
Friesen

Shelve in
Programming Languages / Java

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Java 7
Get coding with Beginning Java 7. This definitive guide to Oracle’s latest release of the
popular Java language and platform details the many APIs and tools that you’ll need to
master to become an accomplished Java developer.

Author Jeff Friesen first gives you a comprehensive guided tour of the Java lan-
guage and shows you how to start programming with the JDK and NetBeans. He then
takes you through all the major APIs, from math to concurrency by way of wrappers,
reference, reflection, string handling, threading, and collections. Next, he explains how
to build graphical user interfaces; tells you everything you need to know about inter-
acting with filesystems, networks, and databases; and details parsing, creating, and
transforming XML documents as well as working with web services. You’ll even see
how Java extends to Android, from architecture to development tools.

With Beginning Java 7, you’ll learn:

• The entire Java language, including new Java 7 features such as switch
 on string, try-with-resources, final rethrow, multicatch, and SafeVarargs
• A huge assortment of APIs, including Java 7-specific APIs such as the
 Fork/Join Framework, Objects, JLayer, and NIO.2
• Essential Java 7 tools, starting with the javac compiler and java
 application launcher
• How to develop Android apps

Each chapter features exercises that help you test what you learned along the way.
In addition, the book walks you through the development of a simple application,
giving you essential first-hand experience and practical tips that will aid you in all
your future Java 7 projects.

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

iii

 Contents at a Glance

 About the Author.. xiv
 About the Technical Reviewer .. xv
 Acknowledgments ... xvi
 Introduction .. xvii
 Chapter 1: Getting Started with Java..1
 Chapter 2: Discovering Classes and Objects ..51
 Chapter 3: Exploring Advanced Language Features ...131
 Chapter 4: Touring Language APIs ...227
 Chapter 5: Collecting Objects..319
 Chapter 6: Touring Additional Utility APIs ..401
 Chapter 7: Creating and Enriching Graphical User Interfaces435
 Chapter 8: Interacting with Filesystems...511
 Chapter 9: Interacting with Networks and Databases..585
 Chapter 10: Parsing, Creating, and Transforming XML Documents663
 Chapter 11: Working with Web Services ..751
 Chapter 12: Java 7 Meets Android ...831
 Index ...873

C H A P T E R 1

1

Getting Started with Java

Welcome to Java. This chapter launches you on a tour of this technology by focusing on fundamentals.
First, you receive an answer to the “What is Java?” question. If you have not previously encountered Java,
the answer might surprise you. Next, you are introduced to some basic tools that will help you start
developing Java programs, and to the NetBeans integrated development environment, which simplifies
the development of these programs. Finally, you explore fundamental language features.

What Is Java?
Java is a language for describing programs, and Java is a platform on which to run programs written in
Java and other languages (e.g., Groovy, Jython, and JRuby). This section introduces you to Java the
language and Java the platform.

 Note To discover Java’s history, check out Wikipedia’s “Java (programming language)”
(http://en.wikipedia.org/wiki/Java_(programming_language)#History) and “Java (software platform)”
(http://en.wikipedia.org/wiki/Java_(software_platform)#History) entries.

Java Is a Language
Java is a general-purpose, class-based, and object-oriented language patterned after C and C++ to make
it easier for existing C/C++ developers to migrate to this language. Not surprisingly, Java borrows
elements from these languages. The following list identifies some of these elements:

• Java supports the same single-line and multiline comment styles as found in
C/C++ for documenting source code.

• Java provides the if, switch, while, for, and other reserved words as found in the
C and C++ languages. Java also provides the try, catch, class, private, and other
reserved words that are found in C++ but not in C.

• As with C and C++, Java supports character, integer, and other primitive types.
Furthermore, Java shares the same reserved words for naming these types; for
example, char (for character) and int (for integer).

http://en.wikipedia.org/wiki/Java_
http://en.wikipedia.org/wiki/Java_

CHAPTER 1 GETTING STARTED WITH JAVA

2

• Java supports many of the same operators as C/C++: the arithmetic operators (+, -,
*, /, and %) and conditional operator (?:) are examples.

• Java also supports the use of brace characters { and } to delimit blocks of
statements.

Although Java is similar to C and C++, it also differs in many respects. The following list itemizes
some of these differences:

• Java supports an additional comment style known as Javadoc.

• Java provides transient, synchronized, strictfp, and other reserved words not
found in C or C++.

• Java’s character type has a larger size than the version of this type found in C and
C++, Java’s integer types do not include unsigned variants of these types (Java has
no equivalent of the C/C++ unsigned long integer type, for example), and Java’s
primitive types have guaranteed sizes, whereas no guarantees are made for the
equivalent C/C++ types.

• Java doesn’t support all of the C/C++ operators. For example, there is no sizeof
operator. Also, Java provides some operators not found in C/C++. For example,
>>> (unsigned right shift) and instanceof are exclusive to Java.

• Java provides labeled break and continue statements. These variants of the C/C++
break and continue statements provide a safer alternative to C/C++’s goto
statement, which Java doesn’t support.

 Note Comments, reserved words, types, operators, and statements are examples of fundamental language
features, which are discussed later in this chapter.

A Java program starts out as source code that conforms to Java syntax, rules for combining symbols
into meaningful entities. The Java compiler translates the source code stored in files that have the
“.java” file extension into equivalent executable code, known as bytecode, which it stores in files that
have the “.class” file extension.

 Note The files that store compiled Java code are known as classfiles because they often store the runtime
representation of Java classes, a language feature discussed in Chapter 2.

The Java language was designed with portability in mind. Ideally, Java developers write a Java
program’s source code once, compile this source code into bytecode once, and run the bytecode on any
platform (e.g., Windows, Linux, and Mac OS X) where Java is supported, without ever having to change
the source code and recompile. Portability is achieved in part by ensuring that primitive types have the
same sizes across platforms. For example, the size of Java’s integer type is always 32 bits.

CHAPTER 1 GETTING STARTED WITH JAVA

3

The Java language was also designed with robustness in mind. Java programs should be less
vulnerable to crashes than their C/C++ counterparts. Java achieves robustness in part by not
implementing certain C/C++ features that can make programs less robust. For example, pointers
(variables that store the addresses of other variables) increase the likelihood of program crashes, which
is why Java doesn’t support this C/C++ feature.

Java Is a Platform
Java is a platform that executes Java-based programs. Unlike platforms with physical processors (e.g., an
Intel processor) and operating systems (e.g., Windows 7), the Java platform consists of a virtual machine
and execution environment.

A virtual machine is a software-based processor with its own set of instructions. The Java Virtual
Machine (JVM)’s associated execution environment consists of a huge library of prebuilt functionality,
commonly known as the standard class library, that Java programs can use to perform routine tasks (e.g.,
open a file and read its contents). The execution environment also consists of “glue” code that connects
the JVM to the underlying operating system.

 Note The “glue” code consists of platform-specific libraries for accessing the operating system’s windowing,
networking, and other subsystems. It also consists of code that uses the Java Native Interface (JNI) to bridge
between Java and the operating system. I discuss the JNI in Appendix C. You might also want to check out
Wikipedia’s “Java Native Interface” entry (http://en.wikipedia.org/wiki/Java_Native_Interface) to learn
about the JNI.

When a Java program launcher starts the Java platform, the JVM is launched and told to load a Java
program’s starting classfile into memory, via a component known as a classloader. After the classfile has
loaded, the following tasks are performed:

• The classfile’s bytecode instruction sequences are verified to ensure that they
don’t compromise the security of the JVM and underlying environment.
Verification ensures that a sequence of instructions doesn’t find a way to exploit
the JVM to corrupt the environment and possibly steal sensitive information. The
component that handles this task is known as the bytecode verifier.

• The classfile’s main sequence of bytecode instructions is executed. The
component that handles this task is known as the interpreter because instructions
are interpreted (identified and used to select appropriate sequences of native
processor instructions to carry out the equivalent of what the bytecode
instructions mean). When the interpreter discovers that a bytecode instruction
sequence is executed repeatedly, it informs the Just-In-Time (JIT) compiler
component to compile this sequence into an equivalent sequence of native
instructions. The JIT helps the Java program achieve faster execution than would
be possible through interpretation alone. Note that the JIT and the Java compiler
that compiles source code into bytecode are two separate compilers with two
different goals.

http://en.wikipedia.org/wiki/Java_Native_Interface

CHAPTER 1 GETTING STARTED WITH JAVA

4

During execution, a classfile might refer to another classfile. In this situation, a classloader is used to
load the referenced classfile, the bytecode verifier then verifies the classfile’s bytecodes, and the
interpreter/JIT executes the appropriate bytecode sequence in this other classfile.

The Java platform was designed with portability in mind. By providing an abstraction over the
underlying operating system, bytecode instruction sequences should execute consistently across Java
platforms. However, this isn’t always borne out in practice. For example, many Java platforms rely on
the underlying operating system to schedule threads (discussed in Chapter 4), and the thread scheduling
implementation varies from operating system to operating system. As a result, you must be careful to
ensure that the program is designed to adapt to these vagaries.

The Java platform was also designed with security in mind. As well as the bytecode verifier, the
platform provides a security framework to help ensure that malicious programs don’t corrupt the
underlying environment on which the program is running. Appendix C discusses Java’s security
framework.

Installing and Working with JDK 7
Three software development kits (SDKs) exist for developing different kinds of Java programs:

• The Java SE (Standard Edition) Software Development Kit (known as the JDK) is
used to create desktop-oriented standalone applications and web browser-
embedded applications known as applets. You are introduced to standalone
applications later in this section. I don’t discuss applets because they aren’t as
popular as they once were.

• The Java ME (Mobile Edition) SDK is used to create applications known as
MIDlets and Xlets. MIDlets target mobile devices, which have small graphical
displays, simple numeric keypad interfaces, and limited HTTP-based network
access. Xlets typically target television-oriented devices such as Blu-ray Disc
players. The Java ME SDK requires that the JDK also be installed. I don’t discuss
MIDlets or Xlets.

• The Java EE (Enterprise Edition) SDK is used to create component-based
enterprise applications. Components include servlets, which can be thought of as
the server equivalent of applets, and servlet-based Java Server Pages (JSPs). The
Java EE SDK requires that the JDK also be installed. I don’t discuss servlets.

This section introduces you to JDK 7 (also referred to as Java 7, a term used in later chapters) by first
showing you how to install this latest major Java SE release. It then shows you how to use JDK 7 tools to
develop a simple standalone application—I’ll use the shorter application term from now on.

Installing JDK 7
Point your browser to http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-
138363.html and follow the instructions on the resulting web page to download the appropriate JDK 7
installation exe or gzip tarball file for your Windows, Solaris, or Linux platform.

Following the download, run the Windows executable or unarchive the Solaris/Linux gzip tarball,
and modify your PATH environment variable to include the resulting home directory’s bin subdirectory so
that you can run JDK 7 tools from anywhere in your filesystem. For example, you might include the
C:\Program Files\Java\jdk1.7.0 home directory in the PATH on a Windows platform. You should also
update your JAVA_HOME environment variable to point to JDK 7’s home directory, to ensure that any Java-
dependent software can find this directory.

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

CHAPTER 1 GETTING STARTED WITH JAVA

5

JDK 7’s home directory contains several files (e.g., README.html and LICENSE) and subdirectories. The
most important subdirectory from this book’s perspective is bin, which contains various tools that we’ll
use throughout this book. The following list identifies some of these tools:

• jar: a tool for packaging classfiles and resource files into special ZIP files with
“.jar” file extensions

• java: a tool for running applications

• javac: a tool that launches the Java compiler to compile one or more source files

• javadoc: a tool that generates special HTML-based documentation from Javadoc
comments

The JDK’s tools are run in a command-line environment. You establish this by launching a
command window (Windows) or shell (Linux/Solaris), which presents to you a sequence of prompts for
entering commands (program names and their arguments). For example, a command window (on
Windows platforms) prompts you to enter a command by presenting a drive letter and path
combination (e.g., C:\).

You respond to the prompt by typing the command, and then press the Return/Enter key to tell the
operating system to execute the command. For example, javac x.java followed by a Return/Enter key
press causes the operating system to launch the javac tool, and to pass the name of the source file being
compiled (x.java) to this tool as its command-line argument. If you specified the asterisk (*) wildcard
character, as in javac *.java, javac would compile all source files in the current directory. To learn
more about working at the command line, check out Wikipedia’s “Command-line interface” entry
(http://en.wikipedia.org/wiki/Command-line_interface).

Another important subdirectory is jre, which stores the JDK’s private copy of the Java Runtime
Environment (JRE). The JRE implements the Java platform, making it possible to run Java programs.
Users interested in running (but not developing) Java programs would download the public JRE.
Because the JDK contains its own copy of the JRE, developers do not need to download and install the
public JRE.

 Note JDK 7 comes with external documentation that includes an extensive reference to Java’s many APIs (see
http://en.wikipedia.org/wiki/Application_programming_interface to learn about this term). You can
download the documentation archive from
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html so that you can view
this documentation offline. However, because the archive is fairly large, you might prefer to view the
documentation online at http://download.oracle.com/javase/7/docs/index.html.

Working with JDK 7
An application consists of a class with an entry-point method named main. Although a proper discussion
of classes and methods must wait until Chapter 2, it suffices for now to just think of a class as a factory
for creating objects (also discussed in Chapter 2), and to think of a method as a named sequence of
instructions that are executed when the method is called. Listing 1-1 introduces you to your first
application.

http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://download.oracle.com/javase/7/docs/index.html

CHAPTER 1 GETTING STARTED WITH JAVA

6

Listing 1-1. Greetings from Java

class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, world!");
 }
}

Listing 1-1 declares a class named HelloWorld that provides a framework for this simple application.
It also declares a method named main within this class. When you run this application, and you will learn
how to do so shortly, it is this entry-point method that is called and its instructions that are executed.

The main() method includes a header that identifies this method and a block of code located
between an open brace character ({) and a close brace character (}). As well as naming this method, the
header provides the following information:

• public: This reserved word makes main() visible to the startup code that calls this
method. If public wasn’t present, the compiler would output an error message
stating that it could not find a main() method.

• static: This reserved word causes this method to associate with the class instead
of associating with any objects created from this class. Because the startup code
that calls main() doesn’t create an object from the class in order to call this
method, it requires that the method be declared static. Although the compiler
will not report an error if static is missing, it will not be possible to run
HelloWorld, which will not be an application if the proper main() method doesn’t
exist.

• void: This reserved word indicates that the method doesn’t return a value. If you
change void to a type’s reserved word (e.g., int) and then insert a statement that
returns a value of this type (e.g., return 0;), the compiler will not report an error.
However, you won’t be able to run HelloWorld because the proper main() method
would not exist.

• (String[] args): This parameter list consists of a single parameter named args of
type String[]. Startup code passes a sequence of command-line arguments to
args, which makes these arguments available to the code that executes within
main(). You’ll learn about parameters and arguments in Chapter 2.

The block of code consists of a single System.out.println("Hello, world!"); method call. From left
to write, System identifies a standard class of system utilities, out identifies an object variable located in
System whose methods let you output values of various types optionally followed by a newline character
to the standard output device, println identifies a method that prints its argument followed by a
newline character to standard output, and "Hello, world!" is a string (a sequence of characters
delimited by double quote " characters and treated as a unit) that is passed as the argument to println
and written to standard output (the starting " and ending " double quote characters are not written;
these characters delimit but are not part of the string).

CHAPTER 1 GETTING STARTED WITH JAVA

7

 Note All desktop Java/nonJava applications can be run at the command line. Before graphical user interfaces
with their controls for inputting and outputting values (e.g., textfields), these applications obtained their input and
generated their output with the help of Standard I/O, an input/output mechanism that originated with the Unix
operating system, and which consists of standard input, standard output, and standard error devices.

The user would input data via the standard input device (typically the keyboard, but a file could be specified
instead—Unix treats everything as files). The application’s output would appear on the standard output device
(typically a computer screen, but optionally a file or printer). Output messages denoting errors would be output to
the standard error device (screen, file, or printer) so that these messages could be handled separately.

Now that you understand how Listing 1-1 works, you’ll want to create this application. Complete the
following steps to accomplish this task:

1. Copy Listing 1-1 to a file named HelloWorld.java.

2. Execute javac HelloWorld.java to compile this source file. javac will complain
if you do not specify the “.java” file extension.

If all goes well, you should see a HelloWorld.class file in the current directory. Now execute java
HelloWorld to run this classfile’s main() method. Don’t specify the “.class” file extension or java will
complain. You should observe the following output:

Hello, world!

Congratulations! You have run your first Java-based application. You’ll have an opportunity to run
more applications throughout this book.

Installing and Working with NetBeans 7
For small projects, it’s no big deal to work at the command line with JDK tools. Because you’ll probably
find this scenario tedious (and even unworkable) for larger projects, you should consider obtaining an
Integrated Development Environment (IDE) tool.

Three popular IDEs for Java development are Eclipse (http://www.eclipse.org/), IntelliJ IDEA
(http://www.jetbrains.com/idea/), which is free to try but must be purchased if you want to continue to
use it, and NetBeans (http://netbeans.org/). I focus on the NetBeans 7 IDE in this section because of its
JDK 7 support. (IntelliJ IDEA 10.5 also supports JDK 7.)

 Note For a list of NetBeans 7 IDE enhancements that are specific to JDK 7, check out the page at
http://wiki.netbeans.org/NewAndNoteworthyNB70#JDK7_support.

http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://netbeans.org/
http://wiki.netbeans.org/NewAndNoteworthyNB70#JDK7_support

CHAPTER 1 GETTING STARTED WITH JAVA

8

This section shows you how to install the NetBeans 7 IDE. It then introduces you to this IDE while
developing HelloWorld.

 Note NetBeans is more than an IDE. It’s also a platform framework that lets developers create applications
much faster by leveraging the modular NetBeans architecture.

Installing NetBeans 7
Point your browser to http://netbeans.org/downloads/ and perform the following tasks:

1. Select an appropriate IDE language (English is the default).

2. Select an appropriate platform (Windows is the default).

3. Click the Download button underneath the next-to-leftmost (Java EE) column
to initiate the download process for the appropriate installer file. I chose to
download the English Java EE installer for the Windows platform, which is a
file named netbeans-7.x-ml-javaee-windows.exe. (Because I don’t explore Java
EE in Beginning Java 7, it might seem pointless to install the Java EE version of
NetBeans. However, you might as well install this software now in case you
decide to explore Java EE after reading this book.)

Run the installer. After configuring itself, the installer presents a Welcome dialog that gives you the
option of choosing which application servers you want to install with the IDE. Ensure that both the
GlassFish Server and Apache Tomcat checkboxes remain checked (you might want to play with both
application servers when exploring Java EE), and click the Next button.

On the resulting License Agreement dialog, read the agreement, indicate its acceptance by checking
the checkbox, and click Next. Repeat this process on the subsequent JUnit License Agreement dialog.

The resulting NetBeans IDE 7.0 Installation dialog presents the default location where NetBeans will
be installed (C:\Program Files\NetBeans 7.0 on my platform) and the JDK 7 home directory location
(C:\Program Files\Java\jdk1.7.0 on my platform). Change these locations if necessary and click Next.

The resulting GlassFish 3.1 Installation dialog box presents the default location where the GlassFish
application server will be installed (C:\Program Files\glassfish-3.1 on my platform). Change this
location if necessary and click Next.

The resulting Apache Tomcat 7.0.11 Installation dialog presents the default location where the
Apache Tomcat application server will be installed (C:\Program Files\Apache Software
Foundation\Apache Tomcat 7.0.11 on my platform). Change this location if necessary and click Next.

The resulting Summary dialog presents your chosen options as well as the combined installation
size for all software being installed. After reviewing this information, click the Install button to begin
installation.

Installation takes a few minutes and culminates in a Setup Complete dialog. After reviewing this
dialog’s information, click the Finish button to complete installation.

Assuming a successful installation, start this IDE. NetBeans first presents a splash screen while it
performs various initialization tasks, and then presents a main window similar to that shown in Figure 1-
1.

http://netbeans.org/downloads/

CHAPTER 1 GETTING STARTED WITH JAVA

9

Figure 1-1. The NetBeans 7 IDE’s main window initially presents a Start Page tab.

If you’ve worked with previous versions of the NetBeans IDE, you might want to click the Take a
Tour button to learn how version 7 differs from its predecessors. You are taken to a web page that
provides video tours of the IDE, such as NetBeans IDE 7.0 Overview.

Working with NetBeans 7
NetBeans presents a user interface whose main window is divided into a menu bar, a toolbar, a
workspace, and a status bar. The workspace presents a Start Page tab for learning about NetBeans,
accessing your NetBeans projects, and more.

To help you get comfortable with this IDE, I’ll show you how to create a HelloWorld project that
reuses Listing 1-1’s source code. I’ll also show you how to compile and run the HelloWorld application.
Complete the following steps to create the HelloWorld project:

1. Select New Project from the File menu.

2. Make sure that Java is the selected category and Java Application is the
selected Project in their respective Categories and Projects lists on the
resulting New Project dialog box’s Choose Project pane. Click Next.

3. On the resulting Name and Location pane, enter HelloWorld into the Project
Name textfield. Notice that helloworld.HelloWorld appears in the textfield to
the right of the Create Main Class checkbox (which must be checked). The

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 1 GETTING STARTED WITH JAVA

10

helloworld portion of this string refers to a package that stores the HelloWorld
class portion of this string. (Packages are discussed in Chapter 3.) Click Finish.

NetBeans spends a few moments creating the HelloWorld project. Once it finishes, NetBeans
presents the workspace shown in Figure 1-2.

Figure 1-2. The workspace is organized into multiple work areas.

After creating HelloWorld, NetBeans organizes the workspace into projects, editor, navigator, and
tasks work areas. The projects area helps you manage your projects and is organized into the following
tabs:

• The Projects tab is the main entry point to your project’s source and resource files.
It presents a logical view of important project contents.

• The Files tab presents a directory-based view of your projects. This view includes
any files and folders not shown on the Projects tab.

• The Services tab presents a logical view of resources registered with the IDE, for
example, servers, databases, and web services.

The editor area helps you edit a project’s source files. Each file is associated with its own tab, which
is labeled with the filename. For example, Figure 1-2 reveals a HelloWorld.java tab that provides a
skeletal version of this source file’s contents.

CHAPTER 1 GETTING STARTED WITH JAVA

11

The navigator area presents the Navigator tab, which offers a compact view of the currently selected
file, and which simplifies navigation between various parts of the file (e.g., class and method headers).

Finally, the task area presents a Tasks tab that reveals a to-do list of items that need to be resolved
for the project’s various files. Each item consists of a description, a filename, and the location within the
file where resolution must take place.

Replace the HelloWorld.java tab’s contents with Listing 1-1, keeping the package helloworld;
statement at the top of the file to prevent NetBeans from complaining about an incorrect package.
Continuing, select Run Main Project from the Run menu to compile and run this application. Figure 1-
3’s Output tab shows HelloWorld’s greeting.

Figure 1-3. An Output tab appears to the left of Tasks and shows HelloWorld’s greeting.

 Tip To pass command-line arguments to an application, first select Project Properties from the File menu. On
the resulting Project Properties dialog box, select Run in the Categories tree, and enter the arguments (separated
by spaces; for example, first second third) in the Arguments textfield on the resulting pane.

For more information on the NetBeans 7 IDE, study the tutorials via the Start Page tab, access IDE
help via the Help menu, and explore the NetBeans knowledge base at http://netbeans.org/kb/.

http://netbeans.org/kb/

CHAPTER 1 GETTING STARTED WITH JAVA

12

Java Language Fundamentals
Most computer languages support comments, identifiers, types, variables, expressions, and statements.
Java is no exception, and this section introduces you to these fundamental language features from Java’s
perspective.

Comments
A program’s source code needs to be documented so that you (and any others who have to maintain it)
can understand it, now and later. Source code should be documented while being written and whenever
it is modified. If these modifications impact existing documentation, the documentation must be
updated so that it accurately explains the code.

Java provides the comment feature for embedding documentation in source code. When the source
code is compiled, the Java compiler ignores all comments—no bytecodes are generated. Single-line,
multiline, and Javadoc comments are supported.

Single-Line Comments
A single-line comment occupies all or part of a single line of source code. This comment begins with the
// character sequence and continues with explanatory text. The compiler ignores everything from // to
the end of the line in which // appears. The following example presents a single-line comment:

int x = (int) (Math.random()*100); // Obtain a random x coordinate from 0 through 99.

Single-line comments are useful for inserting short but meaningful explanations of source code into
this code. Don’t use them to insert unhelpful information. For example, when declaring a variable, don’t
insert a meaningless comment such as // this variable is an integer.

Multiline Comments
A multiline comment occupies one or more lines of source code. This comment begins with the /*
character sequence, continues with explanatory text, and ends with the */ character sequence.
Everything from /* through */ is ignored by the compiler. The following example demonstrates a
multiline comment:

static boolean isLeapYear(int year)
{
 /*
 A year is a leap year if it is divisible by 400, or divisible by 4 but
 not also divisible by 100.
 */
 if (year%400 == 0)
 return true;
 else
 if (year%100 == 0)
 return false;
 else
 if (year%4 == 0)
 return true;
 else

CHAPTER 1 GETTING STARTED WITH JAVA

13

 return false;
}

This example introduces a method for determining whether or not a year is a leap year. The
important part of this code to understand is the multiline comment, which clarifies the expression that
determines whether year’s value does or doesn’t represent a leap year.

 Caution You cannot place one multiline comment inside another. For example, /*/* Nesting multiline
comments is illegal! */*/ is not a valid multiline comment.

Javadoc Comments
A Javadoc comment (also known as a documentation comment) occupies one or more lines of source
code. This comment begins with the /** character sequence, continues with explanatory text, and ends
with the */ character sequence. Everything from /** through */ is ignored by the compiler. The
following example demonstrates a Javadoc comment:

/**
 * Application entry point
 *
 * @param args array of command-line arguments passed to this method
 */
public static void main(String[] args)
{
 // TODO code application logic here
}

This example begins with a Javadoc comment that describes the main() method. Sandwiched
between /** and */ is a description of the method, which could (but doesn’t) include HTML tags (such
as <p> and <code>/</code>), and the @param Javadoc tag (an @-prefixed instruction).

The following list identifies several commonly used tags:

• @author identifies the source code’s author.

• @deprecated identifies a source code entity (e.g., a method) that should no longer
be used.

• @param identifies one of a method’s parameters.

• @see provides a see-also reference.

• @since identifies the software release where the entity first originated.

• @return identifies the kind of value that the method returns.

Listing 1-2 presents our HelloWorld application with documentation comments that describe the
HelloWorld class and its main() method.

CHAPTER 1 GETTING STARTED WITH JAVA

14

Listing 1-2. Greetings from Java with documentation comments

/**
 A simple class for introducing a Java application.

 @author Jeff Friesen
*/
class HelloWorld
{
 /**
 Application entry point

 @param args array of command-line arguments passed to this method
 */
 public static void main(String[] args)
 {
 System.out.println("Hello, world!");
 }
}

We can extract these documentation comments into a set of HTML files by using the JDK’s javadoc
tool, as follows:

javadoc -private HelloWorld.java

javadoc defaults to generating HTML-based documentation for public classes and
public/protected members of these classes—you’ll learn about these concepts in Chapter 2. Because
HelloWorld is not public, specifying javadoc HelloWorld.java causes javadoc to complain that no public
or protected classes were found to document. The remedy is to specify javadoc’s -private command-
line option.

javadoc responds by outputting the following messages:

Loading source file HelloWorld.java...
Constructing Javadoc information...
Standard Doclet version 1.7.0
Building tree for all the packages and classes...
Generating \HelloWorld.html...
Generating \package-frame.html...
Generating \package-summary.html...
Generating \package-tree.html...
Generating \constant-values.html...
Building index for all the packages and classes...
Generating \overview-tree.html...
Generating \index-all.html...
Generating \deprecated-list.html...
Building index for all classes...
Generating \allclasses-frame.html...
Generating \allclasses-noframe.html...
Generating \index.html...
Generating \help-doc.html...

CHAPTER 1 GETTING STARTED WITH JAVA

15

It also generates several files, including the index.html entry-point file. Point your browser to this
file and you should see a page similar to that shown in Figure 1-4.

Figure 1-4. The entry-point page into HelloWorld’s javadoc provides easy access to the documentation.

 Note JDK 7’s external documentation has a similar appearance and organization to Figure 1-4 because this
documentation was also generated by javadoc.

Identifiers
Source code entities such as classes and methods need to be named so that they can be referenced from
elsewhere in the code. Java provides the identifiers feature for this purpose.

An identifier consists of letters (A-Z, a-z, or equivalent uppercase/lowercase letters in other human
alphabets), digits (0-9 or equivalent digits in other human alphabets), connecting punctuation
characters (e.g., the underscore), and currency symbols (e.g., the dollar sign $). This name must begin
with a letter, a currency symbol, or a connecting punctuation character; and its length cannot exceed the
line in which it appears.

Examples of valid identifiers include i, counter, loop10, border$color and _char. Examples of invalid
identifiers include 50y (starts with a digit) and first#name (# is not a valid identifier symbol).

CHAPTER 1 GETTING STARTED WITH JAVA

16

 Note Java is a case-sensitive language, which means that identifiers differing only in case are considered
separate identifiers. For example, salary and Salary are separate identifiers.

Almost any valid identifier can be chosen to name a class, method, or other source code entity.
However, some identifiers are reserved for special purposes; they are known as reserved words. Java
reserves the following identifiers: abstract, assert, boolean, break, byte, case, catch, char, class, const,
continue, default, do, double, enum, else, extends, false, final, finally, float, for, goto, if, implements,
import, instanceof, int, interface, long, native, new, null, package, private, protected, public, return,
short, static, strictfp, super, switch, synchronized, this, throw, throws, transient, true, try, void,
volatile, and while. The compiler outputs an error message if you attempt to use any of these reserved
words outside of their usage contexts.

 Note Most of Java’s reserved words are also known as keywords. The three exceptions are false, null, and
true, which are examples of literals (values specified verbatim).

Types
Programs process different types of values such as integers, floating-point values, characters, and
strings. A type identifies a set of values (and their representation in memory) and a set of operations that
transform these values into other values of that set. For example, the integer type identifies numeric
values with no fractional parts and integer-oriented math operations, such as adding two integers to
yield another integer.

 Note Java is a strongly typed language, which means that every expression, variable, and so on has a type
known to the compiler. This capability helps the compiler detect type-related errors at compile time rather than
having these errors manifest themselves at runtime. Expressions and variables are discussed later in this chapter.

Java classifies types as primitive types, user-defined types, and array types.

Primitive Types
A primitive type is a type that is defined by the language and whose values are not objects. Java supports
the Boolean, character, byte integer, short integer, integer, long integer, floating-point, and double
precision floating-point primitive types. They are described in Table 1-1.

CHAPTER 1 GETTING STARTED WITH JAVA

17

Table 1-1. Primitive Types

Primitive Type Reserved Word Size Min Value Max Value

Boolean boolean -- -- --

Character char 16-bit Unicode 0 Unicode 216 - 1

Byte integer byte 8-bit -128 +127

Short integer short 16-bit -215 +215 - 1

Integer int 32-bit -231 +231 - 1

Long integer long 64-bit -263 +263 - 1

Floating-point float 32-bit IEEE 754 IEEE 754

Double precision floating-point double 64-bit IEEE 754 IEEE 754

Table 1-1 describes each primitive type in terms of its reserved word, size, minimum value, and

maximum value. A “--” entry indicates that the column in which it appears is not applicable to the
primitive type described in that entry’s row.

The size column identifies the size of each primitive type in terms of the number of bits (binary
digits—each digit is either 0 or 1) that a value of that type occupies in memory. Except for Boolean
(whose size is implementation dependent—one Java implementation might store a Boolean value in a
single bit, whereas another implementation might require an eight-bit byte for performance efficiency),
each primitive type’s implementation has a specific size.

The minimum value and maximum value columns identify the smallest and largest values that can
be represented by each type. Except for Boolean (whose only values are true and false), each primitive
type has a minimum value and a maximum value.

The minimum and maximum values of the character type refer to Unicode, which is a standard for
the consistent encoding, representation, and handling of text expressed in most of the world's writing
systems. Unicode was developed in conjunction with the Universal Character Set, a standard for
encoding the various symbols making up the world’s written languages. Unicode 0 is shorthand for “the
first Unicode code point”—a code point is an integer that represents a symbol (e.g., A) or a control
character (e.g., newline or tab), or that combines with other code points to form a symbol. Check out
Wikipedia’s “Unicode” entry (http://en.wikipedia.org/wiki/Unicode) to learn more about this
standard, and Wikipedia’s “Universal Character Set” entry
(http://en.wikipedia.org/wiki/Universal_Character_Set) to learn more about this standard.

 Note The character type’s limits imply that this type is unsigned (all character values are positive). In contrast,
each numeric type is signed (it supports positive and negative values).

http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Universal_Character_Set

CHAPTER 1 GETTING STARTED WITH JAVA

18

The minimum and maximum values of the byte integer, short integer, integer, and long integer
types reveal that there is one more negative value than positive value (0 is typically not regarded as a
positive value). The reason for this imbalance has to do with how integers are represented.

Java represents an integer value as a combination of a sign bit (the leftmost bit—0 for a positive
value and 1 for a negative value) and magnitude bits (all remaining bits to the right of the sign bit). If the
sign bit is 0, the magnitude is stored directly. However, if the sign bit is 1, the magnitude is stored using
twos-complement representation in which all 1s are flipped to 0s, all 0s are flipped to 1s, and 1 is added
to the result. Twos-complement is used so that negative integers can naturally coexist with positive
integers. For example, adding the representation of -1 to +1 yields 0. Figure 1-5 illustrates byte integer 2’s
direct representation and byte integer -2’s twos-complement representation.

Figure 1-5. The binary representation of two byte integer values begins with a sign bit.

The minimum and maximum values of the floating-point and double precision floating-point types
refer to IEEE 754, which is a standard for representing floating-point values in memory. Check out
Wikipedia’s “IEEE 754-2008” entry (http://en.wikipedia.org/wiki/IEEE_754) to learn more about this
standard.

 Note Developers who argue that Java should only support objects are not happy about the inclusion of primitive
types in the language. However, Java was designed to include primitive types to overcome the speed and memory
limitations of early 1990s-era devices, to which Java was originally targeted.

User-Defined Types
A user-defined type is a type that is defined by the developer using a class, an interface, an enum, or an
annotation type; and whose values are objects. For example, Java’s String class defines the string user-
defined type; its values describe strings of characters, and its methods perform various string operations
such as concatenating two strings together. Chapter 2 discusses classes, interfaces, and methods.
Chapter 3 discusses enums and annotation types.

User-defined types are also known as reference types because a variable of that type stores a
reference (a memory address or some other identifier) to a region of memory that stores an object of that
type. In contrast, variables of primitive types store the values directly; they don’t store references to
these values.

Array Types
An array type is a special reference type that signifies an array, a region of memory that stores values in
equal-size and contiguous slots, which are commonly referred to as elements.

http://en.wikipedia.org/wiki/IEEE_754

CHAPTER 1 GETTING STARTED WITH JAVA

19

This type consists of the element type (a primitive type or a user-defined type) and one or more
pairs of square brackets that indicate the number of dimensions (extents). A single pair of brackets
signifies a one-dimensional array (a vector), two pairs of brackets signify a two-dimensional array (a
table), three pairs of brackets signify a one-dimensional array of two-dimensional arrays (a vector of
tables), and so on. For example, int[] signifies a one-dimensional array (with int as the element type),
and double[][] signifies a two-dimensional array (with double as the element type).

Variables
Programs manipulate values that are stored in memory, which is symbolically represented in source
code through the use of the variables feature. A variable is a named memory location that stores some
type of value. Variables that store references are often referred to as reference variables.

Variables must be declared before they are used. A declaration minimally consists of a type name,
optionally followed by a sequence of square bracket pairs, followed by a name, optionally followed by a
sequence of square bracket pairs, and terminated with a semicolon character (;). Consider the following
examples:

int counter;
double temperature;
String firstName;
int[] ages;
char gradeLetters[];
float[][] matrix;

The first example declares an integer variable named counter, the second example declares a double
precision floating-point variable named temperature, the third example declares a string variable named
firstName, the fourth example declares a one-dimensional integer array variable named ages, the fifth
example declares a one-dimensional character array variable named gradeLetters, and the sixth
example declares a two-dimensional floating-point array variable named matrix. No string is yet
associated with firstName, and no arrays are yet associated with ages, gradeLetters, and matrix.

 Caution Square brackets can appear after the type name or after the variable name, but not in both places. For
example, the compiler reports an error when it encounters int[] x[];. It is common practice to place the square
brackets after the type name (as in int[] ages;) instead of after the variable name (as in char
gradeLetters[];).

You can declare multiple variables on one line by separating each variable from its predecessor with
a comma, as demonstrated by the following example:

int x, y[], z;

This example declares three variables named x, y, and z. Each variable shares the same type, which
happens to be integer. Unlike x and z, which store single integer values, y[] signifies a one-dimensional
array whose element type is integer – each element stores an integer value. No array is yet associated
with y.

The square brackets must appear after the variable name when the array is declared on the same
line as the other variables. If you place the square brackets before the variable name, as in int x, []y,

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 1 GETTING STARTED WITH JAVA

20

z;, the compiler reports an error. If you place the square brackets after the type name, as in int[] x, y,
z;, all three variables signify one-dimensional arrays of integers.

Expressions
The previously declared variables were not explicitly initialized to any values. As a result, they are either
initialized to default values (e.g., 0 for int and 0.0 for double) or remain uninitialized, depending upon
the contexts in which they appear (declared within classes or declared within methods). Chapter 2
discusses variable contexts in terms of fields, local variables, and parameters.

Java provides the expressions feature for initializing variables and for other purposes. An expression
is a combination of literals, variable names, method calls, and operators. At runtime, it evaluates to a
value whose type is referred to as the expression’s type. If the expression is being assigned to a variable,
the expression’s type must agree with the variable’s type; otherwise, the compiler reports an error.

Java classifies expressions as simple expressions and compound expressions.

Simple Expressions
A simple expression is a literal (a value expressed verbatim), a variable name (containing a value), or a
method call (returning a value). Java supports several kinds of literals: string, Boolean true and false,
character, integer, floating-point, and null.

 Note A method call that doesn’t return a value—the called method is known as a void method—is a special
kind of simple expression; for example, System.out.println("Hello, World!");. This standalone expression
cannot be assigned to a variable. Attempting to do so (as in int i = System.out.println("X");) causes the
compiler to report an error.

A string literal consists of a sequence of Unicode characters surrounded by a pair of double quotes;
for example, "The quick brown fox jumps over the lazy dog." It might also contain escape sequences,
which are special syntax for representing certain printable and nonprintable characters that otherwise
cannot appear in the literal. For example, "The quick brown \"fox\" jumps over the lazy dog." uses
the \" escape sequence to surround fox with double quotes.

Table 1-2 describes all supported escape sequences.

CHAPTER 1 GETTING STARTED WITH JAVA

21

Table 1-2. Escape Sequences

Escape Syntax Description

\\ Backslash

\" Double quote

\' Single quote

\b Backspace

\f Form feed

\n Newline (also
referred to as line
feed)

\r Carriage return

\t Horizontal tab

Finally, a string literal might contain Unicode escape sequences, which are special syntax for

representing Unicode characters. A Unicode escape sequence begins with \u and continues with four
hexadecimal digits (0-9, A-F, a-f) with no intervening space. For example, \u0041 represents capital letter
A, and \u20ac represents the European Union’s euro currency symbol.

A Boolean literal consists of reserved word true or reserved word false.
A character literal consists of a single Unicode character surrounded by a pair of single quotes ('A'

is an example). You can also represent, as a character literal, an escape sequence ('\'', for example) or a
Unicode escape sequence (e.g., '\u0041').

An integer literal consists of a sequence of digits. If the literal is to represent a long integer value, it
must be suffixed with an uppercase L or lowercase l (L is easier to read). If there is no suffix, the literal
represents a 32-bit integer (an int).

Integer literals can be specified in the decimal, hexadecimal, octal, and binary formats:

• The decimal format is the default format; for example, 127.

• The hexadecimal format requires that the literal begin with 0x or 0X and continue
with hexadecimal digits (0-9, A-F, a-f); for example, 0x7F.

• The octal format requires that the literal be prefixed with 0 and continue with octal
digits (0-7); for example, 0177.

• The binary format requires that the literal be prefixed with 0b or 0B and continue
with 0s and 1s; for example, 0b01111111.

To improve readability, you can insert underscores between digits; for example, 204_555_1212.
Although you can insert multiple successive underscores between digits (as in 0b1111__0000), you
cannot specify a leading underscore (as in _123) because the compiler would treat the literal as an

CHAPTER 1 GETTING STARTED WITH JAVA

22

identifier. Also, you cannot specify a trailing underscore (as in 123_). A floating-point literal consists of
an integer part, a decimal point (represented by the period character [.]), a fractional part, an exponent
(starting with letter E or e), and a type suffix (letter D, d, F, or f). Most parts are optional, but enough
information must be present to differentiate the floating-point literal from an integer literal. Examples
include 0.1 (double precision floating-point), 89F (floating-point), 600D (double precision floating-
point), and 13.08E+23 (double precision floating-point). As with integer literals, you can make floating-
point literals easier to read by placing underscores between digits (3.141_592_654, for example).

Finally, the null literal is assigned to a reference variable to indicate that the variable does not refer
to an object.

The following examples use literals to initialize the previously presented variables:

int counter = 10;
double temperature = 98.6; // Assume Fahrenheit scale.
String firstName = "Mark";
int[] ages = { 52, 28, 93, 16 };
char gradeLetters[] = { 'A', 'B', 'C', 'D', 'F' };
float[][] matrix = { { 1.0F, 2.0F, 3.0F }, { 4.0F, 5.0F, 6.0F }};
int x = 1, y[] = { 1, 2, 3 }, z = 3;

The last four examples use array initializers to initialize the ages, gradeletters, matrix, and y arrays.
An array initializer consists of a brace-and-comma-delimited list of expressions, which (as the matrix
example shows) may themselves be array initializers. The matrix example results in a table that looks
like the following:

1.0F 2.0F 3.0F
4.0F 5.0F 6.0F

ORGANIZING VARIABLES IN MEMORY

Perhaps you’re curious about how variables are organized in memory. Figure 1-6 presents one possible
high-level organization for the counter, ages, and matrix variables, along with the arrays assigned to
ages and matrix.

Figure 1-6. The counter variable stores a four-byte integer value, whereas ages and matrix store four-byte

references to their respective arrays.

Figure 1-6 reveals that each of counter, ages, and matrix is stored at a memory address (starting at a
fictitious 20001000 value in this example) and divisible by four (each variable stores a four-byte value),
that counter’s four-byte value is stored at this address, and that each of the ages and matrix four-byte

CHAPTER 1 GETTING STARTED WITH JAVA

23

memory locations stores the 32-bit address of its respective array (64-bit addresses would most likely be
used on 64-bit JVMs). Also, a one-dimensional array is stored as a list of values, whereas a two-
dimensional array is stored as a one-dimensional row array of addresses, where each address identifies a
one-dimensional column array of values for that row.

Although Figure 1-6 implies that array addresses are stored in ages and matrix, which equates references
with addresses, a Java implementation might equate references with handles (integer values that identify
slots in a list). This alternative is presented in Figure 1-7 for ages and its referenced array.

Figure 1-7. A handle is stored in ages, and the list entry identified by this handle stores the address of the

associated array.

Handles make it easy to move around regions of memory during garbage collection (discussed in Chapter
2). If multiple variables referenced the same array via the same address, each variable’s address value
would have to be updated when the array was moved. However, if multiple variables referenced the array
via the same handle, only the handle’s list entry would need to be updated. A downside to using handles is
that accessing memory via these handles can be slower than directly accessing this memory via an
address. Regardless of how references are implemented, this implementation detail is hidden from the
Java developer in order to promote portability.

The following example shows a simple expression where one variable is assigned the value of

another variable:

int counter1 = 1;
int counter2 = counter1;

Finally, the following example shows a simple expression that assigns the result of a method call to a
variable named isLeap:

boolean isLeap = isLeapYear(2011);

The previous examples have assumed that only those expressions whose types are the same as the
types of the variables that they are initializing can be assigned to those variables. However, under certain
circumstances, it’s possible to assign an expression having a different type. For example, Java permits
you to assign certain integer literals to short integer variables, as in short s = 20;, and assign a short
integer expression to an integer variable, as in int i = s;.

Java permits the former assignment because 20 can be represented as a short integer (no
information is lost). In contrast, Java would complain about short s = 40000; because integer literal
40000 cannot be represented as a short integer (32767 is the maximum positive integer that can be stored
in a short integer variable). Java permits the latter assignment because no information is lost when Java
converts from a type with a smaller set of values to a type with a wider set of values.

Java supports the following primitive type conversions via widening conversion rules:

CHAPTER 1 GETTING STARTED WITH JAVA

24

• Byte integer to short integer, integer, long integer, floating-point, or double
precision floating-point

• Short integer to integer, long integer, floating-point, or double precision floating-
point

• Character to integer, long integer, floating-point, or double precision floating-
point

• Integer to long integer, floating-point, or double precision floating-point

• Long integer to floating-point or double precision floating-point

• Floating-point to double precision floating-point

 Note When converting from a smaller integer to a larger integer, Java copies the smaller integer’s sign bit into
the extra bits of the larger integer.

Chapter 2 discusses the widening conversion rules for performing type conversions in the context of
user-defined and array types.

Compound Expressions
A compound expression is a sequence of simple expressions and operators, where an operator (a
sequence of instructions symbolically represented in source code) transforms its operand expression
value(s) into another value. For example, -6 is a compound expression consisting of operator - and
integer literal 6 as its operand. This expression transforms 6 into its negative equivalent. Similarly, x+5 is
a compound expression consisting of variable name x, integer literal 5, and operator + sandwiched
between these operands. Variable x’s value is fetched and added to 5 when this expression is evaluated.
The sum becomes the value of the expression.

 Note If x’s type is byte integer or short integer, this variable’s value is widened to an integer. However, if x’s
type is long integer, floating-point, or double precision floating-point, 5 is widened to the appropriate type. The
addition operation is performed after the widening conversion takes place.

Java supplies a wide variety of operators that are classified by the number of operands they take. A
unary operator takes only one operand (unary minus [-] is an example), a binary operator takes two
operands (addition [+] is an example), and Java’s single ternary operator (conditional [?:]) takes three
operands.

Operators are also classified as prefix, postfix, and infix. A prefix operator is a unary operator that
precedes its operand (as in -6), a postfix operator is a unary operator that trails its operand (as in x++),
and an infix operator is a binary or ternary operator that is sandwiched between the binary operator’s

CHAPTER 1 GETTING STARTED WITH JAVA

25

two or the ternary operator’s three operands (as in x+5).Table 1-3 presents all supported operators in
terms of their symbols, descriptions, and precedence levels—the concept of precedence is discussed at
the end of this section. Various operator descriptions refer to “integer type,” which is shorthand for
specifying any of byte integer, short integer, integer, or long integer unless “integer type” is qualified as a
32-bit integer. Also, “numeric type” refers to any of these integer types along with floating-point and
double precision floating-point.

Table 1-3. Operators

Operator Symbol Description Precedence

Addition + Given operand1 + operand2, where each operand
must be o f character or numeric type, add
operand2 to operand1 and return the sum.

10

Array index [] Given variable[index], where index must be of
integer type, read value from or store value into
variable’s storage element at location index.

13

Assignment = Given variable = operand, which must be
assignment-compatible (their types must agree),
store operand in variable.

0

Bitwise AND & Given operand1 & operand2, where each operand
must be of character or in teger type, bitwise
AND their correspo nding bits and return the
result. A result bit is set to 1 if each o perand’s
corresponding bit is 1. Otherwise, the result bit is
set to 0.

6

Bitwise
complement

~ Given ~operand, where operand must be of
character or integer type, flip operand’s bits (1s to
0s and 0s to 1s) and return the result.

12

Bitwise
exclusive OR

^ Given operand1 ^ operand2, where each operand
must be of character or in teger type, bitwise
exclusive OR their corresponding bits and return
the result. A result bit is set to 1 if one operand’s
corresponding bit is 1 and t he other oper and’s
corresponding bit is 0. Otherwise, the result bit is
set to 0.

5

Bitwise
inclusive OR

| Given operand1 | operand2, which must be of
character or integer type, bitwis e inclusive OR
their corresponding bits and return the res ult. A
result bit is set to 1 if eith er (or both) of the
operands’ corresponding bits is 1. Otherwise, the
result bit is set to 0.

4

CHAPTER 1 GETTING STARTED WITH JAVA

26

Cast (type) Given (type) operand, convert operand to an
equivalent value that can be represented by
type. For example, you could use this operator to
convert a floating-point value to a 32-bit integer
value.

12

Compound
assignment

+=, -=, *=,
/=, %=, &=,
|=, ^=, <<=,
>>=, >>>=

Given variable operator operand, where
operator is one of the listed compound operator
symbols, and where operand is assignment-
compatible with variable, perform the indicated
operation using variable’s value as operator’s
left operand value, and store the resulting value
in variable.

0

Conditional ?: Given operand1 ? operand2 : operand3, where
operand1 must be of Boolean type, re turn
operand2 if operand1 is true or operand3 if
operand1 is false. The types of operand2 and
operand3 must agree.

1

Conditional
AND

&& Given operand1 && operand2, where each
operand must be of Boolean type, return true if
both operands are true. Ot herwise, return false.
If operand1 is false, operand2 is not examined.
This is known as short-circuiting.

3

Conditional OR || Given operand1 || operand2, where each
operand must be of Boolean type, return true if
at least one operand is true. Otherwise, return
false. If operand1 is true, operand2 is not
examined. This is known as short-circuiting.

2

Division / Given operand1 / operand2, where each operand
must be o f character or numeric type, divide
operand1 by operand2 and return the quotient.

11

Equality == Given operand1 == operand2, where both
operands must be co mparable (you cannot
compare an integer with a string li teral, for
example), compare both operands for equality.
Return true if thes e operands are equa l.
Otherwise, return false.

7

Inequality != Given operand1 != operand2, where both
operands must be co mparable (you cannot
compare an integer with a string li teral, for
example), compare both operands for inequality.
Return true if these operands are not equal.

7

CHAPTER 1 GETTING STARTED WITH JAVA

27

Otherwise, return false.

Left shift << Given operand1 << operand2, where each
operand must be o f character or integer type,
shift operand1’s binary representation left by the
number of bits that operand2 specifies. For ea ch
shift, a 0 is shifted into the rightmost bit and the
leftmost bit is discarded. Only the f ive low-order
bits of operand2 are used wh en shifting a 32-bit
integer (to prevent shifting more than the
number of bits in a 32- bit integer). Only the si x
low-order bits of operand2 are used when
shifting a 64-bit integer (to prevent shifting more
than the number of bits in a 64-bit integer). The
shift preserves negative values. Furthermore, it is
equivalent to (but faster than) multiplying by a
multiple of 2.

9

Logical AND & Given operand1 & operand2, where each operand
must be of Boolea n type, return true if both
operands are true. Otherwise, return false. In
contrast to conditional AND, logical AND does
not perform short-circuiting.

6

Logical
complement

! Given !operand, where operand must be of
Boolean type, flip operand’s value (true to false or
false to true) and return the result.

12

Logical
exclusive OR

^ Given operand1 ^ operand2, where each operand
must be of Boolea n type, return true if one
operand is true and t he other operand is false.
Otherwise, return false.

5

Logical
inclusive OR

| Given operand1 | operand2, where each operand
must be of Boolea n type, return true if a t least
one operand is true. Otherwise, return false. In
contrast to conditional OR, logical inclusive OR
does not perform short-circuiting.

4

Member access . Given identifier1.identifier2, access the
identifier2 member of identifer1.

13

Method call () Given identifier(argument list), call the
method identified by identifier and matching
parameter list.

13

Multiplication * Given operand1 * operand2, where each operand
must be o f character or numeric type, multiply

11

CHAPTER 1 GETTING STARTED WITH JAVA

28

operand1 by operand2 and return the product.

Object creation new Given new identifier(argument list), allocate
memory for object and call constructor
(discussed in C hapter 2) specified as
identifier(argument list). Given new
identifier[integer size], allocate a one-
dimensional array of values.

12

Postdecrement -- Given variable--, where variable must be of
character or numeric type, subtract 1 from
variable’s value (storing the res ult in variable)
and return the original value.

13

Postincrement ++ Given variable++, where variable must be of
character or numeric type, add 1 to variable’s
value (storing the result in variable) and return
the original value.

13

Predecrement -- Given --variable, where variable must be of
character or numeric type, subtract 1 fro m its
value, store the result in variable, and return
this value.

12

Preincrement ++ Given ++variable, where variable must be of
character or num eric type, a dd 1 to its value,
store the result in variable, and return this
value.

12

Relational
greater than

> Given operand1 > operand2, where each operand
must be o f character or numeric type, return
true if operand1 is greater than operand2.
Otherwise, return false.

8

Relational
greater than or
equal to

>= Given operand1 >= operand2, where each
operand must be o f character or numeric type,
return true if operand1 is greater than or equal to
operand2. Otherwise, return false.

8

Relational less
than

< Given operand1 < operand2, where each operand
must be o f character or numeric type, return
true if operand1 is less t han operand2. Otherwise,
return false.

8

Relational less
than or equal to

<= Given operand1 <= operand2, where each
operand must be o f character or numeric type,
return true if operand1 is less than or equal to
operand2. Otherwise, return false.

8

CHAPTER 1 GETTING STARTED WITH JAVA

29

Relational type
checking

instanceof Given operand1 instanceof operand2, where
operand1 is an object and operand2 is a class (o r
other user-defined type), return true if operand1
is an instance of operand2. Otherwise, return
false.

8

Remainder % Given operand1 % operand2, where each operand
must be o f character or numeric type, divide
operand1 by operand2 and return the remainder.

11

Signed right
shift

>> Given operand1 >> operand2, where each
operand must be o f character or integer type,
shift operand1’s binary repre sentation right by
the number of bits that operand2 specifies. For
each shift, a copy of the sign bit (the leftmost bit)
is shifted to t he right a nd the rightmost bit is
discarded. Only the fi ve low-order b its of
operand2 are used when shifting a 32-bit integer
(to prevent s hifting more than the num ber of
bits in a 32-bit integer). Only the s ix low-order
bits of operand2 are used wh en shifting a 64-bit
integer (to prevent shifting more than the
number of bi ts in a 64-bit integer). The shift
preserves negative values. Furthermore, it is
equivalent to (but fast er than) dividing by a
multiple of 2.

9

String
concatenation

+ Given operand1 + operand2, where at least one
operand is of String type, append operand2’s
string representation to operand1’s string
representation and return the concatenated
result.

10

Subtraction - Given operand1 - operand2, where each operand
must be o f character or numeric type, subtract
operand2 from operand1 and return the
difference.

10

Unary minus - Given -operand, where operand must be of
character or numeric type, return operand’s
arithmetic negative.

12

Unary plus + Like its predecessor, but return operand. Rarely
used.

12

Unsigned right
shift

>>> Given operand1 >>> operand2, where each
operand must be o f character or integer type,
shift operand1’s binary repre sentation right by
the number of bits that operand2 specifies. For

9

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 1 GETTING STARTED WITH JAVA

30

each shift, a zero is shifted into the leftm ost bit
and the rightmost bit is discarded. Only the five
low-order bits of operand2 are used when
shifting a 32-bit integer (to prevent shifting more
than the number of bits in a 32-bit integer). Only
the six low-order bits of operand2 are used when
shifting a 64-bit integer (to prevent shifting more
than the number of bits in a 64-bit integer). The
shift does not pres erve negative values.
Furthermore, it is equivalent to (but faster than)
dividing by a multiple of 2.

Table 1-3’s operators can be classified as additive, array index, assignment, bitwise, cast,

conditional, equality, logical, member access, method call, multiplicative, object creation, relational,
shift, and unary minus/plus.

Additive Operators

The additive operators consist of addition (+), subtraction (-), postdecrement (--), postincrement (++),
predecrement (--), preincrement (++), and string concatenation (+). Addition returns the sum of its
operands (e.g., 6+4 returns 10), subtraction returns the difference between its operands (e.g., 6-4 returns
2 and 4-6 returns 2), postdecrement subtracts one from its variable operand and returns the variable’s
prior value (e.g., x--), postincrement adds one to its variable operand and returns the variable’s prior
value (e.g., x++), predecrement subtracts one from its variable operand and returns the variable’s new
value (e.g., --x), preincrement adds one to its variable operand and returns the variable’s new value (e.g.,
++x), and string concatenation merges its string operands and returns the merged string (e.g., "A"+"B"
returns "AB").

The addition, subtraction, postdecrement, postincrement, predecrement, and preincrement
operators can yield values that overflow or underflow the limits of the resulting value’s type. For
example, adding two large positive 32-bit integer values can produce a value that cannot be represented
as a 32-bit integer value. The result is said to overflow. Java does not detect overflows and underflows.

Java provides a special widening conversion rule for use with string operands and the string
concatenation operator. If either operand is not a string, the operand is first converted to a string prior to
string concatenation. For example, when presented with "A"+5, the compiler generates code that first
converts 5 to "5" and then performs the string concatenation operation, resulting in "A5".

Array Index Operator

The array index operator ([]) accesses an array element by presenting the location of that element as an
integer index. This operator is specified after an array variable’s name; for example, ages[0].

Indexes are relative to 0, which implies that ages[0] accesses the first element, whereas ages[6]
accesses the seventh element. The index must be greater than or equal to 0 and less than the length of
the array; otherwise, the JVM throws ArrayIndexOutOfBoundsException (consult Chapter 3 to learn about
exceptions).

An array’s length is returned by appending “.length” to the array variable. For example,
ages.length returns the length of (the number of elements in) the array that ages references. Similarly,
matrix.length returns the number of row elements in the matrix two-dimensional array, whereas
matrix[0].length returns the number of column elements assigned to the first row element of this array.

CHAPTER 1 GETTING STARTED WITH JAVA

31

Assignment Operators

The assignment operator (=) assigns an expression’s result to a variable (as in int x = 4;). The types of
the variable and expression must agree; otherwise, the compiler reports an error.

Java also supports several compound assignment operators that perform a specific operation and
assign its result to a variable. For example, the += operator evaluates the numeric expression on its right
and adds the result to the contents of the variable on its left. The other compound assignment operators
behave in a similar way.

Bitwise Operators

The bitwise operators consist of bitwise AND (&), bitwise complement (~), bitwise exclusive OR (^), and
bitwise inclusive OR (|). These operators are designed to work on the binary representations of their
character or integral operands. Because this concept can be hard to understand if you haven’t previously
worked with these operators in another language, the following example demonstrates these operators:

~0B00000000000000000000000010110101 results in 11111111111111111111111101001010
0B00011010&0B10110111 results in 00000000000000000000000000010010
0B00011010^0B10110111 results in 00000000000000000000000010101101
0B00011010|0B10110111 results in 00000000000000000000000010111111

The &, ^, and | operators in the last three lines first convert their byte integer operands to 32-bit
integer values (through sign bit extension, copying the sign bit’s value into the extra bits) before
performing their operations.

Cast Operator

The cast operator—(type)—attempts to convert the type of its operand to type. This operator exists
because the compiler will not allow you to convert a value from one type to another in which
information will be lost without specifying your intention do so (via the cast operator). For example,
when presented with short s = 1.65+3;, the compiler reports an error because attempting to convert a
double precision floating-point value to a short integer results in the loss of the fraction .65—s would
contain 4 instead of 4.65.

Recognizing that information loss might not always be a problem, Java permits you to explicitly
state your intention by casting to the target type. For example, short s = (short) 1.65+3; tells the
compiler that you want 1.65+3 to be converted to a short integer, and that you realize that the fraction
will disappear.

The following example provides another demonstration of the need for a cast operator:

char c = 'A';
byte b = c;

The compiler reports an error about loss of precision when it encounters byte b = c;. The reason is
that c can represent any unsigned integer value from 0 through 65535, whereas b can only represent a
signed integer value from -128 through +127. Even though 'A' equates to +65, which can fit within b’s
range, c could just have easily been initialized to '\u0323', which would not fit.

The solution to this problem is to introduce a (byte) cast, as follows, which causes the compiler to
generate code to cast c’s character type to byte integer:

byte b = (byte) c;

Java supports the following primitive type conversions via cast operators:

CHAPTER 1 GETTING STARTED WITH JAVA

32

• Byte integer to character

• Short integer to byte integer or character

• Character to byte integer or short integer

• Integer to byte integer, short integer, or character

• Long integer to byte integer, short integer, character, or integer

• Floating-point to byte integer, short integer, character, integer, or long integer

• Double precision floating-point to byte integer, short integer, character, integer,
long integer, or floating-point

A cast operator is not always required when converting from more to fewer bits, and where no data
loss occurs. For example, when it encounters byte b = 100;, the compiler generates code that assigns
integer 100 to byte integer variable b because 100 can easily fit into the 8-bit storage location assigned to
this variable.

Conditional Operators

The conditional operators consist of conditional AND (&&), conditional OR (||), and conditional (?:). The
first two operators always evaluate their left operand (a Boolean expression that evaluates to true or
false) and conditionally evaluate their right operand (another Boolean expression). The third operator
evaluates one of two operands based upon a third Boolean operand.

Conditional AND always evaluates its left operand and evaluates its right operand only when its left
operand evaluates to true. For example, age > 64 && stillWorking first evaluates age > 64. If this
subexpression is true, stillWorking is evaluated, and its true or false value (stillWorking is a Boolean
variable) serves as the value of the overall expression. If age > 64 is false, stillWorking is not evaluated.

Conditional OR always evaluates its left operand and evaluates its right operand only when its left
operand evaluates to false. For example, value < 20 || value > 40 first evaluates value < 20. If this
subexpression is false, value > 40 is evaluated, and its true or false value serves as the overall
expression’s value. If value < 20 is true, value > 40 is not evaluated.

Conditional AND and conditional OR boost performance by preventing the unnecessary evaluation
of subexpressions, which is known as short-circuiting. For example, if its left operand is false, there is no
way that conditional AND’s right operand can change the fact that the overall expression will evaluate to
false.

If you aren’t careful, short-circuiting can prevent side effects (the results of subexpressions that
persist after the subexpressions have been evaluated) from executing. For example, age > 64 &&
++numEmployees > 5 increments numEmployees for only those employees whose ages are greater than 64.
Incrementing numEmployees is an example of a side effect because the value in numEmployees persists after
the subexpression ++numEmployees > 5 has evaluated.

The conditional operator is useful for making a decision by evaluating and returning one of two
operands based upon the value of a third operand. The following example converts a Boolean value to its
integer equivalent (1 for true and 0 for false):

boolean b = true;
int i = b ? 1 : 0; // 1 assigns to i

CHAPTER 1 GETTING STARTED WITH JAVA

33

Equality Operators

The equality operators consist of equality (==) and inequality (!=). These operators compare their
operands to determine whether they are equal or unequal. The former operator returns true when equal;
the latter operator returns true when unequal. For example, each of 2 == 2 and 2 != 3 evaluates to true,
whereas each of 2 == 4 and 4 != 4 evaluates to false.

When it comes to object operands (discussed in Chapter 2), these operators do not compare their
contents. For example, "abc" == "xyz" does not compare a with x. Instead, because string literals are
really String objects stored in memory (Chapter 4 discusses this concept further), == compares the
references to these objects.

Logical Operators

The logical operators consist of logical AND (&), logical complement (!), logical exclusive OR (^), and
logical inclusive OR (|). Although these operators are similar to their bitwise counterparts, whose
operands must be integer/character, the operands passed to the logical operators must be Boolean. For
example, !false returns true. Also, when confronted with age > 64 & stillWorking, logical AND
evaluates both subexpressions. This same pattern holds for logical exclusive OR and logical inclusive OR.

Member Access Operator

The member access operator (.) is used to access a class’s members or an object’s members. For
example, String s = "Hello"; int len = s.length(); returns the length of the string assigned to
variable s. It does so by calling the length() method member of the String class. Chapter 2 discusses this
topic in more detail.

Arrays are special objects that have a single length member. When you specify an array variable
followed by the member access operator, followed by length, the resulting expression returns the
number of elements in the array as a 32-bit integer. For example, ages.length returns the length of (the
number of elements in) the array that ages references.

Method Call Operator

The method call operator—()—is used to signify that a method (discussed in Chapter 2) is being called.
Furthermore, it identifies the number, order, and types of arguments that are passed to the method, to
be picked up by the method’s parameters. System.out.println("Hello"); is an example.

Multiplicative Operators

The multiplicative operators consist of multiplication (*), division (/), and remainder (%). Multiplication
returns the product of its operands (e.g., 6*4 returns 24), division returns the quotient of dividing its left
operand by its right operand (e.g., 6/4 returns 1), and remainder returns the remainder of dividing its left
operand by its right operand (e.g., 6%4 returns 2).

The multiplication, division, and remainder operators can yield values that overflow or underflow
the limits of the resulting value’s type. For example, multiplying two large positive 32-bit integer values
can produce a value that cannot be represented as a 32-bit integer value. The result is said to overflow.
Java does not detect overflows and underflows.

Dividing a numeric value by 0 (via the division or remainder operator) also results in interesting
behavior. Dividing an integer value by integer 0 causes the operator to throw an ArithmeticException

CHAPTER 1 GETTING STARTED WITH JAVA

34

object (Chapter 3 covers exceptions). Dividing a floating-point/double precision floating-point value by
0 causes the operator to return +infinity or -infinity, depending on whether the dividend is positive or
negative. Finally, dividing floating-point 0 by 0 causes the operator to return NaN (Not a Number).

Object Creation Operator

The object creation operator (new) creates an object from a class and also creates an array from an
initializer. These topics are discussed in Chapter 2.

Relational Operators

The relational operators consist of relational greater than (>), relational greater than or equal to (>=),
relational less than (<), relational less than or equal to (<=), and relational type checking (instanceof).
The former four operators compare their operands and return true if the left operand is (respectively)
greater than, greater than or equal to, less than, or less than or equal to the right operand. For example,
each of 5.0 > 3, 2 >= 2, 16.1 < 303.3, and 54.0 <= 54.0 evaluates to true.

The relational type-checking operator is used to determine whether an object belongs to a specific
type. This topic is discussed in Chapter 2.

Shift Operators

The shift operators consist of left shift (<<), signed right shift (>>), and unsigned right shift (>>>). Left shift
shifts the binary representation of its left operand leftward by the number of positions specified by its
right operand. Each shift is equivalent to multiplying by 2. For example, 2 << 3 shifts 2’s binary
representation left by 3 positions; the result is equivalent to multiplying 2 by 8.

Each of signed and unsigned right shift shifts the binary representation of its left operand rightward
by the number of positions specified by its right operand. Each shift is equivalent to dividing by 2. For
example, 16 >> 3 shifts 16’s binary representation right by 3 positions; the result is equivalent to
dividing 16 by 8.

The difference between signed and unsigned right shift is what happens to the sign bit during the
shift. Signed right shift includes the sign bit in the shift, whereas unsigned right shift ignores the sign bit.
As a result, signed right shift preserved negative numbers, but unsigned right shift does not. For
example, -4 >> 1 (the equivalent of -4/2) evaluates to -2, whereas –4 >>> 1 evaluates to 2147483646.

 Tip The shift operators are faster than multiplying or dividing by powers of 2.

Unary Minus/Plus Operators

Unary minus (-) and unary plus (+) are the simplest of all operators. Unary minus returns the negative of
its operand (such as -5 returns -5 and --5 returns 5), whereas unary plus returns its operand verbatim
(such as +5 returns 5 and +-5 returns -5). Unary plus is not commonly used, but is present for
completeness.

CHAPTER 1 GETTING STARTED WITH JAVA

35

Precedence and Associativity

When evaluating a compound expression, Java takes each operator’s precedence (level of importance)
into account to ensure that the expression evaluates as expected. For example, when presented with the
expression 60+3*6, we expect multiplication to be performed before addition (multiplication has higher
precedence than addition), and the final result to be 78. We do not expect addition to occur first, yielding
a result of 378.

 Note Table 1-3’s rightmost column presents a value that indicates an operator’s precedence: the higher the
number, the higher the precedence. For example, addition’s precedence level is 10 and multiplication’s
precedence level is 11, which means that multiplication is performed before addition.

Precedence can be circumvented by introducing open and close parentheses, (and), into the
expression, where the innermost pair of nested parentheses is evaluated first. For example, 2*((60+3)*6)
results in (60+3) being evaluated first, (60+3)*6 being evaluated next, and the overall expression being
evaluated last. Similarly, in the expression 60/(3-6), subtraction is performed before division.

During evaluation, operators with the same precedence level (e.g., addition and subtraction, which
both have level 10) are processed according to their associativity (a property that determines how
operators having the same precedence are grouped when parentheses are missing).

For example, expression 9*4/3 is evaluated as if it was (9*4)/3 because * and / are left-to-right
associative operators. In contrast, expression x=y=z=100 is evaluated as if it was x=(y=(z=100))—100 is
assigned to z, z’s new value (100) is assigned to y, and y’s new value (100) is assigned to x – because = is a
right-to-left associative operator.

Most of Java’s operators are left-to-right associative. Right-to-left associative operators include
assignment, bitwise complement, cast, compound assignment, conditional, logical complement, object
creation, predecrement, preincrement, unary minus, and unary plus.

 Note Unlike languages such as C++, Java doesn’t let you overload operators. However, Java overloads the +,
++, and -- operator symbols.

Statements
Statements are the workhorses of a program. They assign values to variables, control a program’s flow by
making decisions and/or repeatedly executing other statements, and perform other tasks. A statement
can be expressed as a simple statement or as a compound statement:

• A simple statement is a single standalone source code instruction for performing
some task; it’s terminated with a semicolon.

CHAPTER 1 GETTING STARTED WITH JAVA

36

• A compound statement is a (possibly empty) sequence of simple and other
compound statements sandwiched between open and close brace delimiters—a
delimiter is a character that marks the beginning or end of some section. A
method body (e.g., the main() method’s body) is an example. Compound
statements can appear wherever simple statements appear and are alternatively
referred to as blocks.

This section introduces you to many of Java’s statements. Additional statements are covered in later
chapters. For example, Chapter 2 discusses the return statement.

Assignment Statements
The assignment statement is an expression that assigns a value to a variable. This statement begins with a
variable name, continues with the assignment operator (=) or a compound assignment operator (such as
+=), and concludes with an expression and a semicolon. Below are three examples:

x = 10;
ages[0] = 25;
counter += 10;

The first example assigns integer 10 to variable x, which is presumably of type integer as well. The
second example assigns integer 25 to the first element of the ages array. The third example adds 10 to the
value stored in counter and stores the sum in counter.

 Note Initializing a variable in the variable’s declaration (e.g., int counter = 1;) can be thought of as a special
form of the assignment statement.

Decision Statements
The previously described conditional operator (?:) is useful for choosing between two expressions to
evaluate, and cannot be used to choose between two statements. For this purpose, Java supplies three
decision statements: if, if-else, and switch.

If Statement

The if statement evaluates a Boolean expression and executes another statement when this expression
evaluates to true. This statement has the following syntax:

if (Boolean expression)
 statement

If consists of reserved word if, followed by a Boolean expression in parentheses, followed by a
statement to execute when Boolean expression evaluates to true.

The following example demonstrates this statement:

if (numMonthlySales > 100)
 wage += bonus;

CHAPTER 1 GETTING STARTED WITH JAVA

37

If the number of monthly sales exceeds 100, numMonthlySales > 100 evaluates to true and the wage
+= bonus; assignment statement executes. Otherwise, this assignment statement does not execute.

If-Else Statement

The if-else statement evaluates a Boolean expression and executes one of two statements depending on
whether this expression evaluates to true or false. This statement has the following syntax:

if (Boolean expression)
 statement1
else
 statement2

If-else consists of reserved word if, followed by a Boolean expression in parentheses, followed by a
statement1 to execute when Boolean expression evaluates to true, followed by a statement2 to execute
when Boolean expression evaluates to false.

The following example demonstrates this statement:

if ((n&1) == 1)
 System.out.println("odd");
else
 System.out.println("even");

This example assumes the existence of an int variable named n that has been initialized to an
integer. It then proceeds to determine whether the integer is odd (not divisible by 2) or even (divisible by
2).

The Boolean expression first evaluates n&1, which bitwise ANDs n’s value with 1. It then compares
the result to 1. If they are equal, a message stating that n’s value is odd outputs; otherwise, a message
stating that n’s value is even outputs.

The parentheses are required because == has higher precedence than &. Without these parentheses,
the expression’s evaluation order would change to first evaluating 1 == 1 and then trying to bitwise AND
the Boolean result with n’s integer value. This order results in a compiler error message because of a type
mismatch: you cannot bitwise AND an integer with a Boolean value.

You could rewrite this if-else statement example to use the conditional operator, as follows:
System.out.println((n&1) == 1 ? "odd" : "even");. However, you cannot do so with the following
example:

if ((n&1) == 1)
 odd();
else
 even();

This example assumes the existence of odd() and even() methods that don’t return anything.
Because the conditional operator requires that each of its second and third operands evaluates to a
value, the compiler reports an error when attempting to compile (n&1) == 1 ? odd() : even().

You can chain multiple if-else statements together, resulting in the following syntax:

if (Boolean expression1)
 statement1
else
if (Boolean expression2)
 statement2
else

CHAPTER 1 GETTING STARTED WITH JAVA

38

 …
else
 statementN

If Boolean expression1 evaluates to true, statement1 executes. Otherwise, if Boolean expression2
evaluates to true, statement2 executes. This pattern continues until one of these expressions evaluates to
true and its corresponding statement executes, or the final else is reached and statementN (the default
statement) executes.

The following example demonstrates this chaining:

if (testMark >= 90)
{
 gradeLetter = 'A';
 System.out.println("You aced the test.");
}
else
if (testMark >= 80)
{
 gradeLetter = 'B';
 System.out.println("You did very well on this test.");
}
else
if (testMark >= 70)
{
 gradeLetter = 'C';
 System.out.println("Not bad, but you need to study more for future tests.");
}
else
if (testMark >= 60)
{
 gradeLetter = 'D';
 System.out.println("Your test result suggests that you need a tutor.");
else
{
 gradeLetter = 'F';
 System.out.println("Your test result is pathetic; you need summer school.");
}

DANGLING-ELSE PROBLEM

When if and if-else are used together, and the source code is not properly indented, it can be difficult to
determine which if associates with the else. For example:

if (car.door.isOpen())
 if (car.key.isPresent())
 car.start();
else car.door.open();

CHAPTER 1 GETTING STARTED WITH JAVA

39

Did the developer intend for the else to match the inner if, but improperly formatted the code to make it
appear otherwise? For example:

if (car.door.isOpen())
 if (car.key.isPresent())
 car.start();
 else
 car.door.open();

If car.door.isOpen() and car.key.isPresent() each return true, car.start() executes. If
car.door.isOpen() returns true and car.key.isPresent() returns false, car.door.open(); executes.
Attempting to open an open door makes no sense.

The developer must have wanted the else to match the outer if, but forgot that else matches the nearest if.
This problem can be fixed by surrounding the inner if with braces, as follows:

if (car.door.isOpen())
{
 if (car.key.isPresent())
 car.start();
}
else
 car.door.open();

When car.door.isOpen() returns true, the compound statement executes. When this method returns
false, car.door.open(); executes, which makes sense.

Forgetting that else matches the nearest if and using poor indentation to obscure this fact is known as the
dangling-else problem.

Switch Statement

The switch statement lets you choose from among several execution paths in a more efficient manner
than with equivalent chained if-else statements. This statement has the following syntax:

switch (selector expression)
{
 case value1: statement1 [break;]
 case value2: statement2 [break;]
 …
 case valueN: statementN [break;]
 [default: statement]
}

Switch consists of reserved word switch, followed by a selector expression in parentheses,
followed by a body of cases. The selector expression is any expression that evaluates to an integer,
character, or string value. For example, it might evaluate to a 32-bit integer or to a 16-bit character.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 1 GETTING STARTED WITH JAVA

40

Each case begins with reserved word case, continues with a literal value and a colon character (:),
continues with a statement to execute, and optionally concludes with a break statement, which causes
execution to continue after the switch statement.

After evaluating the selector expression, switch compares this value with each case’s value until it
finds a match. If there is a match, the case’s statement is executed. For example, if the selector
expression’s value matches value1, statement1 executes.

The optional break statement (anything placed in square brackets is optional), which consists of
reserved word break followed by a semicolon, prevents the flow of execution from continuing with the
next case’s statement. Instead, execution continues with the first statement following switch.

 Note You will usually place a break statement after a case’s statement. Forgetting to include break can lead to
a hard-to-find bug. However, there are situations where you want to group several cases together and have them
execute common code. In such a situation, you would omit the break statement from the participating cases.

If none of the cases’ values match the selector expression’s value, and if a default case (signified by
the default reserved word followed by a colon) is present, the default case’s statement is executed.

The following example demonstrates this statement:

switch (direction)
{
 case 0: System.out.println("You are travelling north."); break;
 case 1: System.out.println("You are travelling east."); break;
 case 2: System.out.println("You are travelling south."); break;
 case 3: System.out.println("You are travelling west."); break;
 default: System.out.println("You are lost.");
}

This example assumes that direction stores an integer value. If this value is in the range 0-3, an
appropriate direction message is output; otherwise, a message about being lost is output.

 Note This example hardcodes values 0, 1, 2, and 3, which is not a good idea in practice. Instead, constants
should be used. Chapter 2 introduces you to constants.

Loop Statements
It’s often necessary to repeatedly execute a statement, and this repeated execution is called a loop. Java
provides three kinds of loop statements: for, while, and do-while. This section first discusses these
statements. It then examines the topic of looping over the empty statement. Finally, the section
discusses the break, labeled break, continue, and labeled continue statements for prematurely ending all
or part of a loop.

CHAPTER 1 GETTING STARTED WITH JAVA

41

For Statement

The for statement lets you loop over a statement a specific number of times, or even indefinitely. This
statement has the following syntax:

for ([initialize]; [test]; [update])
 statement

For consists of reserved word for, followed by a header in parentheses, followed by a statement to
execute. The header consists of an optional initialize section, followed by an optional test section,
followed by an optional update section. A nonoptional semicolon separates each of the first two sections
from the next section.

The initialize section consists of a comma-separated list of variable declarations or variable
assignments. Some or all of these variables are typically used to control the loop’s duration, and are
known as loop-control variables.

The test section consists of a Boolean expression that determines how long the loop executes.
Execution continues as long as this expression evaluates to true.

Finally, the update section consists of a comma-separated list of expressions that typically modify
the loop-control variables.

For is perfect for iterating (looping) over an array. Each iteration (loop execution) accesses one of
the array’s elements via an array[index] expression, where array is the array whose element is being
accessed, and index is the zero-based location of the element being accessed.

The following example uses the for statement to iterate over the array of command-line arguments
that is passed to the main() method:

public static void main(String[] args)
{
 for (int i = 0; i < args.length; i++)
 switch (args[i])
 {
 case "-v":
 case "-V": System.out.println("version 1.0");
 break;
 default : showUsage();
 }
}

For’s initialization section declares variable i for controlling the loop, its test section compares i’s
current value to the length of the args array to ensure that this value is less than the array’s length, and
its update section increments i by 1. The loop continues until i’s value equals the array’s length.

Each iteration accesses one of the array’s values via the args[i] expression. This expression returns
this array’s ith value (which happens to be a String object in this example). The first value is stored in
args[0].

The args[i] expression serves as the switch statement’s selector expression. If this String object
contains -V, the second case is executed, which calls System.out.println() to output a version number
message. The subsequent break statement keeps execution from falling into the default case, which calls
showUsage() to output usage information when main() is called with unexpected arguments.

If this String object contains -v, the lack of a break statement following the first case causes
execution to fall through to the second case, calling System.out.println(). This example demonstrates
the occasional need to group cases to execute common code.

CHAPTER 1 GETTING STARTED WITH JAVA

42

 Note Although I’ve named the array containing command-line arguments args, this name isn’t mandatory. I
could as easily have named it arguments (or even some_other_name).

The following example uses the for statement to output the contents of the previously declared
matrix array, which is redeclared here for convenience:

float[][] matrix = { { 1.0F, 2.0F, 3.0F }, { 4.0F, 5.0F, 6.0F }};
for (int row = 0; row < matrix.length; row++)
{
 for (int col = 0; col < matrix[row].length; col++)
 System.out.print(matrix[row][col]+" ");
 System.out.print("\n");
}

Expression matrix.length returns the number of rows in this tabular array. For each row, expression
matrix[row].length returns the number of columns for that row. This latter expression suggests that
each row can have a different number of columns, although each row has the same number of columns
in the example.

System.out.print() is closely related to System.out.println(). Unlike the latter method,
System.out.print() outputs its argument without a trailing newline.

This example generates the following output:

1.0 2.0 3.0
4.0 5.0 6.0

While Statement

The while statement repeatedly executes a statement while its Boolean expression evaluates to true. This
statement has the following syntax:

while (Boolean expression)
 statement

While consists of reserved word while, followed by a parenthesized Boolean expression header,
followed by a statement to repeatedly execute.

The while statement first evaluates the Boolean expression. If it is true, while executes the other
statement. Once again, the Boolean expression is evaluated. If it is still true, while re-executes the
statement. This cyclic pattern continues.

Prompting the user to enter a specific character is one situation where while is useful. For example,
suppose that you want to prompt the user to enter a specific uppercase letter or its lowercase equivalent.
The following example provides a demonstration:

int ch = 0;
while (ch != 'C' && ch != 'c')
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
}

CHAPTER 1 GETTING STARTED WITH JAVA

43

This example begins by initializing variable ch. This variable must be initialized; otherwise, the
compiler will report an uninitialized variable when it tries to read ch’s value in the while statement’s
Boolean expression.

This expression uses the conditional AND operator (&&) to test ch’s value. This operator first
evaluates its left operand, which happens to be expression ch != 'C'. (The != operator converts 'C' from
16-bit unsigned char type to 32-bit signed int type prior to the comparison.)

If ch does not contain C (it does not at this point—0 was just assigned to ch), this expression
evaluates to true.

The && operator next evaluates its right operand, which happens to be expression ch != 'c'.
Because this expression also evaluates to true, conditional AND returns true and while executes the
compound statement.

The compound statement first outputs, via the System.out.println() method call, a message that
prompts the user to press the C key with or without the Shift key. It next reads the entered keystroke via
System.in.read(), saving its integer value in ch.

From left to right, System identifies a standard class of system utilities, in identifies an object located
in System that provides methods for inputting one or more bytes from the standard input device, and
read() returns the next byte (or -1 when there are no more bytes).

Following this assignment, the compound statement ends and while re-evaluates its Boolean
expression.

Suppose ch contains C’s integer value. Conditional AND evaluates ch != 'C', which evaluates to
false. Seeing that the expression is already false, conditional AND short circuits its evaluation by not
evaluating its right operand, and returns false. The while statement subsequently detects this value and
terminates.

Suppose ch contains c’s integer value. Conditional AND evaluates ch != 'C', which evaluates to
true. Seeing that the expression is true, conditional AND evaluates ch != 'c', which evaluates to false.
Once again, the while statement terminates.

CHAPTER 1 GETTING STARTED WITH JAVA

44

 Note A for statement can be coded as a while statement. For example,

for (int i = 0; i < 10; i++)

 System.out.println(i);

is equivalent to

int i = 0;

while (i < 10)

{

 System.out.println(i);

 i++;

}

Do-While Statement

The do-while statement repeatedly executes a statement while its Boolean expression evaluates to true.
Unlike the while statement, which evaluates the Boolean expression at the top of the loop, do-while
evaluates the Boolean expression at the bottom of the loop. This statement has the following syntax:

do
 statement
while(Boolean expression);

Do-while consists of the do reserved word, followed by a statement to repeatedly execute, followed
by the while reserved word, followed by a parenthesized Boolean expression header, followed by a
semicolon.

The do-while statement first executes the other statement. It then evaluates the Boolean expression.
If it is true, do-while executes the other statement. Once again, the Boolean expression is evaluated. If it
is still true, do-while re-executes the statement. This cyclic pattern continues.

The following example demonstrates do-while prompting the user to enter a specific uppercase
letter or its lowercase equivalent:

int ch;
do
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
}
while (ch != 'C' && ch != 'c');

CHAPTER 1 GETTING STARTED WITH JAVA

45

This example is similar to its predecessor. Because the compound statement is no longer executed
prior to the test, it’s no longer necessary to initialize ch – ch is assigned System.in.read()’s return value
prior to the Boolean expression’s evaluation.

Looping Over the Empty Statement

Java refers to a semicolon character appearing by itself as the empty statement. It’s sometimes
convenient for a loop statement to execute the empty statement repeatedly. The actual work performed
by the loop statement takes place in the statement header. Consider the following example:

for (String line; (line = readLine()) != null; System.out.println(line));

This example uses for to present a programming idiom for copying lines of text that are read from
some source, via the fictitious readLine() method in this example, to some destination, via
System.out.println() in this example. Copying continues until readLine() returns null. Note the
semicolon (empty statement) at the end of the line.

 Caution Be careful with the empty statement because it can introduce subtle bugs into your code. For example,
the following loop is supposed to output the string Hello on ten lines. Instead, only one instance of this string is
output, because it is the empty statement and not System.out.println() that’s executed ten times:

for (int i = 0; i < 10; i++); // this ; represents the empty statement

 System.out.println("Hello");

Break and Labeled Break Statements

What do for(;;);, while(true); and do;while(true); have in common? Each of these loop statements
presents an extreme example of an infinite loop (a loop that never ends). An infinite loop is something
that you should avoid because its unending execution causes your application to hang, which is not
desirable from the point of view of your application’s users.

 Caution An infinite loop can also arise from a loop header’s Boolean expression comparing a floating-point
value against a nonzero value via the equality or inequality operator, because many floating-point values have
inexact internal representations. For example, the following code fragment never ends because 0.1 does not have
an exact internal representation:

for (double d = 0.0; d != 1.0; d += 0.1)

 System.out.println(d);

CHAPTER 1 GETTING STARTED WITH JAVA

46

However, there are times when it is handy to code a loop as if it were infinite by using one of the
aforementioned programming idioms. For example, you might code a while(true) loop that repeatedly
prompts for a specific keystroke until the correct key is pressed. When the correct key is pressed, the
loop must end. Java provides the break statement for this purpose.

The break statement transfers execution to the first statement following a switch statement (as
discussed earlier) or a loop. In either scenario, this statement consists of reserved word break followed
by a semicolon.

The following example uses break with an if decision statement to exit a while(true)-based infinite
loop when the user presses the C or c key:

int ch;
while (true)
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
 if (ch == 'C' || ch == 'c')
 break;
}

The break statement is also useful in the context of a finite loop. For example, consider a scenario
where an array of values is searched for a specific value, and you want to exit the loop when this value is
found. The following example reveals this scenario:

int[] employeeIDs = { 123, 854, 567, 912, 224 };
int employeeSearchID = 912;
boolean found = false;
for (int i = 0; i < employeeIDs.length; i++)
 if (employeeSearchID == employeeIDs[i])
 {
 found = true;
 break;
 }
System.out.println((found) ? "employee "+employeeSearchID+" exists"
 : "no employee ID matches "+employeeSearchID);

The example uses for and if to search an array of employee IDs to determine whether a specific
employee ID exists. If this ID is found, if’s compound statement assigns true to found. Because there is
no point in continuing the search, it then uses break to quit the loop.

The labeled break statement transfers execution to the first statement following the loop that’s
prefixed by a label (an identifier followed by a colon). It consists of reserved word break, followed by an
identifier for which the matching label must exist. Furthermore, the label must immediately precede a
loop statement.

Labeled break is useful for breaking out of nested loops (loops within loops). The following example
reveals the labeled break statement transferring execution to the first statement that follows the outer for
loop:

CHAPTER 1 GETTING STARTED WITH JAVA

47

outer:
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 if (i == 1 && j == 1)
 break outer;
 else
 System.out.println("i="+i+", j="+j);
System.out.println("Both loops terminated.");

When i’s value is 1 and j’s value is 1, break outer; is executed to terminate both for loops. This
statement transfers execution to the first statement after the outer for loop, which happens to be
System.out.println("Both loops terminated.");.

The following output is generated:

i=0, j=0
i=0, j=1
i=0, j=2
i=1, j=0
Both loops terminated.

Continue and Labeled Continue Statements

The continue statement skips the remainder of the current loop iteration, re-evaluates the header’s
Boolean expression, and performs another iteration (if true) or terminates the loop (if false). Continue
consists of reserved word continue followed by a semicolon.

Consider a while loop that reads lines from a source and processes nonblank lines in some manner.
Because it should not process blank lines, while skips the current iteration when a blank line is detected,
as demonstrated in the following example:

String line;
while ((line = readLine()) != null)
{
 if (isBlank(line))
 continue;
 processLine(line);
}

This example employs a fictitious isBlank() method to determine whether the currently read line is
blank. If this method returns true, if executes the continue statement to skip the rest of the current
iteration and read the next line whenever a blank line is detected. Otherwise, the fictitious processLine()
method is called to process the line’s contents.

Look carefully at this example and you should realize that the continue statement is not needed.
Instead, this listing can be shortened via refactoring (rewriting source code to improve its readability,
organization, or reusability), as demonstrated in the following example:

String line;
while ((line = readLine()) != null)
{
 if (!isBlank(line))
 processLine(line);
}

CHAPTER 1 GETTING STARTED WITH JAVA

48

This example’s refactoring modifies if’s Boolean expression to use the logical complement operator
(!). Whenever isBlank() returns false, this operator flips this value to true and if executes processLine().
Although continue isn’t necessary in this example, you’ll find it convenient to use this statement in more
complex code where refactoring isn’t as easy to perform.

The labeled continue statement skips the remaining iterations of one or more nested loops and
transfers execution to the labeled loop. It consists of reserved word continue, followed by an identifier
for which a matching label must exist. Furthermore, the label must immediately precede a loop
statement.

Labeled continue is useful for breaking out of nested loops while still continuing to execute the
labeled loop. The following example reveals the labeled continue statement terminating the inner for
loop’s iterations:

outer:
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 if (i == 1 && j == 1)
 continue outer;
 else
 System.out.println("i="+i+", j="+j);
System.out.println("Both loops terminated.");

When i’s value is 1 and j’s value is 1, continue outer; is executed to terminate the inner for loop
and continue with the outer for loop at its next value of i. Both loops continue until they finish.

The following output is generated:

i=0, j=0
i=0, j=1
i=0, j=2
i=1, j=0
i=2, j=0
i=2, j=1
i=2, j=2
Both loops terminated.

EXERCISES

The following exercises are designed to test your understanding of applications and language
fundamentals:

1. Declare an EchoArgs class whose main() method outputs its command-line
arguments, one argument per line. Store this class in a file named
EchoArgs.java. Compile this source code (javac EchoArgs.java) and run the
application; for example, java EchoArgs A B C. You should see each of A, B, and
C appearing on a separate line.

2. Declare a Circle class whose main() method declares a double precision
floating-point variable named PI that’s initialized to 3.14159, declares a double
precision floating-point variable named radius that’s initialized to 15, calculates
and outputs the circle’s circumference (PI times the diameter), and calculates and

CHAPTER 1 GETTING STARTED WITH JAVA

49

outputs the circle’s area (PI times the square of the radius). Compile and run this
application.

3. Declare an Input class whose main() method is declared as follows: public
static void main(String[] args) throws java.io.IOException—don’t
worry about throws java.io.IOException; you’ll learn about this language
feature in Chapter 3. Continuing, insert the “loop until C or c is input” example
from the “Break and Labeled Break Statements” section into the main() method.
Compile and run this application. When prompted, type a key and press the
Enter/Return key. What happens when you type multiple keys (abc, for example)
and press Enter/Return?

4. Declare a Triangle class whose main() method uses a pair of nested for
statements along with System.out.print() to output a 10-row triangle of
asterisks, where each row contains an odd number of asterisks (1, 3, 5, 7, and so
on), as follows:

 *

Compile and run this application.

5. Declare an OutputReversedInt class whose main() method declares an int
variable named x that’s assigned a positive integer. This declaration is followed by
a while loop that outputs this integer’s digits in reverse. For example, 876432094
outputs as 490234678.

Summary
Java is a language for describing programs. This general-purpose, class-based, and object-oriented
language is patterned after C and C++ to make it easier for existing C/C++ developers to migrate to Java.

Java is also a platform on which to run programs written in Java and other languages (e.g., Groovy,
Jython, and JRuby). Unlike platforms with physical processors (e.g., an Intel processor) and operating
systems (e.g., Windows 7), the Java platform consists of a virtual machine and execution environment.

Before you can develop Java programs, you need to determine what kind(s) of programs you want to
develop and then install the appropriate software. Use the JDK to develop standalone applications and
applets, the Java ME SDK to develop MIDlets and Xlets, and the Java EE SDK to develop servlets and
JSPs.

For small projects, it’s no big deal to work at the command line with JDK tools. Because you’ll
probably find this scenario tedious (and even unworkable) for larger projects, you should also consider
obtaining an IDE such as NetBeans 7, which includes support for those language features introduced by
JDK 7.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 1 GETTING STARTED WITH JAVA

50

Most computer languages support comments, identifiers, types, variables, expressions, and
statements. Comments let you document your source code; identifiers name things (e.g., classes and
methods); types identify sets of values (and their representations in memory) and sets of operations that
transform these values into other values of that set; variables store values; expressions combine
variables, method calls, literals, and operators; and statements are the workhorses of a program, and
include assignment, decision, loop, break and labeled break, and continue and labeled continue.

Now that you possess a basic understanding of Java’s fundamental language features, you’re ready
to learn about Java’s language support for classes and objects. Chapter 2 introduces you to this support.

C H A P T E R 2

51

Discovering Classes and Objects

Chapter 1 gently introduced you to the Java language by focusing mainly on fundamental language
features ranging from comments to statements. Using only these features, you can create simple
applications (such as HelloWorld and the applications mentioned in the chapter’s exercises) that are
reminiscent of those written in structured programming languages such as C.

■ Note Structured programming is a programming paradigm that enforces a logical structure on programs
through data structures (named aggregates of data items), functions (named blocks of code that return values to
the code that calls [passes program execution to] them), and procedures (named blocks of code that don’t return
values to their callers). Structured programs use sequence (one statement follows another statement),
selection/choice (if/switch), and repetition/iteration (for/while/do) programming constructs; use of the potentially
harmful GOTO statement (see http://en.wikipedia.org/wiki/GOTO) is discouraged.

Structured programs separate data from behaviors. This separation makes it difficult to model real-
world entities (such as a bank accounts and employees) and often leads to maintenance headaches
when programs become complex. In contrast, classes and objects combine data and behaviors into
program entities; programs based on classes and objects are typically easier to understand and
maintain.

Chapter 2 takes you deeper into the Java language by focusing on its support for classes and objects.
You first learn how to declare classes and create objects from these classes, and then learn how to
encapsulate state and behaviors into these program entities through fields and methods. After learning
about class and object initialization, you move beyond this object-based programming model and dive
into object-oriented programming, by exploring Java’s inheritance- and polymorphism-oriented
language features.

At this point, the chapter presents one of Java’s more confusing language features: interfaces. You
learn what interfaces are, how they relate to classes, and what makes them so useful.

Java programs create objects that occupy memory. To reduce the possibility of running out of
memory, the Java Virtual Machine (JVM)’s garbage collector occasionally performs garbage collection by
locating objects that are no longer being used and removing this garbage to free up memory. Chapter 2
concludes by introducing you to the garbage collection process.

http://en.wikipedia.org/wiki/GOTO

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

52

Declaring Classes and Creating Objects
Structured programs create data structures that organize and store data items, and manipulate the data
stored in these data structures via functions and procedures. The fundamental units of a structured
program are its data structures and the functions or procedures that manipulate them. Although Java
lets you create applications in a similar fashion, this language is really about declaring classes and
creating objects from these classes. These program entities are the fundamental units of a Java program.

This section first shows you how to declare a class, and then shows you how to create objects from
this class with the help of the new operator and a constructor. The section then shows you how to specify
constructor parameters and local variables. Finally, you learn how to create arrays using the same new
operator that’s used to create an object from a class.

Declaring Classes
A class is a template for manufacturing objects (named aggregates of code and data), which are also
known as class instances, or instances for short. Classes generalize real-world entities, and objects are
specific manifestations of these entities at the program level. You might think of classes as cookie cutters
and objects as the cookies that cookie cutters create.

Because you cannot instantiate objects from a class that does not exist, you must first declare the
class. The declaration consists of a header followed by a body. At minimum, the header consists of
reserved word class followed by a name that identifies the class (so that it can be referred to from
elsewhere in the source code). The body starts with an open brace character ({) and ends with a close
brace (}). Sandwiched between these delimiters are various kinds of declarations. Consider Listing 2-1.

Listing 2-1. Declaring a skeletal Image class

class Image
{
 // various member declarations
}

Listing 2-1 declares a class named Image, which presumably describes some kind of image for
displaying on the screen. By convention, a class’s name begins with an uppercase letter. Furthermore,
the first letter of each subsequent word in a multiword class name is capitalized. This is known as
camelcasing.

Creating Objects with the new Operator and a Constructor
Image is an example of a user-defined type from which objects can be created. You create these objects
by using the new operator with a constructor, as follows:

Image image = new Image();

The new operator allocates memory to store the object whose type is specified by new’s solitary
operand, which happens to be Image() in this example. The object is stored in a region of memory
known as the heap.

The parentheses (round brackets) that follow Image signify a constructor, which is a block of code for
constructing an object by initializing it in some manner. The new operator invokes (calls) the constructor
immediately after allocating memory to store the object.

When the constructor ends, new returns a reference (a memory address or other identifier) to the
object so that it can be accessed elsewhere in the program. Regarding the newly created Image object, its

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

53

reference is stored in a variable named image whose type is specified as Image. (It’s common to refer to
the variable as an object, as in the image object, although it stores only an object’s reference and not the
object itself.)

■ Note new’s returned reference is represented in source code by keyword this. Wherever this appears, it
represents the current object. Also, variables that store references are called reference variables.

Image does not explicitly declare a constructor. When a class does not declare a constructor, Java
implicitly creates a constructor for that class. The created constructor is known as the default
noargument constructor because no arguments (discussed shortly) appear between its (and) characters
when the constructor is invoked.

■ Note Java does not create a default noargument constructor when at least one constructor is declared.

Specifying Constructor Parameters and Local Variables
You explicitly declare a constructor within a class’s body by specifying the name of the class followed by
a parameter list, which is a round bracket-delimited and comma-separated list of zero or more
parameter declarations. A parameter is a constructor or method variable that receives an expression
value passed to the constructor or method when it is called. This expression value is known as an
argument.

Listing 2-2 enhances Listing 2-1’s Image class by declaring three constructors with parameter lists
that declare zero, one, or two parameters; and a main() method for testing this class.

Listing 2-2. Declaring an Image class with three constructors and a main() method

class Image
{
 Image()
 {
 System.out.println("Image() called");
 }
 Image(String filename)
 {
 this(filename, null);
 System.out.println("Image(String filename) called");
 }
 Image(String filename, String imageType)
 {
 System.out.println("Image(String filename, String imageType) called");
 if (filename != null)
 {
 System.out.println("reading "+filename);

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

54

 if (imageType != null)
 System.out.println("interpreting "+filename+" as storing a "+
 imageType+" image");
 }
 // Perform other initialization here.
 }
 public static void main(String[] args)
 {
 Image image = new Image();
 System.out.println();
 image = new Image("image.png");
 System.out.println();
 image = new Image("image.png", "PNG");
 }
}

Listing 2-2’s Image class first declares a noargument constructor for initializing an Image object to
default values (whatever they may be). This constructor simulates default initialization by invoking
System.out.println() to output a message signifying that it’s been called.

Image next declares an Image(String filename) constructor whose parameter list consists of a single
parameter declaration—a parameter declaration consists of a variable’s type followed by the variable’s
name. The java.lang.String parameter is named filename, signifying that this constructor obtains
image content from a file.

■ Note Throughout this book’s chapters, I typically prefix the first use of a predefined type (such as String) with
the package hierarchy in which the type is stored. For example, String is stored in the lang subpackage of the
java package. I do so to help you learn where types are stored so that you can more easily specify import
statements for importing these types (without having to first search for a type’s package) into your source code—
you don’t have to import types that are stored in the java.lang package, but I still prefix the java.lang package
to the type name for completeness. I will have more to say about packages and the import statement in Chapter 3.

Some constructors rely on other constructors to help them initialize their objects. This is done to
avoid redundant code, which increases the size of an object, and unnecessarily takes memory away from
the heap that could be used for other purposes. For example, Image(String filename) relies on
Image(String filename, String imageType) to read the file’s image content into memory.

Although it appears otherwise, constructors don’t have names (although it is common to refer to a
constructor by specifying the class name and parameter list). A constructor calls another constructor by
using keyword this and a round bracket-delimited and comma-separated list of arguments. For
example, Image(String filename) executes this(filename, null); to execute Image(String filename,
String imageType).

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

55

■ Caution You must use this to call another constructor—you cannot use the class’s name, as in Image(). The
this() constructor call (if present) must be the first code that is executed within the constructor. This rule
prevents you from specifying multiple this() constructor calls in the same constructor. Finally, you cannot specify
this() in a method—constructors can be called only by other constructors and during object creation. (I will
discuss methods later in this chapter.)

When present, the constructor call must be the first code that is specified within a constructor;
otherwise, the compiler reports an error. For this reason, a constructor that calls another constructor
can only perform additional work after the other constructor has finished. For example, Image(String
filename) executes System.out.println("Image(String filename) called"); after the invoked
Image(String filename, String imageType) constructor finishes.

The Image(String filename, String imageType) constructor declares an imageType parameter that
signifies the kind of image stored in the file—a Portable Network Graphics (PNG) image, for example.
Presumably, the constructor uses imageType to speed up processing by not examining the file’s contents
to learn the image format. When null is passed to imageType, as happens with the Image(String
filename) constructor, Image(String filename, String imageType) examines file contents to learn the
format. If null was also passed to filename, Image(String filename, String imageType) wouldn’t read
the file, but would presumably notify the code attempting to create the Image object of an error
condition.

After declaring the constructors, Listing 2-2 declares a main() method that lets you create Image
objects and view output messages. main() creates three Image objects, calling the first constructor with
no arguments, the second constructor with argument "image.png", and the third constructor with
arguments "image.png" and "PNG".

■ Note The number of arguments passed to a constructor or method, or the number of operator operands is
known as the constructor’s, method’s, or operator’s arity.

Each object’s reference is assigned to a reference variable named image, replacing the previously
stored reference for the second and third object assignments. (Each occurrence of
System.out.println(); outputs a blank line to make the output easier to read.)

The presence of main() changes Image from only a class to an application. You typically place main()
in classes that are used to create objects in order to test such classes. When constructing an application
for use by others, you usually declare main() in a class where the intent is to run an application and not
to create an object from that class—the application is then run from only that class. See Chapter 1’s
HelloWorld class for an example.

After saving Listing 2-2 to Image.java, compile this file by executing javac Image.java at the
command line. Assuming that there are no error messages, execute the application by specifying java
Image. You should observe the following output:

Image() called

Image(String filename, String imageType) called

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

56

reading image.png
Image(String filename) called

Image(String filename, String imageType) called
reading image.png
interpreting image.png as storing a PNG image

The first output line indicates that the noargument constructor has been called. Subsequent output
lines indicate that the second and third constructors have been called.

In addition to declaring parameters, a constructor can declare variables within its body to help it
perform various tasks. For example, the previously presented Image(String filename, String
imageType) constructor might create an object from a (hypothetical) File class that provides the means
to read a file’s contents. At some point, the constructor instantiates this class and assigns the instance’s
reference to a variable, as demonstrated in the following:

Image(String filename, String imageType)
{
 System.out.println("Image(String filename, String imageType) called");
 if (filename != null)
 {
 System.out.println("reading "+filename);
 File file = new File(filename);
 // Read file contents into object.
 if (imageType != null)
 System.out.println("interpreting "+filename+" as storing a "+
 imageType+" image");
 else
 // Inspect image contents to learn image type.
 ; // Empty statement is used to make if-else syntactically valid.
 }
 // Perform other initialization here.
}

As with the filename and imageType parameters, file is a variable that is local to the constructor,
and is known as a local variable to distinguish it from a parameter. Although all three variables are local
to the constructor, there are two key differences between parameters and local variables:

• The filename and imageType parameters come into existence at the point where
the constructor begins to execute and exist until execution leaves the constructor.
In contrast, file comes into existence at its point of declaration and continues to
exist until the block in which it is declared is terminated (via a closing brace
character). This property of a parameter or a local variable is known as lifetime.

