showForm() collates all the
information and sends the form page back to the client.

Lines 82 – 91

This block of code is responsible for the error page.

Lines 93 – 144

The results page is created using this block of code. The setCPPCookies() method requests that a client store
the cookies for our application, and the doResults() method puts together all the data and sends the output
back to the client.

Lines 146 – 196

The script begins by instantiating an AdvCGI page object, then call its go() method to start the ball rolling, in

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/275#1.html

contrast to a strictly procedural programming process. The go() method contains the logic that reads all incoming
data and decides which page to show.

The error page will be displayed if no name was given or if no languages were checked. The showForm()
method is called to output the form if no input data was received, and the doResults() method is invoked
otherwise to display the results page.

Handling the person field is the same as we have seen in the past, a single key-value pair; however, collecting the
language information is a bit trickier since we must check for either a (Mini)FieldStorage instance or a list
of such instances. We will employ the familiar type() built-in function for this purpose. In the end, we will have
a list of a single language name or many, depending on the user's selections.

The use of cookies to contain data illustrates how they can be used to avoid using any kind of CGI field pass-
through. You will notice in the code which obtains such data that no CGI processing is invoked, meaning that the
data does not come from the FieldStorage object. The data is passed to us by the Web client with each request
and the values (user's chosen data as well as information to fill in a succeeding form with pre-existing information)
are obtained from cookies.

Because the showResults() method receives the new input from the user, it has the responsibility of setting the
cookies, i.e., by calling setCPPCookies(). showForm() however, must read in the cookies' values in order
to display a form page with the current user selections. This is done by its invocation of the getCPPCookies()
method.

Finally, we get to the file upload processing. Regardless of whether a file was actually uploaded, FieldStorage
is given a file handle in the file attribute. If the value attribute is accessed, then entire contents of the file will be
placed into value. As a better alternative, you can access the file pointer—the file attribute—and perhaps read only
one line at a time or other kind of slower processing.

In our case, file uploads are only part of user submissions, so we simply pass on the file pointer to the
doResults() function to extract the data from the file. doResults() will display only the first 1K of the file
for space reasons and to show you that it is not necessary (or necessarily productive/useful) to display a four
megabyte binary file.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=278

Programming > Core Python Programming > 19. Web Programming > Web (HTTP) Servers See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226053241016190125213244

Web (HTTP) Servers

Until now, we have been discussing the use of Python in creating Web clients and performing tasks to
aid Web servers in CGI request processing. We know (and have seen earlier in Sections 19.2 and 19.3)
that Python can be used to create both simple and complex Web clients. Complexity of CGI requests
goes without saying.

However, we have yet to explore the creation of Web servers, and that is the focus of this section. If the
Netscape, IE, Opera, Mozilla, and Lynx browsers are among the most popular Web clients, then what
are the most common Web servers? They are Apache, Netscape, and IIS. In situations where these
servers may be overkill for your desired application, we would like to use Python to help us create
simple yet useful Web servers.

Creating Web Servers in Python

Since you have decided on building such an application, you will naturally be creating all the custom
stuff, but all the base code you will need is already available in the Python Standard Library. To create
a Web server, a base server and a "handler" are required.

The base (Web) server is a boilerplate item, a must have. Its role is to perform the necessary HTTP
communication between client and server. The base server is (appropriately) named HTTPServer and
is found in the BaseHTTPServer module.

The handler is the piece of software which does the majority of the "Web serving." It processes the
client request and returns the appropriate file, whether static or dynamically-generated by CGI. The
complexity of the handler determines the complexity of your Web server. The Python standard library
provides three different handlers.

The most basic, plain, vanilla handler, named BaseHTTPRequestHandler, is found in the
BaseHTTPServer module, along with the base Web server. Other than taking a client request, no
other handling is implemented at all, so you have to do it all yourself, such as in our myhttpd.py
server below.

The SimpleHTTPRequestHandler, available in the SimpleHTTP-Server module, builds on
BaseHTTPRequestHandler by implementing the standard GET and HEAD requests in a fairly
straightforward manner. Still nothing sexy, but it gets the simple jobs done.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=279
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A43%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read9.asp?bookname=0130260363&snode=279&now=5%2F30%2F2002+8%3A43%3A08+PM

Finally, we have the CGIHTTPRequestHandler, available in the CGIHTTPServer module,
which takes the SimpleHTTPRequestHandler and adds support for POST requests. It has the
ability to call CGI scripts to perform the requested processing and can send the generated HTML back
to the client.

The three modules and their classes are summarized in Table 19-6.

Table 19.6. Web Server Modules and Classes

Module Description

BaseHTTPServer provides the base Web server and base handler classes, HTTPServer and
BaseHTTPRequestHandler, respectively

SimpleHTTPServer contains the SimpleHTTPRequestHandler class to perform GET and HEAD requests

CGIHTTPServer contains the CGIHTTPRequestHandler class to process POST requests and perform CGI
execution

To be able to understand how the more advanced handlers found in the SimpleHTTPServer and
CGIHTTPServer modules work, we will implement simple GET processing for a
BaseHTTPRequestHandler. In Example 19-7, we present the code for a fully working Web
server, myhttpd.py.

This server subclasses BaseHTTPRequestHandler and consists of a single do_GET() method,
which is called when the base server receives a GET request. We attempt to open the path passed in by
the client and if present, return an "OK" status (200) and forward the downloaded Web page. If the file
was not found, returning a 404 status.

The main() function simply instantiates our Web server class and invokes it to run our familiar
infinite server loop; shutting it down if interrupted by ^C or similar keystroke. If you have appropriate
access and can run this server, you will notice that it displays loggable output which will look
something like:

Example 19.7. Simple Web Server (myhttpd.py)

This simple Web server can read GET requests, fetch a Web page (.html file) and return it to the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/279#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/279#3.html

calling client. It uses the BaseHTTPRequestHandler found in BaseHTTPServer and
implements the do_GET() method to enable processing of GET requests

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from os import curdir, sep
004 4 from BaseHTTPServer import \
005 5 BaseHTTPRequestHandler, HTTPServer
006 6
007 7 class MyHandler(BaseHTTPRequestHandler):
008 8
009 9 def do_GET(self):
010 10 try: <$nopage>
011 11 f = open(curdir + sep + self.path)
012 12 self.send_response(200)
013 13 self.send_header('Content-type',
014 14 'text/html')
015 15 self.end_headers()
016 16 self.wfile.write(f.read())
017 17 f.close()
018 18 except IOError:
019 19 self.send_error(404, \
020 20 'File Not Found: %s' % self.path)
021 21
022 22 def main():
023 23 try: <$nopage>
024 24 server = HTTPServer(('', 80), MyHandler)
025 25 print 'Welcome to the machine…',
026 26 print 'Press ^C once or twice to quit.'
027 27 server.serve_forever()
028 28 except KeyboardInterrupt:
029 29 print '^C received, shutting down server'
030 30 server.socket.close()
031 31
032 32 if __name__ == '__main__':
033 33 main()
034 <$nopage>

myhttpd.py
Welcome to the machine... Press ^C once or twice to quit
localhost - - [26/Aug/2000 03:01:35] "GET /index.html

HTTP/1.0" 200 -
localhost - - [26/Aug/2000 03:01:29] code 404, message
File Not Found: /dummy.html
localhost - - [26/Aug/2000 03:01:29] "GET /dummy.html
HTTP/1.0" 404 -
localhost - - [26/Aug/2000 03:02:03] "GET /hotlist.htm
HTTP/1.0" 200 -

Of course, our simple little Web server is so simple, that it cannot even process plain text files. We
leave that as an exercise for the reader, which can be found at the end of the chapter.

As you can see, it doesn't take much to have a Web server up and running in pure Python. There is
plenty more you can do to enhance the handlers to customize it to your specific application. Please
review the Library Reference for more information on these modules (and their classes) discussed in
this section.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=279

Programming > Core Python Programming > 19. Web Programming > Related Modules See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226053241019178080129118

Related Modules

In Table 19-7, we present a list of modules which you may find useful for Web and Internet
development.

● The parsing modules deal with recognizing documents in specific formats.

● You can write POP- or IMAP-compliant mail clients using the corresponding protocol modules.

● Python has plenty of modules to support most kinds of binary file encoding for e-mail and other
MIME-oriented applications.

● You can create clients for common Internet protocols like HTTP, FTP, Telnet, and NNTP with
the appropriate modules. Be aware that urllib provides a high-level interface to protocols
supported by your browser such as HTTP and FTP, so use of the lower-level protocol modules
only makes sense when you cannot get all you want from urllib.

● Finally, we have the HTMLgen external module and the commercial Zope (Z Object Publishing
Environment) system by Digital Creations. We introduced the HTMLgen module briefly at the
end of Section 19.5. It definitely comes in handy when you need to generate more complex
HTML documents via CGI scripts.

Table 19.7. Web Programming Related Modules

Module Description

Parsing

htmllib parses simple HTML files

sgmllib parses simple SGML files

xmllib parses simple XML files

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=280
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A43%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read0.asp?bookname=0130260363&snode=280&now=5%2F30%2F2002+8%3A43%3A30+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/280#1.html

robotparser[a] parses robots.txt files for URL "fetchability"
analysis

Mail Client Protocols

poplib use to create POP3 clients

imaplib use to create IMAP4 clients

Mail and MIME Processing and Data Encoding Formats

mailcap parses mailcap files to obtain MIME application
delegations

mimetools provides functions for manipulating MIM-encoded
messages

mimetypes provides MIME type associations

MimeWriter generates MIME-encoded multipart files

multifile can parse multipart MIME-encoded files

quopri en-/decodes data using quoted-printable encoding

rfc822 parses RFC822-compliant e-mail headers

smtplib uses to create SMTP (Simple Mail Transfer Protocol)
clients

base64 en-/decodes data using base64 encoding

binascii en-/decodes data using base64, binhex, or uu (modules)

binhex en-/decodes data using binhex4 encoding

uu en-/decodes data using uuencode encoding

Internet Protocols

httplib[a] use to create HTTP (HyperText Transfer Protocol) clients
(modified in Python 1.6 to support HTTP 1.1 and SSL)

ftplib use to create FTP (File Transfer Protocol) clients

gopherlib use to create Gopher clients

telnetlib use to create Telnet clients

nntplib use to create NNTP (Network News Transfer Protocol
[Usenet]) clients

External/Commercial

HTMLgen use with CGI to generate complex HTML documents

Zope (not a module) web object publishing product and Python Web
application development environment
(http://www.zope.org)

[a] new or modified in Python 1.6

Zope is an open source Web publishing and application development platform which has Python code
everywhere. Part of it is written in Python, and Python can be used to create extensions to Zope.
Although it is in our Related Modules section, Zope is not a specific module as it is a powerful system
for Web publishing.

Zope presents an extremely powerful alternative when simple CGI and database access just do not cut
it for the application you are trying to build. Material on Zope itself can take up a book's length—you
may even see one soon! We invite the reader to explore this system if desiring to create any complex
system.

The robotparser module is new as of Python 1.6 and the httplib and urllib modules have
been modified for 1.6 to support HTTP connections over SSL. (See Section 19.2.2 for a really brief
introduction.) Also, a new module webbrowser, was introduced in 2.0 to provide a platform-
independent way to launch a Web browser.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

http://www.zope.org/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/273#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=280

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 19. Web Programming > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226053241020063154055007

Exercises

urllib Module and Files. Update the friends3.py script so that it stores names
and corresponding number of friends into a 2-column text file on disk and continues to
add names each time the script is run.

EXTRA CREDIT: Add code to dump the contents of such a file to the Web browser (in HTML
format). Additional EXTRA CREDIT: Create a link that clears all the names in this file.

urllib Module. Write a program that takes a user-input URL (either a Web page or an FTP
file, i.e., http://www.python.org or ftp://ftp.python.org/pub/python/README, and downloads it
to your machine with the same filename (or modified name similar to the original if it is invalid
on your system). Web pages (HTTP) should be saved as .htm or .html files, and FTP'd files
should retain their extension.

urllib Module. Rewrite the grabWeb.py script of Example 11.2 which downloads a Web
page and displays the first and last non-blank lines of the resulting HTML file so that you use
urlopen() instead of urlretrieve() to process the data directly (as opposed to
downloading the entire file first before processing it).

URLs and Regular Expressions. Your browser may save your favorite Web site URLs as a
"bookmarks" HTML file (Netscape browsers do this) or as a set of .URL files in a "favorites"
directory (Microsoft browsers do this). Find your browser's method of recording your "hot
links" and the location of where and how they stored. Without altering any of the files, strip the
URLs and names of the corresponding Web sites (if given) and produce a 2-column list of
names and links as output, and storing this data into a disk file. Truncate site names or URLs to
keep each line of output within 80 columns in size.

URLs, urllib Module, Exceptions, and REs. As a follow-up problem to the previous, add
code to your script to test each of your favorite links. Report back a list of dead links (and their
names), i.e., Web sites that are no longer active or a Web page that has been removed. Only
output and save to disk the still-valid links.

Error Checking. The friends3.py script reports an error if no radio button was
selected to indicate the number of friends. Update the CGI script to also report an error
if no name (e.g., blank or whitespace) is entered.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=281
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A43%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read7.asp?bookname=0130260363&snode=281&now=5%2F30%2F2002+8%3A43%3A46+PM
http://www.python.org/
ftp://ftp.python.org/pub/python/README
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/180#1.html

EXTRA CREDIT: We have so far explored only server-side error checking. Explore JavaScript
programming and implement client-side error checking by creating JavaScript code to check for
both error situations so that these errors are stopped before they reach the server.

Problems 19–7 to 19–10 below pertain to Web server access log files and Regular Expressions. Web
servers (and their administrators) generally have to maintain an access log file (usually
logs/access_log from the main Web server directory) which tracks requests file. Over a period of
time, such files get large and either need to be stored or truncated. Why not save only the pertinent
information and delete the files to conserve disk space? The exercises below are designed to give you
some exercise with REs and how they can be used to help archive and analyze Web server data.

Step 19-7.

Count how many of each type of request (GET vs. POST) exist in the log file.

Count the successful page/data downloads: Display all links which resulted in a return code of
200 (OK [no error]) and how many times each link was accessed.

Count the errors: Show all links which resulted in errors (return codes in the 400s or 500s) and
how many times each link was accessed.

Track IP addresses: For each IP address, output a list of each page/data downloaded and how
many times that link was accessed.

Simple CGI. Create a "Comments" or "Feedback" page for a Web site. Take user feedback via a
form, process the data in your script, and return a "thank you" screen.

Simple CGI. Create a Web guestbook. Accept a name, an e-mail address, and a journal entry
from a user and log it to a file (format of your choice). Like the previous problem, return a
"thanks for filling out a guestbook entry" page. Also provide a link which allows users to view
guestbooks.

Web Browser Cookies and Web Site Registration. Update your solution to Exercise 13-
4. so that your user-password information pertains to Web site registration instead of a
simple text-based menu system.

EXTRA CREDIT: familiarize yourself with setting Web browser cookies and maintain a login
session for 4 hours from the last successful login.

Stock Quote Information. There are many online services which allow users to look up
stock quote price information. A few of these sites, such as Yahoo! for example, allow
users to download such data in a comma-delimited spreadsheet format. Become

familiar with one of these sites and learn how to download stock price information onto
your local hard drive. Create a Python application not only to perform the download, but
also to be able to read, parse, and display the saved data for a specified set of stock
ticker symbols.

EXTRA CREDIT: Integrate your solution to the previous problem by registering users and
allowing individual portfolios using the classes created for your solution to Exercise 13-13.

Stock Quote Information. Update your solution to the previous problem by bypassing the
downloading of the information to a local file. Open a connection directly to a Web server and
parse the stock data as it streams down to your application, and display this information to the
screen.

NOTE

Python on the Windows 32-bit platform contains connectivity to Component Object Model (COM),
a Microsoft interfacing technology that allows objects to talk to one another, or more higher-level,
applications to talk to one another, without any language- or format-dependence. You can read all
about COM in Hammond and Robinson. The combination of Python and COM presents a unique
opportunity to create Python scripts which can talk to such applications as Word or Excel.

Stock Quotes and Excel/COM programming (). Familiarize yourself with COM
programming in Python, then use your solution to the previous problem to create a new
application which downloads stock quote information and transfers that data directly to an Excel
spreadsheet. You may choose to have the user manually invoke the Python script to update the
data, or if you have a direct connection to the Internet, have your script update the data
periodically during the business day. Merge any element of your solution to the previous
problem by providing automatically-updating Excel spreadsheets for multiple portfolios.

Multithreaded COM Programming (). Update your solution to the previous problem so
that the downloads of data happen "concurrently" using multiple threads.

Web Database Application. Think of a database schema you want to provide as part of
a Web database application. For this multi-user application, you want to provide
everyone read access to the entire contents of the database, but perhaps only write
access to each individual. One example may be an "address book" for your family and
relatives. Each family member, once successfully logged in, is presented with a Web
page with several options, add an entry, view my entry, update my entry, remove or
delete my entry, and view all entries (entire database).

Design a UserEntry class and create a database entry for each instance of this class. You may

use any solution created for any previous problem to implement the registration framework.
Finally, you make use any type of storage mechanism for your database, either a relational
database such as mySQL or some of the simpler Python persistent storage modules such as
anydbm or shelve.

Electronic Commerce Engine. Use the classes created for your solution to Exercise 13-11 and
add some product inventory to create a potential electronic commerce Website. Be sure your
Web application also supports multiple customers and provides registration for each user.

Dictionaries and cgi module. As you know, the cgi.FieldStorage() method returns
a dictionary-like object containing the key-value pairs of the submitted CGI variables.
You can use methods such as keys() and has_key() for such objects. In Python
1.5, a get() method was added to dictionaries which returned the value of the
requested key, or the default value for a non-existent key. FieldStorage objects do
not have such a method. Let's say we grab the form in the usual manner of:

form = cgi.FieldStorage()

Add a similar get() method to class definition in cgi.py (you can rename it to
mycgi.py or something like that) such that code which looks like this:

if form.has_key(\qwho\q):
 who = form[\qwho\q].value
else:
 who = \q(no name submitted)\q

… can be replaced by a single line which makes forms even more like a dictionary:

howmany = form.get('who', '(no name submitted)')

Creating Web Servers. Our code for myhttpd.py in Section 19.7 is only able to read
HTML files and return them to the calling client. Add support for plain text files with the
".txt" ending. Be sure that you return the correct MIME type of "text/plain."

EXTRA CREDIT: add support for JPEG files ending with either ".jpg" or ".jpeg" and having a
MIME type of "image/jpeg".

Advanced Web Clients. Update the crawl.py script in Section 19.3 to also download links
which use the "ftp:" scheme. All "mailto:" links are ignored by crawl.py. Add support
to ensurethat it also ignores "telnet:, news:, gopher:," and "about:" links.

Advanced Web Clients. The crawl.py script in Section 19.3 only downloads .html
files via links found in Web pages at the same site and does not handle/save images
which are also valid "files" for those pages. It also does not handle servers which are
susceptible to URLs which are missing the trailing slash (/). Add a pair of classes to
crawl.py to deal with these problems. A My404UrlOpener class should subclass
urllib.FancyURLOpener and consist of a single method, http_error_404()
which determines if a 404 error was reached using a URL without a trailing slash. If so,
it adds the slash and retries the request again (and only once). If it still fails, return a
real 404 error. You must set urllib._urlopener with an instance of this class so
that urllib uses it.

Create another class called LinkImageParser which derives from
htmllib.HTMLParser. This class should contain a constructor to call the base class
constructor as well as initialize a list for the image files parsed from Web pages. The
handle_image() method should be overridden to add image filenames to the image list
(instead of discarding them like the current base class method does).

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=281

Programming > Core Python Programming > 20. Extending Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226050046241052137203197

Chapter 20. Extending Python
Chapter Topics

● Introduction/Motivation

● Extending Python

❍ Create Application Code

❍ Wrap Code in Boilerplate

❍ Compile

❍ Import and Test

● Related Topics

In this chapter, we will discuss how we can take code written externally and integrate that functionality
into your Python programming environment. We will first give you motivation for doing such a thing,
then take you through the step-by-step process on how to do it. We should point out, though, that
because extensions are primarily done in the C language, all of the example code you will see in this
section is pure C.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=283
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A44%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read5.asp?bookname=0130260363&snode=283&now=5%2F30%2F2002+8%3A44%3A02+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=283

Programming > Core Python Programming > 20. Extending Python > Introduction/Motivation See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226050046240040107102051

Introduction/Motivation

What Are Extensions?

In general, any code that you write that can be integrated or imported into another Python script can be
considered an "extension." This new code can be written in pure Python or in a compiled language like C and
C++ (or Java for JPython). However, a more "strict" definition of an extension is relegated to the latter
category, the topic of this chapter.

One great feature of Python is that its extensions interact with the interpreter in exactly the same way as the
regular Python modules. Python was designed so that the abstraction of module import hides the underlying
implementation details from the code which uses such extensions. Unless the client programmer searches the
file system, he or she simply cannot tell whether a module is written in Python or in a compiled language.

NOTE

We will note here that extensions are generally available in a development environment where you compile
your own Python interpreter. There is a subtle relationship between manual compilation versus obtaining
the binaries. Although compilation may be a bit trickier than just downloading and installing binaries, you
have the most flexibility in customizing the version of Python you are using.

If you intend to create extensions, you should perform this task in a similar environment. The examples in
this chapter use a Unix system (which, by default, comes with compilers), but, assuming you do have
access to aC/C++ (or Java) compiler and a Python development environment in C/C++ (or Java), the
only differences are in your compilation method. The actual code to make your extensions usable in the
Python world is the same on any platform.

Why Extend Python?

Throughout the brief history of software engineering, programming languages have always been taken at face
value. What you see is what you get; it was impossible to add new functionality to an existing language. In
today's programming environment however, the ability to customize one's programming environment is now a
desired feature; it also promotes code reuse. Languages such as TCL and Python are among the first languages
to provide the ability to extend the base language. So why would you want to extend a language like Python
which is already feature-rich? There are several good reasons:

● Added/extra (non-Python) functionality

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=284
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A44%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=284&now=5%2F30%2F2002+8%3A44%3A18+PM

One reason for extending Python is the need to have new functionality not provided by the core part of
the language. This can be accomplished in either pure Python or as a compiled extension, but there are
certain things such as creating new data types or embedding Python in an existing application.