• The filename and imageType parameters can be accessed from anywhere in the
constructor. In contrast, file can be accessed only from its point of declaration to
the end of the block in which it is declared. It cannot be accessed before its
declaration or after its declaring block, but nested subblocks can access the local
variable. This property of a parameter or a local variable is known as scope.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

57

■ Note The lifetime and scope (also known as visibility) properties also apply to classes, objects, and fields
(discussed later). Classes come into existence when loaded into memory and cease to exist when unloaded from
memory, typically when an application exits. Also, loaded classes are typically visible to other classes, but this isn’t
always the case—Appendix C will have more to say about this issue when it presents classloaders.

An object’s lifetime ranges from its creation via the new operator until the moment when it is removed from
memory by the garbage collector. Its scope depends on various factors, such as when its reference is assigned to
a local variable or to a field. I discuss fields later in this chapter.

The lifetime of a field depends upon whether it is an instance field or a class field. If the field belongs to an object,
it comes into existence when the object is created and dies when the object disappears from memory. If the field
belongs to a class, the field begins its existence when the class is loaded and disappears when the class is
removed from memory. As with an object, a field’s scope depends upon various factors, such as whether the field
is declared to have private access or not—you’ll learn about private access later in this chapter.

A local variable cannot have the same name as a parameter because a parameter always has the
same scope as the local variable. However, a local variable can have the same name as another local
variable provided that both variables are located within different scopes (that is, within different blocks).
For example, you could specify int x = 1; within an if-else statement’s if block and specify double x =
2.0; within the statement’s corresponding else block, and each local variable would be distinct.

■ Note The discussion of constructor parameters, arguments, and local variables also applies to method
parameters, arguments, and local variables—I discuss methods later in this chapter.

Creating Arrays with the new Operator
The new operator is also used to create an array of objects in the heap, and is an alternative to the array
initializer presented in Chapter 1.

■ Note An array is implemented as a special Java object whose read-only length field contains the array’s size
(the number of elements). You’ll learn about fields later in this chapter.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

58

When creating the array, specify new followed by a name that identifies the type of values that are
stored in the array, followed by one or more pairs of square brackets that signify the number of
dimensions occupied by the array. The leftmost pair of square brackets must contain an integral
expression that specifies the size of the array (the number of elements), whereas remaining pairs contain
integral expressions or are empty.

For example, you can use new to create a one-dimensional array of object references, as
demonstrated by the following example, which creates a one-dimensional array that can store ten Image
object references:

Image[] imArray = new Image[10];

When you create a one-dimensional array, new zeros the bits in each array element’s storage
location, which you interpret at the source code level as literal value false, '\u0000', 0, 0L, 0.0, 0.0F, or
null (depending on element type). In the previous example, each of imArray’s elements is initialized to
null, which represents the null reference (a reference to no object).

After creating an array, you need to assign object references to its elements. The following example
demonstrates this task by creating Image objects and assigning their references to imArray elements:

for (int i = 0; i < imArray.length; i++)
 imArray[i] = new Image("image"+i+".png"); // image0.png, image1.png, and so on

The "image"+i+".png" expression uses the string concatenation operator (+) to combine image with
the string equivalent of the integer value stored in variable i with .png. The resulting string is passed to
Image’s Image(String filename) constructor.

■ Caution Use of the string concatenation operator in a loop context can result in a lot of unnecessary String
object creation, depending on the length of the loop. I will discuss this topic in Chapter 4 when I introduce you to
the String class.

You can also use new to create arrays of primitive type values (such as integers or double precision
floating-point numbers). For example, suppose you want to create a two-dimensional three-row-by-
two-column array of double precision floating-point temperature values. The following example
accomplishes this task:

double[][] temperatures = new double[3][2];

After creating a two-dimensional array, you will want to populate its elements with suitable values.
The following example initializes each temperatures element, which is accessed as
temperatures[row][col], to a randomly generated temperature value via Math.random(), which I’ll
explain in Chapter 4:

for (int row = 0; row < temperatures.length; row++)
 for (int col = 0; col < temperatures[row].length; col++)
 temperatures[row][col] = Math.random()*100;

You can subsequently output these values in a tabular format by using a for loop, as demonstrated
by the following example—the code makes no attempt to align the temperature values in perfect
columns:

for (int row = 0; row < temperatures.length; row++)

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

59

{
 for (int col = 0; col < temperatures[row].length; col++)
 System.out.print(temperatures[row][col]+" ");
 System.out.println();
}

Java provides an alternative for creating a multidimensional array in which you create each
dimension separately. For example, to create a two-dimensional array via new in this manner, first create
a one-dimensional row array (the outer array), and then create a one-dimensional column array (the
inner array), as demonstrated here:

// Create the row array.
double[][] temperatures = new double[3][]; // Note the extra empty pair of brackets.
// Create a column array for each row.
for (int row = 0; row < temperatures.length; row++)
 temperatures[row] = new double[2]; // 2 columns per row

This kind of an array is known as a ragged array because each row can have a different number of
columns; the array is not rectangular, but is ragged.

■ Note When creating the row array, you must specify an extra pair of empty brackets as part of the expression
following new. (For a three-dimensional array—a one-dimensional array of tables, where this array’s elements
reference row arrays—you must specify two pairs of empty brackets as part of the expression following new.)

You can combine new with Chapter 1’s array initialization syntax if desired. For example, Image[]
imArray = new Image[] { new Image("image0.png"), new Image("image1.png") }; creates a pair of
Image objects and a two-element Image array object initialized to the Image objects’ references, and
assigns the array’s reference to imArray.

When you create an array in this manner, you are not permitted to specify an integral expression
between the square brackets. For example, the compiler reports an error when it encounters Image[]
imArray = new Image[2] { new Image("image0.png"), new Image("image1.png") };. To correct this
error, remove the 2 from between the square brackets.

Encapsulating State and Behaviors
Classes model real-world entities from a template perspective; for example, car and savings account.
Objects represent specific entities; for example, John’s red Toyota Camry (a car instance) and Cuifen’s
savings account with a balance of twenty thousand dollars (a savings account instance).

Entities have attributes, such as color red, make Toyota, model Camry, and balance twenty
thousand dollars. An entity’s collection of attributes is referred to as its state. Entities also have
behaviors, such as open car door, drive car, display fuel consumption, deposit, withdraw, and show
account balance.

A class and its objects model an entity by combining state with behaviors into a single unit—the
class abstracts state whereas its objects provide concrete state values. This bringing together of state and
behaviors is known as encapsulation. Unlike structured programming, where the developer focuses on
modeling behaviors through structured code, and modeling state through data structures that store data
items for the structured code to manipulate, the developer working with classes and objects focuses on

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

60

templating entities by declaring classes that encapsulate state and behaviors, instantiating objects with
specific state values from these classes to represent specific entities, and interacting with objects
through their behaviors.

This section first introduces you to Java’s language features for representing state, and then
introduces you to its language features for representing behaviors. Because some state and behaviors
support the class’s internal architecture, and should not be visible to those wanting to use the class, this
section concludes by presenting the important concept of information hiding.

Representing State via Fields
Java lets you represent state via fields, which are variables declared within a class’s body. Entity
attributes are described via instance fields. Because Java also supports state that’s associated with a class
and not with an object, Java provides class fields to describe this class state.

You first learn how to declare and access instance fields and then learn how to declare and access
class fields. After discovering how to declare read-only instance and class fields, you review the rules for
accessing fields from different contexts.

Declaring and Accessing Instance Fields
You can declare an instance field by minimally specifying a type name, followed by an identifier that
names the field, followed by a semicolon character (;). Listing 2-3 presents a Car class with three
instance field declarations.

Listing 2-3. Declaring a Car class with make, model, and numDoors instance fields

class Car
{
 String make;
 String model;
 int numDoors;
}

Listing 2-3 declares two String instance fields named make and model. It also declares an int
instance field named numDoors. By convention, a field’s name begins with a lowercase letter, and the first
letter of each subsequent word in a multiword field name is capitalized.

When an object is created, instance fields are initialized to default zero values, which you interpret
at the source code level as literal value false, '\u0000', 0, 0L, 0.0, 0.0F, or null (depending on element
type). For example, if you were to execute Car car = new Car();, make and model would be initialized to
null and numDoors would be initialized to 0.

You can assign values to or read values from an object’s instance fields by using the member access
operator (.); the left operand specifies the object’s reference and the right operand specifies the instance
field to be accessed. Listing 2-4 uses this operator to initialize a Car object’s make, model, and numDoors
instance fields.

Listing 2-4. Initializing a Car object’s instance fields

class Car
{
 String make;
 String model;

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

61

 int numDoors;
 public static void main(String[] args)
 {
 Car car = new Car();
 car.make = "Toyota";
 car.model = "Camry";
 car.numDoors = 4;
 }
}

Listing 2-4 presents a main() method that instantiates Car. The car instance’s make instance field is
assigned the "Toyota" string, its model instance field is assigned the "Camry" string, and its numDoors
instance field is assigned integer literal 4. (A string’s double quotes delimit a string’s sequence of
characters but are not part of the string.)

You can explicitly initialize an instance field when declaring that field to provide a nonzero default
value, which overrides the default zero value. Listing 2-5 demonstrates this point.

Listing 2-5. Initializing Car’s numDoors instance field to a default nonzero value

class Car
{
 String make;
 String model;
 int numDoors = 4;
 Car()
 {
 }
 public static void main(String[] args)
 {
 Car johnDoeCar = new Car();
 johnDoeCar.make = "Chevrolet";
 johnDoeCar.model = "Volt";
 }
}

Listing 2-5 explicitly initializes numDoors to 4 because the developer has assumed that most cars
being modeled by this class have four doors. When Car is initialized via the Car() constructor, the
developer only needs to initialize the make and model instance fields for those cars that have four doors.

It is usually not a good idea to directly initialize an object’s instance fields, and you will learn why
when I discuss information hiding (later in this chapter). Instead, you should perform this initialization
in the class’s constructor(s)—see Listing 2-6.

Listing 2-6. Initializing Car’s instance fields via constructors

class Car
{
 String make;
 String model;
 int numDoors;
 Car(String make, String model)
 {
 this(make, model, 4);

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

62

 }
 Car(String make, String model, int nDoors)
 {
 this.make = make;
 this.model = model;
 numDoors = nDoors;
 }
 public static void main(String[] args)
 {
 Car myCar = new Car("Toyota", "Camry");
 Car yourCar = new Car("Mazda", "RX-8", 2);
 }
}

Listing 2-6’s Car class declares Car(String make, String model) and Car(String make, String
model, int nDoors) constructors. The first constructor lets you specify the make and model, whereas the
second constructor lets you specify values for the three instance fields.

The first constructor executes this(make, model, 4); to pass the values of its make and model
parameters, along with a default value of 4 to the second constructor. Doing so demonstrates an
alternative to explicitly initializing an instance field, and is preferable from a code maintenance
perspective.

The Car(String make, String model, int numDoors) constructor demonstrates another use for
keyword this. Specifically, it demonstrates a scenario where constructor parameters have the same
names as the class’s instance fields. Prefixing a variable name with “this.” causes the Java compiler to
create bytecode that accesses the instance field. For example, this.make = make; assigns the make
parameter’s String object reference to this (the current) Car object’s make instance field. If make = make;
was specified instead, it would accomplish nothing by assigning make’s value to itself; a Java compiler
might not generate code to perform the unnecessary assignment. In contrast, “this.” isn’t necessary for
the numDoors = nDoors; assignment, which initializes the numDoors field from the nDoors parameter
value.

Declaring and Accessing Class Fields
In many situations, instance fields are all that you need. However, you might encounter a situation
where you need a single copy of a field no matter how many objects are created.

For example, suppose you want to track the number of Car objects that have been created, and
introduce a counter instance field (initialized to 0) into this class. You also place code in the class’s
constructor that increases counter’s value by 1 when an object is created. However, because each object
has its own copy of the counter instance field, this field’s value never advances past 1. Listing 2-7 solves
this problem by declaring counter to be a class field, by prefixing the field declaration with the static
keyword.

Listing 2-7. Adding a counter class field to Car

class Car
{
 String make;
 String model;
 int numDoors;
 static int counter;

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

63

 Car(String make, String model)
 {
 this(make, model, 4);
 }
 Car(String make, String model, int numDoors)
 {
 this.make = make;
 this.model = model;
 this.numDoors = numDoors;
 counter++;
 }
 public static void main(String[] args)
 {
 Car myCar = new Car("Toyota", "Camry");
 Car yourCar = new Car("Mazda", "RX-8", 2);
 System.out.println(Car.counter);
 }
}

Listing 2-7’s static prefix implies that there is only one copy of the counter field, not one copy per
object. When a class is loaded into memory, class fields are initialized to default zero values. For
example, counter is initialized to 0. (As with instance fields, you can alternatively assign a value to a class
field in its declaration.) Each time an object is created, counter will increase by 1 thanks to the counter++
expression in the Car(String make, String model, int numDoors) constructor.

Unlike instance fields, class fields are normally accessed directly via the member access operator.
Although you could access a class field via an object reference (as in myCar.counter), it is conventional to
access a class field by using the class’s name, as in Car.counter. (It is also easier to tell that the code is
accessing a class field.)

■ Note Because the main() method is a member of Listing 2-7’s Car class, you could access counter directly,
as in System.out.println(counter);. To access counter in the context of another class’s main() method,
however, you would have to specify Car.counter.

If you run Listing 2-7, you will notice that it outputs 2, because two Car objects have been created.

Declaring Read-Only Instance and Class Fields
The previously declared fields can be written to as well as read from. However, you might want to
declare a field that is read-only; for example, a field that names a constant value such as pi (3.14159…).
Java lets you accomplish this task by providing reserved word final.

Each object receives its own copy of a read-only instance field. This field must be initialized, as part
of the field’s declaration or in the class’s constructor. If initialized in the constructor, the read-only
instance field is known as a blank final because it does not have a value until one is assigned to it in the
constructor. Because a constructor can potentially assign a different value to each object’s blank final,
these read-only variables are not truly constants.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

64

If you want a true constant, which is a single read-only value that is available to all objects, you need
to create a read-only class field. You can accomplish this task by including the reserved word static with
final in that field’s declaration.

Listing 2-8 shows you how to declare a read-only class field.

Listing 2-8. Declaring a true constant in the Employee class

class Employee
{
 final static int RETIREMENT_AGE = 65;
}

Listing 2-8’s RETIREMENT_AGE declaration is an example of a compile-time constant. Because there is
only one copy of its value (thanks to the static keyword), and because this value will never change
(thanks to the final keyword), the compiler is free to optimize the compiled code by inserting the
constant value into all calculations where it is used. The code runs faster because it doesn’t have to
access a read-only class field.

Reviewing Field-Access Rules
The previous examples of field access may seem confusing because you can sometimes specify the
field’s name directly, whereas you need to prefix a field name with an object reference or a class name
and the member access operator at other times. The following rules dispel this confusion by giving you
guidance on how to access fields from the various contexts:

• Specify the name of a class field as is from anywhere within the same class as the
class field declaration. Example: counter

• Specify the name of a class field’s class, followed by the member access operator,
followed by the name of the class field from outside the class. Example:
Car.counter

• Specify the name of an instance field as is from any instance method, constructor,
or instance initializer (discussed later) in the same class as the instance field
declaration. Example: numDoors

• Specify an object reference, followed by the member access operator, followed by
the name of the instance field from any class method or class initializer (discussed
later) within the same class as the instance field declaration, or from outside the
class. Example: Car car = new Car(); car.numDoors = 2;

Although the latter rule might seem to imply that you can access an instance field from a class
context, this is not the case. Instead, you are accessing the field from an object context.

The previous access rules are not exhaustive because there exist two more field-access scenarios to
consider: declaring a local variable (or even a parameter) with the same name as an instance field or as a
class field. In either scenario, the local variable/parameter is said to shadow (hide or mask) the field.

If you find that you have declared a local variable or a parameter that shadows a field, you can
rename the local variable/parameter, or you can use the member access operator with reserved word
this (instance field) or class name (class field) to explicitly identify the field. For example, Listing 2-6’s
Car(String make, String model, int nDoors) constructor demonstrated this latter solution by
specifying statements such as this.make = make; to distinguish an instance field from a same-named
parameter.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

65

Representing Behaviors via Methods
Java lets you represent behaviors via methods, which are named blocks of code declared within a class’s
body. Entity behaviors are described via instance methods. Because Java also supports behaviors that are
associated with a class and not with an object, Java provides class methods to describe these class
behaviors.

You first learn how to declare and invoke instance methods, and then learn how to create instance
method call chains. Next, you discover how to declare and invoke class methods, encounter additional
details about passing arguments to methods, and explore Java’s return statement. After learning how to
invoke methods recursively as an alternative to iteration, and how to overload methods, you review the
rules for invoking methods from different contexts.

Declaring and Invoking Instance Methods
You can declare an instance method by minimally specifying a return type name, followed by an
identifier that names the method, followed by a parameter list, followed by a brace-delimited body.
Listing 2-9 presents a Car class with a printDetails() instance method.

Listing 2-9. Declaring a printDetails() instance method in the Car class

class Car
{
 String make;
 String model;
 int numDoors;
 Car(String make, String model)
 {
 this(make, model, 4);
 }
 Car(String make, String model, int numDoors)
 {
 this.make = make;
 this.model = model;
 this.numDoors = numDoors;
 }
 void printDetails()
 {
 System.out.println("Make = "+make);
 System.out.println("Model = "+model);
 System.out.println("Number of doors = "+numDoors);
 System.out.println();
 }
 public static void main(String[] args)
 {
 Car myCar = new Car("Toyota", "Camry");
 myCar.printDetails();
 Car yourCar = new Car("Mazda", "RX-8", 2);
 yourCar.printDetails();
 }
}

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

66

Listing 2-9 declares an instance method named printDetails(). By convention, a method’s name
begins with a lowercase letter, and the first letter of each subsequent word in a multiword method name
is capitalized.

Methods are like constructors in that they have parameter lists. You pass arguments to these
parameters when you call the method. Because printDetails() does not take arguments, its parameter
list is empty.

■ Note A method’s name and the number, types, and order of its parameters are known as its signature.

When a method is invoked, the code within its body is executed. In the case of printDetails(), this
method’s body executes a sequence of System.out.println() method calls to output the values of its
make, model, and numDoors instance fields.

Unlike constructors, methods are declared to have return types. A return type identifies the kind of
values returned by the method (e.g., int count() returns 32-bit integers). If a method does not return a
value (and printDetails() does not), its return type is replaced with keyword void, as in void
printDetails().

■ Note Constructors don’t have return types because they cannot return values. If a constructor could return an
arbitrary value, how would that value be returned? After all, the new operator returns a reference to an object, and
how could new also return a constructor value?

A method is invoked by using the member access operator; the left operand specifies the object’s
reference and the right operand specifies the method to be called. For example, the
myCar.printDetails() and yourCar.printDetails() expressions invoke the printDetails() instance
method on the myCar and yourCar objects.

Compile Listing 2-9 (javac Car.java) and run this application (java Car). You should observe the
following output, whose different instance field values prove that printDetails() associates with an
object:

Make = Toyota
Model = Camry
Number of doors = 4

Make = Mazda
Model = RX-8
Number of doors = 2

When an instance method is invoked, Java passes a hidden argument to the method (as the leftmost
argument in a list of arguments). This argument is the reference to the object on which the method is
invoked, and is represented at the source code level via reserved word this. You don’t need to prefix an
instance field name with “this.” from within the method whenever you attempt to access an instance
field name that isn’t also the name of a parameter because “this.” is assumed in this situation.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

67

METHOD-CALL STACK

Method invocations require a method-call stack (also known as a method-invocation stack) to keep track
of the statements to which execution must return. Think of the method-call stack as a simulation of a pile
of clean trays in a cafeteria—you pop (remove) the clean tray from the top of the pile and the dishwasher
will push (insert) the next clean tray onto the top of the pile.

When a method is invoked, the JVM pushes its arguments and the address of the first statement to
execute following the invoked method onto the method-call stack. The JVM also allocates stack space for
the method’s local variables. When the method returns, the JVM removes local variable space, pops the
address and arguments off the stack, and transfers execution to the statement at this address.

Chaining Together Instance Method Calls
Two or more instance method calls can be chained together via the member access operator, which
results in more compact code. To accomplish instance method call chaining, you need to re-architect
your instance methods somewhat differently, as Listing 2-10 reveals.

Listing 2-10. Implementing instance methods so that calls to these methods can be chained together

class SavingsAccount
{
 int balance;
 SavingsAccount deposit(int amount)
 {
 balance += amount;
 return this;
 }
 SavingsAccount printBalance()
 {
 System.out.println(balance);
 return this;
 }
 public static void main(String[] args)
 {
 new SavingsAccount().deposit(1000).printBalance();
 }
}

Listing 2-10 shows that you must specify the class’s name as the instance method’s return type.
Each of deposit() and printBalance() must specify SavingsAccount as the return type. Also, you must
specify return this; (return current object’s reference) as the last statement—I discuss the return
statement later.

For example, new SavingsAccount().deposit(1000).printBalance(); creates a SavingsAccount
object, uses the returned SavingsAccount reference to invoke SavingsAccount’s deposit() instance
method, to add one thousand dollars to the savings account (I’m ignoring cents for convenience), and
finally uses deposit()’s returned SavingsAccount reference (which is the same SavingsAccount instance)
to invoke SavingsAccount’s printBalance() instance method to output the account balance.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

68

Declaring and Invoking Class Methods
In many situations, instance methods are all that you need. However, you might encounter a situation
where you need to describe a behavior that is independent of any object.

For example, suppose you would like to introduce a utility class (a class consisting of static [class]
methods) whose methods perform various kinds of conversions (such as converting from degrees
Celsius to degrees Fahrenheit). You don’t want to create an object from this class in order to perform a
conversion. Instead, you simply want to call a method and obtain its result. Listing 2-11 addresses this
requirement by presenting a Conversions class with a pair of class methods. These methods can be
called without having to create a Conversions object.

Listing 2-11. A Conversions utility class with a pair of class methods

class Conversions
{
 static double c2f(double degrees)
 {
 return degrees*9.0/5.0+32;
 }
 static double f2c(double degrees)
 {
 return (degrees-32)*5.0/9.0;
 }
}

Listing 2-11’s Conversions class declares c2f() and f2c() methods for converting from degrees
Celsius to degrees Fahrenheit and vice versa, and returning the results of these conversions. Each
method header (method signature and other information) is prefixed with keyword static to turn the
method into a class method.

To execute a class method, you typically prefix its name with the class name. For example, you can
execute Conversions.c2f(100.0); to find out the Fahrenheit equivalent of 100 degrees Celsius, and
Conversions.f2c(98.6); to discover the Celsius equivalent of the normal body temperature. You don’t
need to instantiate Conversions and then call these methods via that instance, although you could do so
(but that isn’t good form).

■ Note Every application has at least one class method. Specifically, an application must specify public static
void main(String[] args) to serve as the application’s entry point. The static reserved word makes this
method a class method. (I will explain reserved word public later in this chapter.)

Because class methods are not called with a hidden argument that refers to the current object,
c2f(), f2c(), and main() cannot access an object’s instance fields or call its instance methods. These
class methods can only access class fields and call class methods.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

69

Passing Arguments to Methods
A method call includes a list of (zero or more) arguments being passed to the method. Java passes
arguments to methods via a style of argument passing called pass-by-value, which the following example
demonstrates:

Employee emp = new Employee("John ");
int recommendedAnnualSalaryIncrease = 1000;
printReport(emp, recommendAnnualSalaryIncrease);
printReport(new Employee("Cuifen"), 1500);

Pass-by-value passes the value of a variable (the reference value stored in emp or the 1000 value
stored in recommendedAnnualSalaryIncrease, for example) or the value of some other expression (such as
new Employee("Cuifen") or 1500) to the method.

Because of pass-by-value, you cannot assign a different Employee object’s reference to emp from
inside printReport() via the printReport() parameter for this argument. After all, you have only passed
a copy of emp’s value to the method.

Many methods (and constructors) require you to pass a fixed number of arguments when they are
called. However, Java also can pass a variable number of arguments—such methods/constructors are
often referred to as varargs methods/constructors. To declare a method (or constructor) that takes a
variable number of arguments, specify three consecutive periods after the type name of the
method’s/constructor’s rightmost parameter. The following example presents a sum() method that
accepts a variable number of arguments:

double sum(double... values)
{
 int total = 0;
 for (int i = 0; i < values.length; i++)
 total += values[i];
 return total;
}

sum()’s implementation totals the number of arguments passed to this method; for example,
sum(10.0, 20.0) or sum(30.0, 40.0, 50.0). (Behind the scenes, these arguments are stored in a one-
dimensional array, as evidenced by values.length and values[i].) After these values have been totaled,
this total is returned via the return statement.

Returning from a Method via the Return Statement
The execution of statements within a method that does not return a value (its return type is set to void)
flows from the first statement to the last statement. However, Java’s return statement lets a method (or a
constructor) exit before reaching the last statement. As Listing 2-12 shows, this form of the return
statement consists of reserved word return followed by a semicolon.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

70

Listing 2-12. Using the return statement to return prematurely from a method

class Employee
{
 String name;
 Employee(String name)
 {
 setName(name);
 }
 void setName(String name)
 {
 if (name == null)
 {
 System.out.println("name cannot be null");
 return;
 }
 else
 this.name = name;
 }
 public static void main(String[] args)
 {
 Employee john = new Employee(null);
 }
}

Listing 2-12’s Employee(String name) constructor invokes the setName() instance method to
initialize the name instance field. Providing a separate method for this purpose is a good idea because it
lets you initialize the instance field at construction time and also at a later time. (Perhaps the employee
changes his or her name.)

■ Note When you invoke a class’s instance or class method from a constructor or method within the same class,
you specify only the method’s name. You don’t prefix the method invocation with the member access operator and
an object reference or class name.

setName() uses an if statement to detect an attempt to assign a null reference to the name field. When
such an attempt is detected, it outputs the “name cannot be null” error message and returns
prematurely from the method so that the null value cannot be assigned (and replace a previously
assigned name).

■ Caution When using the return statement, you might run into a situation where the compiler reports an
“unreachable code” error message. It does so when it detects code that will never be executed and occupies
memory unnecessarily. One area where you might encounter this problem is the switch statement. For example,

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

71

suppose you specify case "-v": printUsageInstructions(); return; break; as part of this statement. The
compiler reports an error when it detects the break statement following the return statement because the break
statement is unreachable; it never can be executed.

The previous form of the return statement is not legal in a method that returns a value. For such
methods, Java provides an alternate version of return that lets the method return a value (whose type
must match the method’s return type). The following example demonstrates this version:

double divide(double dividend, double divisor)
{
 if (divisor == 0.0)
 {
 System.out.println("cannot divide by zero");
 return 0.0;
 }
 return dividend/divisor;
}

divide() uses an if statement to detect an attempt to divide its first argument by 0.0, and outputs an
error message when this attempt is detected. Furthermore, it returns 0.0 to signify this attempt. If there
is no problem, the division is performed and the result is returned.

■ Caution You cannot use this form of the return statement in a constructor because constructors do not have
return types.

Invoking Methods Recursively
A method normally executes statements that may include calls to other methods, such as
printDetails() invoking System.out.println(). However, it is occasionally convenient to have a
method call itself. This scenario is known as recursion.

For example, suppose you need to write a method that returns a factorial (the product of all the
positive integers up to and including a specific integer). For example, 3! (the ! is the mathematical
symbol for factorial) equals 3×2×1 or 6.

Your first approach to writing this method might consist of the code presented in the following
example:

int factorial(int n)
{
 int product = 1;
 for (int i = 2; i <= n; i++)
 product *= i;
 return product;
}

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

72

Although this code accomplishes its task (via iteration), factorial() could also be written according
to the following example’s recursive style.

int factorial(int n)
{
 if (n == 1)
 return 1; // base problem
 else
 return n*factorial(n-1);
}

The recursive approach takes advantage of being able to express a problem in simpler terms of itself.
According to this example, the simplest problem, which is also known as the base problem, is 1! (1).

When an argument greater than 1 is passed to factorial(), this method breaks the problem into a
simpler problem by calling itself with the next smaller argument value. Eventually, the base problem will
be reached.

For example, calling factorial(4) results in the following stack of expressions:

4*factorial(3)
3*factorial(2)
2*factorial(1)

This last expression is at the top of the stack. When factorial(1) returns 1, these expressions are
evaluated as the stack begins to unwind:

• 2*factorial(1) now becomes 2*1 (2)

• 3*factorial(2) now becomes 3*2 (6)

• 4*factorial(3) now becomes 4*6 (24)

Recursion provides an elegant way to express many problems. Additional examples include
searching tree-based data structures for specific values and, in a hierarchical file system, finding and
outputting the names of all files that contain specific text.

■ Caution Recursion consumes stack space, so make sure that your recursion eventually ends in a base problem;
otherwise, you will run out of stack space and your application will be forced to terminate.

Overloading Methods
Java lets you introduce methods with the same name but different parameter lists into the same class.
This feature is known as method overloading. When the compiler encounters a method invocation
expression, it compares the called method’s arguments list with each overloaded method’s parameter
list as it looks for the correct method to invoke.

Two same-named methods are overloaded when their parameter lists differ in number or order of
parameters. For example, Java’s String class provides overloaded public int indexOf(int ch) and
public int indexOf(int ch, int fromIndex) methods. These methods differ in parameter counts. (I
explore String in Chapter 4.)

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

73

Two same-named methods are overloaded when at least one parameter differs in type. For example,
Java’s java.lang.Math class provides overloaded public static double abs(double a) and public
static int abs(int a) methods. One method’s parameter is a double; the other method’s parameter is
an int. (I explore Math in Chapter 4.)

You cannot overload a method by changing only the return type. For example, double
sum(double... values) and int sum(double... values) are not overloaded. These methods are not
overloaded because the compiler does not have enough information to choose which method to call
when it encounters sum(1.0, 2.0) in source code.

Reviewing Method-Invocation Rules
The previous examples of method invocation may seem confusing because you can sometimes specify
the method’s name directly, whereas you need to prefix a method name with an object reference or a
class name and the member access operator at other times. The following rules dispel this confusion by
giving you guidance on how to invoke methods from the various contexts:

• Specify the name of a class method as is from anywhere within the same class as
the class method. Example: c2f(37.0);

• Specify the name of the class method’s class, followed by the member access
operator, followed by the name of the class method from outside the class.
Example: Conversions.c2f(37.0); (You can also invoke a class method via an
object instance, but that is considered bad form because it hides from casual
observation the fact that a class method is being invoked.)

• Specify the name of an instance method as is from any instance method,
constructor, or instance initializer in the same class as the instance method.
Example: setName(name);

• Specify an object reference, followed by the member access operator, followed by
the name of the instance method from any class method or class initializer within
the same class as the instance method, or from outside the class. Example: Car car
= new Car("Toyota", "Camry"); car.printDetails();

Although the latter rule might seem to imply that you can call an instance method from a class
context, this is not the case. Instead, you call the method from an object context.

Also, don’t forget to make sure that the number of arguments passed to a method, along with the
order in which these arguments are passed, and the types of these arguments agree with their parameter
counterparts in the method being invoked.

■ Note Field access and method call rules are combined in expression System.out.println();, where the
leftmost member access operator accesses the out class field (of type java.io.PrintStream) in the
java.lang.System class, and where the rightmost member access operator calls this field’s println() method.
You’ll learn about PrintStream in Chapter 8 and System in Chapter 4.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

74

Hiding Information
Every class X exposes an interface (a protocol consisting of constructors, methods, and [possibly] fields
that are made available to objects created from other classes for use in creating and communicating with
X’s objects).

An interface serves as a one-way contract between a class and its clients, which are the external
constructors, methods, and other (initialization-oriented) class entities (discussed later in this chapter)
that communicate with the class’s instances by calling constructors and methods, and by accessing
fields (typically public static final fields, or constants). The contract is such that the class promises to
not change its interface, which would break clients that depend upon the interface.

X also provides an implementation (the code within exposed methods along with optional helper
methods and optional supporting fields that should not be exposed) that codifies the interface. Helper
methods are methods that assist exposed methods and should not be exposed.

When designing a class, your goal is to expose a useful interface while hiding details of that
interface’s implementation. You hide the implementation to prevent developers from accidentally
accessing parts of your class that do not belong to the class’s interface, so that you are free to change the
implementation without breaking client code. Hiding the implementation is often referred to as
information hiding. Furthermore, many developers consider implementation hiding to be part of
encapsulation.

Java supports implementation hiding by providing four levels of access control, where three of these
levels are indicated via a reserved word. You can use the following access control levels to control access
to fields, methods, and constructors, and two of these levels to control access to classes:

• Public: A field, method, or constructor that is declared public is accessible from
anywhere. Classes can be declared public as well.

• Protected: A field, method, or constructor that is declared protected is accessible
from all classes in the same package as the member’s class, as well as subclasses of
that class regardless of package. (I will discuss packages in Chapter 3.)

• Private: A field, method, or constructor that is declared private cannot be
accessed from beyond the class in which it is declared.

• Package-private: In the absence of an access-control reserved word, a field,
method, or constructor is only accessible to classes within the same package as
the member’s class. The same is true for non-public classes. The absence of
public, protected, or private implies package-private.

■ Note A class that is declared public must be stored in a file with the same name. For example, a public Image
class must be stored in Image.java. A source file can declare one public class only.

You will often declare your class’s instance fields to be private and provide special public instance
methods for setting and getting their values. By convention, methods that set field values have names
starting with set and are known as setters. Similarly, methods that get field values have names with get
(or is, for Boolean fields) prefixes and are known as getters. Listing 2-13 demonstrates this pattern in the
context of an Employee class declaration.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

75

Listing 2-13. Separation of interface from implementation

public class Employee
{
 private String name;
 public Employee(String name)
 {
 setName(name);
 }
 public void setName(String empName)
 {
 name = empName; // Assign the empName argument to the name field.
 }
 public String getName()
 {
 return name;
 }
}

Listing 2-13 presents an interface consisting of the public Employee class, its public constructor, and
its public setter/getter methods. This class and these members can be accessed from anywhere. The
implementation consists of the private name field and constructor/method code, which is only
accessible within the Employee class.

It might seem pointless to go to all this bother when you could simply omit private and access the
name field directly. However, suppose you are told to introduce a new constructor that takes separate first
and last name arguments and new methods that set/get the employee’s first and last names into this
class. Furthermore, suppose that it has been determined that the first and last names will be accessed
more often than the entire name. Listing 2-14 reveals these changes.

Listing 2-14. Revising implementation without affecting existing interface

public class Employee
{
 private String firstName;
 private String lastName;
 public Employee(String name)
 {
 setName(name);
 }
 public Employee(String firstName, String lastName)
 {
 setName(firstName+" "+lastName);
 }
 public void setName(String name)
 {
 // Assume that the first and last names are separated by a
 // single space character. indexOf() locates a character in a
 // string; substring() returns a portion of a string.
 setFirstName(name.substring(0, name.indexOf(' ')));
 setLastName(name.substring(name.indexOf(' ')+1));
 }
 public String getName()

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

76

 {
 return getFirstName()+" "+getLastName();
 }
 public void setFirstName(String empFirstName)
 {
 firstName = empFirstName;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setLastName(String empLastName)
 {
 lastName = empLastName;
 }
 public String getLastName()
 {
 return lastName;
 }
}

Listing 2-14 reveals that the name field has been removed in favor of new firstName and lastName
fields, which were added to improve performance. Because setFirstName() and setLastName() will be
called more frequently than setName(), and because getFirstName() and getLastName() will be called
more frequently than getName(), it is more performant (in each case) to have the first two methods
set/get firstName’s and lastName’s values rather than merging either value into/extracting this value
from name’s value.

Listing 2-14 also reveals setName() calling setFirstName() and setLastName(), and getName() calling
getFirstName() and getLastName(), rather than directly accessing the firstName and lastName fields.
Although avoiding direct access to these fields is not necessary in this example, imagine another
implementation change that adds more code to setFirstName(), setLastName(), getFirstName(), and
getLastName(); not calling these methods will result in the new code not executing.

Client code (code that instantiates and uses a class, such as Employee) will not break when Employee’s
implementation changes from that shown in Listing 2-13 to that shown in Listing 2-14, because the
original interface remains intact, although the interface has been extended. This lack of breakage results
from hiding Listing 2-13’s implementation, especially the name field.

■ Note setName() invokes the String class’s indexOf() and substring() methods. You’ll learn about these
and other String methods in Chapter 4.

Java provides a little known information hiding-related language feature that lets one object (or
class method/initializer) access another object’s private fields or invoke its private methods. Listing 2-
15 provides a demonstration.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

77

Listing 2-15. One object accessing another object’s private field

class PrivateAccess
{
 private int x;
 PrivateAccess(int x)
 {
 this.x = x;
 }
 boolean equalTo(PrivateAccess pa)
 {
 return pa.x == x;
 }
 public static void main(String[] args)
 {
 PrivateAccess pa1 = new PrivateAccess(10);
 PrivateAccess pa2 = new PrivateAccess(20);
 PrivateAccess pa3 = new PrivateAccess(10);
 System.out.println("pa1 equal to pa2: "+pa1.equalTo(pa2));
 System.out.println("pa2 equal to pa3: "+pa2.equalTo(pa3));
 System.out.println("pa1 equal to pa3: "+pa1.equalTo(pa3));
 System.out.println(pa2.x);
 }
}

Listing 2-15’s PrivateAccess class declares a private int field named x. It also declares an equalTo()
method that takes a PrivateAccess argument. The idea is to compare the argument object with the
current object to determine if they are equal.

The equality determination is made by using the == operator to compare the value of the argument
object’s x instance field with the value of the current object’s x instance field, returning Boolean true
when they are the same. What may seem baffling is that Java lets you specify pa.x to access the argument
object’s private instance field. Also, main() is able to directly access x, via the pa2 object.

I previously presented Java’s four access-control levels and presented the following statement
regarding the private access-control level: “A field, method, or constructor that is declared private
cannot be accessed from beyond the class in which it is declared.” When you carefully consider this
statement and examine Listing 2-15, you will realize that x is not being accessed from beyond the
PrivateAccess class in which it is declared. Therefore, the private access-control level is not being
violated.

The only code that can access this private instance field is code located within the PrivateAccess
class. If you attempted to access x via a PrivateAccess object that was created in the context of another
class, the compiler would report an error.

Being able to directly access x from within PrivateAccess is a performance enhancement; it is faster
to directly access this implementation detail than to call a method that returns its value.

Compile PrivateAccess.java (javac PrivateAccess.java) and run the application (java
PrivateAccess). You should observe the following output:

pa1 equal to pa2: false
pa2 equal to pa3: false
pa1 equal to pa3: true
20

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

78

■ Tip Get into the habit of developing useful interfaces while hiding implementations because it will save you
much trouble when maintaining your classes.

Initializing Classes and Objects
Classes and objects need to be properly initialized before they are used. You’ve already learned that class
fields are initialized to default zero values after a class loads, and can be subsequently initialized by
assigning values to them in their declarations via class field initializers; for example, static int counter
= 1;. Similarly, instance fields are initialized to default values when an object’s memory is allocated via
new, and can be subsequently initialized by assigning values to them in their declarations via instance
field initializers; for example, int numDoors = 4;.

Another aspect of initialization that’s already been discussed is the constructor, which is used to
initialize an object, typically by assigning values to various instance fields, but is also capable of
executing arbitrary code, such as code that opens a file and reads the file’s contents.

Java provides two additional initialization features: class initializers and instance initializers. After
introducing you to these features, this section discusses the order in which all of Java’s initializers
perform their work.

Class Initializers
Constructors perform initialization tasks for objects. Their counterpart from a class initialization
perspective is the class initializer.

A class initializer is a static-prefixed block that is introduced into a class body. It is used to initialize
a loaded class via a sequence of statements. For example, I once used a class initializer to load a custom
database driver class. Listing 2-16 shows the loading details.

Listing 2-16. Loading a database driver via a class initializer

class JDBCFilterDriver implements Driver
{
 static private Driver d;
 static
 {
 // Attempt to load JDBC-ODBC Bridge Driver and register that
 // driver.
 try
 {
 Class c = Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 d = (Driver) c.newInstance();
 DriverManager.registerDriver(new JDBCFilterDriver());
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 }

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

79

 //...
}

Listing 2-16’s JDBCFilterDriver class uses its class initializer to load and instantiate the class that
describes Java’s JDBC-ODBC Bridge Driver, and to register a JDBCFilterDriver instance with Java’s
database driver. Although this listing’s JDBC-oriented code is probably meaningless to you right now,
the listing illustrates the usefulness of class initializers. (I discuss JDBC in Chapter 9.)

A class can declare a mix of class initializers and class field initializers, as demonstrated in Listing 2-
17.

Listing 2-17. Mixing class initializers with class field initializers

class C
{
 static
 {
 System.out.println("class initializer 1");
 }
 static int counter = 1;
 static
 {
 System.out.println("class initializer 2");
 System.out.println("counter = "+counter);
 }
}

Listing 2-17 declares a class named C that specifies two class initializers and one class field
initializer. When the Java compiler compiles into a classfile a class that declares at least one class
initializer or class field initializer, it creates a special void <clinit>() class method that stores the
bytecode equivalent of all class initializers and class field initializers in the order they occur (from top to
bottom).

■ Note <clinit> is not a valid Java method name, but is a valid name from the runtime perspective. The angle
brackets were chosen as part of the name to prevent a name conflict with any clinit() methods that you might
declare in the class.

For class C, <clinit>() would first contain the bytecode equivalent of System.out.println("class
initializer 1");, it would next contain the bytecode equivalent of static int counter = 1;, and it
would finally contain the bytecode equivalent of System.out.println("class initializer 2");
System.out.println("counter = "+counter);.

When class C is loaded into memory, <clinit>() executes immediately and generates the following
output:

class initializer 1
class initializer 2
counter = 1

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

80

Instance Initializers
Not all classes can have constructors, as you will discover in Chapter 3 when I present anonymous
classes. For these classes, Java supplies the instance initializer to take care of instance initialization tasks.

An instance initializer is a block that is introduced into a class body, as opposed to being introduced
as the body of a method or a constructor. The instance initializer is used to initialize an object via a
sequence of statements, as demonstrated in Listing 2-18.

Listing 2-18. Initializing a pair of arrays via an instance initializer

class Graphics
{
 double[] sines;
 double[] cosines;
 {
 sines = new double[360];
 cosines = new double[sines.length];
 for (int i = 0; i < sines.length; i++)
 {
 sines[i] = Math.sin(Math.toRadians(i));
 cosines[i] = Math.cos(Math.toRadians(i));
 }
 }
}

Listing 2-18’s Graphics class uses an instance initializer to create an object’s sines and cosines
arrays, and to initialize these arrays’ elements to the sines and cosines of angles ranging from 0 through
359 degrees. It does so because it’s faster to read array elements than to repeatedly call Math.sin() and
Math.cos() elsewhere; performance matters. (Chapter 4 introduces Math.sin() and Math.cos().)

A class can declare a mix of instance initializers and instance field initializers, as shown in Listing 2-
19.

Listing 2-19. Mixing instance initializers with instance field initializers

class C
{
 {
 System.out.println("instance initializer 1");
 }
 int counter = 1;
 {
 System.out.println("instance initializer 2");
 System.out.println("counter = "+counter);
 }
}

Listing 2-19 declares a class named C that specifies two instance initializers and one instance field
initializer. When the Java compiler compiles a class into a classfile, it creates a special void <init>()
method representing the default noargument constructor when no constructor is explicitly declared;
otherwise, it create an <init>() method for each encountered constructor. Furthermore, it stores in
each constructor the bytecode equivalent of all instance initializers and instance field initializers in the
order they occur (from top to bottom).

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

81

■ Note <init> is not a valid Java method name, but is a valid name from the runtime perspective. The angle
brackets were chosen as part of the name to prevent a name conflict with any init() methods that you might
declare in the class.

For class C, <init>() would first contain the bytecode equivalent of System.out.println("instance
initializer 1");, it would next contain the bytecode equivalent of int counter = 1;, and it would
finally contain the bytecode equivalent of System.out.println("instance initializer 2");
System.out.println("counter = "+counter);.

When new C() executes, <init>() executes immediately and generates the following output:

instance initializer 1
instance initializer 2
counter = 1

■ Note You should rarely need to use the instance initializer, which is not commonly used in industry.

Initialization Order
A class’s body can contain a mixture of class field initializers, class initializers, instance field initializers,
instance initializers, and constructors. (You should prefer constructors to instance field initializers,
although I am guilty of not doing so consistently, and restrict your use of instance initializers to
anonymous classes.) Furthermore, class fields and instance fields initialize to default values.
Understanding the order in which all of this initialization occurs is necessary to preventing confusion, so
check out Listing 2-20.

Listing 2-20. A complete initialization demo

class InitDemo
{
 static double double1;
 double double2;
 static int int1;
 int int2;
 static String string1;
 String string2;
 static
 {
 System.out.println("[class] double1 = "+double1);
 System.out.println("[class] int1 = "+int1);
 System.out.println("[class] string1 = "+string1);
 System.out.println();
 }
 {

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

82

 System.out.println("[instance] double2 = "+double2);
 System.out.println("[instance] int2 = "+int2);
 System.out.println("[instance] string2 = "+string2);
 System.out.println();
 }
 static
 {
 double1 = 1.0;
 int1 = 1000000000;
 string1 = "abc";
 }
 {
 double2 = 1.0;
 int2 = 1000000000;
 string2 = "abc";
 }
 InitDemo()
 {
 System.out.println("InitDemo() called");
 System.out.println();
 }
 static double double3 = 10.0;
 double double4 = 10.0;
 static
 {
 System.out.println("[class] double3 = "+double3);
 System.out.println();
 }
 {
 System.out.println("[instance] double4 = "+double3);
 System.out.println();
 }
 public static void main(String[] args)
 {
 System.out.println ("main() started");
 System.out.println();
 System.out.println("[class] double1 = "+double1);
 System.out.println("[class] double3 = "+double3);
 System.out.println("[class] int1 = "+int1);
 System.out.println("[class] string1 = "+string1);
 System.out.println();
 for (int i = 0; i < 2; i++)
 {
 System.out.println("About to create InitDemo object");
 System.out.println();
 InitDemo id = new InitDemo();
 System.out.println("id created");
 System.out.println();
 System.out.println("[instance] id.double2 = "+id.double2);
 System.out.println("[instance] id.double4 = "+id.double4);
 System.out.println("[instance] id.int2 = "+id.int2);
 System.out.println("[instance] id.string2 = "+id.string2);

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

83

 System.out.println();
 }
 }
}

Listing 2-20’s InitDemo class declares two class fields and two instance fields for the double
precision floating-point primitive type, one class field and one instance field for the integer primitive
type, and one class field and one instance field for the String reference type. It also introduces one
explicitly initialized class field, one explicitly initialized instance field, three class initializers, three
instance initializers, and one constructor. If you compile and run this code, you will observe the
following output:

[class] double1 = 0.0
[class] int1 = 0
[class] string1 = null

[class] double3 = 10.0

main() started

[class] double1 = 1.0
[class] double3 = 10.0
[class] int1 = 1000000000
[class] string1 = abc

About to create InitDemo object

[instance] double2 = 0.0
[instance] int2 = 0
[instance] string2 = null

[instance] double4 = 10.0

InitDemo() called

id created

[instance] id.double2 = 1.0
[instance] id.double4 = 10.0
[instance] id.int2 = 1000000000
[instance] id.string2 = abc

About to create InitDemo object

[instance] double2 = 0.0
[instance] int2 = 0
[instance] string2 = null

[instance] double4 = 10.0

InitDemo() called

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

84

id created

[instance] id.double2 = 1.0
[instance] id.double4 = 10.0
[instance] id.int2 = 1000000000
[instance] id.string2 = abc

As you study this output in conjunction with the aforementioned discussion of class initializers and
instance initializers, you will discover some interesting facts about initialization:

• Class fields initialize to default or explicit values just after a class is loaded.
Immediately after a class loads, all class fields are zeroed to default values. Code
within the <clinit>() method performs explicit initialization.

• All class initialization occurs prior to the <clinit>() method returning.

• Instance fields initialize to default or explicit values during object creation. When
new allocates memory for an object, it zeroes all instance fields to default values.
Code within an <init>() method performs explicit initialization.

• All instance initialization occurs prior to the <init>() method returning.

Additionally, because initialization occurs in a top-down manner, attempting to access the contents
of a class field before that field is declared, or attempting to access the contents of an instance field
before that field is declared causes the compiler to report an illegal forward reference.

Inheriting State and Behaviors
We tend to categorize stuff by saying things like “cars are vehicles” or “savings accounts are bank
accounts.” By making these statements, we really are saying that cars inherit vehicular state (e.g., make
and color) and behaviors (e.g., park and display mileage), and that savings accounts inherit bank
account state (e.g., balance) and behaviors (e.g., deposit and withdraw). Car, vehicle, savings account,
and bank account are examples of real-world entity categories, and inheritance is a hierarchical
relationship between similar entity categories in which one category inherits state and behaviors from at
least one other entity category. Inheriting from a single category is called single inheritance, and
inheriting from at least two categories is called multiple inheritance.

Java supports single inheritance and multiple inheritance to facilitate code reuse—why reinvent the
wheel? Java supports single inheritance in a class context, in which a class inherits state and behaviors
from another class through class extension. Because classes are involved, Java refers to this kind of
inheritance as implementation inheritance.

Java supports multiple inheritance only in an interface context, in which a class inherits behavior
templates from one or more interfaces through interface implementation, or in which an interface
inherits behavior templates from one or more interfaces through interface extension. Because interfaces
are involved, Java refers to this kind of inheritance as interface inheritance. (I discuss interfaces later in
this chapter.)

This section introduces you to Java’s support for implementation inheritance by first focusing on
class extension. It then introduces you to a special class that sits at the top of Java’s class hierarchy. After
introducing you to composition, which is an alternative to implementation inheritance for reusing code,
this section shows you how composition can be used to overcome problems with implementation
inheritance.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

85

Extending Classes
Java provides the reserved word extends for specifying a hierarchical relationship between two classes.
For example, suppose you have a Vehicle class and want to introduce Car and Truck classes that extend
Vehicle. Listing 2-21 uses extends to cement these relationships.

Listing 2-21. Relating classes via extends

class Vehicle
{
 // member declarations
}
class Car extends Vehicle
{
 // member declarations
}
class Truck extends Vehicle
{
 // Member declarations
}

Listing 2-21 codifies relationships that are known as “is-a” relationships: a car or a truck is a kind of
vehicle. In this relationship, Vehicle is known as the base class, parent class, or superclass; and each of
Car and Truck is known as the derived class, child class, or subclass.

■ Caution You cannot extend a final class. For example, if you declared Vehicle as final class Vehicle, the
compiler would report an error upon encountering class Car extends Vehicle or class Truck extends
Vehicle. Developers declare their classes final when they do not want these classes to be extended (for security
or other reasons).

As well as being capable of providing its own member declarations, each of Car and Truck is capable
of inheriting member declarations from its Vehicle superclass. As Listing 2-22 shows, non-private
inherited members become accessible to members of the Car and Truck classes.

Listing 2-22. Inheriting members

class Vehicle
{
 private String make;
 private String model;
 private int year;
 Vehicle(String make, String model, int year)
 {
 this.make = make;
 this.model = model;
 this.year = year;

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

86

 }
 String getMake()
 {
 return make;
 }
 String getModel()
 {
 return model;
 }
 int getYear()
 {
 return year;
 }
}
class Car extends Vehicle
{
 private int numWheels;
 Car(String make, String model, int year, int numWheels)
 {
 super(make, model, year);
 this.numWheels = numWheels;
 }
 public static void main(String[] args)
 {
 Car car = new Car("Toyota", "Camry", 2011, 4);
 System.out.println("Make = "+car.getMake());
 System.out.println("Model = "+car.getModel());
 System.out.println("Year = "+car.getYear());
 System.out.println("Number of wheels = "+car.numWheels);
 System.out.println();
 car = new Car("Aptera Motors", "Aptera 2e/2h", 2012, 3);
 System.out.println("Make = "+car.getMake());
 System.out.println("Model = "+car.getModel());
 System.out.println("Year = "+car.getYear());
 System.out.println("Number of wheels = "+car.numWheels);
 }
}
class Truck extends Vehicle
{
 private boolean isExtendedCab;
 Truck(String make, String model, int year, boolean isExtendedCab)
 {
 super(make, model, year);
 this.isExtendedCab = isExtendedCab;
 }
 public static void main(String[] args)
 {
 Truck truck = new Truck("Chevrolet", "Silverado", 2011, true);
 System.out.println("Make = "+truck.getMake());
 System.out.println("Model = "+truck.getModel());
 System.out.println("Year = "+truck.getYear());
 System.out.println("Extended cab = "+truck.isExtendedCab);

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

87

 }
}

Listing 2-22’s Vehicle class declares private fields that store a vehicle’s make, model, and year; a
constructor that initializes these fields to passed arguments; and getter methods that retrieve these
fields’ values.

The Car subclass provides a private numWheels field, a constructor that initializes a Car object’s
Vehicle and Car layers, and a main() class method for testing this class. Similarly, the Truck subclass
provides a private isExtendedCab field, a constructor that initializes a Truck object’s Vehicle and Truck
layers, and a main() class method for testing this class.

Car’s and Truck’s constructors use reserved word super to call Vehicle’s constructor with Vehicle-
oriented arguments, and then initialize Car’s numWheels and Truck’s isExtendedCab instance fields,
respectively. The super() call is analogous to specifying this() to call another constructor in the same
class, but invokes a superclass constructor instead.

■ Caution The super() call can only appear in a constructor. Furthermore, it must be the first code that is
specified in the constructor. If super() is not specified, and if the superclass does not have a noargument
constructor, the compiler will report an error because the subclass constructor must call a noargument superclass
constructor when super() is not present.

Car’s main() method creates two Car objects, initializing each object to a specific make, model, year,
and number of wheels. Four System.out.println() method calls subsequently output each object’s
information. Similarly, Truck’s main() method creates a single Truck object, and also initializes this
object to a specific make, model, year, and flag (Boolean true/false value) indicating that the truck is an
extended cab. The first three System.out.println() method calls retrieve their pieces of information by
calling a Car or Truck instance’s inherited getMake(), getModel(), and getYear() methods.

The final System.out.println() method call directly accesses the instance’s numWheels or
isExtendedCab instance field. Although it’s generally not a good idea to access an instance field directly
(because it violates information hiding), each of the Car and Truck class’s main() methods, which
provides this access, is present only to test these classes and would not exist in a real application that
uses these classes.

Assuming that Listing 2-22 is stored in a file named Vehicle.java, execute javac Vehicle.java to
compile this source code into Vehicle.class, Car.class, and Truck.class classfiles. Then execute java
Car to test the Car class. This execution results in the following output:

Make = Toyota
Model = Camry
Year = 2011
Number of wheels = 4

Make = Aptera Motors
Model = Aptera 2e/2h
Year = 2012
Number of wheels = 3

Continuing, execute java Truck to test the Truck class. This execution results in the following
output:

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

88

Make = Chevrolet
Model = Silverado
Year = 2011
Extended cab = true

■ Note A class whose instances cannot be modified is known as an immutable class. Vehicle is an example. If
Car’s and Truck’s main() methods, which can directly read/write numWheels or isExtendedCab, were not
present, Car and Truck would also be examples of immutable classes. Also, a class cannot inherit constructors,
nor can it inherit private fields and methods. For example, Car does not inherit Vehicle’s constructor, nor does it
inherit Vehicle’s private make, model, and year fields.

A subclass can override (replace) an inherited method so that the subclass’s version of the method is
called instead. Listing 2-23 shows you that the overriding method must specify the same name,
parameter list, and return type as the method being overridden.

Listing 2-23. Overriding a method

class Vehicle
{
 private String make;
 private String model;
 private int year;
 Vehicle(String make, String model, int year)
 {
 this.make = make;
 this.model = model;
 this.year = year;
 }
 void describe()
 {
 System.out.println(year+" "+make+" "+model);
 }
}
class Car extends Vehicle
{
 private int numWheels;
 Car(String make, String model, int year, int numWheels)
 {
 super(make, model, year);
 }
 void describe()
 {
 System.out.print("This car is a "); // Print without newline – see Chapter 1.
 super.describe();
 }
 public static void main(String[] args)

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

89

 {
 Car car = new Car("Ford", "Fiesta", 2009, 4);
 car.describe();
 }
}

Listing 2-23’s Car class declares a describe() method that overrides Vehicle’s describe() method to
output a car-oriented description. This method uses reserved word super to call Vehicle’s describe()
method via super.describe();.

■ Note Call a superclass method from the overriding subclass method by prefixing the method’s name with
reserved word super and the member access operator. If you don’t do this, you end up recursively calling the
subclass’s overriding method. Use super and the member access operator to access non-private superclass
fields from subclasses that mask these fields by declaring same-named fields.

If you were to compile Listing 2-23 (javac Vehicle.java) and run the Car application (java Car), you
would discover that Car’s overriding describe() method executes instead of Vehicle’s overridden
describe() method, and outputs This car is a 2009 Ford Fiesta.

■ Caution You cannot override a final method. For example, if Vehicle’s describe() method was declared as
final void describe(), the compiler would report an error upon encountering an attempt to override this
method in the Car class. Developers declare their methods final when they do not want these methods to be
overridden (for security or other reasons). Also, you cannot make an overriding method less accessible than the
method it overrides. For example, if Car’s describe() method was declared as private void describe(), the
compiler would report an error because private access is less accessible than the default package access.
However, describe() could be made more accessible by declaring it public, as in public void describe().

Suppose you were to replace Listing 2-23’s describe() method with the method shown here:

void describe(String owner)
{
 System.out.print("This car, which is owned by "+owner+", is a ");
 super.describe();
}

The modified Car class now has two describe() methods, the preceding explicitly declared method
and the method inherited from Vehicle. The void describe(String owner) method does not override
Vehicle’s describe() method. Instead, it overloads this method.

The Java compiler helps you detect an attempt to overload instead of override a method at compile
time by letting you prefix a subclass’s method header with the @Override annotation, as shown below—I
discuss annotations in Chapter 3:

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

90

@Override
void describe()
{
 System.out.print("This car is a ");
 super.describe();
}

Specifying @Override tells the compiler that the method overrides another method. If you overload
the method instead, the compiler reports an error. Without this annotation, the compiler would not
report an error because method overloading is a valid feature.

■ Tip Get into the habit of prefixing overriding methods with the @Override annotation. This habit will help you
detect overloading mistakes much sooner.

I previously presented the initialization order of classes and objects, where you learned that class
members are always initialized first, and in a top-down order (the same order applies to instance
members). Implementation inheritance adds a couple more details:

• A superclass’s class initializers always execute before a subclass’s class initializers.

• A subclass’s constructor always calls the superclass constructor to initialize an
object’s superclass layer before initializing the subclass layer.

Java’s support for implementation inheritance only permits you to extend a single class. You cannot
extend multiple classes because doing so can lead to problems. For example, suppose Java supported
multiple implementation inheritance, and you decided to model a flying horse (from Greek mythology)
via the class structure shown in Listing 2-24.

Listing 2-24. A fictional demonstration of multiple implementation inheritance

class Horse
{
 void describe()
 {
 // Code that outputs a description of a horse's appearance and behaviors.
 }
}
class Bird
{
 void describe()
 {
 // Code that outputs a description of a bird's appearance and behaviors.
 }
}
class FlyingHorse extends Horse, Bird
{
 public static void main(String[] args)
 {

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

91

 FlyingHorse pegasus = new FlyingHorse();
 pegasus.describe();
 }
}

This class structure reveals an ambiguity resulting from each of Horse and Bird declaring a
describe() method. Which of these methods does FlyingHorse inherit? A related ambiguity arises from
same-named fields, possibly of different types. Which field is inherited?

The Ultimate Superclass
A class that does not explicitly extend another class implicitly extends Java’s Object class (located in the
java.lang package—I will discuss packages in the next chapter). For example, Listing 2-1’s Image class
extends Object, whereas Listing 2-21’s Car and Truck classes extend Vehicle, which extends Object.

Object is Java’s ultimate superclass because it serves as the ancestor of every other class, but does
not itself extend any other class. Object provides a common set of methods that other classes inherit.
Table 2-1 describes these methods.

Table 2-1. Object’s Methods

Method Description

Object clone() Create and return a copy of the current object.

boolean equals(Object obj) Determine whether the current object is equal to the
object identified by obj.

void finalize() Finalize the current object.

Class<?> getClass() Return the current object’s Class object.

int hashCode() Return the current object’s hash code.

void notify() Wake up one of the threads that are waiting on the
current object’s monitor.

void notifyAll() Wake up all threads that are waiting on the current
object’s monitor.

String toString() Return a string representation of the current object.

void wait() Cause the current thread to wait on the current
object’s monitor until it is woken up via notify() or
notifyAll().

void wait(long timeout) Cause the current thread to wait on the current
object’s monitor until it is woken up via notify() or
notifyAll(), or until the specified timeout value (in

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

92

milliseconds) has elapsed, whichever comes first.

void wait(long timeout, int nanos) Cause the current thread to wait on the current
object’s monitor until it is woken up via notify() or
notifyAll(), or until the specified timeout value (in
milliseconds) plus nanos value (in nanoseconds) has
elapsed, whichever comes first.

I will discuss the clone(), equals(), finalize(), hashCode(), and toString() methods shortly, but

defer a discussion of getClass(), notify(), notifyAll(), and the wait() methods to Chapter 4.

■ Note Chapter 6 introduces you to the java.util.Objects class, which provides several null-safe or null-
tolerant class methods for comparing two objects, computing the hash code of an object, requiring that a
reference not be null, and returning a string representation of an object.

Cloning
The clone() method clones (duplicates) an object without calling a constructor. It copies each primitive
or reference field’s value to its counterpart in the clone, a task known as shallow copying or shallow
cloning. Listing 2-25 demonstrates this behavior.

Listing 2-25. Shallowly cloning an Employee object

class Employee implements Cloneable
{
 String name;
 int age;
 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 public static void main(String[] args) throws CloneNotSupportedException
 {
 Employee e1 = new Employee("John Doe", 46);
 Employee e2 = (Employee) e1.clone();
 System.out.println(e1 == e2); // Output: false
 System.out.println(e1.name == e2.name); // Output: true
 }
}

Listing 2-25 declares an Employee class with name and age instance fields, and a constructor for
initializing these fields. The main() method uses this constructor to initialize a new Employee object’s
copies of these fields to John Doe and 46.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

93

■ Note A class must implement the java.lang.Cloneable interface or its instances cannot be shallowly cloned
via Object’s clone() method—this method performs a runtime check to see if the class implements Cloneable.
(I will discuss interfaces later in this chapter.) If a class does not implement Cloneable, clone() throws
java.lang.CloneNotSupportedException. (Because CloneNotSupportedException is a checked exception, it is
necessary for Listing 2-25 to satisfy the compiler by appending throws CloneNotSupportedException to the
main() method’s header. I will discuss exceptions in the next chapter.) String is an example of a class that does
not implement Cloneable; hence, String objects cannot be shallowly cloned.

After assigning the Employee object’s reference to local variable e1, main() calls the clone() method
on this variable to duplicate the object, and then assigns the resulting reference to variable e2. The
(Employee) cast is needed because clone() returns Object.

To prove that the objects whose references were assigned to e1 and e2 are different, main() next
compares these references via == and outputs the Boolean result, which happens to be false. To prove
that the Employee object was shallowly cloned, main() next compares the references in both Employee
objects’ name fields via == and outputs the Boolean result, which happens to be true.

■ Note Object’s clone() method was originally specified as a public method, which meant that any object
could be cloned from anywhere. For security reasons, this access was later changed to protected, which means
that only code within the same package as the class whose clone() method is to be called, or code within a
subclass of this class (regardless of package) can call clone().

Shallow cloning is not always desirable because the original object and its clone refer to the same
object via their equivalent reference fields. For example, each of Listing 2-25’s two Employee objects
refers to the same String object via its name field.

Although not a problem for String, whose instances are immutable, changing a mutable object via
the clone’s reference field causes the original (noncloned) object to see the same change via its reference
field. For example, suppose you add a reference field named hireDate to Employee. This field is of type
Date with year, month, and day instance fields. Because Date is intended to be mutable, you can change
the contents of these fields in the Date instance assigned to hireDate.

Now suppose you plan to change the clone’s date, but want to preserve the original Employee
object’s date. You cannot do this with shallow cloning because the change is also visible to the original
Employee object. To solve this problem, you must modify the cloning operation so that it assigns a new
Date reference to the Employee clone’s hireDate field. This task, which is known as deep copying or deep
cloning, is demonstrated in Listing 2-26.

Listing 2-26. Deeply cloning an Employee object

class Date
{
 int year, month, day;

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

94

 Date(int year, int month, int day)
 {
 this.year = year;
 this.month = month;
 this.day = day;
 }
}
class Employee implements Cloneable
{
 String name;
 int age;
 Date hireDate;
 Employee(String name, int age, Date hireDate)
 {
 this.name = name;
 this.age = age;
 this.hireDate = hireDate;
 }
 @Override
 protected Object clone() throws CloneNotSupportedException
 {
 Employee emp = (Employee) super.clone();
 if (hireDate != null) // no point cloning a null object (one that does not exist)
 emp.hireDate = new Date(hireDate.year, hireDate.month, hireDate.day);
 return emp;
 }
 public static void main(String[] args) throws CloneNotSupportedException
 {
 Employee e1 = new Employee("John Doe", 46, new Date(2000, 1, 20));
 Employee e2 = (Employee) e1.clone();
 System.out.println(e1 == e2); // Output: false
 System.out.println(e1.name == e2.name); // Output: true
 System.out.println(e1.hireDate == e2.hireDate); // Output: false
 System.out.println(e2.hireDate.year+" "+e2.hireDate.month+" "+
 e2.hireDate.day); // Output: 2000 1 20
 }
}

Listing 2-26 declares Date and Employee classes. The Date class declares year, month, and day fields
and a constructor.

Employee overrides the clone() method to deeply clone the hireDate field. This method first calls
Object’s clone() method to shallowly clone the current Employee object’s instance fields, and then stores
the new object’s reference in emp. It next assigns a new Date object’s reference to emp’s hireDate field; this
object’s fields are initialized to the same values as those in the original Employee object’s hireDate
instance.

At this point, you have an Employee clone with shallowly cloned name and age fields, and a deeply
cloned hireDate field. The clone() method finishes by returning this Employee clone.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

95

■ Note If you are not calling Object’s clone() method from an overriding clone() method (because you prefer
to deeply clone reference fields and do your own shallow copying of nonreference fields), it isn’t necessary for the
class containing the overriding clone() method to implement Cloneable, but it should implement this interface
for consistency. String does not override clone(), so String objects cannot be deeply cloned.

Equality
The == and != operators compare two primitive values (such as integers) for equality (==) or inequality
(!=). These operators also compare two references to see whether they refer to the same object or not.
This latter comparison is known as an identity check.

You cannot use == and != to determine whether two objects are logically the same (or not). For
example, two Truck objects with the same field values are logically equivalent. However, == reports them
as unequal because of their different references.

■ Note Because == and != perform the fastest possible comparisons, and because string comparisons need to be
performed quickly (especially when sorting a huge number of strings), the String class contains special support
that allows literal strings and string-valued constant expressions to be compared via == and !=. (I will discuss this
support when I present String in Chapter 4.) The following statements demonstrate these comparisons:

System.out.println("abc" == "abc"); // Output: true

System.out.println("abc" == "a"+"bc"); // Output: true

System.out.println("abc" == "Abc"); // Output: false

System.out.println("abc" != "def"); // Output: true

System.out.println("abc" == new String("abc")); // Output: false

Recognizing the need to support logical equality in addition to reference equality, Java provides an
equals() method in the Object class. Because this method defaults to comparing references, you need to
override equals() to compare object contents.

Before overriding equals(), make sure that this is necessary. For example, Java’s
java.lang.StringBuffer class (discussed in Chapter 4) does not override equals(). Perhaps this class’s
designers did not think it necessary to determine if two StringBuffer objects are logically equivalent.

You cannot override equals() with arbitrary code. Doing so will probably prove disastrous to your
applications. Instead, you need to adhere to the contract that is specified in the Java documentation for
this method, and which I present next.

The equals() method implements an equivalence relation on nonnull object references:

• It is reflexive: For any nonnull reference value x, x.equals(x) returns true.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

96

• It is symmetric: For any nonnull reference values x and y, x.equals(y) returns true
if and only if y.equals(x) returns true.

• It is transitive: For any nonnull reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) returns true.

• It is consistent: For any nonnull reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals() comparisons on the objects is modified.

• For any nonnull reference value x, x.equals(null) returns false.

Although this contract probably looks somewhat intimidating, it is not that difficult to satisfy. For
proof, take a look at the implementation of the equals() method in Listing 2-27’s Point class.

Listing 2-27. Logically comparing Point objects

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX() { return x; }
 int getY() { return y; }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Point))
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }
 public static void main(String[] args)
 {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(20, 30);
 Point p3 = new Point(10, 20);
 // Test reflexivity
 System.out.println(p1.equals(p1)); // Output: true
 // Test symmetry
 System.out.println(p1.equals(p2)); // Output: false
 System.out.println(p2.equals(p1)); // Output: false
 // Test transitivity
 System.out.println(p2.equals(p3)); // Output: false
 System.out.println(p1.equals(p3)); // Output: true
 // Test nullability
 System.out.println(p1.equals(null)); // Output: false
 // Extra test to further prove the instanceof operator's usefulness.
 System.out.println(p1.equals("abc")); // Output: false
 }

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

97

}

Listing 2-27’s overriding equals() method begins with an if statement that uses the instanceof
operator to determine whether the argument passed to parameter o is an instance of the Point class. If
not, the if statement executes return false;.

The o instanceof Point expression satisfies the last portion of the contract: For any nonnull
reference value x, x.equals(null) returns false. Because the null reference is not an instance of any class,
passing this value to equals() causes the expression to evaluate to false.

The o instanceof Point expression also prevents a java.lang.ClassCastException instance from
being thrown via expression (Point) o in the event that you pass an object other than a Point object to
equals(). (I will discuss exceptions in the next chapter.)

Following the cast, the contract’s reflexivity, symmetry, and transitivity requirements are met by
only allowing Points to be compared with other Points, via expression p.x == x && p.y == y.
The final contract requirement, consistency, is met by making sure that the equals() method is
deterministic. In other words, this method does not rely on any field value that could change from
method call to method call.

■ Tip You can optimize the performance of a time-consuming equals() method by first using == to determine if
o’s reference identifies the current object. Simply specify if (o == this) return true; as the equals()
method’s first statement. This optimization is not necessary in Listing 2-27’s equals() method, which has
satisfactory performance.

It is important to always override the hashCode() method when overriding equals(). I did not do so
in Listing 2-27 because I have yet to formally introduce hashCode().

Finalization
Finalization refers to cleanup via the finalize() method, which is known as a finalizer. The finalize()
method’s Java documentation states that finalize() is “called by the garbage collector on an object
when garbage collection determines that there are no more references to the object. A subclass overrides
the finalize() method to dispose of system resources or to perform other cleanup.”

Object’s version of finalize() does nothing; you must override this method with any needed
cleanup code. Because the JVM might never call finalize() before an application terminates, you
should provide an explicit cleanup method, and have finalize() call this method as a safety net in case
the method is not otherwise called.

■ Caution Never depend on finalize() for releasing limited resources such as graphics contexts or file
descriptors. For example, if an application object opens files, expecting that its finalize() method will close
them, the application might find itself unable to open additional files when a tardy JVM is slow to call finalize().
What makes this problem worse is that finalize() might be called more frequently on another JVM, resulting in

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

98

this too-many-open-files problem not revealing itself. The developer might thus falsely believe that the application
behaves consistently across different JVMs.

If you decide to override finalize(), your object’s subclass layer must give its superclass layer an
opportunity to perform finalization. You can accomplish this task by specifying super.finalize(); as
the last statement in your method, which the following example demonstrates:

@Override
protected void finalize() throws Throwable
{
 try
 {
 // Perform subclass cleanup.
 }
 finally
 {
 super.finalize();
 }
}

The example’s finalize() declaration appends throws Throwable to the method header because the
cleanup code might throw an exception. If an exception is thrown, execution leaves the method and, in
the absence of try-finally, super.finalize(); never executes. (I will discuss exceptions and try-finally in
Chapter 3.)

To guard against this possibility, the subclass’s cleanup code executes in a block that follows
reserved word try. If an exception is thrown, Java’s exception-handling logic executes the block
following the finally reserved word, and super.finalize(); executes the superclass’s finalize()
method.

The finalize() method has often been used to perform resurrection (making an unreferenced
object referenced), to implement object pools that recycle the same objects when these objects are
expensive (time-wise) to create (database connection objects are an example).

Resurrection occurs when you assign this (a reference to the current object) to a class or instance
field (or to another long-lived variable). For example, you might specify r = this; within finalize() to
assign the unreferenced object identified as this to a class field named r.

Because of the possibility for resurrection, there is a severe performance penalty imposed on the
garbage collection of an object that overrides finalize(). You’ll learn about this penalty and a better
alternative to overriding finalize() in Chapter 4.

■ Note A resurrected object’s finalizer cannot be called again.

Hash Codes
The hashCode() method returns a 32-bit integer that identifies the current object’s hash code, a small
value that results from applying a mathematical function to a potentially large amount of data. The
calculation of this value is known as hashing.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

99

You must override hashCode() when overriding equals(), and in accordance with the following
contract, which is specified in hashCode()’s Java documentation:

• Whenever it is invoked on the same object more than once during an execution of
a Java application, the hashCode() method must consistently return the same
integer, provided no information used in equals(Object) comparisons on the
object is modified. This integer need not remain consistent from one execution of
an application to another execution of the same application.

• If two objects are equal according to the equals(Object) method, then calling the
hashCode() method on each of the two objects must produce the same integer
result.

• It is not required that if two objects are unequal according to the equals(Object)
method, then calling the hashCode() method on each of the two objects must
produce distinct integer results. However, the programmer should be aware that
producing distinct integer results for unequal objects might improve the
performance of hash tables.

Fail to obey this contract and your class’s instances will not work properly with Java’s hash-based
Collections Framework classes, such as java.util.HashMap. (I will discuss HashMap and other Collections
Framework classes in Chapter 5.)

If you override equals() but not hashCode(), you most importantly violate the second item in the
contract: The hash codes of equal objects must also be equal. This violation can lead to serious
consequences, as demonstrated in the following example:

java.util.Map<Point, String> map = new java.util.HashMap<>();
map.put(p1, "first point");
System.out.println(map.get(p1)); // Output: first point
System.out.println(map.get(new Point(10, 20))); // Output: null

Assume that the example’s statements are appended to Listing 2-27’s main() method—the
java.util. prefix, <Point, String>, and <> have to do with packages and generics, which I discuss in
Chapter 3.

After main() creates its Point objects and calls its System.out.println() methods, it executes this
example’s statements, which perform the following tasks:

• The first statement instantiates HashMap, which is in the java.util package.

• The second statement calls HashMap’s put() method to store Listing 2-27’s p1
object key and the "first point" value in the hashmap.

• The third statement retrieves the value of the hashmap entry whose Point key is
logically equal to p1 via HashMap’s get() method.

• The fourth statement is equivalent to the third statement, but returns the null
reference instead of "first point".

Although objects p1 and Point(10, 20) are logically equivalent, these objects have different hash
codes, resulting in each object referring to a different entry in the hashmap. If an object is not stored (via
put()) in that entry, get() returns null.

Correcting this problem requires that hashCode() be overridden to return the same integer value for
logically equivalent objects. I’ll show you how to accomplish this task when I discuss HashMap in Chapter
5.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

100

String Representation
The toString() method returns a string-based representation of the current object. This representation
defaults to the object’s class name, followed by the @ symbol, followed by a hexadecimal representation
of the object’s hash code.

For example, if you were to execute System.out.println(p1); to output Listing 2-27’s p1 object, you
would see a line of output similar to Point@3e25a5. (System.out.println() calls p1’s inherited toString()
method behind the scenes.)

You should strive to override toString() so that it returns a concise but meaningful description of
the object. For example, you might declare, in Listing 2-27’s Point class, a toString() method that is
similar to the following:

@Override
public String toString()
{
 return "("+x+", "+y+")";
}

This time, executing System.out.println(p1); results in more meaningful output, such as (10, 20).

Composition
Implementation inheritance and composition offer two different approaches to reusing code. As you
have learned, implementation inheritance is concerned with extending a class with a new class, which is
based upon an “is-a” relationship between them: a Car is a Vehicle, for example.

On the other hand, composition is concerned with composing classes out of other classes, which is
based upon a “has-a” relationship between them. For example, a Car has an Engine, Wheels, and a
SteeringWheel.

You have already seen examples of composition in this chapter. For example, Listing 2-3’s Car class
includes String make and String model fields. Listing 2-28’s Car class provides another example of
composition.

Listing 2-28. A Car class whose instances are composed of other objects

class Car extends Vehicle
{
 private Engine engine;
 private Wheel[] wheels;
 private SteeringWheel steeringWheel;
}

Listing 2-28 demonstrates that composition and implementation inheritance are not mutually
exclusive. Although not shown, Car inherits various members from its Vehicle superclass, in addition to
providing its own engine, wheels, and steeringwheel instance fields.

The Trouble with Implementation Inheritance
Implementation inheritance is potentially dangerous, especially when the developer does not have
complete control over the superclass, or when the superclass is not designed and documented with
extension in mind.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

101

The problem is that implementation inheritance breaks encapsulation. The subclass relies on
implementation details in the superclass. If these details change in a new version of the superclass, the
subclass might break, even if the subclass is not touched.

For example, suppose you have purchased a library of Java classes, and one of these classes
describes an appointment calendar. Although you do not have access to this class’s source code, assume
that Listing 2-29 describes part of its code.

Listing 2-29. An appointment calendar class

public class ApptCalendar
{
 private final static int MAX_APPT = 1000;
 private Appt[] appts;
 private int size;
 public ApptCalendar()
 {
 appts = new Appt[MAX_APPT];
 size = 0; // redundant because field automatically initialized to 0
 // adds clarity, however
 }
 public void addAppt(Appt appt)
 {
 if (size == appts.length)
 return; // array is full
 appts[size++] = appt;
 }
 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 addAppt(appts[i]);
 }
}

Listing 2-29’s ApptCalendar class stores an array of appointments, with each appointment described
by an Appt instance. For this discussion, Appt’s details are irrelevant—it could be as trivial as class Appt
{}.

Suppose you want to log each appointment in a file. Because a logging capability is not provided,
you extend ApptCalendar with Listing 2-30’s LoggingApptCalendar class, which adds logging behavior in
overriding addAppt() and addAppts() methods.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

102

Listing 2-30. Extending the appointment calendar class

public class LoggingApptCalendar extends ApptCalendar
{
 // A constructor is not necessary because the Java compiler will add a
 // noargument constructor that calls the superclass's noargument
 // constructor by default.
 @Override
 public void addAppt(Appt appt)
 {
 Logger.log(appt.toString());
 super.addAppt(appt);
 }
 @Override
 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 Logger.log(appts[i].toString());
 super.addAppts(appts);
 }
}

Listing 2-30’s LoggingApptCalendar class relies on a Logger class whose void log(String msg) class
method logs a string to a file (the details are unimportant). Notice the use of toString() to convert an
Appt object to a String object, which is then passed to log().

Although this class looks okay, it does not work as you might expect. Suppose you instantiate this
class and add a few Appt instances to this instance via addAppts(), in the following manner:

LoggingApptCalendar lapptc = new LoggingApptCalendar();
lapptc.addAppts(new Appt[] {new Appt(), new Appt(), new Appt()});

If you also add a System.out.println(msg); method call to Logger’s log(String msg) method, to
output this method’s argument to standard output, you will discover that log() outputs a total of six
messages; each of the expected three messages (one per Appt object) is duplicated.

When LoggingApptCalendar’s addAppts() method is called, it first calls Logger.log() for each Appt
instance in the appts array that is passed to addAppts(). This method then calls ApptCalendar’s
addAppts() method via super.addAppts(appts);.

ApptCalendar’s addAppts() method calls LoggingApptCalendar’s overriding addAppt() method for
each Appt instance in its appts array argument. addAppt() executes Logger.log(appt.toString()); to log
its appt argument’s string representation, and you end up with three additional logged messages.

If you did not override the addAppts() method, this problem would go away. However, the subclass
would be tied to an implementation detail: ApptCalendar’s addAppts() method calls addAppt().

It is not a good idea to rely on an implementation detail when the detail is not documented. (I
previously stated that you do not have access to ApptCalendar’s source code.) When a detail is not
documented, it can change in a new version of the class.

Because a base class change can break a subclass, this problem is known as the fragile base class
problem. A related cause of fragility that also has to do with overriding methods occurs when new
methods are added to a superclass in a subsequent release.

For example, suppose a new version of the library introduces a new public void addAppt(Appt
appt, boolean unique) method into the ApptCalendar class. This method adds the appt instance to the

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

103

calendar when unique is false, and, when unique is true, it adds the appt instance only if it has not
previously been added.

Because this method has been added after the LoggingApptCalendar class was created,
LoggingApptCalendar does not override the new addAppt() method with a call to Logger.log(). As a
result, Appt instances passed to the new addAppt() method are not logged.

Here is another problem: You introduce a method into the subclass that is not also in the superclass.
A new version of the superclass presents a new method that matches the subclass method signature and
return type. Your subclass method now overrides the superclass method, and probably does not fulfill
the superclass method’s contract.

There is a way to make these problems disappear. Instead of extending the superclass, create a
private field in a new class, and have this field reference an instance of the “superclass.” This task
demonstrates composition because you are forming a “has-a” relationship between the new class and
the “superclass.”

Additionally, have each of the new class’s instance methods call the corresponding “superclass”
method via the “superclass” instance that was saved in the private field, and also return the called
method’s return value. This task is known as forwarding, and the new methods are known as forwarding
methods.

Listing 2-31 presents an improved LoggingApptCalendar class that uses composition and forwarding
to forever eliminate the fragile base class problem and the additional problem of the unanticipated
method overriding.

Listing 2-31. A composed logging appointment calendar class

public class LoggingApptCalendar
{
 private ApptCalendar apptCal;
 public LoggingApptCalendar(ApptCalendar apptCal)
 {
 this.apptCal = apptCal;
 }
 public void addAppt(Appt appt)
 {
 Logger.log(appt.toString());
 apptCal.addAppt(appt);
 }
 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 Logger.log(appts[i].toString());
 apptCal.addAppts(appts);
 }
}

Listing 2-31’s LoggingApptCalendar class does not depend upon implementation details of the
ApptCalendar class. You can add new methods to ApptCalendar and they will not break
LoggingApptCalendar.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

104

■ Note Listing 2-31’s LoggingApptCalendar class is an example of a wrapper class, a class whose instances
wrap other instances. Each LoggingApptCalendar instance wraps an ApptCalendar instance.
LoggingApptCalendar is also an example of the Decorator design pattern, which is presented on page 175 of
Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (Addison-Wesley, 1995; ISBN: 0201633612).

When should you extend a class and when should you use a wrapper class? Extend a class when an
“is-a” relationship exists between the superclass and the subclass, and either you have control over the
superclass or the superclass has been designed and documented for class extension. Otherwise, use a
wrapper class.

What does “design and document for class extension” mean? Design means provide protected
methods that hook into the class’s inner workings (to support writing efficient subclasses), and ensure
that constructors and the clone() method never call overridable methods. Document means clearly
state the impact of overriding methods.

■ Caution Wrapper classes should not be used in a callback framework, an object framework in which an object
passes its own reference to another object (via this) so that the latter object can call the former object’s methods
at a later time. This “calling back to the former object’s method” is known as a callback. Because the wrapped
object does not know of its wrapper class, it passes only its reference (via this), and resulting callbacks do not
involve the wrapper class’s methods.

Changing Form
Some real-world entities can change their forms. For example, water (on Earth as opposed to interstellar
space) is naturally a liquid, but it changes to a solid when frozen, and it changes to a gas when heated to
its boiling point. Insects such as butterflies that undergo metamorphosis are another example.

The ability to change form is known as polymorphism, and is useful to model in a programming
language. For example, code that draws arbitrary shapes can be expressed more concisely by
introducing a single Shape class and its draw() method, and by invoking that method for each Circle
instance, Rectangle instance, and other Shape instance stored in an array. When Shape’s draw() method
is called for an array instance, it is the Circle’s, Rectangle’s or other Shape instance’s draw() method that
gets called. We say that there are many forms of Shape’s draw() method, or that this method is
polymorphic.

Java supports four kinds of polymorphism:

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

105

• Coercion: An operation serves multiple types through implicit type conversion. For
example, division lets you divide an integer by another integer, or divide a
floating-point value by another floating-point value. If one operand is an integer
and the other operand is a floating-point value, the compiler coerces (implicitly
converts) the integer to a floating-point value, to prevent a type error. (There is no
division operation that supports an integer operand and a floating-point
operand.) Passing a subclass object reference to a method’s superclass parameter
is another example of coercion polymorphism. The compiler coerces the subclass
type to the superclass type, to restrict operations to those of the superclass.

• Overloading: The same operator symbol or method name can be used in different
contexts. For example, + can be used to perform integer addition, floating-point
addition, or string concatenation, depending on the types of its operands. Also,
multiple methods having the same name can appear in a class (through
declaration and/or inheritance).

• Parametric: Within a class declaration, a field name can associate with different
types and a method name can associate with different parameter and return
types. The field and method can then take on different types in each class
instance. For example, a field might be of type java.lang.Integer and a method
might return an Integer reference in one class instance, and the same field might
be of type String and the same method might return a String reference in another
class instance. Java supports parametric polymorphism via generics, which I will
discuss in Chapter 3.

• Subtype: A type can serve as another type’s subtype. When a subtype instance
appears in a supertype context, executing a supertype operation on the subtype
instance results in the subtype’s version of that operation executing. For example,
suppose that Circle is a subclass of Point, and that both classes contain a draw()
method. Assigning a Circle instance to a variable of type Point, and then calling
the draw() method via this variable, results in Circle’s draw() method being
called. Subtype polymorphism partners with implementation inheritance.

Many developers do not regard coercion and overloading as valid kinds of polymorphism. They see
coercion and overloading as nothing more than type conversions and syntactic sugar (syntax that
simplifies a language, making it “sweeter” to use). In contrast, parametric and subtype are regarded as
valid kinds of polymorphism.

This section introduces you to subtype polymorphism through upcasting and late binding. We then
move on to abstract classes and abstract methods, downcasting and runtime type identification, and
covariant return types.

Upcasting and Late Binding
Listing 2-27’s Point class represents a point as an x-y pair. Because a circle (in this example) is an x-y pair
denoting its center, and has a radius denoting its extent, you can extend Point with a Circle class that
introduces a radius field. Check out Listing 2-32.

Listing 2-32. A Circle class extending the Point class

class Circle extends Point
{
 private int radius;

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

106

 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }
 int getRadius()
 {
 return radius;
 }
}

Listing 2-32’s Circle class describes a Circle as a Point with a radius, which implies that you can
treat a Circle instance as if it was a Point instance. Accomplish this task by assigning the Circle instance
to a Point variable, as demonstrated here:

Circle c = new Circle(10, 20, 30);
Point p = c;

The cast operator is not needed to convert from Circle to Point because access to a Circle instance
via Point’s interface is legal. After all, a Circle is at least a Point. This assignment is known as upcasting
because you are implicitly casting up the type hierarchy (from the Circle subclass to the Point
superclass). It is also an example of covariance in that a type with a wider range of values (Circle) is
being converted to a type with a narrower range of values (Point).

After upcasting Circle to Point, you cannot call Circle’s getRadius() method because this method
is not part of Point’s interface. Losing access to subtype features after narrowing it to a superclass seems
useless, but is necessary for achieving subtype polymorphism.

In addition to upcasting the subclass instance to a variable of the superclass type, subtype
polymorphism involves declaring a method in the superclass and overriding this method in the subclass.
For example, suppose Point and Circle are to be part of a graphics application, and you need to
introduce a draw() method into each class to draw a point and a circle, respectively. You end with the
class structure shown in Listing 2-33.

Listing 2-33. Declaring a graphics application’s Point and Circle classes

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX()
 {
 return x;
 }
 int getY()
 {
 return y;
 }
 @Override
 public String toString()

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

107

 {
 return "("+x+", "+y+")";
 }
 void draw()
 {
 System.out.println("Point drawn at "+toString ());
 }
}
class Circle extends Point
{
 private int radius;
 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }
 int getRadius()
 {
 return radius;
 }
 @Override
 public String toString()
 {
 return ""+radius;
 }
 @Override
 void draw()
 {
 System.out.println("Circle drawn at "+super.toString()+
 " with radius "+toString());
 }
}

Listing 2-33’s draw() methods will ultimately draw graphics shapes, but simulating their behaviors
via System.out.println() method calls is sufficient during the early testing phase of the graphics
application.

Now that you have temporarily finished with Point and Circle, you want to test their draw()
methods in a simulated version of the graphics application. To achieve this objective, you write Listing
2-34’s Graphics class.

Listing 2-34. A Graphics class for testing Point’s and Circle’s draw() methods

class Graphics
{
 public static void main(String[] args)
 {
 Point[] points = new Point[] { new Point(10, 20),
 new Circle(10, 20, 30) };
 for (int i = 0; i < points.length; i++)
 points[i].draw();
 }
}

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

108

Listing 2-34’s main() method first declares an array of Points. Upcasting is demonstrated by first
having the array’s initializer instantiate the Circle class, and then by assigning this instance’s reference
to the second element in the points array.

Moving on, main() uses a for loop to call each Point element’s draw() method. Because the first
iteration calls Point’s draw() method, whereas the second iteration calls Circle’s draw() method, you
observe the following output:

Point drawn at (10, 20)
Circle drawn at (10, 20) with radius 30

How does Java “know” that it must call Circle’s draw() method on the second loop iteration?
Should it not call Point’s draw() method because Circle is being treated as a Point thanks to the upcast?

At compile time, the compiler does not know which method to call. All it can do is verify that a
method exists in the superclass, and verify that the method call’s arguments list and return type match
the superclass’s method declaration.

In lieu of knowing which method to call, the compiler inserts an instruction into the compiled code
that, at runtime, fetches and uses whatever reference is in points[1] to call the correct draw() method.
This task is known as late binding.

Late binding is used for calls to non-final instance methods. For all other method calls, the
compiler knows which method to call, and inserts an instruction into the compiled code that calls the
method associated with the variable’s type (not its value). This task is known as early binding.

You can also upcast from one array to another provided that the array being upcast is a subtype of
the other array. Consider Listing 2-35.

Listing 2-35. Demonstrating array upcasting

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX() { return x; }
 int getY() { return y; }
}
class ColoredPoint extends Point
{
 private int color;
 ColoredPoint(int x, int y, int color)
 {
 super(x, y);
 this.color = color;
 }
 int getColor() { return color; }
}
class UpcastArrayDemo
{
 public static void main(String[] args)
 {
 ColoredPoint[] cptArray = new ColoredPoint[1];

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

109

 cptArray[0] = new ColoredPoint(10, 20, 5);
 Point[] ptArray = cptArray;
 System.out.println(ptArray[0].getX()); // Output: 10
 System.out.println(ptArray[0].getY()); // Output: 20
// System.out.println(ptArray[0].getColor()); // Illegal
 }
}

Listing 2-35’s main() method first creates a ColoredPoint array consisting of one element. It then
instantiates this class and assigns the object’s reference to this element. Because ColoredPoint[] is a
subtype of Point[], main() is able to upcast cptArray’s ColoredPoint[] type to Point[] and assign its
reference to ptArray. main() then invokes the ColoredPoint instance’s getX() and getY() methods via
ptArray[0]. It cannot invoke getColor() because ptArray has narrower scope than cptArray. In other
words, getColor() is not part of Point’s interface.

Abstract Classes and Abstract Methods
Suppose new requirements dictate that your graphics application must include a Rectangle class. Also,
this class must include a draw() method, and this method must be tested in a manner similar to that
shown in Listing 2-34’s Graphics class.

In contrast to Circle, which is a Point with a radius, it does not make sense to think of a Rectangle
as a being a Point with a width and height. Rather, a Rectangle instance would probably be composed of
a Point indicating its origin and a Point indicating its width and height extents.

Because circles, points, and rectangles are examples of shapes, it makes more sense to declare a
Shape class with its own draw() method than to specify class Rectangle extends Point. Listing 2-36
presents Shape’s declaration.

Listing 2-36. Declaring a Shape class

class Shape
{
 void draw()
 {
 }
}

Listing 2-36’s Shape class declares an empty draw() method that only exists to be overridden and to
demonstrate subtype polymorphism.

You can now refactor Listing 2-33’s Point class to extend Listing 2-36’s Shape class, leave Circle as is,
and introduce a Rectangle class that extends Shape. You can then refactor Listing 2-34’s Graphics class’s
main() method to take Shape into account. Check out the following main() method:

public static void main(String[] args)
{
 Shape[] shapes = new Shape[] { new Point(10, 20), new Circle(10, 20, 30),
 new Rectangle(20, 30, 15, 25) };
 for (int i = 0; i < shapes.length; i++)
 shapes[i].draw();
}

Because Point and Rectangle directly extend Shape, and because Circle indirectly extends Shape by
extending Point, main() responds to shapes[i].draw(); by calling the correct subclass’s draw() method.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

110

Although Shape makes the code more flexible, there is a problem. What is to stop someone from
instantiating Shape and adding this meaningless instance to the shapes array, as follows?

Shape[] shapes = new Shape[] { new Point(10, 20), new Circle(10, 20, 30),
 new Rectangle(20, 30, 15, 25), new Shape() };

What does it mean to instantiate Shape? Because this class describes an abstract concept, what does
it mean to draw a generic shape? Fortunately, Java provides a solution to this problem, which is
demonstrated in Listing 2-37.

Listing 2-37. Abstracting the Shape class

abstract class Shape
{
 abstract void draw(); // semicolon is required
}

Listing 2-37 uses Java’s abstract reserved word to declare a class that cannot be instantiated. The
compiler reports an error should you try to instantiate this class.

■ Tip Get into the habit of declaring classes that describe generic categories (e.g., shape, animal, vehicle, and
account) abstract. This way, you will not inadvertently instantiate them.

The abstract reserved word is also used to declare a method without a body—the compiler reports
an error when you supply a body or omit the semicolon. The draw() method does not need a body
because it cannot draw an abstract shape.

■ Caution The compiler reports an error when you attempt to declare a class that is both abstract and final. For
example, abstract final class Shape is an error because an abstract class cannot be instantiated and a final
class cannot be extended. The compiler also reports an error when you declare a method to be abstract but do not
declare its class to be abstract. For example, removing abstract from the Shape class’s header in Listing 2-37
results in an error. This removal is an error because a non-abstract (concrete) class cannot be instantiated when
it contains an abstract method. Finally, when you extend an abstract class, the extending class must override all
the abstract class’s abstract methods, or else the extending class must itself be declared to be abstract;
otherwise, the compiler will report an error.

An abstract class can contain non-abstract methods in addition to or instead of abstract methods.
For example, Listing 2-22’s Vehicle class could have been declared abstract. The constructor would still
be present, to initialize private fields, even though you could not instantiate the resulting class.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

111

Downcasting and Runtime Type Identification
Moving up the type hierarchy via upcasting causes loss of access to subtype features. For example,
assigning a Circle instance to Point variable p means that you cannot use p to call Circle’s getRadius()
method.

However, it is possible to once again access the Circle instance’s getRadius() method by
performing an explicit cast operation; for example, Circle c = (Circle) p;. This assignment is known
as downcasting because you are explicitly moving down the type hierarchy (from the Point superclass to
the Circle subclass). It is also an example of contravariance in that a type with a narrower range of
values (Point) is being converted to a type with a wider range of values (Circle).

Although an upcast is always safe (the superclass’s interface is a subset of the subclass’s interface),
the same cannot be said of a downcast. Listing 2-38 shows you what kind of trouble you can get into
when downcasting is used incorrectly.

Listing 2-38. The trouble with downcasting

class A
{
}
class B extends A
{
 void m() {}
}
class DowncastDemo
{
 public static void main(String[] args)
 {
 A a = new A();
 B b = (B) a;
 b.m();
 }
}

Listing 2-38 presents a class hierarchy consisting of a superclass named A and a subclass named B.
Although A does not declare any members, B declares a single m() method.

A third class named DowncastDemo provides a main() method that first instantiates A, and then tries to
downcast this instance to B and assign the result to variable b. The compiler will not complain because
downcasting from a superclass to a subclass in the same type hierarchy is legal.

However, if the assignment is allowed, the application will undoubtedly crash when it tries to
execute b.m();. The crash happens because the JVM will attempt to call a method that does not exist—
class A does not have an m() method.

Fortunately, this scenario will never happen because the JVM verifies that the cast is legal. Because
it detects that A does not have an m() method, it does not permit the cast by throwing an instance of the
ClassCastException class.

The JVM’s cast verification illustrates runtime type identification (or RTTI, for short). Cast
verification performs RTTI by examining the type of the cast operator’s operand to see whether the cast
should be allowed. Clearly, the cast should not be allowed.

A second form of RTTI involves the instanceof operator. This operator checks the left operand to
see whether it is an instance of the right operand, and returns true if this is the case. The following
example introduces instanceof to Listing 2-38 to prevent the ClassCastException:

if (a instanceof B)

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

112

{
 B b = (B) a;
 b.m();
}

The instanceof operator detects that variable a’s instance was not created from B and returns false
to indicate this fact. As a result, the code that performs the illegal cast will not execute. (Overuse of
instanceof probably indicates poor software design.)

Because a subtype is a kind of supertype, instanceof will return true when its left operand is a
subtype instance or a supertype instance of its right operand supertype. The following example
demonstrates:

A a = new A();
B b = new B();
System.out.println(b instanceof A); // Output: true
System.out.println(a instanceof A); // Output: true

This example assumes the class structure shown in Listing 2-38 and instantiates superclass A and
subclass B. The first System.out.println() method call outputs true because b’s reference identifies an
instance of a subclass of A; the second System.out.println() method call outputs true because a’s
reference identifies an instance of superclass A.

You can also downcast from one array to another provided that the array being downcast is a
supertype of the other array, and whose elements types are those of the subtype. Consider Listing 2-39.

Listing 2-39. Demonstrating array downcasting

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX() { return x; }
 int getY() { return y; }
}
class ColoredPoint extends Point
{
 private int color;
 ColoredPoint(int x, int y, int color)
 {
 super(x, y);
 this.color = color;
 }
 int getColor() { return color; }
}
class DowncastArrayDemo
{
 public static void main(String[] args)
 {
 ColoredPoint[] cptArray = new ColoredPoint[1];
 cptArray[0] = new ColoredPoint(10, 20, 5);

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

113

 Point[] ptArray = cptArray;
 System.out.println(ptArray[0].getX()); // Output: 10
 System.out.println(ptArray[0].getY()); // Output: 20
// System.out.println(ptArray[0].getColor()); // Illegal
 if (ptArray instanceof ColoredPoint[])
 {
 ColoredPoint cp = (ColoredPoint) ptArray[0];
 System.out.println(cp.getColor());
 }
 }
}

Listing 2-39 is similar to Listing 2-35 except that it also demonstrates downcasting. Notice its use of
instanceof to verify that ptArray’s referenced object is of type ColoredPoint[]. If this operator returns
true, it is safe to downcast ptArray[0] from Point to ColoredPoint and assign the reference to
ColoredPoint.

So far, you have encountered two forms of RTTI. Java also supports a third form that is known as
reflection. I will introduce you to this form of RTTI when I cover reflection in Chapter 4.

Covariant Return Types
A covariant return type is a method return type that, in the superclass’s method declaration, is the
supertype of the return type in the subclass’s overriding method declaration. Listing 2-40 demonstrates
this feature.

Listing 2-40. A demonstration of covariant return types

class SuperReturnType
{
 @Override
 public String toString()
 {
 return "superclass return type";
 }
}
class SubReturnType extends SuperReturnType
{
 @Override
 public String toString()
 {
 return "subclass return type";
 }
}
class Superclass
{
 SuperReturnType createReturnType()
 {
 return new SuperReturnType();
 }
}
class Subclass extends Superclass
{

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

114

 @Override
 SubReturnType createReturnType()
 {
 return new SubReturnType();
 }
}
class CovarDemo
{
 public static void main(String[] args)
 {
 SuperReturnType suprt = new Superclass().createReturnType();
 System.out.println(suprt); // Output: superclass return type
 SubReturnType subrt = new Subclass().createReturnType();
 System.out.println(subrt); // Output: subclass return type
 }
}

Listing 2-40 declares SuperReturnType and Superclass superclasses, and SubReturnType and
Subclass subclasses; each of Superclass and Subclass declares a createReturnType() method.
Superclass’s method has its return type set to SuperReturnType, whereas Subclass’s overriding method
has its return type set to SubReturnType, a subclass of SuperReturnType.

Covariant return types minimize upcasting and downcasting. For example, Subclass’s
createReturnType() method does not need to upcast its SubReturnType instance to its SubReturnType
return type. Furthermore, this instance does not need to be downcast to SubReturnType when assigning
to variable subrt.

In the absence of covariant return types, you would end up with Listing 2-41.

Listing 2-41. Upcasting and downcasting in the absence of covariant return types

class SuperReturnType
{
 @Override
 public String toString()
 {
 return "superclass return type";
 }
}
class SubReturnType extends SuperReturnType
{
 @Override
 public String toString()
 {
 return "subclass return type";
 }
}
class Superclass
{
 SuperReturnType createReturnType()
 {
 return new SuperReturnType();
 }
}

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

115

class Subclass extends Superclass
{
 @Override
 SuperReturnType createReturnType()
 {
 return new SubReturnType();
 }
}
class CovarDemo
{
 public static void main(String[] args)
 {
 SuperReturnType suprt = new Superclass().createReturnType();
 System.out.println(suprt); // Output: superclass return type
 SubReturnType subrt = (SubReturnType) new Subclass().createReturnType();
 System.out.println(subrt); // Output: subclass return type
 }
}

In Listing 2-41, the first bolded code reveals an upcast from SubReturnType to SuperReturnType, and
the second bolded code uses the required (SubReturnType) cast operator to downcast from
SuperReturnType to SubReturnType, prior to the assignment to subrt.

Formalizing Class Interfaces
In my introduction to information hiding, I stated that every class X exposes an interface (a protocol
consisting of constructors, methods, and [possibly] fields that are made available to objects created from
other classes for use in creating and communicating with X’s objects).

Java formalizes the interface concept by providing reserved word interface, which is used to
introduce a type without implementation. Java also provides language features to declare, implement,
and extend interfaces. After looking at interface declaration, implementation, and extension, this section
explains the rationale for using interfaces.

Declaring Interfaces
An interface declaration consists of a header followed by a body. At minimum, the header consists of
reserved word interface followed by a name that identifies the interface. The body starts with an open
brace character and ends with a close brace. Sandwiched between these delimiters are constant and
method header declarations. Consider Listing 2-42.

Listing 2-42. Declaring a Drawable interface

interface Drawable
{
 int RED = 1; // For simplicity, integer constants are used. These
 int GREEN = 2; // constants are not that descriptive, as you will see.
 int BLUE = 3;
 int BLACK = 4;
 void draw(int color);
}

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

116

Listing 2-42 declares an interface named Drawable. By convention, an interface’s name begins with
an uppercase letter. Also, the first letter of each subsequent word in a multiword interface name is
capitalized.

■ Note Many interface names end with the able suffix. For example, Java’s standard class library includes
interfaces named Adjustable, Callable, Comparable, Cloneable, Iterable, Runnable, and Serializable. It’s
not mandatory to use this suffix; the standard class library also provides interfaces named CharSequence,
Collection, Composite, Executor, Future, Iterator, List, Map, and Set.

Drawable declares four fields that identify color constants. Drawable also declares a draw() method
that must be called with one of these constants to specify the color used to draw something.

■ Note You can precede interface with public, to make your interface accessible to code outside of its
package. (I will discuss packages in Chapter 3.) Otherwise, the interface is only accessible to other types in its
package. You can also precede interface with abstract, to emphasize that an interface is abstract. Because an
interface is already abstract, it is redundant to specify abstract in the interface’s declaration. An interface’s fields
are implicitly declared public, static, and final. It is therefore redundant to declare them with these reserved
words. Because these fields are constants, they must be explicitly initialized; otherwise, the compiler reports an
error. Finally, an interface’s methods are implicitly declared public and abstract. Therefore, it is redundant to
declare them with these reserved words. Because these methods must be instance methods, do not declare them
static or the compiler will report errors.

Drawable identifies a type that specifies what to do (draw something) but not how to do it. It leaves
implementation details to classes that implement this interface. Instances of such classes are known as
drawables because they know how to draw themselves.