● Bottleneck performance improvement

It is well-known that interpreted languages do not perform as fast as compiled languages due to the fact
that translation must happen on-the-fly and during runtime. In general, moving a body of code into an
extension will improve overall performance. The problem is that it is sometimes not advantageous if
the cost is high in terms of resources.

Percentage-wise, it is a wiser bet to do some simple profiling of the code to identify what the
bottlenecks are, and move those pieces of code out to an extension. The gain can be seen more quickly
and without expending as much in terms of resources.

● Keep proprietary source code private

Another important reason to create extensions is due to one side effect of having a scripting language.
For all the ease-of-use such languages bring to the table, there really is no privacy as far as source code
is concerned because the executable is the source code.

Code that is moved out of Python and into a compiled language helps keep proprietary code private
because you ship a binary object. Because these objects are compiled, they are not as readily able to be
reverse-engineered; thus, the source remains more private. This is key when it involves special
algorithms, encryption or software security, etc.

Another alternative to keeping code private is to only ship pre-compiled .pyc files only. It serves as a
good middle ground between releasing the actual source (.py files) and having to migrate that code to
extensions.

Extending Python by Writing Extensions

Creating extensions for Python involve three main steps:

1. Create application code

2. Wrap code with boilerplates

3. Compilation

In this section, we will break out all three pieces and expose it all to you.

Create Your Application Code

First, before any code becomes an extension, create a standalone "library." In other words, create your code

keeping in mind that it is going to turn into a Python module. Design your functions and objects with the
vision that Python code will be communicating and sharing data with your C code and vice versa.

Next, create test code to bulletproof your software. You may even use the "Pythonic" development method of
designating your main() function in C as the testing application so that if your code is compiled, linked, and
loaded into an executable (as opposed to just a shared object), that invocation of such an executable will result
in a regression test of your software library. For our extension example below, this is exactly what we do.

The test case involves two C functions which we want to bring to the world of Python programming. The first
is the recursive factorial function, fac(). The second, reverse(), is a simple string reverse algorithm,
whose main purpose is to reverse a string "in place," that is, to return a string whose characters are all reversed
from their original positions, all without allocating a separate string to copy in reverse order. Because this
involves the use of pointers, we need to carefully design and debug our code before bringing Python into the
picture.

Our first version, Extest1.c, is presented in Example 20.1.

Example 20.1. Pure C Version of Library(Extest1.c)

The following code represents our library of C functions which we want to wrap so that we can use this
code from within the Python interpreter. main() is our tester function.

 <$nopage>
001 1 #include <stdio.h>
002 2 #include <stdlib.h>
003 3 #include <string.h>
004 4
005 5 int fac(int n)
006 6 {
007 7 if (n < 2) return(1);
008 8 return((n)*fac(n-1));
009 9 }
010 10
011 11 char *reverse(char *s)
012 12 {
013 13 register char t,
014 14 *p = s,
015 15 *q = (s + (strlen(s) - 1));
016 16
017 17 while (s && (p < q))
018 18 {
019 19 t = *p;
020 20 *p++ = *q;
021 21 *q-- = t;
022 22 }
023 23 return s;

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/284#5.html

024 24 }
025 25
026 26 void main()
027 27 {
028 28 char s[BUFSIZ];
029 29 printf("4! == %d\n", fac(4));
030 30 printf("8! == %d\n", fac(8));
031 31 printf("12! == %d\n", fac(12));
032 32 strcpy(s, "abcdef");
033 33 printf("reversing 'abcdef', we get '%s'\n", \
034 34 reverse(s));
035 35 strcpy(s, "madam");
036 36 printf("reversing 'madam', we get '%s'\n", \
037 37 reverse(s));
038 38 }
039 <$nopage>

This code consists of a pair of functions, fac() and reverse(), which are implementations of the
functionality we described above. fac() takes a single integer argument and recursively calculates the result,
which is eventually returned to the caller once it exits the outermost call.

The last piece of code is the required main() function. We use it to be our tester, sending various arguments
to fac() and reverse(). With this function, we can actual tell whether our code works (or not).

Now we should compile the code. For many versions of Unix with the gcc compiler, we use the following
command:

% gcc Extest1.c -o Extest
%

To run our program, we issue the following command and get the output:

% Extest
4! == 24
8! == 40320
12! == 479001600
reversing 'abcdef', we get 'fedcba'
reversing 'madam', we get 'madam'
%

We stress again that you should try to complete your code as much as possible, because you do not want to
mix debugging of your library with potential bugs when integrating with Python. In other words, keep the
debugging of your core code separate from the debugging of the integration. The closer you write your code to
Python interfaces, the sooner your code will be integrated and work correctly.

Each of our functions takes a single value and returns a single value. It's pretty cut and dried, so there
shouldn't be a problem integrating with Python. Note that so far, there no connection or relationship with
Python as of now. We are simply creating a standard C or C++ application.

Wrap Your Code in Boilerplate

The entire implementation of an extension primarily revolves around the "wrapping" concept which we
introduced earlier in Section 13.15.1. You should design your code in such a way that there is a smooth
transition between the world of Python and your implementing language. This interfacing code is commonly
called "boilerplate" code because it is a necessity if your code is to talk to the Python interpreter.

There are 4 main pieces to the boilerplate software:

1. Include Python header file

2. Add PyObject* Module_func() Python wrappers for each module function

3. Add PyMethodDef ModuleMethods[] array/table for each module function

4. Add void initModule() module initializer function

Include Python header file

The first thing you should do is to find out where your Python include files are and make sure your compiler
has access to that directory, which is usually /usr/local/include/python1.x, or
/usr/include/python1.x, where the "1.x" is your version of Python. (It is probably 1.5 or 2.0.) If you
compiled and installed your Python interpreter, then you shouldn't have a problem because the system
generally knows where your files are installed.

Add the inclusion of the Python.h header file to your source. The line will look something like:

#include "Python.h"

That's the easy part. Now you have to add the rest of the boilerplate software.

Add PyObject* Module_func() Python wrappers for each function

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/226#1.html

This part is the trickiest. For each function which you want accessible to the Python environment, you will
create a static PyObject* function with the module name (along with an underscore [_]) prepended to
it.

For example, we want fac() to be one of the functions available for import from Python and will use Extest
as the name of our final module, so we create a "wrapper" called Extest_fac(). So in the client Python
script, there will be an "import Extest" and an "Extest.fac()" call somewhere (or just "fac()" for
"from Extest import fac").

The job of the wrapper is to take Python values, convert them to C, then make a call to the appropriate
function with what we want. When our function has completed, and it is time to return to the world of Python,
it is also the job of this wrapper to take whatever return values we designate, convert them to Python, and then
perform the return, passing back any values as necessary.

In the case of fac(), when the client program invokes Extest.fac(), our wrapper will be called. We
will accept a Python integer, convert it to a C integer, call our C function fac() and obtain another integer
result. We then have to take that return value, convert it back to a Python integer, then return from the call. (In
your head, try to keep in mind that you are writing the code that will proxy for a "def fac(n)" declaration.
When you are returning, it is as if that imaginary Python fac() function is completing.)

So, you're asking, how does this conversion take place? The answer is with the PyArg_Parse*() functions
when going from C to Python, and Py_BuildValue() when returning from C to Python.

The PyArg_Parse*() functions are similar to the C sscanf() function. It takes a stream of bytes, and,
according to some format string, parcels them off to corresponding container variables, which, as expected,
take pointer addresses. They both return 1 on successful parsing and 0 otherwise.

Py_BuildValue() works like sprintf(), taking a format string and converting all arguments to a
single returned object containing those values in the formats that you requested.

You will find a summary of these functions below in Table 20.1:

Table 20.1. Converting Data Between Python and C/C++

Function Description
C to Python
int

PyArg_ParseTuple()

converts (a tuple of) arguments passed from Python to C

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/284#9.html

int

PyArg_ParseTupleAndKeywords()

same as PyArg_ParseTuple() but also parses keyword arguments

Python to C
PyObject*

Py_BuildValue()

converts C data values into a Python return object, either a single object or a single
tuple of objects

A set of conversion codes is used to convert data objects between C and Python; they are given in Table 20.2.

Table 20.2. Common Codes to Convert Data Between Python and C/C++

Format Code Python Type C/C++ Type
s string char*

z string/None char*c/NULL

i int int

l long long

c string char

d float double

D complex Py_Complex*

O (any) PyObject*

S string PyStringObject

These conversion codes are the ones given in the respective format strings that dictate how the values should
be converted when moving between both languages. NOTE: the conversion types are different for Java since
all data types are classes. Consult the JPython documentation to obtain the corresponding Java types for
Python objects.

Here we show you our completed Extest_fac() wrapper function:

static PyObject *
Extest_fac(PyObject *self, PyObject *args) {

 int res; // parse result
 int num; // arg for fac()
 PyObject* retval; // return value

 res = PyArg_ParseTuple(args, "i", &num);
 if (!res) // TypeError
 return NULL;
 }

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/284#10.html

 res = fac(num);
 retval = (PyObject*)Py_BuildValue("i", res);
 return retval;
}

The first step is to parse the data received from Python. It should be a regular integer, so we use the "i"
conversion code to indicate as such. If the value was indeed an integer, then it gets stored in the num variable.
Otherwise, PyArg_ParseTuple() will return a NULL, in which case we also return one. In our case, it
will generate a TypeError exception that tells the client user that we are expecting an integer.

We then call fac() with the value stored in num and put the result in res, reusing that variable. Now we
build our return object, a Python integer, again using a conversion code of "i". Py_BuildValue() creates
an integer Python object which we then return. That's all there is to it!

In fact, once you have created wrapper after wrapper, you tend to shorten your code somewhat to avoid
extraneous use of variables. Try to keep your code legible, though. We take our Extest_fac() function
and reduce it to its smaller version given here, using only one variable, num:

static PyObject *
Extest_fac(PyObject *self, PyObject *args) {
 int num;
 if (!PyArg_ParseTuple(args, "i", &num)) return NULL;
 return (PyObject*)Py_BuildValue("i", fac(num));
}

What about reverse()? Well, since you already know how to return a single value, we are going to change
our reverse() example somewhat, returning two values instead of one. We will return a pair of strings as a
tuple, the first element being the string as passed in to us, and the second being the newly-reversed string.

To show you that there is some flexibility, we will call this function Extest.doppel() to indicate that its
behavior differs from reverse(). Wrapping our code into an Extest_doppel() function, we get:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str;
 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 return (PyObject*)Py_BuildValue("ss", orig_str, \
 reverse(strdup(orig_str)));
}

As in Extest_fac(), we take a single input value, this time a string, and store it into orig_str. Notice
that we use the "s" conversion code now. We then call strdup() to create a copy of the string. (Since we
want to return the original one as well, we need a string to reverse, so the best candidate is just a copy of the
string.) strdup() creates and returns a copy which we immediate dispatch to reverse(). We get back a
reversed string.

As you can see, Py_BuildValue() puts together both strings using a conversion string of "ss." This
creates a tuple of two strings, the original string and the reversed one. End of story, right? Unfortunately, no.