■ Note An interface that declares no members is known as a marker interface or a tagging interface. It associates
metadata with a class. For example, the Cloneable marker/tagging interface states that instances of its
implementing class can be shallowly cloned. RTTI is used to detect that an object’s class implements a
marker/tagging interface. For example, when Object’s clone() method detects, via RTTI, that the calling
instance’s class implements Cloneable, it shallowly clones the object.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

117

Implementing Interfaces
By itself, an interface is useless. To be of any benefit to an application, the interface needs to be
implemented by a class. Java provides the implements reserved word for this task. Listing 2-43
demonstrates using implements to implement the aforementioned Drawable interface.

Listing 2-43. Implementing the Drawable interface

class Point implements Drawable
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX()
 {
 return x;
 }
 int getY()
 {
 return y;
 }
 @Override
 public String toString()
 {
 return "("+x+", "+y+")";
 }
 @Override
 public void draw(int color)
 {
 System.out.println("Point drawn at "+toString()+" in color "+color);
 }
}
class Circle extends Point implements Drawable
{
 private int radius;
 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }
 int getRadius()
 {
 return radius;
 }
 @Override
 public String toString()
 {
 return ""+radius;
 }

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

118

 @Override
 public void draw(int color)
 {
 System.out.println("Circle drawn at "+super.toString()+
 " with radius "+toString()+" in color "+color);
 }
}

Listing 2-43 retrofits Listing 2-33’s class hierarchy to take advantage of Listing 2-42’s Drawable
interface. You will notice that each of classes Point and Circle implements this interface by attaching
the implements Drawable clause to its class header.

To implement an interface, the class must specify, for each interface method header, a method
whose header has the same signature and return type as that in the interface’s method header, and a
code body to go with the method header.

■ Caution When implementing a method, do not forget that the interface’s methods are implicitly declared
public. If you forget to include public in the implemented method’s declaration, the compiler will report an error
because you are attempting to assign weaker access to the implemented method.

When a class implements an interface, the class inherits the interface’s constants and method
headers, and overrides the method headers by providing implementations (hence the @Override
annotation). This is known as interface inheritance.

It turns out that Circle’s header does not need the implements Drawable clause. If this clause is not
present, Circle inherits Point’s draw() method, and is still considered to be a Drawable, whether or not it
overrides this method.

An interface specifies a type whose data values are the objects whose classes implement the
interface, and whose behaviors are those specified by the interface. This fact implies that you can assign
an object’s reference to a variable of the interface type, provided that the object’s class implements the
interface. The following example provides a demonstration:

public static void main(String[] args)
{
 Drawable[] drawables = new Drawable[] { new Point(10, 20),
 new Circle(10, 20, 30) };
 for (int i = 0; i < drawables.length; i++)
 drawables[i].draw(Drawable.RED);
}

Because Point and Circle instances are drawables by virtue of these classes implementing the
Drawable interface, it is legal to assign Point and Circle instance references to variables (including array
elements) of type Drawable.

When you run this method, it generates the following output:

Point drawn at (10, 20) in color 1
Circle drawn at (10, 20) with radius 30 in color 1

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

119

Listing 2-42’s Drawable interface is useful for drawing a shape’s outline. Suppose you also need to fill
a shape’s interior. You might attempt to satisfy this requirement by declaring Listing 2-44’s Fillable
interface.

Listing 2-44. Declaring a Fillable interface

interface Fillable
{
 int RED = 1;
 int GREEN = 2;
 int BLUE = 3;
 int BLACK = 4;
 void fill(int color);
}

Given Listings 2-42 and 2-44, you can declare that the Point and Circle classes implement both
interfaces by specifying class Point implements Drawable, Fillable and class Circle implements
Drawable, Fillable. You can then modify the main() method to also treat the drawables as fillables so
that you can fill these shapes, as follows:

public static void main(String[] args)
{
 Drawable[] drawables = new Drawable[] { new Point(10, 20),
 new Circle(10, 20, 30) };
 for (int i = 0; i < drawables.length; i++)
 drawables[i].draw(Drawable.RED);
 Fillable[] fillables = new Fillable[drawables.length];
 for (int i = 0; i < drawables.length; i++)
 {
 fillables[i] = (Fillable) drawables[i];
 fillables[i].fill(Fillable.GREEN);
 }
}

After invoking each drawable’s draw() method, main() creates a Fillable array of the same length as
the Drawable array. It then proceeds to copy each Drawable array element to a Fillable array element,
and then invoke the fillable’s fill() method. The (Fillable) cast is necessary because a drawable is not
a fillable. This cast operation will succeed because the Point and Circle instances being copied
implement Fillable as well as Drawable.

■ Tip You can list as many interfaces as you need to implement by specifying a comma-separated list of interface
names after implements.

Implementing multiple interfaces can lead to name collisions, and the compiler will report errors.
For example, suppose that you attempt to compile Listing 2-45’s interface and class declarations.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

120

Listing 2-45. Colliding interfaces

interface A
{
 int X = 1;
 void foo();
}
interface B
{
 int X = 1;
 int foo();
}
class Collision implements A, B
{
 @Override
 public void foo();
 @Override
 public int foo() { return X; }
}

Each of Listing 2-45’s A and B interfaces declares a constant named X. Despite each constant having
the same type and value, the compiler will report an error when it encounters X in Collision’s second
foo() method because it does not know which X is being inherited.

Speaking of foo(), the compiler reports an error when it encounters Collision’s second foo()
declaration because foo() has already been declared. You cannot overload a method by changing only
its return type.

The compiler will probably report additional errors. For example, the Java 7 compiler has this to say
when told to compile Listing 2-45:

Collision.java:16: error: foo() is already defined in Collision
 public int foo() { return X; }
 ^
Collision.java:11: error: Collision is not abstract and does not override abstract method
foo() in B
class Collision implements A, B
^
Collision.java:14: error: foo() in Collision cannot implement foo() in B
 public void foo();
 ^
 return type void is not compatible with int
Collision.java:16: error: reference to X is ambiguous, both variable X in A and variable X
in B match
 public int foo() { return X; }
 ^
4 errors

Extending Interfaces
Just as a subclass can extend a superclass via reserved word extends, you can use this reserved word to
have a subinterface extend a superinterface. This, too, is known as interface inheritance.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

121

For example, the duplicate color constants in Drawable and Fillable lead to name collisions when
you specify their names by themselves in an implementing class. To avoid these name collisions, prefix a
name with its interface name and the member access operator, or place these constants in their own
interface, and have Drawable and Fillable extend this interface, as demonstrated in Listing 2-46.

Listing 2-46. Extending the Colors interface

interface Colors
{
 int RED = 1;
 int GREEN = 2;
 int BLUE = 3;
 int BLACK = 4;
}
interface Drawable extends Colors
{
 void draw(int color);
}
interface Fillable extends Colors
{
 void fill(int color);
}

The fact that Drawable and Fillable each inherit constants from Colors is not a problem for the
compiler. There is only a single copy of these constants (in Colors) and no possibility of a name collision,
and so the compiler is satisfied.

If a class can implement multiple interfaces by declaring a comma-separated list of interface names
after implements, it seems that an interface should be able to extend multiple interfaces in a similar way.
This feature is demonstrated in Listing 2-47.

Listing 2-47. Extending a pair of interfaces

interface A
{
 int X = 1;
}
interface B
{
 double X = 2.0;
}
interface C extends A, B
{
}

Listing 2-47 will compile even though C inherits two same-named constants X with different return
types and initializers. However, if you implement C and then try to access X, as in Listing 2-48, you will
run into a name collision.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

122

Listing 2-48. Discovering a name collision

class Collision implements C
{
 public void output()
 {
 System.out.println(X); // Which X is accessed?
 }
}

Suppose you introduce a void foo(); method header declaration into interface A, and an int
foo(); method header declaration into interface B. This time, the compiler will report an error when you
attempt to compile the modified Listing 2-47.

Why Use Interfaces?
Now that the mechanics of declaring, implementing, and extending interfaces are out of the way, we can
focus on the rationale for using them. Unfortunately, newcomers to Java’s interfaces feature are often
told that this feature was created as a workaround to Java’s lack of support for multiple implementation
inheritance. While interfaces are useful in this capacity, this is not their reason for existence. Instead,
Java’s interfaces feature was created to give developers the utmost flexibility in designing their
applications, by decoupling interface from implementation. You should always code to the interface.

Those who are adherents to agile software development (a group of software development
methodologies based on iterative development that emphasizes keeping code simple, testing frequently,
and delivering functional pieces of the application as soon as they are deliverable) know the importance
of flexible coding. They cannot afford to tie their code to a specific implementation because a change in
requirements for the next iteration could result in a new implementation, and they might find
themselves rewriting significant amounts of code, which wastes time and slows development.

Interfaces help you achieve flexibility by decoupling interface from implementation. For example,
the main() method following Listing 2-36 creates an array of objects from classes that subclass the Shape
class, and then iterates over these objects, calling each object’s draw() method. The only objects that can
be drawn are those that subclass Shape.

Suppose you also have a hierarchy of classes that model resistors, transistors, and other electronic
components. Each component has its own symbol that allows the component to be shown in a
schematic diagram of an electronic circuit. Perhaps you want to add a drawing capability to each class
that draws that component’s symbol.

You might consider specifying Shape as the superclass of the electronic component class hierarchy.
However, electronic components are not shapes (although they have shapes) so it makes no sense to
place these classes in a class hierarchy rooted in Shape.

However, you can make each component class implement the Drawable interface, which lets you
add expressions that instantiate these classes to the drawables array in the main() method appearing
prior to Listing 2-44 (so you can draw their symbols). This is legal because these instances are drawables.

Wherever possible, you should strive to specify interfaces instead of classes in your code, to keep
your code adaptable to change. This is especially true when working with Java’s Collections Framework,
which I will discuss at length in Chapter 5.

For now, consider a simple example that consists of the Collections Framework’s java.util.List
interface, and its java.util.ArrayList and java.util.LinkedList implementation classes. The following
example presents inflexible code based on the ArrayList class:

ArrayList<String> arrayList = new ArrayList<String>();

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

123

void dump(ArrayList<String> arrayList)
{
 // suitable code to dump out the arrayList
}

This example uses the generics-based parameterized type language feature (which I will discuss in
Chapter 3) to identify the kind of objects stored in an ArrayList instance. In this example, String objects
are stored.

The example is inflexible because it hardwires the ArrayList class into multiple locations. This
hardwiring focuses the developer into thinking specifically about array lists instead of generically about
lists.

Lack of focus is problematic when a requirements change, or perhaps a performance issue brought
about by profiling (analyzing a running application to check its performance), suggests that the
developer should have used LinkedList.

The example only requires a minimal number of changes to satisfy the new requirement. In
contrast, a larger code base might need many more changes. Although you only need to change
ArrayList to LinkedList, to satisfy the compiler, consider changing arrayList to linkedList, to keep
semantics (meaning) clear—you might have to change multiple occurrences of names that refer to an
ArrayList instance throughout the source code.

The developer is bound to lose time while refactoring the code to adapt to LinkedList. Instead, the
developer could have saved time by writing this example to use the equivalent of constants. In other
words, the example could have been written to rely on interfaces, and to only specify ArrayList in one
place. The following example shows you what the resulting code would look like:

List<String> list = new ArrayList<String>();
void dump(List<String> list)
{
 // suitable code to dump out the list
}

This example is much more flexible than the previous example. If a requirements or profiling
change suggests that LinkedList should be used instead of ArrayList, simply replace Array with Linked
and you are done. You do not even have to change the parameter name.

INTERFACES VERSUS ABSTRACT CLASSES

Java provides interfaces and abstract classes for describing abstract types (types that cannot be
instantiated). Abstract types represent abstract concepts (drawable and shape, for example), and instances
of such types would be meaningless.

Interfaces promote flexibility through lack of implementation—Drawable and List illustrate this flexibility.
They are not tied to any single class hierarchy, but can be implemented by any class in any hierarchy.

Abstract classes support implementation, but can be genuinely abstract (Listing 2-37’s abstract Shape
class, for example). However, they are limited to appearing in the upper levels of class hierarchies.

Interfaces and abstract classes can be used together. For example, the Collections Framework’s
java.util package provides List, Map, and Set interfaces; and AbstractList, AbstractMap, and
AbstractSet abstract classes that provide skeletal implementations of these interfaces.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

124

The skeletal implementations make it easy for you to create your own interface implementations, to
address your unique requirements. If they do not meet your needs, you can optionally have your class
directly implement the appropriate interface.

Collecting Garbage
Objects are created via reserved word new, but how are they destroyed? Without some way to destroy
objects, they will eventually fill up the heap’s available space and the application will not be able to
continue. Java does not provide the developer with the ability to remove them from memory. Instead,
Java handles this task by providing a garbage collector, which is code that runs in the background and
occasionally checks for unreferenced objects. When the garbage collector discovers an unreferenced
object (or multiple objects that reference each other, and where there are no other references to each
other—only A references B and only B references A, for example), it removes the object from the heap,
making more heap space available.

An unreferenced object is an object that cannot be accessed from anywhere within an application.
For example, new Employee("John", "Doe"); is an unreferenced object because the Employee reference
returned by new is thrown away. In contrast, a referenced object is an object where the application stores
at least one reference. For example, Employee emp = new Employee("John", "Doe"); is a referenced
object because variable emp contains a reference to the Employee object.

A referenced object becomes unreferenced when the application removes its last stored reference.
For example, if emp is a local variable that contains the only reference to an Employee object, this object
becomes unreferenced when the method in which emp is declared returns. An application can also
remove a stored reference by assigning null to its reference variable. For example, emp = null; removes
the reference to the Employee object that was previously stored in emp.

Java’s garbage collector eliminates a form of memory leakage in C++ implementations that do not
rely on a garbage collector. In these C++ implementations, the developer must destroy dynamically
created objects before they go out of scope. If they vanish before destruction, they remain in the heap.
Eventually, the heap fills and the application halts.

Although this form of memory leakage is not a problem in Java, a related form of leakage is
problematic: continually creating objects and forgetting to remove even one reference to each object
causes the heap to fill up and the application to eventually come to a halt. This form of memory leakage
typically occurs in the context of collections (object-based data structures that store objects), and is a
major problem for applications that run for lengthy periods of time—a web server is one example. For
shorter-lived applications, you will normally not notice this form of memory leakage.

Consider Listing 2-49.

Listing 2-49. A memory-leaking stack

public class Stack
{
 private Object[] elements;
 private int top;
 public Stack(int size)
 {
 elements = new Object[size];
 top = -1; // indicate that stack is empty
 }
 public void push(Object o)
 {

n

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

125

 if (top+1 == elements.length)
 {
 System.out.println("stack is full");
 return;
 }
 elements[++top] = o;
 }
 public Object pop()
 {
 if (top == -1)
 {
 System.out.println("stack is empty");
 return null;
 }
 Object element = elements[top--];
// elements[top+1] = null;
 return element;
 }
 public static void main(String[] args)
 {
 Stack stack = new Stack(2);
 stack.push("A");
 stack.push("B");
 stack.push("C");
 System.out.println(stack.pop());
 System.out.println(stack.pop());
 System.out.println(stack.pop());
 }
}

Listing 2-49 describes a collection known as a stack, a data structure that stores elements in last-in,
first-out order. Stacks are useful for remembering things, such as the instruction to return to when a
method stops executing and must return to its caller.

Stack provides a push() method for pushing arbitrary objects onto the top of the stack, and a pop()
method for popping objects off the stack’s top in the reverse order to which they were pushed.

After creating a Stack object that can store a maximum of two objects, main() invokes push() three
times, to push three String objects onto the stack. Because the stack’s internal array can store two
objects only, push() outputs an error message when main() tries to push "C".

At this point, main() attempts to pop three Objects off of the stack, outputting each object to the
standard output device. The first two pop() method calls succeed, but the final method call fails and
outputs an error message because the stack is empty when it is called.

When you run this application, it generates the following output:

stack is full
B
A
stack is empty
null

There is a problem with the Stack class: it leaks memory. When you push an object onto the stack,
its reference is stored in the internal elements array. When you pop an object off the stack, the object’s
reference is obtained and top is decremented, but the reference remains in the array (until you invoke
push()).

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

126

Imagine a scenario where the Stack object’s reference is assigned to a class field, which means that
the Stack object hangs around for the life of the application. Furthermore, suppose that you have
pushed three 50-megabyte Image objects onto the stack, and then subsequently popped them off the
stack. After using these objects, you assign null to their reference variables, thinking that they will be
garbage collected the next time the garbage collector runs. However, this won’t happen because the
Stack object still maintains its references to these objects, and so 150 megabytes of heap space will not
be available to the application, and maybe the application will run out of memory.

The solution to this problem is for pop() to explicitly assign null to the elements entry prior to
returning the reference. Simply uncomment the elements[top+1] = null; line in Listing 2-49 to make
this happen.

You might think that you should always assign null to reference variables when their referenced
objects are no longer required. However, doing so often does not improve performance or free up
significant amounts of heap space, and can lead to thrown instances of the
java.lang.NullPointerException class when you’re not careful. (I discuss NullPointerException in the
context of Chapter 3’s coverage of Java’s exceptions-oriented language features). You typically nullify
reference variables in classes that manage their own memory, such as the aforementioned Stack class.

■ Note Garbage collection is a complex process and has resulted in various garbage collectors being developed
for the JVM. If you want to learn more about garbage collection, I recommend that you start by reading the
“Memory Management in the Java HotSpot Virtual Machine” whitepaper at
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf.
Next, you will want to learn about the Garbage-First collector, which is new in Java 7. Check out “The Garbage-
First Garbage Collector” whitepaper (http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-
135488.html) to learn about this garbage collector. For additional information on Java’s garbage collection
process, you can explore the other whitepapers that are accessible from Oracle’s “Java HotSpot Garbage
Collection” page at http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140228.html.

Chapter 4 pursues garbage collection further by introducing you to Java’s Reference API, which lets
your application receive notifications when objects are about to be finalized or have been finalized.

■ Note Throughout this book, I often refer to API in both broad and narrow contexts. On the one hand, I refer to
Reference as an API, but I also refer to the individual classes of Reference as APIs themselves.

http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html
http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140228.html

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

127

EXERCISES

The following exercises are designed to test your understanding of classes and objects:

1. Listing 2-2 presents an Image class with three constructors and a main() method
for testing this class. Expand Image by introducing private int fields named width
and height, and a private one-dimensional byte array field named image. Refactor
the Image() constructor to invoke the Image(String filename) constructor via
this(null). Refactor the Image(String filename, String imageType)
constructor such that, when the filename reference is not null, it creates a byte
array of arbitrary size, perhaps with the help of an expression such as (int)
(Math.random()*100000) (return a randomly generated integer between 0 and
99999 inclusive), and assigns this array’s reference to the image field. Similarly, it
assigns an arbitrary width to the width field and an arbitrary height to the height
field. If filename contains null, it assigns -1 to each of width and height.
Continuing, introduce getWidth(), getHeight(), and getImage() methods that
return the values of their respective fields, and introduce a getSize() method that
returns the length of the array assigned to the image field (or 0 if image contains
the null reference). Finally, refactor the main() method such that, for each
constructor, the following sequence of method calls occurs:
System.out.println("Image = "+image.getImage());
System.out.println("Size = "+image.getSize());
System.out.println("Width = "+image.getWidth());
System.out.println("Height = "+image.getHeight());.

2. Model part of an animal hierarchy by declaring Animal, Bird, Fish,
AmericanRobin, DomesticCanary, RainbowTrout, and SockeyeSalmon classes:

• Animal is public and abstract, declares private String-based kind and
appearance fields, declares a public constructor that initializes these fields to
passed-in arguments, declares public and abstract eat() and move() methods
that take no arguments and whose return type is void, and overrides the
toString() method to output the contents of kind and appearance.

• Bird is public and abstract, extends Animal, declares a public constructor that
passes its kind and appearance parameter values to its superclass constructor,
overrides its eat() method to output eats seeds and insects (via
System.out.println()), and overrides the move() method to output flies
through the air.

• Fish is public and abstract, extends Animal, declares a public constructor that
passes its kind and appearance parameter values to its superclass constructor,
overrides its eat() method to output eats krill, algae, and insects, and
overrides its move() method to output swims through the water.

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

128

• AmericanRobin is public, extends Bird, and declares a public noargument
constructor that passes "americanrobin" and "red breast" to its superclass
constructor.

• DomesticCanary is public, extends Bird, and declares a public noargument
constructor that passes "domesticcanary" and "yellow, orange, black,
brown, white, red" to its superclass constructor.

• RainbowTrout is public, extends Fish, and declares a public noargument
constructor that passes "rainbowtrout" and "bands of brilliant speckled
multicolored stripes running nearly the whole length of its body" to
its superclass constructor.

• SockeyeSalmon is public, extends Fish, and declares a public noargument
constructor that passes "sockeyesalmon" and "bright red with a green
head" to its superclass constructor.

For brevity, I have omitted from the Animal hierarchy abstract Robin, Canary,
Trout, and Salmon classes that generalize robins, canaries, trout, and salmon.
Perhaps you might want to include these classes in the hierarchy.

Although this exercise illustrates the accurate modeling of a natural scenario using
inheritance, it also reveals the potential for class explosion—too many classes
may be introduced to model a scenario, and it might be difficult to maintain all
these classes. Keep this in mind when modeling with inheritance.

3. Continuing from the previous exercise, declare an Animals class with a main()
method. This method first declares an animals array that is initialized to
AmericanRobin, RainbowTrout, DomesticCanary, and SockeyeSalmon objects.
The method then iterates over this array, first outputting animals[i] (which
causes toString() to be called), and then calling each object’s eat() and
move() methods (demonstrating subtype polymorphism).

4. Continuing from the previous exercise, declare a public Countable interface with
a String getID() method. Modify Animal to implement Countable and have this
method return kind’s value. Modify Animals to initialize the animals array to
AmericanRobin, RainbowTrout, DomesticCanary, SockeyeSalmon,
RainbowTrout, and AmericanRobin objects. Also, introduce code that computes a
census of each kind of animal. This code will use the Census class that is declared
in Listing 2-50.

Listing 2-50. The Census class stores census data on four kinds of animals

public class Census
{
 public final static int SIZE = 4;
 private String[] IDs;
 private int[] counts;
 public Census()

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

129

 {
 IDs = new String[SIZE];
 counts = new int[SIZE];
 }
 public String get(int index)
 {
 return IDs[index]+" "+counts[index];
 }
 public void update(String ID)
 {
 for (int i = 0; i < IDs.length; i++)
 {
 // If ID not already stored in the IDs array (which is indicated by
 // the first null entry that is found), store ID in this array, and
 // also assign 1 to the associated element in the counts array, to
 // initialize the census for that ID.
 if (IDs[i] == null)
 {
 IDs[i] = ID;
 counts[i] = 1;
 return;
 }

 // If a matching ID is found, increment the associated element in
 // the counts array to update the census for that ID.
 if (IDs[i].equals(ID))
 {
 counts[i]++;
 return;
 }
 }
 }

}

Summary
Structured programs create data structures that organize and store data items, and manipulate the data
stored in these data structures via functions and procedures. The fundamental units of a structured
program are its data structures and the functions or procedures that manipulate them. Although Java
lets you create applications in a similar fashion, this language is really about declaring classes and
creating objects from these classes.

A class is a template for manufacturing objects (named aggregates of code and data), which are also
known as class instances, or instances for short. Classes generalize real-world entities, and objects are
specific manifestations of these entities at the program level.

Classes model real-world entities from a template perspective. Objects represent specific entities.
Entities have attributes. An entity’s collection of attributes is referred to as its state. Entities also have
behaviors.

A class and its objects model an entity by combining state with behaviors into a single unit—the
class abstracts state whereas its objects provide concrete state values. This bringing together of state and
behaviors is known as encapsulation. Unlike structured programming, where the developer focuses on

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 2 DISCOVERING CLASSES AND OBJECTS

130

modeling behaviors through structured code, and modeling state through data structures that store data
items for the structured code to manipulate, the developer working with classes and objects focuses on
templating entities by declaring classes that encapsulate state and behaviors expressed as fields and
methods, instantiating objects with specific field values from these classes to represent specific entities,
and interacting with objects by invoking their methods.

We tend to categorize stuff by saying things like “cars are vehicles” or “savings accounts are bank
accounts.” By making these statements, we really are saying that cars inherit vehicular state (such as
make and color) and behaviors (such as park and display mileage), and similarly are saying that savings
accounts inherit bank account state (such as balance) and behaviors (such as deposit and withdraw).
Car, vehicle, savings account, and bank account are examples of real-world entity categories, and
inheritance is a hierarchical relationship between similar entity categories in which one category
inherits state and behaviors from at least one other entity category. Inheriting from a single category is
called single inheritance, and inheriting from at least two categories is called multiple inheritance.

Java supports single inheritance and multiple inheritance to facilitate code reuse—why reinvent the
wheel? Java supports single inheritance in a class context, in which a class inherits fields and methods
from another class through class extension. Because classes are involved, Java refers to this kind of
inheritance as implementation inheritance.

Java supports multiple inheritance only in an interface context, in which a class inherits method
templates from one or more interfaces through interface implementation, or in which an interface
inherits method templates from one or more interfaces through interface extension. Because interfaces
are involved, Java refers to this kind of inheritance as interface inheritance.

Some real-world entities can change their forms. For example, water is naturally a liquid, but it
changes to a solid when frozen, and it changes to a gas when heated to its boiling point. Insects such as
butterflies that undergo metamorphosis are another example.

The ability to change form is known as polymorphism, and is useful to model in a programming
language. For example, code that draws arbitrary shapes can be expressed more concisely by
introducing a single Shape class and its draw() method, and by invoking that method for each Circle
instance, Rectangle instance, and other Shape instance stored in an array. When Shape’s draw() method
is called for an array instance, it is the Circle’s, Rectangle’s or other Shape instance’s draw() method that
gets called. We say that there are many forms of Shape’s draw() method, or that this method is
polymorphic.

Every class X exposes an interface (a protocol consisting of constructors, methods, and [possibly]
fields that are made available to objects created from other classes for use in creating and
communicating with X’s objects). Java formalizes the interface concept by providing reserved word
interface, which is used to introduce a type without implementation. Although many believe that this
language feature was created as a workaround to Java’s lack of support for multiple implementation
inheritance, this is not the real reason for its existence. Instead, Java’s interfaces feature was created to
give developers the utmost flexibility in designing their applications, by decoupling interface from
implementation.

Objects are created via reserved word new, but how are they destroyed? Without some way to destroy
objects, they will eventually fill up the heap’s available space and the application will not be able to
continue. Java does not provide the developer with the ability to remove them from memory. Instead,
Java handles this task by providing a garbage collector, which is code that runs in the background and
occasionally checks for unreferenced objects. When the garbage collector discovers an unreferenced
object (or multiple objects that reference each other, and where there are no other references to each
other—only A references B and only B references A, for example), it removes the object from the heap,
making more heap space available.

Now that you understand Java’s support for classes and objects, you’re ready to explore this
language’s support for more advanced features such as packages and generics. Chapter 3 introduces you
to Java’s support for these and other advanced language features.

C H A P T E R 3

131

Exploring Advanced Language
Features

Chapters 1 and 2 introduced you to Java’s fundamental language features along with its support for
classes and objects. Chapter 3 builds onto this foundation by introducing you to Java’s advanced
language features, specifically those features related to nested types, packages, static imports,
exceptions, assertions, annotations, generics, and enums.

Nested Types
Classes that are declared outside of any class are known as top-level classes. Java also supports nested
classes, which are classes declared as members of other classes or scopes. Nested classes help you
implement top-level class architecture.

There are four kinds of nested classes: static member classes, nonstatic member classes,
anonymous classes, and local classes. The latter three categories are known as inner classes.

This section introduces you to static member classes and inner classes. For each kind of nested
class, I provide you with a brief introduction, an abstract example, and a more practical example. The
section then briefly examines the topic of nesting interfaces within classes.

Static Member Classes
A static member class is a static member of an enclosing class. Although enclosed, it does not have an
enclosing instance of that class, and cannot access the enclosing class’s instance fields and invoke its
instance methods. However, it can access the enclosing class’s static fields and invoke its static
methods, even those members that are declared private. Listing 3-1 presents a static member class
declaration.

Listing 3-1. Declaring a static member class

class EnclosingClass
{
 private static int i;
 private static void m1()
 {
 System.out.println(i);
 }
 static void m2()

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

132

 {
 EnclosedClass.accessEnclosingClass();
 }
 static class EnclosedClass
 {
 static void accessEnclosingClass()
 {
 i = 1;
 m1();
 }
 void accessEnclosingClass2()
 {
 m2();
 }
 }
}

Listing 3-1 declares a top-level class named EnclosingClass with class field i, class methods m1()
and m2(), and static member class EnclosedClass. Also, EnclosedClass declares class method
accessEnclosingClass() and instance method accessEnclosingClass2().

Because accessEnclosingClass() is declared static, m2() must prefix this method’s name with
EnclosedClass and the member access operator to invoke this method.

Listing 3-2 presents the source code to an application that demonstrates how to invoke
EnclosedClass’s accessEnclosingClass() class method, and instantiate EnclosedClass and invoke its
accessEnclosingClass2() instance method.

Listing 3-2. Invoking a static member class’s class and instance methods

class SMCDemo
{
 public static void main(String[] args)
 {
 EnclosingClass.EnclosedClass.accessEnclosingClass(); // Output: 1
 EnclosingClass.EnclosedClass ec = new EnclosingClass.EnclosedClass();
 ec.accessEnclosingClass2(); // Output: 1
 }
}

Listing 3-2’s main() method reveals that you must prefix the name of an enclosed class with the
name of its enclosing class to invoke a class method; for example,
EnclosingClass.EnclosedClass.accessEnclosingClass();.

This listing also reveals that you must prefix the name of the enclosed class with the name of its
enclosing class when instantiating the enclosed class; for example, EnclosingClass.EnclosedClass ec =
new EnclosingClass.EnclosedClass();. You can then invoke the instance method in the normal manner;
for example, ec.accessEnclosingClass2();.

Static member classes have their uses. For example, Listing 3-3’s Double and Float static member
classes provide different implementations of their enclosing Rectangle class. The Float version occupies
less memory because of its 32-bit float fields, and the Double version provides greater accuracy because
of its 64-bit double fields.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

133

Listing 3-3. Using static member classes to declare multiple implementations of their enclosing class

abstract class Rectangle
{
 abstract double getX();
 abstract double getY();
 abstract double getWidth();
 abstract double getHeight();
 static class Double extends Rectangle
 {
 private double x, y, width, height;
 Double(double x, double y, double width, double height)
 {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }
 double getX() { return x; }
 double getY() { return y; }
 double getWidth() { return width; }
 double getHeight() { return height; }
 }
 static class Float extends Rectangle
 {
 private float x, y, width, height;
 Float(float x, float y, float width, float height)
 {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }
 double getX() { return x; }
 double getY() { return y; }
 double getWidth() { return width; }
 double getHeight() { return height; }
 }
 // Prevent subclassing. Use the type-specific Double and Float
 // implementation subclass classes to instantiate.
 private Rectangle() {}
 boolean contains(double x, double y)
 {
 return (x >= getX() && x < getX()+getWidth()) &&
 (y >= getY() && y < getY()+getHeight());
 }
}

Listing 3-3’s Rectangle class demonstrates nested subclasses. Each of the Double and Float static
member classes subclass the abstract Rectangle class, providing private floating-point or double

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

134

precision floating-point fields, and overriding Rectangle’s abstract methods to return these fields’ values
as doubles.

Rectangle is abstract because it makes no sense to instantiate this class. Because it also makes no
sense to directly extend Rectangle with new implementations (the Double and Float nested subclasses
should be sufficient), its default constructor is declared private. Instead, you must instantiate
Rectangle.Float (to save memory) or Rectangle.Double (when accuracy is required), as demonstrated by
Listing 3-4.

Listing 3-4. Instantiating nested subclasses

class SMCDemo
{
 public static void main(String[] args)
 {
 Rectangle r = new Rectangle.Double(10.0, 10.0, 20.0, 30.0);
 System.out.println("x = "+r.getX());
 System.out.println("y = "+r.getY());
 System.out.println("width = "+r.getWidth());
 System.out.println("height = "+r.getHeight());
 System.out.println("contains(15.0, 15.0) = "+r.contains(15.0, 15.0));
 System.out.println("contains(0.0, 0.0) = "+r.contains(0.0, 0.0));
 System.out.println();
 r = new Rectangle.Float(10.0f, 10.0f, 20.0f, 30.0f);
 System.out.println("x = "+r.getX());
 System.out.println("y = "+r.getY());
 System.out.println("width = "+r.getWidth());
 System.out.println("height = "+r.getHeight());
 System.out.println("contains(15.0, 15.0) = "+r.contains(15.0, 15.0));
 System.out.println("contains(0.0, 0.0) = "+r.contains(0.0, 0.0));
 }
}

Listing 3-4 first instantiates Rectangle’s Double subclass via new Rectangle.Double(10.0, 10.0,
20.0, 30.0) and then invokes its various methods. Continuing, Listing 3-4 instantiates Rectangle’s Float
subclass via new Rectangle.Float(10.0f, 10.0f, 20.0f, 30.0f) before invoking Rectangle methods on
this instance.

Compile both listings (javac SMCDemo.java or javac *.java) and run the application (java SMCDemo).
You will then observe the following output:

x = 10.0
y = 10.0
width = 20.0
height = 30.0
contains(15.0, 15.0) = true
contains(0.0, 0.0) = false

x = 10.0
y = 10.0
width = 20.0
height = 30.0
contains(15.0, 15.0) = true
contains(0.0, 0.0) = false

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

135

Java’s class library contains many static member classes. For example, the java.lang.Character
class encloses a static member class named Subset whose instances represent subsets of the Unicode
character set. java.util.AbstractMap.SimpleEntry, java.io.ObjectInputStream.GetField, and
java.security.KeyStore.PrivateKeyEntry are other examples.

■ Note When you compile an enclosing class that contains a static member class, the compiler creates a classfile
for the static member class whose name consists of its enclosing class’s name, a dollar-sign character, and the
static member class’s name. For example, compile Listing 3-1 and you will discover
EnclosingClass$EnclosedClass.class as well as EnclosingClass.class. This format also applies to nonstatic
member classes.

Nonstatic Member Classes
A nonstatic member class is a non-static member of an enclosing class. Each instance of the nonstatic
member class implicitly associates with an instance of the enclosing class. The nonstatic member class’s
instance methods can call instance methods in the enclosing class and access the enclosing class
instance’s nonstatic fields. Listing 3-5 presents a nonstatic member class declaration.

Listing 3-5. Declaring a nonstatic member class

class EnclosingClass
{
 private int i;
 private void m()
 {
 System.out.println(i);
 }
 class EnclosedClass
 {
 void accessEnclosingClass()
 {
 i = 1;
 m();
 }
 }
}

Listing 3-5 declares a top-level class named EnclosingClass with instance field i, instance method
m(), and nonstatic member class EnclosedClass. Furthermore, EnclosedClass declares instance method
accessEnclosingClass().

Because accessEnclosingClass() is nonstatic, EnclosedClass must be instantiated before this
method can be called. This instantiation must take place via an instance of EnclosingClass. Listing 3-6
accomplishes these tasks.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

136

Listing 3-6. Calling a nonstatic member class’s instance method

class NSMCDemo
{
 public static void main(String[] args)
 {
 EnclosingClass ec = new EnclosingClass();
 ec.new EnclosedClass().accessEnclosingClass(); // Output: 1
 }
}

Listing 3-6’s main() method first instantiates EnclosingClass and saves its reference in local variable
ec. Then, main() uses this reference as a prefix to the new operator, to instantiate EnclosedClass, whose
reference is then used to call accessEnclosingClass(), which outputs 1.

■ Note Prefixing new with a reference to the enclosing class is rare. Instead, you will typically call an enclosed
class’s constructor from within a constructor or an instance method of its enclosing class.

Suppose you need to maintain a to-do list of items, where each item consists of a name and a
description. After some thought, you create Listing 3-7’s ToDo class to implement these items.

Listing 3-7. Implementing to-do items as name-description pairs

class ToDo
{
 private String name;
 private String desc;
 ToDo(String name, String desc)
 {
 this.name = name;
 this.desc = desc;
 }
 String getName()
 {
 return name;
 }
 String getDesc()
 {
 return desc;
 }
 @Override
 public String toString()
 {
 return "Name = "+getName()+", Desc = "+getDesc();
 }
}

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

137

You next create a ToDoList class to store ToDo instances. ToDoList uses its ToDoArray nonstatic
member class to store ToDo instances in a growable array – you do not know how many instances will be
stored, and Java arrays have fixed lengths. See Listing 3-8.

Listing 3-8. Storing a maximum of two ToDo instances in a ToDoArray instance

class ToDoList
{
 private ToDoArray toDoArray;
 private int index = 0;
 ToDoList()
 {
 toDoArray = new ToDoArray(2);
 }
 boolean hasMoreElements()
 {
 return index < toDoArray.size();
 }
 ToDo nextElement()
 {
 return toDoArray.get(index++);
 }
 void add(ToDo item)
 {
 toDoArray.add(item);
 }
 private class ToDoArray
 {
 private ToDo[] toDoArray;
 private int index = 0;
 ToDoArray(int initSize)
 {
 toDoArray = new ToDo[initSize];
 }
 void add(ToDo item)
 {
 if (index >= toDoArray.length)
 {
 ToDo[] temp = new ToDo[toDoArray.length*2];
 for (int i = 0; i < toDoArray.length; i++)
 temp[i] = toDoArray[i];
 toDoArray = temp;
 }
 toDoArray[index++] = item;
 }
 ToDo get(int i)
 {
 return toDoArray[i];
 }
 int size()
 {
 return index;

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

138

 }
 }
}

As well as providing an add() method to store ToDo instances in the ToDoArray instance, ToDoList
provides hasMoreElements() and nextElement() methods to iterate over and return the stored instances.
Listing 3-9 demonstrates these methods.

Listing 3-9. Creating and iterating over a ToDoList of ToDo instances

class NSMCDemo
{
 public static void main(String[] args)
 {
 ToDoList toDoList = new ToDoList();
 toDoList.add(new ToDo("#1", "Do laundry."));
 toDoList.add(new ToDo("#2", "Buy groceries."));
 toDoList.add(new ToDo("#3", "Vacuum apartment."));
 toDoList.add(new ToDo("#4", "Write report."));
 toDoList.add(new ToDo("#5", "Wash car."));
 while (toDoList.hasMoreElements())
 System.out.println(toDoList.nextElement());
 }
}

Compile all three listings (javac NSMCDemo.java or javac *.java) and run the application (java
NSMCDemo). You will then observe the following output:

Name = #1, Desc = Do laundry.
Name = #2, Desc = Buy groceries.
Name = #3, Desc = Vacuum apartment.
Name = #4, Desc = Write report.
Name = #5, Desc = Wash car.

Java’s class library presents many examples of nonstatic member classes. For example, the
java.util package’s HashMap class declares private HashIterator, ValueIterator, KeyIterator, and
EntryIterator classes for iterating over a hashmap’s values, keys, and entries. (I will discuss HashMap in
Chapter 5.)

■ Note Code within an enclosed class can obtain a reference to its enclosing class instance by qualifying reserved
word this with the enclosing class’s name and the member access operator. For example, if code within
accessEnclosingClass() needed to obtain a reference to its EnclosingClass instance, it would specify
EnclosingClass.this.

Anonymous Classes
An anonymous class is a class without a name. Furthermore, it is not a member of its enclosing class.
Instead, an anonymous class is simultaneously declared (as an anonymous extension of a class or as an

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

139

anonymous implementation of an interface) and instantiated any place where it is legal to specify an
expression. Listing 3-10 demonstrates an anonymous class declaration and instantiation.

Listing 3-10. Declaring and instantiating an anonymous class that extends a class

abstract class Speaker
{
 abstract void speak();
}
class ACDemo
{
 public static void main(final String[] args)
 {
 new Speaker()
 {
 String msg = (args.length == 1) ? args[0] : "nothing to say";
 @Override
 void speak()
 {
 System.out.println(msg);
 }
 }
 .speak();
 }
}

Listing 3-10 introduces an abstract class named Speaker and a concrete class named ACDemo. The
latter class’s main() method declares an anonymous class that extends Speaker and overrides its speak()
method. When this method is called, it outputs main()’s first command-line argument or a default
message if there are no arguments; for example, java ACDemo Hello outputs Hello.

An anonymous class does not have a constructor (because the anonymous class does not have a
name). However, its classfile does contain an <init>() method that performs instance initialization. This
method calls the superclass’s noargument constructor (prior to any other initialization), which is the
reason for specifying Speaker() after new.

Anonymous class instances should be able to access the surrounding scope’s local variables and
parameters. However, an instance might outlive the method in which it was conceived (as a result of
storing the instance’s reference in a field), and try to access local variables and parameters that no longer
exist after the method returns.

Because Java cannot allow this illegal access, which would most likely crash the Java Virtual
Machine (JVM), it lets an anonymous class instance only access local variables and parameters that are
declared final. Upon encountering a final local variable/parameter name in an anonymous class
instance, the compiler does one of two things:

• If the variable’s type is primitive (int or double, for example), the compiler
replaces its name with the variable’s read-only value.

• If the variable’s type is reference (java.lang.String, for example), the compiler
introduces, into the classfile, a synthetic variable (a manufactured variable) and
code that stores the local variable’s/parameter’s reference in the synthetic
variable.

Listing 3-11 demonstrates an alternative anonymous class declaration and instantiation.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

140

Listing 3-11. Declaring and instantiating an anonymous class that implements an interface

interface Speakable
{
 void speak();
}
class ACDemo
{
 public static void main(final String[] args)
 {
 new Speakable()
 {
 String msg = (args.length == 1) ? args[0] : "nothing to say";
 @Override
 public void speak()
 {
 System.out.println(msg);
 }
 }
 .speak();
 }
}

Listing 3-11 is very similar to Listing 3-10. However, instead of subclassing a Speaker class, this
listing’s anonymous class implements an interface named Speakable. Apart from the <init>() method
calling java.lang.Object() (interfaces have no constructors), Listing 3-11 behaves like Listing 3-10.

Although an anonymous class does not have a constructor, you can provide an instance initializer to
handle complex initialization. For example, new Office() {{addEmployee(new Employee("John
Doe"));}}; instantiates an anonymous subclass of Office and adds one Employee object to this instance
by calling Office’s addEmployee() method.

You will often find yourself creating and instantiating anonymous classes for their convenience. For
example, suppose you need to return a list of all filenames having the “.java” suffix. The following
example shows you how an anonymous class simplifies using the java.io package’s File and
FilenameFilter classes to achieve this objective:

String[] list = new File(directory).list(new FilenameFilter()
 {
 @Override
 public boolean accept(File f, String s)
 {
 return s.endsWith(".java");
 }
 });

Local Classes
A local class is a class that is declared anywhere that a local variable is declared. Furthermore, it has the
same scope as a local variable. Unlike an anonymous class, a local class has a name and can be reused.
Like anonymous classes, local classes only have enclosing instances when used in nonstatic contexts.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

141

A local class instance can access the surrounding scope’s local variables and parameters. However,
the local variables and parameters that are accessed must be declared final. For example, Listing 3-12’s
local class declaration accesses a final parameter and a final local variable.

Listing 3-12. Declaring a local class

class EnclosingClass
{
 void m(final int x)
 {
 final int y = x*2;
 class LocalClass
 {
 int a = x;
 int b = y;
 }
 LocalClass lc = new LocalClass();
 System.out.println(lc.a);
 System.out.println(lc.b);
 }
}

Listing 3-12 declares EnclosingClass with its instance method m() declaring a local class named
LocalClass. This local class declares a pair of instance fields (a and b) that are initialized to the values of
final parameter x and final local variable y when LocalClass is instantiated: new
EnclosingClass().m(10);, for example.

Listing 3-13 demonstrates this local class.

Listing 3-13. Demonstrating a local class

class LCDemo
{
 public static void main(String[] args)
 {
 EnclosingClass ec = new EnclosingClass();
 ec.m(10);
 }
}

After instantiating EnclosingClass, Listing 3-13’s main() method invokes m(10). The called m()
method multiplies this argument by 2, instantiates LocalClass, whose <init>() method assigns the
argument and the doubled value to its pair of instance fields (in lieu of using a constructor to perform
this task), and outputs the LocalClass instance fields. The following output results:

10
20

Local classes help improve code clarity because they can be moved closer to where they are needed.
For example, Listing 3-14 declares an Iterator interface and a refactored ToDoList class whose
iterator() method returns an instance of its local Iter class as an Iterator instance (because Iter
implements Iterator).

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

142

Listing 3-14. The Iterator interface and the refactored ToDoList class

interface Iterator
{
 boolean hasMoreElements();
 Object nextElement();
}
class ToDoList
{
 private ToDo[] toDoList;
 private int index = 0;
 ToDoList(int size)
 {
 toDoList = new ToDo[size];
 }
 Iterator iterator()
 {
 class Iter implements Iterator
 {
 int index = 0;
 @Override
 public boolean hasMoreElements()
 {
 return index < toDoList.length;
 }
 @Override
 public Object nextElement()
 {
 return toDoList[index++];
 }
 }
 return new Iter();
 }
 void add(ToDo item)
 {
 toDoList[index++] = item;
 }
}

Listing 3-15 demonstrates Iterator, the refactored ToDoList class, and Listing 3-7’s ToDo class.

Listing 3-15. Creating and iterating over a ToDoList of ToDo instances with a reusable iterator

class LCDemo
{
 public static void main(String[] args)
 {
 ToDoList toDoList = new ToDoList(5);
 toDoList.add(new ToDo("#1", "Do laundry."));
 toDoList.add(new ToDo("#2", "Buy groceries."));
 toDoList.add(new ToDo("#3", "Vacuum apartment."));

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

143

 toDoList.add(new ToDo("#4", "Write report."));
 toDoList.add(new ToDo("#5", "Wash car."));
 Iterator iter = toDoList.iterator();
 while (iter.hasMoreElements())
 System.out.println(iter.nextElement());
 }
}

The Iterator instance that is returned from iterator() returns ToDo items in the same order as
when they were added to the list. Although you can only use the returned Iterator object once, you can
call iterator() whenever you need a new Iterator object. This capability is a big improvement over the
one-shot iterator presented in Listing 3-9.

Interfaces Within Classes
Interfaces can be nested within classes. Once declared, an interface is considered to be static, even if it is
not declared static. For example, Listing 3-16 declares an enclosing class named X along with two
nested static interfaces named A and B.

Listing 3-16. Declaring a pair of interfaces within a class

class X
{
 interface A
 {
 }
 static interface B
 {
 }
}

You would access Listing 3-16’s interfaces in the same way. For example, you would specify class C
implements X.A {} or class D implements X.B {}.

As with nested classes, nested interfaces help to implement top-level class architecture by being
implemented via nested classes. Collectively, these types are nested because they cannot (as in Listing 3-
14’s Iter local class) or need not appear at the same level as a top-level class and pollute its package
namespace.

■ Note Chapter 2’s introduction to interfaces showed you how to declare constants and method headers in the
body of an interface. You can also declare interfaces and classes in an interface’s body. Because there are few
good reasons to do this (java.util.Map.Entry, which is discussed in Chapter 5, is one exception), it is probably
best to avoid nesting interfaces and/or classes within interfaces.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

144

Packages
Hierarchical structures organize items in terms of hierarchical relationships that exist between those
items. For example, a filesystem might contain a taxes directory with multiple year subdirectories,
where each subdirectory contains tax information pertinent to that year. Also, an enclosing class might
contain multiple nested classes that only make sense in the context of the enclosing class.

Hierarchical structures also help to avoid name conflicts. For example, two files cannot have the
same name in a nonhierarchical filesystem (which consists of a single directory). In contrast, a
hierarchical filesystem lets same-named files exist in different directories. Similarly, two enclosing
classes can contain same-named nested classes. Name conflicts do not exist because items are
partitioned into different namespaces.

Java also supports the partitioning of top-level user-defined types into multiple namespaces, to
better organize these types and to also prevent name conflicts. Java uses packages to accomplish these
tasks.

This section introduces you to packages. After defining this term and explaining why package names
must be unique, the section presents the package and import statements. It next explains how the JVM
searches for packages and types, and then presents an example that shows you how to work with
packages. This section closes by showing you how to encapsulate a package of classfiles into JAR files.

■ Tip Except for the most trivial of top-level types and (typically) those classes that serve as application entry
points, you should consider storing your types (especially if they are reusable) in packages.

What Are Packages?
A package is a unique namespace that can contain a combination of top-level classes, other top-level
types, and subpackages. Only types that are declared public can be accessed from outside the package.
Furthermore, the constants, constructors, methods, and nested types that describe a class’s interface
must be declared public to be accessible from beyond the package.

■ Note Throughout this book, I typically don’t declare top-level types and their accessible members public,
unless I’m creating a package.

Every package has a name, which must be a nonreserved identifier. The member access operator
separates a package name from a subpackage name, and separates a package or subpackage name from
a type name. For example, the two member access operators in graphics.shapes.Circle separate
package name graphics from the shapes subpackage name, and separate subpackage name shapes from
the Circle type name.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

145

■ Note The standard class library organizes its many classes and other top-level types into multiple packages.
Many of these packages are subpackages of the standard java package. Examples include java.io (types related
to input/output operations), java.lang (language-oriented types), java.lang.reflect (reflection-oriented
language types), java.net (network-oriented types), and java.util (utility types).

Package Names Must Be Unique
Suppose you have two different graphics.shapes packages, and suppose that each shapes subpackage
contains a Circle class with a different interface. When the compiler encounters
System.out.println(new Circle(10.0, 20.0, 30.0).area()); in the source code, it needs to verify that
the area() method exists.

The compiler will search all accessible packages until it finds a graphics.shapes package that
contains a Circle class. If the found package contains the appropriate Circle class with an area()
method, everything is fine; otherwise, if the Circle class does not have an area() method, the compiler
will report an error.

This scenario illustrates the importance of choosing unique package names. Specifically, the top-
level package name must be unique. The convention in choosing this name is to take your Internet
domain name and reverse it. For example, I would choose ca.tutortutor as my top-level package name
because tutortutor.ca is my domain name. I would then specify
ca.tutortutor.graphics.shapes.Circle to access Circle.

■ Note Reversed Internet domain names are not always valid package names. One or more of its component
names might start with a digit (6.com), contain a hyphen (-) or other illegal character (aq-x.com), or be one of
Java’s reserved words (int.com). Convention dictates that you prefix the digit with an underscore (com._6),
replace the illegal character with an underscore (com.aq_x), and suffix the reserved word with an underscore
(com.int_).

The Package Statement
The package statement identifies the package in which a source file’s types are located. This statement
consists of reserved word package, followed by a member access operator-separated list of package and
subpackage names, followed by a semicolon.

For example, package graphics; specifies that the source file’s types locate in a package named
graphics, and package graphics.shapes; specifies that the source file’s types locate in the graphics
package’s shapes subpackage.

By convention, a package name is expressed in lowercase. If the name consists of multiple words,
each word except for the first word is capitalized.

Only one package statement can appear in a source file. When it is present, nothing apart from
comments must precede this statement.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

146

■ Caution Specifying multiple package statements in a source file or placing anything apart from comments
above a package statement causes the compiler to report an error.

Java implementations map package and subpackage names to same-named directories. For
example, an implementation would map graphics to a directory named graphics, and would map
graphics.shapes to a shapes subdirectory of graphics. The Java compiler stores the classfiles that
implement the package’s types in the corresponding directory.

■ Note If a source file does not contain a package statement, the source file’s types are said to belong to the
unnamed package. This package corresponds to the current directory.

The Import Statement
Imagine having to repeatedly specify ca.tutortutor.graphics.shapes.Circle or some other lengthy
package-qualified type name for each occurrence of that type in source code. Java provides an
alternative that lets you avoid having to specify package details. This alternative is the import statement.

The import statement imports types from a package by telling the compiler where to look for
unqualified type names during compilation. This statement consists of reserved word import, followed
by a member access operator-separated list of package and subpackage names, followed by a type name
or * (asterisk), followed by a semicolon.

The * symbol is a wildcard that represents all unqualified type names. It tells the compiler to look
for such names in the import statement’s specified package, unless the type name is found in a
previously searched package. (Using the wildcard does not have a performance penalty or lead to code
bloat, but can lead to name conflicts, as you will see.)

For example, import ca.tutortutor.graphics.shapes.Circle; tells the compiler that an unqualified
Circle class exists in the ca.tutortutor.graphics.shapes package. Similarly, import
ca.tutortutor.graphics.shapes.*; tells the compiler to look in this package if it encounters a Rectangle
class, a Triangle class, or even an Employee class (if Employee has not already been found).

■ Tip You should avoid using the * wildcard so that other developers can easily see which types are used in
source code.

Because Java is case sensitive, package and subpackage names specified in an import statement
must be expressed in the same case as that used in the package statement.

When import statements are present in source code, only a package statement and comments can
precede them.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

147

■ Caution Placing anything other than a package statement, import statements, static import statements
(discussed shortly), and comments above an import statement causes the compiler to report an error.

You can run into name conflicts when using the wildcard version of the import statement because
any unqualified type name matches the wildcard. For example, you have graphics.shapes and geometry
packages that each contain a Circle class, the source code begins with import geometry.*; and import
graphics.shape.*; statements, and it also contains an unqualified occurrence of Circle. Because the
compiler does not know if Circle refers to geometry’s Circle class or graphics.shape’s Circle class, it
reports an error. You can fix this problem by qualifying Circle with the correct package name.

■ Note The compiler automatically imports the String class and other types from the java.lang package, which
is why it is not necessary to qualify String with java.lang.

Searching for Packages and Types
Newcomers to Java who first start to work with packages often become frustrated by “no class definition
found” and other errors. This frustration can be partly avoided by understanding how the JVM searches
for packages and types.

This section explains how the search process works. To understand this process, you need to realize
that the compiler is a special Java application that runs under the control of the JVM. Furthermore, there
are two different forms of search.

Compile-Time Search
When the compiler encounters a type expression (such as a method call) in source code, it must locate
that type’s declaration to verify that the expression is legal (a method exists in the type’s class whose
parameter types match the types of the arguments passed in the method call, for example).

The compiler first searches the Java platform packages (which contain class library types). It then
searches extension packages (for extension types). If the -sourcepath command-line option was
specified when starting the JVM (via javac), the compiler searches the indicated path’s source files.

■ Note Java platform packages are stored in rt.jar and a few other important JAR files. Extension packages are
stored in a special extensions directory named ext.

Otherwise, the compiler searches the user classpath (in left-to-right order) for the first user classfile
or source file containing the type. If no user classpath is present, the current directory is searched. If no

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

148

package matches or the type still cannot be found, the compiler reports an error. Otherwise, the
compiler records the package information in the classfile.

■ Note The user classpath is specified via the -classpath option used to start the JVM or, if not present, the
CLASSPATH environment variable.

Runtime Search
When the compiler or any other Java application runs, the JVM will encounter types and must load their
associated classfiles via special code known as a classloader (discussed in Appendix C). The JVM will use
the previously stored package information that is associated with the encountered type in a search for
that type’s classfile.

The JVM searches the Java platform packages, followed by extension packages, followed by the user
classpath (in left-to-right order) for the first classfile that contains the type. If no user classpath is
present, the current directory is searched. If no package matches or the type cannot be found, a “no class
definition found” error is reported. Otherwise, the classfile is loaded into memory.

■ Note Whether you use the -classpath option or the CLASSPATH environment variable to specify a user
classpath, there is a specific format that must be followed. Under Windows, this format is expressed as
path1;path2;..., where path1, path2, and so on are the locations of package directories. Under Unix and Linux,
this format changes to path1:path2:....

Playing with Packages
Suppose your application needs to log messages to the console, to a file, or to another destination. It can
accomplish this task with the help of a logging library. My implementation of this library consists of an
interface named Logger, an abstract class named LoggerFactory, and a pair of package-private classes
named Console and File.

■ Note The logging library that I present is an example of the Abstract Factory design pattern, which is presented
on page 87 of Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (Addison-Wesley, 1995; ISBN: 0201633612).

Listing 3-17 presents the Logger interface, which describes objects that log messages.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

149

Listing 3-17. Describing objects that log messages via the Logger interface

package logging;

public interface Logger
{
 boolean connect();
 boolean disconnect();
 boolean log(String msg);
}

Each of the connect(), disconnect(), and log() methods returns true upon success, and false upon
failure. (Later in this chapter, you will discover a better technique for dealing with failure.) These
methods are not declared public explicitly because an interface’s methods are implicitly public.

Listing 3-18 presents the LoggerFactory abstract class.

Listing 3-18. Obtaining a logger for logging messages to a specific destination

package logging;

public abstract class LoggerFactory
{
 public final static int CONSOLE = 0;
 public final static int FILE = 1;
 public static Logger newLogger(int dstType, String... dstName)
 {
 switch (dstType)
 {
 case CONSOLE: return new Console(dstName.length == 0 ? null
 : dstName[0]);
 case FILE : return new File(dstName.length == 0 ? null
 : dstName[0]);
 default : return null;
 }
 }
}

newLogger() returns a Logger instance for logging messages to an appropriate destination. It uses
the variable number of arguments feature (see Chapter 2) to optionally accept an extra String argument
for those destination types that require the argument. For example, FILE requires a filename.

Listing 3-19 presents the package-private Console class – this class is not accessible beyond the
classes in the logging package because reserved word class is not preceded by reserved word public.

Listing 3-19. Logging messages to the console

package logging;

class Console implements Logger
{
 private String dstName;
 Console(String dstName)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

150

 {
 this.dstName = dstName;
 }
 @Override
 public boolean connect()
 {
 return true;
 }
 @Override
 public boolean disconnect()
 {
 return true;
 }
 @Override
 public boolean log(String msg)
 {
 System.out.println(msg);
 return true;
 }
}

Console’s package-private constructor saves its argument, which most likely will be null because
there is no need for a String argument. Perhaps a future version of Console will use this argument to
identify one of multiple console windows.

Listing 3-20 presents the package-private File class.

Listing 3-20. Logging messages to a file (eventually)

package logging;

class File implements Logger
{
 private String dstName;
 File(String dstName)
 {
 this.dstName = dstName;
 }
 @Override
 public boolean connect()
 {
 if (dstName == null)
 return false;
 System.out.println("opening file "+dstName);
 return true;
 }
 @Override
 public boolean disconnect()
 {
 if (dstName == null)
 return false;
 System.out.println("closing file "+dstName);
 return true;

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

151

 }
 @Override
 public boolean log(String msg)
 {
 if (dstName == null)
 return false;
 System.out.println("writing "+msg+" to file "+dstName);
 return true;
 }
}

Unlike Console, File requires a nonnull argument. Each method first verifies that this argument is
not null. If the argument is null, the method returns false to signify failure. (In Chapter 8, I refactor File
to incorporate appropriate file-writing code.)

The logging library allows us to introduce portable logging code into an application. Apart from a
call to newLogger(), this code will remain the same regardless of the logging destination. Listing 3-21
presents an application that tests this library.

Listing 3-21. Testing the logging library

import logging.Logger;
import logging.LoggerFactory;

class TestLogger
{
 public static void main(String[] args)
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.CONSOLE);
 if (logger.connect())
 {
 logger.log("test message #1");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to console-based logger");
 logger = LoggerFactory.newLogger(LoggerFactory.FILE, "x.txt");
 if (logger.connect())
 {
 logger.log("test message #2");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to file-based logger");
 logger = LoggerFactory.newLogger(LoggerFactory.FILE);
 if (logger.connect())
 {
 logger.log("test message #3");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to file-based logger");
 }

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

152

}

Follow these steps (which assume that the JDK has been installed) to create the logging package and
TestLogger application, and to run this application:

1. Create a new directory and make this directory current.

2. Create a logging directory in the current directory.

3. Copy Listing 3-17 to a file named Logger.java in the logging directory.

4. Copy Listing 3-18 to a file named LoggerFactory.java in the logging directory.

5. Copy Listing 3-19 to a file named Console.java in the logging directory.

6. Copy Listing 3-20 to a file named File.java in the logging directory.

7. Copy Listing 3-21 to a file named TestLogger.java in the current directory.

8. Execute javac TestLogger.java, which also compiles logger’s source files.

9. Execute java TestLogger.

After completing the final step, you should observe the following output from the TestLogger
application:

test message #1
opening file x.txt
writing test message #2 to file x.txt
closing file x.txt
cannot connect to file-based logger

What happens when logging is moved to another location? For example, move logging to the root
directory and run TestLogger. You will now observe an error message about the JVM not finding the
logging package and its LoggerFactory classfile.

You can solve this problem by specifying -classpath when running the java tool, or by adding the
location of the logging package to the CLASSPATH environment variable. You’ll probably find it more
convenient to use the former option, as demonstrated in the following Windows-specific command line:

java -classpath \;. TestLogger

The backslash represents the root directory in Windows. (I could have specified a forward slash as
an alternative.) Also, the period represents the current directory. If it is missing, the JVM complains
about not finding the TestLogger classfile.

■ Tip If you discover an error message where the JVM reports that it cannot find an application classfile, try
appending a period character to the classpath. Doing so will probably fix the problem.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

153

Packages and JAR Files
Chapter 1 briefly introduced you to the JDK’s jar tool, which is used to archive classfiles in JAR files, and
is also used to extract a JAR file’s classfiles. It probably comes as no surprise that you can store packages
in JAR files, which greatly simplify the distribution of your package-based class libraries.

To show you how easy it is to store a package in a JAR file, we will create a logger.jar file that
contains the logging package’s four classfiles (Logger.class, LoggerFactory.class, Console.class, and
File.class). Complete the following steps to accomplish this task:

1. Make sure that the current directory contains the previously created logging
directory with its four classfiles.

2. Execute jar cf logger.jar logging*.class. You could alternatively execute
jar cf logger.jar logging/*.class. (The c option stands for “create new
archive” and the f option stands for “specify archive filename.”)

You should now find a logger.jar file in the current directory. To prove to yourself that this file
contains the four classfiles, execute jar tf logger.jar. (The t option stands for “list table of contents.”)

You can run TestLogger.class by adding logger.jar to the classpath. For example, you can run
TestLogger under Windows via java -classpath logger.jar;. TestLogger.

Static Imports
An interface should only be used to declare a type. However, some developers violate this principle by
using interfaces to only export constants. Such interfaces are known as constant interfaces, and Listing 3-
22 presents an example.

Listing 3-22. Declaring a constant interface

interface Directions
{
 int NORTH = 0;
 int SOUTH = 1;
 int EAST = 2;
 int WEST = 3;
}

Developers who resort to constant interfaces do so to avoid having to prefix a constant’s name with
the name of its class (as in Math.PI, where PI is a constant in the java.lang.Math class). They do this by
implementing the interface—see Listing 3-23.

Listing 3-23. Implementing a constant interface

class TrafficFlow implements Directions
{
 public static void main(String[] args)
 {
 showDirection((int)(Math.random()*4));
 }
 static void showDirection(int dir)
 {
 switch (dir)

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

154

 {
 case NORTH: System.out.println("Moving north"); break;
 case SOUTH: System.out.println("Moving south"); break;
 case EAST : System.out.println("Moving east"); break;
 case WEST : System.out.println("Moving west");
 }
 }
}

Listing 3-23’s TrafficFlow class implements Directions for the sole purpose of not having to specify
Directions.NORTH, Directions.SOUTH, Directions.EAST, and Directions.WEST.

This is an appalling misuse of an interface. These constants are nothing more than an
implementation detail that should not be allowed to leak into the class’s exported interface, because they
might confuse the class’s users (what is the purpose of these constants?). Also, they represent a future
commitment: even when the class no longer uses these constants, the interface must remain to ensure
binary compatibility.

Java 5 introduced an alternative that satisfies the desire for constant interfaces while avoiding their
problems. This static imports feature lets you import a class’s static members so that you do not have
to qualify them with their class names. It is implemented via a small modification to the import
statement, as follows:

import static packagespec . classname . (staticmembername | *);

The static import statement specifies static after import. It then specifies a member access
operator-separated list of package and subpackage names, which is followed by the member access
operator and a class’s name. Once again, the member access operator is specified, followed by a single
static member name or the asterisk wildcard.

■ Caution Placing anything apart from a package statement, import/static import statements, and comments
above a static import statement causes the compiler to report an error.

You specify a single static member name to import only that name:

import static java.lang.Math.PI; // Import the PI static field only.
import static java.lang.Math.cos; // Import the cos() static method only.

In contrast, you specify the wildcard to import all static member names:

import static java.lang.Math.*; // Import all static members from Math.

You can now refer to the static member(s) without having to specify the class name:

System.out.println(cos(PI));

Using multiple static import statements can result in name conflicts, which causes the compiler to
report errors. For example, suppose your geom package contains a Circle class with a static member
named PI. Now suppose you specify import static java.lang.Math.*; and import static
geom.Circle.*; at the top of your source file. Finally, suppose you specify System.out.println(PI);
somewhere in that file’s code. The compiler reports an error because it does not know if PI belongs to
Math or Circle.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

155

Exceptions
In an ideal world, nothing bad ever happens when an application runs. For example, a file always exists
when the application needs to open the file, the application is always able to connect to a remote
computer, and the JVM never runs out of memory when the application needs to instantiate objects.

In contrast, real-world applications occasionally attempt to open files that do not exist, attempt to
connect to remote computers that are unable to communicate with them, and require more memory
than the JVM can provide. Your goal is to write code that properly responds to these and other
exceptional situations (exceptions).

This section introduces you to exceptions. After defining this term, the section looks at representing
exceptions in source code. It then examines the topics of throwing and handling exceptions, and
concludes by discussing how to perform cleanup tasks before a method returns, whether or not an
exception has been thrown.

What Are Exceptions?
An exception is a divergence from an application’s normal behavior. For example, the application
attempts to open a nonexistent file for reading. The normal behavior is to successfully open the file and
begin reading its contents. However, the file cannot be read if the file does not exist.

This example illustrates an exception that cannot be prevented. However, a workaround is possible.
For example, the application can detect that the file does not exist and take an alternate course of action,
which might include telling the user about the problem. Unpreventable exceptions where workarounds
are possible must not be ignored.

Exceptions can occur because of poorly written code. For example, an application might contain
code that accesses each element in an array. Because of careless oversight, the array-access code might
attempt to access a nonexistent array element, which leads to an exception. This kind of exception is
preventable by writing correct code.

Finally, an exception might occur that cannot be prevented, and for which there is no workaround.
For example, the JVM might run out of memory, or perhaps it cannot find a classfile. This kind of
exception, known as an error, is so serious that it is impossible (or at least inadvisable) to work around;
the application must terminate, presenting a message to the user that explains why it is terminating.

Representing Exceptions in Source Code
An exception can be represented via error codes or objects. After discussing each kind of representation
and explaining why objects are superior, I introduce you to Java’s exception and error class hierarchy,
emphasizing the difference between checked and runtime exceptions. I close my discussion on
representing exceptions in source code by discussing custom exception classes.

Error Codes Versus Objects
One way to represent exceptions in source code is to use error codes. For example, a method might
return true on success and false when an exception occurs. Alternatively, a method might return 0 on
success and a nonzero integer value that identifies a specific kind of exception.

Developers traditionally designed methods to return error codes; I demonstrated this tradition in
each of the three methods in Listing 3-17’s Logger interface. Each method returns true on success, or
returns false to represent an exception (unable to connect to the logger, for example).

Although a method’s return value must be examined to see if it represents an exception, error codes
are all too easy to ignore. For example, a lazy developer might ignore the return code from Logger’s

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

156

connect() method and attempt to call log(). Ignoring error codes is one reason why a new approach to
dealing with exceptions has been invented.

This new approach is based on objects. When an exception occurs, an object representing the
exception is created by the code that was running when the exception occurred. Details describing the
exception’s surrounding context are stored in the object. These details are later examined to work
around the exception.

The object is then thrown, or handed off to the JVM to search for a handler, code that can handle the
exception. (If the exception is an error, the application should not provide a handler because errors are
so serious [e.g., the JVM has run out of memory] that there’s practically nothing that can be done about
them.) When a handler is located, its code is executed to provide a workaround. Otherwise, the JVM
terminates the application.

■ Caution Code that handles exceptions can be a source of bugs because it’s often not thoroughly tested. Always
make sure to test any code that handles exceptions.

Apart from being too easy to ignore, an error code’s Boolean or integer value is less meaningful than
an object name. For example, fileNotFound is self-explanatory, but what does false mean? Also, an
object can contain information about what led to the exception. These details can be helpful to a
suitable workaround.

The Throwable Class Hierarchy
Java provides a hierarchy of classes that represent different kinds of exceptions. These classes are rooted
in java.lang.Throwable, the ultimate superclass for all throwables (exception and error objects—
exceptions and errors, for short—that can be thrown). Table 3-1 identifies and describes most of
Throwable’s constructors and methods.

Table 3-1. Throwable’s Constructors and Methods

Method Description

Throwable() Create a throwable with a null detail message
and cause.

Throwable(String message) Create a throwable with the specified detail
message and a null cause.

Throwable(String message, Throwable
cause)

Create a throwable with the specified detail
message and cause.

protected Throwable(String message,
Throwable cause, boolean
enableSuppression, boolean
writableStackTrace)

Create a throwable with the specified detail
message, cause, suppression enabled or
disabled, and writable stack trace enabled or
disabled.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

157

Throwable(Throwable cause) Create a throwable whose detail message is the
string representation of a nonnull cause, or null.

void addSuppressed(Throwable
exception)

Append the specified exception to the
exceptions that were suppressed in order to
deliver this exception.

Throwable fillInStackTrace() Fill in the execution stack trace. This method
records information about the current state of
the stack frames for the current thread within
this throwable. (I discuss threads in Chapter 4.)

Throwable getCause() Return the cause of this throwable. If there is no
cause, null is returned.

String getMessage() Return this throwable’s detail message, which
might be null.

StackTraceElement[] getStackTrace() Provide programmatic access to the stack trace
information printed by printStackTrace() as an
array of stack trace elements, each representing
one stack frame.

Throwable[] getSuppressed() Return an array containing all exceptions that
were suppressed (typically by the try-with-
resources statement, discussed later) in order to
deliver this exception.

Throwable initCause(Throwable cause) Initialize the cause of this throwable to the
specified value.

void printStackTrace() Print this throwable and its backtrace of stack
frames to the standard error stream.

void setStackTrace(StackTraceElement[]
stackTrace)

Set the stack trace elements that will be returned
by getStackTrace() and printed by
printStackTrace() and related methods.

It is not uncommon for a class’s public methods to call helper methods that throw various

exceptions. A public method will probably not document exceptions thrown from a helper method
because they are implementation details that often should not be visible to the public method’s caller.

However, because this exception might be helpful in diagnosing the problem, the public method
can wrap the lower-level exception in a higher-level exception that is documented in the public
method’s contract interface. The wrapped exception is known as a cause because its existence causes the
higher-level exception to be thrown. A cause is created by invoking the Throwable(Throwable cause) or
Throwable(String message, Throwable cause) constructor, which invoke the initCause() method to

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

158

store the cause. If you do not call either constructor, you can alternatively call initCause() directly, but
must do so immediately after creating the throwable. Call the getCause() method to return the cause.

When one exception causes another exception, the first exception is usually caught and then the
second exception is thrown in response. In other words, there is a causal connection between the two
exceptions. In contrast, there are situations where two independent exceptions can be thrown in sibling
code blocks; for example, in the try block of a try-with-resources statement (discussed later in this
chapter) and the compiler-generated finally block that closes the resource. In these situations, only one
of the thrown exceptions can be propagated.

In the try-with-resources statement, when there are two such exceptions, the exception originating
from the try block is propagated and the exception from the finally block is added (via the
addSuppressed() method) to the list of exceptions suppressed by the exception from the try block. As an
exception unwinds the stack, it can accumulate multiple suppressed exceptions. An array of the
suppressed expressions can be retrieved by calling getSuppressed().

When an exception is thrown, it leaves behind a stack of unfinished method calls. Throwable’s
constructors call fillInStackTrace() to record this stack trace information, which is output by calling
printStackTrace().

The getStackTrace() method provides programmatic access to the stack trace by returning this
information as an array of java.lang.StackTraceElement instances – each instance represents one stack
entry. StackTraceElement provides methods to return stack trace information. For example, String
getMethodName() returns the name of an unfinished method.

The setStackTrace() method is designed for use by Remote Procedure Call (RPC) frameworks (RPC
is briefly discussed in Chapter 11) and other advanced systems, allowing the client to override the
default stack trace that is generated by fillInStackTrace() when a throwable is constructed, or
deserialized when a throwable is read from a serialization stream. (I will discuss serialization in Chapter
8.)

Except for Throwable(String message, Throwable cause, boolean enableSuppression, boolean
writableStackTrace), each Throwable constructor always treats suppression as being enabled, and
always calls fillInStackTrace(). In contrast, this constructor lets you disable suppression by passing
false to enableSuppression, and prevent fillInStackTrace() from being called by passing false to
writableStackTrace. Pass false to writableStackTrace when you plan to override the default stack trace
and want to avoid the unnecessary fillInStackTrace() method calls. Similarly, pass false to
enableSuppression when repeatedly catching and rethrowing the same exception object (to implement
control flow between two subsystems, for example) or in other exceptional circumstances.

You will notice that Throwable(String message, Throwable cause, boolean enableSuppression,
boolean writableStackTrace) is signified as a protected constructor. Also, its Java documentation
includes the following sentence: “Subclasses of Throwable should document any conditions under which
suppression is disabled and document conditions under which the stack trace is not writable.” This is an
example of “design and document for class extension,” which I discuss in Chapter 2.

Moving down the throwable hierarchy, you encounter the java.lang.Exception and
java.lang.Error classes, which respectively represent exceptions and errors. Each class offers five
constructors that pass their arguments to their Throwable counterparts, but provides no methods apart
from those that are inherited from Throwable.

Exception is itself subclassed by java.lang.CloneNotSupportedException (discussed in Chapter 2),
java.io.IOException (discussed in Chapter 8), and other classes. Similarly, Error is itself subclassed by
java.lang.AssertionError (discussed later in this chapter), java.lang.OutOfMemoryError, and other
classes.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

159

■ Caution Never instantiate Throwable, Exception, or Error. The resulting objects are meaningless because
they are too generic.

Checked Exceptions Versus Runtime Exceptions

A checked exception is an exception that represents a problem with the possibility of recovery, and for
which the developer must provide a workaround. The compiler checks (examines) the code to ensure
that the exception is handled in the method where it is thrown, or is explicitly identified as being
handled elsewhere.

Exception and all subclasses except for java.lang.RuntimeException (and its subclasses) describe
checked exceptions. For example, the CloneNotSupportedException and IOException classes describe
checked exceptions. (CloneNotSupportedException should not be checked because there is no runtime
workaround for this kind of exception.)

A runtime exception is an exception that represents a coding mistake. This kind of exception is also
known as an unchecked exception because it does not need to be handled or explicitly identified—the
mistake must be fixed. Because these exceptions can occur in many places, it would be burdensome to
be forced to handle them.

RuntimeException and its subclasses describe unchecked exceptions. For example,
java.lang.ArithmeticException describes arithmetic problems such as integer division by zero. Another
example is java.lang.ArrayIndexOutOfBoundsException. (In hindsight, RuntimeException should have
been named UncheckedException because all exceptions occur at runtime.)

■ Note Many developers are not happy with checked exceptions because of the work involved in having to handle
them. This problem is made worse by libraries providing methods that throw checked exceptions when they
should throw unchecked exceptions. As a result, many modern languages support only unchecked exceptions.

Custom Exception Classes
You can declare your own exception classes. Before doing so, ask yourself if an existing exception class in
Java’s standard class library meets your needs. If you find a suitable class, you should reuse it. (Why
reinvent the wheel?) Other developers will already be familiar with the existing class, and this knowledge
will make your code easier to learn.

If no existing class meets your needs, think about whether to subclass Exception or
RuntimeException. In other words, will your exception class be checked or unchecked? As a rule of
thumb, your class should subclass RuntimeException if you think that it will describe a coding mistake.

■ Tip When you name your class, follow the convention of providing an Exception suffix. This suffix clarifies that
your class describes an exception.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

160

Suppose you are creating a Media class whose static methods perform various media-oriented utility
tasks. For example, one method converts sound files in non-MP3 media formats to MP3 format. This
method will be passed source file and destination file arguments, and will convert the source file to the
format implied by the destination file’s extension.

Before performing the conversion, the method needs to verify that the source file’s format agrees
with the format implied by its file extension. If there is no agreement, an exception must be thrown.
Furthermore, this exception must store the expected and existing media formats so that a handler can
identify them when presenting a message to the user.

Because Java’s class library does not provide a suitable exception class, you decide to introduce a
class named InvalidMediaFormatException. Detecting an invalid media format is not the result of a
coding mistake, and so you also decide to extend Exception to indicate that the exception is checked.
Listing 3-24 presents this class’s declaration.

Listing 3-24. Declaring a custom exception class

package media;

public class InvalidMediaFormatException extends Exception
{
 private String expectedFormat;
 private String existingFormat;
 public InvalidMediaFormatException(String expectedFormat,
 String existingFormat)
 {
 super("Expected format: "+expectedFormat+", Existing format: "+
 existingFormat);
 this.expectedFormat = expectedFormat;
 this.existingFormat = existingFormat;
 }
 public String getExpectedFormat()
 {
 return expectedFormat;
 }
 public String getExistingFormat()
 {
 return existingFormat;
 }
}

InvalidMediaFormatException provides a constructor that calls Exception’s public
Exception(String message) constructor with a detail message that includes the expected and existing
formats. It is wise to capture such details in the detail message because the problem that led to the
exception might be hard to reproduce.

InvalidMediaFormatException also provides getExpectedFormat() and getExistingFormat()
methods that return these formats. Perhaps a handler will present this information in a message to the
user. Unlike the detail message, this message might be localized, expressed in the user’s language
(French, German, English, and so on).

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

161

Throwing Exceptions
Now that you have created an InvalidMediaFormatException class, you can declare the Media class and
begin to code its convert() method. The initial version of this method validates its arguments, and then
verifies that the source file’s media format agrees with the format implied by its file extension. Check out
Listing 3-25.

Listing 3-25. Throwing exceptions from the convert() method

package media;

import java.io.IOException;

public final class Media
{
 public static void convert(String srcName, String dstName)
 throws InvalidMediaFormatException, IOException
 {
 if (srcName == null)
 throw new NullPointerException(srcName+" is null");
 if (dstName == null)
 throw new NullPointerException(dstName+" is null");
 // Code to access source file and verify that its format matches the
 // format implied by its file extension.
 //
 // Assume that the source file’s extension is RM (for Real Media) and
 // that the file’s internal signature suggests that its format is
 // Microsoft WAVE.
 String expectedFormat = "RM";
 String existingFormat = "WAVE";
 throw new InvalidMediaFormatException(expectedFormat, existingFormat);
 }
}

Listing 3-25 declares the Media class to be final because this class will only consist of class methods
and there’s no reason to extend it.

Media’s convert() method appends throws InvalidMediaFormatException, IOException to its
header. A throws clause identifies all checked exceptions that are thrown out of the method, and which
must be handled by some other method. It consists of reserved word throws followed by a comma-
separated list of checked exception class names, and is always appended to a method header. The
convert() method’s throws clause indicates that this method is capable of throwing an
InvalidMediaFormatException or IOException instance to the JVM.

convert() also demonstrates the throw statement, which consists of reserved word throw followed
by an instance of Throwable or a subclass. (You typically instantiate an Exception subclass.) This
statement throws the instance to the JVM, which then searches for a suitable handler to handle the
exception.

The first use of the throw statement is to throw a java.lang.NullPointerException instance when a
null reference is passed as the source or destination filename. This unchecked exception is commonly
thrown to indicate that a contract has been violated via a passed null reference. (Chapter 6’s discussion
of the java.util.Objects class presents an alternative approach to dealing with null references passed to
parameters.) For example, you cannot pass null filenames to convert().

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

162

The second use of the throw statement is to throw a media.InvalidMediaFormatException instance
when the expected media format does not match the existing format. In the contrived example, the
exception is thrown because the expected format is RM and the existing format is WAVE.

Unlike InvalidMediaFormatException, NullPointerException is not listed in convert()’s throws
clause because NullPointerException instances are unchecked. They can occur so frequently that it is
too big a burden to force the developer to properly handle these exceptions. Instead, the developer
should write code that minimizes their occurrences.

Although not thrown from convert(), IOException is listed in this method’s throws clause in
preparation for refactoring this method to perform the conversion with the help of file-handling code.

NullPointerException is one kind of exception that is thrown when an argument proves to be
invalid. The java.lang.IllegalArgumentException class generalizes the illegal argument scenario to
include other kinds of illegal arguments. For example, the following method throws an
IllegalArgumentException instance when a numeric argument is negative:

public static double sqrt(double x)
{
 if (x < 0)
 throw new IllegalArgumentException(x+" is negative");
 // Calculate the square root of x.
}

There are a few additional items to keep in mind when working with throws clauses and throw
statements:

• You can append a throws clause to a constructor and throw an exception from the
constructor when something goes wrong while the constructor is executing. The
resulting object will not be created.

• When an exception is thrown out of an application’s main() method, the JVM
terminates the application and calls the exception’s printStackTrace() method to
print, to the console, the sequence of nested method calls that was awaiting
completion when the exception was thrown.

• If a superclass method declares a throws clause, the overriding subclass method
does not have to declare a throws clause. However, if the subclass method does
declare a throws clause, the clause must not include the names of checked
exception classes that are not also included in the superclass method’s throws
clause, unless they are the names of exception subclasses. For example, given
superclass method void foo() throws IOException {}, the overriding subclass
method could be declared as void foo() {}, void foo() throws IOException {},
or void foo() throws FileNotFoundException—the
java.io.FileNotFoundException class subclasses IOException.

• A checked exception class name does not need to appear in a throws clause when
the name of its superclass appears.

• The compiler reports an error when a method throws a checked exception and
does not also handle the exception or list the exception in its throws clause.

• Do not include the names of unchecked exception classes in a throws clause.
These names are not required because such exceptions should never occur.
Furthermore, they only clutter source code, and possibly confuse someone who is
trying to understand that code.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

163

• You can declare a checked exception class name in a method’s throws clause
without throwing an instance of this class from the method. (Perhaps the method
has yet to be fully coded.) However, Java requires that you provide code to handle
this exception, even though it is not thrown.

Handling Exceptions
A method indicates its intention to handle one or more exceptions by specifying a try statement that
includes one or more appropriate catch blocks. The try statement consists of reserved word try followed
by a brace-delimited body. You place code that throws exceptions into this block.

A catch block consists of reserved word catch, followed by a round bracket-delimited single-
parameter list that specifies an exception class name, followed by a brace-delimited body. You place
code that handles exceptions whose types match the type of the catch block’s parameter list’s exception
class parameter in this block.

A catch block is specified immediately after a try block. When an exception is thrown, the JVM
searches for a handler by first examining the catch block to see whether its parameter type matches or is
the superclass type of the exception that has been thrown.

If the catch block is found, its body executes and the exception is handled. Otherwise, the JVM
proceeds up the method-call stack, looking for the first method whose try statement contains an
appropriate catch block. This process continues unless a catch block is found or execution leaves the
main() method.

The following example illustrates try and catch:

try
{
 int x = 1/0;
}
catch (ArithmeticException ae)
{
 System.out.println("attempt to divide by zero");
}

When execution enters the try block, an attempt is made to divide integer 1 by integer 0. The JVM
responds by instantiating ArithmeticException and throwing this exception. It then detects the catch
block, which is capable of handling thrown ArithmeticException objects, and transfers execution to this
block, which invokes System.out.println() to output a suitable message—the exception is handled.

Because ArithmeticException is an example of an unchecked exception type, and because
unchecked exceptions represent coding mistakes that must be fixed, you typically don’t catch them, as
demonstrated previously. Instead, you would fix the problem that led to the thrown exception.

■ Tip You might want to name your catch block parameters using the abbreviated style shown in the preceding
section. Not only does this convention result in more meaningful exception-oriented parameter names (ae implies
that an ArithmeticException object has been thrown), it can help reduce compiler errors. For example, it is
common practice to name a catch block’s parameter e, for convenience. (Why type a long name?) However, the
compiler will report an error when a previously declared local variable or parameter also uses e as its name—
multiple same-named local variables and parameters cannot exist in the same scope.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

164

Handling Multiple Exception Types
You can specify multiple catch blocks after a try block. For example, Listing 3-25’s convert() method
specifies a throws clause indicating that convert() can throw InvalidMediaFormatException, which is
currently thrown, and IOException, which will be thrown when convert() is refactored. This refactoring
will result in convert() throwing IOException when it cannot read from the source file or write to the
destination file, and throwing FileNotFoundException (a subclass of IOException) when it cannot open
the source file or create the destination file. All these exceptions must be handled, as demonstrated in
Listing 3-26.

Listing 3-26. Handling different kinds of exceptions

import java.io.FileNotFoundException;
import java.io.IOException;

import media.InvalidMediaFormatException;
import media.Media;

class Converter
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Converter srcfile dstfile");
 return;
 }
 try
 {
 Media.convert(args[0], args[1]);
 }
 catch (InvalidMediaFormatException imfe)
 {
 System.out.println("Unable to convert "+args[0]+" to "+args[1]);
 System.out.println("Expecting "+args[0]+" to conform to "+
 imfe.getExpectedFormat()+" format.");
 System.out.println("However, "+args[0]+" conformed to "+
 imfe.getExistingFormat()+" format.");
 }
 catch (FileNotFoundException fnfe)
 {
 }
 catch (IOException ioe)
 {
 }
 }
}

The call to Media’s convert() method in Listing 3-26 is placed in a try block because this method is
capable of throwing an instance of the checked InvalidMediaFormatException, IOException, or
FileNotFoundException class—checked exceptions must be handled or be declared to be thrown via a
throws clause that is appended to the method.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

165

The catch (InvalidMediaFormatException imfe) block’s statements are designed to provide a
descriptive error message to the user. A more sophisticated application would localize these names so
that the user could read the message in the user’s language. The developer-oriented detail message is
not output because it is not necessary in this trivial application.

■ Note A developer-oriented detail message is typically not localized. Instead, it is expressed in the developer’s
language. Users should never see detail messages.

Although not thrown, a catch block for IOException is required because this checked exception type
appears in convert()’s throws clause. Because the catch (IOException ioe) block can also handle
thrown FileNotFoundException instances (because FileNotFoundException subclasses IOException), the
catch (FileNotFoundException fnfe) block isn’t necessary at this point, but is present to separate out
the handling of a situation where a file cannot be opened for reading or created for writing (which will be
addressed once convert() is refactored to include file code).

Assuming that the current directory contains Listing 3-26 and a media subdirectory containing
InvalidMediaFormatException.java and Media.java, compile this listing (javac Converter.java), which
also compiles media’s source files, and run the application, as in java Converter A B. Converter
responds by presenting the following output:

Unable to convert A to B
Expecting A to conform to RM format.
However, A conformed to WAVE format.

Listing 3-26’s empty FileNotFoundException and IOException catch blocks illustrate the often-seen
problem of leaving catch blocks empty because they are inconvenient to code. Unless you have a good
reason, do not create an empty catch block. It swallows exceptions and you do not know that the
exceptions were thrown. (For brevity, I don’t always code catch blocks in this book’s examples.)

■ Caution The compiler reports an error when you specify two or more catch blocks with the same parameter
type after a try body. Example: try {} catch (IOException ioe1) {} catch (IOException ioe2) {}. You
must merge these catch blocks into one block.

Although you can write catch blocks in any order, the compiler restricts this order when one catch
block’s parameter is a supertype of another catch block’s parameter. The subtype parameter catch block
must precede the supertype parameter catch block; otherwise, the subtype parameter catch block will
never be executed.

For example, the FileNotFoundException catch block must precede the IOException catch block. If
the compiler allowed the IOException catch block to be specified first, the FileNotFoundException catch
block would never execute because a FileNotFoundException instance is also an instance of its
IOException superclass.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

166

Multicatch

Suppose you have two or more catch blocks whose code is identical or nearly identical. To eliminate this
redundancy, you might be tempted to refactor this code into a single catch block with a common
superclass exception type (such as catch (Exception e) {}). However, catching overly broad exceptions
is not a good idea because doing so masks the purpose for the handler (what exceptions are handled by
catch (Exception e) {}, for example). Also, the single catch block might inadvertently handle thrown
exceptions that should be handled elsewhere. (Perhaps these exceptions are thrown as a result of
refactored code.)

Java provides the multicatch language feature to avoid redundancy and also the problems inherent
with catching overly broad exceptions. Multicatch lets you specify multiple exception types in a catch
block where each successive type is separated from its predecessor by placing a vertical bar (|) between
these types. Consider the following example:

try
{
 Media.convert(args[0], args[1]);
}
catch (InvalidMediaFormatException | UnsupportedMediaFormatException imfeumfe)
{
 // common code to respond to these similar exceptions
}

This example assumes that convert() is also capable of throwing
media.UnsupportedMediaFormatException when it detects a media format that it cannot handle (such as a
video format). When convert() throws either InvalidMediaFormatException or
UnsupportedMediaFormatException, the catch block will handle either exception.

When multiple exception types are listed in a catch block’s single parameter list, the parameter is
implicitly regarded as final. As a result, you cannot change the parameter’s value. For example, you
cannot change the reference stored in the example’s imfeumfe parameter.

Multicatch is not always necessary. For example, you do not need to specify catch
(FileNotFoundException | IOException fnfeioe) { /* suitable common code */ } to handle
FileNotFoundException and IOException because catch (IOException ioe) accomplishes the same task,
by catching FileNotFoundException as well as IOException. For this reason, the compiler reports an error
when it detects a catch block whose parameter list exception types include a supertype and a subtype.

■ Note The bytecode resulting from compiling a catch block that handles multiple exception types will be smaller
than compiling several catch blocks that each handle only one of the listed exception types. A catch block that
handles multiple exception types contributes no duplicate bytecode during compilation. In other words, the
bytecode doesn’t contain replicated exception handlers.

Rethrowing Exceptions
While discussing the Throwable class, I discussed wrapping lower-level exceptions in higher-level
exceptions. This activity will typically take place in a catch block, and is illustrated in the following
example:

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

167

catch (IOException ioe)
{
 throw new ReportCreationException(ioe);
}

This example assumes that a helper method has just thrown a generic IOException instance as the
result of trying to create a report. The public method’s contract states that ReportCreationException is
thrown in this case. To satisfy the contract, the latter exception is thrown. To satisfy the developer who is
responsible for debugging a faulty application, the IOException instance is wrapped inside the
ReportCreationException instance that is thrown to the public method’s caller.

Sometimes, a catch block might not be able to fully handle an exception. Perhaps it needs access to
information provided by some ancestor method in the method-call stack. However, the catch block
might be able to partly handle the exception. In this case, it should partly handle the exception, and then
rethrow the exception so that a handler in the ancestor method can finish handling the exception. This
scenario is demonstrated in the following example:

catch (FileNotFoundException fnfe)
{
 // Provide code to partially handle the exception here.
 throw fnfe; // Rethrow the exception here.
}

Final Rethrow

Java 7’s compiler analyzes rethrown exceptions more precisely than its predecessors, but only when no
assignments are made to the rethrown exception’s catch block parameter (the parameter is effectively
final). When an exception originates from the preceding try block and is a supertype/subtype of the
parameter’s type, the compiler throws the actual type of the caught exception instead of throwing the
type of the parameter (as is done in previous Java versions).

The purpose of this final rethrow feature is to facilitate adding a try statement around a block of
code to intercept, process, and rethrow an exception without affecting the statically determined set of
exceptions thrown from the code. Also, this feature lets you provide a common exception handler to
partly handle the exception close to where it’s thrown, and provide more precise handlers elsewhere that
handle the rethrown exception. Consider Listing 3-27.

Listing 3-27. A pressure simulation

class PressureException extends Exception
{
 PressureException(String msg)
 {
 super(msg);
 }
}
class TemperatureException extends Exception
{
 TemperatureException(String msg)
 {
 super(msg);
 }
}

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

168

class MonitorEngine
{
 public static void main(String[] args)
 {
 try
 {
 monitor();
 }
 catch (Exception e)
 {
 if (e instanceof PressureException)
 System.out.println("correcting pressure problem");
 else
 System.out.println("correcting temperature problem");
 }
 }
 static void monitor() throws Exception
 {
 try
 {
 if (Math.random() < 0.1)
 throw new PressureException("pressure too high");
 else
 if (Math.random() > 0.9)
 throw new TemperatureException("temperature too high");
 else
 System.out.println("all is well");
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 throw e;
 }
 }
}

Listing 3-27 simulates the testing of an experimental rocket engine to see if the engine’s pressure or
temperature exceeds a safety threshold. It performs this testing via the monitor() helper method.

monitor()’s try block throws PressureException when it detects a pressure extreme, and throws
TemperatureException when it detects a temperature extreme. (Because this is only a simulation,
random numbers are used. I’ll have more to say about random numbers in Chapter 4.) The try block is
followed by a catch block, which is designed to partly handle the exception by outputting a warning
message. This exception is then rethrown so that monitor()’s calling method can finish handling the
exception.

Before Java 7, you couldn’t specify PressureException and TemperatureException in monitor()’s
throws clause because the catch block’s e parameter is of type Exception and rethrowing an exception
was treated as throwing the parameter’s type. Starting with Java 7, you can specify these exception types
in the throws clause because the compiler determines that the exception thrown by throw e came from
the try block, and only PressureException and TemperatureException can be thrown from this block.

Because you can now specify static void monitor() throws PressureException,
TemperatureException, you can provide more precise handlers where monitor() is called, as the
following example demonstrates:

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

169

try
{
 monitor();
}
catch (PressureException pe)
{
 System.out.println("correcting pressure problem");
}
catch (TemperatureException te)
{
 System.out.println("correcting temperature problem");
}

Because of the improved type checking offered by final rethrow, source code that compiled under
previous versions of Java might fail to compile under Java 7. For example, consider Listing 3-28.

Listing 3-28. Demonstrating code breakage as a result of final rethrow

class SuperException extends Exception
{
}
class SubException1 extends SuperException
{
}
class SubException2 extends SuperException
{
}
class BreakageDemo
{
 public static void main(String[] args) throws SuperException
 {
 try
 {
 throw new SubException1();
 }
 catch (SuperException se)
 {
 try
 {
 throw se;
 }
 catch (SubException2 se2)
 {
 }
 }
 }
}

Listing 3-28 compiles under Java 6 and earlier. However, it fails to compile under Java 7, whose
compiler detects and reports the fact that SubException2 is never thrown in the body of the
corresponding try statement.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

170

Although unlikely to occur, it’s possible to run into this problem. Instead of grumbling about the
breakage, consider the value in having the compiler detect a source of redundant code whose removal
results in cleaner source code and a smaller classfile.

Performing Cleanup
In some situations, you might want to prevent an exception from being thrown out of a method before
the method’s cleanup code is executed. For example, you might want to close a file that was opened, but
could not be written, possibly because of insufficient disk space. Java provides the finally block for this
situation.

The finally block consists of reserved word finally followed by a body, which provides the cleanup
code. A finally block follows either a catch block or a try block. In the former case, the exception is
handled (and possibly rethrown) before finally executes. In the latter case, finally executes before the
exception is thrown and handled.

Listing 3-29 demonstrates the finally block in the context of a file-copying application.

Listing 3-29. Cleaning up after handling a thrown exception

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 FileInputStream fis = null;
 try
 {
 fis = new FileInputStream(args[0]);
 FileOutputStream fos = null;
 try
 {
 fos = new FileOutputStream(args[1]);
 int b; // I chose b instead of byte because byte is a reserved word.
 while ((b = fis.read()) != -1)
 fos.write(b);
 }
 catch (FileNotFoundException fnfe)
 {
 String msg = args[1]+" could not be created, possibly because "+
 "it might be a directory";
 System.err.println(msg);
 }
 catch (IOException ioe)

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

171

 {
 String msg = args[0]+" could not be read, or "+args[1]+
 " could not be written";
 System.err.println(msg);
 }
 finally
 {
 if (fos != null)
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to close "+args[1]);
 }
 }
 }
 catch (FileNotFoundException fnfe)
 {
 String msg = args[0]+" could not be found or might be a directory";
 System.err.println(msg);
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to close "+args[0]);
 }
 }
 }
}

■ Note Do not be concerned if you find this listing’s file-oriented code difficult to grasp; I will formally introduce
I/O and the listing’s file-oriented types in Chapter 8. I’m presenting this code here because file copying provides a
perfect example of the finally block.

Listing 3-29 presents an application that copies bytes from a source file to a destination file via a
nested pair of try blocks. The outer try block uses a java.io.FileInputStream object to open the source
file for reading; the inner try block uses a java.io.FileOutputStream object to create the destination file
for writing, and also contains the file-copying code.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

172

If the fis = new FileInputStream(args[0]); expression throws FileNotFoundException, execution
flows into the outer try statement’s catch (FileNotFoundException fnfe) block, which outputs a
suitable message to the user. Execution then enters the outer try statement’s finally block.

The outer try statement’s finally block closes an open source file. However, when
FileNotFoundException is thrown, the source file is not open—no reference was assigned to fis. The
finally block uses if (fis != null) to detect this situation, and does not attempt to close the file.

If fis = new FileInputStream(args[0]); succeeds, execution flows into the inner try block, which
executes fos = new FileOutputStream(args[1]);. If this expression throws FileNotFoundException,
execution moves into the inner try’s catch (FileNotFoundException fnfe) block, which outputs a
suitable message to the user.

This time, execution continues with the inner try statement’s finally block. Because the destination
file was not created, no attempt is made to close this file. In contrast, the open source file must be
closed, and this is accomplished when execution moves from the inner finally block to the outer finally
block.

FileInputStream’s and FileOutputStream’s close() methods throw IOException when a file is not
open. Because IOException is checked, these exceptions must be handled; otherwise, it would be
necessary to append a throws IOException clause to the main() method header.

You can specify a try statement with only a finally block. You would do so when you are not
prepared to handle an exception in the enclosing method (or enclosing try statement, if present), but
need to perform cleanup before the thrown exception causes execution to leave the method. Listing 3-30
provides a demonstration.

Listing 3-30. Cleaning up before handling a thrown exception

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 try
 {
 copy(args[0], args[1]);
 }
 catch (FileNotFoundException fnfe)
 {
 String msg = args[0]+" could not be found or might be a directory,"+
 " or "+args[1]+" could not be created, "+
 "possibly because "+args[1]+" is a directory";
 System.err.println(msg);
 }
 catch (IOException ioe)
 {

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

173

 String msg = args[0]+" could not be read, or "+args[1]+
 " could not be written";
 System.err.println(msg);
 }
 }
 static void copy(String srcFile, String dstFile) throws IOException
 {
 FileInputStream fis = new FileInputStream(srcFile);
 try
 {
 FileOutputStream fos = new FileOutputStream(dstFile);
 try
 {
 int b;
 while ((b = fis.read()) != -1)
 fos.write(b);
 }
 finally
 {
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to close "+dstFile);
 }
 }
 }
 finally
 {
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to close "+srcFile);
 }
 }
 }
}

Listing 3-30 provides an alternative to Listing 3-29 that attempts to be more readable. It
accomplishes this task by introducing a copy() method that uses a nested pair of try-finally constructs to
perform the file-copy operation, and also close each open file whether an exception is or is not thrown.
If the FileInputStream fis = new FileInputStream(srcFile); expression results in a thrown
FileNotFoundException, execution leaves copy() without entering the outer try statement. This
statement is only entered after the FileInputStream object has been created, indicating that the source
file was opened.

If the FileOutputStream fos = new FileOutputStream(dstFile); expression results in a thrown
FileNotFoundException, execution leaves copy() without entering the inner try statement. However,

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

174

execution leaves copy() only after entering the finally block that is mated with the outer try block. This
finally block closes the open source file.

If the read() or write() method in the inner try statement’s body throws an IOException object, the
finally block associated with the inner try block is executed. This finally block closes the open
destination file. Execution then flows into the outer finally block, which closes the open source file, and
continues on out of copy().

■ Caution If the body of a try statement throws an exception, and if the finally block results in another exception
being thrown, this new exception replaces the previous exception, which is lost.

Despite Listing 3-30 being somewhat more readable than Listing 3-29, there is still a lot of
boilerplate thanks to each finally block requiring a try statement to close a file. This boilerplate is
necessary; its removal results in a new IOException possibly being thrown from the catch block, which
would mask a previously thrown IOException.

Automatic Resource Management
Listings 3-29 and 3-30 are hideous because of the amount of code that’s necessary to ensure that each
file is closed. However, you don’t have to code this way. Instead, you can use Java’s try-with-resources
statement to automatically close resources (objects that must be closed when they are no longer needed)
on your behalf.

The try-with-resources statement minimally consists of a try block that features the following
syntax:

try ([resource declaration; ...] resource declaration)
{
 // code to execute
}

Reserved word try is followed by a round bracket-delimited and semicolon-separated list of
resource declarations. Each of the declared resources is to be closed when execution leaves the try block,
either normally or via a thrown exception. The following example uses try-with-resources to shorten
Listing 3-30’s copy() method considerably:

static void copy(String srcFile, String dstFile) throws IOException
{
 try (FileInputStream fis = new FileInputStream(srcFile);
 FileOutputStream fos = new FileOutputStream(dstFile))
 {
 int b;
 while ((b = fis.read()) != -1)
 fos.write(b);
 }
}

The example’s try-with-resources statement declares two file resources that must be closed; the
resource declarations are separated with a mandatory semicolon. When the copy() method ends

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

175

(normally or via a thrown exception), fis’s and fos’s close() methods are called, but in the opposite
order to which these resources were created (fis was created before fos). Hence, fos.close() is called
before fis.close().

Suppose that fos.write(buffer, 0, n) throws an IOException instance. Now suppose that the
behind-the-scenes fos.close() method call results in a thrown IOException instance. This latter
exception is suppressed, and the exception thrown by fos.write(buffer, 0, n) is the exception thrown
out of the copy() method. The suppressed exception can be retrieved by calling Throwable’s Throwable[]
getSuppressed() method, which I previously presented.

■ Note A try-with-resources statement can include catch and finally. These blocks are executed after all declared
resources have been closed.

To take advantage of try-with-resources with your own classes, keep in mind that a resource class
must implement the java.lang.AutoCloseable interface or its java.lang.Closeable subinterface. Each
interface provides a close() method that performs the close operation.

Unlike Closeable’s close() method, which is declared to throw only IOException (or a subtype),
AutoCloseable’s close() method is declared to throw Exception. As a result, classes that implement
AutoCloseable, Closeable, or a subinterface can declare their close() methods to throw any kind of
exception. The close() method should be declared to throw a more specific exception, or (as with
java.util.Scanner’s close() method) to not throw an exception if the method cannot fail.

■ Note Implementations of Closeable’s close() method are idempotent; subsequent calls to close() have no
effect on the resource. In contrast, implementations of AutoCloseable’s close() method are not required to be
idempotent, but making them idempotent is recommended.

Assertions
Writing source code is not an easy task. All too often, bugs (defects) are introduced into the code. When a
bug is not discovered before compiling the source code, it makes it into runtime code, which will
probably fail unexpectedly. At this point, the cause of failure can be very difficult to determine.

Developers often make assumptions about application correctness, and some developers think that
specifying comments that state their beliefs about what they think is true at the comment locations is
sufficient for determining correctness. However, comments are useless for preventing bugs because the
compiler ignores them.

Many languages address this problem by providing a language feature called assertions that lets the
developer codify assumptions about application correctness. When the application runs, and if an
assertion fails, the application terminates with a message that helps the developer diagnose the failure’s
cause.

This section introduces you to Java’s assertions language feature. After defining this term, showing
you how to declare assertions, and providing examples, the section looks at using and avoiding

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

176

assertions. Finally, you learn how to selectively enable and disable assertions via the javac compiler
tool’s command-line arguments.

Declaring Assertions
An assertion is a statement that lets you express an assumption of program correctness via a Boolean
expression. If this expression evaluates to true, execution continues with the next statement. Otherwise,
an error that identifies the cause of failure is thrown.

There are two forms of the assertion statement, each of which begins with reserved word assert:

assert expression1 ;
assert expression1 : expression2 ;

In both forms of this statement, expression1 is the Boolean expression. In the second form,
expression2 is any expression that returns a value. It cannot be a call to a method whose return type is
void.

When expression1 evaluates to false, this statement instantiates the AssertionError class. The first
statement form calls this class’s noargument constructor, which does not associate a message
identifying failure details with the AssertionError instance.

The second form calls an AssertionError constructor whose type matches the type of expression2’s
value. This value is passed to the constructor and its string representation is used as the error’s detail
message.