We got caught by one of the perils of C programming: the memory leak, that is, when memory is allocated but
not freed. Memory leaks are analogous to borrowed books from the library but not returning them. You should
always release resources which you have acquired when you no longer require them. How did we commit
such a crime with our code (which looks innocent enough)?

When Py_BuildValue() puts together the Python object to return, it makes copies of the data it has been
passed. In our case here, that would be a pair of strings. The problem is that we allocated the memory for the
second string, but we did not release that memory when we finished, leaking it. What we really want to do is
to build the return object and then free the memory that we allocated in our wrapper. We have no choice but to
lengthen our code to:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str; // original string
 char *dupe_str; // reversed string
 PyObject* retval;

 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 retval = (PyObject*)Py_BuildValue("ss", orig_str, \
 dupestr=reverse(strdup(orig_str)));
 free(dupe_str);
 return retval;
}

We introduced the dupe_str variable to point to the newly-allocated string, built the return object and
referenced it to retval. Then we free() the memory allocated and finally return back to the caller. Now
we are done.

Add PyMethodDef ModuleMethods[]array/table for each module function

Now that both of our wrappers are complete, we want to list them somewhere so that the Python interpreter
knows how to import and access them. This is the job of the ModuleMethods[] array.

It is made up of an array of arrays, with each individual array containing information about each function,
terminated by a NULL array marking the end of the list. For our Extest module, we create the following
ExtestMethods[] array:

static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { NULL, NULL },
};

The Python-accessible names are given, followed by the corresponding wrapping functions. The constant
METH_VARARGS is given, indicating a set of arguments in the form of a tuple. If we are using
PyArg_ParseTupleAndKeywords() with keyworded arguments, we would logically OR this flag with
the METH_KEYWORDS constant. Finally, a pair of NULLs properly terminates our list of two functions.

Add void initModule() module initializer function

The final piece to our puzzle is the module initializer function. This code is called when our module is
imported for use by the interpreter. In this code, we make one call to Py_InitModule() along with the
module name and the name of the ModuleMethods[] array so that the interpreter can access our module
functions. For our Extest module, our initExtest() procedure looks like this:

 void initExtest() {
 Py_InitModule("Extest", ExtestMethods);
 }

We are now done with all our wrapping. We add all this code to our original code from Extest1.c and
merge the results into a new file called Extest2.c, concluding the development phase of our example.

Another approach to creating an extension would be to make your wrapping code first, using "stubs" or test or
dummy functions which will, during the course of development, be replaced by the fully functional pieces of
implemented code. That way you can ensure that your interface between Python and C is correct, and then use
Python to test your C code.

Compilation

Now we are on to the compilation phase. In order to get your new wrapper Python extension to build, you

need to get it to compile with the Python library. This task has finally been standardized across platforms to
make life a lot easier for extension designers.

1. Copy Misc/Makefile.pre.in

2. Create Setup

3. Create Makefile

4. Compile and link your code by running make

5. Import your module from Python

6. Test function

Copy Misc/Makefile.pre.in

The first step is to copy the Makefile.pre.in file from the Misc directory of the Python distribution to
your local directory where your extension is to be compiled. In fact, all steps take place in this same directory
or folder.

Create Setup

The next step is to create a Setup file. The first line should contain the string "*shared*." It is followed
by line after line of module names followed by source files and compiler options which need to come together
to build the module. If you have only one module, then it should be only one line. The format of these lines is
the following:

modName modFile[1, ***modFile2…][compiler_opts][linker_opts]

So for our Extest example, our Setup file consists of the following pair of lines:

shared
Extest Extest.2c

The "*shared*" string at the top of the Setup file means to create a shared library (.so object file), i.e.,
Extest.so. This file can then be imported by any Python module just as if your module was written in
pure Python.

Create Makefile

Now we need to create the Makefile. We do this by issuing the make command:

% make -f Makefile.pre.in boot

This step usually gives a good amount of output, most of which is not important to you. It basically takes the
information provided in the Setup file, adds its knowledge of where all the Python files are, and generates a
Makefile so that you can build your module object file.

Compile and link your code by running make

% make
gcc -fpic -O2 -m486 -fno-strength-reduce -I/usr/
include/python1.5 -I/usr/include/python1.5 -
DHAVE_CONFIG_H -c ./Extest2.c
gcc -shared Extest2.o -o Extestmodule.so

NOTE

If your module consists of a single file of the same name, then your shared object file will be the same
name, but with a .so extension, i.e., if our module is Extest and our file is Extest.c, then our
shared object file would be called Extest.so. If there is more than one file or if there is a single file
with a different name, then your module will have a "module" suffix after its name, i.e.,
Extestmodule.so. In either case, you still import the module by its original name (without the
"module").

Import your module from Python

Now we can test out our module from the interpreter:

>>> import Extest
>>> Extest.fac(5)
120
>>> Extest.fac(9)
362880
>>> Extest.doppel('abcdefgh')

('abcdefgh', 'hgfedcba')
>>> Extest.doppel("Madam, I'm Adam.")
("Madam, I'm Adam.", ".madA m'I ,madaM")

Test function

The one last thing we want to do is to add a test function. In fact, we already have one, in the form of the
main() function. Now it is potentially dangerous to have a main() function in our code because there
should only be one main() in the system. We remove this danger by changing the name of our main() to
test() and wrapping it, adding Extest_test() and updating ExtestMethods array so that they both
look like this:

static PyObject *
Extest_test(PyObject *self, PyObject *args) {
 test();
 return (PyObject*)Py_BuildValue("");
}
static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { "test", Extest_test, METH_VARARGS },
 { NULL, NULL },
};

The Extest_test() module function just runs test() and returns an empty string, resulting in a Python
value of None being returned to the caller.

Now we can run the same test from Python:

>>> Extest.test()
4! == 24
8! == 40320
12! == 479001600
reversing 'abcdef', we get 'fedcba'
reversing 'madam', we get 'madam'
>>>

Below, we present the final version of Extest2.c (Example 20.2) that was used to generate the output we

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/284#20.html

just witnessed.

Example 20.2. Python-wrapped Version of C Library (Extest2.c)

 <$nopage>
001 1 #include <stdio.h>
002 2 #include <stdlib.h>
003 3 #include <string.h>
004 4
005 5 int fac(int n)
006 6 {
007 7 if (n < 2) return(1);
008 8 return ((n)*fac(n-1));
009 9 }
010 10
011 11 char *reverse(char *s)
012 12 {
013 13 register char t,
014 14 *p = s,
015 15 *q = (s + (strlen(s) - 1));
016 16
017 17 while (s && (p < q))
018 18 {
019 19 t = *p;
020 20 *p++ = *q;
021 21 *q-- = t;
022 22 }
023 23 return(s);
024 24 }
025 25
026 26 void test()
027 27 {
028 28 char s[BUFSIZ];
029 29 printf("4! == %d\n", fac(4));
030 30 printf("8! == %d\n", fac(8));
031 31 printf("12! == %d\n", fac(12));
032 32 strcpy(s, "abcdef");
033 33 printf("reversing 'abcdef', we get '%s'\n", \
034 34 reverse(s));
035 35 strcpy(s, "madam");
036 36 printf("reversing 'madam', we get '%s'\n", \
037 37 reverse(s));
038 38 }
039 39
040 40 #include "Python.h"
041 41
042 42 static PyObject *

043 43 Extest_fac(PyObject *self, PyObject *args)
044 44 {
045 45 int num;
046 46 if (!PyArg_ParseTuple(args, "i", &num))
047 47 return NULL;
048 48 return (PyObject*)Py_BuildValue("i", fac(num));
049 49 }
050 50
051 51 static PyObject *
052 52 Extest_doppel(PyObject *self, PyObject *args)
053 53 {
054 54 char *orig_str;
055 55 char *dupe_str;
056 56 PyObject* retval;
057 57
058 58 if (!PyArg_ParseTuple(args, "s", &orig_str))
059 59 return NULL;
060 60 retval = (PyObject*)Py_BuildValue("ss", orig_str, \
061 61 dupe_str=reverse(strdup(orig_str)));
062 62 free(dupe_str);
063 63 return retval;
064 64 }
065 65
066 66 static PyObject *
067 67 Extest_test(PyObject *self, PyObject *args)
068 68 {
069 69 test();
070 70 return (PyObject*)Py_BuildValue("");
071 71 }
072 72
073 73 static PyMethodDef
074 74 ExtestMethods[] =
075 75 {
076 76 { "fac", Extest_fac, METH_VARARGS },
077 77 { "doppel", Extest_doppel, METH_VARARGS },
078 78 { "test", Extest_test, METH_VARARGS },
079 79 { NULL, NULL },
080 80 };
081 81
082 82 void initExtest()
083 83 {
084 84 Py_InitModule("Extest", ExtestMethods);
085 85 }
086 <$nopage>

In this example, we chose to segregate our C code from our Python code. It just kept things easier to read and

is no problem with our short example. In practice, these source files tend to get large, and some choose to
implement their wrappers completely in a different source file, i.e., ExtestWrappers.c or something of
that nature.

Reference Counting

You may recall that Python uses reference counting as a means of keeping track of objects and deallocating
objects no longer referenced as part of the garbage collection mechanism. When creating extensions, you must
pay extra special attention to how you manipulate Python objects because you must be mindful of whether or
not you need to change the reference count for such objects.

There are two types of references you may have to an object, one of which is an owned reference, meaning
that the reference count to the object is incremented by one to indicate your ownership. One place where you
would definitely have an owned reference is where you create a Python object from scratch.

When you are done with a Python object, you must dispose of your ownership, either by decrementing the
reference count, transferring your ownership by passing it on, or storing the object. Failure to dispose of an
owned reference creates a memory leak.

You may also have a borrowed reference to an object. Somewhat lower on the responsibility ladder, this is
where you are passed the reference of an object, but otherwise do not manipulate the data in any way nor do
you have to worry about its reference count, so long as you do not hold onto this reference after its reference
count has decreased to zero. You may convert your borrowed reference to an owned reference simply by
incrementing an object's reference count.

Python provides a pairs of C macros which are used to change the reference count to a Python object. They are
given in Table 20.3:

Table 20.3. Macros for Performing Python Object Reference Counting

Function Description
Py_INCREF(obj) increment the reference count to obj

Py_DECREF(obj) decrement the reference count to obj

In our above Extest_test() function, we return None by building a PyObject with an empty string;
however, it can also be accomplished by becoming an owner of the None object, PyNone, incrementing
your reference count to it, and returning it explicitly, as in the following alternative piece of code:

static PyObject *
Extest_test(PyObject *self, PyObject *args) {
 test();
 Py_INCREF(Py_None);
 return PyNone;

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/284#22.html

}

Py_INCREF() and Py_DECREF() also have versions which check for NULL objects, and they are
Py_XINCREF() and Py_XDECREF(), respectively.

We strongly urge the reader to consult the Python documentation regarding extending and embedding Python
for all the details with regards to reference counting (see the documentation reference in the Appendix).

Threading and GIL Awareness

Extension writers must be aware that their code may be executed in a multithreaded Python environment.
Back in Section 17.3.1, we introduced the Python Virtual Machine (PVM) and the Global Interpreter Lock
(GIL) and described how only one thread of execution can be running at any given time in the PVM, and that
the GIL is responsible for keeping other threads from running. Furthermore, we indicated that code calling
external functions such as in extension code would keep the GIL locked until the call returns.

We also hinted that there was a remedy, a way for the extension programmer to release the GIL, for example
before performing a system call. This accomplished by "blocking" your code off to where threads may (and
may not) run safely using another pair of C macros, Py_BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS. A block of code bounded by these macros will permit other threads to run.

As with the reference counting macros, we urge you consult with the documentation regarding extending and
embedding Python as well as the Python/C API reference manual.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/260#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=284

Programming > Core Python Programming > 20. Extending Python > Related Topics See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226050046245169194204193

Related Topics

SWIG

There is an external tool available called SWIG, which stands for Simplified Wrapper and Interface
Generator. It was written by David Beazley, also the author of Python Essential Reference, and is a
software tool that can take annotated C/C++ header files and generate wrapped code, ready to compile
for Python, Tcl, and Perl. In fact, it is so simple that once you get comfortable using it, you can
practically bypass everything we have discussed in this chapter! You can find out more information
about SWIG from its main Web site located at the following Web address (URL):

http://www.swig.org

Embedding

Embedding is another feature which is available in Python. It is the inverse of an extension. Rather than
taking C code and wrapping it into Python, you take a C application and wrap a Python interpreter
inside it. This has the effect of giving a potentially large, monolithic, and perhaps rigid, proprietary,
and/or mission-critical application the power of having an embedded Python interpreter. Once you have
Python, well, it's like a whole new ball game.

To conclude, we would like to mention that there are two pieces of official Python documentation
related to the material in this chapter, "Embedding and Extending the Python Interpreter" and
"Python/C API Reference Manual." Both will be able to fill in the gaps that we left and are available at
the Python home page or directly at this link:

http://www.python.org/doc/ext

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=285
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A44%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=285&now=5%2F30%2F2002+8%3A44%3A44+PM
http://www.swig.org/
http://www.python.org/doc/ext
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=285

© 2002, O'Reilly & Associates, Inc.

Programming > Core Python Programming > 20. Extending Python > Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226051068056170216148170

Exercises

Extending Python. What are some of the advantages of Python extensions?

Extending Python. Can you see any disadvantages or dangers from using extensions?

Writing Extensions. Obtain or find a C/C++ compiler and write a small program with it to
(re)familiarize yourself with C/C++ programming. Find your Python distribution directory and
locate the Misc/Makefile.pre.in file. Take the program you just wrote and wrap it in
Python. Go through the steps necessary to create a shared object. Access that module from
Python and test it.

Porting from Python to C. Take several of the exercises you did in earlier chapters and port
them to C/C++ as extension modules.

Wrapping C Code. Find a piece of C/C++ code which you may have done a long time ago, but
want to port to Python. Instead of porting, make it an extension module.

Writing Extensions. In Exercise 13-3, you created a dollarize() function as part of a class
to convert a floating point value to a financial numeric string with embedded dollar signs and
commas. Create an extension featuring a wrapped dollarize() function and integrate a
regression testing function, i.e., test(), into the module.

Extending vs. Embedding. What is the difference between extending and embedding?

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=286
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A45%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=286&now=5%2F30%2F2002+8%3A45%3A04+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=286

Programming > Core Python Programming > A. > Answers to Selected Exercises See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226051068061019249000137

Answers to Selected Exercises

Chapter 2

Q: Loops and numbers. Create some loops using both while and for.

A: 5. loops and numbers

a)

i = 0
while i < 11:
 i = i + 1

b)

for i in range(11):
 pass

Q: Conditionals. Detect whether a number is positive, negative, or zero. Try using fixed values at
first, then update your program to accept numeric input from the user

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=288
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A45%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=288&now=5%2F30%2F2002+8%3A45%3A51+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/68#4.html

A: 6. conditionals

n = int(raw_input('enter a number: '))
if n < 0:
 print 'negative'
elif n > 0:
 print 'positive'
else:
 print 'zero'

Q: Loops and strings. Take a user input string and display string, one character at a time. As in your
above solution, perform this task with a while loop first, then with a for loop

A: 7.

s = raw_input('enter a string: ')

for eachChar in s:
 print eachChar

for i in range(len(s)):
 print s[i]

Q: Loops and operators. Create a fixed list or tuple of 5 numbers and output their sum. Then update
your program so that this set of numbers comes from user input. As with the problems above,
implement your solution twice, once using while and again with for.

A: 8.

subtot = 0
for i in range(5):
 subtot = subtot + int(raw_input('enter a number: '))
print subtot

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/68#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/68#6.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/68#7.html

Chapter 3

Q: Identifiers. Which of the following are valid Python identifiers? If not, why not? Of the invalid
ones, which are keywords?

A: 7. identifiers

40XL number
$saving$ symbol
print kw
0x40L number
big-daddy symbol
2hot2touch number
thisIsn'tAVar symbol
if kw
counter-1 symbol

Chapter 4

Q: Object Equality. What do you think is the difference between the expressions type(a) == type(b)
and type(a) is type(b)?

A: 6. difference between type(a) == type(b) and type(a) is type(b):

type(a) == type(b) whether the value of type(a) is the same as the value of
type(b)… == is a value compare

type(a) is type(b) whether the type objects returned by type(a) and type(b)
are the same object

Chapter 5

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/77#7.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/88#1.html

Q: Geometry. Calculate the area and volume of

A: 8.

import math

def sqcube():
 s= float(raw_input('enter length of one side: '))
 print 'the area is:', s ** 2., '(units squared)'
 print 'the volume is:', s ** 3., '(cubic units)'

def cirsph():
 r = float(raw_input('enter length of radius: '))
 print 'the area is:', math.pi * (r ** 2.),
 '(units squared)'
 print 'the volume is:', (4. / 3.) * math.pi * (r **
3.), '(cubic units)'

sqcube()
cirsph()

Q: Modulus. (a) Using loops and numeric operators, output all even numbers from 0 to 20

A: 11.

a.

for i in range(0, 22, 2): # range(0, 21, 2) okay too
 print i

OR

for i in range(22): # range(21) okay too
 if i % 2 == 0: print i

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/98#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/98#2.html

b.

for i in range(1, 20, 2): # range(1, 21, 2) okay too
 print i

OR

for i in range(20): # range(21) okay too
 if i % 2 != 0: print i

c.

when i % 2 is 0, it's even (divisible by 2), otherwise it's odd

Chapter 6

1: Strings. Are there any string methods or functions in the string module that will help me
determine if a string is part of a larger string

A: 1.

find(), rfind(), index(), rindex()

2: String Identifiers. Modify the idcheck.py script in Example 6-1 such that it will determine the
validity of identifiers of length 1 as well as be able to detect if an identifier is a keyword. For the
latter part of the exercise, you may use the keyword module (specifically the keyword.kwlist list)
to aid in your cause

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/120#1.html

A: 2.

import string

alphas = string.letters + '_'
alnums = alphas + string.digits

iden = raw_input('Identifier to check? ')

if len(iden) > 0:
 if iden[0] not in alphas:
 print "invalid: first char must be alphabetic"
 else:
 if len(iden) > 1:
 for eachChar in iden[1:]:
 if eachChar not in alnums:
 print invalid: other chars must be alphanumeric
 break
 else:
 import keyword
 if iden not in keyword.kwlist:
 print 'ok'
 else:
 print 'invalid: keyword name'

else:
 print 'no identifier entered'

Chapter 7

Q: Creating Dictionaries. Given a pair of identically-sized lists, say, [1, 2, 3, …], and ['abc', 'def',
'ghi', …], process all that list data into a single dictionary that looks like: {1: 'abc', 2: 'def', 3:
'ghi', …}.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/120#2.html

A: 4.

assumes both list1 and list2 are of the same length
dict = {}
for i in range(len(list1)):
 dict[list1[i]] = list2[i]

There is a more clever solution using the map() built-in function.

Q: Inverting Dictionaries. Take a dictionary as input and return one as output, but the values are
now the keys and vice versa

A: 7.

list1 = oldDict.values()
list2 = oldDict.keys()

(See solution to problem 4 for the remainder of this solution.)

Chapter 8

Q: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

A: 3a.

range(10)

Q: Prime Numbers. We presented some code in this chapter to determine a number's largest factor
or if it is prime. Turn this code into a Boolean function called isprime() such that the input is a
single value, and the result returned is 1 if the number is prime and 0 otherwise

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/128#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/128#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/140#1.html

A: 4.

def isprime(num):
 count = num / 2
 while count > 1:
 if num % count == 0: return 0
 count = count - 1
 return 1

Chapter 9

1: File Access. Prompt for a number N and file F, and display the first N lines of F

A: 2.

file = open(raw_input('enter file: '))
allLines = file.readlines()
file.close()
num = input('enter number of lines: ')
i = 0
while i < num:
 print allLines[i],
 i = i + 1

(HINT: 1., 2., 3. can be inspired with outfile.py on p. 38 and p. 245)

2: Logging Results. Convert your calculator program (Exercise 5-6) to take input from the
command-line, i.e.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/140#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/153#1.html

A: 14b.

import sys

print "# of args", len(sys.argv)
print "args:", sys.argv

3: Searching Files. Obtain a byte value (0-255) and a file name. Display the number of times that
byte appears in the file

A: 18.

part of this comes from creatext.py on p.247

Chapter 10

1: Raising Exceptions. Which of the following can RAISE exceptions during program execution?
Note that this question does not ask what may CAUSE exceptions

A: 1.

e)

2: Raising Exceptions. Referring to the list in the problem above, which could raise exceptions
while running within the interactive interpreter?

A: 2.

try-except monitors the try clause for exceptions and execution jumps to the matching
except clause. However, the finally clause of a try-finally will be executed
regardless of whether or not an exception occurred.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/153#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/153#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/169#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/169#2.html

Chapter 11

Q: Default arguments. Update the sales tax script you created in Exercise 5-7 such that a sales tax
rate is no longer required as input to the function. Create a default argument using your local tax
rate if one is not passed in on invocation

A: 5.

def printf(string, *args):
 print string % args

Chapter 13

Q: Functions vs. Methods. What are the differences between functions and methods?

A: 2.

Methods are basically functions, but are tied to a specific class object type. They are defined as
part of a class and are executed as part of an instance of that class.

Q: Delegation. In our final comments regarding the capOpen class of Example 13.4 where we
proved that our class wrote out the data successfully, we noted that we could use either
capOpen() or open() to read the file text. Why? Would anything change if we used one or the
other?

A: 15.

It makes no difference whether we use open() or capOpen() to read our file because in
capOpen.py, we delegated all of the reading functionality to the Python system defaults,
meaning that no special action is ever taken on reads, meaning the same code would be executed,
i.e., none of read(), readline(), or readlines() was overridden with any special
functionality.

Chapter 14

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/198#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/228#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/228#3.html

1: Callable Objects. Name Python's callable objects

A: 1.

functions, methods, classes, callable class instances

2: input vs. raw.input(). What is the difference between the built-in functions input() and
raw_input()

A: 3.

raw_input() returns user input as a string; input() returns the evaluation of the user input
as a Python expression.

Chapter 15

1: Recognize the following strings: bat, bit, but, hat, hit, or hut.