When the error is thrown, the name of the source file and the number of the line from where the
error was thrown are output to the console as part of the thrown error’s stack trace. In many situations,
this information is sufficient for identifying what led to the failure, and the first form of the assertion
statement should be used.

Listing 3-31 demonstrates the first form of the assertion statement.

Listing 3-31. Throwing an assertion error without a detail message

class AssertionDemo
{
 public static void main(String[] args)
 {
 int x = 1;
 assert x == 0;
 }
}

When assertions are enabled (I discuss this task later), running the previous application results in
the following output:

Exception in thread "main" java.lang.AssertionError
 at AssertionDemo.main(AssertionDemo.java:6)

In other situations, more information is needed to help diagnose the cause of failure. For example,
suppose expression1 compares variables x and y, and throws an error when x’s value exceeds y’s value.
Because this should never happen, you would probably use the second statement form to output these
values so you could diagnose the problem.

Listing 3-32 demonstrates the second form of the assertion statement.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

177

Listing 3-32. Throwing an assertion error with a detail message

class AssertionDemo
{
 public static void main(String[] args)
 {
 int x = 1;
 assert x == 0: x;
 }
}

Once again, it is assumed that assertions are enabled. Running the previous application results in
the following output:

Exception in thread "main" java.lang.AssertionError: 1
 at AssertionDemo.main(AssertionDemo.java:6)

The value in x is appended to the end of the first output line, which is somewhat cryptic. To make
this output more meaningful, you might want to specify an expression that also includes the variable’s
name: assert x == 0: "x = "+x;, for example.

Using Assertions
There are many situations where assertions should be used. These situations organize into internal
invariant, control-flow invariant, and design-by-contract categories. An invariant is something that does
not change.

Internal Invariants
An internal invariant is expression-oriented behavior that is not expected to change. For example,
Listing 3-33 introduces an internal invariant by way of chained if-else statements that output the state of
water based on its temperature.

Listing 3-33. Discovering that an internal invariant can vary

class IIDemo
{
 public static void main(String[] args)
 {
 double temperature = 50.0; // Celsius
 if (temperature < 0.0)
 System.out.println("water has solidified");
 else
 if (temperature >= 100.0)
 System.out.println("water is boiling into a gas");
 else
 {
 // temperature > 0.0 and temperature < 100.0
 assert(temperature > 0.0 && temperature < 100.0): temperature;
 System.out.println("water is remaining in its liquid state");

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

178

 }
 }
}

A developer might specify only a comment stating an assumption as to what expression causes the
final else to be reached. Because the comment might not be enough to detect the lurking < 0.0
expression bug, an assertion statement is necessary.

Another example of an internal invariant concerns a switch statement with no default case. The
default case is avoided because the developer believes that all paths have been covered. However, this is
not always true, as Listing 3-34 demonstrates.

Listing 3-34. Another buggy internal invariant

class IIDemo
{
 final static int NORTH = 0;
 final static int SOUTH = 1;
 final static int EAST = 2;
 final static int WEST = 3;
 public static void main(String[] args)
 {
 int direction = (int) (Math.random()*5);
 switch (direction)
 {
 case NORTH: System.out.println("travelling north"); break;
 case SOUTH: System.out.println("travelling south"); break;
 case EAST : System.out.println("travelling east"); break;
 case WEST : System.out.println("travelling west"); break;
 default : assert false;
 }
 }
}

Listing 3-34 assumes that the expression tested by switch will only evaluate to one of four integer
constants. However, (int) (Math.random()*5) can also return 4, causing the default case to execute
assert false;, which always throws AssertionError. (You might have to run this application a few times
to see the assertion error, but first you need to learn how to enable assertions, which I discuss later in
this chapter.)

■ Tip When assertions are disabled, assert false; does not execute and the bug goes undetected. To always
detect this bug, replace assert false; with throw new AssertionError(direction);.

Control-Flow Invariants
A control-flow invariant is a flow of control that is not expected to change. For example, Listing 3-34 uses
an assertion to test an assumption that switch’s default case will not execute. Listing 3-35, which fixes
Listing 3-34’s bug, provides another example.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

179

Listing 3-35. A buggy control-flow invariant

class CFDemo
{
 final static int NORTH = 0;
 final static int SOUTH = 1;
 final static int EAST = 2;
 final static int WEST = 3;
 public static void main(String[] args)
 {
 int direction = (int)(Math.random()*4);
 switch (direction)
 {
 case NORTH: System.out.println("travelling north"); break;
 case SOUTH: System.out.println("travelling south"); break;
 case EAST : System.out.println("travelling east"); break;
 case WEST : System.out.println("travelling west");
 default : assert false;
 }
 }
}

Because the original bug has been fixed, the default case should never be reached. However, the
omission of a break statement that terminates case WEST causes execution to reach the default case. This
control-flow invariant has been broken. (Again, you might have to run this application a few times to see
the assertion error, but first you need to learn how to enable assertions, which I discuss later in this
chapter.)

■ Caution Be careful when using an assertion statement to detect code that should never be executed. If the
assertion statement cannot be reached according to the rules set forth in The Java Language Specification, Third
Edition, by James Gosling, Bill Joy, Guy Steele, and Gilad Bracha (Addison-Wesley, 2005; ISBN: 0321246780) (also
available at (http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html), the compiler will
report an error. For example, for(;;); assert false; causes the compiler to report an error because the
infinite for loop prevents the assertion statement from executing.

Design-by-Contract
Design-by-Contract (see http://en.wikipedia.org/wiki/Design_by_contract) is a way to design software
based on preconditions, postconditions, and invariants (internal, control-flow, and class). Assertion
statements support an informal design-by-contract style of development.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://en.wikipedia.org/wiki/Design_by_contract

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

180

Preconditions

A precondition is something that must be true when a method is called. Assertion statements are often
used to satisfy a helper method’s preconditions by checking that its arguments are legal. Listing 3-36
provides an example.

Listing 3-36. Verifying a precondition

class Lotto649
{
 public static void main(String[] args)
 {
 // Lotto 649 requires that six unique numbers be chosen.
 int[] selectedNumbers = new int[6];
 // Assign a unique random number from 1 to 49 (inclusive) to each slot
 // in the selectedNumbers array.
 for (int slot = 0; slot < selectedNumbers.length; slot++)
 {
 int num;
 // Obtain a random number from 1 to 49. That number becomes the
 // selected number if it has not previously been chosen.
 try_again:
 do
 {
 num = rnd(49)+1;
 for (int i = 0; i < slot; i++)
 if (selectedNumbers[i] == num)
 continue try_again;
 break;
 }
 while (true);
 // Assign selected number to appropriate slot.
 selectedNumbers[slot] = num;
 }
 // Sort all selected numbers into ascending order and then print these
 // numbers.
 sort(selectedNumbers);
 for (int i = 0; i < selectedNumbers.length; i++)
 System.out.print(selectedNumbers[i]+" ");
 }
 static int rnd(int limit)
 {
 // This method returns a random number (actually, a pseudorandom number)
 // ranging from 0 through limit-1 (inclusive).
 assert limit > 1: "limit = "+limit;
 return (int) (Math.random()*limit);
 }
 static void sort(int[] x)
 {
 // This method sorts the integers in the passed array into ascending
 // order.
 for (int pass = 0; pass < x.length-1; pass++)

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

181

 for (int i = x.length-1; i > pass; i--)
 if (x[i] < x[pass])
 {
 int temp = x[i];
 x[i] = x[pass];
 x[pass] = temp;
 }
 }
}

Listing 3-36’s application simulates Lotto 6/49, one of Canada’s national lottery games. The rnd()
helper method returns a randomly chosen integer between 0 and limit-1. An assertion statement
verifies the precondition that limit’s value must be 2 or higher.

■ Note The sort() helper method sorts (orders) the selectedNumbers array’s integers into ascending order by
implementing an algorithm (a recipe for accomplishing some task) called Bubble Sort.

Bubble Sort works by making multiple passes over the array. During each pass, various comparisons and swaps
ensure that the next smallest element value “bubbles” toward the top of the array, which would be the element at
index 0.

Bubble Sort is not efficient, but is more than adequate for sorting a six-element array. Although I could have used
one of the efficient sort() methods located in the java.util package’s Arrays class (for example,
Arrays.sort(selectedNumbers); accomplishes the same objective as Listing 3-36’s sort(selectedNumbers);
method call, but does so more efficiently), I chose to use Bubble Sort because I prefer to wait until Chapter 5
before getting into the Arrays class.

Postconditions

A postcondition is something that must be true after a method successfully completes. Assertion
statements are often used to satisfy a helper method’s postconditions by checking that its result is legal.
Listing 3-37 provides an example.

Listing 3-37. Verifying a postcondition as well as preconditions

class MergeArrays
{
 public static void main(String[] args)
 {
 int[] x = { 1, 2, 3, 4, 5 };
 int[] y = { 1, 2, 7, 9 };
 int[] result = merge(x, y);
 for (int i = 0; i < result.length; i++)

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

182

 System.out.println(result[i]);
 }
 static int[] merge(int[] a, int[] b)
 {
 if (a == null)
 throw new NullPointerException("a is null");
 if (b == null)
 throw new NullPointerException("b is null");
 int[] result = new int[a.length+b.length];
 // Precondition
 assert result.length == a.length+b.length: "length mismatch";
 for (int i = 0; i < a.length; i++)
 result[i] = a[i];
 for (int i = 0; i < b.length; i++)
 result[a.length+i-1] = b[i];
 // Postcondition
 assert containsAll(result, a, b): "value missing from array";
 return result;
 }
 static boolean containsAll(int[] result, int[] a, int[] b)
 {
 for (int i = 0; i < a.length; i++)
 if (!contains(result, a[i]))
 return false;
 for (int i = 0; i < b.length; i++)
 if (!contains(result, b[i]))
 return false;
 return true;
 }
 static boolean contains(int[] a, int val)
 {
 for (int i = 0; i < a.length; i++)
 if (a[i] == val)
 return true;
 return false;
 }
}

Listing 3-37 uses an assertion statement to verify the postcondition that all the values in the two
arrays being merged are present in the merged array. The postcondition is not satisfied, however,
because this listing contains a bug.

Listing 3-37 also shows preconditions and postconditions being used together. The solitary
precondition verifies that the merged array length equals the lengths of the arrays being merged prior to
the merge logic.

Class Invariants

A class invariant is a kind of internal invariant that applies to every instance of a class at all times, except
when an instance is transitioning from one consistent state to another.

For example, suppose instances of a class contain arrays whose values are sorted in ascending
order. You might want to include an isSorted() method in the class that returns true if the array is still

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

183

sorted, and verify that each constructor and method that modifies the array specifies assert
isSorted(); prior to exit, to satisfy the assumption that the array is still sorted when the
constructor/method exists.

Avoiding Assertions
Although there are many situations where assertions should be used, there also are situations where
they should be avoided. For example, you should not use assertions to check the arguments that are
passed to public methods, for the following reasons:

• Checking a public method’s arguments is part of the contract that exists between
the method and its caller. If you use assertions to check these arguments, and if
assertions are disabled, this contract is violated because the arguments will not be
checked.

• Assertions also prevent appropriate exceptions from being thrown. For example,
when an illegal argument is passed to a public method, it is common to throw
IllegalArgumentException or NullPointerException. However, AssertionError is
thrown instead.

You should also avoid using assertions to perform work required by the application to function
correctly. This work is often performed as a side effect of the assertion’s Boolean expression. When
assertions are disabled, the work is not performed.

For example, suppose you have a list of Employee objects and a few null references that are also
stored in this list, and you want to remove all the null references. It would not be correct to remove these
references via the following assertion statement:

assert employees.removeAll(null);

Although the assertion statement will not throw AssertionError because there is at least one null
reference in the employees list, the application that depends upon this statement executing will fail when
assertions are disabled.

Instead of depending on the former code to remove the null references, you would be better off
using code similar to the following:

boolean allNullsRemoved = employees.removeAll(null);
assert allNullsRemoved;

This time, all null references are removed regardless of whether assertions are enabled or disabled,
and you can still specify an assertion to verify that nulls were removed.

Enabling and Disabling Assertions
The compiler records assertions in the classfile. However, assertions are disabled at runtime because
they can affect performance. An assertion might call a method that takes awhile to complete, and this
would impact the running application’s performance.

You must enable the classfile’s assertions before you can test assumptions about the behaviors of
your classes. Accomplish this task by specifying the -enableassertions or -ea command-line option
when running the java application launcher tool.

The -enableassertions and -ea command-line options let you enable assertions at various
granularities based upon one of the following arguments (except for the noargument scenario, you must
use a colon to separate the option from its argument):

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

184

• No argument: Assertions are enabled in all classes except system classes.

• PackageName...: Assertions are enabled in the specified package and its
subpackages by specifying the package name followed by

• ...: Assertions are enabled in the unnamed package, which happens to be
whatever directory is current.

• ClassName: Assertions are enabled in the named class by specifying the class name.

For example, you can enable all assertions except system assertions when running the MergeArrays
application via java -ea MergeArrays. Also, you could enable any assertions in this chapter’s logging
package by specifying java -ea:logging TestLogger.

Assertions can be disabled, and also at various granularities, by specifying either of the -
disableassertions or -da command-line options. These options take the same arguments as -
enableassertions and -ea.

For example, java -ea -da:loneclass mainclass enables all assertions except for those in
loneclass. (loneclass and mainclass are placeholders for the actual classes that you specify.)

The previous options apply to all classloaders (discussed in Appendix C). Except when taking no
arguments, they also apply to system classes. This exception simplifies the enabling of assertion
statements in all classes except for system classes, which is often desirable.

To enable system assertions, specify either -enablesystemassertions or -esa; for example, java -esa
-ea:logging TestLogger. Specify either -disablesystemassertions or -dsa to disable system assertions.

Annotations
While developing a Java application, you might want to annotate various application elements, or
associate metadata (data that describes other data) with them. For example, you might want to identify
methods that are not fully implemented so that you will not forget to implement them. Java’s
annotations language feature lets you accomplish this task.

This section introduces you to annotations. After defining this term and presenting three kinds of
compiler-supported annotations as examples, the section shows you how to declare your own
annotation types and use these types to annotate source code. Finally, you discover how to process your
own annotations to accomplish useful tasks.

■ Note Java has always supported ad hoc annotation mechanisms. For example, the java.lang.Cloneable
interface identifies classes whose instances can be shallowly cloned via Object’s clone() method, the
transient reserved word marks fields that are to be ignored during serialization (discussed in Chapter 8), and the
@deprecated javadoc tag documents methods that are no longer supported. Java 6 formalized the need for
annotations by introducing the annotations language feature.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

185

Discovering Annotations
An annotation is an instance of an annotation type and associates metadata with an application
element. It is expressed in source code by prefixing the type name with the @ symbol. For example,
@Readonly is an annotation and Readonly is its type.

■ Note You can use annotations to associate metadata with constructors, fields, local variables, methods,
packages, parameters, and types (annotation, class, enum, and interface).

The compiler supports the Override, Deprecated, SuppressWarnings, and SafeVarargs annotation
types. These types are located in the java.lang package.

@Override annotations are useful for expressing that a subclass method overrides a method in the
superclass, and does not overload that method instead. The following example reveals this annotation
being used to prefix the overriding method:

@Override
public void draw(int color)
{
 // drawing code
}

@Deprecated annotations are useful for indicating that the marked application element is deprecated
(phased out) and should no longer be used. The compiler warns you when a deprecated application
element is accessed by nondeprecated code.

In contrast, the @deprecated javadoc tag and associated text warns you against using the deprecated
item, and tells you what to use instead. The following example demonstrates that @Deprecated and
@deprecated can be used together:

/**
 * Allocates a <code>Date</code> object and initializes it so that
 * it represents midnight, local time, at the beginning of the day
 * specified by the <code>year</code>, <code>month</code>, and
 * <code>date</code> arguments.
 *
 * @param year the year minus 1900.
 * @param month the month between 0-11.
 * @param date the day of the month between 1-31.
 * @see java.util.Calendar
 * @deprecated As of JDK version 1.1,
 * replaced by <code>Calendar.set(year + 1900, month, date)</code>
 * or <code>GregorianCalendar(year + 1900, month, date)</code>.
 */
@Deprecated
public Date(int year, int month, int date)
{
 this(year, month, date, 0, 0, 0);
}

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

186

This example excerpts one of the constructors in Java’s Date class (located in the java.util
package). Its Javadoc comment reveals that Date(int year, int month, int date) has been deprecated
in favor of using the set() method in the Calendar class (also located in the java.util package). (I
explore Date and Calendar in Appendix C.)

The compiler suppresses warnings when a compilation unit (typically a class or interface) refers to a
deprecated class, method, or field. This feature lets you modify legacy APIs without generating
deprecation warnings, and is demonstrated in Listing 3-38.

Listing 3-38. Referencing a deprecated field from within the same class declaration

class Employee
{
 /**
 * Employee’s name
 * @deprecated New version uses firstName and lastName fields.
 */
 @Deprecated
 String name;
 String firstName;
 String lastName;
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

Listing 3-38 declares an Employee class with a name field that has been deprecated. Although
Employee’s main() method refers to name, the compiler will suppress a deprecation warning because the
deprecation and reference occur in the same class.

Suppose you refactor this listing by introducing a new UseEmployee class and moving Employee’s
main() method to this class. Listing 3-39 presents the resulting class structure.

Listing 3-39. Referencing a deprecated field from within another class declaration

class Employee
{
 /**
 * Employee’s name
 * @deprecated New version uses firstName and lastName fields.
 */
 @Deprecated
 String name;
 String firstName;
 String lastName;
}
class UseEmployee
{
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

187

 }
}

If you attempt to compile this source code via the javac compiler tool, you will discover the
following messages:

Note: Employee.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

You will need to specify -Xlint:deprecation as one of javac’s command-line arguments (as in javac
-Xlint:deprecation Employee.java) to discover the deprecated item and the code that refers to this
item:

Employee.java:17: warning: [deprecation] name in Employee has been deprecated
 emp.name = "John Doe";
 ^
1 warning

@SuppressWarnings annotations are useful for suppressing deprecation or unchecked warnings via a
"deprecation" or "unchecked" argument. (Unchecked warnings occur when mixing code that uses
generics with pre-generics legacy code. I discuss generics and unchecked warnings later in this chapter.)

For example, Listing 3-40 uses @SuppressWarnings with a "deprecation" argument to suppress the
compiler’s deprecation warnings when code within the UseEmployee class’s main() method accesses the
Employee class’s name field.

Listing 3-40. Suppressing the previous deprecation warning

class Employee
{
 /**
 * Employee’s name
 * @deprecated New version uses firstName and lastName fields.
 */
 @Deprecated
 String name;
 String firstName;
 String lastName;
}
class UseEmployee
{
 @SuppressWarnings("deprecation")
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

188

■ Note As a matter of style, you should always specify @SuppressWarnings on the most deeply nested element
where it is effective. For example, if you want to suppress a warning in a particular method, you should annotate
that method rather than its class.

Finally, @SafeVarargs annotations are useful for asserting that the body of the annotated method or
constructor does not perform potentially unsafe operations on its variable number of arguments
parameter. I’ll have more to say about this annotation when I present generics later in this chapter.

Declaring Annotation Types and Annotating Source Code
Before you can annotate source code, you need annotation types that can be instantiated. Java supplies
many annotation types as well as Override, Deprecated, SuppressWarnings, and SafeVarargs. Java also
lets you declare your own types.

You declare an annotation type by specifying the @ symbol, immediately followed by reserved word
interface, followed by the type’s name, followed by a body. For example, Listing 3-41 uses @interface to
declare an annotation type named Stub.

Listing 3-41. Declaring the Stub annotation type

public @interface Stub
{
}

Instances of annotation types that supply no data apart from a name – their bodies are empty – are
known as marker annotations because they mark application elements for some purpose. As Listing 3-42
reveals, @Stub is used to mark empty methods (stubs).

Listing 3-42. Annotating a stubbed-out method

public class Deck // Describes a deck of cards.
{
 @Stub
 public void shuffle()
 {
 // This method is empty and will presumably be filled in with appropriate
 // code at some later date.
 }
}

Listing 3-42’s Deck class declares an empty shuffle() method. This fact is indicated by instantiating
Stub and prefixing shuffle()’s method header with the resulting @Stub annotation.

■ Note Although marker interfaces (introduced in Chapter 2) appear to have been replaced by marker annotations,
this is not the case, because marker interfaces have advantages over marker annotations. One advantage is that a

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

189

marker interface specifies a type that is implemented by a marked class, which lets you catch problems at
compile time. For example, if a class does not implement the Cloneable interface, its instances cannot be
shallowly cloned via Object’s clone() method. If Cloneable had been implemented as a marker annotation, this
problem would not be detected until runtime.

Although marker annotations are useful (@Override and @Deprecated are good examples), you will
typically want to enhance an annotation type so that you can store metadata via its instances. You
accomplish this task by adding elements to the type.

An element is a method header that appears in the annotation type’s body. It cannot have
parameters or a throws clause, and its return type must be a primitive type (such as int), String, Class,
an enum, an annotation type, or an array of the preceding types. However, it can have a default value.

Listing 3-43 adds three elements to Stub.

Listing 3-43. Adding three elements to the Stub annotation type

public @interface Stub
{
 int id(); // A semicolon must terminate an element declaration.
 String dueDate();
 String developer() default "unassigned";
}

The id() element specifies a 32-bit integer that identifies the stub. The dueDate() element specifies
a String-based date that identifies when the method stub is to be implemented. Finally, developer()
specifies the String-based name of the developer responsible for coding the method stub.

Unlike id() and dueDate(), developer() is declared with a default value, "unassigned". When you
instantiate Stub and do not assign a value to developer() in that instance, as is the case with Listing 3-44,
this default value is assigned to developer().

Listing 3-44. Initializing a Stub instance’s elements

public class Deck
{
 @Stub
 (
 id = 1,
 dueDate = "12/21/2012"
)
 public void shuffle()
 {
 }
}

Listing 3-44 reveals one @Stub annotation that initializes its id() element to 1 and its dueDate()
element to "12/21/2012". Each element name does not have a trailing (), and the comma-separated list
of two element initializers appears between (and).

Suppose you decide to replace Stub’s id(), dueDate(), and developer() elements with a single
String value() element whose string specifies comma-separated ID, due date, and developer name
values. Listing 3-45 shows you two ways to initialize value.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

190

Listing 3-45. Initializing each Stub instance’s value() element

public class Deck
{
 @Stub(value = "1,12/21/2012,unassigned")
 public void shuffle()
 {
 }
 @Stub("2,12/21/2012,unassigned")
 public Card[] deal(int ncards)
 {
 return null;
 }
}

Listing 3-45 reveals special treatment for the value() element. When it is an annotation type’s only
element, you can omit value()’s name and = from the initializer. I used this fact to specify
@SuppressWarnings("deprecation") in Listing 3-40.

Using Meta-Annotations in Annotation Type Declarations
Each of the Override, Deprecated, and SuppressWarnings annotation types is itself annotated with meta-
annotations (annotations that annotate annotation types). For example, Listing 3-46 shows you that the
SuppressWarnings annotation type is annotated with two meta-annotations.

Listing 3-46. The annotated SuppressWarnings type declaration

@Target({TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL_VARIABLE})
@Retention(RetentionPolicy.SOURCE)
public @interface SuppressWarnings

The Target annotation type, which is located in the java.lang.annotation package, identifies the
kinds of application elements to which an annotation type applies. @Target indicates that
@SuppressWarnings annotations can be used to annotate types, fields, methods, parameters,
constructors, and local variables.

Each of TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, and LOCAL_VARIABLE is a member of the
ElementType enum, which is also located in the java.lang.annotation package.

The { and } characters surrounding the comma-separated list of values assigned to Target’s value()
element signify an array—value()’s return type is String[]. Although these braces are necessary (unless
the array consists of one item), value= could be omitted when initializing @Target because Target
declares only a value() element.

The Retention annotation type, which is located in the java.lang.annotation package, identifies the
retention (also known as lifetime) of an annotation type’s annotations. @Retention indicates that
@SuppressWarnings annotations have a lifetime that is limited to source code—they do not exist after
compilation.

SOURCE is one of the members of the RetentionPolicy enum (located in the java.lang.annotation
package). The other members are CLASS and RUNTIME. These three members specify the following
retention policies:

• CLASS: The compiler records annotations in the classfile, but the JVM does not
retain them (to save memory space). This policy is the default.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

191

• RUNTIME: The compiler records annotations in the classfile, and the JVM retains
them so that they can be read via the Reflection API (discussed in Chapter 4) at
runtime.

• SOURCE: The compiler discards annotations after using them.

There are two problems with the Stub annotation types shown in Listings 3-41 and 3-43. First, the
lack of an @Target meta-annotation means that you can annotate any application element @Stub.
However, this annotation only makes sense when applied to methods and constructors. Check out
Listing 3-47.

Listing 3-47. Annotating undesirable application elements

@Stub("1,12/21/2012,unassigned")
public class Deck
{
 @Stub("2,12/21/2012,unassigned")
 private Card[] cardsRemaining = new Card[52];
 @Stub("3,12/21/2012,unassigned")
 public Deck()
 {
 }
 @Stub("4,12/21/2012,unassigned")
 public void shuffle()
 {
 }
 @Stub("5,12/21/2012,unassigned")
 public Card[] deal(@Stub("5,12/21/2012,unassigned") int ncards)
 {
 return null;
 }
}

Listing 3-47 uses @Stub to annotate the Deck class, the cardsRemaining field, and the ncards parameter as
well as annotating the constructor and the two methods. The first three application elements are
inappropriate to annotate because they are not stubs.

You can fix this problem by prefixing the Stub annotation type declaration with
@Target({ElementType.METHOD, ElementType.CONSTRUCTOR}) so that Stub only applies to methods and
constructors. After doing this, the javac compiler tool will output the following error messages when you
attempt to compile Listing 3-47:

Deck.java:1: error: annotation type not applicable to this kind of declaration
@Stub("1,12/21/2012,unassigned")
^
Deck.java:4: error: annotation type not applicable to this kind of declaration
 @Stub("2,12/21/2012,unassigned")
 ^
Deck.java:15: error: annotation type not applicable to this kind of declaration
 public Card[] deal(@Stub("5,12/21/2012,unassigned") int ncards)
 ^
3 errors

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

192

The second problem is that the default CLASS retention policy makes it impossible to process @Stub
annotations at runtime. You can fix this problem by prefixing the Stub type declaration with
@Retention(RetentionPolicy.RUNTIME).

Listing 3-48 presents the Stub annotation type with the desired @Target and @Retention meta-
annotations.

Listing 3-48. A revamped Stub annotation type

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target({ElementType.METHOD, ElementType.CONSTRUCTOR})
@Retention(RetentionPolicy.RUNTIME)
public @interface Stub
{
 String value();
}

■ Note Java also provides Documented and Inherited meta-annotation types in the java.lang.annotation
package. Instances of @Documented-annotated annotation types are to be documented by javadoc and similar
tools, whereas instances of @Inherited-annotated annotation types are automatically inherited. According to
Inherited’s Java documentation, if “the user queries the annotation type on a class declaration, and the class
declaration has no annotation for this type, then the class’s superclass will automatically be queried for the
annotation type. This process will be repeated until an annotation for this type is found, or the top of the class
hierarchy (Object) is reached. If no superclass has an annotation for this type, then the query will indicate that the
class in question has no such annotation.”

Processing Annotations
It is not enough to declare an annotation type and use that type to annotate source code. Unless you do
something specific with those annotations, they remain dormant. One way to accomplish something
specific is to write an application that processes the annotations. Listing 3-49’s StubFinder application
does just that.

Listing 3-49. The StubFinder application

import java.lang.reflect.Method;

class StubFinder
{
 public static void main(String[] args) throws Exception
 {

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

193

 if (args.length != 1)
 {
 System.err.println("usage: java StubFinder classfile");
 return;
 }
 Method[] methods = Class.forName(args[0]).getMethods();
 for (int i = 0; i < methods.length; i++)
 if (methods[i].isAnnotationPresent(Stub.class))
 {
 Stub stub = methods[i].getAnnotation(Stub.class);
 String[] components = stub.value().split(",");
 System.out.println("Stub ID = "+components[0]);
 System.out.println("Stub Date = "+components[1]);
 System.out.println("Stub Developer = "+components[2]);
 System.out.println();
 }
 }
}

StubFinder loads a classfile whose name is specified as a command-line argument, and outputs the
metadata associated with each @Stub annotation that precedes each public method header. These
annotations are instances of Listing 3-48’s Stub annotation type.

StubFinder next uses a special class named Class (in the java.lang package) and its forName() class
method to load a classfile. Class also provides a getMethods() method that returns an array of Method
objects describing the loaded class’s public methods.

For each loop iteration, a Method object’s isAnnotationPresent() method is called to determine if
the method is annotated with the annotation described by the Stub class (referred to as Stub.class).

If isAnnotationPresent() returns true, Method’s getAnnotation() method is called to return the
annotation Stub instance. This instance’s value() method is called to retrieve the string stored in the
annotation.

Next, String’s split() method is called to split the string’s comma-separated list of ID, date, and
developer values into an array of String objects. Each object is then output along with descriptive text.

Class’s forName() method is capable of throwing various exceptions that must be handled or
explicitly declared as part of a method’s header. For simplicity, I chose to append a throws Exception
clause to the main() method’s header.

■ Caution There are two problems with throws Exception. First, it is better to handle the exception and present
a suitable error message than to “pass the buck” by throwing it out of main(). Second, Exception is generic—it
hides the names of the kinds of exceptions that are thrown. However, it is convenient to specify throws
Exception in a throwaway utility.

Do not be concerned if you do not understand Class, forName(), getMethods(), Method,
isAnnotationPresent(), .class, getAnnotation(), and split(). You will learn about these items in
Chapter 4.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

194

After compiling StubFinder (javac StubFinder.java), Stub (javac Stub.java), and Listing 3-45’s
Deck class (javac Deck.java), run StubFinder with Deck as its single command-line argument (java
StubFinder Deck). You will observe the following output:

Stub ID = 2
Stub Date = 12/21/2012
Stub Developer = unassigned

Stub ID = 1
Stub Date = 12/21/2012
Stub Developer = unassigned

If you expected the output to reflect the order of appearance of @Stub annotations in Deck.java, you
are probably surprised by the output’s unsorted order. This lack of order is caused by getMethods().
According to this method’s Java documentation, “the elements in the array returned are not sorted and
are not in any particular order.”

■ Note Java 5 introduced an apt tool for processing annotations. This tool’s functionality has been integrated into
the compiler beginning with Java 6 – apt is being phased out. My “Java Tools Annotation Processors” tutorial
(http://tutortutor.ca/cgi-bin/makepage.cgi?/tutorials/ct/jtap) provides a tutorial on using the Java
compiler to process annotations.

Generics
Java 5 introduced generics, language features for declaring and using type-agnostic classes and
interfaces. When working with Java’s Collections Framework (which I introduce in Chapter 5), these
features help you avoid thrown instances of the java.lang.ClassCastException class.

■ Note Although the main use for generics is the Collections Framework, Java’s class library also contains
generified (retrofitted to make use of generics) classes that have nothing to do with this framework:
java.lang.Class, java.lang.ThreadLocal, and java.lang.ref.WeakReference are three examples.

This section introduces you to generics. You first learn how generics promote type safety in the
context of the Collections Framework classes, and then you explore generics in the contexts of generic
types and generic methods. After learning about generics in the context of arrays, you learn how to use
the SafeVarargs annotation type.

http://tutortutor.ca/cgi-bin/makepage.cgi?/tutorials/ct/jtap

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

195

Collections and the Need for Type Safety
Java’s Collections Framework makes it possible to store objects in various kinds of object containers
(known as collections) and later retrieve those objects. For example, you can store objects in a list, a set,
or a map. You can then retrieve a single object, or iterate over the collection and retrieve all objects.

Before Java 5 overhauled the Collections Framework to take advantage of generics, there was no way
to prevent a collection from containing objects of mixed types. The compiler did not check an object’s
type to see if it was suitable before it was added to a collection, and this lack of static type checking led to
ClassCastExceptions.

Listing 3-50 demonstrates how easy it is to generate a ClassCastException.

Listing 3-50. Lack of type safety leading to a ClassCastException at runtime

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

class Employee
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 String getName()
 {
 return name;
 }
}
class TypeSafety
{
 public static void main(String[] args)
 {
 List employees = new ArrayList();
 employees.add(new Employee("John Doe"));
 employees.add(new Employee("Jane Smith"));
 employees.add("Jack Frost");
 Iterator iter = employees.iterator();
 while (iter.hasNext())
 {
 Employee emp = (Employee) iter.next();
 System.out.println(emp.getName());
 }
 }
}

Listing 3-50’s main() method first instantiates java.util.ArrayList, and then uses this list collection
object’s reference to add a pair of Employee objects to the list. It then adds a String object, which violates
the implied contract that ArrayList is supposed to store only Employee objects.

Moving on, main() obtains a java.util.Iterator instance for iterating over the list of Employees. As
long as Iterator’s hasNext() method returns true, its next() method is called to return an object stored
in the array list.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

196

The Object that next() returns must be downcast to Employee so that the Employee object’s
getName() method can be called to return the employee’s name. The string that this method returns is
then output to the standard output device via System.out.println().

The (Employee) cast checks the type of each object returned by next() to make sure that it is
Employee. Although this is true of the first two objects, it is not true of the third object. Attempting to cast
"Jack Frost" to Employee results in a ClassCastException.

The ClassCastException occurs because of an assumption that a list is homogenous. In other words,
a list stores only objects of a single type or a family of related types. In reality, the list is heterogeneous in
that it can store any Object.

Listing 3-51’s generics-based homogenous list avoids ClassCastException.

Listing 3-51. Lack of type safety leading to a compiler error

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

class Employee
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 String getName()
 {
 return name;
 }
}
class TypeSafety
{
 public static void main(String[] args)
 {
 List<Employee> employees = new ArrayList<Employee>();
 employees.add(new Employee("John Doe"));
 employees.add(new Employee("Jane Smith"));
 employees.add("Jack Frost");
 Iterator<Employee> iter = employees.iterator();
 while (iter.hasNext())
 {
 Employee emp = iter.next();
 System.out.println(emp.getName());
 }
 }
}

Listing 3-51’s refactored main() method illustrates the central feature of generics, which is the
parameterized type (a class or interface name followed by an angle bracket-delimited type list identifying
what kinds of objects are legal in that context).

For example, List<Employee> indicates only Employee objects can be stored in the List. As shown,
the <Employee> designation can be repeated with ArrayList, as in Arraylist<Employee>, which is the
collection implementation that stores the Employees. Because the compiler can figure out this type

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

197

argument from the context, you can omit the redundant Employee type name from between ArrayList’s
< and > characters, resulting in List<Employee> employees = new ArrayList<>();.

■ Note Because of its appearance, many developers refer to the <> character sequence as the diamond operator.
I don’t regard <> as a true operator, which is why I don’t include it in Table 1-3’s list of Java operators.

Also, Iterator<Employee>—you cannot use the diamond operator in this context—indicates that
iterator() returns an Iterator whose next() method returns only Employee objects. It is not necessary
to cast iter.next()’s returned value to Employee because the compiler inserts the cast on your behalf.

If you attempt to compile this listing, the compiler will report an error when it encounters
employees.add("Jack Frost");. The error message will tell you that the compiler cannot find an
add(java.lang.String) method in the java.util.List<Employee> interface.

Unlike in the pre-generics List interface, which declares an add(Object) method, the generified
List interface’s add() method parameter reflects the interface’s parameterized type name. For example,
List<Employee> implies add(Employee).

Listing 3-50 revealed that the unsafe code causing the ClassCastException (employees.add("Jack
Frost");) and the code that triggers the exception ((Employee) iter.next()) are quite close. However,
they are often farther apart in larger applications.

Rather than having to deal with angry clients while hunting down the unsafe code that ultimately
led to the ClassCastException, you can rely on the compiler saving you this frustration and effort by
reporting an error when it detects this code during compilation. Detecting type safety violations at
compile time is the benefit of using generics.

Generic Types
A generic type is a class or interface that introduces a family of parameterized types by declaring a formal
type parameter list (a comma-separated list of type parameter names between angle brackets). This
syntax is expressed as follows:

class identifier<formal_type_parameter_list> {}
interface identifier<formal_type_parameter_list> {}

For example, List<E> is a generic type, where List is an interface and type parameter E identifies the
list’s element type. Similarly, Map<K, V> is a generic type, where Map is an interface and type parameters K
and V identify the map’s key and value types.

■ Note When declaring a generic type, it is conventional to specify single uppercase letters as type parameter
names. Furthermore, these names should be meaningful. For example, E indicates element, T indicates type, K
indicates key, and V indicates value. If possible, you should avoid choosing a type parameter name that is
meaningless where it is used. For example, List<E> means list of elements, but what does List<S> mean?

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

198

Parameterized types instantiate generic types. Each parameterized type replaces the generic type’s
type parameters with type names. For example, List<Employee> (List of Employee) and List<String>
(List of String) are examples of parameterized types based on List<E>. Similarly, Map<String,
Employee> is an example of a parameterized type based on Map<K, V>.

The type name that replaces a type parameter is known as an actual type argument. Generics
supports five kinds of actual type arguments:

• Concrete type: The name of a class or interface is passed to the type parameter. For
example, List<Employee> employees; specifies that the list elements are Employee
instances.

• Concrete parameterized type: The name of a parameterized type is passed to the
type parameter. For example, List<List<String>> nameLists; specifies that the
list elements are lists of strings.

• Array type: An array is passed to the type parameter. For example, List<String[]>
countries; specifies that the list elements are arrays of Strings, possibly city
names.

• Type parameter: A type parameter is passed to the type parameter. For example,
given class declaration class X<E> { List<E> queue; }, X’s type parameter E is
passed to List’s type parameter E.

• Wildcard: The ? is passed to the type parameter, indicating an unknown actual
type argument. For example, List<?> list; specifies that the list elements are
unknown. You will learn about wildcards later in the chapter.

A generic type also identifies a raw type, which is a generic type without its type parameters. For
example, List<Employee>’s raw type is List. Raw types are nongeneric and can hold any Object.

■ Note Java allows raw types to be intermixed with generic types to support the vast amount of legacy code that
was written prior to the arrival of generics. However, the compiler outputs a warning message whenever it
encounters a raw type in source code.

Declaring and Using Your Own Generic Types
It is not difficult to declare your own generic types. In addition to specifying a formal type parameter list,
your generic type specifies its type parameter(s) throughout its implementation. For example, Listing 3-
52 declares a Queue<E> generic type.

Listing 3-52. Declaring and using a Queue<E> generic type

class Queue<E>
{
 private E[] elements;
 private int head, tail;
 @SuppressWarnings("unchecked")
 Queue(int size)

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

199

 {
 if (size < 2)
 throw new IllegalArgumentException(""+size);
 elements = (E[]) new Object[size];
 head = 0;
 tail = 0;
 }
 void insert(E element) throws QueueFullException
 {
 if (isFull())
 throw new QueueFullException();
 elements[tail] = element;
 tail = (tail+1)%elements.length;
 }
 E remove() throws QueueEmptyException
 {
 if (isEmpty())
 throw new QueueEmptyException();
 E element = elements[head];
 head = (head+1)%elements.length;
 return element;
 }
 boolean isEmpty()
 {
 return head == tail;
 }
 boolean isFull()
 {
 return (tail+1)%elements.length == head;
 }
 public static void main(String[] args)
 throws QueueFullException, QueueEmptyException
 {
 Queue<String> queue = new Queue<>(6);
 System.out.println("Empty: "+queue.isEmpty());
 System.out.println("Full: "+queue.isFull());
 System.out.println("Adding A");
 queue.insert("A");
 System.out.println("Adding B");
 queue.insert("B");
 System.out.println("Adding C");
 queue.insert("C");
 System.out.println("Adding D");
 queue.insert("D");
 System.out.println("Adding E");
 queue.insert("E");
 System.out.println("Empty: "+queue.isEmpty());
 System.out.println("Full: "+queue.isFull());
 System.out.println("Removing "+queue.remove());
 System.out.println("Empty: "+queue.isEmpty());
 System.out.println("Full: "+queue.isFull());
 System.out.println("Adding F");

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

200

 queue.insert("F");
 while (!queue.isEmpty())
 System.out.println("Removing "+queue.remove());
 System.out.println("Empty: "+queue.isEmpty());
 System.out.println("Full: "+queue.isFull());
 }
}
class QueueEmptyException extends Exception
{
}
class QueueFullException extends Exception
{
}

Listing 3-52 declares Queue, QueueEmptyException, and QueueFullException classes. The latter two
classes describe checked exceptions that are thrown from methods of the former class.

Queue implements a queue, a data structure that stores elements in first-in, first-out order. An
element is inserted at the tail and removed at the head. The queue is empty when the head equals the
tail, and full when the tail is one less than the head. As a result, a queue of size n can store a maximum of
n-1 elements.

Notice that Queue<E>’s E type parameter appears throughout the source code. For example, E
appears in the elements array declaration to denote the array’s element type. E is also specified as the
type of insert()’s parameter and as remove()’s return type.

E also appears in elements = (E[]) new Object[size];. (I will explain later why I specified this
expression instead of specifying the more compact elements = new E[size]; expression.)

The E[] cast results in the compiler warning about this cast being unchecked. The compiler is
concerned that downcasting from Object[] to E[] might result in a violation of type safety because any
kind of object can be stored in Object[].

The compiler’s concern is not justified in this example. There is no way that a non-E object can
appear in the E[] array. Because the warning is meaningless in this context, it is suppressed by prefixing
the constructor with @SuppressWarnings("unchecked").

■ Caution Be careful when suppressing an unchecked warning. You must first prove that a ClassCastException
cannot occur, and then you can suppress the warning.

When you run this application, it generates the following output:

Empty: true
Full: false
Adding A
Adding B
Adding C
Adding D
Adding E
Empty: false
Full: true
Removing A
Empty: false

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

201

Full: false
Adding F
Removing B
Removing C
Removing D
Removing E
Removing F
Empty: true
Full: false

Type Parameter Bounds
List<E>’s E type parameter and Map<K, V>’s K and V type parameters are examples of unbounded type
parameters. You can pass any actual type argument to an unbounded type parameter.

It is sometimes necessary to restrict the kinds of actual type arguments that can be passed to a type
parameter. For example, you might want to declare a class whose instances can only store instances of
classes that subclass an abstract Shape class (such as Circle and Rectangle).

To restrict actual type arguments, you can specify an upper bound, a type that serves as an upper
limit on the types that can be chosen as actual type arguments. The upper bound is specified via
reserved word extends followed by a type name.

For example, ShapesList<E extends Shape> identifies Shape as an upper bound. You can specify
ShapesList<Circle>, ShapesList<Rectangle>, and even ShapesList<Shape>, but not ShapesList<String>
because String is not a subclass of Shape.

You can assign more than one upper bound to a type parameter, where the first bound is a class or
interface, and where each additional upper bound is an interface, by using the ampersand character (&)
to separate bound names. Consider Listing 3-53.

Listing 3-53. Assigning multiple upper bounds to a type parameter

abstract class Shape
{
}
class Circle extends Shape implements Comparable<Circle>
{
 private double x, y, radius;
 Circle(double x, double y, double radius)
 {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }
 @Override
 public int compareTo(Circle circle)
 {
 if (radius < circle.radius)
 return -1;
 else
 if (radius > circle.radius)
 return 1;
 else

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

202

 return 0;
 }
 @Override
 public String toString()
 {
 return "("+x+", "+y+", "+radius+")";
 }
}
class SortedShapesList<S extends Shape&Comparable<S>>
{
 @SuppressWarnings("unchecked")
 private S[] shapes = (S[]) new Shape[2];
 private int index = 0;
 void add(S shape)
 {
 shapes[index++] = shape;
 if (index < 2)
 return;
 System.out.println("Before sort: "+this);
 sort();
 System.out.println("After sort: "+this);
 }
 private void sort()
 {
 if (index == 1)
 return;
 if (shapes[0].compareTo(shapes[1]) > 0)
 {
 S shape = (S) shapes[0];
 shapes[0] = shapes[1];
 shapes[1] = shape;
 }
 }
 @Override
 public String toString()
 {
 return shapes[0].toString()+" "+shapes[1].toString();
 }
}
class SortedShapesListDemo
{
 public static void main(String[] args)
 {
 SortedShapesList<Circle> ssl = new SortedShapesList<>();
 ssl.add(new Circle(100, 200, 300));
 ssl.add(new Circle(10, 20, 30));
 }
}

Listing 3-53’s Circle class extends Shape and implements the java.lang.Comparable interface, which
is used to specify the natural ordering of Circle objects. The interface’s compareTo() method implements
this ordering by returning a value to reflect the order:

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

203

• A negative value is returned if the current object should precede the object passed
to compareTo() in some fashion.

• A zero value is returned if the current and argument objects are the same.

• A positive value is returned if the current object should succeed the argument
object.

Circle’s overriding compareTo() method compares two Circle objects based on their radii. This
method orders a Circle instance with the smaller radius before a Circle instance with a larger radius.

The SortedShapesList class specifies <S extends Shape&Comparable<S>> as its parameter list. The
actual type argument passed to the S parameter must subclass Shape, and it must also implement the
Comparable interface.

■ Note A type parameter bound that includes the type parameter is known as a recursive type bound. For
example, Comparable<S> in S extends Shape&Comparable<S> is a recursive type bound. Recursive type bounds
are rare and typically show up in conjunction with the Comparable interface, for specifying a type’s natural
ordering.

Circle satisfies both criteria: it subclasses Shape and implements Comparable. As a result, the
compiler does not report an error when it encounters the main() method’s SortedShapesList<Circle>
ssl = new SortedShapesList<>(); statement.

An upper bound offers extra static type checking that guarantees that a parameterized type adheres
to its bounds. This assurance means that the upper bound’s methods can be called safely. For example,
sort() can call Comparable’s compareTo() method.

If you run this application, you will discover the following output, which shows that the two Circle
objects are sorted in ascending order of radius:

Before sort: (100.0, 200.0, 300.0) (10.0, 20.0, 30.0)
After sort: (10.0, 20.0, 30.0) (100.0, 200.0, 300.0)

■ Note Type parameters cannot have lower bounds. Angelika Langer explains the rationale for this restriction in
her “Java Generics FAQs” (see
http://www.angelikalanger.com/GenericsFAQ/FAQSections/TypeParameters.html#FAQ107).

Type Parameter Scope
A type parameter’s scope (visibility) is its generic type except where masked (hidden). This scope
includes the formal type parameter list of which the type parameter is a member. For example, the scope
of S in SortedShapesList<S extends Shape&Comparable<S>> is all of SortedShapesList and the formal type
parameter list.

http://www.angelikalanger.com/GenericsFAQ/FAQSections/TypeParameters.html#FAQ107

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

204

It is possible to mask a type parameter by declaring a same-named type parameter in a nested type’s
formal type parameter list. For example, Listing 3-54 masks an enclosing class’s T type parameter.

Listing 3-54. Masking a type variable

class EnclosingClass<T>
{
 static class EnclosedClass<T extends Comparable<T>>
 {
 }
}

EnclosingClass’s T type parameter is masked by EnclosedClass’s T type parameter, which specifies
an upper bound where only those types that implement the Comparable interface can be passed to
EnclosedClass. Referencing T from within EnclosedClass refers to the bounded T and not the unbounded
T passed to EnclosingClass.

If masking is undesirable, it is best to choose a different name for the type parameter. For example,
you might specify EnclosedClass<U extends Comparable<U>>. Although U is not as meaningful a name as
T, this situation justifies this choice.

The Need for Wildcards
Suppose that you have created a List of String and want to output this list. Because you might create a
List of Employee and other kinds of lists, you want this method to output an arbitrary List of Object. You
end up creating Listing 3-55.

Listing 3-55. Attempting to output a List of Object

import java.util.ArrayList;
import java.util.List;

class OutputList
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<>();
 ls.add("first");
 ls.add("second");
 ls.add("third");
 outputList(ls);
 }
 static void outputList(List<Object> list)
 {
 for (int i = 0; i < list.size(); i++)
 System.out.println(list.get(i));
 }
}

Now that you’ve accomplished your objective (or so you think), you compile Listing 3-55 via javac
OutputList.java. Much to your surprise, you receive the following error message:

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

205

OutputList.java:12: error: method outputList in class OutputList cannot be applied to given
types;
 outputList(ls);
 ^
 required: List<Object>
 found: List<String>
 reason: actual argument List<String> cannot be converted to List<Object> by method
invocation conversion
1 error

This error message results from being unaware of the fundamental rule of generic types: for a given
subtype x of type y, and given G as a raw type declaration, G<x> is not a subtype of G<y>.

To understand this rule, you must refresh your understanding of subtype polymorphism (see
Chapter 2). Basically, a subtype is a specialized kind of supertype. For example, Circle is a specialized
kind of Shape and String is a specialized kind of Object. This polymorphic behavior also applies to
related parameterized types with the same type parameters (e.g., List<Object> is a specialized kind of
java.util.Collection<Object>).

However, this polymorphic behavior does not apply to multiple parameterized types that differ only
in regard to one type parameter being a subtype of another type parameter. For example, List<String>
is not a specialized kind of List<Object>. The following example reveals why parameterized types
differing only in type parameters are not polymorphic:

List<String> ls = new ArrayList<>();
List<Object> lo = ls;
lo.add(new Employee());
String s = ls.get(0);

This example will not compile because it violates type safety. If it compiled, a ClassCastException
would be thrown at runtime because of the implicit cast to String on the final line.

The first line instantiates a List of String and the second line upcasts its reference to a List of
Object. The third line adds a new Employee object to the List of Object. The fourth line obtains the
Employee object via get() and attempts to assign it to the List of String reference variable. However,
ClassCastException is thrown because of the implicit cast to String—an Employee is not a String.

■ Note Although you cannot upcast List<String> to List<Object>, you can upcast List<String> to the raw
type List in order to interoperate with legacy code.

The aforementioned error message reveals that List of String is not also List of Object. To call
Listing 3-55’s outputList() method without violating type safety, you can only pass an argument of
List<Object> type, which limits the usefulness of this method.

However, generics offer a solution: the wildcard argument (?), which stands for any type. By
changing outputList()’s parameter type from List<Object> to List<?>, you can call outputList() with a
List of String, a List of Employee, and so on.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

206

Generic Methods
Suppose you need a method to copy a List of any kind of object to another List. Although you might
consider coding a void copyList(List<Object> src, List<Object> dest) method, this method would
have limited usefulness because it could only copy lists whose element type is Object. You couldn’t copy
a List<Employee>, for example.

If you want to pass source and destination lists whose elements are of arbitrary type (but their
element types agree), you need to specify the wildcard character as a placeholder for that type. For
example, you might consider writing the following copyList() class method that accepts collections of
arbitrary-typed objects as its arguments:

static void copyList(List<?> src, List<?> dest)
{
 for (int i = 0; i < src.size(); i++)
 dest.add(src.get(i));
}

This method’s parameter list is correct, but there is another problem: the compiler outputs the
following error message when it encounters dest.add(src.get(i));:

CopyList.java:18: error: no suitable method found for add(Object)
 dest.add(src.get(i));
 ^
 method List.add(int,CAP#1) is not applicable
 (actual and formal argument lists differ in length)
 method List.add(CAP#1) is not applicable
 (actual argument Object cannot be converted to CAP#1 by method invocation conversion)
 where CAP#1 is a fresh type-variable:
 CAP#1 extends Object from capture of ?
1 error

This error message assumes that copyList() is part of a class named CopyList. Although it appears
to be incomprehensible, the message basically means that the dest.add(src.get(i)) method call
violates type safety. Because ? implies that any type of object can serve as a list’s element type, it’s
possible that the destination list’s element type is incompatible with the source list’s element type.

For example, suppose you create a List of String as the source list and a List of Employee as the
destination list. Attempting to add the source list’s String elements to the destination list, which expects
Employees, violates type safety. If this copy operation were allowed, a ClassCastException instance would
be thrown when trying to obtain the destination list’s elements.

You could avoid this problem by specifying void copyList(List<String> src, List<String> dest),
but this method header limits you to copying only lists of String objects. Alternatively, you might restrict
the wildcard argument, which is demonstrated here:

static void copyList(List<? extends String> src,
 List<? super String> dest)
{
 for (int i = 0; i < src.size(); i++)
 dest.add(src.get(i));
}

This method demonstrates a feature of the wildcard argument: You can supply an upper bound or
(unlike with a type parameter) a lower bound to limit the types that can be passed as actual type

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

207

arguments to the generic type. Specify an upper bound via extends followed by the upper bound type
after the ?, and a lower bound via super followed by the lower bound type after the ?.

You interpret ? extends String to mean that any actual type argument that is String or a subclass
can be passed, and you interpret ? super String to imply that any actual type argument that is String or
a superclass can be passed. Because String cannot be subclassed, this means that you can only pass
source lists of String and destination lists of String or Object.

The problem of copying lists of arbitrary element types to other lists can be solved through the use
of a generic method (a class or instance method with a type-generalized implementation). Generic
methods are syntactically expressed as follows:

<formal_type_parameter_list> return_type identifier(parameter_list)

The formal_type_parameter_list is the same as when specifying a generic type: it consists of type
parameters with optional bounds. A type parameter can appear as the method’s return_type, and type
parameters can appear in the parameter_list. The compiler infers the actual type arguments from the
context in which the method is invoked.

You’ll discover many examples of generic methods in the Collections Framework. For example, its
java.util.Collections class provides a public static <T extends Object & Comparable<? super T>> T
min(Collection<? extends T> coll) method for returning the minimum element in the given
Collection according to the ordering specified by the supplied java.util.Comparator instance.

You can easily convert copyList() into a generic method by prefixing the return type with <T> and
replacing each wildcard with T. The resulting method header is <T> void copyList(List<T> src,
List<T> dest), and Listing 3-56 presents its source code as part of an application that copies a List of
Circle to another List of Circle.

Listing 3-56. Declaring and using a copyList() generic method

import java.util.ArrayList;
import java.util.List;

class Circle
{
 private double x, y, radius;
 Circle(double x, double y, double radius)
 {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }
 @Override
 public String toString()
 {
 return "("+x+", "+y+", "+radius+")";
 }
}
class CopyList
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<String>();
 ls.add("A");
 ls.add("B");

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

208

 ls.add("C");
 outputList(ls);
 List<String> lsCopy = new ArrayList<String>();
 copyList(ls, lsCopy);
 outputList(lsCopy);
 List<Circle> lc = new ArrayList<Circle>();
 lc.add(new Circle(10.0, 20.0, 30.0));
 lc.add(new Circle (5.0, 4.0, 16.0));
 outputList(lc);
 List<Circle> lcCopy = new ArrayList<Circle>();
 copyList(lc, lcCopy);
 outputList(lcCopy);
 }
 static <T> void copyList(List<T> src, List<T> dest)
 {
 for (int i = 0; i < src.size(); i++)
 dest.add(src.get(i));
 }
 static void outputList(List<?> list)
 {
 for (int i = 0; i < list.size(); i++)
 System.out.println(list.get(i));
 System.out.println();
 }
}

The generic method’s type parameters are inferred from the context in which the method was
invoked. For example, the compiler determines that copyList(ls, lsCopy); copies a List of String to
another List of String. Similarly, it determines that copyList(lc, lcCopy); copies a List of Circle to
another List of Circle.

When you run this application, it generates the following output:

A
B
C

A
B
C

(10.0, 20.0, 30.0)
(5.0, 4.0, 16.0)

(10.0, 20.0, 30.0)
(5.0, 4.0, 16.0)

Arrays and Generics
After presenting Listing 3-52’s Queue<E> generic type, I mentioned that I would explain why I specified
elements = (E[]) new Object[size]; instead of the more compact elements = new E[size];
expression. Because of Java’s generics implementation, it isn’t possible to specify array-creation
expressions that involve type parameters (e.g., new E[size] or new List<E>[50]) or actual type

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

209

arguments (e.g., new Queue<String>[15]). If you attempt to do so, the compiler will report a generic
array creation error message.

Before I present an example that demonstrates why allowing array-creation expressions that involve
type parameters or actual type arguments is dangerous, you need to understand reification and
covariance in the context of arrays, and erasure, which is at the heart of how generics are implemented.

Reification is representing the abstract as if it was concrete —for example, making a memory
address available for direct manipulation by other language constructs. Java arrays are reified in that
they’re aware of their element types (an element type is stored internally) and can enforce these types at
runtime. Attempting to store an invalid element in an array causes the JVM to throw an instance of the
java.lang.ArrayStoreException class.

Listing 3-57 teaches you how array manipulation can lead to an ArrayStoreException:

Listing 3-57. How an ArrayStoreException arises

class Point
{
 int x, y;
}
class ColoredPoint extends Point
{
 int color;
}
class ReificationDemo
{
 public static void main(String[] args)
 {
 ColoredPoint[] cptArray = new ColoredPoint[1];
 Point[] ptArray = cptArray;
 ptArray[0] = new Point();
 }
}

Listing 3-57’s main() method first instantiates a ColoredPoint array that can store one element. In
contrast to this legal assignment (the types are compatible), specifying ColoredPoint[] cptArray = new
Point[1]; is illegal (and won’t compile) because it would result in a ClassCastException at runtime—the
array knows that the assignment is illegal.

■ Note If it’s not obvious, ColoredPoint[] cptArray = new Point[1]; is illegal because Point instances have
fewer members (only x and y) than ColoredPoint instances (x, y, and color). Attempting to access a Point
instance’s nonexistent color field from its entry in the ColoredPoint array would result in a memory violation
(because no memory has been assigned to color) and ultimately crash the JVM.

The second line (Point[] ptArray = cptArray;) is legal because of covariance (an array of supertype
references is a supertype of an array of subtype references). In this case, an array of Point references is a
supertype of an array of ColoredPoint references. The nonarray analogy is that a subtype is also a
supertype. For example, a Throwable instance is a kind of Object instance.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

210

Covariance is dangerous when abused. For example, the third line (ptArray[0] = new Point();)
results in ArrayStoreException at runtime because a Point instance is not a ColoredPoint instance.
Without this exception, an attempt to access the nonexistent member color crashes the JVM.

Unlike with arrays, a generic type’s type parameters are not reified. They’re not available at runtime
because they’re thrown away after the source code is compiled. This “throwing away of type
parameters” is a result of erasure, which also involves inserting casts to appropriate types when the code
isn’t type correct, and replacing type parameters by their upper bounds (such as Object).

■ Note The compiler performs erasure to let generic code interoperate with legacy (nongeneric) code. It
transforms generic source code into nongeneric runtime code. One consequence of erasure is that you cannot use
the instanceof operator with parameterized types apart from unbounded wildcard types. For example, it’s illegal
to specify List<Employee> le = null; if (le instanceof ArrayList<Employee>) {}. Instead, you must
change the instanceof expression to le instanceof ArrayList<?> (unbounded wildcard) or le instanceof
ArrayList (raw type, which is the preferred use).

Suppose you could specify an array-creation expression involving a type parameter or an actual
type argument. Why would this be bad? For an answer, consider the following example, which should
generate an ArrayStoreException instead of a ClassCastException but doesn’t do so:

List<Employee>[] empListArray = new List<Employee>[1];
List<String> strList = new ArrayList<>();
strList.add("string");
Object[] objArray = empListArray;
objArray[0] = strList;
Employee e = empListArray[0].get(0);

Let’s assume that the first line, which creates a one-element array where this element stores a List
of Employee, is legal. The second line creates a List of String, and the third line stores a single String
object in this list.

The fourth line assigns empListArray to objArray. This assignment is legal because arrays are
covariant and erasure converts List<Employee>[] to the List runtime type, and List subtypes Object.

Because of erasure, the JVM doesn’t throw ArrayStoreException when it encounters objArray[0] =
strList;. After all, we’re assigning a List reference to a List[] array at runtime. However, this exception
would be thrown if generic types were reified because we’d then be assigning a List<String> reference
to a List<Employee>[] array.

However, there is a problem. A List<String> instance has been stored in an array that can only hold
List<Employee> instances. When the compiler-inserted cast operator attempts to cast
empListArray[0].get(0)’s return value ("string") to Employee, the cast operator throws a
ClassCastException object.

Perhaps a future version of Java will reify type parameters, making it possible to specify array-
creation expressions that involve type parameters or actual type arguments.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

211

Varargs and Generics
When you invoke a varargs (variable number of arguments) method whose parameter is declared to be a
parameterized type (as in List<String>), the compiler emits a warning message at the point of call. This
message can be confusing and tends to discourage the use of varargs in third-party APIs.

The warning message is related to heap pollution, which occurs when a variable of a parameterized
type refers to an object that is not of that parameterized type. Heap pollution can only occur when an
application performs an operation that would give rise to an unchecked warning at compile time. (The
Java Language Specification, Third Edition discusses the concept of heap pollution
[http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.12.2.1]).

Unchecked warnings occur in calls to varargs methods whose parameter types are not reifiable. In
other words, the parameter’s type information cannot be completely expressed at runtime because of
erasure.

Varargs are implemented via arrays and arrays are reified. In other words, an array’s element type is
stored internally and used when required for various runtime type checks. However, this stored type
information cannot include information required to represent a parameterized type that is nonreifiable.

This mismatch between a reified array passing nonreified (and nonreifiable) parameterized types to
a method is at the heart of the unchecked warning when the method is called.

In Java 5, calling one of these methods causes a compile-time warning; declaring such a method
doesn’t result in a similar warning. Although the existence of such a varargs method doesn’t cause heap
pollution, its existence contributes to heap pollution by offering an easy way to cause heap pollution to
occur. Furthermore, it influences heap pollution by offering the method to be called. For this reason,
method declarations that contribute to heap pollution deserve a compiler warning, just as this warning
is already present for method calls that cause heap pollution.

The Java 7 compiler outputs warnings in both locations, and Listing 3-58 presents a scenario that
leads to these warnings.

Listing 3-58. Merging a variable number of Lists of Strings

import java.util.ArrayList;
import java.util.List;

class SafeVarargsDemo
{
 public static void main(String[] args)
 {
 List<String> list1 = new ArrayList<>();
 list1.add("A");
 list1.add("B");
 List<String> list2 = new ArrayList<>();
 list2.add("C");
 list2.add("D");
 list2.add("E");
 System.out.println(merge(list1, list2)); // Output: [A, B, C, D, E]
 }
 //@SafeVarargs
 static List<String> merge(List<String>... lists)
 {
 List<String> mergedLists = new ArrayList<>();
 for (int i = 0; i < lists.length; i++)
 mergedLists.addAll(lists[i]);

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

212

 return mergedLists;
 }
}

Listing 3-58 declares a merge() method whose purpose is to merge a variable number of List of
String arguments into a single List of String that this method returns. Because erasure converts the
method’s List<String> parameter type to List, there is a potential for this array parameter to refer to a
List that doesn’t store String objects, which is an example of heap pollution. For this reason, the
compiler emits the following warnings when you compile Listing 3-58 via javac -Xlint:unchecked
SafeVarargsDemo.java:

SafeVarargsDemo.java:15: warning: [unchecked] unchecked generic array creation for varargs
parameter of type List<String>[]
 System.out.println(merge(list1, list2)); // Output: [A, B, C, D, E]
 ^
SafeVarargsDemo.java:18: warning: [unchecked] Possible heap pollution from parameterized
vararg type List<String>
 static List<String> merge(List<String>... lists)
 ^
2 warnings

The merge() method does nothing that can lead to a ClassCastException. Therefore, these warning
messages are spurious and can be ignored by annotating merge() with @SafeVarargs to assert that the
body of the merge() method does not perform potentially unsafe operations on its varargs parameter.

Uncomment //@SafeVarargs in Listing 3-58 and recompile. You’ll discover that these warning
messages disappear.

■ Note Various standard class library methods, such as the Arrays class’s public static <T> List<T>
asList(T... a) method, are annotated @SafeVarargs because they don’t throw ClassCastExceptions when
their varargs array arguments are created by the compiler using proper type inference.

Enums
An enumerated type is a type that specifies a named sequence of related constants as its legal values. The
months in a calendar, the coins in a currency, and the days of the week are examples of enumerated
types.

Java developers have traditionally used sets of named integer constants to represent enumerated
types. Because this form of representation has proven to be problematic, Java 5 introduced the enum
alternative.

This section introduces you to enums. After discussing the problems with traditional enumerated
types, the section presents the enum alternative. It then introduces you to the Enum class, from which
enums originate.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

213

The Trouble with Traditional Enumerated Types
Listing 3-59 declares a Coin enumerated type whose set of constants identifies different kinds of coins in
a currency.

Listing 3-59. An enumerated type identifying coins

class Coin
{
 final static int PENNY = 0;
 final static int NICKEL = 1;
 final static int DIME = 2;
 final static int QUARTER = 3;
}

Listing 3-60 declares a Weekday enumerated type whose set of constants identifies the days of the
week.

Listing 3-60. An enumerated type identifying weekdays

class Weekday
{
 final static int SUNDAY = 0;
 final static int MONDAY = 1;
 final static int TUESDAY = 2;
 final static int WEDNESDAY = 3;
 final static int THURSDAY = 4;
 final static int FRIDAY = 5;
 final static int SATURDAY = 6;
}

Listing 3-59’s and 3-60’s approach to representing an enumerated type is problematic, where the
biggest problem is the lack of compile-time type safety. For example, you can pass a coin to a method
that requires a weekday and the compiler will not complain.

You can also compare coins to weekdays, as in Coin.NICKEL == Weekday.MONDAY, and specify even
more meaningless expressions, such as Coin.DIME+Weekday.FRIDAY-1/Coin.QUARTER. The compiler does
not complain because it only sees ints.

Applications that depend upon enumerated types are brittle. Because the type’s constants are
compiled into an application’s classfiles, changing a constant’s int value requires you to recompile
dependent applications or risk them behaving erratically.

Another problem with enumerated types is that int constants cannot be translated into meaningful
string descriptions. For example, what does 4 mean when debugging a faulty application? Being able to
see THURSDAY instead of 4 would be more helpful.

■ Note You could circumvent the previous problem by using String constants. For example, you might specify
final static String THURSDAY = "THURSDAY";. Although the constant value is more meaningful, String-
based constants can impact performance because you cannot use == to efficiently compare just any old strings (as

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

214

you will discover in Chapter 4). Other problems related to String-based constants include hard-coding the
constant’s value ("THURSDAY") instead of the constant’s name (THURSDAY) into source code, which makes it
difficult to change the constant’s value at a later time; and misspelling a hard-coded constant ("THURZDAY"), which
compiles correctly but is problematic at runtime.

The Enum Alternative
Java 5 introduced enums as a better alternative to traditional enumerated types. An enum is an
enumerated type that is expressed via reserved word enum. The following example uses enum to declare
Listing 3-59’s and 3-60’s enumerated types:

enum Coin { PENNY, NICKEL, DIME, QUARTER }
enum Weekday { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

Despite their similarity to the int-based enumerated types found in C++ and other languages, this
example’s enums are classes. Each constant is a public static final field that represents an instance of
its enum class.

Because constants are final, and because you cannot call an enum’s constructors to create more
constants, you can use == to compare constants efficiently and (unlike string constant comparisons)
safely. For example, you can specify c == Coin.NICKEL.

Enums promote compile-time type safety by preventing you from comparing constants in different
enums. For example, the compiler will report an error when it encounters Coin.PENNY ==
Weekday.SUNDAY.

The compiler also frowns upon passing a constant of the wrong enum kind to a method. For
example, you cannot pass Weekday.FRIDAY to a method whose parameter type is Coin.

Applications depending upon enums are not brittle because the enum’s constants are not compiled
into an application’s classfiles. Also, the enum provides a toString() method for returning a more useful
description of a constant’s value.

Because enums are so useful, Java 5 enhanced the switch statement to support them. Listing 3-61
demonstrates this statement switching on one of the constants in the previous example’s Coin enum.

Listing 3-61. Using the switch statement with an enum

class EnhancedSwitch
{
 enum Coin { PENNY, NICKEL, DIME, QUARTER }
 public static void main(String[] args)
 {
 Coin coin = Coin.NICKEL;
 switch (coin)
 {
 case PENNY : System.out.println("1 cent"); break;
 case NICKEL : System.out.println("5 cents"); break;
 case DIME : System.out.println("10 cents"); break;
 case QUARTER: System.out.println("25 cents"); break;
 default : assert false;
 }
 }

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

215

}

Listing 3-61 demonstrates switching on an enum’s constants. This enhanced statement only allows
you to specify the name of a constant as a case label. If you prefix the name with the enum, as in case
Coin.DIME, the compiler reports an error.

Enhancing an Enum
You can add fields, constructors, and methods to an enum – you can even have the enum implement
interfaces. For example, Listing 3-62 adds a field, a constructor, and two methods to Coin to associate a
denomination value with a Coin constant (such as 1 for penny and 5 for nickel) and convert pennies to
the denomination.

Listing 3-62. Enhancing the Coin enum

enum Coin
{
 PENNY(1),
 NICKEL(5),
 DIME(10),
 QUARTER(25);

 private final int denomValue;
 Coin(int denomValue)
 {
 this.denomValue = denomValue;
 }
 int denomValue()
 {
 return denomValue;
 }
 int toDenomination(int numPennies)
 {
 return numPennies/denomValue;
 }
}

Listing 3-62’s constructor accepts a denomination value, which it assigns to a private blank final
field named denomValue—all fields should be declared final because constants are immutable. Notice
that this value is passed to each constant during its creation (PENNY(1), for example).

■ Caution When the comma-separated list of constants is followed by anything other than an enum’s closing
brace, you must terminate the list with a semicolon or the compiler will report an error.

Furthermore, this listing’s denomValue() method returns denomValue, and its toDenomination()
method returns the number of coins of that denomination that are contained within the number of
pennies passed to this method as its argument. For example, 3 nickels are contained in 16 pennies.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

216

Listing 3-63 shows you how to use the enhanced Coin enum.

Listing 3-63. Exercising the enhanced Coin enum

class Coins
{
 public static void main(String[] args)
 {
 if (args.length == 1)
 {
 int numPennies = Integer.parseInt(args[0]);
 System.out.println(numPennies+" pennies is equivalent to:");
 int numQuarters = Coin.QUARTER.toDenomination(numPennies);
 System.out.println(numQuarters+" "+Coin.QUARTER.toString()+
 (numQuarters != 1 ? "s," : ","));
 numPennies -= numQuarters*Coin.QUARTER.denomValue();
 int numDimes = Coin.DIME.toDenomination(numPennies);
 System.out.println(numDimes+" "+Coin.DIME.toString()+
 (numDimes != 1 ? "s, " : ","));
 numPennies -= numDimes*Coin.DIME.denomValue();
 int numNickels = Coin.NICKEL.toDenomination(numPennies);
 System.out.println(numNickels+" "+Coin.NICKEL.toString()+
 (numNickels != 1 ? "s, " : ", and"));
 numPennies -= numNickels*Coin.NICKEL.denomValue();
 System.out.println(numPennies+" "+Coin.PENNY.toString()+
 (numPennies != 1 ? "s" : ""));
 }
 System.out.println();
 System.out.println("Denomination values:");
 for (int i = 0; i < Coin.values().length; i++)
 System.out.println(Coin.values()[i].denomValue());
 }
}

Listing 3-63 describes an application that converts its solitary “pennies” command-line argument to
an equivalent amount expressed in quarters, dimes, nickels, and pennies. In addition to calling a Coin
constant’s denomValue() and toDenomValue() methods, the application calls toString() to output a string
representation of the coin.

Another called enum method is values(). This method returns an array of all Coin constants that are
declared in the Coin enum (value()’s return type, in this example, is Coin[]). This array is useful when
you need to iterate over these constants. For example, Listing 3-63 calls this method to output each
coin’s denomination.

When you run this application with 119 as its command-line argument (java Coins 119), it
generates the following output:

119 pennies is equivalent to:
4 QUARTERs,
1 DIME,
1 NICKEL, and
4 PENNYs

Denomination values:

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

217

1
5
10
25

The output shows that toString() returns a constant’s name. It is sometimes useful to override this
method to return a more meaningful value. For example, a method that extracts tokens (named
character sequences) from a string might use a Token enum to list token names and, via an overriding
toString() method, values – see Listing 3-64.

Listing 3-64. Overriding toString() to return a Token constant’s value

enum Token
{
 IDENTIFIER("ID"),
 INTEGER("INT"),
 LPAREN("("),
 RPAREN(")"),
 COMMA(",");
 private final String tokValue;
 Token(String tokValue)
 {
 this.tokValue = tokValue;
 }
 @Override
 public String toString()
 {
 return tokValue;
 }
 public static void main(String[] args)
 {
 System.out.println("Token values:");
 for (int i = 0; i < Token.values().length; i++)
 System.out.println(Token.values()[i].name()+" = "+
 Token.values()[i]);
 }
}

Listing 3-64’s main() method calls values() to return the array of Token constants. For each
constant, it calls the constant’s name() method to return the constant’s name, and implicitly calls
toString() to return the constant’s value. If you were to run this application, you would observe the
following output:

Token values:
IDENTIFIER = ID
INTEGER = INT
LPAREN = (
RPAREN =)
COMMA = ,

Another way to enhance an enum is to assign a different behavior to each constant. You can
accomplish this task by introducing an abstract method into the enum and overriding this method in an
anonymous subclass of the constant. Listing 3-65’s TempConversion enum demonstrates this technique.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

218

Listing 3-65. Using anonymous subclasses to vary the behaviors of enum constants

enum TempConversion
{
 C2F("Celsius to Fahrenheit")
 {
 @Override
 double convert(double value)
 {
 return value*9.0/5.0+32.0;
 }
 },
 F2C("Fahrenheit to Celsius")
 {
 @Override
 double convert(double value)
 {
 return (value-32.0)*5.0/9.0;
 }
 };
 TempConversion(String desc)
 {
 this.desc = desc;
 }
 private String desc;
 @Override
 public String toString()
 {
 return desc;
 }
 abstract double convert(double value);
 public static void main(String[] args)
 {
 System.out.println(C2F+" for 100.0 degrees = "+C2F.convert(100.0));
 System.out.println(F2C+" for 98.6 degrees = "+F2C.convert(98.6));
 }
}

When you run this application, it generates the following output:

Celsius to Fahrenheit for 100.0 degrees = 212.0
Fahrenheit to Celsius for 98.6 degrees = 37.0

The Enum Class
The compiler regards enum as syntactic sugar. When it encounters an enum type declaration (enum Coin
{}), it generates a class whose name (Coin) is specified by the declaration, and which also subclasses the
abstract Enum class (in the java.lang package), the common base class of all Java-based enumeration
types.

If you examine Enum’s Java documentation, you will discover that it overrides Object’s clone(),
equals(), finalize(), hashCode(), and toString() methods:

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

219

• clone() is overridden to prevent constants from being cloned so that there is
never more than one copy of a constant; otherwise, constants could not be
compared via ==.

• equals() is overridden to compare constants via their references—constants with
the same identities (==) must have the same contents (equals()), and different
identities imply different contents.

• finalize() is overridden to ensure that constants cannot be finalized.

• hashCode() is overridden because equals() is overridden.

• toString() is overridden to return the constant’s name.

Except for toString(), all of the overriding methods are declared final so that they cannot be
overridden in a subclass.

Enum also provides its own methods. These methods include the final compareTo(), (Enum
implements Comparable), getDeclaringClass(), name(), and ordinal() methods:

• compareTo() compares the current constant with the constant passed as an
argument to see which constant precedes the other constant in the enum, and
returns a value indicating their order. This method makes it possible to sort an
array of unsorted constants.

• getDeclaringClass() returns the Class object corresponding to the current
constant’s enum. For example, the Class object for Coin is returned when calling
Coin.PENNY.getDeclaringClass() for enum Coin { PENNY, NICKEL, DIME, QUARTER
}. Also, TempConversion is returned when calling
TempConversion.C2F.getDeclaringClass() for Listing 3-65’s TempConversion enum.
The compareTo() method uses Class’s getClass() method and Enum’s
getDeclaringClass() method to ensure that only constants belonging to the same
enum are compared. Otherwise, a ClassCastException is thrown. (I will discuss
Class in Chapter 4.)

• name() returns the constant’s name. Unless overridden to return something more
descriptive, toString() also returns the constant’s name.

• ordinal() returns a zero-based ordinal, an integer that identifies the position of
the constant within the enum type. compareTo() compares ordinals.

Enum also provides the public static <T extends Enum<T>> T valueOf(Class<T> enumType, String
name) method for returning the enum constant from the specified enum with the specified name:

• enumType identifies the Class object of the enum from which to return a constant.

• name identifies the name of the constant to return.

For example, Coin penny = Enum.valueOf(Coin.class, "PENNY"); assigns the Coin constant whose
name is PENNY to penny.

You will not discover a values() method in Enum’s Java documentation because the compiler
synthesizes (manufactures) this method while generating the class.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

220

Extending the Enum Class
Enum’s generic type is Enum<E extends Enum<E>>. Although the formal type parameter list looks ghastly, it
is not that hard to understand. But first, take a look at Listing 3-66.

Listing 3-66. The Coin class as it appears from the perspective of its classfile

final class Coin extends Enum<Coin>
{
 public static final Coin PENNY = new Coin("PENNY", 0);
 public static final Coin NICKEL = new Coin("NICKEL", 1);
 public static final Coin DIME = new Coin("DIME", 2);
 public static final Coin QUARTER = new Coin("QUARTER", 3);
 private static final Coin[] $VALUES = { PENNY, NICKEL, DIME, QUARTER };
 public static Coin[] values()
 {
 return Coin.$VALUES.clone();
 }
 public static Coin valueOf(String name)
 {
 return Enum.valueOf(Coin.class, "Coin");
 }
 private Coin(String name, int ordinal)
 {
 super(name, ordinal);
 }
}

Behind the scenes, the compiler converts enum Coin { PENNY, NICKEL, DIME, QUARTER } into a class
declaration that is similar to Listing 3-66.

The following rules show you how to interpret Enum<E extends Enum<E>> in the context of Coin
extends Enum<Coin>:

• Any subclass of Enum must supply an actual type argument to Enum. For example,
Coin’s header specifies Enum<Coin>.

• The actual type argument must be a subclass of Enum. For example, Coin is a
subclass of Enum.

• A subclass of Enum (such as Coin) must follow the idiom that it supplies its own
name (Coin) as an actual type argument.

The third rule allows Enum to declare methods—compareTo(), getDeclaringClass(), and valueOf()—
whose parameter and/or return types are specified in terms of the subclass (Coin), and not in terms of
Enum. The rationale for doing this is to avoid having to specify casts. For example, you do not need to cast
valueOf()’s return value to Coin in Coin penny = Enum.valueOf(Coin.class, "PENNY");.

■ Note You cannot compile Listing 3-66 because the compiler will not compile any class that extends Enum. It will
also complain about super(name, ordinal);.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

221

EXERCISES

The following exercises are designed to test your understanding of nested types, packages, static imports,
exceptions, assertions, annotations, generics, and enums:

1. A 2D graphics package supports two-dimensional drawing and transformations
(rotation, scaling, translation, and so on). These transformations require a 3-by-3
matrix (a table). Declare a G2D class that encloses a private Matrix nonstatic
member class. In addition to declaring a Matrix(int nrows, int ncols)
constructor, Matrix declares a void dump() method that outputs the matrix
values to standard output in a tabular format. Instantiate Matrix within G2D’s
noargument constructor, and initialize the Matrix instance to the identity matrix (a
matrix where all entries are 0 except for those on the upper-left to lower-right
diagonal, which are 1. Then invoke this instance’s dump() method from the
constructor. Include a main() method to test G2D.

2. Extend the logging package to support a null device in which messages are
thrown away.

3. Continuing from Exercise 1, introduce the following matrix-multiplication method
into Matrix:

 Matrix multiply(Matrix m)
 {
 Matrix result = new Matrix(matrix.length, matrix[0].length);
 for (int i = 0; i < matrix.length; i++)
 for (int j = 0; j < m.matrix[0].length; j++)
 for (int k = 0; k < m.matrix.length; k++)
 result.matrix[i][j] = result.matrix[i][j]+
 matrix[i][k]*m.matrix[k][j];
 return result;
 }

Next, declare a void rotate(double angle) method in G2D. This method’s first
task is to negate its angle argument (to ensure counterclockwise rotation), which
specifies a rotation angle in degrees. It then creates a 3-by-3 rotation Matrix and
initializes the following (row, column) entries: (0, 0) to the cosine of the angle, (1,
0) to the sine of the angle, (0, 1) to the negative of the angle’s sine, (1, 1) to the
cosine of the angle, and (2, 2) to 1.0. Statically import all necessary Math class
methods. Finally, rotate() multiplies the identity matrix created in G2D’s
constructor by this rotation matrix, and invokes dump() to dump the result. Test
rotate() from the main() method by executing G2D g2d = new G2D();
g2d.rotate(45);. You should observe the following output:

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

0.7071067811865476 0.7071067811865475 0.0

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

222

-0.7071067811865475 0.7071067811865476 0.0
0.0 0.0 1.0

4. Modify the logging package so that Logger’s connect() method throws
CannotConnectException when it cannot connect to its logging destination, and
the other two methods each throw NotConnectedException when connect()
was not called or when it threw CannotConnectException. Modify TestLogger to
respond appropriately to thrown CannotConnectException and
NotConnectedException objects.

5. Continuing from Exercise 3, use an assertion to verify the class invariant that the
transformation matrix is initialized to the identity matrix before G2D’s constructor
ends.

6. Declare a ToDo marker annotation type that annotates only type elements, and
that also uses the default retention policy.

7. Rewrite the StubFinder application to work with Listing 3-43’s Stub annotation
type (with appropriate @Target and @Retention annotations) and Listing 3-44’s
Deck class.

8. Implement a Stack<E> generic type in a manner that is similar to Listing 3-52’s
Queue class. Stack must declare push(), pop(), and isEmpty() methods (it could
also declare an isFull() method but that method is not necessary in this
exercise), push() must throw a StackFullException instance when the stack is
full, and pop() must throw a StackEmptyException instance when the stack is
empty. (You must create your own StackFullException and
StackEmptyException helper classes because they are not provided for you in
Java’s standard class library.) Declare a similar main() method, and insert two
assertions into this method that validate your assumptions about the stack being
empty immediately after being created and immediately after popping the last
element.

9. Declare a Compass enum with NORTH, SOUTH, EAST, and WEST members. Declare a
UseCompass class whose main() method randomly selects one of these constants
and then switches on that constant. Each of the switch statement’s cases should
output a message such as heading north.

Summary
Java supports advanced language features related to nested types, packages, static imports, exceptions,
assertions, annotations, generics, and enums.

Classes that are declared outside of any class are known as top-level classes. Java also supports
nested classes, which are classes declared as members of other classes or scopes, and which help you
implement top-level class architecture.

There are four kinds of nested classes: static member classes, nonstatic member classes,
anonymous classes, and local classes. The latter three categories are known as inner classes.

Java supports the partitioning of top-level types into multiple namespaces, to better organize these
types and to also prevent name conflicts. Java uses packages to accomplish these tasks.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

223

The package statement identifies the package in which a source file’s types are located. The import
statement imports types from a package by telling the compiler where to look for unqualified type
names during compilation.

An exception is a divergence from an application’s normal behavior. Although it can be represented
by an error code or object, Java uses objects because error codes are meaningless and cannot contain
information about what led to the exception.

Java provides a hierarchy of classes that represent different kinds of exceptions. These classes are
rooted in Throwable. Moving down the throwable hierarchy, you encounter the Exception and Error
classes, which represent nonerror exceptions and errors.

Exception and its subclasses, except for RuntimeException (and its subclasses), describe checked
exceptions. They are checked because the compiler checks the code to ensure that an exception is
handled where thrown or identified as being handled elsewhere.

RuntimeException and its subclasses describe unchecked exceptions. You do not have to handle
these exceptions because they represent coding mistakes (fix the mistakes). Although the names of their
classes can appear in throws clauses, doing so adds clutter.

The throw statement throws an exception to the JVM, which searches for an appropriate handler. If
the exception is checked, its name must appear in the method’s throws clause, unless the name of the
exception’s superclass is listed in this clause.

A method handles one or more exceptions by specifying a try statement and appropriate catch
blocks. A finally block can be included to execute cleanup code whether or not an exception is thrown,
and before a thrown exception leaves the method.

An assertion is a statement that lets you express an assumption of application correctness via a
Boolean expression. If this expression evaluates to true, execution continues with the next statement;
otherwise, an error that identifies the cause of failure is thrown.

There are many situations where assertions should be used. These situations organize into internal
invariant, control-flow invariant, and design-by-contract categories. An invariant is something that does
not change.

Although there are many situations where assertions should be used, there also are situations where
they should be avoided. For example, you should not use assertions to check the arguments that are
passed to public methods.

The compiler records assertions in the classfile. However, assertions are disabled at runtime
because they can affect performance. You must enable the classfile’s assertions before you can test
assumptions about the behaviors of your classes.

Annotations are instances of annotation types and associate metadata with application elements.
They are expressed in source code by prefixing their type names with @ symbols. For example, @Readonly
is an annotation and Readonly is its type.

Java supplies a wide variety of annotation types, including the compiler-oriented Override,
Deprecated, SuppressWarnings, and SafeVarargs types. However, you can also declare your own
annotation types by using the @interface syntax.

Annotation types can be annotated with meta-annotations that identify the application elements
they can target (such as constructors, methods, or fields), their retention policies, and other
characteristics.

Annotations whose types are assigned a runtime retention policy via @Retention annotations can be
processed at runtime using custom applications or Java’s apt tool, whose functionality has been
integrated into the compiler starting with Java 6.

Java 5 introduced generics, language features for declaring and using type-agnostic classes and
interfaces. When working with Java’s Collections Framework, these features help you avoid
ClassCastExceptions.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

224

A generic type is a class or interface that introduces a family of parameterized types by declaring a
formal type parameter list. The type name that replaces a type parameter is known as an actual type
argument.

There are five kinds of actual type arguments: concrete type, concrete parameterized type, array
type, type parameter, and wildcard. Furthermore, a generic type also identifies a raw type, which is a
generic type without its type parameters.

Many type parameters are unbounded in that they can accept any actual type argument. To restrict
actual type arguments, you can specify an upper bound, a type that serves as an upper limit on the types
that can be chosen as actual type arguments. The upper bound is specified via reserved word extends
followed by a type name. However, lower bounds are not supported.

A type parameter’s scope is its generic type except where masked. This scope includes the formal
type parameter list of which the type parameter is a member.

To preserve type safety, you are not allowed to violate the fundamental rule of generic types: for a
given subtype x of type y, and given G as a raw type declaration, G<x> is not a subtype of G<y>. In other
words, multiple parameterized types that differ only in regard to one type parameter being a subtype of
another type parameter are not polymorphic. For example, List<String> is not a specialized kind of
List<Object>.

This restriction can be ameliorated without violating type safety by using wildcards. For example,
where a void output(List<Object> list) method can only output a List that contains Objects (to
adhere to the aforementioned rule), a void output(List<?> list) method can output a List of arbitrary
objects.

Wildcards alone cannot solve the problem where you want to copy one List to another. The
solution is to use a generic method, a static or non-static method with a type-generalized
implementation. For example, a <T> void copyList(List<T> src, List<T> dest) method can copy a
source List of arbitrary objects (whose type is specified by T) to another List of arbitrary objects (having
the same type). The compiler infers the actual type arguments from the context in which the method is
invoked.

Reification is representing the abstract as if it was concrete -- for example, making a memory
address available for direct manipulation by other language constructs. Java arrays are reified in that
they’re aware of their element types (an element type is stored internally) and can enforce these types at
runtime. Attempting to store an invalid element in an array causes the JVM to throw an instance of the
ArrayStoreException class.

Unlike with arrays, a generic type’s type parameters are not reified. They’re not available at runtime
because they’re thrown away after the source code is compiled. This “throwing away of type
parameters” is a result of erasure, which also involves inserting casts to appropriate types when the code
isn’t type correct, and replacing type parameters by their upper bounds (such as Object).

When you invoke a varargs method whose parameter is declared to be a parameterized type (as in
List<String>), the compiler emits a warning message at the point of call. This message can be confusing
and tends to discourage the use of varargs in third-party APIs.

The warning message is related to heap pollution, which occurs when a variable of a parameterized
type refers to an object that is not of that parameterized type.

If a varargs method is declared such that this warning message occurs, and if the varargs method
doesn’t perform a potentially unsafe operation on its varargs parameter, you can annotate the method
@SafeVarargs, and eliminate the warning message.

An enumerated type is a type that specifies a named sequence of related constants as its legal
values. Java developers have traditionally used sets of named integer constants to represent enumerated
types.

Because sets of named integer constants have proven to be problematic, Java 5 introduced the
enum alternative. An enum is an enumerated type that is expressed via reserved word enum.

CHAPTER 3 EXPLORING ADVANCED LANGUAGE FEATURES

225

You can add fields, constructors, and methods to an enum—you can even have the enum
implement interfaces. Also, you can override toString() to provide a more useful description of a
constant’s value, and subclass constants to assign different behaviors.

The compiler regards enum as syntactic sugar for a class that subclasses Enum. This abstract class
overrides various Object methods to provide default behaviors (usually for safety reasons), and provides
additional methods for various purposes.

This chapter largely completes our tour of the Java language. However, there are a few more
advanced language features to explore. You will encounter a couple of these minor features in Chapter 4,
which begins a multichapter exploration of additional types that are located in Java’s standard class
library.

C H A P T E R 4

227

Touring Language APIs

Java’s standard class library provides various language-oriented APIs. Most of these APIs reside in the
java.lang package and its subpackages, although a few APIs reside in java.math. Chapter 4 first
introduces you to the java.lang/subpackage Math and StrictMath, Package, Primitive Type Wrapper
Class, Reference, Reflection, String, StringBuffer and StringBuilder, System, and Threading APIs. This
chapter then introduces you to java.math’s BigDecimal and BigInteger APIs.

Math and StrictMath
The java.lang.Math class declares double constants E and PI that represent the natural logarithm base
value (2.71828...) and the ratio of a circle’s circumference to its diameter (3.14159...). E is initialized to
2.718281828459045 and PI is initialized to 3.141592653589793. Math also declares assorted class methods
to perform various math operations. Table 4-1 describes many of these methods.

Table 4-1. Math Methods

Method Description

double abs(double d) Return the absolute value of d. There are four special cases:
abs(-0.0) = +0.0, abs(+infinity) = +infinity, abs(-
infinity) = +infinity, and abs(NaN) = NaN.

float abs(float f) Return the absolute value of f. There are four special cases:
abs(-0.0) = +0.0, abs(+infinity) = +infinity, abs(-
infinity) = +infinity, and abs(NaN) = NaN.

int abs(int i) Return the absolute value of i. There is one special case: the
absolute value of Integer.MIN_VALUE is Integer.MIN_VALUE.

long abs(long l) Return the absolute value of l. There is one special case: the
absolute value of Long.MIN_VALUE is Long.MIN_VALUE.

double acos(double d) Return angle d’s arc cosine within the range 0 through PI.
There are three special cases: acos(anything > 1) = NaN,
acos(anything < -1) = NaN, and acos(NaN) = NaN.

CHAPTER 4 TOURING LANGUAGE APIS

228

double asin(double d) Return angle d’s arc sine within the range -PI/2 through PI/2.
There are three special cases: asin(anything > 1) = NaN,
asin(anything < -1) = NaN, and asin(NaN) = NaN.

double atan(double d) Return angle d’s arc tangent within the range -PI/2 through
PI/2. There are five special cases: atan(+0.0) = +0.0, atan(-
0.0) = -0.0, atan(+infinity) = +PI/2, atan(-infinity) =
-PI/2, and atan(NaN) = NaN.

double ceil(double d) Return the smallest value (closest to negative infinity) that is
not less than d and is equal to an integer. There are six
special cases: ceil(+0.0) = +0.0, ceil(-0.0) = -0.0,
ceil(anything > -1.0 and < 0.0) = -0.0, ceil(+infinity)
= +infinity, ceil(-infinity) = -infinity, and ceil(NaN) =
NaN.

double cos(double d) Return the cosine of angle d (expressed in radians). There are
three special cases: cos(+infinity) = NaN, cos(-infinity) =
NaN, and cos(NaN) = NaN.

double exp(double d) Return Euler’s number e to the power d. There are three
special cases: exp(+infinity) = +infinity, exp(-infinity)
= +0.0, and exp(NaN) = NaN.

double floor(double d) Return the largest value (closest to positive infinity) that is
not greater than d and is equal to an integer. There are five
special cases: floor(+0.0) = +0.0, floor(-0.0) = -0.0,
floor(+infinity) = +infinity, floor(-infinity) = -
infinity, and floor(NaN) = NaN.

double log(double d) Return the natural logarithm (base e) of d. There are six
special cases: log(+0.0) = -infinity, log(-0.0) = -
infinity, log(anything < 0) = NaN, log(+infinity) =
+infinity, log(-infinity) = NaN, and log(NaN) = NaN.

double log10(double d) Return the base 10 logarithm of d. There are six special cases:
log10(+0.0) = -infinity, log10(-0.0) = -infinity,
log10(anything < 0) = NaN, log10(+infinity) = +infinity,
log10(-infinity) = NaN, and log10(NaN) = NaN.

double max(double d1, double
d2)

Return the most positive (closest to positive infinity) of d1
and d2. There are four special cases: max(NaN, anything) =
NaN, max(anything, NaN) = NaN, max(+0.0, -0.0) = +0.0,
and max(-0.0, +0.0) = +0.0.

float max(float f1, float
f2)

Return the most positive (closest to positive infinity) of f1
and f2. There are four special cases: max(NaN, anything) =
NaN, max(anything, NaN) = NaN, max(+0.0, -0.0) = +0.0,

CHAPTER 4 TOURING LANGUAGE APIS

229

and max(-0.0, +0.0) = +0.0.

int max(int i1, int i2) Return the most positive (closest to positive infinity) of i1
and i2.

long max(long l1, long l2) Return the most positive (closest to positive infinity) of l1
and l2.

double min(double d1, double
d2)

Return the most negative (closest to negative infinity) of d1
and d2. There are four special cases: min(NaN, anything) =
NaN, min(anything, NaN) = NaN, min(+0.0, -0.0) = -0.0,
and min(-0.0, +0.0) = -0.0.

float min(float f1, float
f2)

Return the most negative (closest to negative infinity) of f1
and f2. There are four special cases: min(NaN, anything) =
NaN, min(anything, NaN) = NaN, min(+0.0, -0.0) = -0.0,
and min(-0.0, +0.0) = -0.0.

int min(int i1, int i2) Return the most negative (closest to negative infinity) of i1
and i2.

long min(long l1, long l2) Return the most negative (closest to negative infinity) of l1
and l2.

double random() Return a pseudorandom number between 0.0 (inclusive)
and 1.0 (exclusive).

long round(double d) Return the result of rounding d to a long integer. The result is
equivalent to (long) Math.floor(d+0.5). There are seven
special cases: round(+0.0) = +0.0, round(-0.0) = +0.0,
round(anything > Long.MAX_VALUE) = Long.MAX_VALUE,
round(anything < Long.MIN_VALUE) = Long.MIN_VALUE,
round(+infinity) = Long.MAX_VALUE, round(-infinity) =
Long.MIN_VALUE, and round(NaN) = +0.0.

int round(float f) Return the result of rounding f to an integer. The result is
equivalent to (int) Math.floor(f+0.5). There are seven
special cases: round(+0.0) = +0.0, round(-0.0) = +0.0,
round(anything > Integer.MAX_VALUE) =
Integer.MAX_VALUE, round(anything < Integer.MIN_VALUE)
= Integer.MIN_VALUE, round(+infinity) =
Integer.MAX_VALUE, round(-infinity) = Integer.MIN_VALUE,
and round(NaN) = +0.0.

double signum(double d) Return the sign of d as -1.0 (d less than 0.0), 0.0 (d equals 0.0),
and 1.0 (d greater than 0.0). There are five special cases:
signum(+0.0) = +0.0, signum(-0.0) = -0.0,
signum(+infinity) = +1.0, signum(-infinity) = -1.0, and

CHAPTER 4 TOURING LANGUAGE APIS

230

signum(NaN) = NaN.

float signum(float f) Return the sign of f as -1.0 (f less than 0.0), 0.0 (f equals 0.0),
and 1.0 (f greater than 0.0). There are five special cases:
signum(+0.0) = +0.0, signum(-0.0) = -0.0,
signum(+infinity) = +1.0, signum(-infinity) = -1.0, and
signum(NaN) = NaN.

double sin(double d) Return the sine of angle d (expressed in radians). There are
five special cases: sin(+0.0) = +0.0, sin(-0.0) = -0.0,
sin(+infinity) = NaN, sin(-infinity) = NaN, and sin(NaN)
= NaN.

double sqrt(double d) Return the square root of d. There are five special cases:
sqrt(+0.0) = +0.0, sqrt(-0.0) = -0.0, sqrt(anything < 0)
= NaN, sqrt(+infinity) = +infinity, and sqrt(NaN) = NaN.

double tan(double d) Return the tangent of angle d (expressed in radians). There
are five special cases: tan(+0.0) = +0.0, tan(-0.0) = -0.0,
tan(+infinity) = NaN, tan(-infinity) = NaN, and tan(NaN)
= NaN.

double toDegrees(double
angrad)

Convert angle angrad from radians to degrees via expression
angrad*180/PI. There are five special cases: toDegrees(+0.0)
= +0.0, toDegrees(-0.0) = -0.0, toDegrees(+infinity) =
+infinity, toDegrees(-infinity) = -infinity, and
toDegrees(NaN) = NaN.

double toRadians(angdeg) Convert angle angdeg from degrees to radians via expression
angdeg/180*PI. There are five special cases: toRadians(+0.0)
= +0.0, toRadians(-0.0) = -0.0, toRadians(+infinity) =
+infinity, toRadians(-infinity) = -infinity, and
toRadians(NaN) = NaN.

Table 4-1 reveals a wide variety of useful math-oriented methods. For example, each abs() method

returns its argument’s absolute value (number without regard for sign).
abs(double) and abs(float) are useful for comparing double precision floating-point and floating-

point values safely. For example, 0.3 == 0.1+0.1+0.1 evaluates to false because 0.1 has no exact
representation. However, you can compare these expressions with abs() and a tolerance value, which
indicates an acceptable range of error. For example, Math.abs(0.3-(0.1+0.1+0.1)) < 0.1 returns true
because the absolute difference between 0.3 and 0.1+0.1+0.1 is less than a 0.1 tolerance value.

Previous chapters demonstrated other Math methods. For example, Chapter 2 demonstrated Math’s
random(), sin(), cos(), and toRadians() methods.

As Chapter 3’s Lotto649 application revealed, random() (which returns a number that appears to be
randomly chosen but is actually chosen by a predictable math calculation, and hence is pseudorandom)
is useful in simulations (as well as in games and wherever an element of chance is needed). However, its
double precision floating-point range of 0.0 through (almost) 1.0 isn’t practical. To make random() more
useful, its return value must be transformed into a more useful range, perhaps integer values 0 through

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

231

49, or maybe -100 through 100. You will find the following rnd() method useful for making these
transformations:

static int rnd(int limit)
{
 return (int) (Math.random()*limit);
}

rnd() transforms random()’s 0.0 to (almost) 1.0 double precision floating-point range to a 0 through
limit-1 integer range. For example, rnd(50) returns an integer ranging from 0 through 49. Also, -
100+rnd(201) transforms 0.0 to (almost) 1.0 into -100 through 100 by adding a suitable offset and passing
an appropriate limit value.

■ Caution Do not specify (int) Math.random()*limit because this expression always evaluates to 0. The
expression first casts random()’s double precision floating-point fractional value (0.0 through 0.99999. . .) to
integer 0 by truncating the fractional part, and then multiplies 0 by limit, resulting in 0.

The sin() and cos() methods implement the sine and cosine trigonometric functions—see
http://en.wikipedia.org/wiki/Trigonometric_functions. These functions have uses ranging from the
study of triangles to modeling periodic phenomena (such as simple harmonic motion—see
http://en.wikipedia.org/wiki/Simple_harmonic_motion).

We can use sin() and cos() to generate and display sine and cosine waves. Listing 4-1 presents the
source code to an application that does just this.

Listing 4-1. Graphing sine and cosine waves

class Graph
{
 final static int ROWS = 11; // Must be odd
 final static int COLS= 23;
 public static void main(String[] args)
 {
 char[][] screen = new char[ROWS][];
 for (int row = 0; row < ROWS; row++)
 screen[row] = new char[COLS];
 double scaleX = COLS/360.0;
 for (int degree = 0; degree < 360; degree++)
 {
 int row = ROWS/2+
 (int) Math.round(ROWS/2*Math.sin(Math.toRadians(degree)));
 int col = (int) (degree*scaleX);
 screen[row][col] = 'S';
 row = ROWS/2+
 (int) Math.round(ROWS/2*Math.cos(Math.toRadians(degree)));
 screen[row][col] = (screen[row][col] == 'S') ? '*' : 'C';
 }
 for (int row = ROWS-1; row >= 0; row--)

http://en.wikipedia.org/wiki/Trigonometric_functions
http://en.wikipedia.org/wiki/Simple_harmonic_motion

CHAPTER 4 TOURING LANGUAGE APIS

232

 {
 for (int col = 0; col < COLS; col++)
 System.out.print(screen[row][col]);
 System.out.println();
 }
 }
}

Listing 4-1 introduces a Graph class that first declares a pair of constants: NROWS and NCOLS. These
constants specify the dimensions of an array on which the graphs are generated. NROWS must be assigned
an odd integer; otherwise, an instance of the java.lang.ArrayIndexOutOfBoundsException class is
thrown.

■ Tip It’s a good idea to use constants wherever possible. The source code is easier to maintain because you only
need to change the constant’s value in one place instead of having to change each corresponding value
throughout the source code.

Graph next declares its main() method, which first creates a two-dimensional screen array of
characters. This array is used to simulate an old-style character-based screen for viewing the graphs.

main() next calculates a horizontal scale value for scaling each graph horizontally so that 360
horizontal (degree) positions fit into the number of columns specified by NCOLS.

Continuing, main() enters a for loop that, for each of the sine and cosine graphs, creates (row,
column) coordinates for each degree value, and assigns a character to the screen array at those
coordinates. The character is S for the sine graph, C for the cosine graph, and * when the cosine graph
intersects the sine graph.

The row calculation invokes toRadians() to convert its degree argument to radians, which is
required by the sin() and cos() methods. The value returned from sin() or cos() (-1 to 1) is then
multiplied by ROWS/2 to scale this value to half the number of rows in the screen array. After rounding the
result to the nearest long integer via the long round(double d) method, a cast is used to convert from
long integer to integer, and this integer is added to ROW/2 to offset the row coordinate so that it’s relative
to the array’s middle row. The column calculation is simpler, multiplying the degree value by the
horizontal scale factor.

The screen array is dumped to the standard output device via a pair of nested for loops. The outer
for loop inverts the screen so that it appears right side up—row number 0 should output last.

Compile Listing 4-1 (javac Graph.java) and run the application (java Graph). You observe the
following output:

CHAPTER 4 TOURING LANGUAGE APIS

233

CC SSSS CC
 CSSS SS CC
 S*C SS CC
 S CC SS CC
SS CC SS CC
S CC S CC S
 C SS C SS
 CC SS CC S
 CC SCC SS
 CC CSS SSS
 CCCCC SSSS

■ Note When I created the screen array, I took advantage of the fact that every element is initialized to 0, which
is interpreted as the null character. When a System.out.print() or System.out.println() method detects this
character, it outputs a space character instead.

Table 4-1 also reveals a few curiosities starting with +infinity, -infinity, +0.0, -0.0, and NaN (Not a
Number).

Java’s floating-point calculations are capable of returning +infinity, -infinity, +0.0, -0.0, and NaN
because Java largely conforms to IEEE 754 (http://en.wikipedia.org/wiki/IEEE_754), a standard for
floating-point calculations. The following are the circumstances under which these special values arise:

• +infinity returns from attempting to divide a positive number by 0.0. For example,
System.out.println(1.0/0.0); outputs Infinity.

• -infinity returns from attempting to divide a negative number by 0.0. For example,
System.out.println(-1.0/0.0); outputs -Infinity.

• NaN returns from attempting to divide 0.0 by 0.0, attempting to calculate the
square root of a negative number, and attempting other strange operations. For
example, System.out.println(0.0/0.0); and System.out.println(Math.sqrt(-
1.0)); each output NaN.

• +0.0 results from attempting to divide a positive number by +infinity. For example,
System.out.println(1.0/(1.0/0.0)); outputs +0.0.

• -0.0 results from attempting to divide a negative number by +infinity. For
example, System.out.println(-1.0/(1.0/0.0)); outputs -0.0.