A: 1.

bat, hat, bit, etc.

[bh] [aiu] t

2: Match any pair of words separated by a single space, i.e., first and last names

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/239#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/239#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/248#1.html

A: 2.

first name last

[A-Za-z-]+ [A-Za-z-]+

(any pair of words separated by a single space, e.g., first and last names, hyphens
allowed)

3: Match any word and single letter separated by a comma and single space, as in last name, first
initial

A: 3.

last name, first

[A-Za-z-]+, [A-Za-z]

(any word and single letter separated by a comma and single space, e.g., last name,
first initial)

[A-Za-z-]+, [A-Za-z-]+

(any pair of words separated by a comma and single space, e.g., last, first names,
hyphens allowed)

4: Match the set of the string representations of all Python longs

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/248#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/248#3.html

A: 8.

Python longs

\d+[lL]

(decimal [base 10] integers only)

5: Match the set of the string representations of all Python floats

A: 9.

Python floats

[0–9]+(\.[0–9]*)?

(describes a simple floating point number, that is, any number of digits followed
optionally by a single decimal point and zero or more numeric digits, as in "0.004," "2,"
"75.," etc.)

Chapter 16

1:

A: 3.

TCP

2:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/248#4.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/248#5.html

A: 5.

>>> import socket
>>> socket.getservbyname('daytime', 'udp')
13

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=288

Programming > Core Python Programming > A. See All Titles

< BACK Make Note | Bookmark CONTINUE >

Appendix A.

Answers to Selected Exercises

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=287
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=287

Programming > Core Python Programming > B. > Other Reading and References See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226048024233046167208078

Other Reading and References

Printed References

Altom,Tim,Mitch Chapman,Programming with Python, Prima,

Beazley,David M.,Python Essential Reference, New Riders,

Brown,Martin C.,Python Annotated Archives, McGraw Hill,

Grayson,John E.,Python and Tkinter Programming, Manning,

Hammond,MarkAndy Robinson,Python Programming on Win32, O'Reilly,

Harms,Daryl,Kenneth McDonald,The Quick Python Book, Manning,

Himstedt,Tobias,Klaus Mänzel,Mit Python programmieren (Programming with Python) [in German],
dpunkt.verlag,

Lundh,Fredrik,(the eff-bot guide to) The Standard Python Library, http://FatBrain.com, (Product#)

Lutz,Mark,David Ascher,Learning Python, O'Reilly,

Lutz,Mark,Programming Python, O'Reilly,

Lutz,Mark,Python Pocket Reference, O'Reilly,

McGrath,Sean,XML Processing with Python, Prentice Hall,

Van Laningham,Ivan,Teach Yourself Python in 24 Hours, Sams,

Watters,Aaron,Guido van Rossum,James C. Ahlstrom,Internet Programming with Python, Henry Holt
& Co./M&T Books/MIS:Press/IDG Books, [out-of-print]

van Rossum,Guido,Python Library Reference: Release 1.5.2, http://iUniverse.com,

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=290
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A46%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read3.asp?bookname=0130260363&snode=290&now=5%2F30%2F2002+8%3A46%3A24+PM
http://fatbrain.com/
http://iuniverse.com/

van Rossum,Guido,Python Reference Manual: Release 1.5.2, http://iUniverse.com,

van Rossum,Guido,Python Tutorial: Release 1.5.2, http://iUniverse.com,

von Löwis,Martin,Nils Fischbeck,Das Python-Buch (The Python Book) [in German], Addison Wesley
Longman, [out-of-print]

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

http://iuniverse.com/
http://iuniverse.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=290

Programming > Core Python Programming > B. See All Titles

< BACK Make Note | Bookmark CONTINUE >

Appendix B.

Other Reading and References

Other Printed References

Online References

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=289
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=289

Programming > Core Python Programming > B. > Other Printed References See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226048024232030174091249

Other Printed References

Aho,Alfred V.,Ravi Sethi,Jeffrey D. Ullman,Compilers: Principles, Techniques, and Tools, Addison
Wesley Longman,

Brookshear,J. Glenn,Computer Science, An Overview, 6th Ed., Addison Wesley Longman,

Eckel,Bruce,Thinking in C++, 2nd Ed., Prentice Hall,

Eckel,Bruce,Thinking in Java, Prentice Hall,

Freidl,Jeffrey,Mastering Regular Expressions, O'Reilly,

Galvin,Peter,Abraham Silberschatz,Operating System Concepts, 5th Ed., Addison Wesley Longman,

McKusick,Marshall Kirk,Keith Bostic,Michael J. Karels,John S. Quarterman,Design and
Implementation of the 4.4BSD Operating System, Addison Wesley Longman,

Ousterhout,John,Tcl and Tk Toolkit, Addison Wesley Longman,

Tane nbaum,Andrew S.,Operating Systems: Design and Implementation, Prentice Hall,

Welch,Brent,Practical Programming in Tcl and Tk, 3rd Ed., Prentice Hall,

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=291
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A46%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read8.asp?bookname=0130260363&snode=291&now=5%2F30%2F2002+8%3A46%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=291

Programming > Core Python Programming > B. > Online References See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226048024239138216145050

Online References

The list below represents a good number of Python online references. For a more up-to-date copy,
check out the Python hotlist on the CD-ROM. Or better yet, go to the Core Python Programming
website:

http://starship.python.net/crew/wesc/cpp

Apache Modules

1. mod_python (evolved from httpdapy and nsapy)

http://www.modpython.org/

Code

1. Python source (SourceForge)

http://sourceforge.net/project/?group_id=5470

2. Snippets (SourceForge)

http://sourceforge.net/snippet/browse.php?by=lang&lang=6

3. SourceForge Python projects

http://sourceforge.net/search/?type_of_search=soft&words=python

4. Vaults of Parnassus (Python shareware)

http://www.vex.net/parnassus/

Commercial

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=292
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A46%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read6.asp?bookname=0130260363&snode=292&now=5%2F30%2F2002+8%3A46%3A49+PM
http://starship.python.net/crew/wesc/cpp
http://www.modpython.org/
http://sourceforge.net/project/?group_id=5470
http://sourceforge.net/snippet/browse.php?by=lang&lang=6
http://sourceforge.net/search/?type_of_search=soft&words=python
http://www.vex.net/parnassus/

1. ActiveState Tool

http://www.activestate.com/

2. CyberWeb Consulting

http://www.roadkill.com/~wesc/cyberweb

3. O'Reilly Python DevCenter

http://www.oreillynet.com/python/

4. PythonLabs (commercial home page)

http://www.pythonlabs.com/

5. PythonWare

http://www.pythonware.com

6. ReportLab

http://www.reportlab.com/

7. UC Santa Cruz Extension Scripting Language Courses

http://www.ucsc-extension.edu/to/software/silang.html

Communication

1. Bay Area Python Interest Group

http://www.baypiggies.org/

2. comp.lang.python weekly newsgroup summaries

http://purl.org/thecliff/python/url.html

3. Python Conferences

http://www.activestate.com/
http://www.roadkill.com/~wesc/cyberweb
http://www.oreillynet.com/python/
http://www.pythonlabs.com/
http://www.pythonware.com/
http://www.reportlab.com/
http://www.ucsc-extension.edu/to/software/silang.html
http://www.baypiggies.org/
http://purl.org/thecliff/python/url.html

http://www.python.org/workshops/

4. Python links (sizeable hotlist)

http://www.cetus-links.de/oo_python.html

5. Python mailing lists

http://www.python.org/mailman/listinfo

6. Python Special Interest Groups

http://www.python.org/sigs

7. Starship FAQ

http://starship.python.net/~tbryan/FAQ/Starship/

8. Starship Python

http://starship.python.net

Core

1. JPython

http://www.jpython.org/

2. Python.org (community home page)

http://www.python.org/

DBs

1. Databases

http://www.python.org/topics/database/

2. Python database modules

http://www.python.org/workshops/
http://www.cetus-links.de/oo_python.html
http://www.python.org/mailman/listinfo
http://www.python.org/sigs
http://starship.python.net/~tbryan/FAQ/Starship/
http://starship.python.net/
http://www.jpython.org/
http://www.python.org/
http://www.python.org/topics/database/

http://www.python.org/topics/database/modules.html

3. Python DB API 2.0 specification

http://www.python.org/topics/database/DatabaseAPI-2.0.html">

Extending

1. Extending and Embedding reference

http://www.python.org/doc/current/ext/ext.html

2. Python-C API

http://www.python.org/doc/current/api/api.html

3. SWIG (Simple Wrapper and Interface Generator)

http://www.swig.org

GUIs (with Python development interfaces)

1. Gimp-Python

http://www.daa.com.au/~james/pygimp

2. Glade (GTK+ UI builder)

http://glade.pn.org

3. GLC (Glade Python Code Generator)

http://glc.sourceforge.net

4. GTK+ (GIMP Toolkit)

http://www.gtk.org

5. KDE (K Desktop Environment)

http://www.python.org/topics/database/modules.html
http://www.python.org/topics/database/DatabaseAPI-2.0.html
http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/api/api.html
http://www.swig.org/
http://www.daa.com.au/~james/pygimp
http://glade.pn.org/
http://glc.sourceforge.net/
http://www.gtk.org/

http://www.kde.org

6. PMW (Python MegaWidgets for Tkinter)

http://www.dscpl.com.au/pmw/

7. PyG Tools (PyGTK, PyGNOME, etc.)

http://www.bioinformatics.org/pygtools

8. PyGTK Module

http://www.daa.com.au/~james/pygtk

9. PyQt-PyKDE

http://www.thekompany.com/projects/pykde

10. Python-KDE Tutorial

http://www.xs4all.nl/~bsarempt/python/tutorial.html

11. Tkinter (Python-Tk)

http://www.python.org/topics/tkinter

12. Tkinter intro (F. Lundh)

http://www.pythonware.com/library/tkinter/introduction

13. TrollTech Qt products (commercial)

http://www.trolltech.com/products

14. wxPython

http://www.wxpython.org/

Macintosh

http://www.kde.org/
http://www.dscpl.com.au/pmw/
http://www.bioinformatics.org/pygtools
http://www.daa.com.au/~james/pygtk
http://www.thekompany.com/projects/pykde
http://www.xs4all.nl/~bsarempt/python/tutorial.html
http://www.python.org/topics/tkinter
http://www.pythonware.com/library/tkinter/introduction
http://www.trolltech.com/products
http://www.wxpython.org/

1. Macintosh Library Modules

http://www.python.org/doc/current/mac/mac.html

2. MacPython

http://www.cwi.nl/~jack/macpython.html

3. MacPython download page

http://www.python.org/download/download_mac.html

4. Open Directory MacPython links

http://dmoz.org/computers/systems/macintosh/development/languages/python

News

1. Python Events

http://www.python.org/Events.html

2. Python mailing lists

http://www.python.org/mailman/listinfo

3. Python News

http://www.python.org/News.html

Numerical/Scientific Processing

1. NumPy numerical extensions

http://www.python.org/topics/scicomp/numpy.html

2. NumPy source(SourceForge)

http://sourceforge.net/project/?group_id=1369

http://www.python.org/doc/current/mac/mac.html
http://www.cwi.nl/~jack/macpython.html
http://www.python.org/download/download_mac.html
http://dmoz.org/computers/systems/macintosh/development/languages/python
http://www.python.org/Events.html
http://www.python.org/mailman/listinfo
http://www.python.org/News.html
http://www.python.org/topics/scicomp/numpy.html
http://sourceforge.net/project/?group_id=1369