Once an operation yields +infinity, -infinity, or NaN, the rest of the expression usually equals that
special value. For example, System.out.println(1.0/0.0*20.0); outputs Infinity. Also, an expression
that first yields +infinity or -infinity might devolve into NaN. For example, 1.0/0.0*0.0 yields +infinity
(1.0/0.0) and then NaN (+infinity*0.0).

Another curiosity is Integer.MAX_VALUE, Integer.MIN_VALUE, Long.MAX_VALUE, and Long.MIN_VALUE.
Each of these items is a primitive type wrapper class constant that identifies the maximum or minimum
value that can be represented by the class’s associated primitive type. (I discuss primitive type wrapper
classes later in this chapter.)

http://en.wikipedia.org/wiki/IEEE_754

CHAPTER 4 TOURING LANGUAGE APIS

234

Finally, you might wonder why the abs(), max(), and min() overloaded methods do not include byte
and short versions, as in byte abs(byte b) and short abs(short s). There is no need for these methods
because the limited ranges of bytes and short integers make them unsuitable in calculations. If you need
such a method, check out Listing 4-2.

Listing 4-2. Obtaining absolute values for byte integers and short integers

class AbsByteShort
{
 static byte abs(byte b)
 {
 return (b < 0) ? (byte) -b : b;
 }
 static short abs(short s)
 {
 return (s < 0) ? (short) -s : s;
 }
 public static void main(String[] args)
 {
 byte b = -2;
 System.out.println(abs(b)); // Output: 2
 short s = -3;
 System.out.println(abs(s)); // Output: 3
 }
}

Listing 4-2’s (byte) and (short) casts are necessary because -b converts b’s value from a byte to an
int, and -s converts s’s value from a short to an int. In contrast, these casts are not needed with (b < 0)
and (s < 0), which automatically cast b’s and s’s values to an int before comparing them with int-
based 0.

■ Tip Their absence from Math suggests that byte and short are not very useful in method declarations.
However, these types are useful when declaring arrays whose elements store small values (such as a binary file’s
byte values). If you declared an array of int or long to store such values, you would end up wasting heap space
(and might even run out of memory).

While searching through the Java documentation for the java.lang package, you will probably
encounter a class named StrictMath. Apart from a longer name, this class appears to be identical to
Math. The differences between these classes can be summed up as follows:

• StrictMath’s methods return exactly the same results on all platforms. In contrast,
some of Math’s methods might return values that vary ever so slightly from
platform to platform.

• Because StrictMath cannot utilize platform-specific features such as an extended-
precision math coprocessor, an implementation of StrictMath might be less
efficient than an implementation of Math.

CHAPTER 4 TOURING LANGUAGE APIS

235

For the most part, Math’s methods call their StrictMath counterparts. Two exceptions are
toDegrees() and toRadians(). Although these methods have identical code bodies in both classes,
StrictMath’s implementations include reserved word strictfp in the method headers:

public static strictfp double toDegrees(double angrad)
public static strictfp double toRadians(double angdeg)

Wikipedia’s “strictfp” entry (http://en.wikipedia.org/wiki/Strictfp) mentions that strictfp
restricts floating-point calculations to ensure portability. This reserved word accomplishes portability in
the context of intermediate floating-point representations and overflows/underflows (generating a value
too large or small to fit a representation).

■ Note The previously cited “strictfp” article states that Math contains public static strictfp double
abs(double); and other strictfp methods. If you check out this class’s source code under Java 7, you will not
find strictfp anywhere in the source code. However, many Math methods (such as sin()) call their StrictMath
counterparts, which are implemented in a platform-specific library, and the library’s method implementations are
strict.

Without strictfp, an intermediate calculation is not limited to the IEEE 754 32-bit and 64-bit
floating-point representations that Java supports. Instead, the calculation can take advantage of a larger
representation (perhaps 128 bits) on a platform that supports this representation.

An intermediate calculation that overflows/underflows when its value is represented in 32/64 bits
might not overflow/underflow when its value is represented in more bits. Because of this discrepancy,
portability is compromised. strictfp levels the playing field by requiring all platforms to use 32/64 bits
for intermediate calculations.

When applied to a method, strictfp ensures that all floating-point calculations performed in that
method are in strict compliance. However, strictfp can be used in a class header declaration (as in
public strictfp class FourierTransform) to ensure that all floating-point calculations performed in
that class are strict.

■ Note Math and StrictMath are declared final so that they cannot be extended. Also, they declare private
empty noargument constructors so that they cannot be instantiated. Finally, Math and StrictMath are examples of
utility classes because they exist as placeholders for static methods.

Package
The java.lang.Package class provides access to information about a package (see Chapter 3 for an
introduction to packages). This information includes version details about the implementation and
specification of a Java package, the name of the package, and an indication of whether or not the
package has been sealed (all classes that are part of a package are archived in the same JAR file).

Table 4-2 describes some of Package’s methods.

http://en.wikipedia.org/wiki/Strictfp

CHAPTER 4 TOURING LANGUAGE APIS

236

Table 4-2. Package Methods

Method Description

String
getImplementationTitle()

Return the title of this package’s implementation, which might
be null. The format of the title is unspecified.

String
getImplementationVendor()

Return the name of the vendor or organization that provides
this package’s implementation. This name might be null. The
format of the name is unspecified.

String
getImplementationVersion()

Return the version number of this package’s implementation,
which might be null. This version string must be a sequence of
positive decimal integers separated by periods and might have
leading zeros.

String getName() Return the name of this package in standard dot notation; for
example, java.lang.

static Package
getPackage(String
packageName)

Return the Package object that is associated with the package
identified as packageName, or null when the package identified
as packageName cannot be found. This method throws
java.lang.NullPointerException when packageName is null.

static Package[]
getPackages()

Return an array of all Package objects that are accessible to this
method’s caller.

String
getSpecificationTitle()

Return the title of this package’s specification, which might be
null. The format of the title is unspecified.

String
getSpecificationVendor()

Return the name of the vendor or organization that provides
the specification that is implemented by this package. This
name might be null. The format of the name is unspecified.

String
getSpecificationVersion()

Return the version number of the specification of this
package’s implementation, which might be null. This version
string must be a sequence of positive decimal integers
separated by periods, and might have leading zeros.

boolean
isCompatibleWith(String
desired)

Check this package to determine if it is compatible with the
specified version string, by comparing this package’s
specification version with the desired version. Return true
when this package’s specification version number is greater
than or equal to the desired version number (this package is
compatible); otherwise, return false. This method throws
NullPointerException when desired is null, and
java.lang.NumberFormatException when this package’s version

CHAPTER 4 TOURING LANGUAGE APIS

237

number or the desired version number is not in dotted form.

boolean isSealed() Return true when this package has been sealed; otherwise,
return false.

I have created a PackageInfo application that demonstrates most of Table 4-2’s Package methods.

Listing 4-3 presents this application’s source code.

Listing 4-3. Obtaining information about a package

class PackageInfo
{
 public static void main(String[] args)
 {
 if (args.length == 0)
 {
 System.err.println("usage: java PackageInfo packageName [version]");
 return;
 }
 Package pkg = Package.getPackage(args[0]);
 if (pkg == null)
 {
 System.err.println(args[0]+" not found");
 return;
 }
 System.out.println("Name: "+pkg.getName());
 System.out.println("Implementation title: "+
 pkg.getImplementationTitle());
 System.out.println("Implementation vendor: "+
 pkg.getImplementationVendor());
 System.out.println("Implementation version: "+
 pkg.getImplementationVersion());
 System.out.println("Specification title: "+
 pkg.getSpecificationTitle());
 System.out.println("Specification vendor: "+
 pkg.getSpecificationVendor());
 System.out.println("Specification version: "+
 pkg.getSpecificationVersion());
 System.out.println("Sealed: "+pkg.isSealed());
 if (args.length > 1)
 System.out.println("Compatible with "+args[1]+": "+
 pkg.isCompatibleWith(args[1]));
 }
}

After compiling Listing 4-3 (javac PackageInfo.java), specify at least a package name on the
command line when you run this application. For example, java PackageInfo java.lang returns the
following output under Java 7:

Name: java.lang
Implementation title: Java Runtime Environment

CHAPTER 4 TOURING LANGUAGE APIS

238

Implementation vendor: Oracle Corporation
Implementation version: 1.7.0
Specification title: Java Platform API Specification
Specification vendor: Oracle Corporation
Specification version: 1.7
Sealed: false

PackageInfo also lets you determine if the package’s specification is compatible with a specific
version number. A package is compatible with its predecessors.

For example, java PackageInfo java.lang 1.7 outputs Compatible with 1.7: true, whereas java
PackageInfo java.lang 1.8 outputs Compatible with 1.8: false.

You can also use PackageInfo with your own packages, which you learned to create in Chapter 3. For
example, that chapter presented a logging package.

Copy PackageInfo.class into the directory containing the logging package directory (which
contains the compiled classfiles), and execute java PackageInfo logging.

PackageInfo responds by displaying the following output:

logging not found

This error message is presented because getPackage() requires at least one classfile to be loaded
from the package before it returns a Package object describing that package.

The only way to eliminate the previous error message is to load a class from the package.
Accomplish this task by merging the following code fragment into Listing 4-3.

if (args.length == 3)
try
{
 Class.forName(args[2]);
}
catch (ClassNotFoundException cnfe)
{
 System.err.println("cannot load "+args[2]);
 return;
}

This code fragment, which must precede Package pkg = Package.getPackage(args[0]);, loads the
classfile named by the revised PackageInfo application’s third command-line argument. (I’ll discuss
Class.forName() later in this chapter.)

Run the new PackageInfo application via java PackageInfo logging 1.5 logging.File and you will
observe the following output—this command line identifies logging’s File class as the class to load:

Name: logging
Implementation title: null
Implementation vendor: null
Implementation version: null
Specification title: null
Specification vendor: null
Specification version: null
Sealed: false
Exception in thread "main" java.lang.NumberFormatException: Empty version string
 at java.lang.Package.isCompatibleWith(Package.java:228)
 at PackageInfo.main(PackageInfo.java:42)

CHAPTER 4 TOURING LANGUAGE APIS

239

It is not surprising to see all of these null values because no package information has been added to
the logging package. Also, NumberFormatException is thrown from isCompatibleWith() because the
logging package does not contain a specification version number in dotted form (it is null).

Perhaps the simplest way to place package information into the logging package is to create a
logging.jar file in a similar manner to the example shown in Chapter 3. But first, you must create a
small text file that contains the package information. You can choose any name for the file. Listing 4-4
reveals my choice of manifest.mf.

Listing 4-4. manifest.mf containing the package information

Implementation-Title: Logging Implementation
Implementation-Vendor: Jeff Friesen
Implementation-Version: 1.0a
Specification-Title: Logging Specification
Specification-Vendor: Jeff Friesen
Specification-Version: 1.0
Sealed: true

■ Note Make sure to press the Return/Enter key at the end of the final line (Sealed: true). Otherwise, you will
probably observe Sealed: false in the output because this entry will not be stored in the logging package by
the JDK’s jar tool—jar is a bit quirky.

Execute the following command line to create a JAR file that includes logging and its files, and
whose manifest, a special file named MANIFEST.MF that stores information about the contents of a JAR file,
contains the contents of Listing 4-4:

jar cfm logging.jar manifest.mf logging/*.class

This command line creates a JAR file named logging.jar (via the c [create] and f [file] options). It
also merges the contents of manifest.mf (via the m [manifest] option) into MANIFEST.MF, which is stored in
the package’s META-INF directory.

■ Note To learn more about a JAR file’s manifest, read the “JAR Manifest” section of the JDK documentation’s
“JAR File Specification” page
(http://download.oracle.com/javase/7/docs/technotes/guides/jar/jar.html#JAR Manifest).

Assuming that the jar tool presents no error messages, execute the following Windows-oriented
command line (or a command line suitable for your platform) to run PackageInfo and extract the
package information from the logging package:

java -cp logging.jar;. PackageInfo logging 1.0 logging.File

This time, you should see the following output:

http://download.oracle.com/javase/7/docs/technotes/guides/jar/jar.html#JARManifest

CHAPTER 4 TOURING LANGUAGE APIS

240

Name: logging
Implementation title: Logging Implementation
Implementation vendor: Jeff Friesen
Implementation version: 1.0a
Specification title: Logging Specification
Specification vendor: Jeff Friesen
Specification version: 1.0
Sealed: true
Compatible with 1.0: true

Primitive Type Wrapper Class
The java.lang package includes Boolean, Byte, Character, Double, Float, Integer, Long, and Short. These
classes are known as primitive type wrapper classes because their instances wrap themselves around
values of primitive types.

■ Note The primitive type wrapper classes are also known as value classes.

Java provides these eight primitive type wrapper classes for two reasons:

• The Collections Framework (discussed in Chapter 5) provides lists, sets, and maps
that can only store objects; they cannot store primitive values. You store a
primitive value in a primitive type wrapper class instance and store the instance in
the collection.

• These classes provide a good place to associate useful constants (such as
MAX_VALUE and MIN_VALUE) and class methods (such as Integer’s parseInt()
methods and Character’s isDigit(), isLetter(), and toUpperCase() methods)
with the primitive types.

This section introduces you to each of these primitive type wrapper classes and a java.lang class
named Number.

Boolean
Boolean is the smallest of the primitive type wrapper classes. This class declares three constants,
including TRUE and FALSE, which denote precreated Boolean objects. It also declares a pair of
constructors for initializing a Boolean object:

• Boolean(boolean value) initializes the Boolean object to value.

• Boolean(String s) converts s’s text to a true or false value and stores this value in
the Boolean object.

The second constructor compares s’s value with true. Because the comparison is case-insensitive,
any uppercase/lowercase combination of these four letters (such as true, TRUE, or tRue) results in true
being stored in the object. Otherwise, the constructor stores false in the object.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

241

■ Note Boolean’s constructors are complemented by boolean booleanValue(), which returns the wrapped
Boolean value.

Boolean also declares or overrides the following methods:

• int compareTo(Boolean b) compares the current Boolean object with b to
determine their relative order. The method returns 0 when the current object
contains the same Boolean value as b, a positive value when the current object
contains true and b contains false, and a negative value when the current object
contains false and b contains true.

• boolean equals(Object o) compares the current Boolean object with o and returns
true when o is not null, o is of type Boolean, and both objects contain the same
Boolean value.

• static boolean getBoolean(String name) returns true when a system property
(discussed later in this chapter) identified by name exists and is equal to true.

• int hashCode() returns a suitable hash code that allows Boolean objects to be used
with hash-based collections (discussed in Chapter 5).

• static boolean parseBoolean(String s) parses s, returning true if s equals
"true", "TRUE", "True", or any other uppercase/lowercase combination.
Otherwise, this method returns false. (Parsing breaks a sequence of characters
into meaningful components, known as tokens.)

• String toString() returns "true" when the current Boolean instance contains
true; otherwise, this method returns "false".

• static String toString(boolean b) returns "true" when b contains true;
otherwise, this method returns "false".

• static Boolean valueOf(boolean b) returns TRUE when b contains true or FALSE
when b contains false.

• static Boolean valueOf(String s) returns TRUE when s equals "true", "TRUE",
"True", or any other uppercase/lowercase combination of these letters. Otherwise,
this method returns FALSE.

■ Caution Newcomers to the Boolean class often think that getBoolean() returns a Boolean object’s true/false
value. However, getBoolean() returns the value of a Boolean-based system property—I discuss system
properties later in this chapter. If you need to return a Boolean object’s true/false value, use the booleanValue()
method instead.

CHAPTER 4 TOURING LANGUAGE APIS

242

It is often better to use TRUE and FALSE than to create Boolean objects. For example, suppose you
need a method that returns a Boolean object containing true when the method’s double argument is
negative, or false when this argument is zero or positive. You might declare your method like the
following isNegative() method:

Boolean isNegative(double d)
{
 return new Boolean(d < 0);
}

Although this method is concise, it unnecessarily creates a Boolean object. When the method is
called frequently, many Boolean objects are created that consume heap space. When heap space runs
low, the garbage collector runs and slows down the application, which impacts performance.

The following example reveals a better way to code isNegative():

Boolean isNegative(double d)
{
 return (d < 0) ? Boolean.TRUE : Boolean.FALSE;
}

This method avoids creating Boolean objects by returning either the precreated TRUE or FALSE object.

■ Tip You should strive to create as few objects as possible. Not only will your applications have smaller memory
footprints, they’ll perform better because the garbage collector will not run as often.

Character
Character is the largest of the primitive type wrapper classes, containing many constants, a constructor,
many methods, and a trio of nested classes (Subset, UnicodeBlock, and UnicodeScript).

■ Note Character’s complexity derives from Java’s support for Unicode
(http://en.wikipedia.org/wiki/Unicode). For brevity, I ignore much of Character’s Unicode-related
complexity, which is beyond the scope of this chapter.

Character declares a single Character(char value) constructor, which you use to initialize a
Character object to value. This constructor is complemented by char charValue(), which returns the
wrapped character value.

When you start writing applications, you might codify expressions such as ch >= '0' && ch <= '9'
(test ch to see if it contains a digit) and ch >= 'A' && ch <= 'Z' (test ch to see if it contains an uppercase
letter). You should avoid doing so for three reasons:

• It is too easy to introduce a bug into the expression. For example, ch > '0' && ch
<= '9' introduces a subtle bug that does not include '0' in the comparison.

http://en.wikipedia.org/wiki/Unicode

CHAPTER 4 TOURING LANGUAGE APIS

243

• The expressions are not very descriptive of what they are testing.

• The expressions are biased toward Latin digits (0-9) and letters (A-Z and a-z). They
do not take into account digits and letters that are valid in other languages. For
example, '\u0beb' is a character literal representing one of the digits in the Tamil
language.

Character declares several comparison and conversion class methods that address these concerns.
These methods include the following:

• static boolean isDigit(char ch) returns true when ch contains a digit (typically
0 through 9, but also digits in other alphabets).

• static boolean isLetter(char ch) returns true when ch contains a letter
(typically A-Z or a-z, but also letters in other alphabets).

• static boolean isLetterOrDigit(char ch) returns true when ch contains a letter
or digit (typically A-Z, a-z, or 0-9; but also letters or digits in other alphabets).

• static boolean isLowerCase(char ch) returns true when ch contains a lowercase
letter.

• static boolean isUpperCase(char ch) returns true when ch contains an
uppercase letter.

• static boolean isWhitespace(char ch) returns true when ch contains a
whitespace character (typically a space, a horizontal tab, a carriage return, or a
line feed).

• static char toLowerCase(char ch) returns the lowercase equivalent of ch’s
uppercase letter; otherwise, this method returns ch’s value.

• static char toUpperCase(char ch) returns the uppercase equivalent of ch’s
lowercase letter; otherwise, this method returns ch’s value.

For example, isDigit(ch) is preferable to ch >= '0' && ch <= '9' because it avoids a source of
bugs, is more readable, and returns true for non-Latin digits (e.g., '\u0beb') as well as Latin digits.

Float and Double
Float and Double store floating-point and double precision floating-point values in Float and Double
objects, respectively. These classes declare the following constants:

• MAX_VALUE identifies the maximum value that can be represented as a float or
double.

• MIN_VALUE identifies the minimum value that can be represented as a float or
double.

• NaN represents 0.0F/0.0F as a float and 0.0/0.0 as a double.

• NEGATIVE_INFINITY represents -infinity as a float or double.

• POSITIVE_INFINITY represents +infinity as a float or double.

CHAPTER 4 TOURING LANGUAGE APIS

244

Float and Double also declare the following constructors for initializing their objects:

• Float(float value) initializes the Float object to value.

• Float(double value) initializes the Float object to the float equivalent of value.

• Float(String s) converts s’s text to a floating-point value and stores this value in
the Float object.

• Double(double value) initializes the Double object to value.

• Double(String s) converts s’s text to a double precision floating-point value and
stores this value in the Double object.

Float’s constructors are complemented by float floatValue(), which returns the wrapped
floating-point value. Similarly, Double’s constructors are complemented by double doubleValue(),
which returns the wrapped double precision floating-point value.

Float declares several utility methods as well as floatValue(). These methods include the following:

• static int floatToIntBits(float value) converts value to a 32-bit integer.

• static boolean isInfinite(float f) returns true when f’s value is +infinity or -
infinity. A related boolean isInfinite() method returns true when the current
Float object’s value is +infinity or -infinity.

• static boolean isNaN(float f) returns true when f’s value is NaN. A related
boolean isNaN() method returns true when the current Float object’s value is
NaN.

• static float parseFloat(String s) parses s, returning the floating-point
equivalent of s’s textual representation of a floating-point value, or throwing
NumberFormatException when this representation is invalid (contains letters, for
example).

Double declares several utility methods as well as doubleValue(). These methods include the
following:

• static long doubleToLongBits(double value) converts value to a long integer.

• static boolean isInfinite(double d) returns true when d’s value is +infinity or -
infinity. A related boolean isInfinite() method returns true when the current
Double object’s value is +infinity or -infinity.

• static boolean isNaN(double d) returns true when d’s value is NaN. A related
boolean isNaN() method returns true when the current Double object’s value is
NaN.

• static double parseDouble(String s) parses s, returning the double precision
floating-point equivalent of s’s textual representation of a double precision
floating-point value, or throwing NumberFormatException when this representation
is invalid.

The floatToIntBits() and doubleToIntBits() methods are used in implementations of the equals()
and hashCode() methods that must take float and double fields into account. floatToIntBits() and
doubleToIntBits() allow equals() and hashCode() to respond properly to the following situations:

CHAPTER 4 TOURING LANGUAGE APIS

245

• equals() must return true when f1 and f2 contain Float.NaN (or d1 and d2 contain
Double.NaN). If equals() was implemented in a manner similar to f1.floatValue()
== f2.floatValue() (or d1.doubleValue() == d2.doubleValue()), this method
would return false because NaN is not equal to anything, including itself.

• equals() must return false when f1 contains +0.0 and f2 contains -0.0 (or vice-
versa), or d1 contains +0.0 and d2 contains -0.0 (or vice-versa). If equals() was
implemented in a manner similar to f1.floatValue() == f2.floatValue() (or
d1.doubleValue() == d2.doubleValue()), this method would return true because
+0.0 == -0.0 returns true.

These requirements are needed for hash-based collections (discussed in Chapter 5) to work
properly. Listing 4-5 shows how they impact Float’s and Double’s equals() methods:

Listing 4-5. Demonstrating Float’s equals() method in a NaN context and Double’s equals() method in a

+/-0.0 context

class FloatDoubleDemo
{
 public static void main(String[] args)
 {
 Float f1 = new Float(Float.NaN);
 System.out.println(f1.floatValue());
 Float f2 = new Float(Float.NaN);
 System.out.println(f2.floatValue());
 System.out.println(f1.equals(f2));
 System.out.println(Float.NaN == Float.NaN);
 System.out.println();
 Double d1 = new Double(+0.0);
 System.out.println(d1.doubleValue());
 Double d2 = new Double(-0.0);
 System.out.println(d2.doubleValue());
 System.out.println(d1.equals(d2));
 System.out.println(+0.0 == -0.0);
 }
}

Compile Listing 4-5 (javac FloatDoubleDemo.java) and run this application (java FloatDoubleDemo).
The following output proves that Float’s equals() method properly handles NaN and Double’s equals()
method properly handles +/-0.0:

NaN
NaN
true
false

0.0
-0.0
false
true

CHAPTER 4 TOURING LANGUAGE APIS

246

■ Tip If you want to test a float or double value for equality with +infinity or -infinity (but not both), do not use
isInfinite(). Instead, compare the value with NEGATIVE_INFINITY or POSITIVE_INFINITY via ==. For example,
f == Float.NEGATIVE_INFINITY.

You will find parseFloat() and parseDouble() useful in many contexts. For example, Listing 4-6 uses
parseDouble() to parse command-line arguments into doubles.

Listing 4-6. Parsing command-line arguments into double precision floating-point values

class Calc
{
 public static void main(String[] args)
 {
 if (args.length != 3)
 {
 System.err.println("usage: java Calc value1 op value2");
 System.err.println("op is one of +, -, *, or /");
 return;
 }
 try
 {
 double value1 = Double.parseDouble(args[0]);
 double value2 = Double.parseDouble(args[2]);
 if (args[1].equals("+"))
 System.out.println(value1+value2);
 else
 if (args[1].equals("-"))
 System.out.println(value1-value2);
 else
 if (args[1].equals("*"))
 System.out.println(value1*value2);
 else
 if (args[1].equals("/"))
 System.out.println(value1/value2);
 else
 System.err.println("invalid operator: "+args[1]);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("Bad number format: "+nfe.getMessage());
 }
 }
}

Specify java Calc 10E+3 + 66.0 to try out the Calc application. This application responds by
outputting 10066.0. If you specified java Calc 10E+3 + A instead, you would observe Bad number
format: For input string: "A" as the output, which is in response to the second parseDouble() method
call’s throwing of a NumberFormatException object.

CHAPTER 4 TOURING LANGUAGE APIS

247

Although NumberFormatException describes an unchecked exception, and although unchecked
exceptions are often not handled because they represent coding mistakes, NumberFormatException does
not fit this pattern in this example. The exception does not arise from a coding mistake; it arises from
someone passing an illegal numeric argument to the application, which cannot be avoided through
proper coding. Perhaps NumberFormatException should have been implemented as a checked exception
type.

Integer, Long, Short, and Byte
Integer, Long, Short, and Byte store 32-bit, 64-bit, 16-bit, and 8-bit integer values in Integer, Long, Short,
and Byte objects, respectively.

Each class declares MAX_VALUE and MIN_VALUE constants that identify the maximum and minimum
values that can be represented by its associated primitive type. These classes also declare the following
constructors for initializing their objects:

• Integer(int value) initializes the Integer object to value.

• Integer(String s) converts s’s text to a 32-bit integer value and stores this value
in the Integer object.

• Long(long value) initializes the Long object to value.

• Long(String s) converts s’s text to a 64-bit integer value and stores this value in
the Long object.

• Short(short value) initializes the Short object to value.

• Short(String s) converts s’s text to a 16-bit integer value and stores this value in
the Short object.

• Byte(byte value) initializes the Byte object to value.

• Byte(String s) converts s’s text to an 8-bit integer value and stores this value in
the Byte object.

Integer’s constructors are complemented by int intValue(), Long’s constructors are
complemented by long longValue(), Short’s constructors are complemented by short shortValue(),
and Byte’s constructors are complemented by byte byteValue(). These methods return wrapped
integers.

These classes declare various useful integer-oriented methods. For example, Integer declares the
following utility methods for converting a 32-bit integer to a java.lang.String instance according to a
specific representation (binary, hexadecimal, octal, and decimal):

• static String toBinaryString(int i) returns a String object containing i’s
binary representation. For example, Integer.toBinaryString(255) returns a
String object containing 11111111.

• static String toHexString(int i) returns a String object containing i’s
hexadecimal representation. For example, Integer.toHexString(255) returns a
String object containing ff.

• static String toOctalString(int i) returns a String object containing i’s octal
representation. For example, toOctalString(64) returns a String object
containing 100.

CHAPTER 4 TOURING LANGUAGE APIS

248

• static String toString(int i) returns a String object containing i’s decimal
representation. For example, toString(255) returns a String object containing
255.

It is often convenient to prepend zeros to a binary string so that you can align multiple binary
strings in columns. For example, you might want to create an application that displays the following
aligned output:

11110001
+
00000111

11111000

Unfortunately, toBinaryString() does not let you accomplish this task. For example,
Integer.toBinaryString(7) returns a String object containing 111 instead of 00000111. Listing 4-7’s
toAlignedBinaryString() method addresses this oversight.

Listing 4-7. Aligning binary strings

class AlignBinary
{
 public static void main(String[] args)
 {
 System.out.println(toAlignedBinaryString(7, 8));
 System.out.println(toAlignedBinaryString(255, 16));
 System.out.println(toAlignedBinaryString(255, 7));
 }
 static String toAlignedBinaryString(int i, int numBits)
 {
 String result = Integer.toBinaryString(i);
 if (result.length() > numBits)
 return null; // cannot fit result into numBits columns
 int numLeadingZeros = numBits-result.length();
 String zerosPrefix = "";
 for (int j = 0; j < numLeadingZeros; j++)
 zerosPrefix += "0";
 return zerosPrefix+result;
 }
}

The toAlignedBinaryString() method takes two arguments: the first argument specifies the 32-bit
integer that is to be converted into a binary string, and the second argument specifies the number of bit
columns in which to fit the string.

After calling toBinaryString() to return i’s equivalent binary string without leading zeros,
toAlignedBinaryString() verifies that the string’s digits can fit into the number of bit columns specified
by numBits. If they do not fit, this method returns null. (You will learn about length() and other String
methods later in this chapter.)

Moving on, toAlignedBinaryString() calculates the number of leading "0"s to prepend to result,
and then uses a for loop to create a string of leading zeros. This method ends by returning the leading
zeros string prepended to the result string.

Although using the compound string concatenation with assignment operator (+=) in a loop to build
a string looks okay, it is very inefficient because intermediate String objects are created and thrown

CHAPTER 4 TOURING LANGUAGE APIS

249

away. However, I employed this inefficient code so that I can contrast it with the more efficient code that
I present later in this chapter.

When you run this application, it generates the following output:

00000111
0000000011111111
null

Number
Each of Float, Double, Integer, Long, Short, and Byte provides the other classes’ xValue() methods as
well as its own xValue() method. For example, Float provides doubleValue(), intValue(), longValue(),
shortValue(), and byteValue() as well as floatValue().

All six methods are members of Number, which is the abstract superclass of Float, Double, Integer,
Long, Short, and Byte—Number’s floatValue(), doubleValue(), intValue(), and longValue() methods are
abstract. Number is also the superclass of java.math.BigDecimal and java.math.BigInteger (discussed
later in this chapter), and a pair of concurrency-related classes (one of these classes is presented in
Chapter 6).

Number exists to simplify iterating over a collection of Number subclass objects. For example, you can
declare a variable of java.util.List<Number> type and initialize it to an instance of
java.util.ArrayList<Number> (or ArrayList<>, for short). You can then store a mixture of Number
subclass objects in the collection, and iterate over this collection by calling a subclass method
polymorphically.

Reference
Chapter 2 introduced you to garbage collection, where you learned that the garbage collector removes
an object from the heap when there are no more references to the object. This statement isn’t
completely true, as you will shortly discover.

Chapter 2 also introduced you to java.lang.Object’s finalize() method, where you learned that
the garbage collector calls this method before removing an object from the heap. The finalize()
method gives the object an opportunity to perform cleanup.

This section continues from where Chapter 2 left off by introducing you to Java’s Reference API.
After acquainting you with some basic terminology, it introduces you to the API’s Reference and
ReferenceQueue classes, followed by the API’s SoftReference, WeakReference, and PhantomReference
classes. These classes let applications interact with the garbage collector in limited ways.

■ Note As well as this section, you will find Brian Goetz’s “Java theory and practice: Plugging memory leaks with
soft references” (http://www.ibm.com/developerworks/java/library/j-jtp01246/index.html) and “Java
theory and practice: Plugging memory leaks with weak references”
(http://www.ibm.com/developerworks/java/library/j-jtp11225/index.html) tutorials to be helpful in
understanding the Reference API.

http://www.ibm.com/developerworks/java/library/j-jtp01246/index.html
http://www.ibm.com/developerworks/java/library/j-jtp11225/index.html

CHAPTER 4 TOURING LANGUAGE APIS

250

Basic Terminology
When an application runs, its execution reveals a root set of references, a collection of local variables,
parameters, class fields, and instance fields that currently exist and that contain (possibly null)
references to objects. This root set changes over time as the application runs. For example, parameters
disappear after a method returns.

Many garbage collectors identify this root set when they run. They use the root set to determine if an
object is reachable (referenced, also known as live) or unreachable (not referenced). The garbage
collector cannot collect reachable objects. Instead, it can only collect objects that, starting from the root
set of references, cannot be reached.

■ Note Reachable objects include objects that are indirectly reachable from root-set variables, which means
objects that are reachable through live objects that are directly reachable from those variables. An object that is
unreachable by any path from any root-set variable is eligible for garbage collection.

Beginning with Java 1.2, reachable objects are classified as strongly reachable, softly reachable,
weakly reachable, and phantom reachable. Unlike strongly reachable objects, softly, weakly, and
phantom reachable objects can be garbage collected.

Going from strongest to weakest, the different levels of reachability reflect the life cycle of an object.
They are defined as follows:

• An object is strongly reachable if it can be reached from some thread without
traversing any Reference objects. A newly created object (such as the object
referenced by d in Double d = new Double(1.0);) is strongly reachable by the
thread that created it. (I will discuss threads later in this chapter.)

• An object is softly reachable if it is not strongly reachable but can be reached by
traversing a soft reference (a reference to the object where the reference is stored in
a SoftReference object). The strongest reference to this object is a soft reference.
When the soft references to a softly reachable object are cleared, the object
becomes eligible for finalization (discussed in Chapter 2).

• An object is weakly reachable if it is neither strongly reachable nor softly
reachable, but can be reached by traversing a weak reference (a reference to the
object where the reference is stored in a WeakReference object). The strongest
reference to this object is a weak reference. When the weak references to a weakly
reachable object are cleared, the object becomes eligible for finalization. (Apart
from the garbage collector being more eager to clean up the weakly reachable
object, a weak reference is exactly like a soft reference.)

• An object is phantom reachable if it is neither strongly, softly, nor weakly
reachable, it has been finalized, and it is referred to by some phantom reference (a
reference to the object where the reference is stored in a PhantomReference object).
The strongest reference to this object is a phantom reference.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

251

• Finally, an object is unreachable, and therefore eligible for removal from memory
during the next garbage collection cycle, when it is not reachable in any of the
above ways.

The object whose reference is stored in a SoftReference, WeakReference, or PhantomReference object
is known as a referent.

Reference and ReferenceQueue
The Reference API consists of five classes located in the java.lang.ref package. Central to this package
are Reference and ReferenceQueue.

Reference is the abstract superclass of this package’s concrete SoftReference, WeakReference, and
PhantomReference subclasses.

ReferenceQueue is a concrete class whose instances describe queue data structures. When you
associate a ReferenceQueue instance with a Reference subclass object (Reference object, for short), the
Reference object is added to the queue when the referent to which its encapsulated reference refers
becomes garbage.

■ Note You associate a ReferenceQueue object with a Reference object by passing the ReferenceQueue object
to an appropriate Reference subclass constructor.

Reference is declared as generic type Reference<T>, where T identifies the referent’s type. This class
provides the following methods:

• void clear() assigns null to the stored reference; the Reference object on which
this method is called is not enqueued (inserted) into its associated reference queue
(if there is an associated reference queue). (The garbage collector clears references
directly; it does not call clear(). Instead, this method is called by applications.)

• boolean enqueue() adds the Reference object on which this method is called to the
associated reference queue. This method returns true when this Reference object
has become enqueued; otherwise, this method returns false—this Reference
object was already enqueued or was not associated with a queue when created.
(The garbage collector enqueues Reference objects directly; it does not call
enqueue(). Instead, this method is called by applications.)

• T get() returns this Reference object’s stored reference. The return value is null
when the stored reference has been cleared, either by the application or by the
garbage collector.

• boolean isEnqueued() returns true when this Reference object has been
enqueued, either by the application or by the garbage collector. Otherwise, this
method returns false—this Reference object was not associated with a queue
when created.

CHAPTER 4 TOURING LANGUAGE APIS

252

■ Note Reference also declares constructors. Because these constructors are package-private, only classes in
the java.lang.ref package can subclass Reference. This restriction is necessary because instances of
Reference’s subclasses must work closely with the garbage collector.

ReferenceQueue is declared as generic type ReferenceQueue<T>, where T identifies the referent’s type.
This class declares the following constructor and methods:

• ReferenceQueue() initializes a new ReferenceQueue instance.

• Reference<? extends T> poll() polls this queue to check for an available
Reference object. If one is available, the object is removed from the queue and
returned. Otherwise, this method returns immediately with a null value.

• Reference<? extends T> remove() removes the next Reference object from the
queue and returns this object. This method waits indefinitely for a Reference
object to become available, and throws java.lang.InterruptedException when
this wait is interrupted.

• Reference<? extends T> remove(long timeout) removes the next Reference
object from the queue and returns this object. This method waits until a Reference
object becomes available or until timeout milliseconds have elapsed—passing 0 to
timeout causes the method to wait indefinitely. If timeout’s value expires, the
method returns null. This method throws java.lang.IllegalArgumentException
when timeout’s value is negative, or InterruptedException when this wait is
interrupted.

SoftReference
The SoftReference class describes a Reference object whose referent is softly reachable. As well as
inheriting Reference’s methods and overriding get(), this generic class provides the following
constructors for initializing a SoftReference object:

• SoftReference(T r) encapsulates r’s reference. The SoftReference object behaves
as a soft reference to r. No ReferenceQueue object is associated with this
SoftReference object.

• SoftReference(T r, ReferenceQueue<? super T> q) encapsulates r’s reference.
The SoftReference object behaves as a soft reference to r. The ReferenceQueue
object identified by q is associated with this SoftReference object. Passing null to
q indicates a soft reference without a queue.

SoftReference is useful for implementing caches of objects that are expensive timewise to create
(e.g., a database connection) and/or occupy significant amounts of heap space, such as large images. An
image cache keeps images in memory (because it takes time to load them from disk) and ensures that
duplicate (and possibly very large) images are not stored in memory.

The image cache contains references to image objects that are already in memory. If these
references were strong, the images would remain in memory. You would then need to figure out which
images are no longer needed and remove them from memory so that they can be garbage collected.

CHAPTER 4 TOURING LANGUAGE APIS

253

Having to manually remove images duplicates the work of a garbage collector. However, if you wrap
the references to the image objects in SoftReference objects, the garbage collector will determine when
to remove these objects (typically when heap memory runs low) and perform the removal on your
behalf.

Listing 4-8 shows how you could use SoftReference to cache an image.

Listing 4-8. Caching an image

import java.lang.ref.SoftReference;

class Image
{
 private byte[] image;
 private Image(String name)
 {
 image = new byte[1024*1024*100];
 }
 static Image getImage(String name)
 {
 return new Image(name);
 }
}
class ImageCache
{
 public static void main(String[] args)
 {
 Image image = Image.getImage("large.png");
 System.out.println("caching image");
 SoftReference<Image> cache = new SoftReference<>(image);
 image = null;
 byte[] b = new byte[1024];
 while (cache.get() != null)
 {
 System.out.println("image is still cached");
 b = new byte[b.length*10];
 }
 System.out.println("image is no longer cached");
 b = null;
 System.out.println("reloading and recaching image");
 cache = new SoftReference<>(Image.getImage("large.png"));
 int counter = 0;
 while (cache.get() != null && ++counter != 7)
 System.out.println("image is still cached");
 }
}

Listing 4-8 declares an Image class that simulates loading a large image, and an ImageCache class that
demonstrates the SoftReference-based caching of an Image object.

The main() method first creates an Image instance by calling the getImage() class method; the
instance’s private image array occupies 100MB of memory.

CHAPTER 4 TOURING LANGUAGE APIS

254

main() next creates a SoftReference object that is initialized to an Image object’s reference, and
clears the strong reference to the Image object by assigning null to image. If this strong reference is not
removed, the Image object will be cached always and the application will most likely run out of memory.

After creating a byte array that’s used to demonstrate SoftReference, main() enters the application’s
main loop, which keeps looping as long as cache.get() returns a nonnull reference (the Image object is
still in the cache). For each loop iteration, main() outputs a message stating that the Image object is still
cached, and doubles the size of the byte array.

At some point, the array doubling will exhaust the heap space. However, before it throws an
instance of the java.lang.OutOfMemoryError class, the Java Virtual Machine (JVM) will attempt to obtain
sufficient memory by clearing the SoftReference object’s Image reference, and removing the Image object
from the heap.

The next loop iteration will detect this situation by discovering that get() returns null. The loop
ends and main() outputs a suitable message confirming that the Image object is no longer cached.

main() now assigns null to b to ensure that there will be sufficient memory to reload the large image
(via getImage()) and once again store it in a SoftReference-based cache.

Finally, main() enters a finite loop to demonstrate that the reloaded Image object is still in the cache.
Compile Listing 4-8 (javac ImageCache.java) and run the application (java ImageCache). You should

discover output that’s similar to that shown here:

caching image
image is still cached
image is still cached
image is still cached
image is still cached
image is still cached
image is no longer cached
reloading and recaching image
image is still cached
image is still cached
image is still cached
image is still cached
image is still cached
image is still cached

WeakReference
The WeakReference class describes a Reference object whose referent is weakly reachable. As well as
inheriting Reference’s methods, this generic class provides the following constructors for initializing a
WeakReference object:

• WeakReference(T r) encapsulates r’s reference. The WeakReference object behaves
as a weak reference to r. No ReferenceQueue object is associated with this
WeakReference object.

• WeakReference(T r, ReferenceQueue<? super T> q) encapsulates r’s reference.
The WeakReference object behaves as a weak reference to r. The ReferenceQueue
object identified by q is associated with this WeakReference object. Passing null to
q indicates a weak reference without a queue.

WeakReference is useful for preventing memory leaks related to hashmaps. A memory leak occurs
when you keep adding objects to a hashmap and never remove them. The objects remain in memory
because the hashmap stores strong references to them.

CHAPTER 4 TOURING LANGUAGE APIS

255

Ideally, the objects should only remain in memory when they are strongly referenced from
elsewhere in the application. When an object’s last strong reference (apart from hashmap strong
references) disappears, the object should be garbage collected.

This situation can be remedied by storing weak references to hashmap entries so they are discarded
when no strong references to their keys exist. Java’s java.util.WeakHashMap class (discussed in Chapter
5), whose private Entry static member class extends WeakReference, accomplishes this task.

■ Note Reference queues are more useful with WeakReference than they are with SoftReference. In the context
of WeakHashMap, these queues provide notification of weakly referenced keys that have been removed. Code
within WeakHashMap uses the information provided by the queue to remove all hashmap entries that no longer
have valid keys so that the value objects associated with these invalid keys can be garbage collected. However, a
queue associated with SoftReference can alert the application that heap space is beginning to run low.

PhantomReference
The PhantomReference class describes a Reference object whose referent is phantom reachable. As well as
inheriting Reference’s methods and overriding get(), this generic class provides a single constructor for
initializing a PhantomReference object:

• PhantomReference(T r, ReferenceQueue<? super T> q) encapsulates r’s
reference. The PhantomReference object behaves as a phantom reference to r. The
ReferenceQueue object identified by q is associated with this PhantomReference
object. Passing null to q makes no sense because get() is overridden to return null
and the PhantomReference object will never be enqueued.

Although you cannot access a PhantomReference object’s referent (its get() method returns null),
this class is useful because enqueuing the PhantomReference object signals that the referent has been
finalized but its memory space has not yet been reclaimed. This signal lets you perform cleanup without
using the finalize() method.

The finalize() method is problematic because the garbage collector requires at least two garbage
collection cycles to determine if an object that overrides finalize() can be garbage collected. When the
first cycle detects that the object is eligible for garbage collection, it calls finalize(). Because this
method might perform resurrection (see Chapter 2), which makes the unreachable object reachable, a
second garbage collection cycle is needed to determine if resurrection has happened. This extra cycle
slows down garbage collection.

If finalize() is not overridden, the garbage collector does not need to call that method, and
considers the object to be finalized. Hence, the garbage collector requires only one cycle.

Although you cannot perform cleanup via finalize(), you can still perform cleanup via
PhantomReference. Because there is no way to access the referent (get() returns null), resurrection
cannot happen.

Listing 4-9 shows how you might use PhantomReference to detect the finalization of a large object.

Listing 4-9. Detecting a large object’s finalization

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

CHAPTER 4 TOURING LANGUAGE APIS

256

class LargeObject
{
 private byte[] memory = new byte[1024*1024*50]; // 50 megabytes
}
class LargeObjectDemo
{
 public static void main(String[] args)
 {
 ReferenceQueue<LargeObject> rq;
 rq = new ReferenceQueue<LargeObject>();
 PhantomReference<LargeObject> pr;
 pr = new PhantomReference<LargeObject>(new LargeObject(), rq);
 byte[] b = new byte[1024];
 while (rq.poll() == null)
 {
 System.out.println("waiting for large object to be finalized");
 b = new byte[b.length*10];
 }
 System.out.println("large object finalized");
 System.out.println("pr.get() returns "+pr.get());
 }
}

Listing 4-9 declares a LargeObject class whose private memory array occupies 50MB. If your JVM
throws OutOfMemoryError when you run LargeObject, you might need to reduce the array’s size.

The main() method first creates a ReferenceQueue object describing a queue onto which a
PhantomReference object that initially contains a LargeObject reference will be enqueued.

main() next creates the PhantomReference object, passing a reference to a newly created LargeObject
object and a reference to the previously created ReferenceQueue object to the constructor.

After creating a byte array that’s used to demonstrate PhantomReference, main() enters a polling
loop.

The polling loop begins by calling poll() to detect the finalization of the LargeObject object. As long
as this method returns null, meaning that the LargeObject object is still unfinalized, the loop outputs a
message and doubles the size of the byte array.

At some point, heap space will exhaust and the garbage collector will attempt to obtain sufficient
memory, by first clearing the PhantomReference object’s LargeObject reference and finalizing the
LargeObject object prior to its removal from the heap. The PhantomReference object is then enqueued
onto the rq-referenced ReferenceQueue; poll() returns the PhantomReference object.

main() now exits the loop, outputs a message confirming the large object’s finalization, and outputs
pr.get()’s return value, which is null proving that you cannot access a PhantomReference object’s
referent. At this point, any additional cleanup operations related to the finalized object (such as closing a
file that was opened in the file’s constructor but not otherwise closed) could be performed.

Compile Listing 4-9 and run the application. You should see output that’s similar to that shown
here:

waiting for large object to be finalized
waiting for large object to be finalized
waiting for large object to be finalized
waiting for large object to be finalized
waiting for large object to be finalized
large object finalized

CHAPTER 4 TOURING LANGUAGE APIS

257

pr.get() returns null

■ Note For a more useful example of PhantomReference, check out Keith D Gregory’s “Java Reference Objects”
blog post (http://www.kdgregory.com/index.php?page=java.refobj).

Reflection
Chapter 2 referred to reflection (also known as introspection) as a third form of runtime type
identification (RTTI). Java’s Reflection API lets applications learn about loaded classes, interfaces,
enums (a kind of class), and annotation types (a kind of interface). It also lets applications load classes
dynamically, instantiate them, find a class’s fields and methods, access fields, call methods, and perform
other tasks reflectively.

Chapter 3 presented a StubFinder application that used part of the Reflection API to load a class and
identify all the loaded class’s public methods that are annotated with @Stub annotations. This tool is one
example where using reflection is beneficial. Another example is the class browser, a tool that
enumerates the members of a class.

■ Caution Reflection should not be used indiscriminately. Application performance suffers because it takes longer
to perform operations with reflection than without reflection. Also, reflection-oriented code can be harder to read,
and the absence of compile-time type checking can result in runtime failures.

The java.lang package’s Class class is the entry point into the Reflection API, whose types are
mainly stored in the java.lang.reflect package. Class is generically declared as Class<T>, where T
identifies the class, interface, enum, or annotation type that is being modeled by the Class object. T can
be replaced by ? (as in Class<?>) when the type being modeled is unknown.

Table 4-3 describes some of Class’s methods.

Table 4-3. Class Methods

Method Description

static Class<?>
forName(String typename)

Return the Class object that is associated with typename, which
must include the type’s qualified package name when the type
is part of a package (java.lang.String, for example). If the class
or interface type has not been loaded into memory, this
method takes care of loading (reading the classfile’s contents
into memory), linking (taking these contents and combining
them into the runtime state of the JVM so that they can be
executed), and initializing (setting class fields to default values,
running class initializers, and performing other class
initialization) prior to returning the Class object. This method

http://www.kdgregory.com/index.php?page=java.refobj

CHAPTER 4 TOURING LANGUAGE APIS

258

throws java.lang.ClassNotFoundException when the type
cannot be found, java.lang.LinkageError when an error
occurs during linkage, and
java.lang.ExceptionInInitializerError when an exception
occurs during a class’s static initialization.

Annotation[]
getAnnotations()

Return an array (that’s possibly empty) containing all
annotations that are declared for the class represented by this
Class object.

Class<?>[] getClasses() Return an array containing Class objects representing all
public classes and interfaces that are members of the class
represented by this Class object. This includes public class and
interface members inherited from superclasses, and public
class and interface members declared by the class. This method
returns a zero-length array when this Class object has no
public member classes or interfaces. This method also returns a
zero-length array when this Class object represents a primitive
type, an array class, or void.

Constructor[]
getConstructors()

Return an array containing java.lang.reflect.Constructor
objects representing all public constructors of the class
represented by this Class object. A zero-length array is returned
when the represented class has no public constructors, this
Class object represents an array class, or this Class object
represents a primitive type or void.

Annotation[]
getDeclaredAnnotations()

Return an array containing all annotations that are directly
declared on the class represented by this Class object—
inherited annotations are not included. The returned array
might be empty.

Class<?>[]
getDeclaredClasses()

Return an array of Class objects representing all classes and
interfaces declared as members of the class represented by this
Class object. This includes public, protected, default (package)
access, and private classes and interfaces declared by the class,
but excludes inherited classes and interfaces. This method
returns a zero-length array when the class declares no classes
or interfaces as members, or when this Class object represents
a primitive type, an array class, or void.

Constructor[]
getDeclaredConstructors()

Return an array of Constructor objects representing all
constructors declared by the class represented by this Class
object. These are public, protected, default (package) access,
and private constructors. The returned array’s elements are not
sorted and are not in any order. If the class has a default
constructor, it is included in the returned array. This method
returns a zero-length array when this Class object represents
an interface, a primitive type, an array class, or void.

CHAPTER 4 TOURING LANGUAGE APIS

259

Field[] getDeclaredFields() Return an array of java.lang.reflect.Field objects
representing all fields declared by the class or interface
represented by this Class object. This array includes public,
protected, default (package) access, and private fields, but
excludes inherited fields. The returned array’s elements are not
sorted and are not in any order. This method returns a zero-
length array when the class/interface declares no fields, or
when this Class object represents a primitive type, an array
class, or void.

Method[]
getDeclaredMethods()

Return an array of java.lang.reflect.Method objects
representing all methods declared by the class or interface
represented by this Class object. This array includes public,
protected, default (package) access, and private methods, but
excludes inherited methods. The elements in the returned array
are not sorted and are not in any order. This method returns a
zero-length array when the class or interface declares no
methods, or when this Class object represents a primitive type,
an array class, or void.

Field[] getFields() Return an array containing Field objects representing all
public fields of the class or interface represented by this Class
object, including those public fields inherited from
superclasses and superinterfaces. The elements in the returned
array are not sorted and are not in any order. This method
returns a zero-length array when this Class object represents a
class or interface with no accessible public fields, or when this
Class object represents an array class, a primitive type, or void.

Method[] getMethods() Return an array containing Method objects representing all
public methods of the class or interface represented by this
Class object, including those public methods inherited from
superclasses and superinterfaces. Array classes return all the
public member methods inherited from the Object class. The
elements in the returned array are not sorted and are not in any
order. This method returns a zero-length array when this Class
object represents a class or interface that has no public
methods, or when this Class object represents a primitive type
or void. The class initialization method <clinit> (see Chapter
2) is not included in the returned array.

int getModifiers() Returns the Java language modifiers for this class or interface,
encoded in an integer. The modifiers consist of the JVM's
constants for public, protected, private, final, static,
abstract and interface; they should be decoded using the
methods of class java.lang.reflect.Modifier.

If the underlying class is an array class, then its public, private
and protected modifiers are the same as those of its

CHAPTER 4 TOURING LANGUAGE APIS

260

component type. If this Class object represents a primitive type
or void, its public modifier is always true, and its protected and
private modifiers are always false. If this Class object
represents an array class, a primitive type or void, then its final
modifier is always true and its interface modifier is always
false. The values of its other modifiers are not determined by
this specification.

String getName() Return the name of the class represented by this Class object.

Package getPackage() Return a Package object—I presented Package earlier in this
chapter—that describes the package in which the class
represented by this Class object is located, or null when the
class is a member of the unnamed package.

Class<? super T>
getSuperclass()

Return the Class object representing the superclass of the
entity (class, interface, primitive type, or void) represented by
this Class object. When the Class object on which this method
is called represents the Object class, an interface, a primitive
type, or void, null is returned. When this object represents an
array class, the Class object representing the Object class is
returned.

boolean isAnnotation() Return true when this Class object represents an annotation
type. If this method returns true, isInterface() also returns
true because all annotation types are also interfaces.

boolean isEnum() Return true if and only if this class was declared as an enum in
the source code.

boolean isInterface() Return true when this Class object represents an interface.

T newInstance() Create and return a new instance of the class represented by
this Class object. The class is instantiated as if by a new
expression with an empty argument list. The class is initialized
when it has not already been initialized. This method throws
java.lang.IllegalAccessException when the class or its
noargument constructor is not accessible;
java.lang.InstantiationException when this Class object
represents an abstract class, an interface, an array class, a
primitive type, or void, or when the class does not have a
noargument constructor (or when instantiation fails for some
other reason); and ExceptionInInitializerError when
initialization fails because the object threw an exception during
initialization.

Table 4-3’s description of the forName() method reveals one way to obtain a Class object. This

method loads, links, and initializes a class or interface that is not in memory, and returns a Class object

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

261

that represents the class or interface. Listing 4-10 demonstrates forName() and additional methods
described in this table.

Listing 4-10. Using reflection to decompile a type

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;

class Decompiler
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Decompiler classname");
 return;
 }
 try
 {
 decompileClass(Class.forName(args[0]), 0);
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("could not locate "+args[0]);
 }
 }
 static void decompileClass(Class<?> clazz, int indentLevel)
 {
 indent(indentLevel*3);
 System.out.print(Modifier.toString(clazz.getModifiers())+" ");
 if (clazz.isEnum())
 System.out.println("enum "+clazz.getName());
 else
 if (clazz.isInterface())
 {
 if (clazz.isAnnotation())
 System.out.print("@");
 System.out.println(clazz.getName());
 }
 else
 System.out.println(clazz);
 indent(indentLevel*3);
 System.out.println("{");
 Field[] fields = clazz.getDeclaredFields();
 for (int i = 0; i < fields.length; i++)
 {
 indent(indentLevel*3);
 System.out.println(" "+fields[i]);
 }
 Constructor[] constructors = clazz.getDeclaredConstructors();

CHAPTER 4 TOURING LANGUAGE APIS

262

 if (constructors.length != 0 && fields.length != 0)
 System.out.println();
 for (int i = 0; i < constructors.length; i++)
 {
 indent(indentLevel*3);
 System.out.println(" "+constructors[i]);
 }
 Method[] methods = clazz.getDeclaredMethods();
 if (methods.length != 0 &&
 (fields.length != 0 || constructors.length != 0))
 System.out.println();
 for (int i = 0; i < methods.length; i++)
 {
 indent(indentLevel*3);
 System.out.println(" "+methods[i]);
 }
 Method[] methodsAll = clazz.getMethods();
 if (methodsAll.length != 0 &&
 (fields.length != 0 || constructors.length != 0 ||
 methods.length != 0))
 System.out.println();
 if (methodsAll.length != 0)
 {
 indent(indentLevel*3);
 System.out.println(" ALL PUBLIC METHODS");
 System.out.println();
 }
 for (int i = 0; i < methodsAll.length; i++)
 {
 indent(indentLevel*3);
 System.out.println(" "+methodsAll[i]);
 }
 Class<?>[] members = clazz.getDeclaredClasses();
 if (members.length != 0 && (fields.length != 0 ||
 constructors.length != 0 || methods.length != 0 ||
 methodsAll.length != 0))
 System.out.println();
 for (int i = 0; i < members.length; i++)
 if (clazz != members[i])
 {
 decompileClass(members[i], indentLevel+1);
 if (i != members.length-1)
 System.out.println();
 }
 indent(indentLevel*3);
 System.out.println("}");
 }
 static void indent(int numSpaces)
 {
 for (int i = 0; i < numSpaces; i++)
 System.out.print(' ');
 }

CHAPTER 4 TOURING LANGUAGE APIS

263

}

Listing 4-10 presents the source code to a decompiler tool that uses reflection to obtain information
about this tool’s solitary command-line argument, which must be a Java reference type (such as a class).
The decompiler lets you output the type and name information for a class’s fields, constructors,
methods, and nested types; it also lets you output the members of interfaces, enums, and annotation
types.

After verifying that one command-line argument has been passed to this application, main() calls
forName() to try to return a Class object representing the class or interface identified by this argument. If
successful, the returned object’s reference is passed to decompileClass(), which decompiles the type.

forName() throws an instance of the checked ClassNotFoundException class when it cannot locate
the class’s classfile (perhaps the classfile was erased prior to executing the application). It also throws
LinkageError when a class’s classfile is malformed, and ExceptionInInitializerError when a class’s
static initialization fails.

■ Note ExceptionInInitializerError is often thrown as the result of a class initializer throwing an unchecked
exception. For example, the class initializer in the following FailedInitialization class results in
ExceptionInInitializerError because someMethod() throws NullPointerException:

class FailedInitialization

{

 static

 {

 someMethod(null);

 }

 static void someMethod(String s)

 {

 int len = s.length(); // s contains null

 System.out.println(s+"'s length is "+len+" characters");

 }

 public static void main(String[] args)

 {

 }

}

Much of the printing code is concerned with making the output look nice. For example, this code
manages indentation, and only allows a newline character to be output to separate one section from
another; a newline character is not output unless content appears before and after the newline.

Listing 4-10 is recursive in that it invokes decompileClass() for every encountered nested type.

CHAPTER 4 TOURING LANGUAGE APIS

264

Compile Listing 4-10 (javac Decompiler.java) and run this application with java.lang.Boolean as
its solitary command line argument (java Decompiler java.lang.Boolean). You will observe the
following output:

public final class java.lang.Boolean
{
 public static final java.lang.Boolean java.lang.Boolean.TRUE
 public static final java.lang.Boolean java.lang.Boolean.FALSE
 public static final java.lang.Class java.lang.Boolean.TYPE
 private final boolean java.lang.Boolean.value
 private static final long java.lang.Boolean.serialVersionUID

 public java.lang.Boolean(java.lang.String)
 public java.lang.Boolean(boolean)

 public int java.lang.Boolean.hashCode()
 public boolean java.lang.Boolean.equals(java.lang.Object)
 public java.lang.String java.lang.Boolean.toString()
 public static java.lang.String java.lang.Boolean.toString(boolean)
 public static int java.lang.Boolean.compare(boolean,boolean)
 public int java.lang.Boolean.compareTo(java.lang.Object)
 public int java.lang.Boolean.compareTo(java.lang.Boolean)
 public static java.lang.Boolean java.lang.Boolean.valueOf(boolean)
 public static java.lang.Boolean java.lang.Boolean.valueOf(java.lang.String)
 public boolean java.lang.Boolean.booleanValue()
 public static boolean java.lang.Boolean.getBoolean(java.lang.String)
 public static boolean java.lang.Boolean.parseBoolean(java.lang.String)
 private static boolean java.lang.Boolean.toBoolean(java.lang.String)

 ALL PUBLIC METHODS

 public int java.lang.Boolean.hashCode()
 public boolean java.lang.Boolean.equals(java.lang.Object)
 public java.lang.String java.lang.Boolean.toString()
 public static java.lang.String java.lang.Boolean.toString(boolean)
 public static int java.lang.Boolean.compare(boolean,boolean)
 public int java.lang.Boolean.compareTo(java.lang.Object)
 public int java.lang.Boolean.compareTo(java.lang.Boolean)
 public static java.lang.Boolean java.lang.Boolean.valueOf(boolean)
 public static java.lang.Boolean java.lang.Boolean.valueOf(java.lang.String)
 public boolean java.lang.Boolean.booleanValue()
 public static boolean java.lang.Boolean.getBoolean(java.lang.String)
 public static boolean java.lang.Boolean.parseBoolean(java.lang.String)
 public final native java.lang.Class java.lang.Object.getClass()
 public final native void java.lang.Object.notify()
 public final native void java.lang.Object.notifyAll()
 public final void java.lang.Object.wait(long,int) throws java.lang.InterruptedException
 public final void java.lang.Object.wait() throws java.lang.InterruptedException
 public final native void java.lang.Object.wait(long) throws
java.lang.InterruptedException
}

CHAPTER 4 TOURING LANGUAGE APIS

265

The output reveals the difference between calling getDeclaredMethods() and getMethods(). For
example, the output associated with getDeclaredMethods() includes the private toBoolean() method.
Also, the output associated with getMethods() includes Object methods that are not overridden by
Boolean; getClass() is an example.

One of Table 4-3’s methods not demonstrated in Listing 4-10 is newInstance(), which is useful for
instantiating a dynamically loaded class, provided that the class has a noargument constructor.

Suppose you plan to create a viewer application that lets the user view different kinds of files. For
example, the viewer can view the instruction sequence of a disassembled Windows EXE file, the
graphical contents of a PNG file, or the contents of some other file. Furthermore, the user can choose to
view this content in its normal state (disassembly versus graphical image, for example), in an
informational manner (descriptive labels and content; for example, EXE HEADER: MZ), or as a table of
hexadecimal values.

The viewer application will start out with a few viewers, but you plan to add more viewers over time.
You don’t want to integrate the viewer source code with the application source code because you would
have to recompile the application and all of its viewers every time you added a new viewer (for example,
a viewer that lets you view the contents of a Java classfile).

Instead, you create these viewers in a separate project, and distribute their classfiles only. Also, you
design the application to enumerate its currently accessible viewers when the application starts running
(perhaps the viewers are stored in a JAR file), and present this list to the user. When the user selects a
specific viewer from this list, the application loads the viewer’s classfile and instantiates this class via its
Class object. The application can then invoke the object’s methods.

Listing 4-11 presents the Viewer superclass that all viewer classes must extend.

Listing 4-11. Abstracting a viewer

abstract class Viewer
{
 enum ViewMode { NORMAL, INFO, HEX };
 abstract void view(byte[] content, ViewMode vm);
}

Viewer declares an enum to describe the three viewing modes. It also declares a view() method that
displays the content of its byte array argument according to the viewer mode specified by its vm
argument.

Listing 4-12 presents a Viewer subclass for viewing an EXE file’s contents.

Listing 4-12. A viewer for viewing EXE content

class ViewerEXE extends Viewer
{
 @Override
 void view(byte[] content, ViewMode vm)
 {
 switch (vm)
 {
 case NORMAL:
 System.out.println("outputting EXE content normally");
 break;
 case INFO:
 System.out.println("outputting EXE content informationally");
 break;

CHAPTER 4 TOURING LANGUAGE APIS

266

 case HEX:
 System.out.println("outputting EXE content in hexadecimal");
 }
 }
}

ViewerEXE’s view() method demonstrates using the switch statement to switch on an enum
constant. For brevity, I’ve limited this method to printing messages to standard output. Also, I don’t
present the corresponding ViewPNG class, which has a similar structure.

Listing 4-13 presents an application that dynamically loads ViewerEXE or ViewerPNG, instantiates the
loaded class via newInstance(), and invokes the view() method.

Listing 4-13. Loading, instantiating, and using Viewer subclasses

class ViewerDemo
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage : java ViewerDemo filetype");
 System.err.println("example: java ViewerDemo EXE");
 return;
 }
 try
 {
 Class<?> clazz = Class.forName("Viewer"+args[0]);
 Viewer viewer = (Viewer) clazz.newInstance();
 viewer.view(null, Viewer.ViewMode.HEX);
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("Class not found: "+cnfe.getMessage());
 }
 catch (IllegalAccessException iae)
 {
 System.err.println("Illegal access: "+iae.getMessage());
 }
 catch (InstantiationException ie)
 {
 System.err.println("Unable to instantiate loaded class");
 }
 }
}

Assuming that you’ve compiled all source files (javac *.java, for example), execute java
ViewerDemo EXE. You should observe the following output:

outputting EXE content in hexadecimal

If you were to execute java ViewerDemo PNG, you should see similar output.

CHAPTER 4 TOURING LANGUAGE APIS

267

Suppose you attempted to load and instantiate the abstract Viewer class via java ViewerDemo "".
Although this class would load, newInstance() would throw an instance of the InstantiationException
class, and you would see the following output:

Unable to instantiate loaded class

Table 4-3’s descriptions of the getAnnotations() and getDeclaredAnnotations() methods reveal that
each method returns an array of Annotation, an interface that is located in the java.lang.annotation
package. Annotation is the superinterface of Override, SuppressWarnings, and all other annotation types.

Table 4-3’s method descriptions also refer to Constructor, Field, and Method. Instances of these
classes represent a class’s constructors and a class’s or an interface’s fields and methods.

Constructor represents a constructor and is generically declared as Constructor<T>, where T
identifies the class in which the constructor represented by Constructor is declared. Constructor
declares various methods, including the following methods:

• Annotation[] getDeclaredAnnotations() returns an array of all annotations
declared on the constructor. The returned array has zero length when there are no
annotations.

• Class<T> getDeclaringClass() returns a Class object that represents the class in
which the constructor is declared.

• Class[]<?> getExceptionTypes() returns an array of Class objects representing
the types of exceptions listed in the constructor’s throws clause. The returned
array has zero length when there is no throws clause.

• String getName() returns the constructor’s name.

• Class[]<?> getParameterTypes() returns an array of Class objects representing
the constructor’s parameters. The returned array has zero length when the
constructor does not declare parameters.

■ Tip If you want to instantiate a class via a constructor that takes arguments, you cannot use Class’s
newInstance() method. Instead, you must use Constructor’s T newInstance(Object... initargs) method to
perform this task. Unlike Class’s newInstance() method, which bypasses the compile-time exception checking
that would otherwise be performed by the compiler, Constructor’s newInstance() method avoids this problem
by wrapping any exception thrown by the constructor in an instance of the
java.lang.reflect.InvocationTargetException class.

Field represents a field and declares various methods, including the following getter methods:

• Object get(Object object) returns the value of the field for the specified object.

• boolean getBoolean(Object object) returns the value of the Boolean field for the
specified object.

• byte getByte(Object object) returns the value of the byte integer field for the
specified object.

CHAPTER 4 TOURING LANGUAGE APIS

268

• char getChar(Object object) returns the value of the character field for the
specified object.

• double getDouble(Object object) returns the value of the double precision
floating-point field for the specified object.

• float getFloat(Object object) returns the value of the floating-point field for the
specified object.

• int getInt(Object object) returns the value of the integer field for the specified
object.

• long getLong(Object object) returns the value of the long integer field for the
specified object.

• short getShort(Object object) returns the value of the short integer field for the
specified object.

get() returns the value of any type of field. In contrast, the other listed methods return the values of
specific types of fields. These methods throw NullPointerException when object is null and the field is
an instance field, IllegalArgumentException when object is not an instance of the class or interface
declaring the underlying field (or not an instance of a subclass or interface implementor), and
IllegalAccessException when the underlying field cannot be accessed (it is private, for example).

Listing 4-14 demonstrates Field’s getInt(Object) method along with its void setInt(Object obj,
int i) counterpart.

Listing 4-14. Reflectively getting and setting the values of instance and class fields

import java.lang.reflect.Field;

class X
{
 public int i = 10;
 public static final double PI = 3.14;
}
class FieldAccessDemo
{
 public static void main(String[] args)
 {
 try
 {
 Class<?> clazz = Class.forName("X");
 X x = (X) clazz.newInstance();
 Field f = clazz.getField("i");
 System.out.println(f.getInt(x)); // Output: 10
 f.setInt(x, 20);
 System.out.println(f.getInt(x)); // Output: 20
 f = clazz.getField("PI");
 System.out.println(f.getDouble(null)); // Output: 3.14
 f.setDouble(x, 20);
 System.out.println(f.getDouble(null)); // Never executed
 }
 catch (Exception e)

CHAPTER 4 TOURING LANGUAGE APIS

269

 {
 System.err.println(e);
 }
 }
}

Listing 4-14 declares classes X and FieldAccessDemo. I’ve included X’s source code with
FieldAccessDemo’s source code for convenience. However, you can imagine this source code being
stored in a separate source file.

FieldAccessDemo’s main() method first attempts to load X, and then tries to instantiate this class via
newInstance(). If successful, the instance is assigned to reference variable x.

main() next invokes Class’s Field getField(String name) method to return a Field instance that
represents the public field identified by name, which happens to be i (in the first case) and PI (in the
second case). This method throws java.lang.NoSuchFieldException when the named field doesn’t exist.

Continuing, main() invokes Field’s getInt() and setInt() methods (with an object reference) to get
the instance field’s initial value, change this value to another value, and get the new value. The initial
and new values are output.

At this point, main() demonstrates class field access in a similar manner. However, it passes null to
getInt() and setInt() because an object reference isn’t required to access a class field. Because PI is
declared final, the call to setInt() results in a thrown instance of the IllegalAccessException class.

■ Note I’ve specified catch (Exception e) to avoid having to specify multiple catch blocks. You could also use
multicatch (see Chapter 3) where appropriate.

Method represents a method and declares various methods, including the following methods:

• int getModifiers() returns a 32-bit integer whose bit fields identify the method’s
reserved word modifiers (such as public, abstract, or static). These bit fields
must be interpreted via the Modifier class. For example, you might specify
(method.getModifiers()&Modifier.ABSTRACT) == Modifier.ABSTRACT to find out if
the method (represented by the Method object whose reference is stored in method)
is abstract—this expression evaluates to true when the method is abstract.

• Class<?> getReturnType() returns a Class object that represents the method’s
return type.

• Object invoke(Object receiver, Object... args) calls the method on the object
identified by receiver (which is ignored when the method is a class method),
passing the variable number of arguments identified by args to the called method.
The invoke() method throws NullPointerException when receiver is null and the
method being called is an instance method, IllegalAccessException when the
method is not accessible (it is private, for example), IllegalArgumentException
when an incorrect number of arguments are passed to the method (and other
reasons), and InvocationTargetException when an exception is thrown from the
called method.

• boolean isVarArgs() returns true when the method is declared to receive a
variable number of arguments.

CHAPTER 4 TOURING LANGUAGE APIS

270

Listing 4-15 demonstrates Method’s invoke(Object, Object...) method.

Listing 4-15. Reflectively invoking instance and class methods

import java.lang.reflect.Method;

class X
{
 public void objectMethod(String arg)
 {
 System.out.println("Instance method: "+arg);
 }
 public static void classMethod()
 {
 System.out.println("Class method");
 }
}
class MethodInvocationDemo
{
 public static void main(String[] args)
 {
 try
 {
 Class<?> clazz = Class.forName("X");
 X x = (X) clazz.newInstance();
 Class[] argTypes = { String.class };
 Method method = clazz.getMethod("objectMethod", argTypes);
 Object[] data = { "Hello" };
 method.invoke(x, data); // Output: Instance method: Hello
 method = clazz.getMethod("classMethod", (Class<?>[]) null);
 method.invoke(null, (Object[]) null); // Output: Class method
 }
 catch (Exception e)
 {
 System.err.println(e);
 }
 }
}

Listing 4-15 declares classes X and MethodInvocationDemo. MethodInvocationDemo’s main() method
first attempts to load X, and then tries to instantiate this class via newInstance(). If successful, the
instance is assigned to reference variable x.

main() next creates a one-element Class array that describes the types of objectMethod()’s
parameter list. This array is used in the subsequent call to Class’s Method getMethod(String name,
Class<?>... parameterTypes) method to return a Method object for invoking a public method named
objectMethod with this parameter list. This method throws java.lang.NoSuchMethodException when the
named method doesn’t exist.

Continuing, main() creates an Object array that specifies the data to be passed to the method’s
parameters; in this case, the array consists of a single String argument. It then reflectively invokes
objectMethod() by passing this array along with the object reference stored in x to the invoke() method.

At this point, main() shows you how to reflectively invoke a class method. The (Class<?>[]) and
(Object[]) casts are used to suppress warning messages that have to do with variable numbers of

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

271

arguments and null references. Notice that the first argument passed to invoke() is null when invoking
a class method.

The java.lang.reflect.AccessibleObject class is the superclass of Constructor, Field, and Method.
This superclass provides methods for reporting a constructor’s, field’s, or method’s accessibility (is it
private?) and making an inaccessible constructor, field, or method accessible. AccessibleObject’s
methods include the following:

• T getAnnotation(Class<T> annotationType) returns the constructor’s, field’s, or
method’s annotation of the specified type when such an annotation is present;
otherwise, null returns.

• boolean isAccessible() returns true when the constructor, field, or method is
accessible.

• boolean isAnnotationPresent(Class<? extends Annotation> annotationType)
returns true when an annotation of the type specified by annotationType has been
declared on the constructor, field, or method. This method takes inherited
annotations into account.

• void setAccessible(boolean flag) attempts to make an inaccessible constructor,
field, or method accessible when flag is true.

■ Note The java.lang.reflect package also includes an Array class whose class methods make it possible to
reflectively create and access Java arrays.

I previously showed you how to obtain a Class object via Class’s forName() method. Another way to
obtain a Class object is to call Object’s getClass() method on an object reference; for example, Employee
e = new Employee(); Class<? extends Employee> clazz = e.getClass();. The getClass() method does
not throw an exception because the class from which the object was created is already present in
memory.

There is one more way to obtain a Class object, and that is to employ a class literal, which is an
expression consisting of a class name, followed by a period separator, followed by reserved word class.
Examples of class literals include Class<Employee> clazz = Employee.class; and Class<String> clazz
= String.class.

Perhaps you are wondering about how to choose between forName(), getClass(), and a class literal.
To help you make your choice, the following list compares each competitor:

• forName() is very flexible in that you can dynamically specify any reference type by
its package-qualified name. If the type is not in memory, it is loaded, linked, and
initialized. However, lack of compile-time type safety can lead to runtime failures.

• getClass() returns a Class object describing the type of its referenced object. If
called on a superclass variable containing a subclass instance, a Class object
representing the subclass type is returned. Because the class is in memory, type
safety is assured.

CHAPTER 4 TOURING LANGUAGE APIS

272

• A class literal returns a Class object representing its specified class. Class literals
are compact and the compiler enforces type safety by refusing to compile the
source code when it cannot locate the literal’s specified class.

■ Note You can use class literals with primitive types, including void. Examples include int.class,
double.class, and void.class. The returned Class object represents the class identified by a primitive type
wrapper class’s TYPE field or java.lang.Void.TYPE. For example, each of int.class == Integer.TYPE and
void.class == Void.TYPE evaluates to true.

You can also use class literals with primitive type-based arrays. Examples include int[].class and
double[].class. For these examples, the returned Class objects represent Class<int[]> and
Class<double[]>.

String
String is the first predefined reference type presented in this book (in Chapter 1). Instances of this type
represent sequences of characters, or strings.

Unlike other reference types, the Java language treats the String class specially, by providing
syntactic sugar that simplifies working with strings. For example, Java recognizes String favLanguage =
"Java"; as the assignment of string literal "Java" to String variable favLanguage. Without this sugar, you
would have to specify String favLanguage = new String("Java");. The Java language also overloads the
+ and += operators to perform string concatenation.

Table 4-4 describes some of String’s constructors and methods for initializing String objects and
working with strings.

Table 4-4. String Constructors and Methods

Method Description

String(char[] data) Initialize this String object to the data array’s characters.
Modifying data after initializing this String object has no effect
on the object.

String(String s) Initialize this String object to s’s string.

char charAt(int index) Return the character located at the zero-based index in this
String object’s string. This method throws
java.lang.StringIndexOutOfBoundsException when index is
less than 0 or greater than or equal to the length of the string.

String concat(String s) Return a new String object containing this String object’s
string followed by the s argument’s string.

CHAPTER 4 TOURING LANGUAGE APIS

273

boolean endsWith(String
suffix)

Return true when this String object’s string ends with the
characters in the suffix argument, when suffix is empty
(contains no characters), or when suffix contains the same
character sequence as this String object’s string. This method
performs a case-sensitive comparison (a is not equal to A, for
example), and throws NullPointerException when suffix is
null.

boolean equals(Object
object)

Return true when object is of type String and this argument’s
string contains the same characters (and in the same order) as
this String object’s string.

boolean
equalsIgnoreCase(String s)

Return true when s and this String object contain the same
characters (ignoring case). This method returns false when the
character sequences differ or when null is passed to s.

int indexOf(int c) Return the zero-based index of the first occurrence (from the
start of the string to the end of the string) of the character
represented by c in this String object’s string. Return -1 when
this character is not present.

int indexOf(String s) Return the zero-based index of the first occurrence (from the
start of the string to the end of the string) of s’s character
sequence in this String object’s string. Return -1 when s is not
present. This method throws NullPointerException when s is
null.

String intern() Search an internal table of String objects for an object whose
string is equal to this String object’s string. This String object’s
string is added to the table when not present. Return the object
contained in the table whose string is equal to this String
object’s string. The same String object is always returned for
strings that are equal.

int lastIndexOf(int c) Return the zero-based index of the last occurrence (from the
start of the string to the end of the string) of the character
represented by c in this String object’s string. Return -1 when
this character is not present.

int lastIndexOf(String s) Return the zero-based index of the last occurrence (from the
start of the string to the end of the string) of s’s character
sequence in this String object’s string. Return -1 when s is not
present. This method throws NullPointerException when s is
null.

int length() Return the number of characters in this String object’s string.

String replace(char oldChar, Return a new String object whose string matches this String

CHAPTER 4 TOURING LANGUAGE APIS

274

char newChar) object’s string except that all occurrences of oldChar have been
replaced by newChar.

String[] split(String expr) Split this String object’s string into an array of String objects
using the regular expression (a string whose pattern [template]
is used to search a string for substrings that match the pattern)
specified by expr as the basis for the split. This method throws
NullPointerException when expr is null and
java.util.regex.PatternSyntaxException when expr’s syntax
is invalid.

boolean startsWith(String
prefix)

Return true when this String object’s string starts with the
characters in the prefix argument, when prefix is empty
(contains no characters), or when prefix contains the same
character sequence as this String object’s string. This method
performs a case-sensitive comparison (a is not equal to A, for
example), and throws NullPointerException when prefix is
null.

String substring(int start) Return a new String object whose string contains this String
object’s characters beginning with the character located at
start. This method throws StringIndexOutOfBoundsException
when start is negative or greater than the length of this String
object’s string.

char[] toCharArray() Return a character array that contains the characters in this
String object’s string.

String toLowerCase() Return a new String object whose string contains this String
object’s characters where uppercase letters have been
converted to lowercase. This String object is returned when it
contains no uppercase letters to convert.

String toUpperCase() Return a new String object whose string contains this String
object’s characters where lowercase letters have been
converted to uppercase. This String object is returned when it
contains no lowercase letters to convert.

String trim() Return a new String object that contains this String object’s
string with whitespace characters (characters whose Unicode
values are 32 or less) removed from the start and end of the
string, or this String object if there is no leading/trailing
whitespace.

Table 4-4 reveals a couple of interesting items about String. First, this class’s String(String s)

constructor does not initialize a String object to a string literal. Instead, it behaves similarly to the C++
copy constructor by initializing the String object to the contents of another String object. This behavior
suggests that a string literal is more than what it appears to be.

CHAPTER 4 TOURING LANGUAGE APIS

275

In reality, a string literal is a String object. You can prove this to yourself by executing
System.out.println("abc".length()); and System.out.println("abc" instanceof String);. The first
method call outputs 3, which is the length of the "abc" String object’s string, and the second method call
outputs true ("abc" is a String object).

■ Note String literals are stored in a classfile data structure known as the constant pool. When a class is loaded, a
String object is created for each literal and is stored in an internal table of String objects.

The second interesting item is the intern() method, which interns (stores a unique copy of) a
String object in an internal table of String objects. intern() makes it possible to compare strings via
their references and == or !=. These operators are the fastest way to compare strings, which is especially
valuable when sorting a huge number of strings.

By default, String objects denoted by literal strings ("abc") and string-valued constant expressions
("a"+"bc") are interned in this table, which is why System.out.println("abc" == "a"+"bc"); outputs
true. However, String objects created via String constructors are not interned, which is why
System.out.println("abc" == new String("abc")); outputs false. In contrast,
System.out.println("abc" == new String("abc").intern()); outputs true.

■ Caution Be careful with this string comparison technique (which only compares references) because you can
easily introduce a bug when one of the strings being compared has not been interned. When in doubt, use the
equals() or equalsIgnoreCase() method.

Table 4-4 also reveals the charAt() and length() methods, which are useful for iterating over a
string’s characters. For example, String s = "abc"; for (int i = 0; i < s.length(); i++)
System.out.println(s.charAt(i)); returns each of s’s a, b, and c characters and outputs each character
on a separate line.

Finally, Table 4-4 presents split(), a method that I employed in Chapter 3’s StubFinder application
to split a string’s comma-separated list of values into an array of String objects. This method uses a
regular expression that identifies a sequence of characters around which the string is split. (I discuss
regular expressions in Appendix C.)

■ Note StringIndexOutOfBoundsException and ArrayIndexOutOfBoundsException are sibling classes that
share a common java.lang.IndexOutOfBoundsException superclass.

CHAPTER 4 TOURING LANGUAGE APIS

276

StringBuffer and StringBuilder
String objects are immutable: you cannot modify a String object’s string. The various String methods
that appear to modify the String object actually return a new String object with modified string content
instead. Because returning new String objects is often wasteful, Java provides the
java.lang.StringBuffer and java.lang.StringBuilder classes as a workaround. These classes are
identical apart from the fact that StringBuffer can be used in the context of multiple threads (discussed
later in this chapter), and that StringBuilder is faster than StringBuffer but cannot be used in the
context of multiple threads without explicit synchronization (also discussed later in this chapter).

Table 4-5 describes some of StringBuffer’s constructors and methods for initializing StringBuffer
objects and working with string buffers. StringBuilder’s constructors and methods are identical.

Table 4-5. StringBuffer Constructors and Methods

Method Description

StringBuffer() Initialize this StringBuffer object to an empty array with an
initial capacity of 16 characters.

StringBuffer(int capacity) Initialize this StringBuffer object to an empty array with an
initial capacity of capacity characters. This constructor throws
java.lang.NegativeArraySizeException when capacity is
negative.

StringBuffer(String s) Initialize this StringBuffer object to an array containing s’s
characters. This object’s initial capacity is 16 plus the length of
s. This constructor throws NullPointerException when s is
null.

StringBuffer append(boolean
b)

Append “true” to this StringBuffer object’s array when b is
true and “false” to the array when b is false, and return this
StringBuffer object.

StringBuffer append(char ch) Append ch’s character to this StringBuffer object’s array, and
return this StringBuffer object.

StringBuffer append(char[]
chars)

Append the characters in the chars array to this StringBuffer
object’s array, and return this StringBuffer object. This
method throws NullPointerException when chars is null.

StringBuffer append(double
d)

Append the string representation of d’s double precision
floating-point value to this StringBuffer object’s array, and
return this StringBuffer object.

StringBuffer append(float f) Append the string representation of f’s floating-point value to
this StringBuffer object’s array, and return this StringBuffer
object.

CHAPTER 4 TOURING LANGUAGE APIS

277

StringBuffer append(int i) Append the string representation of i’s integer value to this
StringBuffer object’s array, and return this StringBuffer
object.

StringBuffer append(long l) Append the string representation of l’s long integer value to
this StringBuffer object’s array, and return this StringBuffer
object.

StringBuffer append(Object
obj)

Call obj’s toString() method and append the returned string’s
characters to this StringBuffer object’s array. Append “null” to
the array when null is passed to obj. Return this StringBuffer
object.

StringBuffer append(String
s)

Append s’s string to this StringBuffer object’s array. Append
“null” to the array when null is passed to s. Return this
StringBuffer object.

int capacity() Return the current capacity of this StringBuffer object’s array.

char charAt(int index) Return the character located at index in this StringBuffer
object’s array. This method throws
StringIndexOutOfBoundsException when index is negative or
greater than or equal to this StringBuffer object’s length.

void ensureCapacity(int min) Ensure that this StringBuffer object’s capacity is at least that
specified by min. If the current capacity is less than min, a new
internal array is created with greater capacity. The new capacity
is set to the larger of min and the current capacity multiplied by
2, with 2 added to the result. No action is taken when min is
negative or zero.

int length() Return the number of characters stored in this StringBuffer
object’s array.

StringBuffer reverse() Return this StringBuffer object with its array contents
reversed.

void setCharAt(int index,
char ch)

Replace the character at index with ch. This method throws
StringIndexOutOfBoundsException when index is negative or
greater than or equal to the length of this StringBuffer object’s
array.

void setLength(int length) Set the length of this StringBuffer object’s array to length. If
the length argument is less than the current length, the array’s
contents are truncated. If the length argument is greater than
or equal to the current length, sufficient null characters
('\u0000') are appended to the array. This method throws

CHAPTER 4 TOURING LANGUAGE APIS

278

StringIndexOutOfBoundsException when length is negative.

String substring(int start) Return a new String object that contains all characters in this
StringBuffer object’s array starting with the character located
at start. This method throws
StringIndexOutOfBoundsException when start is less than 0 or
greater than or equal to the length of this StringBuffer object’s
array.

String toString() Return a new String object whose string equals the contents of
this StringBuffer object’s array.

A StringBuffer or StringBuilder object’s internal array is associated with the concepts of capacity

and length. Capacity refers to the maximum number of characters that can be stored in the array before
the array grows to accommodate additional characters. Length refers to the number of characters that
are already stored in the array.

The toAlignedBinaryString() method presented earlier in this chapter included the following
inefficient loop in its implementation:

int numLeadingZeros = numBits-result.length();
String zerosPrefix = "";
for (int j = 0; j < numLeadingZeros; j++)
 zerosPrefix += "0";

This loop is inefficient because each of the iterations creates a StringBuilder object and a String
object. The compiler transforms this code fragment into the following fragment:

int numLeadingZeros = 3;
String zerosPrefix = "";
for (int j = 0; j < numLeadingZeros; j++)
 zerosPrefix = new StringBuilder().append(zerosPrefix).append("0").toString();

A more efficient way to code the previous loop involves creating a StringBuffer/StringBuilder
object prior to entering the loop, calling the appropriate append() method in the loop, and calling
toString() after the loop. The following code fragment demonstrates this more efficient scenario:

int numLeadingZeros = 3;
StringBuilder sb = new StringBuilder();
for (int j = 0; j < numLeadingZeros; j++)
 sb.append("0");
String zerosPrefix = sb.toString();

■ Caution Avoid using the string concatenation operator in a lengthy loop because it results in the creation of
many unnecessary StringBuilder and String objects.

CHAPTER 4 TOURING LANGUAGE APIS

279

System
The java.lang.System class provides access to system-oriented resources, including standard input,
standard output, and standard error.

System declares in, out, and err class fields that support standard input, standard output, and
standard error, respectively. The first field is of type java.io.InputStream, and the last two fields are of
type java.io.PrintStream. (I will formally introduce these classes in Chapter 8.)

System also declares various static methods, including those methods that are described in Table 4-
6.

Table 4-6. System Methods

Method Description

void arraycopy(Object src,
int srcPos, Object dest, int
destPos, int length)

Copy the number of elements specified by length from the src
array starting at zero-based offset srcPos into the dest array
starting at zero-based offset destPos. This method throws
NullPointerException when src or dest is null,
ArrayIndexOutOfBoundsException when copying causes access
to data outside array bounds, and
java.lang.ArrayStoreException when an element in the src
array could not be stored into the dest array because of a type
mismatch.

long currentTimeMillis() Return the current system time in milliseconds since January 1,
1970 00:00:00 UTC.

void gc() Inform the JVM that now would be a good time to run the
garbage collector. This is only a hint; there is no guarantee that
the garbage collector will run.

String getProperty(String
prop)

Return the value of the system property (platform-specific
attribute, such as a version number) identified by prop or null
when no such property exists.

void runFinalization() Inform the JVM that now would be a good time to perform any
outstanding object finalizations. This is only a hint; there is no
guarantee that outstanding object finalizations will be
performed.

void setErr(PrintStream err) Reassign the standard error stream to err. This is equivalent to
specifying, for example, java Application 2>errlog on
Windows XP.

void setIn(InputStream in) Reassign the standard input stream to in. This is equivalent to
specifying, for example, java Application <input on Windows
XP.

CHAPTER 4 TOURING LANGUAGE APIS

280

void setOut(PrintStream out) Reassign the standard output stream to out. This is equivalent
to specifying, for example, java Application >output on
Windows XP.

Listing 4-16 demonstrates the arraycopy(), currentTimeMillis(), and getProperty() methods.

Listing 4-16. Experimenting with System methods

class SystemTasks
{
 public static void main(String[] args)
 {
 int[] grades = { 86, 92, 78, 65, 52, 43, 72, 98, 81 };
 int[] gradesBackup = new int[grades.length];
 System.arraycopy(grades, 0, gradesBackup, 0, grades.length);
 for (int i = 0; i < gradesBackup.length; i++)
 System.out.println(gradesBackup[i]);
 System.out.println("Current time: "+System.currentTimeMillis());
 String[] propNames =
 {
 "java.vendor.url",
 "java.class.path",
 "user.home",
 "java.class.version",
 "os.version",
 "java.vendor",
 "user.dir",
 "user.timezone",
 "path.separator",
 "os.name",
 "os.arch",
 "line.separator",
 "file.separator",
 "user.name",
 "java.version",
 "java.home"
 };
 for (int i = 0; i < propNames.length; i++)
 System.out.println(propNames[i]+": "+
 System.getProperty(propNames[i]));
 }
}

Listing 4-16’s main() method begins by demonstrating arraycopy(). It uses this method to copy the
contents of a grades array to a gradesBackup array.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

281

■ Tip The arraycopy() method is the fastest portable way to copy one array to another. Also, when you write a
class whose methods return a reference to an internal array, you should use arraycopy() to create a copy of the
array, and then return the copy’s reference. That way, you prevent clients from directly manipulating (and possibly
screwing up) the internal array.

main() next calls currentTimeMillis() to return the current time as a milliseconds value. Because
this value is not human-readable, you might want to use the java.util.Date class (discussed in
Appendix C). The Date() constructor calls currentTimeMillis() and its toString() method converts this
value to a readable date and time.

main() concludes by demonstrating getProperty() in a for loop. This loop iterates over all of Table
4-6’s property names, outputting each name and value.

When I run this application on my platform, it generates the following output:

86
92
78
65
52
43
72
98
81
Current time: 1312236551718
java.vendor.url: http://java.oracle.com/
java.class.path: .
user.home: C:\Documents and Settings\Jeff Friesen
java.class.version: 51.0
os.version: 5.1
java.vendor: Oracle Corporation
user.dir: C:\prj\dev\bj7\ch04\code\SystemTasks
user.timezone:
path.separator: ;
os.name: Windows XP
os.arch: x86
line.separator:

file.separator: \
user.name: Jeff Friesen
java.version: 1.7.0
java.home: C:\Program Files\Java\jdk1.7.0\jre

■ Note line.separator stores the actual line separator character/characters, not its/their representation (such
as \r\n), which is why a blank line appears after line.separator:.

http://java.oracle.com/

CHAPTER 4 TOURING LANGUAGE APIS

282

Threading
Applications execute via threads, which are independent paths of execution through an application’s
code. When multiple threads are executing, each thread’s path can differ from other thread paths. For
example, a thread might execute one of a switch statement’s cases, and another thread might execute
another of this statement’s cases.

■ Note Applications use threads to improve performance. Some applications can get by with only the default main
thread to carry out their tasks, but other applications need additional threads to perform time-intensive tasks in the
background, so that they remain responsive to their users.

The JVM gives each thread its own method-call stack to prevent threads from interfering with each
other. Separate stacks let threads keep track of their next instructions to execute, which can differ from
thread to thread. The stack also provides a thread with its own copy of method parameters, local
variables, and return value.

Java supports threads via its Threading API. This API consists of one interface (Runnable) and four
classes (Thread, ThreadGroup, ThreadLocal, and InheritableThreadLocal) in the java.lang package. After
exploring Runnable and Thread (and mentioning ThreadGroup during this exploration), this section
explores thread synchronization, ThreadLocal, and InheritableThreadLocal.

■ Note Java 5 introduced the java.util.concurrent package as a high-level alternative to the low-level
Threading API. (I will discuss this package in Chapter 6.) Although java.util.concurrent is the preferred API for
working with threads, you should also be somewhat familiar with Threading because it is helpful in simple
threading scenarios. Also, you might have to analyze someone else’s source code that depends on Threading.

Runnable and Thread
Java provides the Runnable interface to identify those objects that supply code for threads to execute via
this interface’s solitary void run() method—a thread receives no arguments and returns no value.
Classes implement Runnable to supply this code, and one of these classes is Thread.

Thread provides a consistent interface to the underlying operating system’s threading architecture.
(The operating system is typically responsible for creating and managing threads.) Thread makes it
possible to associate code with threads, as well as start and manage those threads. Each Thread instance
associates with a single thread.

Thread declares several constructors for initializing Thread objects. Some of these constructors take
Runnable arguments: you can supply code to run without having to extend Thread. Other constructors do
not take Runnable arguments: you must extend Thread and override its run() method to supply the code
to run.

For example, Thread(Runnable runnable) initializes a new Thread object to the specified runnable
whose code is to be executed. In contrast, Thread() does not initialize Thread to a Runnable argument.

CHAPTER 4 TOURING LANGUAGE APIS

283

Instead, your Thread subclass provides a constructor that calls Thread(), and the subclass also overrides
Thread’s run() method.

In the absence of an explicit name argument, each constructor assigns a unique default name
(starting with Thread-) to the Thread object. Names make it possible to differentiate threads. In contrast
to the previous two constructors, which choose default names, Thread(String threadName) lets you
specify your own thread name.

Thread also declares methods for starting and managing threads. Table 4-7 describes many of the
more useful methods.

Table 4-7. Thread Methods

Method Description

static Thread
currentThread()

Return the Thread object associated with the thread that calls
this method.

String getName() Return the name associated with this Thread object.

Thread.State getState() Return the state of the thread associated with this Thread
object. The state is identified by the Thread.State enum as one
of BLOCKED (waiting to acquire a lock, discussed later), NEW
(created but not started), RUNNABLE (executing), TERMINATED (the
thread has died), TIMED_WAITING (waiting for a specified amount
of time to elapse), or WAITING (waiting indefinitely).

void interrupt() Set the interrupt status flag in this Thread object. If the
associated thread is blocked or waiting, clear this flag and wake
up the thread by throwing an instance of the
InterruptedException class.

static boolean interrupted() Return true when the thread associated with this Thread object
has a pending interrupt request. Clear the interrupt status flag.

boolean isAlive() Return true to indicate that this Thread object’s associated
thread is alive and not dead. A thread’s lifespan ranges from
just before it is actually started within the start() method to
just after it leaves the run() method, at which point it dies.

boolean isDaemon() Return true when the thread associated with this Thread object
is a daemon thread, a thread that acts as a helper to a user
thread (nondaemon thread) and dies automatically when the
application’s last nondaemon thread dies so the application
can exit.

boolean isInterrupted() Return true when the thread associated with this Thread object
has a pending interrupt request.

void join() The thread that calls this method on this Thread object waits for
the thread associated with this object to die. This method

CHAPTER 4 TOURING LANGUAGE APIS

284

throws InterruptedException when this Thread object’s
interrupt() method is called.

void join(long millis) The thread that calls this method on this Thread object waits for
the thread associated with this object to die, or until millis
milliseconds have elapsed, whichever happens first. This
method throws InterruptedException when this Thread
object’s interrupt() method is called.

void setDaemon(boolean
isDaemon)

Mark this Thread object’s associated thread as a daemon thread
when isDaemon is true. This method throws
java.lang.IllegalThreadStateException when the thread has
not yet been created and started.

void setName(String
threadName)

Assign threadName’s value to this Thread object as the name of
its associated thread.

static void sleep(long time) Pause the thread associated with this Thread object for time
milliseconds. This method throws InterruptedException when
this Thread object’s interrupt() method is called while the
thread is sleeping.

void start() Create and start this Thread object’s associated thread. This
method throws IllegalThreadStateException when the thread
was previously started and is running or has died.

Listing 4-17 introduces you to the Threading API via a main() method that demonstrates Runnable,

Thread(Runnable runnable), currentThread(), getName(), and start().

Listing 4-17. A pair of counting threads

class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (true)
 System.out.println(name+": "+count++);
 }
 };
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();

CHAPTER 4 TOURING LANGUAGE APIS

285

 thdB.start();
 }
}

According to Listing 4-17, the default main thread that executes main() first instantiates an
anonymous class that implements Runnable. It then creates two Thread objects, initializing each object to
the runnable, and calls Thread’s start() method to create and start both threads. After completing these
tasks, the main thread exits main() and dies.

Each of the two started threads executes the runnable’s run() method. It calls Thread’s
currentThread() method to obtain its associated Thread instance, uses this instance to call Thread’s
getName() method to return its name, initializes count to 0, and enters an infinite loop where it outputs
name and count, and increments count on each iteration.

■ Tip To stop an application that does not end, press the Ctrl and C keys simultaneously (at least on Windows
platforms).

I observe both threads alternating in their execution when I run this application on the Windows XP
platform. Partial output from one run appears here:

Thread-0: 0
Thread-0: 1
Thread-0: 2
Thread-0: 3
Thread-0: 4
Thread-0: 5
Thread-0: 6
Thread-0: 7
Thread-1: 0
Thread-1: 1
Thread-1: 2
Thread-1: 3

The operating system assigns a separate thread to each processor or core so the threads execute
concurrently (at the same time). When a computer does not have enough processors and/or cores, a
thread must wait its turn to use the shared processor/core.

The operating system uses a scheduler (http://en.wikipedia.org/wiki/Scheduling_(computing)) to
determine when a waiting thread executes. The following list identifies three different schedulers:

• Linux 2.6 through 2.6.22 uses the O(1) scheduler
(http://en.wikipedia.org/wiki/O(1)_scheduler) .

• Linux 2.6.23 uses the Completely Fair Scheduler
(http://en.wikipedia.org/wiki/Completely_Fair_Scheduler).

• Windows NT-based operating systems (e.g., NT, 2000, XP, Vista, and 7) use a
multilevel feedback queue scheduler
(http://en.wikipedia.org/wiki/Multilevel_feedback_queue).

o

http://en.wikipedia.org/wiki/Scheduling_
http://en.wikipedia.org/wiki/O
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Multilevel_feedback_queue

CHAPTER 4 TOURING LANGUAGE APIS

286

The previous output from the counting threads application resulted from running this application
via Windows XP’s multilevel feedback queue scheduler. Because of this scheduler, both threads take
turns executing.

■ Caution Although this output indicates that the first thread starts executing, never assume that the thread
associated with the Thread object whose start() method is called first is the first thread to execute. While this
might be true of some schedulers, it might not be true of others.

A multilevel feedback queue and many other thread schedulers take the concept of priority (thread
relative importance) into account. They often combine preemptive scheduling (higher priority threads
preempt—interrupt and run instead of—lower priority threads) with round robin scheduling (equal
priority threads are given equal slices of time, which are known as time slices, and take turns executing).

Thread supports priority via its void setPriority(int priority) method (set the priority of this
Thread object’s thread to priority, which ranges from Thread.MIN_PRIORITY to Thread.MAX_PRIORITY—
Thread.NORMAL_PRIORITY identifies the default priority) and int getPriority() method (return the
current priority).

■ Caution Using the setPriority() method can impact an application’s portability across platforms because
different schedulers can handle a priority change in different ways. For example, one platform’s scheduler might
delay lower priority threads from executing until higher priority threads finish. This delaying can lead to indefinite
postponement or starvation because lower priority threads “starve” while waiting indefinitely for their turn to
execute, and this can seriously hurt the application’s performance. Another platform’s scheduler might not
indefinitely delay lower priority threads, improving application performance.

Listing 4-18 refactors Listing 4-17’s main() method to give each thread a nondefault name, and to
put each thread to sleep after outputting name and count.

Listing 4-18. A pair of counting threads revisited

class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;

CHAPTER 4 TOURING LANGUAGE APIS

287

 while (true)
 {
 System.out.println(name+": "+count++);
 try
 {
 Thread.sleep(100);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 };
 Thread thdA = new Thread(r);
 thdA.setName("A");
 Thread thdB = new Thread(r);
 thdB.setName("B");
 thdA.start();
 thdB.start();
 }
}

Listing 4-18 reveals that Threads A and B execute Thread.sleep(100); to sleep for 100 milliseconds.
This sleep results in each thread executing more frequently, as the following partial output reveals:

A: 0
B: 0
A: 1
B: 1
A: 2
B: 2
A: 3
B: 3

A thread will occasionally start another thread to perform a lengthy calculation, download a large
file, or perform some other time-consuming activity. After finishing its other tasks, the thread that
started the worker thread is ready to process the results of the worker thread and waits for the worker
thread to finish and die.

It is possible to wait for the worker thread to die by using a while loop that repeatedly calls Thread’s
isAlive() method on the worker thread’s Thread object and sleeps for a certain length of time when this
method returns true. However, Listing 4-19 demonstrates a less verbose alternative: the join() method.

Listing 4-19. Joining the default main thread with a background thread

class JoinDemo
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {

CHAPTER 4 TOURING LANGUAGE APIS

288

 System.out.println("Worker thread is simulating "+
 "work by sleeping for 5 seconds.");
 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Worker thread is dying");
 }
 };
 Thread thd = new Thread(r);
 thd.start();
 System.out.println("Default main thread is doing work.");
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Default main thread has finished its work.");
 System.out.println("Default main thread is waiting for worker thread "+
 "to die.");
 try
 {
 thd.join();
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Main thread is dying");
 }
}

Listing 4-19 demonstrates the default main thread starting a worker thread, performing some work,
and then waiting for the worker thread to die by calling join() via the worker thread’s thd object. When
you run this application, you will discover output similar to the following (message order might differ
somewhat):

Default main thread is doing work.
Worker thread is simulating work by sleeping for 5 seconds.
Default main thread has finished its work.
Default main thread is waiting for worker thread to die.
Worker thread is dying
Main thread is dying

Every Thread object belongs to some ThreadGroup object; Thread declares a ThreadGroup
getThreadGroup() method that returns this object. You should ignore thread groups because they are not
that useful. If you need to logically group Thread objects, you should use an array or collection instead.

CHAPTER 4 TOURING LANGUAGE APIS

289

■ Caution Various ThreadGroup methods are flawed. For example, int enumerate(Thread[] threads) will not
include all active threads in its enumeration when its threads array argument is too small to store their Thread
objects. Although you might think that you could use the return value from the int activeCount() method to
properly size this array, there is no guarantee that the array will be large enough because activeCount()’s return
value fluctuates with the creation and death of threads.

However, you should still know about ThreadGroup because of its contribution in handling
exceptions that are thrown while a thread is executing. Listing 4-20 sets the stage for learning about
exception handling by presenting a run() method that attempts to divide an integer by 0, which results
in a thrown java.lang.ArithmeticException instance.

Listing 4-20. Throwing an exception from the run() method

class ExceptionThread
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 int x = 1/0;
 }
 };
 Thread thd = new Thread(r);
 thd.start();
 }
}

Run this application and you will see an exception trace that identifies the thrown
ArithmeticException:

Exception in thread "Thread-0" java.lang.ArithmeticException: / by zero
 at ExceptionThread$1.run(ExceptionThread.java:10)
 at java.lang.Thread.run(Thread.java:722)

When an exception is thrown out of the run() method, the thread terminates and the following
activities take place:

• The JVM looks for an instance of Thread.UncaughtExceptionHandler installed via
Thread’s void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler
eh) method. When this handler is found, it passes execution to the instance’s void
uncaughtException(Thread t, Throwable e) method, where t identifies the Thread
object of the thread that threw the exception, and e identifies the thrown
exception or error—perhaps an OutOfMemoryError instance was thrown. If this
method throws an exception/error, the exception/error is ignored by the JVM.

CHAPTER 4 TOURING LANGUAGE APIS

290

• Assuming that setUncaughtExceptionHandler() was not called to install a handler,
the JVM passes control to the associated ThreadGroup object’s
uncaughtException(Thread t, Throwable e) method. Assuming that ThreadGroup
was not extended, and that its uncaughtException() method was not overridden to
handle the exception, uncaughtException() passes control to the parent
ThreadGroup object’s uncaughtException() method when a parent ThreadGroup is
present. Otherwise, it checks to see if a default uncaught exception handler has
been installed (via Thread’s static void
setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler
handler) method.) If a default uncaught exception handler has been installed, its
uncaughtException() method is called with the same two arguments. Otherwise,
uncaughtException() checks its Throwable argument to determine if it is an
instance of java.lang.ThreadDeath. If so, nothing special is done. Otherwise, as
Listing 4-20’s exception message shows, a message containing the thread's name,
as returned from the thread's getName() method, and a stack backtrace, using the
Throwable argument’s printStackTrace() method, is printed to the standard error
stream.

Listing 4-21 demonstrates Thread’s setUncaughtExceptionHandler() and
setDefaultUncaughtExceptionHandler() methods.

Listing 4-21. Demonstrating uncaught exception handlers

class ExceptionThread
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 int x = 1/0;
 }
 };
 Thread thd = new Thread(r);
 Thread.UncaughtExceptionHandler uceh;
 uceh = new Thread.UncaughtExceptionHandler()
 {
 public void uncaughtException(Thread t, Throwable e)
 {
 System.out.println("Caught throwable "+e+" for thread "+t);
 }
 };
 thd.setUncaughtExceptionHandler(uceh);
 uceh = new Thread.UncaughtExceptionHandler()
 {
 public void uncaughtException(Thread t, Throwable e)
 {
 System.out.println("Default uncaught exception handler");
 System.out.println("Caught throwable "+e+" for thread "+t);
 }

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

291

 };
 thd.setDefaultUncaughtExceptionHandler(uceh);
 thd.start();
 }
}

When you run this application, you will observe the following output:

Caught throwable java.lang.ArithmeticException: / by zero for thread Thread[Thread-0,5,main]

You also will not see the default uncaught exception handler’s output because the default handler is
not called. To see that output, you must comment out thd.setUncaughtExceptionHandler(uceh);. If you
also comment out thd.setDefaultUncaughtExceptionHandler(uceh);, you will see Listing 4-20’s output.

■ Caution Thread declares several deprecated methods, including stop() (stop an executing thread). These
methods have been deprecated because they are unsafe. Do not use these deprecated methods. (I will show you
how to safely stop a thread later in this chapter.) Also, you should avoid the static void yield() method, which
is intended to switch execution from the current thread to another thread, because it can affect portability and hurt
application performance. Although yield() might switch to another thread on some platforms (which can improve
performance), yield() might only return to the current thread on other platforms (which hurts performance
because the yield() call has only wasted time).

Thread Synchronization
Throughout its execution, each thread is isolated from other threads because it has been given its own
method-call stack. However, threads can still interfere with each other when they access and manipulate
shared data. This interference can corrupt the shared data, and this corruption can cause an application
to fail.

For example, consider a checking account in which a husband and wife have joint access. Suppose
that the husband and wife decide to empty this account at the same time without knowing that the other
is doing the same thing. Listing 4-22 demonstrates this scenario.

Listing 4-22. A problematic checking account

class CheckingAccount
{
 private int balance;
 CheckingAccount(int initialBalance)
 {
 balance = initialBalance;
 }
 boolean withdraw(int amount)
 {
 if (amount <= balance)
 {
 try

CHAPTER 4 TOURING LANGUAGE APIS

292

 {
 Thread.sleep((int)(Math.random()*200));
 }
 catch (InterruptedException ie)
 {
 }
 balance -= amount;
 return true;
 }
 return false;
 }
 public static void main(String[] args)
 {
 final CheckingAccount ca = new CheckingAccount(100);
 Runnable r = new Runnable()
 {
 public void run()
 {
 String name = Thread.currentThread().getName();
 for (int i = 0; i < 10; i++)
 System.out.println (name+" withdraws $10: "+
 ca.withdraw(10));
 }
 };
 Thread thdHusband = new Thread(r);
 thdHusband.setName("Husband");
 Thread thdWife = new Thread(r);
 thdWife.setName("Wife");
 thdHusband.start();
 thdWife.start();
 }
}

This application lets more money be withdrawn than is available in the account. For example, the
following output reveals $110 being withdrawn when only $100 is available:

Wife withdraws $10: true
Wife withdraws $10: true
Husband withdraws $10: true
Wife withdraws $10: true
Husband withdraws $10: true
Wife withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Wife withdraws $10: true
Wife withdraws $10: false
Wife withdraws $10: false

CHAPTER 4 TOURING LANGUAGE APIS

293

Wife withdraws $10: false
Wife withdraws $10: false
Wife withdraws $10: false

The reason why more money is withdrawn than is available for withdrawal is that a race condition
exists between the husband and wife threads.

■ Note A race condition is a scenario in which multiple threads update the same object at the same time or nearly
at the same time. Part of the object stores values written to it by one thread, and another part of the object stores
values written to it by another thread.

The race condition exists because the actions of checking the amount for withdrawal to ensure that
it is less than what appears in the balance and deducting the amount from the balance are not atomic
(indivisible) operations. (Although atoms are divisible, atomic is commonly used to refer to something
being indivisible.)

■ Note The Thread.sleep() method call that sleeps for a variable amount of time (up to a maximum of 199
milliseconds) is present so that you can observe more money being withdrawn than is available for withdrawal.
Without this method call, you might have to execute the application hundreds of times (or more) to witness this
problem, because the scheduler might rarely pause a thread between the amount <= balance expression and the
balance -= amount; expression statement—the code executes rapidly.

Consider the following scenario:

• The Husband thread executes withdraw()’s amount <= balance expression, which
returns true. The scheduler pauses the Husband thread and lets the Wife thread
execute.

• The Wife thread executes withdraw()’s amount <= balance expression, which
returns true.

• The Wife thread performs the withdrawal. The scheduler pauses the Wife thread
and lets the Husband thread execute.

• The Husband thread performs the withdrawal.

This problem can be corrected by synchronizing access to withdraw() so that only one thread at a
time can execute inside this method. You synchronize access at the method level by adding reserved
word synchronized to the method header prior to the method’s return type; for example, synchronized
boolean withdraw(int amount).

As I demonstrate later, you can also synchronize access to a block of statements by specifying
synchronized(object) { /* synchronized statements */ }, where object is an arbitrary object

CHAPTER 4 TOURING LANGUAGE APIS

294

reference. No thread can enter a synchronized method or block until execution leaves the
method/block; this is known as mutual exclusion.

Synchronization is implemented in terms of monitors and locks. A monitor is a concurrency
construct for controlling access to a critical section, a region of code that must execute atomically. It is
identified at the source code level as a synchronized method or a synchronized block.

A lock is a token that a thread must acquire before a monitor allows that thread to execute inside a
monitor’s critical section. The token is released automatically when the thread exits the monitor, to give
another thread an opportunity to acquire the token and enter the monitor.

■ Note A thread that has acquired a lock does not release this lock when it calls one of Thread’s sleep()
methods.

A thread entering a synchronized instance method acquires the lock associated with the object on
which the method is called. A thread entering a synchronized class method acquires the lock associated
with the class’s Class object. Finally, a thread entering a synchronized block acquires the lock associated
with the block’s controlling object.

■ Tip Thread declares a static boolean holdsLock(Object o) method that returns true when the calling
thread holds the monitor lock on object o. You will find this method handy in assertion statements, such as assert
Thread.holdsLock(o);.

The need for synchronization is often subtle. For example, Listing 4-23’s ID utility class declares a
getNextID() method that returns a unique long-based ID, perhaps to be used when generating unique
filenames. Although you might not think so, this method can cause data corruption and return duplicate
values.

Listing 4-23. A utility class for returning unique IDs

class ID
{
 private static long nextID = 0;
 static long getNextID()
 {
 return nextID++;
 }
}

There are two lack-of-synchronization problems with getNextID(). Because 32-bit JVM
implementations require two steps to update a 64-bit long integer, adding 1 to nextID is not atomic: the
scheduler could interrupt a thread that has only updated half of nextID, which corrupts the contents of
this variable.

CHAPTER 4 TOURING LANGUAGE APIS

295

■ Note Variables of type long and double are subject to corruption when being written to in an unsynchronized
context on 32-bit JVMs. This problem does not occur with variables of type boolean, byte, char, float, int, or
short; each type occupies 32 bits or less.

Assume that multiple threads call getNextID(). Because postincrement (++) reads and writes the
nextID field in two steps, multiple threads might retrieve the same value. For example, thread A executes
++, reading nextID but not incrementing its value before being interrupted by the scheduler. Thread B
now executes and reads the same value.

Both problems can be corrected by synchronizing access to nextID so that only one thread can
execute this method’s code. All that is required is to add synchronized to the method header prior to the
method’s return type; for example, static synchronized int getNextID().

Synchronization is also used to communicate between threads. For example, you might design your
own mechanism for stopping a thread (because you cannot use Thread’s unsafe stop() methods for this
task). Listing 4-24 shows how you might accomplish this task.

Listing 4-24. Attempting to stop a thread

class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private boolean stopped = false;
 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }
 void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

CHAPTER 4 TOURING LANGUAGE APIS

296

Listing 4-24 introduces a main() method with a local class named StoppableThread that subclasses
Thread. StoppableThread declares a stopped field initialized to false, a stopThread() method that sets
this field to true, and a run() method whose infinite loop checks stopped on each loop iteration to see if
its value has changed to true.

After instantiating StoppableThread, the default main thread starts the thread associated with this
Thread object. It then sleeps for one second and calls StoppableThread’s stop() method before dying.
When you run this application on a single-processor/single-core machine, you will probably observe the
application stopping.

You might not see this stoppage when the application runs on a multiprocessor machine or a
uniprocessor machine with multiple cores. For performance reasons, each processor or core probably
has its own cache with its own copy of stopped. When one thread modifies its copy of this field, the other
thread’s copy of stopped is not changed.

Listing 4-25 refactors Listing 4-24 to guarantee that the application will run correctly on all kinds of
machines.

Listing 4-25. Guaranteed stoppage on a multiprocessor/multicore machine

class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private boolean stopped = false;
 @Override
 public void run()
 {
 while(!isStopped())
 System.out.println("running");
 }
 synchronized void stopThread()
 {
 stopped = true;
 }
 private synchronized boolean isStopped()
 {
 return stopped;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

CHAPTER 4 TOURING LANGUAGE APIS

297

Listing 4-25’s stopThread() and isStopped() methods are synchronized to support thread
communication (between the default main thread that calls stopThread() and the started thread that
executes inside run()). When a thread enters one of these methods, it is guaranteed to access a single
shared copy of the stopped field (not a cached copy).

Synchronization is necessary to support mutual exclusion or mutual exclusion combined with
thread communication. However, there is an alternative to synchronization when the only purpose is to
communicate between threads. This alternative is reserved word volatile, which Listing 4-26
demonstrates.

Listing 4-26. The volatile alternative to synchronization for thread communication

class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private volatile boolean stopped = false;
 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }
 void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 4-26 declares stopped to be volatile; threads that access this field will always access a single
shared copy (not cached copies on multiprocessor/multicore machines). As well as generating code that
is less verbose, volatile might offer improved performance over synchronization.

When a field is declared volatile, it cannot also be declared final. If you’re depending on the
semantics (meaning) of volatility, you still get those from a final field. In his “Java theory and practice:
Fixing the Java Memory Model, Part 2” article (http://www.ibm.com/developerworks/library/j-
jtp03304/), Brian Goetz has this to say about this issue: “The new JMM [Java Memory Model] also seeks
to provide a new guarantee of initialization safety—that as long as an object is properly constructed
(meaning that a reference to the object is not published before the constructor has completed), then all
threads will see the values for its final fields that were set in its constructor, regardless of whether or not

http://www.ibm.com/developerworks/library/j-jtp03304/
http://www.ibm.com/developerworks/library/j-jtp03304/

CHAPTER 4 TOURING LANGUAGE APIS

298

synchronization is used to pass the reference from one thread to another. Further, any variables that can
be reached through a final field of a properly constructed object, such as fields of an object referenced by
a final field, are also guaranteed to be visible to other threads as well. This means that if a final field
contains a reference to, say, a LinkedList, in addition to the correct value of the reference being visible
to other threads, also the contents of that LinkedList at construction time would be visible to other
threads without synchronization. The result is a significant strengthening of the meaning of final—that
final fields can be safely accessed without synchronization, and that compilers can assume that final
fields will not change and can therefore optimize away multiple fetches.”

■ Caution You should only use volatile in the context of thread communication. Also, you can only use this
reserved word in the context of field declarations. Although you can declare double and long fields volatile, you
should avoid doing so on 32-bit JVMs because it takes two operations to access a double or long variable’s value,
and mutual exclusion via synchronization is required to access their values safely.

Object’s wait(), notify(), and notifyAll() methods support a form of thread communication
where a thread voluntarily waits for some condition (a prerequisite for continued execution) to arise, at
which time another thread notifies the waiting thread that it can continue. wait() causes its calling
thread to wait on an object’s monitor, and notify() and notifyAll() wake up one or all threads waiting
on the monitor.

■ Caution Because the wait(), notify(), and notifyAll() methods depend on a lock, they cannot be called
from outside of a synchronized method or synchronized block. If you fail to heed this warning, you will encounter a
thrown instance of the java.lang.IllegalMonitorStateException class. Also, a thread that has acquired a lock
releases this lock when it calls one of Object’s wait() methods.

A classic example of thread communication involving conditions is the relationship between a
producer thread and a consumer thread. The producer thread produces data items to be consumed by
the consumer thread. Each produced data item is stored in a shared variable.

Imagine that the threads are not communicating and are running at different speeds. The producer
might produce a new data item and record it in the shared variable before the consumer retrieves the
previous data item for processing. Also, the consumer might retrieve the contents of the shared variable
before a new data item is produced.

To overcome those problems, the producer thread must wait until it is notified that the previously
produced data item has been consumed, and the consumer thread must wait until it is notified that a
new data item has been produced. Listing 4-27 shows you how to accomplish this task via wait() and
notify().

Listing 4-27. The producer-consumer relationship

class PC

CHAPTER 4 TOURING LANGUAGE APIS

299

{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}
class Shared
{
 private char c = '\u0000';
 private boolean writeable = true;
 synchronized void setSharedChar(char c)
 {
 while (!writeable)
 try
 {
 wait();
 }
 catch (InterruptedException e) {}
 this.c = c;
 writeable = false;
 notify();
 }
 synchronized char getSharedChar()
 {
 while (writeable)
 try
 {
 wait();
 }
 catch (InterruptedException e) {}
 writeable = true;
 notify();
 return c;
 }
}
class Producer extends Thread
{
 private Shared s;
 Producer(Shared s)
 {
 this.s = s;
 }
 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 synchronized(s)
 {
 s.setSharedChar(ch);

CHAPTER 4 TOURING LANGUAGE APIS

300

 System.out.println(ch+" produced by producer.");
 }
 }
 }
}
class Consumer extends Thread
{
 private Shared s;
 Consumer(Shared s)
 {
 this.s = s;
 }
 @Override
 public void run()
 {
 char ch;
 do
 {
 synchronized(s)
 {
 ch = s.getSharedChar();
 System.out.println(ch+" consumed by consumer.");
 }
 }
 while (ch != 'Z');
 }
}

The application creates a Shared object and two threads that get a copy of the object's reference. The
producer calls the object's setSharedChar() method to save each of 26 uppercase letters; the consumer
calls the object’s getSharedChar() method to acquire each letter.

The writeable instance field tracks two conditions: the producer waiting on the consumer to
consume a data item, and the consumer waiting on the producer to produce a new data item. It helps
coordinate execution of the producer and consumer. The following scenario, where the consumer
executes first, illustrates this coordination:

1. The consumer executes s.getSharedChar() to retrieve a letter.

2. Inside of that synchronized method, the consumer calls wait() because
writeable contains true. The consumer now waits until it receives notification
from the producer.

3. The producer eventually executes s.setSharedChar(ch);.

4. When the producer enters that synchronized method (which is possible
because the consumer released the lock inside of the wait() method prior to

waiting), the producer discovers writeable’s value to be true and does not call
wait().

5. The producer saves the character, sets writeable to false (which will cause the
producer to wait on the next setSharedChar() call when the consumer has not
consumed the character by that time), and calls notify() to awaken the
consumer (assuming the consumer is waiting).

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

301

6. The producer exits setSharedChar(char c).

7. The consumer wakes up (and reacquires the lock), sets writeable to true
(which will cause the consumer to wait on the next getSharedChar() call when
the producer has not produced a character by that time), notifies the producer
to awaken that thread (assuming the producer is waiting), and returns the
shared character.

Although the synchronization works correctly, you might observe output (on some platforms) that
shows multiple producing messages before a consuming message. For example, you might see A
produced by producer., followed by B produced by producer., followed by A consumed by consumer., at
the beginning of the application’s output.

This strange output order is caused by the call to setSharedChar() followed by its companion
System.out.println() method call not being atomic, and by the call to getSharedChar() followed by its
companion System.out.println() method call not being atomic. The output order is corrected by
wrapping each of these method call pairs in a synchronized block that synchronizes on the s-referenced
Shared object.

When you run this application, its output should always appear in the same alternating order, as
shown next (only the first few lines are shown for brevity):

A produced by producer.
A consumed by consumer.
B produced by producer.
B consumed by consumer.
C produced by producer.
C consumed by consumer.
D produced by producer.
D consumed by consumer.

■ Caution Never call wait() outside of a loop. The loop tests the condition (!writeable or writeable in the
previous example) before and after the wait() call. Testing the condition before calling wait() ensures liveness. If
this test was not present, and if the condition held and notify() had been called prior to wait() being called, it is
unlikely that the waiting thread would ever wake up. Retesting the condition after calling wait() ensures safety. If
retesting did not occur, and if the condition did not hold after the thread had awakened from the wait() call
(perhaps another thread called notify() accidentally when the condition did not hold), the thread would proceed
to destroy the lock’s protected invariants.

Too much synchronization can be problematic. If you are not careful, you might encounter a
situation where locks are acquired by multiple threads, neither thread holds its own lock but holds the
lock needed by some other thread, and neither thread can enter and later exit its critical section to
release its held lock because some other thread holds the lock to that critical section. Listing 4-28’s
atypical example demonstrates this scenario, which is known as deadlock.

Listing 4-28. A pathological case of deadlock

class Deadlock

CHAPTER 4 TOURING LANGUAGE APIS

302

{
 private Object lock1 = new Object();
 private Object lock2 = new Object();
 void instanceMethod1()
 {
 synchronized(lock1)
 {
 synchronized(lock2)
 {
 System.out.println("first thread in instanceMethod1");
 // critical section guarded first by
 // lock1 and then by lock2
 }
 }
 }
 void instanceMethod2()
 {
 synchronized(lock2)
 {
 synchronized(lock1)
 {
 System.out.println("second thread in instanceMethod2");
 // critical section guarded first by
 // lock2 and then by lock1
 }
 }
 }
 public static void main(String[] args)
 {
 final Deadlock dl = new Deadlock();
 Runnable r1 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 dl.instanceMethod1();
 }
 };
 Thread thdA = new Thread(r1);
 Runnable r2 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 dl.instanceMethod2();
 }
 };
 Thread thdB = new Thread(r2);
 thdA.start();
 thdB.start();

CHAPTER 4 TOURING LANGUAGE APIS

303

 }
}

Listing 4-28’s thread A and thread B call instanceMethod1() and instanceMethod2(), respectively, at
different times. Consider the following execution sequence:

1. Thread A calls instanceMethod1(), obtains the lock assigned to the lock1-
referenced object, and enters its outer critical section (but has not yet acquired
the lock assigned to the lock2-referenced object).

2. Thread B calls instanceMethod2(), obtains the lock assigned to the lock2-
referenced object, and enters its outer critical section (but has not yet acquired
the lock assigned to the lock1-referenced object).

3. Thread A attempts to acquire the lock associated with lock2. The JVM forces
the thread to wait outside of the inner critical section because thread B holds
that lock.

4. Thread B attempts to acquire the lock associated with lock1. The JVM forces
the thread to wait outside of the inner critical section because thread A holds
that lock.

5. Neither thread can proceed because the other thread holds the needed lock.
We have a deadlock situation and the program (at least in the context of the
two threads) freezes up.

Although the previous example clearly identifies a deadlock state, it is often not that easy to detect
deadlock. For example, your code might contain the following circular relationship among various
classes (in several source files):

• Class A’s synchronized method calls class B’s synchronized method.

• Class B’s synchronized method calls class C’s synchronized method.

• Class C’s synchronized method calls class A’s synchronized method.

If thread A calls class A’s synchronized method and thread B calls class C’s synchronized method,
thread B will block when it attempts to call class A’s synchronized method and thread A is still inside of
that method. Thread A will continue to execute until it calls class C’s synchronized method, and then
block. Deadlock results.

■ Note Neither the Java language nor the JVM provides a way to prevent deadlock, and so the burden falls on
you. The simplest way to prevent deadlock from happening is to avoid having either a synchronized method or a
synchronized block call another synchronized method/block. Although this advice prevents deadlock from
happening, it is impractical because one of your synchronized methods/blocks might need to call a synchronized
method in a Java API, and the advice is overkill because the synchronized method/block being called might not
call any other synchronized method/block, so deadlock would not occur.

CHAPTER 4 TOURING LANGUAGE APIS

304

You will sometimes want to associate per-thread data (such a user ID) with a thread. Although you
can accomplish this task with a local variable, you can only do so while the local variable exists. You
could use an instance field to keep this data around longer, but then you would have to deal with
synchronization. Thankfully, Java supplies ThreadLocal as a simple (and very handy) alternative.

Each instance of the ThreadLocal class describes a thread-local variable, which is a variable that
provides a separate storage slot to each thread that accesses the variable. You can think of a thread-local
variable as a multi-slot variable in which each thread can store a different value in the same variable.
Each thread sees only its value and is unaware of other threads having their own values in this variable.

ThreadLocal is generically declared as ThreadLocal<T>, where T identifies the type of value that is
stored in the variable. This class declares the following constructor and methods:

• ThreadLocal() creates a new thread-local variable.

• T get() returns the value in the calling thread’s storage slot. If an entry does not
exist when the thread calls this method, get() calls initialValue().

• T initialValue() creates the calling thread’s storage slot and stores an initial
(default) value in this slot. The initial value defaults to null. You must subclass
ThreadLocal and override this protected method to provide a more suitable initial
value.

• void remove() removes the calling thread’s storage slot. If this method is followed
by get() with no intervening set(), get() calls initialValue().

• void set(T value) sets the value of the calling thread’s storage slot to value.

Listing 4-29 shows you how to use ThreadLocal to associate a different user ID with each of two
threads.

Listing 4-29. Different user IDs for different threads

class ThreadLocalDemo
{
 private static volatile ThreadLocal<String> userID =
 new ThreadLocal<String>();
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 if (name.equals("A"))
 userID.set("foxtrot");
 else
 userID.set("charlie");
 System.out.println(name+" "+userID.get());
 }
 };
 Thread thdA = new Thread(r);
 thdA.setName("A");
 Thread thdB = new Thread(r);

CHAPTER 4 TOURING LANGUAGE APIS

305

 thdB.setName("B");
 thdA.start();
 thdB.start();
 }
}

After instantiating ThreadLocal and assigning the reference to a volatile class field named userID
(the field is volatile because it is accessed by different threads, which might execute on a
multiprocessor/multicore machine), the default main thread creates two more threads that store
different String objects in userID and output their objects.

When you run this application, you will observe the following output (possibly not in this order):

A foxtrot
B charlie

Values stored in thread-local variables are not related. When a new thread is created, it gets a new
storage slot containing initialValue()’s value. Perhaps you would prefer to pass a value from a parent
thread, a thread that creates another thread, to a child thread, the created thread. You accomplish this
task with InheritableThreadLocal.

InheritableThreadLocal is a subclass of ThreadLocal. As well as declaring an
InheritableThreadLocal() constructor, this class declares the following protected method:

• T childValue(T parentValue) calculates the child’s initial value as a function of
the parent’s value at the time the child thread is created. This method is called
from the parent thread before the child thread is started. The method returns the
argument passed to parentValue and should be overridden when another value is
desired.

Listing 4-30 shows you how to use InheritableThreadLocal to pass a parent thread’s Integer object
to a child thread.

Listing 4-30. Different user IDs for different threads

class InheritableThreadLocalDemo
{
 private static volatile InheritableThreadLocal<Integer> intVal =
 new InheritableThreadLocal<Integer>();
 public static void main(String[] args)
 {
 Runnable rP = new Runnable()
 {
 @Override
 public void run()
 {
 intVal.set(new Integer(10));
 Runnable rC = new Runnable()
 {
 public void run()
 {
 Thread thd;
 thd = Thread.currentThread();
 String name = thd.getName();
 System.out.println(name+" "+

CHAPTER 4 TOURING LANGUAGE APIS

306

 intVal.get());
 }
 };
 Thread thdChild = new Thread(rC);
 thdChild.setName("Child");
 thdChild.start();
 }
 };
 new Thread(rP).start();
 }
}

After instantiating InheritableThreadLocal and assigning it to a volatile class field named intVal,
the default main thread creates a parent thread, which stores an Integer object containing 10 in intVal.
The parent thread creates a child thread, which accesses intVal and retrieves its parent thread’s Integer
object.

When you run this application, you will observe the following output:

Child 10

BigDecimal
Chapter 2 introduced you to a SavingsAccount class with a balance field. I declared this field to be of type
int, and mentioned that balance represents the number of dollars that can be withdrawn. Alternatively, I
could have stated that balance represents the number of pennies that can be withdrawn.

Perhaps you are wondering why I did not declare balance to be of type double or float. That way,
balance could store values such as 18.26 (18 dollars in the whole number part and 26 pennies in the
fraction part). I did not declare balance to be a double or float for the following reasons:

• Not all floating-point values that can represent monetary amounts (dollars and
cents) can be stored exactly in memory. For example, 0.1 (which you might use to
represent 10 cents) has no exact storage representation. If you executed double
total = 0.1; for (int i = 0; i < 50; i++) total += 0.1;
System.out.println(total);, you would observe 5.099999999999998 instead of the
correct 5.1 as the output.

• The result of each floating-point calculation needs to be rounded to the nearest
cent. Failure to do so introduces tiny errors that can cause the final result to differ
from the correct result. Although Math supplies a pair of round() methods that you
might consider using to round a calculation to the nearest cent, these methods
round to the nearest integer (dollar).

Listing 4-31’s InvoiceCalc application demonstrates both problems. However, the first problem is
not serious because it contributes very little to the inaccuracy. The more serious problem occurs from
failing to round to the nearest cent after performing a calculation.

Listing 4-31. Floating-point-based invoice calculations leading to confusing results

import java.text.NumberFormat;

class InvoiceCalc
{

CHAPTER 4 TOURING LANGUAGE APIS

307

 final static double DISCOUNT_PERCENT = 0.1; // 10%
 final static double TAX_PERCENT = 0.05; // 5%
 public static void main(String[] args)
 {
 double invoiceSubtotal = 285.36;
 double discount = invoiceSubtotal*DISCOUNT_PERCENT;
 double subtotalBeforeTax = invoiceSubtotal-discount;
 double salesTax = subtotalBeforeTax*TAX_PERCENT;
 double invoiceTotal = subtotalBeforeTax+salesTax;
 NumberFormat currencyFormat = NumberFormat.getCurrencyInstance();
 System.out.println("Subtotal: "+currencyFormat.format(invoiceSubtotal));
 System.out.println("Discount: "+currencyFormat.format(discount));
 System.out.println("SubTotal after discount: "+
 currencyFormat.format(subtotalBeforeTax));
 System.out.println("Sales Tax: "+currencyFormat.format(salesTax));
 System.out.println("Total: "+currencyFormat.format(invoiceTotal));
 }
}

Listing 4-31 relies on the NumberFormat class (located in the java.text package) and its format()
method to format a double precision floating-point value into a currency—I discuss NumberFormat in the
Internationalization section of Appendix C. When you run InvoiceCalc, you will discover the following
output:

Subtotal: $285.36
Discount: $28.54
SubTotal after discount: $256.82
Sales Tax: $12.84
Total: $269.67

This output reveals the correct subtotal, discount, subtotal after discount, and sales tax. In contrast,
it incorrectly reveals 269.67 instead of 269.66 as the final total. The customer will not appreciate paying
an extra penny, even though 269.67 is the correct value according to the floating-point calculations:

Subtotal: 285.36
Discount: 28.536
SubTotal after discount: 256.824
Sales Tax: 12.8412
Total: 269.6652

The problem arises from not rounding the result of each calculation to the nearest cent before
performing the next calculation. As a result, the 0.024 in 256.824 and 0.0012 in 12.84 contribute to the
final value, causing NumberFormat’s format() method to round this value to 269.67.

■ Caution Never using float or double to represent monetary values.

Java provides a solution to both problems in the form of a BigDecimal class. This immutable class (a
BigDecimal instance cannot be modified) represents a signed decimal number (such as 23.653) of

CHAPTER 4 TOURING LANGUAGE APIS

308

arbitrary precision (number of digits) with an associated scale (an integer that specifies the number of
digits after the decimal point).

BigDecimal declares three convenience constants: ONE, TEN, and ZERO. Each constant is the
BigDecimal equivalent of 1, 10, and 0 with a zero scale.

■ Caution BigDecimal declares several ROUND_-prefixed constants. These constants are largely obsolete and
should be avoided, along with the BigDecimal divide(BigDecimal divisor, int scale, int roundingMode)
and BigDecimal setScale(int newScale, int roundingMode) methods, which are still present so that
dependent legacy code continues to compile.

BigDecimal also declares a variety of useful constructors and methods. A few of these constructors
and methods are described in Table 4-8.

Table 4-8. BigDecimal Constructors and Methods

Method Description

BigDecimal(int val) Initialize the BigDecimal instance to val’s digits. Set the scale
to 0.

BigDecimal(String val) Initialize the BigDecimal instance to the decimal equivalent
of val. Set the scale to the number of digits after the decimal
point, or 0 if no decimal point is specified. This constructor
throws NullPointerException when val is null, and
NumberFormatException when val’s string representation is
invalid (contains letters, for example).

BigDecimal abs() Return a new BigDecimal instance that contains the absolute
value of the current instance’s value. The resulting scale is
the same as the current instance’s scale.

BigDecimal add(BigDecimal
augend)

Return a new BigDecimal instance that contains the sum of
the current value and the argument value. The resulting
scale is the maximum of the current and argument scales.
This method throws NullPointerException when augend is
null.

BigDecimal divide(BigDecimal
divisor)

Return a new BigDecimal instance that contains the quotient
of the current value divided by the argument value. The
resulting scale is the difference of the current and argument
scales. It might be adjusted when the result requires more
digits. This method throws NullPointerException when
divisor is null, or ArithmeticException when divisor
represents 0 or the result cannot be represented exactly.

CHAPTER 4 TOURING LANGUAGE APIS

309

BigDecimal max(BigDecimal
val)

Return either this or val, whichever BigDecimal instance
contains the larger value. This method throws
NullPointerException when val is null.

BigDecimal min(BigDecimal
val)

Return either this or val, whichever BigDecimal instance
contains the smaller value. This method throws
NullPointerException when val is null.

BigDecimal
multiply(BigDecimal
multiplicand)

Return a new BigDecimal instance that contains the product
of the current value and the argument value. The resulting
scale is the sum of the current and argument scales. This
method throws NullPointerException when multiplicand is
null.

BigDecimal negate() Return a new BigDecimal instance that contains the negative
of the current value. The resulting scale is the same as the
current scale.

int precision() Return the precision of the current BigDecimal instance.

BigDecimal
remainder(BigDecimal
divisor)

Return a new BigDecimal instance that contains the
remainder of the current value divided by the argument
value. The resulting scale is the difference of the current
scale and the argument scale. It might be adjusted when the
result requires more digits. This method throws
NullPointerException when divisor is null, or
ArithmeticException when divisor represents 0.

int scale() Return the scale of the current BigDecimal instance.

BigDecimal setScale(int
newScale, RoundingMode
roundingMode)

Return a new BigDecimal instance with the specified scale
and rounding mode. If the new scale is greater than the old
scale, additional zeros are added to the unscaled value. In
this case no rounding is necessary. If the new scale is smaller
than the old scale, trailing digits are removed. If these
trailing digits are not zero, the remaining unscaled value has
to be rounded. For this rounding operation, the specified
rounding mode is used. This method throws
NullPointerException when roundingMode is null, and
ArithmeticException when roundingMode is set to
RoundingMode.ROUND_UNNECESSARY but rounding is necessary
based on the current scale.

BigDecimal
subtract(BigDecimal
subtrahend)

Return a new BigDecimal instance that contains the current
value minus the argument value. The resulting scale is the
maximum of the current and argument scales. This method
throws NullPointerException when subtrahend is null.

CHAPTER 4 TOURING LANGUAGE APIS

310

String toString() Return a string representation of this BigDecimal instance.
Scientific notation is used when necessary.

Table 4-8 refers to java.math.RoundingMode, which is an enum containing various rounding mode

constants. These constants are described in Table 4-9.

Table 4-9. RoundingMode Constants

Constant Description

CEILING Round toward positive infinity.

DOWN Round toward zero.

FLOOR Round toward negative infinity.

HALF_DOWN Round toward the “nearest neighbor” unless both neighbors
are equidistant, in which case round down.

HALF_EVEN Round toward the “nearest neighbor” unless both neighbors
are equidistant, in which case, round toward the even
neighbor.

HALF_UP Round toward “nearest neighbor” unless both neighbors are
equidistant, in which case round up. (This is the rounding
mode commonly taught at school.)

UNNECESSARY Rounding is not necessary because the requested operation
produces the exact result.

UP Positive values are rounded toward positive infinity and
negative values are rounded toward negative infinity.

The best way to get comfortable with BigDecimal is to try it out. Listing 4-32 uses this class to

correctly perform the invoice calculations that were presented in Listing 4-31.

Listing 4-32. BigDecimal-based invoice calculations not leading to confusing results

import java.math.BigDecimal;
import java.math.RoundingMode;

class InvoiceCalc
{
 public static void main(String[] args)
 {
 BigDecimal invoiceSubtotal = new BigDecimal("285.36");
 BigDecimal discountPercent = new BigDecimal("0.10");
 BigDecimal discount = invoiceSubtotal.multiply(discountPercent);

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 4 TOURING LANGUAGE APIS

311

 discount = discount.setScale(2, RoundingMode.HALF_UP);
 BigDecimal subtotalBeforeTax = invoiceSubtotal.subtract(discount);
 subtotalBeforeTax = subtotalBeforeTax.setScale(2, RoundingMode.HALF_UP);
 BigDecimal salesTaxPercent = new BigDecimal("0.05");
 BigDecimal salesTax = subtotalBeforeTax.multiply(salesTaxPercent);
 salesTax = salesTax.setScale(2, RoundingMode.HALF_UP);
 BigDecimal invoiceTotal = subtotalBeforeTax.add(salesTax);
 invoiceTotal = invoiceTotal.setScale(2, RoundingMode.HALF_UP);
 System.out.println("Subtotal: "+invoiceSubtotal);
 System.out.println("Discount: "+discount);
 System.out.println("SubTotal after discount: "+subtotalBeforeTax);
 System.out.println("Sales Tax: "+salesTax);
 System.out.println("Total: "+invoiceTotal);
 }
}

Listing 4-32’s main() method first creates BigDecimal objects invoiceSubtotal and discountPercent
that are initialized to 285.36 and 0.10, respectively. It then multiplies invoiceSubtotal by
discountPercent and assigns the BigDecimal result to discount.

At this point, discount contains 28.5360. Apart from the trailing zero, this value is the same as that
generated by invoiceSubtotal*DISCOUNT_PERCENT in Listing 4-31. The value that should be stored in
discount is 28.54. To correct this problem before performing another calculation, main() calls discount’s
setScale() method with these arguments:

• 2: Two digits after the decimal point

• RoundingMode.HALF_UP: The conventional approach to rounding

After setting the scale and proper rounding mode, main() subtracts discount from invoiceSubtotal,
and assigns the resulting BigDecimal instance to subtotalBeforeTax. main() calls setScale() on
subtotalBeforeTax to properly round its value before moving on to the next calculation.

main() next creates a BigDecimal object named salesTaxPercent that is initialized to 0.05. It then
multiplies subtotalBeforeTax by salesTaxPercent, assigning the result to salesTax, and calls setScale()
on this BigDecimal object to properly round its value.

Moving on, main() adds salesTax to subtotalBeforeTax, saving the result in invoiceTotal, and
rounds the result via setScale(). The values in these objects are sent to the standard output device via
System.out.println(), which calls their toString() methods to return string representations of the
BigDecimal values.

When you run this new version of InvoiceCalc, you will discover the following output:

Subtotal: 285.36
Discount: 28.54
SubTotal after discount: 256.82
Sales Tax: 12.84
Total: 269.66

■ Caution BigDecimal declares a BigDecimal(double val) constructor that you should avoid using if at all
possible. This constructor initializes the BigDecimal instance to the value stored in val, making it possible for this
instance to reflect an invalid representation when the double value cannot be stored exactly. For example,

CHAPTER 4 TOURING LANGUAGE APIS

312

BigDecimal(0.1) results in 0.1000000000000000055511151231257827021181583404541015625 being stored in
the instance. In contrast, BigDecimal("0.1") stores 0.1 exactly.

BigInteger
BigDecimal stores a signed decimal number as an unscaled value with a 32-bit integer scale. The
unscaled value is stored in an instance of the BigInteger class.

BigInteger is an immutable class that represents a signed integer of arbitrary precision. It stores its
value in two’s complement format (all bits are flipped—1s to 0s and 0s to 1s—and 1 is added to the result
to be compatible with the two’s complement format used by Java’s byte integer, short integer, integer,
and long integer types).

■ Note Check out Wikipedia’s “Two’s complement” entry (http://en.wikipedia.org/wiki/Two's_complement)
to learn more about two’s complement.

BigInteger declares three convenience constants: ONE, TEN, and ZERO. Each constant is the
BigInteger equivalent of 1, 10, and 0.

BigInteger also declares a variety of useful constructors and methods. A few of these constructors
and methods are described in Table 4-10.

Table 4-10. BigInteger Constructors and Methods

Method Description

BigInteger(byte[] val) Initialize the BigInteger instance to the integer that is stored
in the val array, with val[0] storing the integer’s most
significant (leftmost) eight bits. This constructor throws
NullPointerException when val is null, and
NumberFormatException when val.length equals 0.

BigInteger(String val) Initialize the BigInteger instance to the integer equivalent of
val. This constructor throws NullPointerException when
val is null, and NumberFormatException when val’s string
representation is invalid (contains letters, for example).

BigInteger abs() Return a new BigInteger instance that contains the absolute
value of the current instance’s value.

BigInteger add(BigInteger
augend)

Return a new BigInteger instance that contains the sum of
the current value and the argument value. This method
throws NullPointerException when augend is null.

http://en.wikipedia.org/wiki/Two's_complement

CHAPTER 4 TOURING LANGUAGE APIS

313

BigInteger divide(BigInteger
divisor)

Return a new BigInteger instance that contains the quotient
of the current value divided by the argument value. This
method throws NullPointerException when divisor is null,
and ArithmeticException when divisor represents 0 or the
result cannot be represented exactly.

BigInteger max(BigInteger
val)

Return either this or val, whichever BigInteger instance
contains the larger value. This method throws
NullPointerException when val is null.

BigInteger min(BigInteger
val)

Return either this or val, whichever BigInteger instance
contains the smaller value. This method throws
NullPointerException when val is null.

BigInteger
multiply(BigInteger
multiplicand)

Return a new BigInteger instance that contains the product
of the current value and the argument value. This method
throws NullPointerException when multiplicand is null.

BigInteger negate() Return a new BigInteger instance that contains the negative
of the current value.

BigInteger
remainder(BigInteger
divisor)

Return a new BigInteger instance that contains the
remainder of the current value divided by the argument
value. This method throws NullPointerException when
divisor is null, and ArithmeticException when divisor
represents 0.

BigInteger
subtract(BigInteger
subtrahend)

Return a new BigInteger instance that contains the current
value minus the argument value. This method throws
NullPointerException when subtrahend is null.

String toString() Return a string representation of this BigInteger.

■ Note BigInteger also declares several bit-oriented methods, such as BigInteger and (BigInteger val),
BigInteger flipBit(int n), and BigInteger shiftLeft(int n). These methods are useful for when you
need to perform low-level bit manipulation.

The best way to get comfortable with BigInteger is to try it out. Listing 4-33 uses this class in a
factorial() method comparison context.

Listing 4-33. Comparing factorial() methods

import java.math.BigInteger;

CHAPTER 4 TOURING LANGUAGE APIS

314

class FactComp
{
 public static void main(String[] args)
 {
 System.out.println(factorial(12));
 System.out.println();
 System.out.println(factorial(20L));
 System.out.println();
 System.out.println(factorial(170.0));
 System.out.println();
 System.out.println(factorial(new BigInteger("170")));
 System.out.println();
 System.out.println(factorial(25.0));
 System.out.println();
 System.out.println(factorial(new BigInteger("25")));
 }
 static int factorial(int n)
 {
 if (n == 0)
 return 1;
 else
 return n*factorial(n-1);
 }
 static long factorial(long n)
 {
 if (n == 0)
 return 1;
 else
 return n*factorial(n-1);
 }
 static double factorial(double n)
 {
 if (n == 1.0)
 return 1.0;
 else
 return n*factorial(n-1);
 }
 static BigInteger factorial(BigInteger n)
 {
 if (n.equals(BigInteger.ZERO))
 return BigInteger.ONE;
 else
 return n.multiply(factorial(n.subtract(BigInteger.ONE)));
 }
}

Listing 4-33 compares four versions of the recursive factorial() method. This comparison reveals
the largest argument that can be passed to each of the first three methods before the returned factorial
value becomes meaningless, because of limits on the range of values that can be accurately represented
by the numeric type.

CHAPTER 4 TOURING LANGUAGE APIS

315

The first version is based on int and has a useful argument range of 0 through 12. Passing any
argument greater than 12 results in a factorial that cannot be represented accurately as an int.

You can increase the useful range of factorial(), but not by much, by changing the parameter and
return types to long. After making these changes, you will discover that the upper limit of the useful
range is 20.

To further increase the useful range, you might create a version of factorial() whose parameter
and return types are double. This is possible because whole numbers can be represented exactly as
doubles. However, the largest useful argument that can be passed is 170.0. Anything higher than this
value results in factorial() returning +infinity.

It is possible that you might need to calculate a higher factorial value, perhaps in the context of
calculating a statistics problem involving combinations or permutations. The only way to accurately
calculate this value is to use a version of factorial() based on BigInteger.

When you run this application, as in java FactComp, it generates the following output:

479001600

2432902008176640000

7.257415615307994E306

7257415615307998967396728211129263114716991681296451376543577798900561843401706157852350749242
6174595114909912378385207766660225654427530253289007732075109024004302800582956039666125996582
5710439855829425756896631343961226257109494680671120556888045719334021266145280000000000000000
0000000000000000000000000

1.5511210043330986E25

15511210043330985984000000

The first three values represent the highest factorials that can be returned by the int-based, long-
based, and double-based factorial() methods. The fourth value represents the BigInteger equivalent of
the highest double factorial.

Notice that the double method fails to accurately represent 170! (! is the math symbol for factorial).
Its precision is simply too small. Although the method attempts to round the smallest digit, rounding
does not always work—the number ends in 7994 instead of 7998. Rounding is only accurate up to
argument 25.0, as the last two output lines reveal.

■ Note RSA encryption, BigDecimal, and factorial are practical examples of BigInteger’s usefulness. However,
you can also use BigInteger in unusual ways. For example, my February 2006 JavaWorld article titled “Travel
Through Time with Java” (http://www.javaworld.com/javaworld/jw-02-2006/jw-0213-funandgames.html), a
part of my Java Fun and Games series, used BigInteger to store an image as a very large integer. The idea was
to experiment with BigInteger methods to look for images (possibly by discovering mathematical patterns) of
people and places that existed in the past, will exist in the future, or might never exist. If this craziness appeals to
you, check out my article.

http://www.javaworld.com/javaworld/jw-02-2006/jw-0213-funandgames.html

CHAPTER 4 TOURING LANGUAGE APIS

316

EXERCISES

The following exercises are designed to test your understanding of Java’s language APIs:

1. A prime number is a positive integer greater than 1 that is evenly divisible by 1
and itself. Create a PrimeNumberTest application that determines if its solitary
integer argument is prime or not prime, and outputs a suitable message. For
example, java PrimeNumberTest 289 should output the message 289 is not
prime. A simple way to check for primality is to loop from 2 through the square
root of the integer argument, and use the remainder operator in the loop to
determine if the argument is divided evenly by the loop index. For example,
because 6/2 yields a remainder of 0 (2 divides evenly into 6), integer 6 is not a
prime number.

2. Reflection is useful in a device driver context, where an application needs to
interact with different versions of a driver. If an older version is detected, the
application invokes its methods. If a newer version is detected, the application can
invoke the older methods or invoke newer versions of those methods. Create two
versions of a Driver class. The first version declares a String
getCapabilities() method that returns "basic capabilities", and the second
version declares this method along with a String getCapabilitiesEx() method
that returns "extended capabilities". Create a DriverDemo class that uses
reflection to determine if the current Driver.class classfile supports
getCapabilitiesEx(), and invoke that method if it does. If the method does not
exist, use reflection to determine if it supports getCapabilities(), and invoke
that method if that is the case. Otherwise, output an error message.

3. Java arrays have fixed lengths. Create a growable array class, GArray<E>, whose
instances store objects of the type specified by the actual type argument passed
to E. This class declares a GArray(int initCapacity) constructor that creates
an internal array with the number of elements specified by initCapacity. Also,
this class declares E get(int index) and void set(int index, E value)
methods that respectively return the object at the index position within the
internal array, and store the specified value in the array at the index position. The
get() method must throw ArrayIndexOutOfBoundsException when the
argument passed to index is out of range (negative or greater than/equal to the
array’s length). The set() method must throw the same exception when the
argument passed to index is negative. However, when the argument is positive, it
must create a new internal array whose size is twice that of the old array, copy
elements from the old array to the new array via System.arraycopy(), and store
the new value at the index position. This class also declares an int size()
method that returns the array’s size. Test this class with the GArrayDemo
application described in Listing 4-34.

CHAPTER 4 TOURING LANGUAGE APIS

317

Listing 4-34. Demonstrating a growable array

import ca.tutortutor.collections.GArray;

class GArrayDemo
{
 public static void main(String[] args)
 {
 GArray<String> ga = new GArray<>(10);
 System.out.println("Size = "+ga.size());
 ga.set(3, "ABC");
 System.out.println("Size = "+ga.size());
 ga.set(22, "XYZ");
 System.out.println("Size = "+ga.size());
 System.out.println(ga.get(3));
 System.out.println(ga.get(22));
 System.out.println(ga.get(20));
 ga.set(20, "PQR");
 System.out.println(ga.get(20));
 System.out.println("Size = "+ga.size());
 }
}

When you run this application, it should generate the following output:

Size = 0
Size = 4
Size = 23
ABC
XYZ
null
PQR
Size = 23

4. Modify Listing 4-17’s CountingThreads application by marking the two counting
threads as daemon threads. What happens when you run the resulting
application?

5. Modify Listing 4-17’s CountingThreads application by adding logic to stop both
counting threads when the user presses the Enter key. The default main thread
should call System.in.read() prior to terminating, and assign true to a variable
named stopped after this method call returns. Each counting thread should test
this variable to see if it contains true at the start of each loop iteration, and only
continue the loop when the variable contains false.

Summary
Java’s standard class library provides various language-oriented APIs via the java.lang and java.math
packages. These APIs include Math and StrictMath, Package, Primitive Type Wrapper Class, Reference,
Reflection, String, StringBuffer and StringBuilder, System, Threading, BigDecimal, and BigInteger.

CHAPTER 4 TOURING LANGUAGE APIS

318

The Math and StrictMath classes offer a wide variety of useful math-oriented methods for calculating
trigonometric values, generating pseudorandom numbers, and so on. StrictMath differs from Math by
ensuring that all of these mathematical operations yield the same results on all platforms.

The Package class provides access to package information. This information includes version details
about the implementation and specification of a Java package, the package’s name, and an indication of
whether the package is sealed or not.

Instances of the Boolean, Byte, Character, Double, Float, Integer, Long, and Short primitive type
wrapper classes wrap themselves around values of primitive types. These classes are useful for storing
primitive values in collections, and for providing a good place to associate useful constants (such as
MAX_VALUE and MIN_VALUE) and class methods (such as Integer’s parseInt() methods and Character’s
isDigit(), isLetter(), and toUpperCase() methods) with the primitive types.

The Reference API makes it possible for an application to interact with the garbage collector in
limited ways. This API consists of classes Reference, ReferenceQueue, SoftReference, WeakReference, and
PhantomReference.

SoftReference is useful for implementing image caches, WeakReference is useful for preventing
memory leaks related to hashmaps, and PhantomReference is useful for learning when an object has been
finalized so that its resources can be cleaned up.

The Reflection API lets applications learn about loaded classes, interfaces, enums (a kind of class),
and annotation types (a kind of interface). It also lets applications load classes dynamically, instantiate
them, find a class’s fields and methods, access fields, call methods, and perform other tasks reflectively.

The entry point into the Reflection API is a special class named Class. Additional classes include
Constructor, Field, Method, AccessibleObject, and Array.

The String class represents a string as a sequence of characters. Because instances of this class are
immutable, Java provides StringBuffer and StringBuilder for building a string more efficiently. The
former class can be used in a multithreaded context, whereas the latter class is more performant.

The System class provides access to standard input, standard output, standard error, and other
system-oriented resources. For example, System provides the arraycopy() method as the fastest portable
way to copy one array to another.

Java supports threads via its low-level Threading API. This API consists of one interface (Runnable)
and four classes (Thread, ThreadGroup, ThreadLocal, and InheritableThreadLocal).

Throughout its execution, each thread is isolated from other threads because it has been given its
own method-call stack. However, threads can still interfere with each other when they access and
manipulate shared data. This interference can corrupt the shared data, and this corruption can cause an
application to fail. Java provides a thread-synchronization mechanism to prevent this interference.

Money must never be represented by floating-point and double precision floating-point variables
because not all monetary values can be represented exactly. In contrast, the BigDecimal class lets you
accurately represent and manipulate these values.

BigDecimal relies on the BigInteger class for representing its unscaled value. A BigInteger instance
describes an integer value that can be of arbitrary length (subject to the limits of the JVM’s memory).

This chapter briefly referred to the Collections Framework while introducing the Primitive Type
Wrapper Class API. Chapter 5 introduces you to this broad utility API for collecting objects.

C H A P T E R 5

319

Collecting Objects

Applications often must manage collections of objects. Although you can use arrays for this purpose,
they are not always a good choice. For example, arrays have fixed sizes, making it tricky to determine an
optimal size when you need to store a variable number of objects. Also, arrays can be indexed by integers
only, which make them unsuitable for mapping arbitrary objects to other objects.

Java’s standard class library provides the Collections Framework and legacy APIs to manage
collections on behalf of applications. Chapter 5 first presents this framework, and then introduces you to
these legacy APIs (in case you encounter them in legacy code). Because the framework and legacy APIs
may not satisfy specific needs, this chapter lastly focuses on creating special-purpose collections APIs.

■ Note Java’s concurrency utilities (discussed in Chapter 6) extend the Collections Framework.

The Collections Framework
The Collections Framework is a standard architecture for representing and manipulating collections,
which are groups of objects stored in instances of classes designed for this purpose. After presenting an
overview of this framework’s architecture, this section introduces you to the various types (mainly
located in the java.util package) that contribute to this architecture.

Architecture Overview
The Collection Framework’s architecture is divided into three sections:

• Core interfaces: The framework provides core interfaces for manipulating
collections independently of their implementations.

• Implementation classes: The framework provides classes that provide different
core interface implementations to address performance and other requirements.

• Utility classes: The framework provides utility classes whose methods let you sort
arrays, obtain synchronized collections, and perform other operations.

The core interfaces include java.lang.Iterable, Collection, List, Set, SortedSet, NavigableSet,
Queue, Deque, Map, SortedMap, and NavigableMap. Collection extends Iterable; List, Set, and Queue each
extend Collection; SortedSet extends Set; NavigableSet extends SortedSet; Deque extends Queue;
SortedMap extends Map; and NavigableMap extends SortedMap.

CHAPTER 5 COLLECTING OBJECTS

320

Figure 5-1 illustrates the core interfaces hierarchy (arrows point to parent interfaces).

Figure 5-1. The Collections Framework is based on a hierarchy of core interfaces.

The framework’s implementation classes include ArrayList, LinkedList, TreeSet, HashSet,
LinkedHashSet, EnumSet, PriorityQueue, ArrayDeque, TreeMap, HashMap, LinkedHashMap, IdentityHashMap,
WeakHashMap, and EnumMap. The name of each concrete class ends in a core interface name, identifying the
core interface on which it is based.

■ Note Additional implementation classes are part of the concurrency utilities.

The framework’s implementation classes also include the abstract AbstractCollection,
AbstractList, AbstractSequentialList, AbstractSet, AbstractQueue, and AbstractMap classes. These
classes offer skeletal implementations of the core interfaces to facilitate the creation of concrete
implementation classes.

Finally, the framework provides two utility classes: Arrays and Collections.

Comparable Versus Comparator
A collection implementation stores its elements in some order (arrangement). This order may be
unsorted, or it may be sorted according to some criterion (such as alphabetical, numerical, or
chronological).

A sorted collection implementation defaults to storing its elements according to their natural
ordering. For example, the natural ordering of String objects is lexicographic or dictionary (also known
as alphabetical) order.

A collection cannot rely on equals() to dictate natural ordering because this method can only
determine if two elements are equivalent. Instead, element classes must implement the
java.lang.Comparable<T> interface and its int compareTo(T o) method.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

321

■ Note According to Comparable’s Java documentation, this interface is considered to be part of the Collections
Framework, even though it is a member of the java.lang package.

A sorted collection uses compareTo() to determine the natural ordering of this method’s element
argument o in a collection. compareTo() compares argument o with the current element (which is the
element on which compareTo() was called) and does the following:

• It returns a negative value when the current element should precede o.

• It returns a zero value when the current element and o are the same.

• It returns a positive value when the current element should succeed o.

When you need to implement Comparable’s compareTo() method, there are some rules that you must
follow. These rules, listed next, are similar to those shown in Chapter 2 for implementing the equals()
method:

• compareTo() must be reflexive: For any nonnull reference value x, x.compareTo(x)
must return 0.

• compareTo() must be symmetric: For any nonnull reference values x and y,
x.compareTo(y) == -y.compareTo(x) must hold.

• compareTo() must be transitive: For any nonnull reference values x, y, and z, if
x.compareTo(y) > 0 is true, and if y.compareTo(z) > 0 is true, then x.compareTo(z)
> 0 must also be true.

Also, compareTo() should throw NullPointerException when the null reference is passed to this
method. However, you do not need to check for null because this method throws NullPointerException
when it attempts to access a null reference’s members.

■ Note Before Java 5 and its introduction of generics, compareTo()’s argument was of type java.lang.Object
and had to be cast to the appropriate type before the comparison could be made. The cast operator would throw a
java.lang.ClassCastException instance when the argument’s type was not compatible with the cast.

You might occasionally need to store in a collection objects that are sorted in some order that differs
from their natural ordering. In this case, you would supply a comparator to provide that ordering.

A comparator is an object whose class implements the Comparator interface. This interface, whose
generic type is Comparator<T>, provides the following pair of methods:

• int compare(T o1, T o2) compares both arguments for order. This method
returns 0 when o1 equals o2, a negative value when o1 is less than o2, and a
positive value when o1 is greater than o2.

CHAPTER 5 COLLECTING OBJECTS

322

• boolean equals(Object o) returns true when o “equals” this Comparator in that o is
also a Comparator and imposes the same ordering. Otherwise, this method returns
false.

■ Note Comparator declares equals() because this interface places an extra condition on this method’s
contract. Additionally, this method can return true only if the specified object is also a comparator and it imposes
the same ordering as this comparator. You do not have to override Object’s equals() method, but doing so may
improve performance by allowing programs to determine that two distinct comparators impose the same order.

Chapter 3 provided an example that illustrated implementing Comparable, and you will discover
another example later in this chapter. Also, this chapter will present examples of implementing
Comparator.

Iterable and Collection
Most of the core interfaces are rooted in Iterable and its Collection subinterface. Their generic types
are Iterable<T> and Collection<E>.

Iterable describes any object that can return its contained objects in some sequence. This interface
declares an Iterator<T> iterator() method that returns an Iterator instance for iterating over all the
contained objects.

Collection represents a collection of objects that are known as elements. This interface provides
methods that are common to the Collection subinterfaces on which many collections are based. Table
5-1 describes these methods.

Table 5-1. Collection Methods

Method Description

boolean add(E e) Add element e to this collection. Return true if this collection
was modified as a result; otherwise, return false. (Attempting
to add e to a collection that does not permit duplicates and
already contains a same-valued element results in e not
being added.) This method throws
java.lang.UnsupportedOperationException when add() is
not supported, ClassCastException when e’s class is not
appropriate for this collection,
java.lang.IllegalArgumentException when some property
of e prevents it from being added to this collection,
java.lang.NullPointerException when e contains the null
reference and this collection does not support null elements,
and java.lang.IllegalStateException when the element
cannot be added at this time because of insertion
restrictions.

IllegalStateException signals that a method has been

CHAPTER 5 COLLECTING OBJECTS

323

invoked at an illegal or inappropriate time. In other words,
the Java environment or Java application is not in an
appropriate state for the requested operation. It is often
thrown when you try to add an element to a bounded queue
(a queue with a maximum length) and the queue is full.

boolean addAll(Collection<?
extends E> c)

Add all elements of collection c to this collection. Return
true if this collection was modified as the result; otherwise,
return false. This method throws
UnsupportedOperationException when this collection does
not support addAll(), ClassCastException when the class of
one of c’s elements is inappropriate for this collection,
IllegalArgumentException when some property of an
element prevents it from being added to this collection,
NullPointerException when c contains the null reference or
when one of its elements is null and this collection does not
support null elements, and IllegalStateException when not
all the elements can be added at this time because of
insertion restrictions.

void clear() Remove all elements from this collection. This method
throws UnsupportedOperationException when this collection
does not support clear().

boolean contains(Object o) Return true when this collection contains o; otherwise,
return false. This method throws ClassCastException when
the class of o is inappropriate for this collection, and
NullPointerException when o contains the null reference
and this collection does not support null elements.

boolean
containsAll(Collection<?> c)

Return true when this collection contains all the elements
that are contained in the collection specified by c; otherwise,
return false. This method throws ClassCastException when
the class of one of c’s elements is inappropriate for this
collection, and NullPointerException when c contains the
null reference or when one of its elements is null and this
collection does not support null elements.

boolean equals(Object o) Compare o with this collection and return true when o
equals this collection; otherwise, return false.

int hashCode() Return this collection’s hash code. Equal collections have
equal hash codes.

boolean isEmpty() Return true when this collection contains no elements;
otherwise, return false.

Iterator<E> iterator() Return an Iterator instance for iterating over all of the
elements contained in this collection. There are no

CHAPTER 5 COLLECTING OBJECTS

324

guarantees concerning the order in which the elements are
returned (unless this collection is an instance of some class
that provides a guarantee). This Iterable method is
redeclared in Collection for convenience.

boolean remove(Object o) Remove the element identified as o from this collection.
Return true when the element is removed; otherwise, return
false. This method throws UnsupportedOperationException
when this collection does not support remove(),
ClassCastException when the class of o is inappropriate for
this collection, and NullPointerException when o contains
the null reference and this collection does not support null
elements.

boolean
removeAll(Collection<?> c)

Remove all the elements from this collection that are also
contained in collection c. Return true when this collection is
modified by this operation; otherwise, return false. This
method throws UnsupportedOperationException when this
collection does not support removeAll(),
ClassCastException when the class of one of c’s elements is
inappropriate for this collection, and NullPointerException
when c contains the null reference or when one of its
elements is null and this collection does not support null
elements.

boolean
retainAll(Collection<?> c)

Retain all the elements in this collection that are also
contained in collection c. Return true when this collection is
modified by this operation; otherwise, return false. This
method throws UnsupportedOperationException when this
collection does not support retainAll(),
ClassCastException when the class of one of c’s elements is
inappropriate for this collection, and NullPointerException
when c contains the null reference or when one of its
elements is null and this collection does not support null
elements.

int size() Return the number of elements contained in this collection,
or java.lang.Integer.MAX_VALUE when there are more than
Integer.MAX_VALUE elements contained in the collection.

Object[] toArray() Return an array containing all the elements stored in this
collection. If this collection makes any guarantees as to what
order its elements are returned in by its iterator, this method
returns the elements in the same order.

The returned array is “safe” in that no references to it are
maintained by this collection. (In other words, this method
allocates a new array even when this collection is backed by
an array.) The caller can safely modify the returned array.

CHAPTER 5 COLLECTING OBJECTS

325

<T> T[] toArray(T[] a) Return an array containing all the elements in this
collection; the runtime type of the returned array is that of
the specified array. If the collection fits in the specified array,
it is returned in the array. Otherwise, a new array is allocated
with the runtime type of the specified array and the size of
this collection. This method throws NullPointerException
when null is passed to a, and
java.lang.ArrayStoreException when a’s runtime type is
not a supertype of the runtime type of every element in this
collection.

Table 5-1 reveals three exceptional things about various Collection methods. First, some methods

can throw instances of the UnsupportedOperationException class. For example, add() throws
UnsupportedOperationException when you attempt to add an object to an immutable (unmodifiable)
collection (discussed later in this chapter).

Second, some of Collection’s methods can throw instances of the ClassCastException class. For
example, remove() throws ClassCastException when you attempt to remove an entry (also known as
mapping) from a tree-based map whose keys are Strings, but specify a non-String key instead.

Finally, Collection’s add() and addAll() methods throw IllegalArgumentException instances when
some property (attribute) of the element to be added prevents it from being added to this collection. For
example, a third-party collection class’s add() and addAll() methods might throw this exception when
they detect negative Integer values.

■ Note Perhaps you are wondering why remove() is declared to accept any Object argument instead of
accepting only objects whose types are those of the collection. In other words, why is remove() not declared as
boolean remove(E e)? Also, why are containsAll(), removeAll(), and retainAll() not declared with an
argument of type Collection<? extends E>, to ensure that the collection argument only contains elements of
the same type as the collection on which these methods are called? The answer to these questions is the need to
maintain backward compatibility. The Collections Framework was introduced before Java 5 and its introduction of
generics. To let legacy code written before version 5 continue to compile, these four methods were declared with
weaker type constraints.

Iterator and the Enhanced For Statement
By extending Iterable, Collection inherits that interface’s iterator() method, which makes it possible
to iterate over a collection. iterator() returns an instance of a class that implements the Iterator
interface, whose generic type is expressed as Iterator<E> and which declares the following three
methods:

• boolean hasNext() returns true when this Iterator instance has more elements to
return; otherwise, this method returns false.

CHAPTER 5 COLLECTING OBJECTS

326

• E next() returns the next element from the collection associated with this
Iterator instance, or throws java.util.NoSuchElementException when there are
no more elements to return.

• void remove() removes the last element returned by next() from the collection
associated with this Iterator instance. This method can be called only once per
next() call. The behavior of an Iterator instance is unspecified when the
underlying collection is modified while iteration is in progress in any way other
than by calling remove(). This method throws UnsupportedOperationException
when it is not supported by this Iterator, and IllegalStateException when
remove() has been called without a previous call to next() or when multiple
remove() calls occur with no intervening next() calls.

The following example shows you how to iterate over a collection after calling iterator() to return
an Iterator instance:

Collection<String> col = ... // This code does not compile because of the “...”.
// Add elements to col.
Iterator iter = col.iterator();
while (iter.hasNext())
 System.out.println(iter.next());

The while loop repeatedly calls the iterator’s hasNext() method to determine whether or not
iteration should continue, and (if it should continue) the next() method to return the next element from
the associated collection.

Because this idiom is commonly used, Java 5 introduced syntactic sugar to the for statement to
simplify iteration in terms of the idiom. This sugar makes this statement appear like the foreach
statement found in languages such as Perl, and is revealed in the following simplified equivalent of the
previous example:

Collection<String> col = ... // This code does not compile because of the “...”.
// Add elements to col.
for (String s: col)
 System.out.println(s);

This sugar hides col.iterator(), a method call that returns an Iterator instance for iterating over
col’s elements. It also hides calls to Iterator’s hasNext() and next() methods on this instance. You
interpret this sugar to read as follows: “for each String object in col, assign this object to s at the start of
the loop iteration.”

■ Note The enhanced for statement is also useful in an arrays context, in which it hides the array index variable.
Consider the following example:

String[] verbs = { "run", "walk", "jump" };

for (String verb: verbs)

 System.out.println(verb);

CHAPTER 5 COLLECTING OBJECTS

327

This example, which reads as “for each String object in the verbs array, assign that object to verb at the start of
the loop iteration,” is equivalent to the following example:

String[] verbs = { "run", "walk", "jump" };

for (int i = 0; i < verbs.length; i++)

 System.out.println(verbs[i]);

The enhanced for statement is limited in that you cannot use this statement where access to the
iterator is required to remove an element from a collection. Also, it is not usable where you must replace
elements in a collection/array during a traversal, and it cannot be used where you must iterate over
multiple collections or arrays in parallel.

■ Tip To have your classes support the enhanced for statement, design these classes to implement the
java.lang.Iterable interface.

Autoboxing and Unboxing
Developers who believe that Java should support only reference types have complained about Java’s
support for primitive types. One area where the dichotomy of Java’s type system is clearly seen is the
Collections Framework: you can store objects but not primitive type-based values in collections.

Although you cannot directly store a primitive type-based value in a collection, you can indirectly
store this value by first wrapping it in an object created from a primitive type wrapper class (see Chapter
4) such as Integer, and then storing this primitive type wrapper class instance in the collection—see the
following example:

Collection<Integer> col = ...; // This code does not compile because of the “...”.
int x = 27;
col.add(new Integer(x)); // Indirectly store int value 27 via an Integer object.

The reverse situation is also tedious. When you want to retrieve the int from col, you must invoke
Integer’s intValue() method (which, if you recall, is inherited from Integer’s java.lang.Number
superclass). Continuing on from this example, you would specify int y =
col.iterator().next().intValue(); to assign the stored 32-bit integer to y.

To alleviate this tedium, Java 5 introduced autoboxing and unboxing, which are a pair of
complementary syntactic sugar-based language features that make primitive values appear more like
objects. (This “sleight of hand” is not complete because you cannot specify expressions such as
27.doubleValue().)

Autoboxing automatically boxes (wraps) a primitive value in an object of the appropriate primitive
type wrapper class whenever a primitive type is specified but a reference is required. For example, you
could change the example’s third line to col.add(x); and have the compiler box x into an Integer object.

CHAPTER 5 COLLECTING OBJECTS

328

Unboxing automatically unboxes (unwraps) a primitive value from its wrapper object whenever a
reference is specified but a primitive type is required. For example, you could specify int y =
col.iterator().next(); and have the compiler unbox the returned Integer object to int value 27 prior
to the assignment.

Although autoboxing and unboxing were introduced to simplify working with primitive values in a
collections context, these language features can be used in other contexts, and this arbitrary use can lead
to a problem that is difficult to understand without knowledge of what is happening behind the scenes.
Consider the following example:

Integer i1 = 127;
Integer i2 = 127;
System.out.println(i1 == i2); // Output: true
System.out.println(i1 < i2); // Output: false
System.out.println(i1 > i2); // Output: false
System.out.println(i1+i2); // Output: 254
i1 = 30000;
i2 = 30000;
System.out.println(i1 == i2); // Output: false
System.out.println(i1 < i2); // Output: false
System.out.println(i1 > i2); // Output: false
i2 = 30001;
System.out.println(i1 < i2); // Output: true
System.out.println(i1+i2); // Output: 60001

With one exception, this example’s output is as expected. The exception is the i1 == i2 comparison
where each of i1 and i2 contains 30000. Instead of returning true, as is the case where each of i1 and i2
contains 127, i1 == i2 returns false. What is causing this problem?

Examine the generated code and you will discover that Integer i1 = 127; is converted to Integer
i1 = Integer.valueOf(127); and Integer i2 = 127; is converted to Integer i2 =
Integer.valueOf(127);. According to valueOf()’s Java documentation, this method takes advantage of
caching to improve performance.

■ Note valueOf() is also used when adding a primitive value to a collection. For example, col.add(27) is
converted to col.add(Integer.valueOf(27)).

Integer maintains an internal cache of unique Integer objects over a small range of values. The low
bound of this range is -128, and the high bound defaults to 127. However, you can change the high
bound by assigning a different value to system property java.lang.Integer.IntegerCache.high (via the
java.lang.System class’s String setProperty(String prop, String value) method—I demonstrated
this method’s getProperty() counterpart in Chapter 4).

■ Note Each of Byte, Long, and Short also maintains an internal cache of unique Byte, Long, and Short objects,
respectively.

CHAPTER 5 COLLECTING OBJECTS

329

Because of the cache, each Integer.valueOf(127) call returns the same Integer object reference,
which is why i1 == i2 (which compares references) evaluates to true. Because 30000 lies outside of the
default range, each Integer.valueOf(30000) call returns a reference to a new Integer object, which is
why i1 == i2 evaluates to false.

In contrast to == and !=, which do not unbox the boxed values prior to the comparison, operators
such as <, >, and + unbox these values before performing their operations. As a result, i1 < i2 is
converted to i1.intValue() < i2.intValue() and i1+i2 is converted to i1.intValue()+i2.intValue().

■ Caution Don’t assume that autoboxing and unboxing are used in the context of the == and != operators.

List
A list is an ordered collection, which is also known as a sequence. Elements can be stored in and accessed
from specific locations via integer indexes. Some of these elements may be duplicates or null (when the
list’s implementation allows null elements). Lists are described by the List interface, whose generic type
is List<E>.

List extends Collection and redeclares its inherited methods, partly for convenience. It also
redeclares iterator(), add(), remove(), equals(), and hashCode() to place extra conditions on their
contracts. For example, List’s contract for add() specifies that it appends an element to the end of the
list, rather than adding the element to the collection.

List also declares Table 5-2’s list-specific methods.

Table 5-2. List-specific Methods

Method Description

void add(int index, E e) Insert element e into this list at position index. Shift the
element currently at this position (if any) and any
subsequent elements to the right. This method throws
UnsupportedOperationException when this list does not
support add(), ClassCastException when e’s class is
inappropriate for this list, IllegalArgumentException when
some property of e prevents it from being added to this list,
NullPointerException when e contains the null reference
and this list doesn’t support null elements, and
java.lang.IndexOutOfBoundsException when index is less
than 0 or index is greater than size().

boolean addAll(int index,
Collection<? extends E> c)

Insert all c’s elements into this list starting at position index
and in the order that they are returned by c's iterator. Shift
the element currently at this position (if any) and any
subsequent elements to the right. This method throws
UnsupportedOperationException when this list does not
support addAll(), ClassCastException when the class of one
of c’s elements is inappropriate for this list,
IllegalArgumentException when some property of an

CHAPTER 5 COLLECTING OBJECTS

330

element prevents it from being added to this list,
NullPointerException when c contains the null reference or
when one of its elements is null and this list does not
support null elements, and IndexOutOfBoundsException
when index is less than 0 or index is greater than size().

E get(int index) Return the element stored in this list at position index. This
method throws IndexOutOfBoundsException when index is
less than 0 or index is greater than or equal to size().

int indexOf(Object o) Return the index of the first occurrence of element o in this
list, or -1 when this list does not contain the element. This
method throws ClassCastException when o’s class is
inappropriate for this list, and NullPointerException when o
contains the null reference and this list does not support null
elements.

int lastIndexOf(Object o) Return the index of the last occurrence of element o in this
list, or -1 when this list does not contain the element. This
method throws ClassCastException when o’s class is
inappropriate for this list, and NullPointerException when o
contains the null reference and this list does not support null
elements.

ListIterator<E>
listIterator()

Return a list iterator over the elements in this list. The
elements are returned in the same order as they appear in
the list.

ListIterator<E>
listIterator(int index)

Return a list iterator over this list’s elements starting with the
element at index. Elements are returned in the same order as
they appear in the list. IndexOutOfBoundsException is thrown
when index is less than 0 or index is greater than size().

E remove(int index) Remove the element at position index from this list, shift any
subsequent elements to the left, and return this element.
UnsupportedOperationException is thrown when this list
does not support remove(); IndexOutOfBoundsException is
thrown when index is less than 0, or greater than or equal to
size().

E set(int index, E e) Replace the element at position index in this list with
element e and return the element previously stored at this
position. This method throws
UnsupportedOperationException when this list does not
support set(), ClassCastException when e’s class is
inappropriate for this list, IllegalArgumentException when
some property of e prevents it from being added to this list,
NullPointerException when e contains the null reference
and this list does not support null elements, and

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

331

IndexOutOfBoundsException when index is less than 0 or
index is greater than or equal to size().

List<E> subList(int
fromIndex, int toIndex)

Return a view (discussed later) of the portion of this list
between fromIndex (inclusive) and toIndex (exclusive). (If
fromIndex and toIndex are equal, the returned list is empty.)
The returned list is backed by this list, so nonstructural
changes in the returned list are reflected in this list and vice-
versa. The returned list supports all the optional list methods
(those methods that can throw
UnsupportedOperationException) supported by this list. This
method throws IndexOutOfBoundsException when fromIndex
is less than 0, toIndex is greater than size(), or fromIndex is
greater than toIndex.

Table 5-2 refers to the ListIterator interface, which is more flexible than its Iterator

superinterface in that ListIterator provides methods for iterating over a list in either direction,
modifying the list during iteration, and obtaining the iterator’s current position in the list.

■ Note The Iterator and ListIterator instances that are returned by the iterator() and listIterator()
methods in the ArrayList and LinkedList List implementation classes are fail-fast: when a list is structurally
modified (by calling the implementation’s add() method to add a new element, for example) after the iterator is
created, in any way except through the iterator’s own add() or remove() methods, the iterator throws
ConcurrentModificationException. Therefore, in the face of concurrent modification, the iterator fails quickly
and cleanly, rather than risking arbitrary, nondeterministic behavior at some time in the future.

ListIterator declares the following methods:

• void add(E e) inserts e into the list being iterated over. This element is inserted
immediately before the next element that would be returned by next(), if any, and
after the next element that would be returned by previous(), if any. This method
throws UnsupportedOperationException when this list iterator does not support
add(), ClassCastException when e’s class is inappropriate for this list, and
IllegalArgumentException when some property of e prevents it from being added
to this list.

• boolean hasNext() returns true when this list iterator has more elements when
traversing the list in the forward direction.

• boolean hasPrevious() returns true when this list iterator has more elements
when traversing the list in the reverse direction.

• E next() returns the next element in this list and advances the cursor position.
This method throws NoSuchElementException when there is no next element.

CHAPTER 5 COLLECTING OBJECTS

332

• int nextIndex() returns the index of the element that would be returned by a
subsequent call to next(), or the size of the list when at the end of the list.

• E previous() returns the previous element in this list and moves the cursor
position backwards. This method throws NoSuchElementException when there is
no previous element.

• int previousIndex() returns the index of the element that would be returned by a
subsequent call to previous(), or -1 when at the beginning of the list.

• void remove() removes from the list the last element that was returned by next()
or previous(). This call can be made only once per call to next() or previous().
Furthermore, it can be made only when add() has not been called after the last call
to next() or previous(). This method throws UnsupportedOperationException
when this list iterator does not support remove(), and IllegalStateException
when neither next() nor previous() has been called, or remove() or add() has
already been called after the last call to next() or previous().

• void set(E e) replaces the last element returned by next() or previous() with
element e. This call can be made only when neither remove() nor add() has been
called after the last call to next() or previous(). This method throws
UnsupportedOperationException when this list iterator does not support set(),
ClassCastException when e’s class is inappropriate for this list,
IllegalArgumentException when some property of e prevents it from being added
to this list, and IllegalStateException when neither next() nor previous() has
been called, or remove() or add() has already been called after the last call to
next() or previous().

A ListIterator instance does not have the concept of a current element. Instead, it has the concept
of a cursor for navigating through a list. The nextIndex() and previousIndex() methods return the cursor
position, which always lies between the element that would be returned by a call to previous() and the
element that would be returned by a call to next(). A list iterator for a list of length n has n+1 possible
cursor positions, as illustrated by each caret (^) as shown here:

 Element(0) Element(1) Element(2) ... Element(n-1)
cursor positions: ^ ^ ^ ^ ^

The remove() and set() methods are not defined in terms of the cursor position; they are defined to
operate on the last element returned by a call to next() or previous().

■ Note You can mix calls to next() and previous() as long as you are careful. Keep in mind that the first call to
previous() returns the same element as the last call to next(). Furthermore, the first call to next() following a
sequence of calls to previous() returns the same element as the last call to previous().

Table 5-2’s description of the subList() method refers to the concept of a view, which is a list that is
backed by another list. Changes that are made to the view are reflected in this backing list. The view can
cover the entire list or, as subList()’s name implies, only part of the list.

CHAPTER 5 COLLECTING OBJECTS

333

The subList() method is useful for performing range-view operations over a list in a compact
manner. For example, list.subList(fromIndex, toIndex).clear(); removes a range of elements from
list where the first element is located at fromIndex and the last element is located at toIndex-1.

■ Caution A view’s meaning becomes undefined when changes are made to the backing list. Therefore, you
should only use subList() temporarily, whenever you need to perform a sequence of range operations on the
backing list.

ArrayList
The ArrayList class provides a list implementation that is based on an internal array (see Chapters 1 and
2). As a result, access to the list’s elements is fast. However, because elements must be moved to open a
space for insertion or to close a space after deletion, insertions and deletions of elements is slow.

ArrayList supplies three constructors:

• ArrayList() creates an empty array list with an initial capacity (storage space) of
ten elements. Once this capacity is reached, a larger array is created, elements
from the current array are copied into the larger array, and the larger array
becomes the new current array. This process repeats as more elements are added
to the array list.

• ArrayList(Collection<? extends E> c) creates an array list containing c’s
elements in the order in which they are returned by c’s iterator.
NullPointerException is thrown when c contains the null reference.

• ArrayList(int initialCapacity) creates an empty array list with an initial
capacity of initialCapacity elements. IllegalArgumentException is thrown when
initialCapacity is negative.

Listing 5-1 demonstrates an array list.

Listing 5-1. A demonstration of an array-based list

import java.util.ArrayList;
import java.util.List;

class ArrayListDemo
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<>();
 String[] weekDays = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
 for (String weekDay: weekDays)
 ls.add(weekDay);
 dump("ls:", ls);
 ls.set(ls.indexOf("Wed"), "Wednesday");
 dump("ls:", ls);

CHAPTER 5 COLLECTING OBJECTS

334

 ls.remove(ls.lastIndexOf("Fri"));
 dump("ls:", ls);
 }
 static void dump(String title, List<String> ls)
 {
 System.out.print(title+" ");
 for (String s: ls)
 System.out.print(s+" ");
 System.out.println();
 }
}

The List<String> ls = new ArrayList<>(); assignment reveals a couple of items to note:

• I’ve declared variable ls to be of List<String> interface type, and have assigned to
this variable a reference to an instance of the ArrayList class that implements this
interface. When working with the Collections Framework, it is common practice to
declare variables to be of interface type. Doing so eliminates extensive code
changes when you need to work with a different implementation class; for
example, List<String> ls = new LinkedList<>();. Check out Chapter 2’s “Why
Use Interfaces?” section for more information about this practice.

• The diamond operator <> (which is new in Java 7) reduces verbosity by forcing the
compiler to infer actual type arguments for the constructors of generic classes.
Without this operator, I would need to specify String as the actual type argument
passed to ArrayList<E>, resulting in the more verbose List<String> ls = new
ArrayList<String>(); instead of the shorter List<String> ls = new
ArrayList<>();. (I don’t regard the diamond operator as a true operator, which is
why I don’t include it in Chapter 1’s table of operators—Table 1-3.)

The dump() method’s enhanced for statement uses iterator(), hasNext(), and next() behind the
scenes.

When you run this application, it generates the following output:

ls: Sun Mon Tue Wed Thu Fri Sat
ls: Sun Mon Tue Wednesday Thu Fri Sat
ls: Sun Mon Tue Wednesday Thu Sat

LinkedList
The LinkedList class provides a list implementation that is based on linked nodes. Because links must
be traversed, access to the list’s elements is slow. However, because only node references need to be
changed, insertions and deletions of elements is fast. (I will introduce you to nodes later in this chapter.)

LinkedList supplies two constructors:

• LinkedList() creates an empty linked list.

• LinkedList(Collection<? extends E> c) creates a linked list containing c’s
elements in the order in which they are returned by c’s iterator.
NullPointerException is thrown when c contains the null reference.

Listing 5-2 demonstrates a linked list.

CHAPTER 5 COLLECTING OBJECTS

335

Listing 5-2. A demonstration of a linked list of nodes

import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;

class LinkedListDemo
{
 public static void main(String[] args)
 {
 List<String> ls = new LinkedList<>();
 String[] weekDays = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
 for (String weekDay: weekDays)
 ls.add(weekDay);
 dump("ls:", ls);
 ls.add(1, "Sunday");
 ls.add(3, "Monday");
 ls.add(5, "Tuesday");
 ls.add(7, "Wednesday");
 ls.add(9, "Thursday");
 ls.add(11, "Friday");
 ls.add(13, "Saturday");
 dump("ls:", ls);
 ListIterator<String> li = ls.listIterator(ls.size());
 while (li.hasPrevious())
 System.out.print(li.previous()+" ");
 System.out.println();
 }
 static void dump(String title, List<String> ls)
 {
 System.out.print(title+" ");
 for (String s: ls)
 System.out.print(s+" ");
 System.out.println();
 }
}

This application demonstrates that each successive add() method call must increase its index by 2
to account for the previously added element when adding longer weekday names to the list. It also
shows you how to output a list in reverse order: return a list iterator with its cursor initialized past the
end of the list and repeatedly call previous().

When you run this application, it generates the following output:

ls: Sun Mon Tue Wed Thu Fri Sat
ls: Sun Sunday Mon Monday Tue Tuesday Wed Wednesday Thu Thursday Fri Friday Sat Saturday
Saturday Sat Friday Fri Thursday Thu Wednesday Wed Tuesday Tue Monday Mon Sunday Sun

Set
A set is a collection that contains no duplicate elements. In other words, a set contains no pair of
elements e1 and e2 such that e1.equals(e2) returns true. Furthermore, a set can contain at most one
null element. Sets are described by the Set interface, whose generic type is Set<E>.

CHAPTER 5 COLLECTING OBJECTS

336

Set extends Collection and redeclares its inherited methods, for convenience and also to add
stipulations to the contracts for add(), equals(), and hashCode(), to address how they behave in a set
context. Also, Set’s documentation states that all constructors of implementation classes must create
sets that contain no duplicate elements.

Set does not introduce new methods.

TreeSet
The TreeSet class provides a set implementation that is based on a tree data structure. As a result,
elements are stored in sorted order. However, accessing these elements is somewhat slower than with
the other Set implementations (which are not sorted) because links must be traversed.

■ Note Check out Wikipedia’s “Tree (data structure)” entry
(http://en.wikipedia.org/wiki/Tree_(data_structure)) to learn about trees.

TreeSet supplies four constructors:

• TreeSet() creates a new, empty tree set that is sorted according to the natural
ordering of its elements. All elements inserted into the set must implement the
Comparable interface.

• TreeSet(Collection<? extends E> c) creates a new tree set containing c’s
elements, sorted according to the natural ordering of its elements. All elements
inserted into the new set must implement the Comparable interface. This
constructor throws ClassCastException when c’s elements do not implement
Comparable or are not mutually comparable, and NullPointerException when c
contains the null reference.

• TreeSet(Comparator<? super E> comparator) creates a new, empty tree set that is
sorted according to the specified comparator. Passing null to comparator implies
that natural ordering will be used.

• TreeSet(SortedSet<E> s) creates a new tree set containing the same elements and
using the same ordering as s. (I discuss sorted sets later in this chapter.) This
constructor throws NullPointerException when s contains the null reference.

Listing 5-3 demonstrates a tree set.

Listing 5-3. A demonstration of a tree set with String elements sorted according to their natural ordering

import java.util.Set;
import java.util.TreeSet;

class TreeSetDemo
{
 public static void main(String[] args)
 {

http://en.wikipedia.org/wiki/Tree_

CHAPTER 5 COLLECTING OBJECTS

337

 Set<String> ss = new TreeSet<>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis"};
 for (String fruit: fruits)
 ss.add(fruit);
 dump("ss:", ss);
 }
 static void dump(String title, Set<String> ss)
 {
 System.out.print(title+" ");
 for (String s: ss)
 System.out.print(s+" ");
 System.out.println();
 }
}

Because String implements Comparable, it is legal for this application to use the TreeSet()
constructor to insert the contents of the fruits array into the set.

When you run this application, it generates the following output:

ss: apples bananas grapes kiwis pears

HashSet
The HashSet class provides a set implementation that is backed by a hashtable data structure
(implemented as a HashMap instance, discussed later, which provides a quick way to determine if an
element has already been stored in this structure). Although this class provides no ordering guarantees
for its elements, HashSet is much faster than TreeSet. Furthermore, HashSet permits the null reference to
be stored in its instances.

■ Note Check out Wikipedia’s “Hash table” entry (http://en.wikipedia.org/wiki/Hash_table) to learn about
hashtables.

HashSet supplies four constructors:

• HashSet() creates a new, empty hashset where the backing HashMap instance has
an initial capacity of 16 and a load factor of 0.75. You will learn what these items
mean when I discuss HashMap later in this chapter.

• HashSet(Collection<? extends E> c) creates a new hashset containing c’s
elements. The backing HashMap has an initial capacity sufficient to contain c’s
elements and a load factor of 0.75. This constructor throws NullPointerException
when c contains the null reference.

• HashSet(int initialCapacity) creates a new, empty hashset where the backing
HashMap instance has the capacity specified by initialCapacity and a load factor
of 0.75. This constructor throws IllegalArgumentException when
initialCapacity’s value is less than 0.

http://en.wikipedia.org/wiki/Hash_table

CHAPTER 5 COLLECTING OBJECTS

338

• HashSet(int initialCapacity, float loadFactor) creates a new, empty hashset
where the backing HashMap instance has the capacity specified by initialCapacity
and the load factor specified by loadFactor. This constructor throws
IllegalArgumentException when initialCapacity is less than 0 or when
loadFactor is less than or equal to 0.

Listing 5-4 demonstrates a hashset.

Listing 5-4. A demonstration of a hashset with String elements unordered

import java.util.HashSet;
import java.util.Set;

class HashSetDemo
{
 public static void main(String[] args)
 {
 Set<String> ss = new HashSet<>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis",
 "pears", null};
 for (String fruit: fruits)
 ss.add(fruit);
 dump("ss:", ss);
 }
 static void dump(String title, Set<String> ss)
 {
 System.out.print(title+" ");
 for (String s: ss)
 System.out.print(s+" ");
 System.out.println();
 }
}

In Listing 5-3’s TreeSetDemo application, I did not add null to the fruits array because TreeSet
throws NullPointerException when it detects an attempt to add this element. In contrast, HashSet
permits null to be added, which is why Listing 5-4 includes null in HashSetDemo’s fruits array.

When you run this application, it generates unordered output such as the following:

ss: null grapes bananas kiwis pears apples

Suppose you want to add instances of your classes to a hashset. As with String, your classes must
override equals() and hashCode(); otherwise, duplicate class instances can be stored in the hashset. For
example, Listing 5-5 presents the source code to an application whose Planet class overrides equals()
but fails to also override hashCode().

Listing 5-5. A custom Planet class not overriding hashCode()

import java.util.HashSet;
import java.util.Set;

class CustomClassAndHashSet
{
 public static void main(String[] args)

CHAPTER 5 COLLECTING OBJECTS

339

 {
 Set<Planet> sp = new HashSet<>();
 sp.add(new Planet("Mercury"));
 sp.add(new Planet("Venus"));
 sp.add(new Planet("Earth"));
 sp.add(new Planet("Mars"));
 sp.add(new Planet("Jupiter"));
 sp.add(new Planet("Saturn"));
 sp.add(new Planet("Uranus"));
 sp.add(new Planet("Neptune"));
 sp.add(new Planet("Fomalhaut b"));
 Planet p1 = new Planet("51 Pegasi b");
 sp.add(p1);
 Planet p2 = new Planet("51 Pegasi b");
 sp.add(p2);
 System.out.println(p1.equals(p2));
 System.out.println(sp);
 }
}
class Planet
{
 private String name;
 Planet(String name)
 {
 this.name = name;
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Planet))
 return false;
 Planet p = (Planet) o;
 return p.name.equals(name);
 }
 String getName()
 {
 return name;
 }
 @Override
 public String toString()
 {
 return name;
 }
}

Listing 5-5’s Planet class declares a single name field of type String. Although it might seem pointless
to declare Planet with a single String field because I could refactor this listing to remove Planet and
work with String, I might want to introduce additional fields to Planet (perhaps to store a planet’s mass
and other characteristics) in the future.

When you run this application, it generates unordered output such as the following:

true

CHAPTER 5 COLLECTING OBJECTS

340

[Venus, Fomalhaut b, Uranus, Mars, Neptune, Jupiter, Earth, Mercury, Saturn, 51 Pegasi b, 51
Pegasi b]

This output reveals two 51 Pegasi b elements in the hashset. Although these elements are equal
from the perspective of the overriding equals() method (the first output line, true, proves this point),
overriding equals() is not enough to avoid duplicate elements being stored in a hashset: you must also
override hashCode().

The easiest way to override hashCode() in Listing 5-5’s Planet class is to have the overriding method
call the name field’s hashCode() method and return its value. (This technique only works with a class
whose single reference field’s class provides a valid hashCode() method.) Listing 5-6 presents this
overriding hashCode() method.

Listing 5-6. A custom Planet class overriding hashCode()

import java.util.HashSet;
import java.util.Set;

class CustomClassAndHashSet
{
 public static void main(String[] args)
 {
 Set<Planet> sp = new HashSet<>();
 sp.add(new Planet("Mercury"));
 sp.add(new Planet("Venus"));
 sp.add(new Planet("Earth"));
 sp.add(new Planet("Mars"));
 sp.add(new Planet("Jupiter"));
 sp.add(new Planet("Saturn"));
 sp.add(new Planet("Uranus"));
 sp.add(new Planet("Neptune"));
 sp.add(new Planet("Fomalhaut b"));
 Planet p1 = new Planet("51 Pegasi b");
 sp.add(p1);
 Planet p2 = new Planet("51 Pegasi b");
 sp.add(p2);
 System.out.println(p1.equals(p2));
 System.out.println(sp);
 }
}
class Planet
{
 private String name;
 Planet(String name)
 {
 this.name = name;
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Planet))
 return false;
 Planet p = (Planet) o;

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

341

 return p.name.equals(name);
 }
 String getName()
 {
 return name;
 }
 @Override
 public int hashCode()
 {
 return name.hashCode();
 }
 @Override
 public String toString()
 {
 return name;
 }
}

Compile Listing 5-6 (javac CustomClassAndHashSet.java) and run the application (java
CustomClassAndHashSet). You will observe output (similar to that shown below) that reveals no duplicate
elements:

true
[Saturn, Earth, Uranus, Fomalhaut b, 51 Pegasi b, Venus, Jupiter, Mercury, Mars, Neptune]

■ Note LinkedHashSet is a subclass of HashSet that uses a linked list to store its elements. As a result,
LinkedHashSet’s iterator returns elements in the order in which they were inserted. For example, if Listing 5-4
had specified Set<String> ss = new LinkedHashSet<>();, the application’s output would have been ss:
apples pears grapes bananas kiwis null. Also, LinkedHashSet offers slower performance than HashSet and
faster performance than TreeSet.

EnumSet
Chapter 3 introduced you to traditional enumerated types and their enum replacement. (An enum is an
enumerated type that is expressed via reserved word enum.) The following example demonstrates the
traditional enumerated type:

static final int SUNDAY = 1;
static final int MONDAY = 2;
static final int TUESDAY = 4;
static final int WEDNESDAY = 8;
static final int THURSDAY = 16;
static final int FRIDAY = 32;
static final int SATURDAY = 64;

CHAPTER 5 COLLECTING OBJECTS

342

Although the enum has many advantages over the traditional enumerated type, the traditional
enumerated type is less awkward to use when combining constants into a set; for example, static final
int DAYS_OFF = SUNDAY | MONDAY;.

DAYS_OFF is an example of an integer-based, fixed-length bitset, which is a set of bits where each bit
indicates that its associated member belongs to the set when the bit is set to 1, and is absent from the set
when the bit is set to 0.

■ Note An int-based bitset cannot contain more than 32 members because int has a size of 32 bits. Similarly, a
long-based bitset cannot contain more than 64 members because long has a size of 64 bits.

This bitset is formed by bitwise inclusive ORing the traditional enumerated type’s integer constants
together via the bitwise inclusive OR operator (|): you could also use +. Each constant must be a unique
power of two (starting with one) because otherwise it is impossible to distinguish between the members
of this bitset.

To determine if a constant belongs to the bitset, create an expression that involves the bitwise AND
operator (&). For example, ((DAYS_OFF&MONDAY) == MONDAY) bitwise ANDs DAYS_OFF (3) with MONDAY (2),
which results in 2. This value is compared via == with MONDAY (2), and the result of the expression is true:
MONDAY is a member of the DAYS_OFF bitset.

You can accomplish the same task with an enum by instantiating an appropriate Set
implementation class and calling the add() method multiple times to store the constants in the set.
Listing 5-7 illustrates this more awkward alternative.

Listing 5-7. Creating the Set equivalent of DAYS_OFF

import java.util.Set;
import java.util.TreeSet;

enum Weekday
{
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
class DaysOff
{
 public static void main(String[] args)
 {
 Set<Weekday> daysOff = new TreeSet<>();
 daysOff.add(Weekday.SUNDAY);
 daysOff.add(Weekday.MONDAY);
 System.out.println(daysOff);
 }
}

When you run this application, it generates the following output:

[SUNDAY, MONDAY]

CHAPTER 5 COLLECTING OBJECTS

343

■ Note The constants’ ordinals and not their names are stored in the tree set, which is why the names appear
unordered even though the constants are stored in sorted order of their ordinals.

As well as being more awkward to use (and verbose) than the bitset, the Set alternative requires
more memory to store each constant and is not as fast. Because of these problems, EnumSet was
introduced.

The EnumSet class provides a Set implementation that is based on a bitset. Its elements are constants
that must come from the same enum, which is specified when the enum set is created. Null elements are
not permitted; any attempt to store a null element results in a thrown NullPointerException.

Listing 5-8 demonstrates EnumSet.

Listing 5-8. Creating the EnumSet equivalent of DAYS_OFF

import java.util.EnumSet;
import java.util.Iterator;
import java.util.Set;

enum Weekday
{
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
class EnumSetDemo
{
 public static void main(String[] args)
 {
 Set<Weekday> daysOff = EnumSet.of(Weekday.SUNDAY, Weekday.MONDAY);
 Iterator<Weekday> iter = daysOff.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());
 }
}

EnumSet, whose generic type is EnumSet<E extends Enum<E>>, provides various class methods for
conveniently constructing enum sets. For example, <E extends Enum<E>> EnumSet<E> of(E e1, E e2)
returns an EnumSet instance consisting of elements e1 and e2. In this example, those elements are
Weekday.SUNDAY and Weekday.MONDAY.

When you run this application, it generates the following output:

SUNDAY
MONDAY

■ Note As well as providing several overloaded of() methods, EnumSet provides other methods for conveniently
creating enum sets. For example, allOf() returns an EnumSet instance that contains all of an enum’s constants,
where this method’s solitary argument is a class literal that identifies the enum:

CHAPTER 5 COLLECTING OBJECTS

344

Set<Weekday> allWeekDays = EnumSet.allOf(Weekday.class);

Similarly, range() returns an EnumSet instance containing a range of an enum’s elements (with the range’s limits
as specified by this method’s two arguments):

for (WeekDay wd : EnumSet.range(WeekDay.MONDAY, WeekDay.FRIDAY))

 System.out.println(wd);

SortedSet
TreeSet is an example of a sorted set, which is a set that maintains its elements in ascending order, sorted
according to their natural ordering or according to a comparator that is supplied when the sorted set is
created. Sorted sets are described by the SortedSet interface.

SortedSet, whose generic type is SortedSet<E>, extends Set. With two exceptions, the methods it
inherits from Set behave identically on sorted sets as on other sets:

• The Iterator instance returned from iterator() traverses the sorted set in
ascending element order.

• The array returned by toArray() contains the sorted set’s elements in order.

■ Note Although not guaranteed, the toString() methods of SortedSet implementations in the Collections
Framework (such as TreeSet) return a string containing all the sorted set’s elements in order.

SortedSet’s documentation requires that an implementation must provide the four standard
constructors that I presented in my discussion of TreeSet. Furthermore, implementations of this
interface must implement the methods that are described in Table 5-3.

Table 5-3. SortedSet-specific Methods

Method Description

Comparator<? super E>
comparator()

Return the comparator used to order the elements in this
set, or null when this set uses the natural ordering of its
elements.

E first() Return the first (lowest) element currently in this set, or
throw a NoSuchElementException instance when this set is
empty.

CHAPTER 5 COLLECTING OBJECTS

345

SortedSet<E> headSet(E
toElement)

Return a view of that portion of this set whose elements are
strictly less than toElement. The returned set is backed by
this set, so changes in the returned set are reflected in this
set and vice versa. The returned set supports all optional set
operations that this set supports. This method throws
ClassCastException when toElement is not compatible with
this set’s comparator (or, when the set has no comparator,
when toElement does not implement Comparable),
NullPointerException when toElement is null and this set
does not permit null elements, and
IllegalArgumentException when this set has a restricted
range and toElement lies outside of this range’s bounds.

E last() Return the last (highest) element currently in this set, or
throw a NoSuchElementException instance when this set is
empty.

SortedSet<E> subSet(E
fromElement, E toElement)

Return a view of the portion of this set whose elements range
from fromElement, inclusive, to toElement, exclusive. (When
fromElement and toElement are equal, the returned set is
empty.) The returned set is backed by this set, so changes in
the returned set are reflected in this set and vice versa. The
returned set supports all optional set operations that this set
supports. This method throws ClassCastException when
fromElement and toElement cannot be compared to one
another using this set’s comparator (or, when the set has no
comparator, using natural ordering), NullPointerException
when fromElement or toElement is null and this set does not
permit null elements, and IllegalArgumentException when
fromElement is greater than toElement or when this set has a
restricted range and fromElement or toElement lies outside of
this range’s bounds.

SortedSet<E> tailSet(E
fromElement)

Return a view of that portion of this set whose elements are
greater than or equal to fromElement. The returned set is
backed by this set, so changes in the returned set are
reflected in this set and vice versa. The returned set supports
all optional set operations that this set supports. This
method throws ClassCastException when fromElement is not
compatible with this set’s comparator (or, when the set has
no comparator, when fromElement does not implement
Comparable), NullPointerException when fromElement is
null and this set does not permit null elements, and
IllegalArgumentException when this set has a restricted
range and fromElement lies outside of the range’s bounds.

The set-based range views returned from headSet(), subSet(), and tailSet() are analogous to the

list-based range view returned from List’s subList() method except that a set-based range view remains

CHAPTER 5 COLLECTING OBJECTS

346

valid even when the backing sorted set is modified. As a result, a set-based range view can be used for a
lengthy period of time.

■ Note Unlike a list-based range view whose endpoints are elements in the backing list, the endpoints of a set-
based range view are absolute points in element space, allowing a set-based range view to serve as a window
onto a portion of the set’s element space. Any changes made to the set-based range view are written back to the
backing sorted set and vice versa.

Each range view returned by headSet(), subSet(), or tailSet() is half open because it does not
include its high endpoint (headSet() and subSet()) or its low endpoint (tailSet()). For the first two
methods, the high endpoint is specified by argument toElement; for the last method, the low endpoint is
specified by argument fromElement.

■ Note You could also regard the returned range view as being half closed because it includes only one of its
endpoints.

Listing 5-9 demonstrates a sorted set based on a tree set.

Listing 5-9. A sorted set of fruit and vegetable names

import java.util.SortedSet;
import java.util.TreeSet;

class SortedSetDemo
{
 public static void main(String[] args)
 {
 SortedSet<String> sss = new TreeSet<>();
 String[] fruitAndVeg =
 {
 "apple", "potato", "turnip", "banana", "corn", "carrot", "cherry",
 "pear", "mango", "strawberry", "cucumber", "grape", "banana",
 "kiwi", "radish", "blueberry", "tomato", "onion", "raspberry",
 "lemon", "pepper", "squash", "melon", "zucchini", "peach", "plum",
 "turnip", "onion", "nectarine"
 };
 System.out.println("Array size = "+fruitAndVeg.length);
 for (String fruitVeg: fruitAndVeg)
 sss.add(fruitVeg);
 dump("sss:", sss);
 System.out.println("Sorted set size = "+sss.size());
 System.out.println("First element = "+sss.first());

CHAPTER 5 COLLECTING OBJECTS

347

 System.out.println("Last element = "+sss.last());
 System.out.println("Comparator = "+sss.comparator());
 dump("hs:", sss.headSet("n"));
 dump("ts:", sss.tailSet("n"));
 System.out.println("Count of p-named fruits & vegetables = "+
 sss.subSet("p", "q").size());
 System.out.println("Incorrect count of c-named fruits & vegetables = "+
 sss.subSet("carrot", "cucumber").size());
 System.out.println("Correct count of c-named fruits & vegetables = "+
 sss.subSet("carrot", "cucumber\0").size());
 }
 static void dump(String title, SortedSet<String> sss)
 {
 System.out.print(title+" ");
 for (String s: sss)
 System.out.print(s+" ");
 System.out.println();
 }
}

When you run this application, it generates the following output:

Array size = 29
sss: apple banana blueberry carrot cherry corn cucumber grape kiwi lemon mango melon
nectarine onion peach pear pepper plum potato radish raspberry squash strawberry tomato
turnip zucchini
Sorted set size = 26
First element = apple
Last element = zucchini
Comparator = null
hs: apple banana blueberry carrot cherry corn cucumber grape kiwi lemon mango melon
ts: nectarine onion peach pear pepper plum potato radish raspberry squash strawberry tomato
turnip zucchini
Count of p-named fruits & vegetables = 5
Incorrect count of c-named fruits & vegetables = 3
Correct count of c-named fruits & vegetables = 4

This output reveals that the sorted set’s size is less than the array’s size because a set cannot contain
duplicate elements: the duplicate banana, turnip, and onion elements are not stored in the sorted set.

The comparator() method returns null because the sorted set was not created with a comparator.
Instead, the sorted set relies on the natural ordering of String elements to store them in sorted order.

The headSet() and tailSet() methods are called with argument "n" to return, respectively, a set of
elements whose names begin with a letter that is strictly less than n, and a letter that is greater than or
equal to n.

Finally, the output shows you that you must be careful when passing an upper limit to subSet(). As
you can see, ss.subSet("carrot", "cucumber") does not include cucumber in the returned range view
because cucumber is subSet()’s high endpoint.

To include cucumber in the range view, you need to form a closed range or closed interval (both
endpoints are included). With String objects, you accomplish this task by appending \0 to the string. For
example, ss.subSet("carrot", "cucumber\0") includes cucumber because it is less than cucumber\0.

CHAPTER 5 COLLECTING OBJECTS

348

This same technique can be applied wherever you need to form an open range or open interval
(neither endpoint is included). For example, ss.subSet("carrot\0", "cucumber") does not include
carrot because it is less than carrot\0. Furthermore, it does not include high endpoint cucumber.

■ Note When you want to create closed and open ranges for elements created from your own classes, you need
to provide some form of predecessor() and successor() methods that return an element’s predecessor and
successor.

You need to be careful when designing classes that work with sorted sets. For example, the class
must implement Comparable when you plan to store the class’s instances in a sorted set where these
elements are sorted according to their natural ordering. Consider Listing 5-10.

Listing 5-10. A custom Employee class not implementing Comparable

import java.util.SortedSet;
import java.util.TreeSet;

class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe")); // ClassCastException thrown here
 sse.add(new Employee("John Doe"));
 System.out.println(sse);
 }
}
class Employee
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 @Override
 public String toString()
 {
 return name;
 }
}

When you run this application, it generates the following output:

Exception in thread "main" java.lang.ClassCastException: Employee cannot be cast to
java.lang.Comparable
 at java.util.TreeMap.compare(TreeMap.java:1188)

CHAPTER 5 COLLECTING OBJECTS

349

 at java.util.TreeMap.put(TreeMap.java:531)
 at java.util.TreeSet.add(TreeSet.java:255)
 at CustomClassAndSortedSet.main(CustomClassAndSortedSet.java:9)

The ClassCastException instance is thrown during the second add() method call because the sorted
set implementation, an instance of TreeSet, is unable to call the second Employee element’s compareTo()
method, because Employee does not implement Comparable.

The solution to this problem is to have the class implement Comparable, which is exactly what is
revealed in Listing 5-11.