Programming

1. Comparing Python to …

http://www.python.org/doc/Comparisons.html

2. Computer Programming for Everybody (CP4E)

http://www.python.org/cp4e/

3. CP4E proposal paper

http://www.python.org/doc/essays/cp4e.html

4. Empirical language comparison paper

http://wwwipd.ira.uka.de/~prechelt/Biblio/jccpprtTR.pdf

5. Guido's CP4E talk

http://www.python.org/doc/essays/ppt/acm-cp4e/

6. Instant Hacking: Learning to Program with Python

http://www.idi.ntnu.no/~mlh/python/programming.html

7. Instant Python (crash course in Python)

http://www.idi.ntnu.no/~mlh/python/instant.html

8. Learning to Program

http://members.xoom.com/alan_gauld/tutor/tutindex.htm

9. Non-Programmers Tutorial

http://www.honors.montana.edu/~jjc/easytut/easytut/

Reference

http://www.python.org/doc/Comparisons.html
http://www.python.org/cp4e/
http://www.python.org/doc/essays/cp4e.html
http://wwwipd.ira.uka.de/~prechelt/biblio/jccpprttr.pdf
http://www.python.org/doc/essays/ppt/acm-cp4e/
http://www.idi.ntnu.no/~mlh/python/programming.html
http://www.idi.ntnu.no/~mlh/python/instant.html
http://members.xoom.com/alan_gauld/tutor/tutindex.htm
http://www.honors.montana.edu/~jjc/easytut/easytut/

1. Python documentation

http://www.python.org/doc

2. FAQ (Frequently Asked Questions)

http://www.python.org/doc/FAQ.html

3. FAQTS Python Knowledge Base

http://python.faqts.com

4. Global Module Index for the Python Standard Library

http://www.python.org/doc/current/modindex.html

5. Language Reference Manual

http://www.python.org/doc/current/ref/ref.html

6. Library Reference

http://www.python.org/doc/current/lib/lib.html

7. Python-Perl Cookbook

http://starship.python.net/crew/da/jak/cookbook.html

8. Quick Reference Guide

http://starship.python.net/quick-ref1_52.html

9. Regular Expressions HOWTO

http://www.python.org/doc/howto/regex/regex.html

Releases

1. Python 1.5 to 1.5.2

http://www.python.org/doc
http://www.python.org/doc/FAQ.html
http://python.faqts.com/
http://www.python.org/doc/current/modindex.html
http://www.python.org/doc/current/ref/ref.html
http://www.python.org/doc/current/lib/lib.html
http://starship.python.net/crew/da/jak/cookbook.html
http://starship.python.net/quick-ref1_52.html
http://www.python.org/doc/howto/regex/regex.html

http://www.python.org/1.5

2. Python 1.6

http://www.python.org/1.6

3. Python 2.0

http://www.pythonlabs.com/products/python2.0

4. Python Download

http://www.python.org/download

5. Python FTP site

ftp://ftp.python.org

6. What's New in 2.0

http://starship.python.net/crew/amk/python/writing/new-python

Unicode

1. Python Unicode Integration (M.A. Lemburg)

http://starship.python.net/crew/lemburg/unicode-proposal.txt

2. Python Unicode Tutorial

http://www.reportlab.com/i18n/python_unicode_tutorial.html

3. Unicode Standard home page

http://www.unicode.org/

Web

1. Five Minutes to a Python CGI (D. Mertz, Web Review)

http://www.python.org/1.5
http://www.python.org/1.6
http://www.pythonlabs.com/products/python2.0
http://www.python.org/download
ftp://ftp.python.org/
http://starship.python.net/crew/amk/python/writing/new-python
http://starship.python.net/crew/lemburg/unicode-proposal.txt
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.unicode.org/

http://webreview.com/pub/2000/07/07/feature/index02.html

2. HTMLgen home page

http://starship.python.net/crew/friedrich/HTMLgen/html/

3. Web programming

http://www.python.org/topics/web/

4. Writing CGI Programs in Python (P. Landers, Dev Shed)

http://www.devshed.com/Server_Side/Python/CGI/print.html

XML

1. Annotated XML 1.0 Specification

http://www.xml.com/axml/axmlintro.html

2. Python-XML How-To

http://www.python.org/doc/howto/xml/

3. Python-XML reference

http://www.python.org/doc/howto/xml-ref/

4. XML

http://www.python.org/topics/xml/

5. XML Cover Pages

http://www.oasis-open.org/cover/

6. XML FAQ

http://www.ucc.ie/xml/

http://webreview.com/pub/2000/07/07/feature/index02.html
http://starship.python.net/crew/friedrich/HTMLgen/html/
http://www.python.org/topics/web/
http://www.devshed.com/Server_Side/Python/CGI/print.html
http://www.xml.com/axml/axmlintro.html
http://www.python.org/doc/howto/xml/
http://www.python.org/doc/howto/xml-ref/
http://www.python.org/topics/xml/
http://www.oasis-open.org/cover/
http://www.ucc.ie/xml/

7. Zope

http://www.zope.org/

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

http://www.zope.org/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=292

Programming > Core Python Programming > C. > Python Operator Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
156135250194107072078175030179198180025031194137176049106218111004226049070147064241166160

Python Operator Summary

TableC.1 represents the complete set of Python operators and to which standard types they apply. The
operators are sorted from highest-to-lowest precedence, with those sharing the same shaded group
having the same priority.

Table c.1. Python Operators († - unary)

Operator Int long float complex string list tuple dictionary

[] • • •
[:] • • •
** • • • •
+† • • • •
-† • • • •
~† • •
* • • • • • • •
/ • • • •
% • • • • •
+ • • • • • • •
- • • • •
<< • •
>> • •
& • •
^ • •
| • •
< • • • • • • • •
> • • • • • • • •
<= • • • • • • • •
>= • • • • • • • •
== • • • • • • • •
!= • • • • • • • •
<> • • • • • • • •
is • • • • • • • •
is not • • • • • • • •

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=294
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A47%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read4.asp?bookname=0130260363&snode=294&now=5%2F30%2F2002+8%3A47%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/294#1.html

in • • •
not in • • •
not† • • • • • • • •
and • • • • • • • •
or • • • • • • • •

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=294

Programming > Core Python Programming > C. See All Titles

< BACK Make Note | Bookmark CONTINUE >

Appendix C.

Python Operator Summary

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=293
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=293

Programming > Core Python Programming > D. > What's New in Python 2.0? See All Titles

< BACK Make Note | Bookmark
156135250194107072078175030179198180025031194137176049106218111004226062067026184135228051

What's New in Python 2.0?

Introduction

During the creation process of this text, the Python development team has been hard at work producing Python
2.0, which at press time, is finally being released to the public.

The supplementary CD-ROM in the back of the book contains the three most current releases of Python: 1.5.2,
1.6, and 2.0, including the most recent Java version of the Python interpreter, JPython (a.k.a. Jython): 1.1.

1.5.2 has been a rock stable release for almost two years, and is the foundation for most of the content in the
book. 1.6 brought many new changes to Python. String methods and Unicode support have been added, as well
as an improved regular expression engine.

A few more significant changes have made their way into the 2.0 release, which we will address here. We also
recommend the "What's New in 2.0" document found at the Python 2.0 Web site (see the Online Resources
section of the Appendix for the URL).

Review and Preview

The following is a review of the major changes from Python 1.5.2 to 1.6, along with the expected bug fixes and
module updates (new, revised, and obsoleted modules).

● Unicode support

● String methods

● Upgraded regular expression engine (performance and Unicode enhancements)

● New function invocation mechanism

The 2.0 release also features the usual fixes and module updates, but in addition, offers the following new
features to the language:

● Augmented assignment

● List comprehensions

● Extended import statement

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=296
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/5%2F30%2F2002+8%3A48%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/read2.asp?bookname=0130260363&snode=296&now=5%2F30%2F2002+8%3A48%3A33+PM

● Extended print statement

Once you get Python 2.0 compiled and/or installed on your system, you will see the familiar start-up line in
UNIX (or similar if you are using another platform):

% python
Python 2.0 (#4, Oct 2 2000, 23:58:52)
[GCC 2.95.1 19990816 (release)] on sunos5
Type "copyright", "credits" or "license" for more
information.
>>>

Now, let's take a look at some of those new features.

Augmented Assignment

Augmented assignment refers to the use of operators, which imply both an arithmetic operation as well as an
assignment. You will recognize the following symbols if you are a C, C++, or Java programmer:

+= -= *= /= %= **=
<<= >>= &= ^= |=

For example, the shorter

A += B

can now be used instead of

A = A + B

Other than the obvious syntactical change, the most significant difference is that the first object (A in our
example) is examined only once. Mutable objects will be modified in place, whereas immutable objects will
have the same effect as "A = A + B" (with a new object allocated) except that A is only evaluated once, as
we have mentioned before.

>>> m = 12
>>> m %= 7
>>> m
5
>>> m **= 2
>>> m
25
>>> aList = [123, 'xyz']
>>> aList += [45.6e7]
>>> aList
[123, 'xyz', 456000000.0]

These in-place operators have equivalent special method names when creating classes to emulate numeric
types. To implement an in-place special method, just add an "i" in front of the not-in-place operator; e.g.,
implement __iadd__() for the += operator as opposed to __add__() for just the + operator.

List Comprehensions

Remember how we used lambda functions along with map() and filter() to apply an operation to list
members or to filter out list members based on criteria via a conditional expression? Well, list comprehensions
simplify that task and improve performance by bypassing the necessity of using lambda along with functional
programming built-in functions. List comprehensions allow you to provide an operation directly with an
iteration over the original list sequence.

Let's take a look at the simpler list comprehension syntax first:

[expression
 for
 iterative_var
 in
 sequence]

The core of this statement is the for loop, which iterates over each item of sequence. The prefixed
expression is applied for each member of the sequence, and the resulting values comprise the list that the
expression yields. The iteration variable need not be part of the expression.

Recall the following code seen earlier in the text (Chapter 11, Functions) which utilizes a lambda function to
square the members of a sequence:

>>> map((lambda x: x ** 2), range(6))

[0, 1, 4, 9, 16, 25]

We can replace this code with the following list comprehension statement:

>>> [x ** 2 for x in range(6)]
[0, 1, 4, 9, 16, 25]

In the new statement, only one function call (range()) is made (as opposed to three—range(), map(),
and the lambda function). You may also use parentheses around the expression if "[(x ** 2) for x in
range(6)]" is easier for you to read. This syntax for list comprehensions can be a substitute for and is
more efficient than using the map() built-in function along with lambda.

List comprehensions also support an extended syntax with the if statement:

[expression
 for
 iterative_var
 in
 sequence
 if
 cond_expression]

This syntax will filter or "capture" sequence members only if they meet the condition provided for in the
cond_expression conditional expression during iteration.