Listing 5-11. Making Employee elements comparable

import java.util.SortedSet;
import java.util.TreeSet;

class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe"));
 Employee e1 = new Employee("John Doe");
 Employee e2 = new Employee("John Doe");
 sse.add(e1);
 sse.add(e2);
 System.out.println(sse);
 System.out.println(e1.equals(e2));
 }
}
class Employee implements Comparable<Employee>
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 @Override
 public int compareTo(Employee e)
 {
 return name.compareTo(e.name);
 }
 @Override
 public String toString()
 {
 return name;
 }
}

Listing 5-11’s main() method differs from Listing 5-10 in that it also creates two Employee objects
initialized to "John Doe", adds these objects to the sorted set, and compares these objects for equality via

CHAPTER 5 COLLECTING OBJECTS

350

equals(). Furthermore, Listing 5-11 declares Employee to implement Comparable, introducing a
compareTo() method into Employee.

When you run this application, it generates the following output:

[Bob Doe, John Doe, Sally Doe]
false

This output shows that only one "John Doe" Employee object is stored in the sorted set. After all, a
set cannot contain duplicate elements. However, the false value (resulting from the equals()
comparison) also shows that the sorted set’s natural ordering is inconsistent with equals(), which
violates SortedSet’s contract:

The ordering maintained by a sorted set (whether or not an explicit comparator is provided) must be
consistent with equals() if the sorted set is to correctly implement the Set interface. This is so because the
Set interface is defined in terms of the equals() operation, but a sorted set performs all element
comparisons using its compareTo() (or compare()) method, so two elements that are deemed equal by this
method are, from the standpoint of the sorted set, equal.

Because the application works correctly, why should SortedSet’s contract matter? Although the
contract does not appear to matter with respect to the TreeSet implementation of SortedSet, perhaps it
will matter in the context of a third-party class that implements this interface.

Listing 5-12 shows you how to correct this problem and make Employee instances work with any
implementation of a sorted set.

Listing 5-12. A contract-compliant Employee class

import java.util.SortedSet;
import java.util.TreeSet;

class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe"));
 Employee e1 = new Employee("John Doe");
 Employee e2 = new Employee("John Doe");
 sse.add(e1);
 sse.add(e2);
 System.out.println(sse);
 System.out.println(e1.equals(e2));
 }
}
class Employee implements Comparable<Employee>
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 @Override
 public int compareTo(Employee e)
 {

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

351

 return name.compareTo(e.name);
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Employee))
 return false;
 Employee e = (Employee) o;
 return e.name.equals(name);
 }
 @Override
 public String toString()
 {
 return name;
 }
}

Listing 5-12 corrects the SortedSet contract violation by overriding equals(). Run the resulting
application and you will observe [Bob Doe, John Doe, Sally Doe] as the first line of output and true as
the second line: the sorted set’s natural ordering is now consistent with equals().

■ Note Although it is important to override hashCode() whenever you override equals(), I did not override
hashCode() (although I overrode equals()) in Listing 5-12’s Employee class to emphasize that tree-based sorted
sets ignore hashCode().

NavigableSet
TreeSet is an example of a navigable set, which is a sorted set that can be iterated over in descending
order as well as ascending order, and which can report closest matches for given search targets.
Navigable sets are described by the NavigableSet interface, whose generic type is NavigableSet<E>,
which extends SortedSet, and which is described in Table 5-4.

Table 5-4. NavigableSet-specific Methods

Method Description

E ceiling(E e) Return the least element in this set greater than or equal to e,
or null when there is no such element. This method throws
ClassCastException when e cannot be compared with the
elements currently in the set, and NullPointerException
when e is null and this set does not permit null elements.

Iterator<E>
descendingIterator()

Return an iterator over the elements in this set, in
descending order. Equivalent in effect to
descendingSet().iterator().

CHAPTER 5 COLLECTING OBJECTS

352

NavigableSet<E>
descendingSet()

Return a reverse order view of the elements contained in this
set. The descending set is backed by this set, so changes to
the set are reflected in the descending set and vice versa. If
either set is modified (except through the iterator’s own
remove() operation) while iterating over the set, the results
of the iteration are undefined.

E floor(E e) Return the greatest element in this set less than or equal to e,
or null when there is no such element. This method throws
ClassCastException when e cannot be compared with the
elements currently in the set, and NullPointerException
when e is null and this set does not permit null elements.

NavigableSet<E> headSet(E
toElement, boolean
inclusive)

Return a view of the portion of this set whose elements are
less than (or equal to, when inclusive is true) toElement.
The returned set is backed by this set, so changes in the
returned set are reflected in this set and vice versa. The
returned set supports all optional set operations that this set
supports. This method throws ClassCastException when
toElement is not compatible with this set’s comparator (or,
when the set has no comparator, when toElement does not
implement Comparable), NullPointerException when
toElement is null and this set does not permit null elements,
and IllegalArgumentException when this set has a restricted
range and toElement lies outside of this range’s bounds.

E higher(E e) Return the least element in this set strictly greater than the
given element, or null when there is no such element. This
method throws ClassCastException when e cannot be
compared with the elements currently in the set, and
NullPointerException when e is null and this set does not
permit null elements.

E lower(E e) Return the greatest element in this set strictly less than the
given element, or null when there is no such element. This
method throws ClassCastException when e cannot be
compared with the elements currently in the set, and
NullPointerException when e is null and this set does not
permit null elements.

E pollFirst() Return and remove the first (lowest) element from this set,
or return null when this set is empty.

E pollLast() Return and remove the last (highest) element from this set,
or return null when this set is empty.

NavigableSet<E> subSet(E
fromElement, boolean
fromInclusive, E toElement,

Return a view of the portion of this set whose elements range
from fromElement to toElement. (When fromElement and
toElement are equal, the returned set is empty unless

CHAPTER 5 COLLECTING OBJECTS

353

boolean toInclusive) fromInclusive and toInclusive are both true.) The returned
set is backed by this set, so changes in the returned set are
reflected in this set and vice versa. The returned set supports
all optional set operations that this set supports. This
method throws ClassCastException when fromElement and
toElement cannot be compared to one another using this
set’s comparator (or, when the set has no comparator, using
natural ordering), NullPointerException when fromElement
or toElement is null and this set does not permit null
elements, and IllegalArgumentException when fromElement
is greater than toElement or when this set has a restricted
range and fromElement or toElement lies outside of this
range’s bounds.

NavigableSet<E> tailSet(E
fromElement, boolean
inclusive)

Return a view of the portion of this set whose elements are
greater than (or equal to, when inclusive is true)
fromElement. The returned set is backed by this set, so
changes in the returned set are reflected in this set and vice
versa. The returned set supports all optional set operations
that this set supports. This method throws
ClassCastException when fromElement is not compatible
with this set’s comparator (or, when the set has no
comparator, when fromElement does not implement
Comparable), NullPointerException when fromElement is
null and this set does not permit null elements, and
IllegalArgumentException when this set has a restricted
range and fromElement lies outside of this range’s bounds.

Listing 5-13 demonstrates a navigable set based on a tree set.

Listing 5-13. Navigating a set of integers

import java.util.Iterator;
import java.util.NavigableSet;
import java.util.TreeSet;

class NavigableSetDemo
{
 public static void main(String[] args)
 {
 NavigableSet<Integer> ns = new TreeSet<>();
 int[] ints = { 82, -13, 4, 0, 11, -6, 9 };
 for (int i: ints)
 ns.add(i);
 System.out.print("Ascending order: ");
 Iterator iter = ns.iterator();
 while (iter.hasNext())
 System.out.print(iter.next()+" ");
 System.out.println();
 System.out.print("Descending order: ");

CHAPTER 5 COLLECTING OBJECTS

354

 iter = ns.descendingIterator();
 while (iter.hasNext())
 System.out.print(iter.next()+" ");
 System.out.println("\n");
 outputClosestMatches(ns, 4);
 outputClosestMatches(ns.descendingSet(), 12);
 }
 static void outputClosestMatches(NavigableSet<Integer> ns, int i)
 {
 System.out.println("Element < "+i+" is "+ns.lower(i));
 System.out.println("Element <= "+i+" is "+ns.floor(i));
 System.out.println("Element > "+i+" is "+ns.higher(i));
 System.out.println("Element >= "+i+" is "+ns.ceiling(i));
 System.out.println();
 }
}

Listing 5-13 creates a navigable set of Integer elements. It takes advantage of autoboxing to ensure
that ints are converted to Integers.

When you run this application, it generates the following output:

Ascending order: -13 -6 0 4 9 11 82
Descending order: 82 11 9 4 0 -6 -13

Element < 4 is 0
Element <= 4 is 4
Element > 4 is 9
Element >= 4 is 4

Element < 12 is 82
Element <= 12 is 82
Element > 12 is 11
Element >= 12 is 11

The first four output lines beginning with Element pertain to an ascending-order set where the
element being matched (4) is a member of the set. The second four Element-prefixed lines pertain to a
descending-order set where the element being matched (12) is not a member.

As well as letting you conveniently locate set elements via its closest-match methods (ceiling(),
floor(), higher(), and lower()), NavigableSet lets you return set views containing all elements within
certain ranges, as demonstrated by the following examples:

• ns.subSet(-13, true, 9, true): Return all elements from -13 through 9.

• ns.tailSet(-6, false): Return all elements greater than -6.

• ns.headSet(4, true): Return all elements less than or equal to 4.

Finally, you can return and remove from the set the first (lowest) element by calling pollFirst() and
the last (highest) element by calling pollLast(). For example, ns.pollFirst() removes and returns -13,
and ns.pollLast() removes and returns -82.

CHAPTER 5 COLLECTING OBJECTS

355

Queue
A queue is a collection in which elements are stored and retrieved in a specific order. Most queues are
categorized as one of the following:

• First-in, first-out (FIFO) queue: Elements are inserted at the queue’s tail and
removed at the queue’s head.

• Last-in, first-out (LIFO) queue: Elements are inserted and removed at one end of
the queue such that the last element inserted is the first element retrieved. This
kind of queue behaves as a stack.

• Priority queue: Elements are inserted according to their natural ordering, or
according to a comparator that is supplied to the queue implementation.

Queue, whose generic type is Queue<E>, extends Collection, redeclaring add() to adjust its contract
(insert the specified element into this queue if it is possible to do so immediately without violating
capacity restrictions), and inheriting the other methods from Collection. Table 5-5 describes add() and
the other Queue-specific methods.

Table 5-5. Queue-specific Methods

Method Description

boolean add(E e) Insert element e into this queue if it is possible to do so
immediately without violating capacity restrictions. Return
true on success; otherwise, throw IllegalStateException
when the element cannot be added at this time because no
space is currently available. This method also throws
ClassCastException when e’s class prevents e from being
added to this queue, NullPointerException when e contains
the null reference and this queue does not permit null
elements to be added, and IllegalArgumentException when
some property of e prevents it from being added to this
queue.

E element() Return but do not also remove the element at the head of
this queue. This method throws NoSuchElementException
when this queue is empty.

boolean offer(E e) Insert element e into this queue if it is possible to do so
immediately without violating capacity restrictions. Return
true on success; otherwise, return false when the element
cannot be added at this time because no space is currently
available. This method throws ClassCastException when e’s
class prevents e from being added to this queue,
NullPointerException when e contains the null reference
and this queue does not permit null elements to be added,
and IllegalArgumentException when some property of e
prevents it from being added to this queue.

CHAPTER 5 COLLECTING OBJECTS

356

E peek() Return but do not also remove the element at the head of
this queue. This method returns null when this queue is
empty.

E poll() Return and also remove the element at the head of this
queue. This method returns null when this queue is empty.

E remove() Return and also remove the element at the head of this
queue. This method throws NoSuchElementException when
this queue is empty. This is the only difference between
remove() and poll().

Table 5-5 reveals two sets of methods: in one set, a method (such as add()) throws an exception

when an operation fails; in the other set, a method (such as offer()) returns a special value (false or null)
in the presence of failure. The methods that return a special value are useful in the context of capacity-
restricted Queue implementations where failure is a normal occurrence.

■ Note The offer() method is generally preferable to add() when using a capacity-restricted queue because
offer() does not throw IllegalStateException.

Java supplies many Queue implementation classes, where most of these classes are members of the
java.util.concurrent package: LinkedBlockingQueue, LinkedTransferQueue, and SynchronousQueue are
examples. In contrast, the java.util package provides LinkedList and PriorityQueue as its Queue
implementation classes.

■ Caution Many Queue implementation classes do not allow null elements to be added. However, some classes
(such as LinkedList) permit null elements. You should avoid adding a null element because null is used as a
special return value by the peek() and poll() methods to indicate that a queue is empty.

PriorityQueue
The PriorityQueue class provides an implementation of a priority queue, which is a queue that orders its
elements according to their natural ordering or by a comparator provided when the queue is
instantiated. Priority queues do not permit null elements, and do not permit insertion of non-Comparable
objects when relying on natural ordering.

The element at the head of the priority queue is the least element with respect to the specified
ordering. If multiple elements are tied for least element, one of those elements is arbitrarily chosen as
the least element. Similarly, the element at the tail of the priority queue is the greatest element, which is
arbitrarily chosen when there is a tie.

CHAPTER 5 COLLECTING OBJECTS

357

Priority queues are unbounded, but have a capacity that governs the size of the internal array that is
used to store the priority queue’s elements. The capacity value is at least as large as the queue’s length,
and grows automatically as elements are added to the priority queue.

PriorityQueue (whose generic type is PriorityQueue<E>) supplies six constructors:

• PriorityQueue() creates a PriorityQueue instance with an initial capacity of 11
elements, and which orders its elements according to their natural ordering.

• PriorityQueue(Collection<? extends E> c) creates a PriorityQueue instance
containing c’s elements. If c is a SortedSet or PriorityQueue instance, this priority
queue will be ordered according to the same ordering. Otherwise, this priority
queue will be ordered according to the natural ordering of its elements. This
constructor throws ClassCastException when c’s elements cannot be compared to
one another according to the priority queue’s ordering, and NullPointerException
when c or any of its elements contain the null reference.

• PriorityQueue(int initialCapacity) creates a PriorityQueue instance with the
specified initialCapacity, and which orders its elements according to their
natural ordering. This constructor throws IllegalArgumentException when
initialCapacity is less than 1.

• PriorityQueue(int initialCapacity, Comparator<? super E> comparator)
creates a PriorityQueue instance with the specified initialCapacity, and which
orders its elements according to the specified comparator. Natural ordering is used
when comparator contains the null reference. This constructor throws
IllegalArgumentException when initialCapacity is less than 1.

• PriorityQueue(PriorityQueue<? extends E> pq) creates a PriorityQueue instance
containing pq’s elements. This priority queue will be ordered according to the
same ordering as pq. This constructor throws ClassCastException when pq’s
elements cannot be compared to one another according to pq’s ordering, and
NullPointerException when pq or any of its elements contains the null reference.

• PriorityQueue(SortedSet<? extends E> ss) creates a PriorityQueue instance
containing ss’s elements. This priority queue will be ordered according to the
same ordering as ss. This constructor throws ClassCastException when
sortedSet’s elements cannot be compared to one another according to ss’s
ordering, and NullPointerException when sortedSet or any of its elements
contains the null reference.

Listing 5-14 demonstrates a priority queue.

Listing 5-14. Adding randomly generated integers to a priority queue

import java.util.PriorityQueue;
import java.util.Queue;

class PriorityQueueDemo
{
 public static void main(String[] args)
 {
 Queue<Integer> qi = new PriorityQueue<>();
 for (int i = 0; i < 15; i++)

CHAPTER 5 COLLECTING OBJECTS

358

 qi.add((int) (Math.random()*100));
 while (!qi.isEmpty())
 System.out.print(qi.poll()+" ");
 System.out.println();
 }
}

After creating a priority queue, the main thread adds 15 randomly generated integers (ranging from
0 through 99) to this queue. It then enters a while loop that repeatedly polls the priority queue for the
next element and outputs that element until the queue is empty.

When you run this application, it outputs a line of 15 integers in ascending numerical order from left
to right. For example, I observed the following output from one run:

11 21 29 35 40 53 66 70 72 75 80 83 87 88 89

Because poll() returns null when there are no more elements, I could have coded this loop as
follows:

Integer i;
while ((i = qi.poll()) != null)
 System.out.print(i+" ");

Suppose you want to reverse the order of the previous application’s output so that the largest
element appears on the left and the smallest element appears on the right. As Listing 5-15 demonstrates,
you can achieve this task by passing a comparator to the appropriate PriorityQueue constructor.

Listing 5-15. Using a comparator with a priority queue

import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;

class PriorityQueueDemo
{
 final static int NELEM = 15;
 public static void main(String[] args)
 {
 Comparator<Integer> cmp;
 cmp = new Comparator<Integer>()
 {
 public int compare(Integer e1, Integer e2)
 {
 return e2-e1;
 }
 };
 Queue<Integer> qi = new PriorityQueue<>(NELEM, cmp);
 for (int i = 0; i < NELEM; i++)
 qi.add((int) (Math.random()*100));
 while (!qi.isEmpty())
 System.out.print(qi.poll()+" ");
 System.out.println();
 }
}

CHAPTER 5 COLLECTING OBJECTS

359

Listing 5-15 is similar to Listing 5-14, but there are some differences. First, I have declared an NELEM
constant so that I can easily change both the priority queue’s initial capacity and the number of
elements inserted into the priority queue by specifying the new value in one place.

Second, Listing 5-15 declares and instantiates an anonymous class that implements Comparator. Its
compareTo() method subtracts element e2 from element e1 to achieve descending numerical order. The
compiler handles the task of unboxing e2 and e1 by converting e2-e1 to e2.intValue()-e1.intValue().

Finally, Listing 5-15 passes an initial capacity of NELEM elements and the instantiated comparator to
the PriorityQueue(int initialCapacity, Comparator<? super E> comparator) constructor. The priority
queue will use this comparator to order these elements.

Run this application and you will now see a single output line of 15 integers shown in descending
numerical order from left to right. For example, I observed this output line:

90 86 78 74 65 53 45 44 30 28 18 9 9 7 5

Deque
A deque (pronounced deck) is a double-ended queue in which element insertion or removal occurs at its
head or tail. Deques can be used as queues or stacks.

Deque, whose generic type is Deque<E>, extends Queue, in which the inherited add(E e) method
inserts e at the deque’s tail. Table 5-6 describes Deque-specific methods.

Table 5-6. Deque-specific Methods

Method Description

void addFirst(E e) Insert e at the head of this deque if it is possible to do so
immediately without violating capacity restrictions. When
using a capacity-restricted deque, it is generally preferable to
use method offerFirst(). This method throws
IllegalStateException when e cannot be added at this time
because of capacity restrictions, ClassCastException when
e’s class prevents e from being added to this deque,
NullPointerException when e contains the null reference
and this deque does not permit null elements to be added,
and IllegalArgumentException when some property of e
prevents it from being added to this deque.

void addLast(E e) Insert e at the tail of this deque if it is possible to do so
immediately without violating capacity restrictions. When
using a capacity-restricted deque, it is generally preferable to
use method offerLast(). This method throws
IllegalStateException when e cannot be added at this time
because of capacity restrictions, ClassCastException when
e’s class prevents e from being added to this deque,
NullPointerException when e contains the null reference
and this deque does not permit null elements to be added,
and IllegalArgumentException when some property of e
prevents it from being added to this deque.

Iterator<E> Return an iterator over the elements in this deque in reverse

CHAPTER 5 COLLECTING OBJECTS

360

descendingIterator() sequential order. The elements will be returned in order
from last (tail) to first (head). The inherited Iterator<E>
iterator() method returns elements from the head to the
tail.

E element() Retrieve but do not remove the first element of this deque (at
the head). This method differs from peek() only in that it
throws NoSuchElementException when this deque is empty.
This method is equivalent to getFirst().

E getFirst() Retrieve but do not remove the first element of this deque.
This method differs from peekFirst() only in that it throws
NoSuchElementException when this deque is empty.

E getLast() Retrieve but do not remove the last element of this deque.
This method differs from peekLast() only in that it throws
NoSuchElementException when this deque is empty.

boolean offer(E e) Insert e at the tail of this deque if it is possible to do so
immediately without violating capacity restrictions,
returning true upon success and false when no space is
currently available. When using a capacity-restricted deque,
this method is generally preferable to the add() method,
which can fail to insert an element only by throwing an
exception. This method throws ClassCastException when e’s
class prevents e from being added to this deque,
NullPointerException when e contains the null reference
and this deque does not permit null elements to be added,
and IllegalArgumentException when some property of e
prevents it from being added to this deque. This method is
equivalent to offerLast().

boolean offerFirst(E e) Insert the specified element at the head of this deque unless
it would violate capacity restrictions. When using a capacity-
restricted deque, this method is generally preferable to the
addFirst() method, which can fail to insert an element only
by throwing an exception. This method throws
ClassCastException when e’s class prevents e from being
added to this deque, NullPointerException when e contains
the null reference and this deque does not permit null
elements to be added, and IllegalArgumentException when
some property of e prevents it from being added to this
deque.

boolean offerLast(E e) Insert e at the tail of this deque unless it would violate
capacity restrictions. When using a capacity-restricted
deque, this method is generally preferable to the addLast()
method, which can fail to insert an element only by throwing
an exception. This method throws ClassCastException when

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

361

e’s class prevents e from being added to this deque,
NullPointerException when e contains the null reference
and this deque does not permit null elements to be added,
and IllegalArgumentException when some property of e
prevents it from being added to this deque.

E peek() Retrieve but do not remove the first element of this deque (at
the head), or return null when this deque is empty. This
method is equivalent to peekFirst().

E peekFirst() Retrieve but do not remove the first element of this deque (at
the head), or return null when this deque is empty.

E peekLast() Retrieve but do not remove the last element of this deque (at
the tail), or return null when this deque is empty.

E poll() Retrieve and remove the first element of this deque (at the
head), or return null when this deque is empty. This method
is equivalent to pollFirst().

E pollFirst() Retrieve and remove the first element of this deque (at the
head), or return null when this deque is empty.

E pollLast() Retrieve and remove the last element of this deque (at the
tail), or return null when this deque is empty.

E pop() Pop an element from the stack represented by this deque. In
other words, remove and return the first element of this
deque. This method is equivalent to removeFirst().

void push(E e) Push e onto the stack represented by this deque (in other
words, at the head of this deque) if it is possible to do so
immediately without violating capacity restrictions,
returning true upon success and throwing
IllegalStateException when no space is currently available.
This method also throws ClassCastException when e’s class
prevents e from being added to this deque,
NullPointerException when e contains the null reference
and this deque does not permit null elements to be added,
and IllegalArgumentException when some property of e
prevents it from being added to this deque. This method is
equivalent to addFirst().

E remove() Retrieve and remove the first element of this deque (at the
head). This method differs from poll() only in that it throws
NoSuchElementException when this deque is empty. This
method is equivalent to removeFirst().

CHAPTER 5 COLLECTING OBJECTS

362

E removeFirst() Retrieve and remove the first element of this deque. This
method differs from pollFirst() only in that it throws
NoSuchElementException when this deque is empty.

boolean
removeFirstOccurrence(Object
o)

Remove the first occurrence of o from this deque. If the
deque does not contain o, it is unchanged. Return true when
this deque contained o (or equivalently, when this deque
changed as a result of the call). This method throws
ClassCastException when o’s class prevents o from being
added to this deque, and NullPointerException when o
contains the null reference and this deque does not permit
null elements to be added. The inherited boolean
remove(Object o) method is equivalent to this method.

E removeLast() Retrieve and remove the last element of this deque. This
method differs from pollLast() only in that it throws
NoSuchElementException when this deque is empty.

boolean
removeLastOccurrence(Object
o)

Remove the last occurrence of o from this deque. If the
deque does not contain o, it is unchanged. Return true when
this deque contained o (or equivalently, when this deque
changed as a result of the call). This method throws
ClassCastException when o’s class prevents o from being
added to this deque, and NullPointerException when o
contains the null reference and this deque does not permit
null elements to be added.

As Table 5-6 reveals, Deque declares methods to access elements at both ends of the deque. Methods

are provided to insert, remove, and examine the element. Each of these methods exists in two forms: one
throws an exception when the operation fails, the other returns a special value (either null or false,
depending on the operation). The latter form of the insert operation is designed specifically for use with
capacity-restricted Deque implementations; in most implementations, insert operations cannot fail.

Figure 5-2 reveals a table from Deque’s Java documentation that nicely summarizes both forms of the
insert, remove, and examine methods for both the head and the tail.

CHAPTER 5 COLLECTING OBJECTS

363

Figure 5-2. Deque declares twelve methods for inserting, removing, and examining elements at the head or

tail of a deque.

When a deque is used as a queue, FIFO (First-In-First-Out) behavior results. Elements are added at
the end of the deque and removed from the beginning. The methods inherited from the Queue interface
are precisely equivalent to the Deque methods as indicated in Table 5-7.

Table 5-7. Queue and equivalent Deque Methods

Queue Method Equivalent Deque Method

add(e) addLast(e)

offer(e) offerLast(e)

remove() removeFirst()

poll() pollFirst()

element() getFirst()

peek() peekFirst()

Finally, deques can also be used as LIFO (Last-In-First-Out) stacks. When a deque is used as a stack,

elements are pushed and popped from the beginning of the deque. Because a stack’s push(e) method
would be equivalent to Deque’s addFirst(e) method, its pop() method would be equivalent to Deque’s
removeFirst() method, and its peek() method would be equivalent to Deque’s peekFirst() method,
Deque declares the E peek(), E pop(), and void push(E e) stack-oriented convenience methods.

ArrayDeque
The ArrayDeque class provides a resizable-array implementation of the Deque interface. It prohibits null
elements from being added to a deque, and its iterator() method returns fail-fast iterators.

ArrayDeque supplies three constructors:

• ArrayDeque() creates an empty array list with an initial capacity of 16 elements.

CHAPTER 5 COLLECTING OBJECTS

364

• ArrayDeque(Collection<? extends E> c) creates an array deque containing c’s
elements in the order in which they are returned by c’s iterator. (The first element
returned by c’s iterator becomes the first element, or front of the deque.)
NullPointerException is thrown when c contains the null reference.

• ArrayDeque(int numElements) creates an empty array deque with an initial
capacity sufficient to hold numElements elements. No exception is thrown when the
argument passed to numElements is less than or equal to zero.

Listing 5-16 demonstrates an array deque.

Listing 5-16. Using an array deque as a stack

import java.util.ArrayDeque;
import java.util.Deque;

class ArrayDequeDemo
{
 public static void main(String[] args)
 {
 Deque<String> stack = new ArrayDeque<>();
 String[] weekdays = { "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };
 for (String weekday: weekdays)
 stack.push(weekday);
 while (stack.peek() != null)
 System.out.println(stack.pop());
 }
}

When you run this application, it generates the following output:

Saturday
Friday
Thursday
Wednesday
Tuesday
Monday
Sunday

Map
A map is a group of key/value pairs (also known as entries). Because the key identifies an entry, a map
cannot contain duplicate keys. Furthermore, each key can map to at most one value. Maps are described
by the Map interface, which has no parent interface, and whose generic type is Map<K,V> (K is the key’s
type; V is the value’s type).

Table 5-8 describes Map’s methods.

CHAPTER 5 COLLECTING OBJECTS

365

Table 5-8. Map-specific Methods

Method Description

void clear() Remove all elements from this map, leaving it empty. This
method throws UnsupportedOperationException when
clear() is not supported.

boolean containsKey(Object
key)

Return true when this map contains an entry for the
specified key; otherwise, return false. This method throws
ClassCastException when key is of an inappropriate type for
this map, and NullPointerException when key contains the
null reference and this map does not permit null keys.

boolean containsValue(Object
value)

Return true when this map maps one or more keys to value.
This method throws ClassCastException when value is of an
inappropriate type for this map, and NullPointerException
when value contains the null reference and this map does
not permit null values.

Set<Map.Entry<K,V>>
entrySet()

Return a Set view of the entries contained in this map.
Because this map backs the view, changes that are made to
the map are reflected in the set and vice versa.

boolean equals(Object o) Compare o with this map for equality. Return true when o is
also a map and the two maps represent the same entries;
otherwise, return false.

V get(Object key) Return the value to which key is mapped, or null when this
map contains no entry for key. If this map permits null
values, then a return value of null does not necessarily
indicate that the map contains no entry for key; it is also
possible that the map explicitly maps key to the null
reference. The containsKey() method may be used to
distinguish between these two cases. This method throws
ClassCastException when key is of an inappropriate type for
this map, and NullPointerException when key contains the
null reference and this map does not permit null keys.

int hashCode() Return the hash code for this map. A map’s hash code is
defined to be the sum of the hash codes for the entries in the
map’s entrySet() view.

boolean isEmpty() Return true when this map contains no entries; otherwise,
return false.

Set<K> keySet() Return a Set view of the keys contained in this map. Because
this map backs the view, changes that are made to the map

CHAPTER 5 COLLECTING OBJECTS

366

are reflected in the set and vice versa.

V put(K key,V value) Associate value with key in this map. If the map previously
contained an entry for key, the old value is replaced by
value. This method returns the previous value associated
with key, or null when there was no entry for key. (The null
return value can also indicate that the map previously
associated the null reference with key, if the implementation
supports null values.) This method throws
UnsupportedOperationException when put() is not
supported, ClassCastException when key’s or value’s class is
not appropriate for this map, IllegalArgumentException
when some property of key or value prevents it from being
stored in this map, and NullPointerException when key or
value contains the null reference and this map does not
permit null keys or values.

void putAll(Map<? extends
K,? extends V> m)

Copy all the entries from map m to this map. The effect of this
call is equivalent to that of calling put(k, v) on this map
once for each mapping from key k to value v in map m. This
method throws UnsupportedOperationException when
putAll() is not supported, ClassCastException when the
class of a key or value in map m is not appropriate for this
map, IllegalArgumentException when some property of a
key or value in map m prevents it from being stored in this
map, and NullPointerException when m contains the null
reference or when m contains null keys or values and this
map does not permit null keys or values.

V remove(Object key) Remove key’s entry from this map if it is present. This
method returns the value to which this map previously
associated with key, or null when the map contained no
entry for key. If this map permits null values, then a return
value of null does not necessarily indicate that the map
contained no entry for key; it is also possible that the map
explicitly mapped key to null. This map will not contain an
entry for key once the call returns. This method throws
UnsupportedOperationException when remove() is not
supported, ClassCastException when the class of key is not
appropriate for this map, and NullPointerException when
key contains the null reference and this map does not permit
null keys.

int size() Return the number of key/value entries in this map. If the
map contains more than Integer.MAX_VALUE entries, this
method returns Integer.MAX_VALUE.

CHAPTER 5 COLLECTING OBJECTS

367

Collection<V> values() Return a Collection view of the values contained in this
map. Because this map backs the view, changes that are
made to the map are reflected in the collection and vice
versa.

Unlike List, Set, and Queue, Map does not extend Collection. However, it is possible to view a map as

a Collection instance by calling Map’s keySet(), values(), and entrySet() methods, which respectively
return a Set of keys, a Collection of values, and a Set of key/value pair entries.

■ Note The values() method returns Collection instead of Set because multiple keys can map to the same
value, and values() would then return multiple copies of the same value.

The Collection views returned by these methods (recall that a Set is a Collection because Set
extends Collection) provide the only means to iterate over a Map. For example, suppose you declare
Listing 5-17’s Color enum with its three Color constants, RED, GREEN, and BLUE.

Listing 5-17. A colorful enum

enum Color
{
 RED(255, 0, 0),
 GREEN(0, 255, 0),
 BLUE(0, 0, 255);
 private int r, g, b;
 private Color(int r, int g, int b)
 {
 this.r = r;
 this.g = g;
 this.b = b;
 }
 @Override
 public String toString()
 {
 return "r = "+r+", g = "+g+", b = "+b;
 }
}

The following example declares a map of String keys and Color values, adds several entries to the
map, and iterates over the keys and values:

Map<String, Color> colorMap = ...; // ... represents creation of a Map implementation
colorMap.put("red", Color.RED);
colorMap.put("blue", Color.BLUE);
colorMap.put("green", Color.GREEN);
colorMap.put("RED", Color.RED);
for (String colorKey: colorMap.keySet())

CHAPTER 5 COLLECTING OBJECTS

368

 System.out.println(colorKey);
Collection<Color> colorValues = colorMap.values();
for (Iterator<Color> it = colorValues.iterator(); it.hasNext();)
 System.out.println(it.next());

When running this example against a hashmap implementation (discussed later) of colorMap, you
should observe output similar to the following:

red
blue
green
RED
r = 255, g = 0, b = 0
r = 0, g = 0, b = 255
r = 0, g = 255, b = 0
r = 255, g = 0, b = 0

The first four output lines identify the map’s keys; the second four output lines identify the map’s
values.

The entrySet() method returns a Set of Map.Entry objects. Each of these objects describes a single
entry as a key/value pair and is an instance of a class that implements the Map.Entry interface, where
Entry is a nested interface of Map. Table 5-9 describes Map.Entry’s methods.

Table 5-9. Map.Entry Methods

Method Description

boolean equals(Object o) Compare o with this entry for equality. Return true when o is
also a map entry and the two entries have the same key and
value.

K getKey() Return this entry’s key. This method optionally throws
IllegalStateException when this entry has previously been
removed from the backing map.

V getValue() Return this entry’s value. This method optionally throws
IllegalStateException when this entry has previously been
removed from the backing map.

int hashCode() Return this entry’s hash code.

V setValue(V value) Replace this entry’s value with value. The backing map is
updated with the new value. This method throws
UnsupportedOperationException when setValue() is not
supported, ClassCastException when value’s class prevents it
from being stored in the backing map, NullPointerException
when value contains the null reference and the backing map
does not permit null, IllegalArgumentException when some
property of value prevents it from being stored in the backing
map, and (optionally) IllegalStateException when this entry
has previously been removed from the backing map.

CHAPTER 5 COLLECTING OBJECTS

369

The following example shows you how you might iterate over the previous example’s map entries:

for (Map.Entry<String, Color> colorEntry: colorMap.entrySet())
 System.out.println(colorEntry.getKey()+": "+colorEntry.getValue());

When running this example against the previously mentioned hashmap implementation, you would
observe the following output:

red: r = 255, g = 0, b = 0
blue: r = 0, g = 0, b = 255
green: r = 0, g = 255, b = 0
RED: r = 255, g = 0, b = 0

TreeMap
The TreeMap class provides a map implementation that is based on a red-black tree. As a result, entries
are stored in sorted order of their keys. However, accessing these entries is somewhat slower than with
the other Map implementations (which are not sorted) because links must be traversed.

■ Note Check out Wikipedia’s “Red-black tree” entry (http://en.wikipedia.org/wiki/Red-black_tree) to
learn about red-black trees.

TreeMap supplies four constructors:

• TreeMap() creates a new, empty tree map that is sorted according to the natural
ordering of its keys. All keys inserted into the map must implement the Comparable
interface.

• TreeMap(Comparator<? super K> comparator) creates a new, empty tree map that
is sorted according to the specified comparator. Passing null to comparator implies
that natural ordering will be used.

• TreeMap(Map<? extends K, ? extends V> m) creates a new tree map containing m’s
entries, sorted according to the natural ordering of its keys. All keys inserted into
the new map must implement the Comparable interface. This constructor throws
ClassCastException when m’s keys do not implement Comparable or are not
mutually comparable, and NullPointerException when m contains the null
reference.

• TreeMap(SortedMap<K, ? extends V> sm) creates a new tree map containing the
same entries and using the same ordering as sm. (I discuss sorted maps later in this
chapter.) This constructor throws NullPointerException when sm contains the null
reference.

Listing 5-18 demonstrates a tree map.

http://en.wikipedia.org/wiki/Red-black_tree

CHAPTER 5 COLLECTING OBJECTS

370

Listing 5-18. Sorting a map’s entries according to the natural ordering of their String-based keys

import java.util.Map;
import java.util.TreeMap;

class TreeMapDemo
{
 public static void main(String[] args)
 {
 Map<String, Integer> msi = new TreeMap<>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis"};
 int[] quantities = {10, 15, 8, 17, 30};
 for (int i = 0; i < fruits.length; i++)
 msi.put(fruits[i], quantities[i]);
 for (Map.Entry<String, Integer> entry: msi.entrySet())
 System.out.println(entry.getKey()+": "+entry.getValue());
 }
}

When you run this application, it generates the following output:

apples: 10
bananas: 17
grapes: 8
kiwis: 30
pears: 15

HashMap
The HashMap class provides a map implementation that is based on a hashtable data structure. This
implementation supports all Map operations, and permits null keys and null values. It makes no
guarantees on the order in which entries are stored.

A hashtable maps keys to integer values with the help of a hash function. Java provides this function
in the form of Object’s hashCode() method, which classes override to provide appropriate hash codes.

A hash code identifies one of the hashtable’s array elements, which is known as a bucket or slot. For
some hashtables, the bucket may store the value that is associated with the key. Figure 5-3 illustrates this
kind of hashtable.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

371

Figure 5-3. A simple hashtable maps keys to buckets that store values associates with those keys.

The hash function hashes Bob Doe to 0, which identifies the first bucket. This bucket contains ACCTS,
which is Bob Doe’s employee type. The hash function also hashes John Doe and Sally Doe to 1 and 2
(respectively) whose buckets contain SALES.

A perfect hash function hashes each key to a unique integer value. However, this ideal is very
difficult to meet. In practice, some keys will hash to the same integer value. This nonunique mapping is
referred to as a collision.

To address collisions, most hashtables associate a linked list of entries with a bucket. Instead of
containing a value, the bucket contains the address of the first node in the linked list, and each node
contains one of the colliding entries. See Figure 5-4.

Figure 5-4. A complex hashtable maps keys to buckets that store references to linked lists whose node

values are hashed from the same keys.

CHAPTER 5 COLLECTING OBJECTS

372

When storing a value in a hashtable, the hashtable uses the hash function to hash the key to its hash
code, and then searches the appropriate linked list to see if an entry with a matching key exists. If there is
an entry, its value is updated with the new value. Otherwise, a new node is created, populated with the
key and value, and appended to the list.

When retrieving a value from a hashtable, the hashtable uses the hash function to hash the key to its
hash code, and then searches the appropriate linked list to see if an entry with a matching key exists. If
there is an entry, its value is returned. Otherwise, the hashtable may return a special value to indicate
that there is no entry, or it might throw an exception.

The number of buckets is known as the hashtable’s capacity. The ratio of the number of stored
entries divided by the number of buckets is known as the hashtable’s load factor. Choosing the right load
factor is important for balancing performance with memory use:

• As the load factor approaches 1, the probability of collisions and the cost of
handling them (by searching lengthy linked lists) increase.

• As the load factor approaches 0, the hashtable’s size in terms of number of buckets
increases with little improvement in search cost.

• For many hashtables, a load factor of 0.75 is close to optimal. This value is the
default for HashMap’s hashtable implementation.

HashMap supplies four constructors:

• HashMap() creates a new, empty hashmap with an initial capacity of 16 and a load
factor of 0.75.

• HashMap(int initialCapacity) creates a new, empty hashmap with a capacity
specified by initialCapacity and a load factor of 0.75. This constructor throws
IllegalArgumentException when initialCapacity’s value is less than 0.

• HashMap(int initialCapacity, float loadFactor) creates a new, empty hashmap
with a capacity specified by initialCapacity and a load factor specified by
loadFactor. This constructor throws IllegalArgumentException when
initialCapacity is less than 0 or when loadFactor is less than or equal to 0.

• HashMap(Map<? extends K, ? extends V> m) creates a new hashmap containing
m’s entries. This constructor throws NullPointerException when m contains the
null reference.

Listing 5-19 demonstrates a hashmap.

Listing 5-19. Using a hashmap to count command-line arguments

import java.util.HashMap;
import java.util.Map;

class HashMapDemo
{
 public static void main(String[] args)
 {
 Map<String, Integer> argMap = new HashMap<>();
 for (String arg: args)
 {
 Integer count = argMap.get(arg);

CHAPTER 5 COLLECTING OBJECTS

373

 argMap.put(arg, (count == null) ? 1 : count+1);
 }
 System.out.println(argMap);
 System.out.println("Number of distinct arguments = "+argMap.size());
 }
}

HashMapDemo creates a hashmap of String keys and Integer values. Each key is one of the command-
line arguments passed to this application, and its value is the number of occurrences of that argument
on the command line.

For example, java HashMapDemo how much wood could a woodchuck chuck if a woodchuck could
chuck wood generates the following output:

{wood=2, could=2, how=1, if=1, chuck=2, a=2, woodchuck=2, much=1}
Number of distinct arguments = 8

Because the String class overrides equals() and hashCode(), Listing 5-19 can use String objects as
keys in a hashmap. When you create a class whose instances are to be used as keys, you must ensure that
you override both methods.

Listing 5-6 showed you that a class’s overriding hashCode() method can call a reference field’s
hashCode() method and return its value, provided that the class declares a single reference field (and no
primitive type fields).

More commonly, classes declare multiple fields, and a better implementation of the hashCode()
method is required. The implementation should try to generate hash codes that minimize collisions.

There is no rule on how to best implement hashCode(), and various algorithms (recipes for
accomplishing tasks) have been created. My favorite algorithm appears in Effective Java Second Edition,
by Joshua Bloch (Addison-Wesley, 2008; ISBN: 0321356683).

The following algorithm, which assumes the existence of an arbitrary class that is referred to as X,
closely follows Bloch’s algorithm, but is not identical:

1. Initialize int variable hashCode (the name is arbitrary) to an arbitrary nonzero
integer value, such as 19. This variable is initialized to a nonzero value to
ensure that it takes into account any initial fields whose hash codes are zeros.
If you initialize hashCode to 0, the final hash code will be unaffected by such
fields and you run the risk of increased collisions.

2. For each field f that is also used in X’s equals() method, calculate f’s hash
code and assign it to int variable hc as follows:

a. If f is of Boolean type, calculate hc = f?1:0.

b. If f is of byte integer, character, integer, or short integer type, calculate hc =
(int) f. The integer value is the hash code.

c. If f is of long integer type, calculate hc = (int) (f^(f>>>32)). This expression
exclusive ORs the long integer’s least significant 32 bits with its most
significant 32 bits.

d. If f is of type floating-point, calculate hc = Float.floatToIntBits(f). This
method takes +infinity, -infinity, and NaN into account.

e. If f is of type double precision floating-point, calculate long l =
Double.doubleToLongBits(f); hc = (int) (l^(l>>>32)).

f. If f is a reference field with a null reference, calculate hc = 0.

CHAPTER 5 COLLECTING OBJECTS

374

g. If f is a reference field with a nonnull reference, and if X’s equals() method
compares the field by recursively calling equals() (as in Listing 5-12’s Employee
class), calculate hc = f.hashCode(). However, if equals() employs a more
complex comparison, create a canonical (simplest possible) representation of
the field and call hashCode() on this representation.

h. If f is an array, treat each element as a separate field by applying this algorithm
recursively and combining the hc values as shown in the next step.

3. Combine hc with hashCode as follows: hashCode = hashCode*31+hc. Multiplying
hashCode by 31 makes the resulting hash value dependent on the order in
which fields appear in the class, which improves the hash value when a class
contains multiple fields that are similar (several ints, for example). I chose 31
to be consistent with the String class’s hashCode() method.

4. Return hashCode from hashCode().

■ Tip Instead of using this or another algorithm to create a hash code, you might find it easier to work with the
HashCodeBuilder class (see http://commons.apache.org/lang/api-
2.4/org/apache/commons/lang/builder/HashCodeBuilder.html for an explanation of this class). This class,
which follows Bloch’s rules, is part of the Apache Commons Lang component, which you can download from
http://commons.apache.org/lang/.

In Chapter 2, Listing 2-27’s Point class overrides equals() but does not override hashCode(). I later
presented a small code fragment that must be appended to Point’s main() method to demonstrate the
problem of not overriding hashCode(). I restate this problem here:

Although objects p1 and Point(10, 20) are logically equivalent, these objects have different hash
codes, resulting in each object referring to a different entry in the hashmap. If an object is not stored (via
put()) in that entry, get() returns null.

Listing 5-20 modifies Listing 2-27’s Point class by declaring a hashCode() method. This method uses
the aforementioned algorithm to ensure that logically equivalent Point objects hash to the same entry.

Listing 5-20. Using a hashmap to count command-line arguments

import java.util.HashMap;
import java.util.Map;

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX()

http://commons.apache.org/lang/api-2.4/org/apache/commons/lang/builder/HashCodeBuilder.html
http://commons.apache.org/lang/api-2.4/org/apache/commons/lang/builder/HashCodeBuilder.html
http://commons.apache.org/lang/

CHAPTER 5 COLLECTING OBJECTS

375

 {
 return x;
 }
 int getY()
 {
 return y;
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Point))
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }
 @Override
 public int hashCode()
 {
 int hashCode = 19;
 int hc = x;
 hashCode = hashCode*31+hc;
 hc = y;
 hashCode = hashCode*31+hc;
 return hc;
 }
 public static void main(String[] args)
 {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(20, 30);
 Point p3 = new Point(10, 20);
 // Test reflexivity
 System.out.println(p1.equals(p1)); // Output: true
 // Test symmetry
 System.out.println(p1.equals(p2)); // Output: false
 System.out.println(p2.equals(p1)); // Output: false
 // Test transitivity
 System.out.println(p2.equals(p3)); // Output: false
 System.out.println(p1.equals(p3)); // Output: true
 // Test nullability
 System.out.println(p1.equals(null)); // Output: false
 // Extra test to further prove the instanceof operator's usefulness.
 System.out.println(p1.equals("abc")); // Output: false
 Map<Point, String> map = new HashMap<Point, String>();
 map.put(p1, "first point");
 System.out.println(map.get(p1)); // Output: first point
 System.out.println(map.get(new Point(10, 20))); // Output: null
 }
}

Listing 5-20’s hashCode() method is a little verbose in that it assigns each of x and y to local variable
hc, rather than directly using these fields in the hash code calculation. However, I decided to follow this
approach to more closely mirror the hash code algorithm.

CHAPTER 5 COLLECTING OBJECTS

376

When you run this application, its last two lines of output are of the most interest. Instead of
presenting first point followed by null on two separate lines, the application now correctly presents
first point followed by first point on these lines.

■ Note LinkedHashMap is a subclass of HashMap that uses a linked list to store its entries. As a result,
LinkedHashMap’s iterator returns entries in the order in which they were inserted. For example, if Listing 5-19 had
specified Map<String, Integer> argMap = new LinkedHashMap<>();, the application’s output for java
HashMapDemo how much wood could a woodchuck chuck if a woodchuck could chuck wood would have
been {how=1, much=1, wood=2, could=2, a=2, woodchuck=2, chuck=2, if=1} followed by Number of
distinct arguments = 8.

IdentityHashMap
The IdentityHashMap class provides a Map implementation that uses reference equality (==) instead of
object equality (equals()) when comparing keys and values. This is an intentional violation of Map’s
general contract, which mandates the use of equals() when comparing elements.

IdentityHashMap obtains hash codes via System’s static int identityHashCode(Object x) method
instead of via each key’s hashCode() method. identityHashCode() returns the same hash code for x as
returned by Object’s hashCode() method, whether or not x’s class overrides hashCode(). The hash code
for the null reference is zero.

These characteristics give IdentityHashMap a performance advantage over other Map
implementations. Also, IdentityHashMap supports mutable keys (objects used as keys and whose hash
codes change when their field values change while in the map). Listing 5-21 contrasts IdentityHashMap
with HashMap where mutable keys are concerned.

Listing 5-21. Contrasting IdentityHashMap with HashMap in a mutable key context

import java.util.IdentityHashMap;
import java.util.HashMap;
import java.util.Map;

class IdentityHashMapDemo
{
 public static void main(String[] args)
 {
 Map<Employee, String> map1 = new IdentityHashMap<>();
 Map<Employee, String> map2 = new HashMap<>();
 Employee e1 = new Employee("John Doe", 28);
 map1.put(e1, "SALES");
 System.out.println(map1);
 Employee e2 = new Employee("Jane Doe", 26);
 map2.put(e2, "MGMT");
 System.out.println(map2);
 System.out.println("map1 contains key e1 = "+map1.containsKey(e1));
 System.out.println("map2 contains key e2 = "+map2.containsKey(e2));

CHAPTER 5 COLLECTING OBJECTS

377

 e1.setAge(29);
 e2.setAge(27);
 System.out.println(map1);
 System.out.println(map2);
 System.out.println("map1 contains key e1 = "+map1.containsKey(e1));
 System.out.println("map2 contains key e2 = "+map2.containsKey(e2));
 }
}
class Employee
{
 private String name;
 private int age;
 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Employee))
 return false;
 Employee e = (Employee) o;
 return e.name.equals(name) && e.age == age;
 }
 @Override
 public int hashCode()
 {
 int hashCode = 19;
 hashCode = hashCode*31+name.hashCode();
 hashCode = hashCode*31+age;
 return hashCode;
 }
 void setAge(int age)
 {
 this.age = age;
 }
 void setName(String name)
 {
 this.name = name;
 }
 @Override
 public String toString()
 {
 return name+" "+age;
 }
}

Listing 5-21’s main() method creates IdentityHashMap and HashMap instances that each store an
entry consisting of an Employee key and a String value. Because Employee instances are mutable (because
of setAge() and setName()), main() changes their ages while these keys are stored in their maps. These
changes result in the following output:

CHAPTER 5 COLLECTING OBJECTS

378

{John Doe 28=SALES}
{Jane Doe 26=MGMT}
map1 contains key e1 = true
map2 contains key e2 = true
{John Doe 29=SALES}
{Jane Doe 27=MGMT}
map1 contains key e1 = true
map2 contains key e2 = false

The last four lines show that the changed entries remain in their maps. However, map2’s
containsKey() method reports that its HashMap instance no longer contains its Employee key (which
should be Jane Doe 27), whereas map1’s containsKey() method reports that its IdentityHashMap instance
still contains its Employee key, which is now John Doe 29.

■ Note IdentityHashMap’s documentation states that “a typical use of this class is topology-preserving object
graph transformations, such as serialization or deep copying.” (I discuss serialization in Chapter 8.) It also states
the following: “another typical use of this class is to maintain proxy objects.” Also, developers responding to
stackoverflow’s “Use Cases for Identity HashMap” topic (http://stackoverflow.com/questions/838528/use-
cases-for-identity-hashmap) mention that it is much faster to use IdentityHashMap than HashMap when the
keys are Class objects.

WeakHashMap
The WeakHashMap class provides a Map implementation that is based on weakly reachable keys. Because
each key object is stored indirectly as the referent of a weak reference, the key is automatically removed
from the map only after the garbage collector clears all weak references to the key (inside and outside of
the map).

■ Note Check out Chapter 4’s “Reference API” section to learn about weakly reachable and weak references.

In contrast, value objects are stored via strong references (and should not strongly refer to their own
keys, either directly or indirectly, because doing so prevents their associated keys from being discarded).
When a key is removed from a map, its associated value object is also removed.

Listing 5-22 provides a simple demonstration of the WeakHashMap class.

Listing 5-22. Detecting a weak hashmap entry’s removal

import java.util.Map;
import java.util.WeakHashMap;

class LargeObject

http://stackoverflow.com/questions/838528/use-cases-for-identity-hashmap
http://stackoverflow.com/questions/838528/use-cases-for-identity-hashmap
http://stackoverflow.com/questions/838528/use-cases-for-identity-hashmap

CHAPTER 5 COLLECTING OBJECTS

379

{
 private byte[] memory = new byte[1024*1024*50]; // 50 megabytes
}
class WeakHashMapDemo
{
 public static void main(String[] args)
 {
 Map<LargeObject, String> map = new WeakHashMap<>();
 LargeObject lo = new LargeObject();
 map.put(lo, "Large Object");
 System.out.println(map);
 lo = null;
 while (!map.isEmpty())
 {
 System.gc();
 new LargeObject();
 }
 System.out.println(map);
 }
}

Listing 5-22’s main() method stores a 50MB LargeObject key and a String value in the weak
hashmap, and then removes the key’s strong reference by assigning null to lo. main() next enters a while
loop that executes until the map is empty (map.isEmpty() returns true).

Each loop iteration begins with a System.gc() method call, which may or may not cause a garbage
collection to take place (depending upon platform). To encourage a garbage collection, the iteration
then creates a LargeObject object and throws away its reference. This activity should eventually cause
the garbage collector to run and remove the map’s solitary entry.

When I run this application on my Windows XP platform, I observe the following output—you might
need to modify the code if you find that the application is in an infinite loop:

{LargeObject@5224ee=Large Object}
{}

■ Note WeakHashMap is useful for avoiding memory leaks, as explained in Brian Goetz’s article “Java Theory and
Practice: Plugging Memory Leaks with Weak References”
(http://www.ibm.com/developerworks/java/library/j-jtp11225/).

EnumMap
The EnumMap class provides a Map implementation whose keys are the members of the same enum. Null
keys are not permitted; any attempt to store a null key results in a thrown NullPointerException.
Because an enum map is represented internally as an array, an enum map approaches an array in terms
of performance.

EnumMap supplies the following constructors:

http://www.ibm.com/developerworks/java/library/j-jtp11225/

CHAPTER 5 COLLECTING OBJECTS

380

• EnumMap(Class<K> keyType) creates an empty enum map with the specified
keyType. This constructor throws NullPointerException when keyType contains
the null reference.

• EnumMap(EnumMap<K,? extends V> m) creates an enum map with the same key type
as m, and with m’s entries. This constructor throws NullPointerException when m
contains the null reference.

• EnumMap(Map<K,? extends V> m) creates an enum map initialized with m’s entries.
If m is an EnumMap instance, this constructor behaves like the previous constructor.
Otherwise, m must contain at least one entry in order to determine the new enum
map’s key type. This constructor throws NullPointerException when m contains
the null reference, and IllegalArgumentException when m is not an EnumMap
instance and is empty.

Listing 5-23 demonstrates EnumMap.

Listing 5-23. An enum map of Coin constants

import java.util.EnumMap;
import java.util.Map;

enum Coin
{
 PENNY, NICKEL, DIME, QUARTER
}
class EnumMapDemo
{
 public static void main(String[] args)
 {
 Map<Coin, Integer> map = new EnumMap<>(Coin.class);
 map.put(Coin.PENNY, 1);
 map.put(Coin.NICKEL, 5);
 map.put(Coin.DIME, 10);
 map.put(Coin.QUARTER, 25);
 System.out.println(map);
 Map<Coin,Integer> mapCopy = new EnumMap<>(map);
 System.out.println(mapCopy);
 }
}

When you run this application, it generates the following output:

{PENNY=1, NICKEL=5, DIME=10, QUARTER=25}
{PENNY=1, NICKEL=5, DIME=10, QUARTER=25}

SortedMap
TreeMap is an example of a sorted map, which is a map that maintains its entries in ascending order,
sorted according to the keys’ natural ordering or according to a comparator that is supplied when the
sorted map is created. Sorted maps are described by the SortedMap interface.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

381

SortedMap, whose generic type is SortedMap<K,V>, extends Map. With two exceptions, the methods it
inherits from Map behave identically on sorted maps as on other maps:

• The Iterator instance returned by the iterator() method on any of the sorted
map’s Collection views traverses the collections in order.

• The arrays returned by the Collection views’ toArray() methods contain the keys,
values, or entries in order.

■ Note Although not guaranteed, the toString() methods of the Collection views of SortedSet
implementations in the Collections Framework (such as TreeMap) return a string containing all of the view’s
elements in order.

SortedMap’s documentation requires that an implementation must provide the four standard
constructors that I presented in my discussion of TreeMap. Furthermore, implementations of this
interface must implement the methods that are described in Table 5-10.

Table 5-10. SortedMap-specific Methods

Method Description

Comparator<? super K>
comparator()

Return the comparator used to order the keys in this map, or
null when this map uses the natural ordering of its keys.

Set<Map.Entry<K,V>>
entrySet()

Return a Set view of the mappings contained in this map.
The set’s iterator returns these entries in ascending key
order. Because this map backs the view, changes that are
made to the map are reflected in the set and vice versa.

K firstKey() Return the first (lowest) key currently in this map, or throw a
NoSuchElementException instance when this map is empty.

SortedMap<K,V> headMap(K
toKey)

Return a view of that portion of this map whose keys are
strictly less than toKey. Because this map backs the returned
map, changes in the returned map are reflected in this map
and vice versa. The returned map supports all optional map
operations that this map supports. This method throws
ClassCastException when toKey is not compatible with this
map’s comparator (or, when the map has no comparator,
when toKey does not implement Comparable),
NullPointerException when toKey is null and this map does
not permit null keys, and IllegalArgumentException when
this map has a restricted range and toKey lies outside of this
range’s bounds.

CHAPTER 5 COLLECTING OBJECTS

382

Set<K> keySet() Return a Set view of the keys contained in this map. The
set’s iterator returns the keys in ascending order. Because
the map backs the view, changes that are made to the map
are reflected in the set and vice versa.

K lastKey() Return the last (highest) key currently in this map, or throw a
NoSuchElementException instance when this map is empty.

SortedMap<K,V> subMap(K
fromKey, K toKey)

Return a view of the portion of this map whose keys range
from fromKey, inclusive, to toKey, exclusive. (When fromKey
and toKey are equal, the returned map is empty.) Because
this map backs the returned map, changes in the returned
map are reflected in this map and vice versa. The returned
map supports all optional map operations that this map
supports. This method throws ClassCastException when
fromKey and toKey cannot be compared to one another using
this map’s comparator (or, when the map has no
comparator, using natural ordering), NullPointerException
when fromKey or toKey is null and this map does not permit
null keys, and IllegalArgumentException when fromKey is
greater than toKey or when this map has a restricted range
and fromKey or toKey lies outside its bounds.

SortedMap<K,V> tailMap(K
fromKey)

Return a view of that portion of this map whose keys are
greater than or equal to fromKey. Because this map backs the
returned map, changes in the returned map are reflected in
this map and vice versa. The returned map supports all
optional map operations that this map supports. This
method throws ClassCastException when fromKey is not
compatible with this map’s comparator (or, when the map
has no comparator, when fromKey does not implement
Comparable), NullPointerException when fromKey is null and
this map does not permit null keys, and
IllegalArgumentException when this map has a restricted
range and fromKey lies outside of the range’s bounds.

Collection<V> values() Return a Collection view of the values contained in this
map. The collection’s iterator returns the values in
ascending order of the corresponding keys. Because the map
backs the collection, changes that are made to the map are
reflected in the collection and vice versa.

Listing 5-24 demonstrates a sorted map based on a tree map.

Listing 5-24. A sorted map of office supply names and quantities

import java.util.Comparator;
import java.util.SortedMap;
import java.util.TreeMap;

CHAPTER 5 COLLECTING OBJECTS

383

class SortedMapDemo
{
 public static void main(String[] args)
 {
 SortedMap<String, Integer> smsi = new TreeMap<>();
 String[] officeSupplies =
 {
 "pen", "pencil", "legal pad", "CD", "paper"
 };
 int[] quantities =
 {
 20, 30, 5, 10, 20
 };
 for (int i = 0; i < officeSupplies.length; i++)
 smsi.put(officeSupplies[i], quantities[i]);
 System.out.println(smsi);
 System.out.println(smsi.headMap("pencil"));
 System.out.println(smsi.headMap("paper"));
 SortedMap<String, Integer> smsiCopy;
 Comparator<String> cmp;
 cmp = new Comparator<String>()
 {
 public int compare(String key1, String key2)
 {
 return key2.compareTo(key1); // descending order
 }
 };
 smsiCopy = new TreeMap<String, Integer>(cmp);
 smsiCopy.putAll(smsi);
 System.out.println(smsiCopy);
 }
}

When you run this application (java SortedMapDemo), it generates the following output:

{CD=10, legal pad=5, paper=20, pen=20, pencil=30}
{CD=10, legal pad=5, paper=20, pen=20}
{CD=10, legal pad=5}
{pencil=30, pen=20, paper=20, legal pad=5, CD=10}

NavigableMap
TreeMap is an example of a navigable map, which is a sorted map that can be iterated over in descending
order as well as ascending order, and which can report closest matches for given search targets.
Navigable maps are described by the NavigableMap interface, whose generic type is NavigableMap<K,V>,
which extends SortedMap, and which is described in Table 5-11.

CHAPTER 5 COLLECTING OBJECTS

384

Table 5-11. NavigableMap-specific Methods

Method Description

Map.Entry<K,V>
ceilingEntry(K key)

Return the key-value mapping associated with the least key
greater than or equal to key, or null when there is no such
key. This method throws ClassCastException when key
cannot be compared with the keys currently in the map, and
NullPointerException when key is null and this map does
not permit null keys.

K ceilingKey(K key) Return the least key greater than or equal to key, or null
when there is no such key. This method throws
ClassCastException when key cannot be compared with the
keys currently in the map, and NullPointerException when
key is null and this map does not permit null keys.

NavigableSet<K>
descendingKeySet()

Return a reverse order navigable set-based view of the keys
contained in this map. The set’s iterator returns the keys in
descending order. This map backs the set, so changes to the
map are reflected in the set and vice versa. If the map is
modified (except through the iterator’s own remove()
operation) while iterating over the set, the results of the
iteration are undefined.

NavigableMap<K,V>
descendingMap()

Return a reverse order view of the mappings contained in
this map. This map backs the descending map, so changes
to the map are reflected in the descending map and vice
versa. If either map is modified while iterating over a
collection view of either map (except through the iterator’s
own remove() operation), the results of the iteration are
undefined.

Map.Entry<K,V> firstEntry() Return a key-value mapping associated with the least key in
this map, or null when the map is empty.

Map.Entry<K,V> floorEntry(K
key)

Return a key-value mapping associated with the greatest key
less than or equal to key, or null when there is no such key.
This method throws ClassCastException when key cannot
be compared with the keys currently in the map, and
NullPointerException when key is null and this map does
not permit null keys.

K floorKey(K key) Return the greatest key less than or equal to key, or null
when there is no such key. This method throws
ClassCastException when key cannot be compared with the
keys currently in the map, and NullPointerException when
key is null and this map does not permit null keys.

CHAPTER 5 COLLECTING OBJECTS

385

NavigableMap<K,V> headMap(K
toKey, boolean inclusive)

Return a view of the portion of this map whose keys are less
than (or equal to, when inclusive is true) toKey. This map
backs the returned map, so changes in the returned map are
reflected in this map and vice versa. The returned map
supports all optional map operations that this map supports.
This method throws ClassCastException when toKey is not
compatible with this map’s comparator (or, when the map
has no comparator, when toMap does not implement
Comparable), NullPointerException when toMap is null and
this map does not permit null keys, and
IllegalArgumentException when this map has a restricted
range and toKey lies outside of this range’s bounds.

Map.Entry<K,V> higherEntry(K
key)

Return a key-value mapping associated with the least key
strictly greater than key, or null when there is no such key.
This method throws ClassCastException when key cannot
be compared with the keys currently in the map, and
NullPointerException when key is null and this map does
not permit null keys.

K higherKey(K key) Return the least key strictly greater than key, or null when
there is no such key. This method throws
ClassCastException when key cannot be compared with the
keys currently in the map, and NullPointerException when
key is null and this map does not permit null keys.

Map.Entry<K,V> lastEntry() Return a key-value mapping associated with the greatest key
in this map, or null when the map is empty.

Map.Entry<K,V> lowerEntry(K
key)

Return a key-value mapping associated with the greatest key
strictly less than key, or null when there is no such key. This
method throws ClassCastException when key cannot be
compared with the keys currently in the map, and
NullPointerException when key is null and this map does
not permit null keys.

K lowerKey(K key) Return the greatest key strictly less than key, or null when
there is no such key. This method throws
ClassCastException when key cannot be compared with the
keys currently in the map, and NullPointerException when
key is null and this map does not permit null keys.

NavigableSet<K>
navigableKeySet()

Return a navigable set-based view of the keys contained in
this map. The set’s iterator returns the keys in ascending
order. This map backs the set, so changes to the map are
reflected in the set and vice versa. If the map is modified
while iterating over the set (except through the iterator’s
own remove() operation), the results of the iteration are

CHAPTER 5 COLLECTING OBJECTS

386

undefined.

Map.Entry<K,V>
pollFirstEntry()

Remove and return a key-value mapping associated with the
least key in this map, or null when the map is empty.

Map.Entry<K,V>
pollLastEntry()

Remove and return a key-value mapping associated with the
greatest key in this map, or null when the map is empty.

NavigableMap<K,V> subMap(K
fromKey, boolean
fromInclusive, K toKey,
boolean toInclusive)

Return a view of the portion of this map whose keys range
from fromKey to toKey. (When fromKey and toKey are equal,
the returned map is empty unless fromInclusive and
toInclusive are both true.) This map backs the returned
map, so changes in the returned map are reflected in this
map and vice versa. The returned map supports all optional
map operations that this map supports. This method throws
ClassCastException when fromKey and toKey cannot be
compared to one another using this map’s comparator (or,
when the map has no comparator, using natural ordering),
NullPointerException when fromKey or toKey is null and this
map does not permit null elements, and
IllegalArgumentException when fromKey is greater than
toKey or when this map has a restricted range and fromKey or
toMap lies outside of this range’s bounds.

NavigableMap<K,V> tailMap(K
fromKey, boolean inclusive)

Return a view of the portion of this map whose keys are
greater than (or equal to, when inclusive is true) fromKey.
This map backs the returned map, so changes in the
returned map are reflected in this map and vice versa. The
returned map supports all optional map operations that this
map supports. This method throws ClassCastException
when fromKey is not compatible with this map’s comparator
(or, when the map has no comparator, when fromKey does
not implement Comparable), NullPointerException when
fromKey is null and this map does not permit null keys, and
IllegalArgumentException when this map has a restricted
range and fromKey lies outside of this range’s bounds.

Table 5-11’s methods describe the NavigableMap equivalents of the NavigableSet methods presented

in Table 5-4, and even return NavigableSet instances in two instances.
Listing 5-25 demonstrates a navigable map based on a tree map.

Listing 5-25. Navigating a map of (bird, count within a small acreage) entries

import java.util.Iterator;
import java.util.NavigableMap;
import java.util.NavigableSet;
import java.util.TreeMap;

class NavigableMapDemo

CHAPTER 5 COLLECTING OBJECTS

387

{
 public static void main(String[] args)
 {
 NavigableMap<String,Integer> nm = new TreeMap<>();
 String[] birds = { "sparrow", "bluejay", "robin" };
 int[] ints = { 83, 12, 19 };
 for (int i = 0; i < birds.length; i++)
 nm.put(birds[i], ints[i]);
 System.out.println("Map = "+nm);
 System.out.print("Ascending order of keys: ");
 NavigableSet<String> ns = nm.navigableKeySet();
 Iterator iter = ns.iterator();
 while (iter.hasNext())
 System.out.print(iter.next()+" ");
 System.out.println();
 System.out.print("Descending order of keys: ");
 ns = nm.descendingKeySet();
 iter = ns.iterator();
 while (iter.hasNext())
 System.out.print(iter.next()+" ");
 System.out.println();
 System.out.println("First entry = "+nm.firstEntry());
 System.out.println("Last entry = "+nm.lastEntry());
 System.out.println("Entry < ostrich is "+nm.lowerEntry("ostrich"));
 System.out.println("Entry > crow is "+nm.higherEntry("crow"));
 System.out.println("Poll first entry: "+nm.pollFirstEntry());
 System.out.println("Map = "+nm);
 System.out.println("Poll last entry: "+nm.pollLastEntry());
 System.out.println("Map = "+nm);
 }
}

Listing 5-25’s System.out.println("Map = "+nm); method calls rely on TreeMap’s toString() method
to obtain the contents of a navigable map.

When you run this application, you observe the following output:

Map = {bluejay=12, robin=19, sparrow=83}
Ascending order of keys: bluejay robin sparrow
Descending order of keys: sparrow robin bluejay
First entry = bluejay=12
Last entry = sparrow=83
Entry < ostrich is bluejay=12
Entry > crow is robin=19
Poll first entry: bluejay=12
Map = {robin=19, sparrow=83}
Poll last entry: sparrow=83
Map = {robin=19}

CHAPTER 5 COLLECTING OBJECTS

388

Utilities
The Collections Framework would not be complete without its Arrays and Collections utility classes.
Each class supplies various class methods that implement useful algorithms in the contexts of arrays and
collections.

Following is a sampling of the Arrays class’s array-oriented utility methods:

• static <T> List<T> asList(T... a) returns a fixed-size list backed by array a.
(Changes to the returned list “write through” to the array.) For example,
List<String> birds = Arrays.asList("Robin", "Oriole", "Bluejay"); converts
the three-element array of Strings (recall that a variable sequence of arguments is
implemented as an array) to a List whose reference is assigned to birds.

• static int binarySearch(int[] a, int key) searches array a for entry key using
the binary search algorithm (explained following this list). The array must be
sorted before calling this method; otherwise, the results are undefined. This
method returns the index of the search key, if it is contained in the array;
otherwise, (-(insertion point)-1) is returned. The insertion point is the point at
which key would be inserted into the array (the index of the first element greater
than key, or a.length if all elements in the array are less than key) and guarantees
that the return value will be greater than or equal to 0 if and only if key is found.
For example, Arrays.binarySearch(new String[] {"Robin", "Oriole",
"Bluejay"}, "Oriole") returns 1, "Oriole"’s index.

• static void fill(char[] a, char ch) stores ch in each element of the specified
character array. For example, Arrays.fill(screen[i], ' '); fills the ith row of a
2D screen array with spaces.

• static void sort(long[] a) sorts the elements in long integer array a into
ascending numerical order; for example, long lArray = new long[] { 20000L,
89L, 66L, 33L}; Arrays.sort(lArray);.

• static <T> void sort(T[] a, Comparator<? super T> c) sorts the elements in
array a using comparator c to order them. For example, when given
Comparator<String> cmp = new Comparator<String>() { public int
compare(String e1, String e2) { return e2.compareTo(e1); } }; String[]
innerPlanets = { "Mercury", "Venus", "Earth", "Mars" };,
Arrays.sort(innerPlanets, cmp); uses cmp to help in sorting innerPlanets into
descending order of its elements: Venus, Mercury, Mars, Earth is the result.

There are two common algorithms for searching an array for a specific element. Linear search
searches the array element by element from index 0 to the index of the searched-for element or the end
of the array. On average, half of the elements must be searched; larger arrays take longer to search.
However, the arrays do not need to be sorted.

In contrast, binary search searches ordered array a’s n items for element e in a much faster amount
of time. It works by recursively performing the following steps:

1. Set low index to 0.

2. Set high index to n-1.

3. If low index > high index, then Print “Unable to find ” e. End.

CHAPTER 5 COLLECTING OBJECTS

389

4. Set middle index to (low index+high index)/2.

5. If e > a[middle index], then set low index to middle index+1. Go to 3.

6. If e < a[middle index], then set high index to middle index-1. Go to 3.

7. Print “Found ” e “ at index ” middle index.

The algorithm is similar to optimally looking for a name in a phone book. Start by opening the book
to the exact middle. If the name is not on that page, proceed to open the book to the exact middle of the
first half or the second half, depending on in which half the name occurs. Repeat until you find the name
(or not).

Applying a linear search to 4,000,000,000 elements results in approximately 2,000,000,000
comparisons (on average), which takes time. In contrast, applying a binary search to 4,000,000,000
elements results in a maximum of 32 comparisons. This is why Arrays contains binarySearch() methods
and not also linearSearch() methods.

Following is a sampling of the Collections class’s collection-oriented class methods:

• static <T extends Object&Comparable<? super T>> T min(Collection<? extends
T> c) returns the minimum element of collection c according to the natural
ordering of its elements. For example,
System.out.println(Collections.min(Arrays.asList(10, 3, 18, 25))); outputs
3. All of c’s elements must implement the Comparable interface. Furthermore, all
elements must be mutually comparable. This method throws
NoSuchElementException when c is empty.

• static void reverse(List<?> l) reverses the order of list l’s elements. For
example, List<String> birds = Arrays.asList("Robin", "Oriole", "Bluejay");
Collections.reverse(birds); System.out.println(birds); results in [Bluejay,
Oriole, Robin] as the output.

• static <T> List<T> singletonList(T o) returns an immutable list containing
only object o. For example, list.removeAll(Collections.singletonList(null));
removes all null elements from list.

• static <T> Set<T> synchronizedSet(Set<T> s) returns a synchronized (thread-
safe) set backed by set s; for example, Set<String> ss =
Collections.synchronizedSet(new HashSet<String>());. In order to guarantee
serial access, it is critical that all access to the backing set is accomplished through
the returned set.

• static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m)
returns an unmodifiable view of map m; for example, Map<String, Integer> msi =
Collections.synchronizedMap(new HashMap<String, Integer>());. Query
operations on the returned map “read through” to the specified map, and
attempts to modify the returned map, whether direct or via its collection views,
result in an UnsupportedOperationException.

■ Note For performance reasons, collections implementations are unsynchronized—unsynchronized collections
have better performance than synchronized collections. To use a collection in a multithreaded context, however,

CHAPTER 5 COLLECTING OBJECTS

390

you need to obtain a synchronized version of that collection. You obtain that version by calling a method such as
synchronizedSet().

You might be wondering about the purpose for the various “empty” class methods in the
Collections class. For example, static final <T> List<T> emptyList() returns an immutable empty
list, as in List<String> ls = Collections.emptyList();. These methods are present because they offer a
useful alternative to returning null (and avoiding potential NullPointerExceptions) in certain contexts.
Consider Listing 5-26.

Listing 5-26. Empty and nonempty Lists of Birds

import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;

class Birds
{
 private List<String> birds;
 Birds()
 {
 birds = Collections.emptyList();
 }
 Birds(String... birdNames)
 {
 birds = new ArrayList<String>();
 for (String birdName: birdNames)
 birds.add(birdName);
 }
 @Override
 public String toString()
 {
 return birds.toString();
 }
}

class EmptyListDemo
{
 public static void main(String[] args)
 {
 Birds birds = new Birds();
 System.out.println(birds);
 birds = new Birds("Swallow", "Robin", "Bluejay", "Oriole");
 System.out.println(birds);
 }
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 5 COLLECTING OBJECTS

391

Listing 5-26 declares a Birds class that stores the names of various birds in a list. This class provides
two constructors, a noargument constructor and a constructor that takes a variable number of String
arguments identifying various birds.

The noargument constructor invokes emptyList() to initialize its private birds field to an empty
List of String—emptyList() is a generic method and the compiler infers its return type from its context.

If you’re wondering about the need for emptyList(), look at the toString() method. Notice that this
method evaluates birds.toString(). If we did not assign a reference to an empty List<String> to birds,
birds would contain null (the default value for this instance field when the object is created), and a
NullPointerException instance would be thrown when attempting to evaluate birds.toString().

When you run this application (java EmptyListDemo), it generates the following output:

[]
[Swallow, Robin, Bluejay, Oriole]

The emptyList() method is implemented as follows: return (List<T>) EMPTY_LIST;. This statement
returns the single List instance assigned to the EMPTY_LIST class field in the Collections class.

You might want to work with EMPTY_LIST directly, but you’ll run into an unchecked warning message
if you do, because EMPTY_LIST is declared to be of the raw type List, and mixing raw types with generic
types leads to such messages. Although you could suppress the warning, you’re better off using the
emptyList() method.

Suppose you add a void setBirds(List<String> birds) method to Birds, and pass an empty list to
this method, as in birds.setBirds(Collections.emptyList());. The compiler will respond with an error
message stating that it requires the argument to be of type List<String>, but instead the argument is of
type List<Object>. It does so because the compiler cannot figure out the proper type from this context,
and so it chooses List<Object>.

There is a way to solve this problem, which will probably look very strange. Specify
birds.setBirds(Collections.<String>emptyList());, where the formal type parameter list and its actual
type argument appear after the member access operator and before the method name. The compiler will
now know that the proper type argument is String, and that emptyList() is to return List<String>.

Legacy Collections APIs
Java 1.2 introduced the Collections Framework. Prior to the framework’s inclusion in Java, developers
had two choices where collections were concerned: create their own frameworks, or use the Vector,
Enumeration, Stack, Dictionary, Hashtable, Properties, and BitSet types, which were introduced by Java
1.0.

Vector is a concrete class that describes a growable array, much like ArrayList. Unlike an ArrayList
instance, a Vector instance is synchronized. Vector has been generified and also retrofitted to support
the Collections Framework, which makes statements such as List<String> list = new
Vector<String>(); legal.

The Collections Framework provides Iterator for iterating over a collection’s elements. In contrast,
Vector’s elements() method returns an instance of a class that implements the Enumeration interface for
enumerating (iterating over and returning) a Vector instance’s elements via Enumeration’s
hasMoreElements() and nextElement() methods.

Vector is subclassed by the concrete Stack class, which represents a LIFO data structure. Stack
provides an E push(E item) method for pushing an object onto the stack, an E pop() method for
popping an item off the top of the stack, and a few other methods, such as boolean empty() for
determining whether or not the stack is empty.

Stack is a good example of bad API design. By inheriting from Vector, it is possible to call Vector’s
void add(int index, E element) method to add an element anywhere you wish, and violate a Stack

CHAPTER 5 COLLECTING OBJECTS

392

instance’s integrity. In hindsight, Stack should have used composition in its design: use a Vector
instance to store a Stack instance’s elements.

Dictionary is an abstract superclass for subclasses that map keys to values. The concrete Hashtable
class is Dictionary’s only subclass. As with Vector, HashTable instances are synchronized, HashTable has
been generified, and HashTable has been retrofitted to support the Collections Framework.

Hashtable is subclassed by Properties, a concrete class representing a persistent set of properties
(String-based key/value pairs that identify application settings). Properties provides Object
setProperty(String key, String value) for storing a property, and public String getProperty(String
key) for returning a property’s value.

■ Note Application’s use properties for various purposes. For example, if your application has a graphical user
interface, you might persist its main window’s screen location and size to a file via a Properties object so that
the application can restore the window’s location and size when it next runs.

Properties is another good example of bad API design. By inheriting from Hashtable, you can call
Hashtable’s V put(K key, V value) method to store an entry with a non-String key and/or a non-String
value. In hindsight, Properties should have leveraged composition: store a Properties instance’s
elements in a Hashtable instance.

■ Note Chapter 2 discusses wrapper classes, which is how Stack and Properties should have been
implemented.

Finally, BitSet is a concrete class that describes a variable-length set of bits. This class’s ability to
represent bitsets of arbitrary length contrasts with the previously described integer-based, fixed-length
bitset that is limited to a maximum number of members: 32 members for an int-based bitset, or 64
members for a long-based bitset.

BitSet provides a pair of constructors for initializing a BitSet instance: BitSet() initializes the
instance to initially store an implementation-dependent number of bits, whereas BitSet(int nbits)
initializes the instance to initially store nbits bits. BitSet also provides various methods, including the
following:

• void and(BitSet bs) bitwise ANDs this bitset with bs. This bitset is modified such
that a bit is set to 1 when it and the bit at the same position in bs are 1.

• void andNot(BitSet bs) sets all the bits in this bitset to 0 whose corresponding
bits are set to 1 in bs.

• void clear() sets all the bits in this bitset to 0.

• Object clone() clones this bitset to produce a new bitset. The clone has exactly
the same bits set to one as this bitset.

CHAPTER 5 COLLECTING OBJECTS

393

• boolean get(int bitIndex) returns the value of this bitset’s bit, as a Boolean
true/false value (true for 1, false for 0) at the zero-based bitIndex. This method
throws IndexOutOfBoundsException when bitIndex is less than 0.

• int length() returns the “logical size” of this bitset, which is the index of the
highest 1 bit plus 1, or 0 when this bitset contains no 1 bits.

• void or(BitSet bs) bitwise inclusive ORs this bitset with bs. This bitset is
modified such that a bit is set to 1 when it or the bit at the same position in bs is 1,
or when both bits are 1.

• void set(int bitIndex, boolean value) sets the bit at the zero-based bitIndex to
value (true is converted to 1; false is converted to 0). This method throws
IndexOutOfBoundsException when bitIndex is less than 0.

• int size() returns the number of bits that are being used by this bitset to
represent bit values.

• String toString() returns a string representation of this bitset in terms of the
positions of bits that are 1; for example, {4, 5, 9, 10}.

• void xor(BitSet set) bitwise exclusive ORs this bitset with bs. This bitset is
modified such that a bit is set to 1 when either it or the bit at the same position in
bs (but not both) is 1.

Listing 5-27 presents an application that demonstrates some of these methods, and gives you more
insight into how the bitwise AND (&), bitwise inclusive OR (|), and bitwise exclusive OR (^) operators
work.

Listing 5-27. Working with variable-length bitsets

import java.util.BitSet;

class BitSetDemo
{
 public static void main(String[] args)
 {
 BitSet bs1 = new BitSet();
 bs1.set(4, true);
 bs1.set(5, true);
 bs1.set(9, true);
 bs1.set(10, true);
 BitSet bsTemp = (BitSet) bs1.clone();
 dumpBitset(" ", bs1);
 BitSet bs2 = new BitSet();
 bs2.set(4, true);
 bs2.set(6, true);
 bs2.set(7, true);
 bs2.set(9, true);
 dumpBitset(" ", bs2);
 bs1.and(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("AND (&) ", bs1);

CHAPTER 5 COLLECTING OBJECTS

394

 System.out.println();
 bs1 = bsTemp;
 dumpBitset(" ", bs1);
 dumpBitset(" ", bs2);
 bsTemp = (BitSet) bs1.clone();
 bs1.or(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("OR (|) ", bs1);
 System.out.println();
 bs1 = bsTemp;
 dumpBitset(" ", bs1);
 dumpBitset(" ", bs2);
 bsTemp = (BitSet) bs1.clone();
 bs1.xor(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("XOR (^) ", bs1);
 }
 static void dumpBitset(String preamble, BitSet bs)
 {
 System.out.print(preamble);
 int size = Math.min(bs.size(), 16);
 for (int i = 0; i < size; i++)
 System.out.print(bs.get(i) ? "1" : "0");
 System.out.print(" size("+bs.size()+"), length("+bs.length()+")");
 System.out.println();
 }
 static void dumpSeparator(int len)
 {
 System.out.print(" ");
 for (int i = 0; i < len; i++)
 System.out.print("-");
 System.out.println();
 }
}

Why did I specify Math.min(bs.size(), 16) in dumpBitset(), and pass a similar expression to
dumpSeparator()? I wanted to display exactly 16 bits and 16 dashes (for aesthetics), and needed to
account for a bitset’s size being less than 16. Although this does not happen with the JDK’s BitSet class,
it might happen with a non-JDK variant.

When you run this application, it generates the following output:

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

AND (&) 0000100001000000 size(64), length(10)

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

OR (|) 0000111101100000 size(64), length(11)

 0000110001100000 size(64), length(11)

CHAPTER 5 COLLECTING OBJECTS

395

 0000101101000000 size(64), length(10)

XOR (^) 0000011100100000 size(64), length(11)

■ Caution Unlike Vector and Hashtable, BitSet is not synchronized. You must externally synchronize access to
this class when using BitSet in a multithreaded context.

The Collections Framework has made Vector, Stack, Dictionary, and Hashtable obsolete. These
types continue to be part of the standard class library to support legacy code.

The framework’s Iterator interface has largely obsoleted the Enumeration interface. However,
because the java.util.StringTokenizer class (which is somewhat useful, and which is briefly discussed
in Chapter 6) uses Enumeration, this interface still has some credibility.

The Preferences API (see Appendix C) has made Properties largely obsolete. However, the standard
class library still uses Properties in various places (such as in the context of XSLT, discussed in Chapter
10). You’ll probably have a few uses for this class as well.

Because BitSet is still relevant, this class continues to be improved. For example, Java 7 introduces
new valueOf() class methods (such as static BitSet valueOf(byte[] bytes)) and instance methods
(such as int previousSetBit(int fromIndex)) into this class.

■ Note It is not surprising that BitSet is still being improved (as recently as Java 7 at time of writing) when you
realize the usefulness of variable-length bitsets. Because of their compactness and other advantages, variable-
length bitsets are often used to implement an operating system’s priority queues and facilitate memory page
allocation. Unix-oriented file systems also use bitsets to facilitate the allocation of inodes (information nodes) and
disk sectors. And bitsets are useful in Huffman coding, a data-compression algorithm for achieving lossless data
compression.

Creating Your Own Collections
Arrays, the Collections Framework, and legacy classes such as BitSet are suitable for organizing groups
of objects (or, in the case of BitSet, sets of bits that are interpreted as Boolean true/false values), and you
should use them wherever possible before creating your own collection APIs. After all, why “reinvent the
wheel?”

The Collections Framework supports lists, sets, queues, deques, and maps. If your collection
requirement can fit into one of these categories, then go with this framework. Keep in mind that you can
also take advantage of trees in TreeSet and TreeMap implementation contexts, and stacks in deque
contexts.

Perhaps you need a different implementation of one of the Collections Framework core interfaces. If
so, you can extend this framework by implementing the interface, or by subclassing one of the more
convenient “Abstract” classes, such as AbstractQueue. For example, author Cay Horstmann
demonstrates extending this class to implement a circular array queue (see

CHAPTER 5 COLLECTING OBJECTS

396

http://www.java2s.com/Code/Java/Collections-Data-
Structure/Howtoextendthecollectionsframework.htm).

OBEYING CONTRACTS

When you implement a core interface or extend one of the Abstract classes, you should ensure that your
implementation class doesn’t deviate from the various contracts described in the Java documentation for
these interfaces. For example, List places the following stipulation on the hashCode() method that it
inherits from Collection:

The hash code of a list is defined to be the result of the following calculation:

int hashCode = 1;
for (E e: list)
 hashCode = 31*hashCode+(e==null ? 0 : e.hashCode());

This calculation ensures that list1.equals(list2) implies that list1.hashCode() ==
list2.hashCode() for any two lists, list1 and list2, as required by the general contract of
Object.hashCode().

The AbstractList class, which partially implements List, has this to say about hashCode():This
implementation uses exactly the code that is used to define the list hash function in the documentation for
the List.hashCode() method.

When it comes to lists, you should also be aware of the RandomAccess interface:

ArrayList implements the RandomAccess interface, which is a marker interface used by List
implementation classes to indicate that they support fast (generally constant time) random access. The
primary purpose of this interface is to allow generic algorithms to alter their behavior to provide good
performance when applied to either random or sequential access lists.

The best algorithms for manipulating random access List implementations (such as ArrayList) can
produce quadratic behavior when applied to sequential access List implementations (such as
LinkedList). Generic list algorithms are encouraged to check whether the given list is an instance of this
interface (via instanceof) before applying an algorithm that would provide poor performance if it were
applied to a sequential access list, and to alter their behavior if necessary to guarantee acceptable
performance.

The distinction between random and sequential access is often fuzzy. For example, some List
implementations provide asymptotically linear (a line whose distance to a given curve tends to zero) access
times if they get huge, but constant access times in practice. Such a List implementation class should
generally implement this interface. As a rule of thumb, a List implementation class should implement this
interface if, for typical instances of the class, the following loop:

for (int i=0, n=list.size(); i < n; i++) list.get(i);

runs faster than the following loop:

for (Iterator i=list.iterator(); i.hasNext();) i.next();

http://www.java2s.com/Code/Java/Collections-Data-Structure/Howtoextendthecollectionsframework.htm
http://www.java2s.com/Code/Java/Collections-Data-Structure/Howtoextendthecollectionsframework.htm

CHAPTER 5 COLLECTING OBJECTS

397

Keep these advices in mind and you should find it easier to extend the Collections Framework.

You might require a collection that isn’t supported by the Collections Framework (or perhaps you

only think it isn’t supported). For example, you might want to model a sparse matrix, a table where many
or most of its elements are zeros (see http://en.wikipedia.org/wiki/Sparse_matrix). A sparse matrix is
a good data structure for implementing a spreadsheet, for example.

If the elements represent bits, you could use BitSet to represent the matrix. If the elements are
objects, you might use an array. The problem with either approach is scalability and the limits of heap
space. For example, suppose you need a table with 100,000 rows and 100,000 columns, yielding a
maximum of 10 billion elements.

You can forget about using BitSet (assuming that each entry occupies a single bit) because
10,000,000,000 is too large to pass to the BitSet(int nbits) constructor; some information will be lost
when you cast this long integer to an integer. You can also forget about using an array because you’ll
exhaust the JVM’s memory and obtain a java.lang.OutOfMemoryError at runtime.

Because you’re dealing with a sparse matrix, assume that no more than 25,000 table entries are
nonzero at any one time. After all, a sparse matrix has a sparse number of nonzero entries. This is a lot
more manageable.

You won’t use BitSet to represent this matrix because you’ll assume that each matrix entry is an
object. You can’t use a two-dimensional array to store these objects because the array would need
100,000 rows by 100,000 columns to properly index the sparse matrix, and you would exhaust memory
by being extremely wasteful in storing zero (or null, in the case of object) values.

There is another way to represent this matrix, and that is to create a linked list of nodes.
A node is an object consisting of value and link fields. Unlike an array, where each element stores a

single value of the same primitive type or reference supertype, a node can store multiple values of
different types. It can also store links (references to other nodes).

Consider Listing 5-28’s Node class:

Listing 5-28. A node consists of value fields and link fields

class Node
{
 // value field
 String name;
 // link field
 Node next;
}

Node describes simple nodes where each node consists of a single name value field and a single next
link field. Notice that next is of the same type as the class in which it is declared. This arrangement lets a
node instance store a reference to another node instance (which is the next node) in this field. The
resulting nodes are linked together.

Listing 5-29 presents a Nodes class that demonstrates connecting Nodes together into a linked list,
and then iterating over this list to output the values of the name fields.

Listing 5-29. Creating and iterating over a linked list of nodes

class Nodes
{
 public static void main(String[] args)
 {
 Node top = new Node();

http://en.wikipedia.org/wiki/Sparse_matrix

CHAPTER 5 COLLECTING OBJECTS

398

 top.name = "node 1";
 top.next = new Node();
 top.next.name = "node 2";
 top.next.next = new Node();
 top.next.next.name = "node 3";
 top.next.next.next = null;
 Node temp = top;
 while (temp != null)
 {
 System.out.println(temp.name);
 temp = temp.next;
 }
 }
}

Listing 5-29 demonstrates the creation of a singly linked list (a list where each node consists of a
single link field). The first Node instance is pointed to by reference variable top, which identifies the top
of the list. Each subsequent node in this linked list is referenced from its predecessor’s next field. The
final next field is set to null to signify the end of the linked list. (This explicit initialization is unnecessary
because the field defaults to the null reference during instance initialization, but is present for clarity).

Figure 5-5 reveals this three-node linked list.

Figure 5-5. Reference variable top points to the first node in this three-node linked list.

Listing 5-29 also shows you how to traverse this singly linked list by following each Node object’s next
field. Prior to the traversal, top’s reference is assigned to variable temp, to preserve the start of this linked
list so that further manipulations (node insertions, removals, updates) and searches can be performed.

The while loop iterates until temp contains the null reference, outputting each node’s name field and
assigning the reference in the current node’s next field to temp.

When you run this application, it generates the following output:

node 1
node 2
node 3

You might declare the following Cell class to represent a sparse matrix node for a spreadsheet,
which is known as a cell:

class Cell
{
 int row;
 int col;
 Object value;
 Node next;
}

When called upon to update the spreadsheet on the screen, your spreadsheet application’s
rendering code traverses its linked list of Cell nodes. For each cell, it first examines (row, col) to learn if
the cell is visible and should be rendered. If the cell is visible, the instanceof operator is used to
determine value’s type, and value is then displayed. As soon as null is encountered, the rendering code
knows that there are no more spreadsheet elements to render.

CHAPTER 5 COLLECTING OBJECTS

399

Before creating your own linked list class to store Cell instances, you should realize that doing so
isn’t necessary. Instead, you can leverage the Collection Framework’s LinkedList class to store Cell
instances (without the unnecessary next fields). Although you might occasionally need to create your
own node-based collections, the moral of this exercise is that you should always think about using
arrays, the Collections Framework, or a legacy class such as BitSet before inventing your own API to
collect objects.

EXERCISES

The following exercises are designed to test your understanding of collections:

1. As an example of array list usefulness, create a JavaQuiz application that
presents a multiple-choice-based quiz on Java features. The JavaQuiz class’s
main() method first populates the array list with the entries in a QuizEntry array
(e.g., new QuizEntry("What was Java's original name?", new String[] {
"Oak", "Duke", "J", "None of the above" },'A')). Each entry consists of a
question, four possible answers, and the letter (A, B, C, or D) of the correct
answer. main() then uses the array list’s iterator() method to return an
Iterator instance, and this instance’s hasNext() and next() methods to iterate
over the list. Each of the iterations outputs the question and four possible answers,
and then prompts the user to enter the correct choice. After the user enters A, B,
C, or D (via System.in.read()), main() outputs a message stating whether or not
the user made the correct choice.

2. Create a word-counting application (WC) that reads words from the standard input
(via System.in.read()) and stores them in a map along with their frequency
counts. For this exercise, a word consists of letters only; use the
java.lang.Character class’s isLetter() method to make this determination.
Also, use Map’s get() and put() methods and take advantage of autoboxing to
record a new entry or update an existing entry’s count—the first time a word is
seen, its count is set to 1. Use Map’s entrySet() method to return a Set of
entries, and iterate over these entries, outputting each entry to the standard
output.

3. Collections provides the static int frequency(Collection<?> c, Object
o) method to return the number of collection c elements that are equal to o.
Create a FrequencyDemo application that reads its command-line arguments and
stores all arguments except for the last argument in a list, and then calls
frequency() with the list and last command-line argument as this method’s
arguments. It then outputs this method’s return value (the number of occurrences
of the last command-line argument in the previous command-line arguments). For
example, java FrequencyDemo should output Number of occurrences of null
= 0, and java FrequencyDemo how much wood could a woodchuck chuck if
a woodchuck could chuck wood wood should output Number of occurrences
of wood = 2.

CHAPTER 5 COLLECTING OBJECTS

400

Summary
The Collections Framework is a standard architecture for representing and manipulating collections,
which are groups of objects stored in instances of classes designed for this purpose. This framework
largely consists of core interfaces, implementation classes, and utility classes.

The core interfaces make it possible to manipulate collections independently of their
implementations. They include Iterable, Collection, List, Set, SortedSet, NavigableSet, Queue, Deque,
Map, SortedMap, and NavigableMap. Collection extends Iterable; List, Set, and Queue each extend
Collection; SortedSet extends Set; NavigableSet extends SortedSet; Deque extends Queue; SortedMap
extends Map; and NavigableMap extends SortedMap.

The framework’s implementation classes include ArrayList, LinkedList, TreeSet, HashSet,
LinkedHashSet, EnumSet, PriorityQueue, ArrayDeque, TreeMap, HashMap, LinkedHashMap, IdentityHashMap,
WeakHashMap, and EnumMap. The name of each concrete class ends in a core interface name, identifying the
core interface on which it is based.

The framework’s implementation classes also include the abstract AbstractCollection,
AbstractList, AbstractSequentialList, AbstractSet, AbstractQueue, and AbstractMap classes. These
classes offer skeletal implementations of the core interfaces to facilitate the creation of concrete
implementation classes.

The Collections Framework would not be complete without its Arrays and Collections utility
classes. Each class supplies various class methods that implement useful algorithms in the contexts of
arrays and collections.

Before Java 1.2’s introduction of the Collections Framework, developers had two choices where
collections were concerned: create their own frameworks, or use the Vector, Enumeration, Stack,
Dictionary, Hashtable, Properties, and BitSet types, which were introduced by Java 1.0.

The Collections Framework has made Vector, Stack, Dictionary, and Hashtable obsolete. The
framework’s Iterator interface has largely obsoleted the Enumeration interface. The Preferences API has
made Properties largely obsolete. Because BitSet is still relevant, this class continues to be improved.

Arrays, the Collections Framework, and legacy classes such as BitSet are suitable for organizing
groups of objects (or, in the case of BitSet, sets of bits that are interpreted as Boolean true/false values),
and you should use them wherever possible before creating your own collection APIs.

However, you might need a different implementation of one of the Collections Framework core
interfaces. If so, you can extend this framework by implementing the interface, or by subclassing one of
the more convenient “Abstract” classes, such as AbstractQueue.

You might require a collection that isn’t supported by the Collections Framework (or perhaps you
only think it isn’t supported). For example, you might want to model a sparse matrix, a table where
many or most of its elements are zeros. A sparse matrix is a good data structure for implementing a
spreadsheet, for example.

To model a spreadsheet or other sparse matrix, you can work with nodes, which are objects
consisting of value and link fields. Unlike an array, where each element stores a single value of the same
primitive type or reference supertype, a node can store multiple values of different types. It can also
store references to other nodes, which are known as links.

You can connect nodes together into linked lists, but (at least for singly linked lists) there is no need
to do so because you can take advantage of the Collections Framework’s LinkedList class for this task.
After all, you should not “reinvent the wheel.”

Broadly speaking, the Collections Framework is an example of a utility API. Chapter 6 continues to
focus on utility APIs by introducing you to Java’s concurrency utilities, which extend the Collections
Framework, the java.util.Objects class, and more.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

C H A P T E R 6

401

Touring Additional Utility APIs

Chapter 5 introduced you to the Collections Framework, which is a collection of utility APIs. Chapter 6
introduces you to additional utility APIs, specifically the concurrency utilities, Objects, and Random.

Concurrency Utilities
Java 5 introduced the concurrency utilities, which are classes and interfaces that simplify the
development of concurrent (multithreaded) applications. These types are located in the
java.util.concurrent package and in its java.util.concurrent.atomic and
java.util.concurrent.locks subpackages.

The concurrency utilities leverage the low-level Threading API (see Chapter 4) in their
implementations and provide higher-level building blocks to simplify creating multithreaded
applications. They are organized into executor, synchronizer, concurrent collection, lock, atomic
variable, and additional utility categories.

Executors
Chapter 4 introduced the Threading API, which lets you execute runnable tasks via expressions such as
new Thread(new RunnableTask()).start();. These expressions tightly couple task submission with the
task’s execution mechanics (run on the current thread, a new thread, or a thread arbitrarily chosen from
a pool [group] of threads).

 Note A task is an object whose class implements the java.lang.Runnable interface (a runnable task) or the
java.util.concurrent.Callable interface (a callable task).

The concurrency utilities provide executors as a high-level alternative to low-level Threading API
expressions for executing runnable tasks. An executor is an object whose class directly or indirectly
implements the java.util.concurrent.Executor interface, which decouples task submission from task-
execution mechanics.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

402

 Note The executor framework’s use of interfaces to decouple task submission from task-execution mechanics
is analogous to the Collections Framework’s use of core interfaces to decouple lists, sets, queues, deques, and
maps from their implementations. Decoupling results in flexible code that is easier to maintain.

Executor declares a solitary void execute(Runnable runnable) method that executes the runnable
task named runnable at some point in the future. execute() throws java.lang.NullPointerException
when runnable is null, and java.util.concurrent.RejectedExecutionException when it cannot execute
runnable.

 Note RejectedExecutionException can be thrown when an executor is shutting down and does not want to
accept new tasks. Also, this exception can be thrown when the executor does not have enough room to store the
task (perhaps the executor uses a bounded blocking queue to store tasks and the queue is full—I discuss blocking
queues later in this chapter).

The following example presents the Executor equivalent of the aforementioned new Thread(new
RunnableTask()).start(); expression:

Executor executor = ...; // ... represents some executor creation
executor.execute(new RunnableTask());

Although Executor is easy to use, this interface is limited in various ways:

• Executor focuses exclusively on Runnable. Because Runnable’s run() method does
not return a value, there is no convenient way for a runnable task to return a value
to its caller.

• Executor does not provide a way to track the progress of executing runnable tasks,
cancel an executing runnable task, or determine when the runnable task finishes
execution.

• Executor cannot execute a collection of runnable tasks.

• Executor does not provide a way for an application to shut down an executor
(much less to properly shut down an executor).

These limitations are addressed by the java.util.concurrent.ExecutorService interface, which
extends Executor, and whose implementation is typically a thread pool (a group of reusable threads).
Table 6-1 describes ExecutorService’s methods.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

403

Table 6-1. ExecutorService Methods

Method Description

boolean
awaitTermination(long
timeout, TimeUnit unit)

Block (wait) until all tasks have finished after a shutdown
request, the timeout (measured in unit time units) expires,
or the current thread is interrupted, whichever happens first.
Return true when this executor has terminated, and false
when the timeout elapses before termination. This method
throws java.lang.InterruptedException when interrupted.

<T> List<Future<T>>
invokeAll(Collection<?
extends Callable<T>> tasks)

Execute each callable task in the tasks collection, and return
a java.util.List of java.util.concurrent.Future instances
that hold task statuses and results when all tasks complete—
a task completes through normal termination or by throwing
an exception. The List of Futures is in the same sequential
order as the sequence of tasks returned by tasks’ iterator.
This method throws InterruptedException when it is
interrupted while waiting, in which case unfinished tasks are
canceled, NullPointerException when tasks or any of its
elements is null, and RejectedExecutionException when any
one of tasks’ tasks cannot be scheduled for execution.

<T> List<Future<T>>
invokeAll(Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

Execute each callable task in the tasks collection, and return
a List of Future instances that hold task statuses and results
when all tasks complete—a task completes through normal
termination or by throwing an exception—or the timeout
(measured in unit time units) expires. Tasks that are not
completed at expiry are canceled. The List of Futures is in
the same sequential order as the sequence of tasks returned
by tasks’ iterator. This method throws
InterruptedException when it is interrupted while waiting,
in which case unfinished tasks are canceled. It also throws
NullPointerException when tasks, any of its elements, or
unit is null; and throws RejectedExecutionException when
any one of tasks’ tasks cannot be scheduled for execution.

<T> T invokeAny(Collection<?
extends Callable<T>> tasks)

Execute the given tasks, returning the result of an arbitrary
task that has completed successfully (i.e., without throwing
an exception), if any does. Upon normal or exceptional
return, tasks that have not completed are canceled. This
method throws InterruptedException when it is interrupted
while waiting, NullPointerException when tasks or any of
its elements is null, java.lang.IllegalArgumentException
when tasks is empty,
java.util.concurrent.ExecutionException when no task
completes successfully, and RejectedExecutionException
when none of the tasks can be scheduled for execution.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

404

<T> T invokeAny(Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

Execute the given tasks, returning the result of an arbitrary
task that has completed successfully (i.e., without throwing
an exception), if any does before the timeout (measured in
unit time units) expires—tasks that are not completed at
expiry are canceled. Upon normal or exceptional return,
tasks that have not completed are canceled. This method
throws InterruptedException when it is interrupted while
waiting, NullPointerException when tasks, any of its
elements, or unit is null, IllegalArgumentException when
tasks is empty, java.util.concurrent.TimeoutException
when the timeout elapses before any task successfully
completes, ExecutionException when no task completes
successfully, and RejectedExecutionException when none of
the tasks can be scheduled for execution.

boolean isShutdown() Return true when this executor has been shut down;
otherwise, return false.

boolean isTerminated() Return true when all tasks have completed following
shutdown; otherwise, return false. This method will never
return true prior to shutdown() or shutdownNow() being
called.

void shutdown() Initiate an orderly shutdown in which previously submitted
tasks are executed, but no new tasks will be accepted. Calling
this method has no effect after the executor has shut down.
This method does not wait for previously submitted tasks to
complete execution. Use awaitTermination() if waiting is
necessary.

List<Runnable> shutdownNow() Attempt to stop all actively executing tasks, halt the
processing of waiting tasks, and return a list of the tasks that
were awaiting execution. There are no guarantees beyond
best-effort attempts to stop processing actively executing
tasks. For example, typical implementations will cancel via
Thread.interrupt(), so any task that fails to respond to
interrupts may never terminate. This method does not wait
for actively executing tasks to terminate. Use
awaitTermination() if waiting is necessary.

<T> Future<T>
submit(Callable<T> task)

Submit a callable task for execution and return a Future
instance representing task’s pending results. The Future
instance’s get() method returns task’s result upon
successful completion. This method throws
RejectedExecutionException when task cannot be
scheduled for execution, and NullPointerException when
task is null. If you would like to immediately block while
waiting for a task to complete, you can use constructions of

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

405

the form result = exec.submit(aCallable).get();.

Future<?> submit(Runnable
task)

Submit a runnable task for execution and return a Future
instance representing task’s pending results. The Future
instance’s get() method returns task’s result upon
successful completion. This method throws
RejectedExecutionException when task cannot be
scheduled for execution, and NullPointerException when
task is null.

<T> Future<T>
submit(Runnable task, T
result)

Submit a runnable task for execution and return a Future
instance whose get() method returns result upon
successful completion. This method throws
RejectedExecutionException when task cannot be
scheduled for execution, and NullPointerException when
task is null.

Table 6-1 refers to java.util.concurrent.TimeUnit, an enum that represents time durations at given

units of granularity: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS.
Furthermore, TimeUnit declares methods for converting across units (e.g., long toHours(long
duration)), and for performing timing and delay operations (e.g., void sleep(long timeout)) in these
units.