Recall the following odd() function below, which determines whether a numeric argument is odd or even
(returning 1 for odd numbers and 0 for even numbers):

def odd(n):
 return n % 2

We were able to take the core operation from this function, and use it with filter() and lambda to obtain
the set of odd numbers from a sequence:

>>> seq = [11, 10, 9, 9, 10, 10, 9, 8, 23, 9, 7, 18, 12, 11, 12]

>>> filter(lambda x: x % 2, seq)
[11, 9, 9, 9, 23, 9, 7, 11]

As in the previous example, we can bypass the use of filter() and lambda to obtain the desired set of
numbers with list comprehensions:

>>> [x for x in seq if x % 2]
[11, 9, 9, 9, 23, 9, 7, 11]

List comprehensions also support multiple nested for loops and more than one if clause. Please see the
documentation including the "What's New" online document for more information.

Extended import Statement

Another fairly common request from Python programmers is the ability to import modules and module
attributes into your program using names other than their original given names. One common workaround is to
assign the module name to a variable:

>>> import longmodulename
>>> short = longmodulename
>>> del longmodulename

In the example above, rather than using longmodulename.attribute, you would use the
short.attribute to access the same object. (A similar analogy can be made with importing module
attributes using from-import… see below.) However, to do this over and over again, and in multiple
modules can be annoying and seem wasteful. The new extended import statement will now support the
following:

>>> import longmodulename as short

Accordingly, you may also use this syntax with from-import statements.

>>> from sys import stderr as err
>>> err.write("now using sys.stderr")
now using sys.stderr

We will note that as is not a new keyword and is only recognized when using import. As a result, you can
still use it as a valid identifier in your code:

>>> as = 14
>>> as += 3
>>> as
17

Extended print Statement

One of the last and more argumentative additions to Python 2.0 is the extended print statement. The change,
which employs a pair of "greater than" symbols (>>), allows you to direct the output of print to a file other
than standard output.

In the example below, we utilize our import of sys.stderr to err above:

>>> print >> err, "using sys.stderr again"
using sys.stderr again

Conclusion

While both augmented assignments and list comprehensions appear to be adding a twist to Python's easygoing
syntax, the basic philosophy of keeping the language clean and simple has not changed. The key value-adds
that these new features bring to the table is actually under the covers.

Augmented assignment only evaluates the first object once—a timesaver and performance enhancer over the
long haul. Also, because function objects created by lambda are practically the same as those generated by
def, the overhead of a real function call is incurred when they are executed. By using list comprehensions,
there is no additional function object created on the fly, nor is there the additional function call overhead
present. In this sense, list comprehensions give Python more "inlined" execution.

The extended import and print statements have less to do with performance as they do with programmer
convenience.

Other additions include an optional garbage collector that can detect cycles and improved XML support
(xml.dom, xml.sax, xml.parsers, and pyexpat modules). Other features to look for in 2.0 are
range displays, parallel for loops, and ports to 64-bit systems.

Exercise

Q: Create a composite list comprehension statement that creates (randomly) a list of between 1 and 10
random numbers, ranging from 1 to 100, and pull out only the odd ones.

A: Answer:

Our solution uses list comprehensions as well as the new extended import syntax.

>>> from random import randint as ri
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[47, 9, 85]
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[45, 3]
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[]
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[47, 25, 95, 83, 15, 77]

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&snode=296

Programming > Core Python Programming > D. See All Titles

< BACK Make Note | Bookmark CONTINUE >

Appendix D.

What's New in Python 2.0?

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=295
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/popanote.asp?pubui=oreilly&bookname=0130260363&cnode=295

Programming > Core Python Programming See All Titles

Core Python Programming

Library of Congress Cataloging-in-Publication Date

Chun, Wesley

Core python / Wesley. Chun.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-026036-3

1. Python (Computer program language) I. Title

QA76.73.P98 C48 2000

005.13'3--dc21 00-047856

Copyright Information

© 2001 Prentice Hall PTR

Prentice-Hall, Inc

Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered in bulk quantities.

For more information, contact

Corporate Sales Department,

Prentice Hall PTR

One Lake Street

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Core%20Python/main.asp?list

Upper Saddle River, NJ 07458

Phone: 800-382-3419; FAX: 201-236-7141

E-mail (Internet): corpsales@prenhall.com

All products or services mentioned herein are the trademarks or service marks of their
respective companies or organizations.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Pearson Education P.T.E., Ltd.

To my parents,

who taught me that everybody is different.

And to my wife,

who lives with someone who is different.

Last updated on 9/14/2001
Core Python Programming, © 2002 Prentice Hall PTR

© 2002, O'Reilly & Associates, Inc.

mailto:corpsales@prenhall.com

	Core Python
	Core Python Programming
	Table of Contents
	Welcome to Python!
	Style:Technical, Yet Easy Reading
	Author's Experience with Python
	Book Contents
	Optional Sections
	Conventions
	Book Support

	Acknowledgements
	Part I: CORE PYTHON
	Part I : Core Python
	Chapter 1 —Welcome to Python!
	1. Welcome to Python!
	What Is Python?
	History of Python
	Features of Python
	Obtaining Python
	Obtaining Python
	Installing Python
	Running Python
	Python Documentation
	Comparing Python
	JPython and Some Nomenclature
	Exercises

	Chapter 2 —Getting Started
	2. Getting Started
	Program Output, the print Statement and "Hello World!"
	Program Input and the raw_input() Built-in Function
	Comments
	Operators
	Variables and Assignment
	Numbers
	Strings
	Lists and Tuples
	Dictionaries
	Code Blocks Use Indentation
	if Statement
	while Loop
	for Loop and the range() Built-in Function
	Files and the open() Built-in Function
	Errors and Exceptions
	Functions
	Classes
	Modules
	Exercises

	Chapter 3 —Syntax and Style
	3. Syntax and Style
	Statements and Syntax
	Variable Assignment
	Identifiers
	Basic Style Guidelines
	Memory Management
	First Python Application
	Exercises

	Chapter 4 —Python Objects
	4. Python Objects
	Python Objects
	Standard Types
	Other Built-in Types
	Internal Types
	Standard Type Operators
	Standard Type Built-in Functions
	Categorizing the Standard Types
	Unsupported Types
	Exercises

	Chapter 5 —Numbers
	5. Numbers
	Introduction to Numbers
	Integers
	Floating Point Real Numbers
	Complex Numbers
	Operators
	Built-in Functions
	Related Modules
	Exercises

	Chapter 6 —Sequences: Strings, Lists, and Tuples
	6. Sequences: Strings, Lists, and Tuples
	Sequences
	Strings
	Strings and Operators
	String-only Operators
	Built-in Functions
	String Built-in Methods
	Special Features of Strings
	Related Modules
	Summary of String Highlights
	Lists
	Operators
	Built-in Functions
	List Type Built-in Methods
	Special Features of Lists
	Tuples
	Tuple Operators and Built-in Functions
	Special Features of Tuples
	Related Modules
	*Shallow and Deep Copies
	Exercises

	Chapter 7 —Dictionaries
	7. Dictionaries
	Introduction to Dictionaries
	Operators
	Built-in Functions
	Built-in Methods
	Dictionary Keys
	Exercises

	Chapter 8 —Conditionals and Loops
	8. Conditionals and Loops
	if statement
	else Statement
	elif (a.k.a. else-if) Statement
	while Statement
	for Statement
	break Statement
	continue Statement
	pass Statement
	else Statement… Take Two
	Exercises

	Chapter 9 —Files and Input/Output
	9. Files and Input/Output
	File Objects
	File Built-in Function [open()]
	File Built-in Methods
	File Built-in Attributes
	Standard Files
	Command-line Arguments
	File System
	File Execution
	Persistent Storage Modules
	Related Modules
	Exercises

	Chapter 10 —Errors and Exceptions
	10. Errors And Exceptions
	What Are Exceptions?
	Exceptions in Python
	Detecting and Handling Exceptions
	*Exceptions as Strings
	*Exceptions as Classes
	Raising Exceptions
	Assertions
	Standard Exceptions
	*Creating Exceptions
	Why Exceptions (Now)?
	Why Exceptions at All?
	Exceptions and the sys Module
	Related Modules
	Exercises

	Chapter 11 —Functions
	11. Functions
	What Are Functions?
	Calling Functions
	Creating Functions
	Passing Functions
	Formal Arguments
	Positional Arguments
	Default Arguments
	Why Default Arguments?
	Default Function Object Argument Example
	Variable-length Arguments
	Non-keyword Variable Arguments (Tuple)
	Keyword Variable Arguments (Dictionary)
	Calling Functions with Variable Argument Objects
	Functional Programming
	Anonymous Functions and lambda
	Built-in Functions: apply(), filter(), map(), reduce()
	* apply()
	Lines 1 - 4
	Lines 6 - 7
	Lines 9 - 28
	Lines 30-41
	filter()
	map()
	reduce()
	Variable Scope
	*Recursion
	Exercises

	Chapter 12 —Modules
	12. Modules
	What are Modules?
	Modules and Files
	Namespaces
	Importing Modules
	Importing Module Attributes
	Module Built-in Functions
	Packages
	Other Features of Modules
	Exercises

	Chapter 13 —Classes and OOP
	13. Classes and OOP
	Introduction
	Object-oriented Programming
	Classes
	Class Attributes
	Instances
	Instance Attributes
	Binding and Method Invocation
	Composition
	Subclassing and Derivation
	Inheritance
	Built-in Functions for Classes, Instances, and Other Objects
	Type vs. Classes/Instances
	Customizing Classes with Special Methods
	Privacy
	Delegation
	Related Modules and Documentation
	Exercises

	Chapter 14 —Execution Environment
	14. Execution Environment
	Callable Objects
	Code Objects
	Executable Object Statements and Built-in Functions
	Executing Other (Python) Programs
	Executing Other (Non-Python) Programs
	Restricted Execution
	Terminating Execution
	Related Modules
	Exercises

	Part II : Advanced Topics
	II: Advanced Topics
	Chapter 15 —Regular Expressions
	15. Regular Expressions
	Introduction/Motivation
	Special Symbols and Characters for REs
	REs and Python
	Regular Expression Adventures
	Exercises

	Chapter 16 —Network Programming with Sockets
	16. Network Programming
	Introduction
	Sockets: Communication Endpoints
	Network Programming in Python
	Related Modules
	Exercises

	Chapter 17 —Multithreaded Programming
	17. Multithreaded Programming
	Introduction/Motivation
	Threads and Processes
	Threads and Python
	thread Module
	threading Module
	Exercises

	Chapter 18 —GUI Programming with Tkinter
	18. GUI Programming with Tkinter
	Introduction
	Tkinter and Python Programming
	Tkinter Examples
	Related Modules and Other GUIs
	Exercises

	Chapter 19 —Web Programming
	19. Web Programming
	Introduction
	Web Surfing with Python: Creating Simple Web Clients
	Advanced Web Clients
	CGI: Helping Web Servers Process Client Data
	Building CGI Application
	Advanced CGI
	Web (HTTP) Servers
	Related Modules
	Exercises

	Chapter 20 —Extending Python
	20. Extending Python
	Introduction/Motivation
	Related Topics
	Exercises

	Appendix A.
	Answers to Selected Exercises

	Appendix B.
	Other Reading and References
	Other Printed References
	Online References

	Appendix C.
	Python Operator Summary

	Appendix D.
	What's New in Python 2.0?

	Core Python Programming - catalog information