Table 6-1 also refers to callable tasks, which are analogous to runnable tasks. Unlike Runnable,
whose void run() method cannot throw checked exceptions, Callable<V> declares a V call() method
that returns a value, and which can throw checked exceptions because call() is declared with a throws
Exception clause.

Finally, Table 6-1 refers to the Future interface, which represents the result of an asynchronous
computation. Future, whose generic type is Future<V>, provides methods for canceling a task, for
returning a task’s value, and for determining whether or not the task has finished. Table 6-2 describes
Future’s methods.

Table 6-2. Future Methods

Method Description

boolean cancel(boolean
mayInterruptIfRunning)

Attempt to cancel execution of this task, and return true
when the task was canceled; otherwise, return false (perhaps
the task completed normally before this method was called).

The cancellation attempt fails when the task has completed,
has already been canceled, or could not be canceled for
some other reason. If successful and this task had not started
when cancel() was called, the task should never run. If the
task has already started, then mayInterruptIfRunning
determines whether (true) or not (false) the thread executing
this task should be interrupted in an attempt to stop the
task. After this method returns, subsequent calls to isDone()
always return true. Subsequent calls to isCancelled() always
return true when cancel() returns true.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

406

V get() Wait if necessary for the task to complete and return the
result. This method throws
java.util.concurrent.CancellationException when the
task was canceled prior to this method being called,
ExecutionException when the task threw an exception, and
InterruptedException when the current thread was
interrupted while waiting.

V get(long timeout, TimeUnit
unit)

Wait at most timeout units (as specified by unit) for the task
to complete and then return the result (if available). This
method throws CancellationException when the task was
canceled prior to this method being called,
ExecutionException when the task threw an exception,
InterruptedException when the current thread was
interrupted while waiting, and TimeoutException when this
method’s timeout value expires (the wait times out).

boolean isCancelled() Return true when this task was canceled before it completed
normally; otherwise, return false.

boolean isDone() Return true when this task completed; otherwise, return
false. Completion may be due to normal termination, an
exception, or cancellation—this method returns true in all
these cases.

Suppose you intend to write an application whose graphical user interface (GUI) lets the user enter

a word. After the user enters the word, the application presents this word to several online dictionaries
and obtains each dictionary’s entry. These entries are subsequently displayed to the user.

Because online access can be slow, and because the user interface should remain responsive
(perhaps the user might want to end the application), you offload the “obtain word entries” task to an
executor that runs this task on a separate thread. The following example employs ExecutorService,
Callable, and Future to accomplish this objective:

ExecutorService executor = ...; // ... represents some executor creation
Future<String[]> taskFuture = executor.submit(new Callable<String[]>()
 {
 public String[] call()
 {
 String[] entries = ...;
 // Access online dictionaries
 // with search word and populate
 // entries with their resulting
 // entries.
 return entries;
 }
 });
// Do stuff.
String entries = taskFuture.get();

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

407

After obtaining an executor in some manner (you will learn how shortly), the example’s main thread
submits a callable task to the executor. The submit() method immediately returns with a reference to a
Future object for controlling task execution and accessing results. The main thread ultimately calls this
object’s get() method to get these results.

 Note The java.util.concurrent.ScheduledExecutorService interface extends ExecutorService and
describes an executor that lets you schedule tasks to run once or to execute periodically after a given delay.

Although you could create your own Executor, ExecutorService, and ScheduledExecutorService
implementations (such as class DirectExecutor implements Executor { public void
execute(Runnable r) { r.run(); } }—run executor directly on the calling thread), the concurrency
utilities offer a simpler alternative: java.util.concurrent.Executors.

 Tip If you intend to create your own ExecutorService implementations, you will find it helpful to work with the
java.util.concurrent.AbstractExecutorService and java.util.concurrent.FutureTask classes.

The Executors utility class declares several class methods that return instances of various
ExecutorService and ScheduledExecutorService implementations (and other kinds of instances). This
class’s static methods accomplish the following tasks:

• Create and return an ExecutorService instance that is configured with commonly
used configuration settings.

• Create and return a ScheduledExecutorService instance that is configured with
commonly used configuration settings.

• Create and return a “wrapped” ExecutorService or ScheduledExecutorService
instance that disables reconfiguration of the executor service by making
implementation-specific methods inaccessible.

• Create and return a java.util.concurrent.ThreadFactory instance for creating
new threads.

• Create and return a Callable instance out of other closure-like forms so that it can
be used in execution methods requiring Callable arguments (e.g.,
ExecutorService’s submit(Callable) method). (Check out Wikipedia’s “Closure
(computer science)” entry
[http://en.wikipedia.org/wiki/Closure_(computer_science)] to learn about
closures.)

For example, static ExecutorService newFixedThreadPool(int nThreads) creates a thread pool
that reuses a fixed number of threads operating off a shared unbounded queue. At most, nThreads
threads are actively processing tasks. If additional tasks are submitted when all threads are active, they
wait in the queue for an available thread.

http://en.wikipedia.org/wiki/Closure_

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

408

If any thread terminates because of a failure during execution before the executor shuts down, a
new thread will take its place when needed to execute subsequent tasks. The threads in the pool will
exist until the executor is explicitly shut down. This method throws IllegalArgumentException when you
pass zero or a negative value to nThreads.

 Note Threads pools are used to eliminate the overhead from having to create a new thread for each submitted
task. Thread creation is not cheap, and having to create many threads could severely impact an application’s
performance.

You would commonly use executors, runnables, callables, and futures in an input/output context. (I
discuss Java’s support for filesystem input/output in Chapter 8.) Performing a lengthy calculation offers
another scenario where you could use these types. For example, Listing 6-1 uses an executor, a callable,
and a future in a calculation context of Euler’s number e (2.71828…).

Listing 6-1. Calculating Euler’s number e

import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

class CalculateE
{
 final static int LASTITER = 17;
 public static void main(String[] args)
 {
 ExecutorService executor = Executors.newFixedThreadPool(1);
 Callable<BigDecimal> callable;
 callable = new Callable<BigDecimal>()
 {
 public BigDecimal call()
 {
 MathContext mc = new MathContext(100,
 RoundingMode.HALF_UP);
 BigDecimal result = BigDecimal.ZERO;
 for (int i = 0; i <= LASTITER; i++)
 {
 BigDecimal factorial = factorial(new BigDecimal(i));
 BigDecimal res = BigDecimal.ONE.divide(factorial, mc);
 result = result.add(res);
 }
 return result;

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

409

 }
 public BigDecimal factorial(BigDecimal n)
 {
 if (n.equals(BigDecimal.ZERO))
 return BigDecimal.ONE;
 else
 return n.multiply(factorial(n.subtract(BigDecimal.ONE)));
 }
 };
 Future<BigDecimal> taskFuture = executor.submit(callable);
 try
 {
 while (!taskFuture.isDone())
 System.out.println("waiting");
 System.out.println(taskFuture.get());
 }
 catch(ExecutionException ee)
 {
 System.err.println("task threw an exception");
 System.err.println(ee);
 }
 catch(InterruptedException ie)
 {
 System.err.println("interrupted while waiting");
 }
 executor.shutdownNow();
 }
}

The main thread that executes Listing 6-1’s main() method first obtains an executor by calling
Executors’ newFixedThreadPool() method. It then instantiates an anonymous class that implements
Callable and submits this task to the executor, receiving a Future instance in response.

After submitting a task, a thread typically does some other work until it needs to obtain the task’s
result. I have chosen to simulate this work by having the main thread repeatedly output a waiting
message until the Future instance’s isDone() method returns true. (In a realistic application, I would
avoid this looping.) At this point, the main thread calls the instance’s get() method to obtain the result,
which is then output.

 Caution It is important to shut down the executor after it completes; otherwise, the application might not end.
The application accomplishes this task by calling shutdownNow().

The callable’s call() method calculates e by evaluating the mathematical power series e =
1/0!+1/1!+1/2!+…. This series can be evaluated by summing 1/n!, where n ranges from 0 to infinity.

call() first instantiates java.math.MathContext to encapsulate a precision (number of digits) and a
rounding mode. I chose 100 as an upper limit on e’s precision and HALF_UP as the rounding mode.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

410

 Tip Increase the precision as well as LASTITER’s value to converge the series to a lengthier and more accurate
approximation of e.

call() next initializes a java.math.BigDecimal local variable named result to BigDecimal.ZERO. It
then enters a loop that calculates a factorial, divides BigDecimal.ONE by the factorial, and adds the
division result to result.

The divide() method takes the MathContext instance as its second argument to ensure that the
division does not result in a nonterminating decimal expansion (the quotient result of the division
cannot be represented exactly—0.3333333…, for example), which throws
java.lang.ArithmeticException (to alert the caller to the fact that the quotient cannot be represented
exactly), which the executor rethrows as ExecutionException.

When you run this application, you should observe output similar to the following:

waiting
waiting
waiting
waiting
2.71828182845904507051604779584860506117897963525103269890073500406522504250484331405588797434
4245741730039454062711

Synchronizers
The Threading API offers synchronization primitives for synchronizing thread access to critical sections.
Because it can be difficult to correctly write synchronized code that is based on these primitives, the
concurrency utilities include synchronizers, classes that facilitate common forms of synchronization.

Five commonly used synchronizers are countdown latches, cyclic barriers, exchangers, phasers, and
semaphores:

• A countdown latch lets one or more threads wait at a “gate” until another thread
opens this gate, at which point these other threads can continue. The
java.util.concurrent.CountDownLatch class implements this synchronizer.

• A cyclic barrier lets a group of threads wait for each other to reach a common
barrier point. The java.util.concurrent.CyclicBarrier class implements this
synchronizer, and makes use of the
java.util.concurrent.BrokenBarrierException class. CyclicBarrier instances are
useful in applications involving fixed sized parties of threads that must
occasionally wait for each other. CyclicBarrier supports an optional Runnable,
known as a barrier action, which runs once per barrier point after the last thread
in the party arrives but before any threads are released. This barrier action is
useful for updating shared state before any of the parties continue.

• An exchanger lets a pair of threads exchange objects at a synchronization point.
The java.util.concurrent.Exchanger class implements this synchronizer. Each
thread presents some object on entry to Exchanger’s exchange() method, matches
with a partner thread, and receives its partner’s object on return. Exchangers may
be useful in applications such as genetic algorithms (see
http://en.wikipedia.org/wiki/Genetic_algorithm) and pipeline designs.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://en.wikipedia.org/wiki/Genetic_algorithm

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

411

• A phaser is a reusable synchronization barrier that is similar in functionality to
CyclicBarrier and CountDownLatch, but offers more flexibility. For example, unlike
with other barriers, the number of threads that register to synchronize on a phaser
may vary over time. The java.util.concurrent.Phaser class implements this
synchronizer. Phaser may be used instead of a CountDownLatch to control a one-
shot action that serves a variable number of parties. It may also be used by tasks
executing in the context of the Fork/Join Framework, discussed later in this
chapter.

• A semaphore maintains a set of permits for restricting the number of threads that
can access a limited resource. The java.util.concurrent.Semaphore class
implements this synchronizer. Each call to one of Semaphore’s acquire() methods
blocks if necessary until a permit is available, and then takes it. Each call to
release() adds a permit, potentially releasing a blocking acquirer. However, no
actual permit objects are used; the Semaphore instance only keeps a count of the
number of available permits and acts accordingly. Semaphores are often used to
restrict the number of threads than can access some (physical or logical) resource.

Consider the CountDownLatch class. Each of its instances is initialized to a nonzero count. A thread
calls one of CountDownLatch’s await() methods to block until the count reaches zero. Another thread
calls CountDownLatch’s countDown() method to decrement the count. Once the count reaches zero, the
waiting threads are allowed to continue.

 Note After waiting threads are released, subsequent calls to await() return immediately. Also, because the
count cannot be reset, a CountDownLatch instance can be used only once. When repeated use is a requirement,
use the CyclicBarrier class instead.

We can use CountDownLatch to ensure that worker threads start working at approximately the same
time. For example, check out Listing 6-2.

Listing 6-2. Using a countdown latch to trigger a coordinated start

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

class CountDownLatchDemo
{
 final static int NTHREADS = 3;
 public static void main(String[] args)
 {
 final CountDownLatch startSignal = new CountDownLatch(1);
 final CountDownLatch doneSignal = new CountDownLatch(NTHREADS);
 Runnable r = new Runnable()
 {
 public void run()
 {

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

412

 try
 {
 report("entered run()");
 startSignal.await(); // wait until told to proceed
 report("doing work");
 Thread.sleep((int)(Math.random()*1000));
 doneSignal.countDown(); // reduce count on which
 // main thread is waiting
 }
 catch (InterruptedException ie)
 {
 System.err.println(ie);
 }
 }
 void report(String s)
 {
 System.out.println(System.currentTimeMillis()+": "+
 Thread.currentThread()+": "+s);
 }
 };
 ExecutorService executor = Executors.newFixedThreadPool(NTHREADS);
 for (int i = 0; i < NTHREADS; i++)
 executor.execute(r);
 try
 {
 System.out.println("main thread doing something");
 Thread.sleep(1000); // sleep for 1 second
 startSignal.countDown(); // let all threads proceed
 System.out.println("main thread doing something else");
 doneSignal.await(); // wait for all threads to finish
 executor.shutdownNow();
 }
 catch (InterruptedException ie)
 {
 System.err.println(ie);
 }
 }
}

Listing 6-2’s main thread first creates a pair of countdown latches. The startSignal countdown
latch prevents any worker thread from proceeding until the main thread is ready for them to proceed.
The doneSignal countdown latch causes the main thread to wait until all worker threads have finished.

The main thread next creates a runnable whose run() method is executed by subsequently created
worker threads.

The run() method first outputs an initial message and then calls startSignal’s await() method to
wait for this countdown latch’s count to read zero before it can proceed. Once this happens, run()
outputs a message that indicates work is being done, and sleeps for a random period of time (0 through
999 milliseconds) to simulate this work.

At this point, run() invokes doneSignal’s countDown() method to decrement this latch’s count. Once
this count reaches zero, the main thread waiting on this signal will continue, shutting down the executor
and terminating the application.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

413

After creating the runnable, the main thread obtains an executor that’s based on a thread pool of
NTHREADS threads, and then calls the executor’s execute() method NTHREADS times, passing the runnable
to each of the NTHREADS pool-based threads. This action starts the worker threads, which enter run().

Next, the main thread outputs a message and sleeps for one second to simulate doing additional
work (giving all the worker threads a chance to have entered run() and invoke startSignal.await()),
invokes startSignal’s countdown() method to cause the worker threads to start running, outputs a
message to indicate that it is doing something else, and invokes doneSignal’s await() method to wait for
this countdown latch’s count to reach zero before it can proceed.

When you run this application, you will observe output similar to the following:

main thread doing something
1312936533890: Thread[pool-1-thread-1,5,main]: entered run()
1312936533890: Thread[pool-1-thread-2,5,main]: entered run()
1312936533890: Thread[pool-1-thread-3,5,main]: entered run()
1312936534890: Thread[pool-1-thread-1,5,main]: doing work
1312936534890: Thread[pool-1-thread-2,5,main]: doing work
1312936534890: Thread[pool-1-thread-3,5,main]: doing work
main thread doing something else

You might observe the main thread doing something else message appearing between the last
“entered run()” message and the first “doing work” message.

 Note For brevity, I have avoided examples that demonstrate CyclicBarrier, Exchanger, Phaser, and
Semaphore. Instead, I refer you to the Java documentation for these classes. Each class’s documentation provides
an example that shows you how to use the class.

Concurrent Collections
The java.util.concurrent package includes several interfaces and classes that are concurrency-oriented
extensions to the Collections Framework (see Chapter 5):

• BlockingDeque is a subinterface of BlockingQueue and java.util.Deque that also
supports blocking operations that wait for the deque to become nonempty before
retrieving an element, and wait for space to become available in the deque before
storing an element. The LinkedBlockingDeque class implements this interface.

• BlockingQueue is a subinterface of java.util.Queue that also supports blocking
operations that wait for the queue to become nonempty before retrieving an
element, and wait for space to become available in the queue before storing an
element. Each of the ArrayBlockingQueue, DelayQueue, LinkedBlockingDeque,
LinkedBlockingQueue, LinkedTransferQueue, PriorityBlockingQueue, and
SynchronousQueue classes implements this interface.

• ConcurrentMap is a subinterface of java.util.Map that declares additional atomic
putIfAbsent(), remove(), and replace() methods. The ConcurrentHashMap class
(the concurrent equivalent of java.util.HashMap) and the ConcurrentSkipListMap
class implement this interface.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

414

• ConcurrentNavigableMap is a subinterface of ConcurrentMap and
java.util.NavigableMap. The ConcurrentSkipListMap class implements this
interface.

• TransferQueue is a subinterface of BlockingQueue and describes a blocking queue
in which producers may wait for consumers to receive elements. The
LinkedTransferQueue class implements this interface.

• ConcurrentLinkedDeque is an unbounded concurrent deque based on linked
nodes.

• ConcurrentLinkedQueue is an unbounded thread-safe FIFO implementation of the
Queue interface.

• ConcurrentSkipListSet is a scalable concurrent NavigableSet implementation.

• CopyOnWriteArrayList is a thread-safe variant of java.util.ArrayList in which all
mutative (nonimmutable) operations (add, set, and so on) are implemented by
making a fresh copy of the underlying array.

• CopyOnWriteArraySet is a java.util.Set implementation that uses an internal
CopyOnWriteArrayList instance for all its operations.

Listing 6-3 uses BlockingQueue and ArrayBlockingQueue in an alternative to Listing 4-27’s producer-
consumer application (PC).

Listing 6-3. The blocking queue equivalent of Listing 4-27’s PC application

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

class PC
{
 public static void main(String[] args)
 {
 final BlockingQueue<Character> bq;
 bq = new ArrayBlockingQueue<Character>(26);
 final ExecutorService executor = Executors.newFixedThreadPool(2);
 Runnable producer;
 producer = new Runnable()
 {
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 try
 {
 bq.put(ch);
 System.out.println(ch+" produced by producer.");
 }
 catch (InterruptedException ie)

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

415

 {
 assert false;
 }
 }
 }
 };
 executor.execute(producer);
 Runnable consumer;
 consumer = new Runnable()
 {
 public void run()
 {
 char ch = '\0';
 do
 {
 try
 {
 ch = bq.take();
 System.out.println(ch+" consumed by consumer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 while (ch != 'Z');
 executor.shutdownNow();
 }
 };
 executor.execute(consumer);
 }
}

Listing 6-3 uses BlockingQueue’s put() and take() methods, respectively, to put an object on the
blocking queue and to remove an object from the blocking queue. put() blocks when there is no room to
put an object; take() blocks when the queue is empty.

Although BlockingQueue ensures that a character is never consumed before it is produced, this
application’s output may indicate otherwise. For example, here is a portion of the output from one run:

Y consumed by consumer.
Y produced by producer.
Z consumed by consumer.
Z produced by producer.

Chapter 4’s PC application overcame this incorrect output order by introducing an extra layer of
synchronization around setSharedChar()/System.out.println() and an extra layer of synchronization
around getSharedChar()/System.out.println(). The next section shows you an alternative in the form of
locks.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

416

Locks
The java.util.concurrent.locks package provides interfaces and classes for locking and waiting for
conditions in a manner that is distinct from built-in synchronization and monitors.

This package’s most basic lock interface is Lock, which provides more extensive locking operations
than can be achieved via the synchronized reserved word. Lock also supports a wait/notification
mechanism through associated Condition objects.

 Note The biggest advantage of Lock objects over the implicit locks that are obtained when threads enter critical
sections (controlled via the synchronized reserved word) is their ability to back out of an attempt to acquire a
lock. For example, the tryLock() method backs out when the lock is not available immediately or when a timeout
expires (if specified). Also, the lockInterruptibly() method backs out when another thread sends an interrupt
before the lock is acquired.

ReentrantLock implements Lock, describing a reentrant mutual exclusion Lock implementation with
the same basic behavior and semantics as the implicit monitor lock accessed via synchronized, but with
extended capabilities.

Listing 6-4 demonstrates Lock and ReentrantLock in a version of Listing 6-3 that ensures that the
output is never shown in incorrect order (a consumed message appearing before a produced message).

Listing 6-4. Achieving synchronization in terms of locks

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class PC
{
 public static void main(String[] args)
 {
 final Lock lock = new ReentrantLock();
 final BlockingQueue<Character> bq;
 bq = new ArrayBlockingQueue<Character>(26);
 final ExecutorService executor = Executors.newFixedThreadPool(2);
 Runnable producer;
 producer = new Runnable()
 {
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 try

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

417

 {
 lock.lock();
 try
 {
 while (!bq.offer(ch))
 {
 lock.unlock();
 Thread.sleep(50);
 lock.lock();
 }
 System.out.println(ch+" produced by producer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 finally
 {
 lock.unlock();
 }
 }
 }
 };
 executor.execute(producer);
 Runnable consumer;
 consumer = new Runnable()
 {
 public void run()
 {
 char ch = '\0';
 do
 {
 try
 {
 lock.lock();
 try
 {
 Character c;
 while ((c = bq.poll()) == null)
 {
 lock.unlock();
 Thread.sleep(50);
 lock.lock();
 }
 ch = c; // unboxing behind the scenes
 System.out.println(ch+" consumed by consumer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

418

 }
 finally
 {
 lock.unlock();
 }
 }
 while (ch != 'Z');
 executor.shutdownNow();
 }
 };
 executor.execute(consumer);
 }
}

Listing 6-4 uses Lock’s lock() and unlock() methods to obtain and release a lock. When a thread
calls lock() and the lock is unavailable, the thread is disabled (and cannot be scheduled) until the lock
becomes available.

This listing also uses BlockingQueue’s offer() method instead of put() to store an object in the
blocking queue, and its poll() method instead of take() to retrieve an object from the queue. These
alternative methods are used because they do not block.

If I had used put() and take(), this application would have deadlocked in the following scenario:

1. The consumer thread acquires the lock via its lock.lock() call.

2. The producer thread attempts to acquire the lock via its lock.lock() call and is
disabled because the consumer thread has already acquired the lock.

3. The consumer thread calls take() to obtain the next java.lang.Character
object from the queue.

4. Because the queue is empty, the consumer thread must wait.

5. The consumer thread does not give up the lock that the producer thread
requires before waiting, so the producer thread also continues to wait.

 Note If I had access to the private lock used by BlockingQueue implementations, I would have used put() and
take(), and also would have called Lock’s lock() and unlock() methods on that lock. The resulting application
would then have been identical (from a lock perspective) to Listing 4-27’s PC application, which used
synchronized twice for each of the producer and consumer threads.

Run this application and you will discover that it generates the same output as Listing 4-27’s PC
application.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

419

Atomic Variables
The java.util.concurrent.atomic package provides Atomic-prefixed classes (e.g., AtomicLong) that
support lock-free, thread-safe operations on single variables. Each class declares methods such as get()
and set() to read and write this variable without the need for external synchronization.

Listing 4-23 declared a small utility class named ID for returning unique long integer identifiers via
ID’s getNextID() method. Because this method was not synchronized, multiple threads could obtain the
same identifier. Listing 6-5 fixes this problem by including reserved word synchronized in the method
header.

Listing 6-5. Returning unique identifiers in a thread-safe manner via synchronized

class ID
{
 private static long nextID = 0;
 static synchronized long getNextID()
 {
 return nextID++;
 }
}

Although synchronized is appropriate for this class, excessive use of this reserved word in more
complex classes can lead to deadlock, starvation, or other problems. Listing 6-6 shows you how to avoid
these assaults on a concurrent application’s liveness (the ability to execute in a timely manner) by
replacing synchronized with an atomic variable.

Listing 6-6. Returning unique IDs in a thread-safe manner via AtomicLong

import java.util.concurrent.atomic.AtomicLong;

class ID
{
 private static AtomicLong nextID = new AtomicLong(0);
 static long getNextID()
 {
 return nextID.getAndIncrement();
 }
}

In Listing 6-6, I have converted nextID from a long to an AtomicLong instance, initializing this object
to 0. I have also refactored the getNextID() method to call AtomicLong’s getAndIncrement() method,
which increments the AtomicLong instance’s internal long integer variable by 1 and returns the previous
value in one indivisible step.

Additional Concurrency Utilities
As well as supporting the Java 5-introduced concurrency utilities, Java 7 introduces a pair of concurrency
utilities that improve performance, which is achieved in part by taking full advantage of multiple
processors/cores. These utilities consist of the java.util.concurrent.ThreadLocalRandom class and the
Fork/Join Framework.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

420

ThreadLocalRandom
The ThreadLocalRandom class describes a random number generator that is isolated to the current thread.
In other words, it can be accessed from the current thread only.

As with the global random number generator used by the java.lang.Math class (and which I discuss
later in this chapter), a ThreadLocalRandom instance is initialized with an internally generated seed
(starting value) that may not otherwise be modified. When applicable, use of ThreadLocalRandom rather
than calls to Math.random() in concurrent programs will typically result in much less overhead and
contention.

To use this class, first invoke ThreadLocalRandom’s static ThreadLocalRandom current() method to
return the current thread’s ThreadLocalRandom instance. Continue by invoking one of
ThreadLocalRandom’s “next” methods, such as double nextDouble(double n), which returns a
pseudorandom, uniformly distributed double value between 0 (inclusive) and the specified value n
(exclusive). The argument passed to n is the upper bound on the random number to be returned and
must be positive; otherwise, IllegalArgumentException is thrown.

The following example provides a demonstration via another “next” method:

int r = ThreadLocalRandom.current().nextInt(20, 40);

This example invokes ThreadLocalRandom’s int nextInt(int least, int bound) method to return a
pseudorandom, uniformly distributed value between the given least value (inclusive) and bound
(exclusive). In this example, least is 20, which is the smallest value that can be returned, and bound is
40, which is one integer greater than the highest value (39) that can be returned.

 Note ThreadLocalRandom leverages thread-local variables, which I discussed in Chapter 4’s coverage of Java’s
Threading API.

Fork/Join Framework
There is always a need for code to execute faster. Historically, this need was addressed by increasing
microprocessor speeds and/or by supporting multiple processors. However, somewhere around 2003,
microprocessor speeds stopped increasing because of natural limits. To compensate, processor
manufacturers started to add multiple processing cores to their processors, to increase speed through
massive parallelism.

 Note Parallelism refers to running threads/tasks simultaneously through some combination of multiple
processors and cores. In contrast, concurrency is a more generalized form of parallelism in which threads run
simultaneously or appear to run simultaneously through task switching, also known as virtual parallelism. Some
people further characterize concurrency as a property of a program or operating system and parallelism as the
run-time behavior of executing multiple tasks simultaneously.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

421

Java supports concurrency via the Threading API and concurrency utilities such as thread pools.
The problem with concurrency is that it doesn’t maximize the use of available processor/core resources.
For example, suppose you have created a sorting algorithm that divides an array into two halves, assigns
two threads to sort each half, and merges the results after both threads finish.

Let’s assume that each thread runs on a different processor. Because different amounts of element
reordering may occur in each half of the array, it’s possible that one thread will finish before the other
thread and must wait before the merge can happen. In this case, a processor resource is wasted.

This problem (and the related problems of the code being verbose and harder to read) can be solved
by recursively breaking a task into subtasks and combining results. These subtasks run in parallel and
complete approximately at the same time (if not at the same moment), where their results are merged
and passed up the stack to the previous layer of subtasks. Hardly any processor time is wasted through
waiting, and the recursive code is less verbose and (usually) easier to understand. Java provides the
Fork/Join Framework to implement this scenario.

Fork/Join consists of a special executor service and thread pool. The executor service makes a task
available to the framework, and this task is broken down into smaller tasks that are forked (executed by
different threads) from the pool. A task waits until joined (its subtasks finish).

Fork/Join uses work stealing to minimize thread contention and overhead. Each worker thread from
a pool of worker threads has its own double-ended work queue and pushes new tasks to this queue. It
reads the task from the head of the queue. If the queue is empty, the worker thread tries to get a task
from the tail of another queue. Stealing is infrequent because worker threads put tasks into their queues
in a last-in, first-out (LIFO) order, and the size of work items gets smaller as a problem is divided into
subproblems. You start by giving the tasks to a central worker and it keeps dividing them into smaller
tasks. Eventually all the workers have something to do with minimal synchronization.

Fork/Join largely consists of the java.util.concurrent package’s ForkJoinPool, ForkJoinTask,
ForkJoinWorkerThread, RecursiveAction, and RecursiveTask classes:

• ForkJoinPool is an ExecutorService implementation for running ForkJoinTasks. A
ForkJoinPool instance provides the entry point for submissions from non-
ForkJoinTask clients, as well as providing management and monitoring
operations.

• ForkJoinTask is the abstract base class for tasks that run within a ForkJoinPool
context. A ForkJoinTask instance is a thread-like entity that is much lighter weight
than a normal thread. Huge numbers of tasks and subtasks may be hosted by a
small number of actual threads in a ForkJoinPool, at the price of some usage
limitations.

• ForkJoinWorkerThread describes a thread managed by a ForkJoinPool instance,
which executes ForkJoinTasks.

• RecursiveAction describes a recursive resultless ForkJoinTask.

• RecursiveTask describes a recursive result-bearing ForkJoinTask.

The Java documentation provides examples of RecursiveAction-based tasks (such as sorting) and
RecursiveTask-based tasks (such as computing Fibonacci numbers). You can also use RecursiveAction
to accomplish matrix multiplication (see http://en.wikipedia.org/wiki/Matrix_multiplication).

For example, suppose that you’ve created Listing 6-7’s Matrix class to represent a matrix consisting
of a specific number of rows and columns.

http://en.wikipedia.org/wiki/Matrix_multiplication

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

422

Listing 6-7. A class for representing a two-dimensional table

class Matrix
{
 private double[][] matrix;
 Matrix(int nrows, int ncols)
 {
 matrix = new double[nrows][ncols];
 }
 int getCols()
 {
 return matrix[0].length;
 }
 int getRows()
 {
 return matrix.length;
 }
 double getValue(int row, int col)
 {
 return matrix[row][col];
 }
 void setValue(int row, int col, double value)
 {
 matrix[row][col] = value;
 }
}

Listing 6-8 demonstrates the single-threaded approach to multiplying two Matrix instances:

Listing 6-8. Multiplying two Matrix instances via the standard matrix-multiplication algorithm

class MatMult
{
 public static void main(String[] args)
 {
 Matrix a = new Matrix(1, 3);
 a.setValue(0, 0, 1); // | 1 2 3 |
 a.setValue(0, 1, 2);
 a.setValue(0, 2, 3);
 dump(a);
 Matrix b = new Matrix(3, 2);
 b.setValue(0, 0, 4); // | 4 7 |
 b.setValue(1, 0, 5); // | 5 8 |
 b.setValue(2, 0, 6); // | 6 9 |
 b.setValue(0, 1, 7);
 b.setValue(1, 1, 8);
 b.setValue(2, 1, 9);
 dump(b);
 dump(multiply(a, b));
 }
 static void dump(Matrix m)

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

423

 {
 for (int i = 0; i < m.getRows(); i++)
 {
 for (int j = 0; j < m.getCols(); j++)
 System.out.print(m.getValue(i, j)+" ");
 System.out.println();
 }
 System.out.println();
 }
 static Matrix multiply(Matrix a, Matrix b)
 {
 if (a.getCols() != b.getRows())
 throw new IllegalArgumentException("rows/columns mismatch");
 Matrix result = new Matrix(a.getRows(), b.getCols());
 for (int i = 0; i < a.getRows(); i++)
 for (int j = 0; j < b.getCols(); j++)
 for (int k = 0; k < a.getCols(); k++)
 result.setValue(i, j, result.getValue(i, j)+a.getValue(i, k)*
 b.getValue(k, j));
 return result;
 }
}

Listing 6-8’s MatMult class declares a multiply() method that demonstrates matrix multiplication.
After verifying that the number of columns in the first Matrix (a) equals the number of rows in the
second Matrix (b), which is essential to the algorithm, multiply() creates a Matrix named result and
enters a sequence of nested loops to perform the multiplication.

The essence of these loops is as follows: For each row in a, multiply each of that row’s column values
by the corresponding column’s row values in b. Add together the results of the multiplications, and store
the overall total in result at the location specified via the row index (i) in a and the column index (j) in
b.

When you run this application, it generates the following output, which indicates that a 1-row-by-3-
column matrix multiplied by a 3-row-by-2 column matrix results in a 1-row-by-2-column matrix:

1.0 2.0 3.0

4.0 7.0
5.0 8.0
6.0 9.0

32.0 50.0

Computer scientists classify this algorithm as O(n3), which is read “big-oh of n-cubed” or
“approximately n-cubed.” This notation is an abstract way of classifying the algorithm’s performance
(without being bogged down in specific details such as microprocessor speed). A O(n3) classification
indicates very poor performance, and this performance worsens as the sizes of the matrixes being
multiplied increase.

The performance can be improved (on multiprocessor and/or multicore platforms) by assigning
each row-by-column multiplication task to a separate thread-like entity. Listing 6-9 shows you how to
accomplish this scenario in the context of the Fork/Join Framework.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

424

Listing 6-9. Multiplying two matrixes via the Fork/Join Framework

import java.util.ArrayList;
import java.util.List;

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

class MatMult extends RecursiveAction
{
 private Matrix a, b, c;
 private int row;
 MatMult(Matrix a, Matrix b, Matrix c)
 {
 this(a, b, c, -1);
 }
 MatMult(Matrix a, Matrix b, Matrix c, int row)
 {
 if (a.getCols() != b.getRows())
 throw new IllegalArgumentException("rows/columns mismatch");
 this.a = a;
 this.b = b;
 this.c = c;
 this.row = row;
 }
 @Override
 public void compute()
 {
 if (row == -1)
 {
 List<MatMult> tasks = new ArrayList<>();
 for (int row = 0; row < a.getRows(); row++)
 tasks.add(new MatMult(a, b, c, row));
 invokeAll(tasks);
 }
 else
 multiplyRowByColumn(a, b, c, row);
 }
 static void multiplyRowByColumn(Matrix a, Matrix b, Matrix c, int row)
 {
 for (int j = 0; j < b.getCols(); j++)
 for (int k = 0; k < a.getCols(); k++)
 c.setValue(row, j, c.getValue(row, j)+a.getValue(row, k)*
 b.getValue(k, j));
 }
 static void dump(Matrix m)
 {
 for (int i = 0; i < m.getRows(); i++)
 {
 for (int j = 0; j < m.getCols(); j++)
 System.out.print(m.getValue(i, j)+" ");

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

425

 System.out.println();
 }
 System.out.println();
 }
 public static void main(String[] args)
 {
 Matrix a = new Matrix(2, 3);
 a.setValue(0, 0, 1); // | 1 2 3 |
 a.setValue(0, 1, 2); // | 4 5 6 |
 a.setValue(0, 2, 3);
 a.setValue(1, 0, 4);
 a.setValue(1, 1, 5);
 a.setValue(1, 2, 6);
 dump(a);
 Matrix b = new Matrix(3, 2);
 b.setValue(0, 0, 7); // | 7 1 |
 b.setValue(1, 0, 8); // | 8 2 |
 b.setValue(2, 0, 9); // | 9 3 |
 b.setValue(0, 1, 1);
 b.setValue(1, 1, 2);
 b.setValue(2, 1, 3);
 dump(b);
 Matrix c = new Matrix(2, 2);
 ForkJoinPool pool = new ForkJoinPool();
 pool.invoke(new MatMult(a, b, c));
 dump(c);
 }
}

Listing 6-9 presents a MatMult class that extends RecursiveAction. To accomplish meaningful work,
RecursiveAction’s void compute() method is overridden.

 Note Although compute() is normally used to subdivide a task into subtasks recursively, I’ve chosen to handle
the multiplication task somewhat differently (for brevity and simplicity).

After creating Matrixes a and b, Listing 6-9’s main() method creates Matrix c and instantiates
ForkJoinPool. It then instantiates MatMult, passing these three Matrix instances as arguments to the
MatMult(Matrix a, Matrix b, Matrix c) constructor, and calls ForkJoinPool’s T
invoke(ForkJoinTask<T> task) method to start running this initial task. This method does not return
until the initial task and all of its subtasks complete.

The MatMult(Matrix a, Matrix b, Matrix c) constructor invokes the MatMult(Matrix a, Matrix b,
Matrix c, int row) constructor, specifying -1 as row’s value. This value is used by compute(), which is
invoked as a result of the aforementioned invoke() method call, to distinguish between the initial task
and subtasks.

When compute() is initially called (row equals -1), it creates a List of MatMult tasks and passes this
List to RecursiveAction’s Collection<T> invokeAll(Collection<T> tasks) method (inherited from
ForkJoinTask). This method forks all the List collection’s tasks, which will start to execute. It then waits

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

426

until the invokeAll() method returns (which also joins to all these tasks), which happens when the
boolean isDone() method (also inherited from ForkJoinTask) returns true for each task.

Notice the tasks.add(new MatMult(a, b, c, row)); method call. This call assigns a specific row
value to a MatMult instance. When invokeAll() is called, each task’s compute() method is called and
detects a different value (other than -1) assigned to row. It then executes multiplyRowByColumn(a, b, c,
row); for its specific row.

When you run this application (java MatMult), it generates the following output:

1.0 2.0 3.0
4.0 5.0 6.0

7.0 1.0
8.0 2.0
9.0 3.0

50.0 14.0
122.0 32.0

Objects
Java 7’s new java.util.Objects class consists of class methods for operating on objects. These utilities
include null-safe or null-tolerant methods for comparing two objects, computing the hash code of an
object, requiring that a reference not be null, and returning a string for an object.

Table 6-3 describes Objects’ class methods.

Table 6-3. Objects Methods

Method Description

<T> int compare(T a, T b,
Comparator<? super T> c)

Return 0 when the first two arguments are identical
(including the case where both arguments are the null
reference), and the result of invoking c.compare(a, b)
otherwise. An instance of the NullPointerException class
may or may not be thrown depending on the
java.util.Comparator argument’s ordering policy for null
references (if there is such a policy). (I discussed Comparator
in Chapter 5.)

boolean deepEquals(Object a,
Object b)

Return true when the passed arguments are deeply equal
(discussed later). Otherwise, this method returns false. Two
null references are considered to be deeply equal. If both
arguments are arrays, the algorithm followed by
Arrays.deepEquals() is used to determine equality.
Otherwise, equality is determined by calling the first
argument’s equals() method. (I introduced
java.util.Arrays in Chapter 5.)

boolean equals(Object a,
Object b)

Return true when the passed arguments are equal to each
other (including the scenario where both arguments are
null). Otherwise, this method returns false (including

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

427

scenarios where only one argument is null). If neither
argument is null, equality is determined by calling the first
argument’s equals() method.

int hash(Object... values) Generate a hash code for a sequence of object arguments.
The hash code is generated as if all arguments were put into
an array and that array was hashed by calling
Arrays.hashCode(Object[]).When a single object is passed
to values, hash()’s returned value does not equal the hash
code of that object. To obtain a single object’s hash code,
call hashCode(Object).

int hashCode(Object o) Return the hash code of a nonnull argument and 0 for the
null argument.

<T> T requireNonNull(T obj) Test the passed object reference for nullness. It either
returns the nonnull reference stored in obj or throws
NullPointerException when obj contains the null reference.

<T> T requireNonNull(T obj,
String message)

Test the passed object reference for nullness. It either
returns the nonnull reference stored in obj or throws
NullPointerException when obj contains the null reference.
The thrown NullPointerException instance contains the
message provided by message.

String toString(Object o) Return the result of calling toString() for a nonnull
argument and "null" for a null argument.

String toString(Object o,
String nullDefault)

Return the result of calling toString() on the first argument
(passed to o) when that argument is not null; otherwise, this
method returns the second argument (passed to
nullDefault).

Objects implements the null-tolerant compare() method to first compare its arguments for object

identity by using == before calling the provided Comparator.
The equals() and deepEquals() methods define equivalence relations over object references. Unlike

Object.equals(Object o), Objects.equals(Object a, Object b) handles null values, returning true
when both arguments are null, or when the first argument is nonnull and a.equals(b) returns true.

The deepEquals() method is used in the context of arrays (including nested arrays) to determine if
two arrays are deeply equal (they are both null or they contain the same number of elements and all
corresponding pairs of elements in the two arrays are deeply equal).

This method’s two (possibly null) arguments, denoted by e1 and e2 below, are deeply equal when
any of the following conditions hold:

• e1 and e2 are arrays of object reference types, and Arrays.deepEquals(e1, e2)
would return true

• e1 and e2 are arrays of the same primitive type, and the appropriate overloading of
Arrays.equals(e1, e2) would return true.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

428

• e1 == e2

• e1.equals(e2) would return true.

Equality implies deep equality, but the converse isn’t necessarily true. In the following example, x
and y are deeply equal but are not equal:

Object common = "string";
Object[] x = {"string"};
Object[] y = {"string"};
System.out.println("x == y: "+(x == y)); // false (two different references)
System.out.println("Objects.equals(x, y): "+Objects.equals(x, y)); // false
System.out.println("Objects.deepEquals(x, y): "+Objects.deepEquals(x, y)); // true

Arrays x and y are not equal because they contain two different references and Objects.equals() is
using reference equality (comparing their references) in this context. (Object equality, or comparing
object contents, occurs when a class overrides Object’s equals() method.) However, these arrays are
deeply equal because x and y are both arrays of object reference types and Arrays.deepEquals(x, y)
would return true.

 Note Unlike the java.lang.Object class, which is automatically imported because of its java.lang prefix, you
must explicitly import Objects into your source code (import java.util.Objects;) when you want to avoid
having to specify the java.util prefix.

The Java documentation for the requireNonNull() methods states that they are designed primarily
for doing parameter validation in methods and constructors. The idea is to check a method’s or a
constructor’s parameter values for null references before attempting to use these references later in the
method or constructor, and avoid potential NullPointerExceptions. Listing 6-10 provides a
demonstration.

Listing 6-10. Testing constructor parameters for null reference arguments

import java.util.Objects;

class Employee
{
 private String firstName, lastName;
 Employee(String firstName, String lastName)
 {
 try
 {
 firstName = Objects.requireNonNull(firstName);
 lastName = Objects.requireNonNull(lastName,
 "lastName shouldn't be null");
 lastName = Character.toUpperCase(lastName.charAt(0))+
 lastName.substring(1);
 this.firstName = firstName;
 this.lastName = lastName;

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

429

 }
 catch (NullPointerException npe)
 {
 // In lieu of a more sophisticated logging mechanism, and also for
 // brevity, I output the exception's message to standard output.
 System.out.println(npe.getMessage());
 }
 }
 String getName()
 {
 return firstName+" "+lastName;
 }
 public static void main(String[] args)
 {
 Employee e1 = new Employee(null, "Doe");
 Employee e2 = new Employee("John", null);
 Employee e3 = new Employee("John", "doe");
 System.out.println(e3.getName());
 }
}

Listing 6-10’s Employee constructor first invokes Objects.requireNonNull() on each argument value
passed to its firstName and lastName parameters. If either argument value is the null reference,
NullPointerException is instantiated and thrown; otherwise, the requireNonNull() method returns the
argument value, which is guaranteed to be nonnull.

It is now safe to invoke lastName.charAt(), which returns the first character from the string on
which this method is called. This character is passed to Character’s toUpperCase() utility method, which
returns the character when it does not represent a lowercase letter, or the uppercase equivalent of the
lowercase letter. After toUpperCase() returns, the (potentially uppercased) letter is prepended to the rest
of the string, resulting in a last name starting with an uppercase letter. (Assume that the name consists of
letters only.)

Listing 6-10’s Objects.requireNonNull() method calls offer a more compact alternative to the
following example, which demonstrates how requireNonNull(T obj, String message)’s message
parameter is used:

if (firstName == null)
 throw new NullPointerException();
if (lastName == null)
 throw new NullPointerException("lastName shouldn't be null");

Compile Listing 6-10 (javac Employee.java) and run the resulting application (java Employee). You
should observe the following output:

null
lastName shouldn't be null
John Doe

As Listing 6-10 reveals, the Objects class’s methods were introduced to promote null safety by
reducing the likelihood of a NullPointerException being thrown unintentionally. As another example,
Employee e = null; String s = e.toString(); results in a thrown NullPointerException instance
because you cannot invoke toString() on the null reference stored in e. In contrast, Employee e = null;
String s = Objects.toString(e); doesn’t result in a thrown NullPointerException instance because
Objects.toString() returns "null" when it detects that e contains the null reference. Rather than having

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

430

to explicitly test a reference for null, as in if (e != null) { String s = e.toString(); /* other code
here */ }, you can offload the null-checking to the Objects class’s various methods.

These methods were also introduced to avoid the “reinventing the wheel” syndrome. Many
developers have repeatedly written methods that perform similar operations, but do so in a null-safe
manner. The inclusion of Objects in Java’s standard class library standardizes this common
functionality.

Random
Chapter 4 introduced you to the Math class’s random() method. If you were to investigate this method’s
source code, you would discover the following implementation:

private static Random randomNumberGenerator;
private static synchronized Random initRNG()
{
 Random rnd = randomNumberGenerator;
 return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
}
public static double random()
{
 Random rnd = randomNumberGenerator;
 if (rnd == null) rnd = intRNG();
 return rnd.nextDouble();
}

This implementation, which demonstrates lazy initialization (not initializing something until it is
first needed, in order to improve performance), shows you that Math’s random() method is implemented
in terms of a class named Random, which is located in the java.util package. Random instances generate
sequences of random numbers and are known as random number generators.

 Note These numbers are not truly random because they are generated from a mathematical algorithm. As a
result, they are often referred to as pseudorandom numbers. However, it is often convenient to drop the “pseudo”
prefix and refer to them as random numbers.

Random generates its sequence of random numbers by starting with a special 48-bit value that is
known as a seed. This value is subsequently modified by a mathematical algorithm, which is known as a
linear congruential generator.

 Note Check out Wikipedia’s “Linear congruential generator” entry
(http://en.wikipedia.org/wiki/Linear_congruential_generator) to learn about this algorithm for
generating random numbers.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://en.wikipedia.org/wiki/Linear_congruential_generator

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

431

Random declares a pair of constructors:

• Random() creates a new random number generator. This constructor sets the seed
of the random number generator to a value that is very likely to be distinct from
any other call to this constructor.

• Random(long seed) creates a new random number generator using its seed
argument. This argument is the initial value of the random number generator’s
internal state, which the protected int next(int bits) method maintains.

 Note The next() method, which is used by the other methods, is protected so that subclasses can change
the generator implementation from that shown below
protected int next(int bits) {

 long oldseed, nextseed;

 AtomicLong seed = this.seed;

 do {

 oldseed = seed.get();

 nextseed = (oldseed*multiplier+addend)&mask;

 } while (!seed.compareAndSet(oldseed, nextseed));

 return (int) (nextseed >>> (48-bits));

}

to something different. For a subclassing example, check out “Subclassing java.util.Random”
(http://www.javamex.com/tutorials/random_numbers/java_util_random_subclassing.shtml).

Because Random() does not take a seed argument, the resulting random number generator always
generates a different sequence of random numbers. This explains why Math.random() generates a
different sequence each time an application starts running.

 Tip Random(long seed) gives you the opportunity to reuse the same seed value, allowing the same sequence
of random numbers to be generated. You will find this capability useful when debugging a faulty application that
involves random numbers.

Random(long seed) calls the void setSeed(long seed) method to set the seed to the specified value.
If you call setSeed() after instantiating Random, the random number generator is reset to the state that it
was in immediately after calling Random(long seed).

The previous code fragment demonstrates Random’s double nextDouble() method, which returns the
next pseudorandom, uniformly distributed double precision floating-point value between 0.0 and 1.0 in
this random number generator’s sequence.

http://www.javamex.com/tutorials/random_numbers/java_util_random_subclassing.shtml

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

432

Random also declares the following methods for returning other kinds of values:

• boolean nextBoolean() returns the next pseudorandom, uniformly distributed
Boolean value in this random number generator’s sequence. Values true and false
are generated with (approximately) equal probability.

• void nextBytes(byte[] bytes) generates pseudorandom byte integer values and
stores them in the bytes array. The number of generated bytes is equal to the
length of the bytes array.

• float nextFloat() returns the next pseudorandom, uniformly distributed
floating-point value between 0.0 and 1.0 in this random number generator’s
sequence.

• double nextGaussian() returns the next pseudorandom, Gaussian (“normally”)
distributed double precision floating-point value with mean 0.0 and standard
deviation 1.0 in this random number generator’s sequence.

• int nextInt() returns the next pseudorandom, uniformly distributed integer
value in this random number generator’s sequence. All 232 possible integer values
are generated with (approximately) equal probability.

• int nextInt(int n) returns a pseudorandom, uniformly distributed integer value
between 0 (inclusive) and the specified value (exclusive), drawn from this random
number generator’s sequence. All n possible integer values are generated with
(approximately) equal probability.

• long nextLong() returns the next pseudorandom, uniformly distributed long
integer value in this random number generator’s sequence. Because Random uses a
seed with only 48 bits, this method will not return all possible 64-bit long integer
values.

The java.util.Collections class declares a pair of shuffle() methods for shuffling the contents of a
list. In contrast, the Arrays class does not declare a shuffle() method for shuffling the contents of an
array. Listing 6-11 addresses this omission.

Listing 6-11. Shuffling an array of integers

import java.util.Random;

class Shuffler
{
 public static void main(String[] args)
 {
 Random r = new Random();
 int[] array = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 for (int i = 0; i < array.length; i++)
 {
 int n = r.nextInt(array.length);
 // swap array[i] with array[n]
 int temp = array[i];
 array[i] = array[n];
 array[n] = temp;

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

433

 }
 for (int i = 0; i < array.length; i++)
 System.out.print(array[i]+" ");
 System.out.println();
 }
}

Listing 6-11 presents a simple recipe for shuffling an array of integers—this recipe could be
generalized. For each array entry from the start of the array to the end of the array, this entry is swapped
with another entry whose index is chosen by int nextInt(int n).

When you run this application, you will observe a shuffled sequence of integers that is similar to the
following sequence that I observed:

7 1 5 2 9 8 6 4 3 0

EXERCISES

The following exercises are designed to test your understanding of the concurrency utilities, Objects, and
Random:

1. The Java documentation for the Semaphore class presents a Pool class that
demonstrates how a semaphore can control access to a pool of items. Because
Pool is incomplete, introduce a single resource (replace protected Object[]
items = ... with an array containing this resource in its single entry) and then
demonstrate Pool’s getItem() and putItem() methods in the context of a pair of
threads launched from the main() method of a SemaphoreDemo class.

2. Create an EqualsDemo application to play with Objects’ deepEquals() method.
As well as an EqualsDemo class, this application declares Car and Wheel classes.
A Car instance contains (typically four) Wheel instances, and a Wheel instance
contains a brand name. Each of Car and Wheel must override Object’s equals()
method but does not have to override hashCode() in this example. Your main()
method should contain the following code and generate the output shown in the
comments:

Car[] cars1 = { new Car(4, "Goodyear"), new Car(4, "Goodyear") };
Car[] cars2 = { new Car(4, "Goodyear"), new Car(4, "Goodyear") };
Car[] cars3 = { new Car(4, "Michelin"), new Car(4, "Goodyear") };
Car[] cars4 = { new Car(3, "Goodyear"), new Car(4, "Goodyear") };
Car[] cars5 = { new Car(4, "Goodyear"), new Car(4, "Goodyear"),
 new Car(3, "Michelin") };
System.out.println(Objects.deepEquals(cars1, cars2)); // Output: true
System.out.println(Objects.deepEquals(cars1, cars3)); // Output: false
System.out.println(Objects.deepEquals(cars1, cars4)); // Output: false
System.out.println(Objects.deepEquals(cars1, cars5)); // Output: false

The comments reveal that two arrays are deeply equal when they contain the same number of
equal elements.

CHAPTER 6 TOURING ADDITIONAL UTILITY APIS

434

3. Create a Die application that uses Random to simulate the role of a die (a single
dice). Output the value.

Summary
Java 5 introduced the concurrency utilities to simplify the development of concurrent applications. The
concurrency utilities are organized into executor, synchronizer, concurrent collection, lock, atomic
variable, and additional utilities categories, and leverage the low-level Threading API in their
implementations.

An executor decouples task submission from task-execution mechanics and is described by the
Executor, ExecutorService, and ScheduledExecutorService interfaces. A synchronizer facilitates
common forms of synchronization: countdown latches, cyclic barriers, exchangers, phasers, and
semaphores are commonly used synchronizers.

A concurrent collection is an extension to the Collections Framework. A lock supports high-level
locking and can associate with conditions in a manner that is distinct from built-in synchronization and
monitors. An atomic variable encapsulates a single variable, and supports lock-free, thread-safe
operations on that variable.

Java 7’s new ThreadLocalRandom class describes a random number generator that is isolated to the
current thread, and its new Fork/Join Framework lets you recursively break a task into subtasks and
combine results to make maximum use out of multiple processors and/or processor cores.

The new Objects class consists of class methods for operating on objects. These utilities include
null-safe or null-tolerant methods for comparing two objects, computing the hash code of an object,
requiring that a reference not be null, and returning a string for an object.

The Math class’s random() method is implemented in terms of the Random class, whose instances are
known as random number generators. Random generates a sequence of random numbers by starting with
a special 48-bit seed. This value is subsequently modified via a mathematical algorithm that is known as
a linear congruential generator.

The examples in this chapter and its predecessors have leveraged the underlying platform’s
Standard I/O facility to create character-based user interfaces. However, Java also lets you create GUIs to
achieve more compelling user interfaces. Chapter 7 introduces you to Java’s APIs for creating and
enriching GUIs.

C H A P T E R 7

435

Creating and Enriching Graphical
User Interfaces

The applications presented in previous chapters featured Standard I/O-based user interfaces. Although
these simple character-oriented user interfaces are convenient for demonstrating Java features or for
interacting with small utility applications (e.g., Chapter 3’s StubFinder application), they are inadequate
for more sophisticated needs, such as filling out forms or viewing HTML pages. However, Java also
provides APIs that let you create and enrich more sophisticated graphical user interfaces (GUIs).

Abstract Window Toolkit (AWT) is Java’s original GUI-oriented API. After introducing AWT to Java,
Sun Microsystems introduced Java Foundation Classes (JFC) as an AWT superset with many new
capabilities. JFC’s main APIs are Swing (for creating more sophisticated GUIs), Accessibility (for
supporting assistive technologies), Java 2D (for creating high-quality graphics), and Drag and Drop (for
dragging and dropping AWT/Swing GUI components, such as buttons or textfields).

Chapter 7 continues to explore the standard class library by introducing you to AWT, Swing, and
Java 2D. Appendix C introduces you to Accessibility and Drag and Drop.

Abstract Window Toolkit
Abstract Window Toolkit (AWT) is Java’s original windowing system-independent API for creating GUIs
that are based on components, containers, layout managers, and events. AWT also supports graphics,
colors, fonts, images, data transfer, and more.

The standard class library organizes AWT’s many types into the java.awt package and subpackages.
However, not all java.awt types and subpackages belong to AWT. For example, java.awt.Graphics2D and
java.awt.geom belong to Java 2D. This arrangement exists because the java.awt-based package structure
provides a natural fit for various non-AWT types. (AWT is often viewed as part of JFC nowadays.)

This section introduces you to AWT by first presenting toolkits. It then explores components,
containers, layout managers, and events. After exploring graphics, colors, and fonts, the section focuses
on images. It closes by discussing AWT’s support for data transfer.

AWT HISTORY

Before JDK 1.0’s release (on January 23, 1996), developers at Sun Microsystems were tasked with
abstracting the various windowing systems of the day and their attendant widgets (GUI controls, such as
buttons—Java refers to GUI controls as components) into a portable windowing system that Java
applications could target. AWT was born and was included in JDK 1.0. (Legend has it [see

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

436

http://www.cs.jhu.edu/~scott/oos/java/doc/TIJ3/html/TIJ316.htm, for example] that the first
AWT version had to be designed and implemented in one month.)

The JDK 1.0.1 and 1.0.2 releases corrected various AWT bugs, and JDK 1.1 offered an improved event-
handling model that greatly simplified how applications respond to GUI events (such as button clicks and
key presses). Subsequent JDK releases brought about additional improvements. For example, JDK 1.2
introduced JFC, JDK 6 introduced the Desktop, Splash Screen, and System Tray APIs, and JDK 7
standardized the support for translucent and shaped windows first introduced in JDK 6 update 10 (build
12).

Appendix C covers Desktop, Splash Screen, System Tray, and translucent/shaped windows.

Toolkits
AWT uses toolkits to abstract over windowing systems. A toolkit is a concrete implementation of AWT’s
abstract java.awt.Toolkit class. AWT provides a separate toolkit for each windowing system used by the
Windows, Solaris, Linux, and Mac OS platforms.

Toolkit declares various methods that AWT calls to obtain information about the platform’s
windowing system, and to perform various windowing system-specific tasks. For example, void beep()
emits an audio beep.

Most applications should not call any of Toolkit’s methods directly; they are intended for use by
AWT. However, you might occasionally find it helpful to call some of these methods.

For example, you might want your application to sound one or more beeps when a long-running
task finishes, to alert the user who might not be looking at the screen. You can accomplish this task by
specifying code that’s similar to the following:

Toolkit toolkit = Toolkit.getDefaultToolkit();
for (int i = 0 ; i < 5; i++)
{
 toolkit.beep();
 try { Thread.sleep(200); } catch (InterruptedException ie) {}
}

This example reveals that you must obtain a Toolkit instance before you can call a Toolkit method,
and that you do so by calling Toolkit’s Toolkit getDefaultToolkit() class method. It also reveals that
you might want to place a small delay between successive beeps to ensure that each beep is distinct.

Components, Containers, Layout Managers, and Events
AWT lets you create GUIs that are based on components, containers, layout managers, and events.

A component is a graphical widget that appears in a window on the screen; a label, a button, or a
textfield is an example. A window is represented by a special component known as a container.

A layout manager is an object that organizes components and containers within a container. It is
used to create useful GUIs (e.g., a form consisting of labels, textfields, and buttons).

An event is an object describing a button click or other GUI interaction. Applications register event
listener objects with components to listen for specific events so that application code can respond to
them.

http://www.cs.jhu.edu/~scott/oos/java/doc/TIJ3/html/TIJ316.htm

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

437

Components Overview
AWT provides a wide variety of component classes in the java.awt package. Figure 7-1 presents the class
hierarchy for AWT’s nonmenu component classes.

Figure 7-1. AWT’s nonmenu component class hierarchy is rooted in java.awt.Component.

AWT’s abstract Component class is the root class for all AWT nonmenu components (and Swing
components). Directly beneath Component are Button, Canvas, Checkbox, Choice, Container, Label, List,
Scrollbar, and TextComponent:

• Button describes a clickable label.

• Canvas describes a blank rectangular area. You would subclass Canvas to introduce
your own AWT components.

• Checkbox describes a true/false choice. You can use Checkbox with
java.awt.CheckboxGroup to create a set of mutually exclusive radio buttons.

• Choice describes a drop-down list (also known as a pop-up menu) of strings.

• Container describes a component that stores other components. This nesting
capability lets you create GUIs of arbitrary complexity and is very powerful. (Being
able to represent containers as components is an example of the Composite design
pattern, which is presented on page 163 of Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides [Addison-Wesley, 1995; ISBN: 0201633612].)

• Label describes a single line of static text as a visual aid to the user.

• List describes a non-drop-down list of strings.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

438

• Scrollbar describes a range of values.

• TextComponent describes any component that inputs text. Its TextArea subclass
describes a text component for inputting multiple lines of text, whereas its
TextField subclass describes a text component for inputting a single line of text.

Figure 7-2 presents the class hierarchy for menu component classes.

Figure 7-2. AWT’s menu component class hierarchy is rooted in java.awt.MenuComponent.

AWT’s abstract MenuComponent class (which doesn’t extend Component) is the root class for all AWT
menu components. Directly beneath MenuComponent are MenuBar and MenuItem:

• MenuBar encapsulates the windowing system concept of a menubar bound to a
frame window. It contains a sequence of Menu components, where each Menu
component contains a sequence of MenuItem components.

• MenuItem describes a single menuitem. Its CheckboxMenuItem subclass describes a
menuitem that’s implemented via a checkbox. Its Menu subclass describes a pull-
down menu component that’s deployed from a menu bar. (Menu extends MenuItem
to create arbitrarily complex menus.) Menu is subclassed by PopupMenu to describe a
menu that can be dynamically popped up at a specified position within a
component.

Component declares many nonmenu component-oriented methods. For example, Component declares
the following methods to inform the caller about the component’s displayable, visible, and showing
status:

• boolean isDisplayable() returns true when a component is in the displayable
state (the component is connected to a native screen resource [defined shortly],
typically by being added to a container).

• boolean isVisible() returns true when a component is in the visible state (the
component appears on the screen). The companion void setVisible(boolean b)
method lets you show (b is true) or hide (b is false) a component.

• boolean isShowing() returns true when a component is in the showing state (the
component is visible and is contained in a container that is also visible and
showing). This method is useful for determining whether or not a component has
been obscured by another component. It returns false when obscured, whereas
isVisible() would continue to return true.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

439

MenuComponent’s repertoire of methods is much shorter. However, it shares some commonality with
Component. For example, both classes declare a method for specifying the component’s font.

Some of Component’s and MenuComponent’s methods have been deprecated and should not be used.
For example, Component declares java.awt.peer.ComponentPeer getPeer() and MenuComponent declares
java.awt.peer.MenuComponentPeer getPeer(). Both deprecated methods hint at how AWT implements
its predefined components.

AWT leverages the platform’s windowing system to create various components. When you add a
component to a container, AWT creates a peer object whose class implements a ComponentPeer or
MenuComponentPeer subinterface. For example, AWT creates a java.awt.peer.ButtonPeer instance when
you add a Button component class instance to a container.

 Note Each AWT toolkit implementation includes its own set of peer interface implementations.

Behind the scenes, the component object communicates with the peer object, which communicates
with native code in a JDK library. This code communicates with the platform’s windowing system, which
manages the native screen resource (a native window) that appears on the screen.

For example, when you add a Button instance to a container, AWT calls Component’s void
addNotify() method, which obtains the current toolkit and calls its ButtonPeer createButton(Button
target) method to create this toolkit’s Button peer.

Ultimately, the windowing system is asked to create a button native screen resource. For example,
on a 32-bit Windows operating system, the native screen resource could be obtained via a call to the
CreateWindow() or CreateWindowEx() Win32 API function.

AWT components except for those created from nonpredefined classes that directly extend
Component or Container are known as heavyweight components because of their corresponding peer
interfaces and native screen resources. Components created from custom Component and Container
subclasses are known as lightweight components because they do not have peer interfaces and native
screen resources (they reuse their closest ancestor’s peer, which is how Swing works). You can call
Component’s boolean isLightweight() method to determine if a component is lightweight.

 Note Heavyweight and lightweight components can be mixed in a single component hierarchy provided that the
entire hierarchy is valid (noncontainer components are correctly sized; container components have their contained
components laid out). When the hierarchy is invalidated (e.g., after changing component bounds [width, height,
and location relative to the component’s parent container], such as when changing a button’s text, or after
adding/removing components to/from containers), AWT validates it by invoking Container’s void validate()
method on the top-most invalid container of the hierarchy.

As you explore the JDK documentation for the various component classes, you’ll discover many
useful constructors and methods. For example, Button declares a Button(String label) constructor for
initializing a button to the specified label text. Alternatively, you could call the Button() constructor to
create a Button with no label. Regardless of which constructor you use, you can always call Button’s void
setLabel(String label) and String getLabel() methods to specify and retrieve the label text that is

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

440

displayed on the button. (Changing a button’s displayed text invalidates the button; AWT then performs
validation, which causes the component hierarchy to be re-laid out.)

Components are easy to create, as demonstrated by the following example, which creates a Yes
button:

Button btnYes = new Button("Yes");

 Note I like to prefix a component variable to indicate its kind. For example, I prefix buttons with btn.

Containers Overview
Buttons, labels, textfields, and other components cannot be placed directly on the screen; they need to
be placed in a container window that is placed directly on the screen.

AWT provides several container classes in the java.awt package. Figure 7-3 presents their hierarchy.

Figure 7-3. AWT’s container class hierarchy is rooted in Container.

AWT’s Container class is the root class for all AWT containers. Directly beneath Container are Panel,
ScrollPane, and Window:

• Panel is the simplest container. It provides space in which an application can
attach any other component, including other panels.

• ScrollPane implements automatic horizontal and/or vertical scrolling for a single
child (contained) component. A container that contains a component is referred
to as that component’s parent.

• Window is a top-level window with no borders. Its Dialog subclass describes a
dialog box (a window for soliciting input from the user) and its Frame subclass
describes a frame window (a top-level window with borders, including a titlebar).
Dialog’s FileDialog subclass describes a dialog box for selecting a file.

Container declares many container-oriented methods. For example, Component add(Component
comp) appends component comp to the container, Component[] getComponents() returns an array of the
container’s components, and int getComponentCount() returns the number of components in the
container.

Window declares a void pack() method for making a top-level window just large enough to display all
its components at their preferred (natural) sizes. Also, pack() makes the window (and any owner of the
window—dialog boxes are typically owned by other windows) displayable when not already displayable.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

441

Window also declares a void setSize(int width, int height) method that lets you size a window to
a specific size (in pixels).

Continuing from the previous example, suppose you want to add the Yes button to a panel (which
might also contain a No button). The following example shows you how to accomplish this task:

Panel pnl = new Panel();
pnl.add(btnYes);

Layout Managers Overview
Containers can contain components but cannot lay them out on the screen (e.g., in rows, in a grid, or in
some other arrangement). Layout managers handle this task. A layout manager is typically associated
with a container to lay out the container’s components.

 Note Layout managers provide a screen size-independent way to display a GUI. Without them, an application
would have to obtain the current screen size and adapt container/component sizes to account for the screen size.
Doing so could involve writing hundreds of lines of code, a tedious proposition at best.

AWT provides several layout managers in the java.awt package: BorderLayout (lay out no more than
five components in a container’s north, south, east, west, and center areas), CardLayout (treat each
contained component as a card; only one card is visible at a time, and the container acts as a stack of
cards), FlowLayout (arrange components in a horizontal row), GridBagLayout (lay out components
vertically, horizontally, or along their baseline [line serving as an origin for the purpose of layout] without
requiring that the components be of the same size), and GridLayout (lay out the components in a
rectangular grid).

Layout manager classes implement the java.awt.LayoutManager interface, which declares methods
that AWT calls when a container’s components need to be laid out. You don’t need to be aware of these
methods unless you’re planning to create your own layout manager. If so, you’ll also want to be aware of
java.awt.LayoutManager2, a LayoutManager subinterface.

Layout managers learn about a component’s/container’s preferred, maximum, and minimum sizes
by calling Component’s Dimension getPreferredSize(), Dimension getMaximumSize(), and Dimension
getMinimumSize() methods. (The aforementioned layout manager classes don’t take maximum size into
account because these classes were introduced in JDK 1.0, and support for maximum size was not
introduced [via LayoutManager2] until JDK 1.1.)

 Note The java.awt.Dimension class declares public width and height fields (of type int) that contain the
component’s width and height. Although directly accessing these fields violates information hiding, the designers
of this class probably felt that it was more performant to access these fields directly. Furthermore, Dimension is
one class that will probably never change.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

442

Each container has a default layout manager. For example, Frame’s default layout manager is
BorderLayout, whereas Panel’s default layout manager is FlowLayout. You can replace this default by
calling Container’s void setLayout(LayoutManager mgr) method to install your own layout manager, as
demonstrated here:

Panel pnl = new Panel();
pnl.setLayout(new GridLayout(3, 2));

The first line creates a Panel that defaults to FlowLayout. The second line replaces this layout
manager with a GridLayout that lays out a maximum of six components in a three-row-by-two-column
grid.

Events Overview
Users press keys, click buttons, move the mouse, select menuitems, and perform other GUI interactions.
Each interaction is known as an event, and is described by a concrete java.awt.event subclass of the
abstract java.awt.AWTEvent class.

AWTEvent is subclassed by several event classes: ActionEvent, AdjustmentEvent, AncestorEvent,
ComponentEvent, HierarchyEvent, InputMethodEvent, InternalFrameEvent, InvocationEvent, ItemEvent,
and TextEvent.

ComponentEvent is the superclass for ContainerEvent, FocusEvent, InputEvent, PaintEvent, and
WindowEvent. InputEvent is the abstract superclass for KeyEvent, which is subclassed by MenuKeyEvent,
and MouseEvent, which is subclassed by MenuDragMouseEvent and MouseWheelEvent.

 Note Not all these events are used by AWT. For example, MenuDragMouseEvent is Swing-specific. Also, events
can be classified as high-level or low-level. A high-level event results from a low-level interaction with the GUI. For
example, an action event originates from a keypress or a mouse click. In contrast, keyboard-oriented and mouse-
oriented events are low-level events.

Components that generate events are known as event sources. As events occur, AWTEvent subclass
instances are created to describe them. Each instance is posted to an event queue and subsequently
dispatched (sent) to the appropriate event listeners that were previously registered with the event source.
Event listeners respond to these events in some way, which typically involves updating the GUI.

An event listener is registered with a component by calling the component class’s appropriate
addxListener() method on the component instance, where x is replaced with an event class name
without the Event suffix. For example, you would register an action listener with a button by calling
Button’s void addActionListener(ActionListener al) method.

ActionListener is an interface in the java.awt.event package. AWT calls its void
actionPerformed(ActionEvent ae) method with the ActionEvent object when an action event occurs.

The following example registers an action listener with the previously created Yes button:

btnYes.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ae)
 {
 System.out.println("Yes was clicked");

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

443

 }
 });

When the user clicks the Yes button, AWT calls actionPerformed() with an ActionEvent object as this
method’s argument. The listener responds by outputting a message on the standard output device.

Button also declares a void removeActionListener(ActionListener al) method for unregistering
the previously registered action listener identified as al. Other component classes also declare their own
removexListener(xListener) methods.

ActionListener declares a single method, but some listeners declare multiple methods. For
example, WindowListener declares seven methods. Because it can be tedious to override each method
wherever you need to implement the interface, AWT also provides the concept of an adapter, which is a
convenience class that implements a multimethod interface by providing an empty version of each
method. For example, the java.awt.event package includes a WindowAdapter class, which you’ll see
demonstrated shortly.

Demonstrating Components, Containers, Layout Managers, and Events
Now that you’ve learned some basics of components, containers, layout managers, and events (and
event listeners), let’s find out how to combine them into a useful AWT-based GUI. I’ve created a simple
temperature-conversion application that presents a GUI for obtaining degree input, displaying degree
output, and triggering conversions to degrees Celsius/Fahrenheit. Listing 7-1 presents the source code.

Listing 7-1. A simple GUI consisting of two labels, two textfields, and two buttons

import java.awt.Button;
import java.awt.EventQueue;
import java.awt.Frame;
import java.awt.GridLayout;
import java.awt.Label;
import java.awt.Panel;
import java.awt.TextField;
import java.awt.Window;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

class TempVerter extends Frame
{
 TempVerter()
 {
 super("TempVerter");
 addWindowListener(new WindowAdapter()
 {
 @Override
 public void windowClosing(WindowEvent we)
 {
 System.out.println("window closing");
 dispose();
 }

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

444

 @Override
 public void windowClosed(WindowEvent we)
 {
 System.out.println("window closed");
 }
 });
 Panel pnlLayout = new Panel();
 pnlLayout.setLayout(new GridLayout(3, 2));
 pnlLayout.add(new Label("Degrees"));
 final TextField txtDegrees = new TextField(10);
 pnlLayout.add(txtDegrees);
 pnlLayout.add(new Label("Result"));
 final TextField txtResult = new TextField(30);
 pnlLayout.add(txtResult);
 ActionListener al;
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 double value = Double.parseDouble(txtDegrees.getText());
 double result = (value-32.0)*5.0/9.0;
 txtResult.setText("Celsius = "+result);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("bad input");
 }
 }
 };
 Button btnConvertToCelsius = new Button("Convert to Celsius");
 btnConvertToCelsius.addActionListener(al);
 pnlLayout.add(btnConvertToCelsius);
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 double value = Double.parseDouble(txtDegrees.getText());
 double result = value*9.0/5.0+32.0;
 txtResult.setText("Fahrenheit = "+result);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("bad input");
 }
 }
 };

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

445

 Button btnConvertToFahrenheit = new Button("Convert to Fahrenheit");
 btnConvertToFahrenheit.addActionListener(al);
 pnlLayout.add(btnConvertToFahrenheit);
 add(pnlLayout);
 pack();
 setResizable(false);
 setVisible(true);
 }
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 new TempVerter();
 }
 };
 EventQueue.invokeLater(r);
 }
}

Following several import statements, Listing 7-1 presents the temperature-conversion application’s
TempVerter class, which extends the Frame class to describe a frame window that displays the GUI.

TempVerter declares a noargument constructor for constructing the GUI. Its main() method
instantiates TempVerter and invokes its noargument constructor to create the GUI.

main() does not directly execute new TempVerter();. Doing so would construct the GUI on the main
thread. Instead, main() defers GUI creation to a special AWT thread known as the event-dispatch thread
(EDT). It does so by creating a java.lang.Runnable instance whose run() method executes new
TempVerter();, and by passing this runnable to the java.awt.EventQueue class’s void
invokeLater(Runnable runnable) class method, which executes the runnable on the EDT.

main() defers GUI creation to the EDT to avoid potential thread-synchronization problems. Because
it’s beyond this chapter’s scope to discuss these problems, check out The Java Tutorial
(http://download.oracle.com/javase/tutorial/uiswing/concurrency/dispatch.html) and the “Swing
threading and the event-dispatch thread” article (http://www.javaworld.com/javaworld/jw-08-2007/jw-
08-swingthreading.html) for more information. (Although these sources discuss this topic in a Swing
context, other sources also include AWT. Therefore, you should create AWT-based as well as Swing-
based GUIs on the EDT.)

TempVerter() first invokes the Frame(String title) constructor via super("TempVerter"); so that
TempVerter will appear on the frame window’s titlebar. It then registers a window listener with the frame
window so that this window will close (and the application will end) when the user closes the window
(by clicking the X button on the window’s titlebar, for example).

The listener is an instance of a WindowAdapter anonymous subclass, which overrides
WindowListener’s void windowClosing(WindowEvent we) and void windowClosed(WindowEvent we)
methods. Clicking X or selecting Close from the window’s system menu triggers a call to
windowClosing(). You would typically override this method to save changes (e.g., a text editor’s unsaved
edits).

To properly terminate the application, windowClosing() must invoke Window’s void dispose()
method, which releases all the native screen resources used by the window and posts a window-closed
event to the application’s event queue. AWT subsequently dispatches this event by invoking

http://download.oracle.com/javase/tutorial/uiswing/concurrency/dispatch.html
http://www.javaworld.com/javaworld/jw-08-2007/jw-08-swingthreading.html
http://www.javaworld.com/javaworld/jw-08-2007/jw-08-swingthreading.html

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

446

windowClosed() to signify that the window has closed. Any final cleanup can be performed in this
method.

 Note Some people prefer to invoke the java.lang.System class’s void exit(int status) method to
terminate the application. For more information, check out Oracle’s “AWT Threading Issues” page at
http://download.oracle.com/javase/7/docs/api/java/awt/doc-files/AWTThreadIssues.html.

Continuing, the constructor instantiates Panel to contain the GUI’s components. It then assigns a
three-row-by-two-column GridLayout layout manager to this container to manage its components.

Each of the first two grid rows presents Label and TextField instances. The label tells the user what
to enter or indicates that the textfield is displaying a result. The textfield solicits input or presents output.
The value passed to each TextField constructor specifies the textfield’s width in terms of displayable
columns, where a column is defined as an approximate average character width (and is platform-
dependent).

The final grid row presents a pair of Button instances for performing conversions. Each instance is
assigned an action listener that responds to a button click by obtaining the top textfield’s text (via
TextField’s String getText() method, which is inherited from TextField’s TextComponent superclass),
converting it to a number, and assigning it to the bottom textfield by calling TextField’s overriding void
setText(String t) method.

After populating the panel, the constructor adds the panel to the frame window. It then invokes
pack() to ensure that the frame window is made large enough to display its components at their
preferred sizes, invokes Frame’s void setResizable(boolean resizable) method with a false argument
to prevent the user from resizing the frame window (and making it look ugly), and invokes setVisible()
with a true argument to display the frame and its components.

After the constructor returns to main(), this class method exits. However, the frame window remains
on the screen because it’s connected to a native screen resource and because the running EDT is a
nondaemon thread (discussed in Chapter 4).

Compile Listing 7-1 (javac TempVerter.java) and run this application (java TempVerter). Figure 7-4
shows the resulting GUI on the Windows XP platform.

http://download.oracle.com/javase/7/docs/api/java/awt/doc-files/AWTThreadIssues.html

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

447

Figure 7-4. Click the X button to close this window and terminate the application.

When you enter nonnumeric text or leave the Degrees textfield empty, TempVerter outputs a “bad
input” message to the standard output device. Also, when you close the window, this application
outputs “window closing” followed by “window closed” messages on separate lines.

 Note You can move forward to the next component by pressing the Tab key, and move backward to the
previous component by pressing Shift-Tab. The component that you tab to has the focus when it can obtain
input—the only TempVerter components capable of receiving focus are the two textfields and the two buttons.
When you disable an input component, by invoking Component’s void setEnabled(boolean b) method with a
false argument on the component instance, it no longer has the focus.

Figure 7-4 reveals that all components have the same size, which results from GridLayout ignoring a
component’s preferred size. The resulting GUI doesn’t look professional, but we can improve the GUI’s
appearance with a little bit of effort, as demonstrated in Listing 7-2.

Listing 7-2. Improving TempVerter’s GUI

import java.awt.Button;
import java.awt.EventQueue;
import java.awt.Frame;
import java.awt.GridLayout;
import java.awt.Label;
import java.awt.Panel;
import java.awt.TextField;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

class TempVerter
{
 static Panel createGUI()
 {
 Panel pnlLayout = new Panel();
 pnlLayout.setLayout(new GridLayout(3, 1));
 Panel pnlTemp = new Panel();
 pnlTemp.add(new Label("Degrees"));

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

448

 final TextField txtDegrees = new TextField(10);
 pnlTemp.add(txtDegrees);
 pnlLayout.add(pnlTemp);
 pnlTemp = new Panel();
 pnlTemp.add(new Label("Result"));
 final TextField txtResult = new TextField(30);
 pnlTemp.add(txtResult);
 pnlLayout.add(pnlTemp);
 pnlTemp = new Panel();
 ActionListener al;
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 double value = Double.parseDouble(txtDegrees.getText());
 double result = (value-32.0)*5.0/9.0;
 txtResult.setText("Celsius = "+result);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("bad input");
 }
 }
 };
 Button btnConvertToCelsius = new Button("Convert to Celsius");
 btnConvertToCelsius.addActionListener(al);
 pnlTemp.add(btnConvertToCelsius);
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 double value = Double.parseDouble(txtDegrees.getText());
 double result = value*9.0/5.0+32.0;
 txtResult.setText("Fahrenheit = "+result);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("bad input");
 }
 }
 };
 Button btnConvertToFahrenheit = new Button("Convert to Fahrenheit");
 btnConvertToFahrenheit.addActionListener(al);
 pnlTemp.add(btnConvertToFahrenheit);
 pnlLayout.add(pnlTemp);
 return pnlLayout;

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

449

 }
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 final Frame f = new Frame("TempVerter");
 f.addWindowListener(new WindowAdapter()
 {
 @Override
 public void windowClosing(WindowEvent we)
 {
 f.dispose();
 }
 });
 f.add(createGUI());
 f.pack();
 f.setResizable(false);
 f.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
 }
}

Listing 7-2 presents an alternative architecture for creating a GUI. Instead of subclassing Frame, this
class is instantiated directly and various methods are called to configure and display the frame window.
(It’s convenient to create a class method such as createGUI() that returns a Panel object containing the
entire GUI. The returned Panel instance is passed to Frame’s add() method to install the GUI.)

Figure 7-5 reveals the improved GUI.

Figure 7-5. A nicer looking GUI is achieved by wrapping components in nested panels.

Notice that the components are displayed at their preferred sizes. This is caused by adding a label
and a textfield, or by adding the two buttons to a nested panel (whose layout manager is flow), and then
adding this panel to the main layout panel. (A flow layout lets each component assume its natural
[preferred] size.)

Although Figure 7-5’s GUI looks nicer than the GUI shown in Figure 7-4, there’s room for
improvement. For example, we could left-align the Degrees and Result labels and the textfields. We
could also ensure that each button has the same size. Figure 7-6 shows you what the resulting GUI
would look like.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

450

Figure 7-6. An even nicer looking GUI is achieved by aligning and resizing components.

The labels are left-aligned by executing ((FlowLayout)
pnlTemp.getLayout()).setAlignment(FlowLayout.LEFT); on each of the two pnlTemp variables that stores
a label and a textfield. This method call obtains pnlTemp’s default flow layout manager and calls
FlowLayout’s void setAlignment(int alignment) method on this instance to align the panel’s
components to the left edge of the container (thanks to FlowLayout’s LEFT constant)—FlowLayout leaves
a default 5-pixel gap on each side of the panel that serves as a margin.

However, the textfields are not left aligned. To align them, we need to set the preferred size of the
wider Degrees label to the preferred size of the narrower Result label. Similarly, we need to set the
preferred size of the Convert to Celsius button to the preferred size of the Convert to Fahrenheit button
so that they have equal widths.

These tasks can be accomplished in part by introducing the following void fixGUI(Frame) class
method into the TempVerter class:

static void fixGUI(Frame f)
{
 Panel pnl = (Panel) f.getComponents()[0]; // 1
 Panel pnlRow = (Panel) pnl.getComponents()[0]; // 2
 Label l1 = (Label) pnlRow.getComponents()[0]; // 3
 pnlRow = (Panel) pnl.getComponents()[1]; // 4
 Label l2 = (Label) pnlRow.getComponents()[0]; // 5
 l1.setPreferredSize(l2.getPreferredSize()); // 6
 pnlRow = (Panel) pnl.getComponents()[2]; // 7
 Button btnToC = (Button) pnlRow.getComponents()[0]; // 8
 Button btnToF = (Button) pnlRow.getComponents()[1]; // 9
 btnToC.setPreferredSize(btnToF.getPreferredSize()); // 10
}

fixGUI(Frame) is invoked with a reference to the TempVerter frame window (TempVerter.this
provides that reference). It first invokes f.getComponents()[0] to obtain the panel that was added to the
frame window. (Listing 7-2 identifies this panel as pnlLayout.)

pnl/pnlLayout contains three Panel instances (recall pnlTemp). The second line fetches the first of
these instances and assigns its reference to pnlRow. The third line extracts the Degrees label component,
which is the first component (at position 0) within this panel.

The fourth line fetches the second Panel instance that contains the Result label and its associated
textfield. The fifth line extracts this label.

The sixth line invokes getPreferredSize() on the Result label, and then invokes Component’s void
setPreferredSize(Dimension preferredSize) method with this preferred size to shrink the width of the
Degrees label so that both textfields are left-aligned.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

451

The seventh line fetches the third Panel instance, which contains the two buttons, the eighth and
ninth lines extract these buttons, and the tenth line sets the preferred size of the Convert to Celsius
button to that of the wider Convert to Fahrenheit button.

Introducing fixGUI(Frame) into TempVerter is only part of the solution. We must also call this
method, and the appropriate place to do so is between the frame window’s pack() and setVisible()
method calls.

fixGUI() must be called after pack() because the preferred sizes are not known until after pack()
has been called. This method must be called before setVisible() because it changes preferred sizes.
setVisible() can accommodate these changes when they are made before this method is called.
However, when they are made after calling setVisible(), pack() will have to be called a second time.

 Note Although fixGUI() is convenient for trivial applications, you won’t need to use it after learning more
about layout management (which unfortunately is beyond the scope of this chapter). fixGUI() can be tedious to
code, and you need to revise it whenever you change the GUI.Graphics, Colors, and Fonts

The Component class declares a void paint(Graphics g) method to paint a component. Painting occurs
when a component is first shown or when it has been damaged (by being partly or completely obscured
by another component) and is being reshown.

The argument passed to this method describes a graphics context, an object created from a concrete
subclass of the abstract java.awt.Graphics class. This object describes a drawing surface on which pixels
are drawn (e.g., a monitor screen, a printer page, or an image buffer).

The drawing surface has a two-dimensional coordinate system with its (0, 0) origin in the upper-left
corner, its horizontal (X) axis positively increasing from left to right, and its vertical (Y) axis positively
increasing from top to bottom. Figure 7-7 illustrates this coordinate system.

Figure 7-7. A drawing surface’s coordinate system is anchored in an origin at its upper-left corner.

Graphics declares various methods for drawing on the surface and setting context state. Its drawing
methods include the following:

• void drawLine(int x1, int y1, int x2, int y2) draws a line in the current color
from (x1, y1) to (x2, y2).

• void drawOval(int x, int y, int width, int height) draws the outline of an
oval in the current color such that the oval fits within the bounding box (smallest
enclosing rectangle) whose upper-left corner is at (x, y) and whose extents are
(width, height). The oval covers an area that is width+1 pixels wide and height+1
pixels tall.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

452

• void drawRect(int x, int y, int width, int height) draws the outline of a
rectangle in the current color whose upper-left corner is at (x, y) and whose
extents are (width, height), such that the right edge is located at x+width and the
bottom edge is located at y+height.

• void drawString(String str, int x, int y) draws the characters specified by
str in the current color and using the current font. The baseline of the leftmost
character is at (x, y).

• void fillOval(int x, int y, int width, int height) draws a filled oval in the
current color such that the oval fits within the bounding box whose upper-left
corner is at (x, y) and whose extents are (width, height).

• void fillRect(int x, int y, int width, int height) draws a filled rectangle in
the current color whose upper-left corner is at (x, y) and whose extents are (width,
height), such that the right edge is located at x+width-1 and the bottom edge is
located at y+height-1.

State methods include the following:

• void setColor(Color c) sets the current color to the java.awt.Color instance
passed to c. Color declares several uppercase/lowercase Color constants for
common colors (e.g., RED/red, GREEN/green, and BLUE/blue) and constructors for
describing arbitrary colors—it’s conventional to use the uppercase color
constants. A companion Color getColor() method returns the current color.

• void setFont(Font f) sets the current font to the java.awt.Font instance passed
to f. A companion Font getFont() method returns the current font.

The following example demonstrates various drawing and state methods:

public void paint(Graphics g)
{
 g.setColor(Color.RED);
 g.drawLine(10, 10, 20, 20);
 g.setFont(new Font("Arial", Font.BOLD, 10));
 g.drawString("Hello", 35, 35);
}

The first statement sets the current color to Color.RED and the second statement draws a line in this
color from starting point (10, 10) to ending point (20, 20). (When you don’t specify a color before
drawing, the color defaults to the component’s background color, which is returned from Component’s
Color getBackground() method.)

The third statement calls Font’s Font(String name, int style, int size) constructor to create a
Font object that describes a font named Arial with style BOLD and point size 10—a point is a typographic
measurement that’s approximately 1/72 of an inch. (Other supported styles are PLAIN, ITALIC, and
ITALIC combined with BOLD.) This object is then installed as the current font.

The font name can be a font family name (such as Arial) or a font face name (a font family name
combined with style information, such as Arial Bold). When a font family name is specified, the style
argument is used to select the most appropriate face from the family. When a font face name is specified,
the face’s style and the style argument are merged to locate the best matching font from the same
family. For example, when face name “Arial Bold” is specified with style Font.ITALIC, AWT looks for a
face in the “Arial” family that is bold and italic, and may associate the font instance with the physical
font face “Arial Bold Italic”. The style argument is merged with the specified face’s style, not added or

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

453

subtracted. This means, specifying a bold face and a bold style does not double-embolden the font, and
specifying a bold face and a plain style does not lighten the font.

Java supports logical fonts and physical fonts. A logical font is a font that’s guaranteed to be
supported on all platforms; pass one of Font’s predefined DIALOG, DIALOG_INPUT, MONOSPACED, SANS_SERIF,
and SERIF String constants to Font() to select a logical font. A physical font is a nonlogical font that may
or may not be supported on all platforms. Arial is an example of a widely supported physical font—it’s
probably available on all the platforms where Java runs.

 Caution Be careful when specifying a font name because not all fonts are available on all platforms. I’ll show
you later in this chapter how you can identify all supported font family names.

Finally, the fourth statement draws Hello in the current color and font with baseline at (35, 35).
I previously defined baseline as the line serving as an origin for the purpose of layout. This term is

also defined as the line separating a font’s ascent from its descent, as Figure 7-8 illustrates.

Figure 7-8. A font’s ascent and descent are relative to its baseline.

Every font is associated with various measurements. The ascent is that portion of the font’s
characters above the baseline; the descent is that portion of these characters below the baseline. Extra
space added between lines of text is known as leading. When added together, ascent, descent, and
leading form the font’s height. Lastly, the advance roughly specifies the baseline location where the next
character should appear.

AWT’s java.awt.FontMetrics class encapsulates this measurement information. You can obtain an
instance of this class by calling the Graphics class’s FontMetrics getFontMetrics() method, which
returns the font metrics for the current font. Among its various methods, you will find the int
stringWidth(String str) method (which returns the total advance width for showing str’s characters in
the current font) useful for centering a string horizontally.

Although you can paint on any component (including a container) by subclassing the component
class and overriding paint(), you should try to avoid doing so, to avoid confusing the user or someone
who’s reviewing your code. Instead, you should take advantage of AWT’s Canvas class, which is intended
for this purpose.

To use Canvas, you must extend this class and override paint(). You also need to specify its
preferred size so that you can view the canvas on the screen. Accomplish this task by overriding
getPreferredSize() to return a Dimension object containing the canvas’s extents, or by invoking
setPreferredSize() with a Dimension object containing the preferred size (as demonstrated in fixGUI()).

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

454

I’ve created a Geometria application that demonstrates Canvas. (Although Geometria is just a skeleton
that presents a Canvas-based splash-screen component, it could be turned into a full-blown application
for teaching basic geometry.) Listing 7-3 excerpts this application’s SplashCanvas class.

Listing 7-3. Creating a splash screen

class SplashCanvas extends Canvas
{
 private Dimension d;
 private Font f;
 private String title;
 private boolean invert; // defaults to false (no invert)
 SplashCanvas()
 {
 d = new Dimension(250, 250);
 f = new Font("Arial", Font.BOLD, 50);
 title = "Geometria";
 addMouseListener(new MouseAdapter()
 {
 @Override
 public void mouseClicked(MouseEvent me)
 {
 invert = !invert;
 repaint();
 }
 });
 }
 @Override
 public Dimension getPreferredSize()
 {
 return d;
 }
 @Override
 public void paint(Graphics g)
 {
 int width = getWidth();
 int height = getHeight();
 g.setColor(invert ? Color.BLACK : Color.WHITE);
 g.fillRect(0, 0, width, height);
 g.setColor(invert ? Color.WHITE : Color.BLACK);
 for (int y = 0; y < height; y += 5)
 for (int x = 0; x < width; x += 5)
 g.drawLine(x, y, width-x, height-y);
 g.setColor(Color.YELLOW);
 g.setFont(f);
 FontMetrics fm = g.getFontMetrics();
 int strwid = fm.stringWidth(title);
 g.drawString(title, (width-strwid)/2, height/2);
 g.setColor(Color.RED);
 strwid = fm.stringWidth(title);
 g.drawString(title, (width-strwid)/2+3, height/2+3);
 g.setColor(Color.GREEN);

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

455

 g.fillOval(10, 10, 50, 50);
 g.setColor(Color.BLUE);
 g.fillRect(width-60, height-60, 50, 50);
 }
}

Listing 7-3’s SplashCanvas class simulates a splash screen, a window that appears before a GUI is
presented. Splash screens are often presented to users to occupy their attentions while applications
initialize. (I’ll have more to say about splash screens in Appendix C.)

There are several points of interest:

• I precreate Dimension, Font, and String objects to avoid unneeded object creation.

• I declare a Boolean variable named invert that (when true) results in the
background portion of the splash canvas being inverted.

• I declare a constructor that registers a mouse listener with the canvas. Whenever
the user clicks a mouse button while the mouse cursor is over this component, the
mouse listener’s void mouseClicked(MouseEvent me) method is invoked. This
method toggles invert and invokes Component’s void repaint() method, which
tells AWT to invoke paint() as soon as possible.

• I invoke Component’s int getWidth() and int getHeight() methods to obtain the
canvas’s width and height (in pixels).

• I invoke fillRect() to paint all the canvas’s pixels using the current color (black or
white).

• I use a pair of nested loops to draw lines. You should avoid using lengthy loops in
the paint() method because they can make the user interface less performant.
Shorter loops are not a problem.

• I center the bottom string horizontally by subtracting the total advance width
(returned from stringWidth()) from the canvas’s width and dividing the result by
2. I center the string’s baseline vertically by dividing the canvas’s height by 2.

• I achieve a drop-shadow effect by first drawing the bottom string in yellow (the
shadow color) and then drawing the same string in red, but offset three pixels
horizontally and three pixels vertically.

Figure 7-9 presents the noninverted canvas with red on yellow text, a green oval, and a blue
rectangle.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

456

Figure 7-9. A canvas can be used to paint an application’s splash screen.

There’s more that I could say about painting but lack of space prevents me from doing so. For
example, Component also declares a void update(Graphics g) method for updating a heavyweight
component in response to a repaint() method call. You can learn about this method and more by
reading “Painting in AWT and Swing”
(http://java.sun.com/products/jfc/tsc/articles/painting/index.html) and browsing the JDK
documentation for the Component and Container classes.

Images
AWT supports GIF, JPEG, and PNG images via java.awt.Image, Toolkit, and other classes. Because Java
2D largely obviates the need to work with these classes, I won’t discuss AWT’s support for images in
great detail. However, you should know something about this support because various JFC classes (such
as javax.swing.ImageIcon) work with Image, and even provide constructors and/or methods that take
Image arguments and (in regard to methods) return Image instances.

The Toolkit class declares several createImage() methods for creating and returning Image objects
from various sources. For example, Image createImage(String filename) returns an Image object that
represents the image defined in the file identified by filename.

Toolkit also declares two getImage() methods that create and return Image objects. Unlike their
createImage() counterparts, the getImage() methods cache Image objects and can return the same
object to different callers. This sharing mechanism helps AWT save heap space, especially when large
images are loaded. In contrast, the createImage() methods always return new Image objects that are not
shared among callers.

Image objects represent images but do not contain them: a loaded image is associated with an Image
object. This dichotomy exists because Java was originally used mainly in a web browser context.

At that time, computers and network connections were much slower than they are today, and
loading large images over the wire was a time-consuming process. Rather than force an applet (a
browser-based application) to wait until an image had completely loaded (and annoy the user), it was
decided that methods for loading images would load them asynchronously via background threads
while occupying the user’s attention elsewhere.

When you invoke a createImage() or getImage() method, a background thread is started to load the
image, and createImage()/getImage() returns immediately with an Image object.

http://java.sun.com/products/jfc/tsc/articles/painting/index.html

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

457

Because the image may not be fully loaded until sometime after the method returns, you cannot
immediately obtain the image’s width and height, or even draw the entire image. For this reason, Java
provides the java.awt.image.ImageObserver interface to provide the current image-loading status.

 Note ImageObserver lets you obtain information about a loaded image as soon as it’s available while the image
is being constructed, by providing a boolean imageUpdate(Image img, int infoflags, int x, int y, int
width, int height) method that’s called at various times during the loading process. infoflags consists of
various ImageObserver constants (such as SOMEBITS and ERROR) that have been combined via the bitwise
inclusive OR operator. The other arguments depend upon infoflags. For example, when infoflags is set to
SOMEBITS, they define a bounding box for the newly loaded pixels.

Various Image and Graphics methods are declared with ImageObserver parameters. For example,
Image’s int getWidth(ImageObserver observer) and int getHeight(ImageObserver observer) methods
are called with an image observer that helps these methods determine that the image has been loaded to
the point where they can return its width or height, or that the width/height is still not available, in
which case they return -1.

Similarly, the Graphics class’s boolean drawImage(Image img, int x, int y, ImageObserver
observer) method is called with an image observer that helps it determine what part of the image to
draw—the image’s upper-left corner is located at (x, y). When an image is not completely loaded, the
image observer calls one of Component’s repaint() methods, to reinvoke paint() so that a subsequent
call can be made to drawImage() to draw the newly-loaded pixels.

 Note You do not need to implement ImageObserver (unless there is a special reason to do so) because
Component already implements this interface on your behalf.

I’ve created an ImageViewer application that shows you how to load and display an image. This
application consists of ImageViewer and ImageCanvas classes, and Listing 7-4 presents ImageViewer.

Listing 7-4. A general-purpose image viewer

import java.awt.Dimension;
import java.awt.EventQueue;
import java.awt.FileDialog;
import java.awt.Frame;
import java.awt.Menu;
import java.awt.MenuBar;
import java.awt.MenuItem;
import java.awt.Panel;
import java.awt.ScrollPane;
import java.awt.Toolkit;

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

458

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

class ImageViewer
{
 static ImageCanvas ic;
 static ScrollPane sp;
 static Toolkit tk = Toolkit.getDefaultToolkit();
 static ImageCanvas createGUI(final Frame f)
 {
 MenuBar mb = new MenuBar();
 Menu mFile = new Menu("File");
 MenuItem miOpen = new MenuItem("Open...");
 ActionListener al;
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 FileDialog fd = new FileDialog(f, "Open file");
 fd.setVisible(true);
 String curFile = fd.getFile();
 if (curFile != null)
 {
 ic.setImage(tk.getImage(fd.getDirectory()+curFile));
 sp.doLayout();
 }
 }
 };
 miOpen.addActionListener(al);
 mFile.add(miOpen);
 MenuItem miExit = new MenuItem("Exit");
 miExit.addActionListener(new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 f.dispose();
 }
 });
 mFile.add(miExit);
 mb.add(mFile);
 f.setMenuBar(mb);
 return new ImageCanvas();
 }
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

459

 public void run()
 {
 final Frame f = new Frame("ImageViewer");
 WindowAdapter wa;
 wa = new WindowAdapter()
 {
 @Override
 public void windowClosing(WindowEvent we)
 {
 f.dispose();
 }
 };
 f.addWindowListener(wa);
 sp = new ScrollPane();
 sp.setPreferredSize(new Dimension(300, 300));
 sp.add(ic = createGUI(f));
 f.add(sp);
 f.pack();
 f.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
 }
}

ImageViewer declares an ImageCanvas class field that references the image canvas used to display the
image. It also declares a ScrollPane class field whose scrollpane contains the image canvas, so that you
can scroll horizontally and vertically over images that are too large to be displayed in their entirety at the
current screen resolution, and a Toolkit instance whose getImage() method is used to start the image-
loading process for the user-selected image.

The ImageCanvas createGUI(final Frame f) method creates a GUI consisting of a menubar with a
single File menu and an image canvas. File consists of Open and Exit menuitems.

Open’s action listener is invoked when the user selects Open… (... indicates that a dialog box will
be displayed). This listener first instantiates FileDialog and displays it; the user sees a platform-specific
dialog box for selecting a file.

When the user closes this dialog box, FileDialog’s String curFile() method is called to return the
name of the selected file; this method returns null when a file has not been selected.

If null is not returned, FileDialog’s String getDirectory() method is called to return the directory
name, which is prepended to the filename so that the selected file can be located. The resulting
pathname is passed to Toolkit’s getImage() method, and the returned Image instance is passed to
ImageCanvas’s setImage() method to load and display the image. ScrollPane’s void doLayout() method
lays out this container by resizing its child (the image canvas) to its preferred size.

Exit’s action listener is invoked when the user selects Exit. It invokes dispose() on the frame window
to dispose of this window’s (and the contained components’) native screen resources. Furthermore, a
window closing event is triggered and the frame window’s window listener’s windowClosing() method is
invoked.

The main() method creates the GUI on the EDT. It instantiates a scrollpane, and sets its preferred
size to an arbitrary value that serves as the frame window’s default size (following a pack() method call).

The createGUI() method call installs the menubar on its Frame argument, and returns the image
canvas, which is saved in the ImageCanvas class field so that it can be accessed from the Open menuitem

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

460

listener. The image canvas is also added to the scrollpane, and the scrollpane is added to the frame
window.

Listing 7-5 presents ImageCanvas.

Listing 7-5. Displaying a user-selected image

import java.awt.Canvas;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.MediaTracker;

class ImageCanvas extends Canvas
{
 private Image image;
 @Override
 public void paint(Graphics g)
 {
 // drawImage() does nothing when image contains the null reference.
 g.drawImage(image, 0, 0, null);
 }
 void setImage(Image image)
 {
 MediaTracker mt = new MediaTracker(this);
 mt.addImage(image, 1);
 try
 {
 mt.waitForID(1);
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 setPreferredSize(new Dimension(image.getWidth(null),
 image.getHeight(null)));
 this.image = image;
 }
}

ImageCanvas declares an Image field that stores a reference to the image to be displayed. It also
overrides the paint() method to invoke drawImage(). This method does nothing when the Image
argument is the null reference; this is the case when paint() is called before the user selects an image.
null is passed as the ImageObserver argument because the image is completely loaded at this point, as
you will discover.

The setImage() method is called to load the image, set its preferred size to influence Listing 7-4’s
sp.doLayout(); method call, and save the Image argument in the Image field so that it can be referenced
from a subsequent paint() call, which happens in response to doLayout().

Image loading is accomplished by using the java.awt.MediaTracker class. MediaTracker declares a
void addImage(Image image, int id) method that adds an Image object to a list of Image objects being
tracked. The associated id value is later used by MediaTracker’s void waitForID(int id) method to start
loading the identified Image objects, and wait until all these images have finished loading.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

461

After waitForID() returns, the image is completely loaded and its width and height are available.
This information is obtained in subsequent getWidth() and getHeight() calls. Although these calls
require an image observer, which could be specified by passing this as an argument (because Component
implements ImageObserver), doing so isn’t necessary because the image is loaded.

The width and height are subsequently used to construct a Dimension object that’s passed to
setPreferredSize(). This preferred size will be taken into account by sp.doLayout();, which is executed
following the call to ImageCanvas’s setImage() method—see Listing 7-4.

Figure 7-10 presents ImageViewer’s GUI with a loaded image.

Figure 7-10. Is it true that a rose by any other name would smell as sweet?

 Note AWT also supports image processing. For example, you can grayscale a colored image, blur an image,
and so on. Because Java 2D simplifies image processing, and because I introduce you to Java 2D’s image
processing support later in this chapter, I don’t discuss AWT-based image processing.

Data Transfer
GUI-based applications often need to transfer data between or within themselves. For example, a text
editor’s user may want to cut selected text to the system clipboard and subsequently paste the
clipboard’s text to another location within the document being edited.

AWT supports transferring arbitrary objects between applications via the system clipboard, and
transferring objects within an application via a private clipboard. This support consists of the
java.awt.datatransfer package with its ClipboardOwner, FlavorListener, FlavorMap, FlavorTable, and
Transferable interfaces; and Clipboard, DataFlavor, FlavorEvent, StringSelection, SystemFlavorMap,
MimeTypeParseException, and UnsupportedFlavorException classes.

Clipboard provides a mechanism for transferring data to a clipboard by using cut/copy/paste
operations. You can obtain a singleton (single instance) Clipboard object that provides access to the
native clipboard facilities offered by the platform’s windowing system by calling Toolkit’s Clipboard
getSystemClipboard() method; for example, Clipboard clipboard =

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

462

Toolkit.getDefaultToolkit.getSystemClipboard();. Alternatively, you can obtain a private clipboard by
instantiating Clipboard.

Clipboard declares a void setContents(Transferable contents, ClipboardOwner owner) method
that sets the current contents of the clipboard to the specified transferable object and registers the
specified clipboard owner as the owner of the new contents. This method throws
java.lang.IllegalStateException when the clipboard is currently unavailable.

The transferable object that’s passed to contents is created from a class that implements the
Transferable interface in terms of the following three methods:

• Object getTransferData(DataFlavor flavor) returns an object containing the
data being transferred. The DataFlavor argument identifies the flavor (format) of
this data (e.g., a string or a JPEG image) by encapsulating the data’s Multipurpose
Internet Mail Extensions (MIME) type—http://en.wikipedia.org/wiki/MIME and
http://en.wikipedia.org/wiki/Internet_media_type discuss MIME—and a
human-presentable name describing this data format. This method throws
java.io.IOException when the data is no longer available in the requested flavor,
and UnsupportedFlavorException when the requested data flavor isn’t supported.

• DataFlavor[] getTransferDataFlavors() returns an array of DataFlavor objects
that indicate the flavors of the data that this transferable object can provide.

• boolean isDataFlavorSupported(DataFlavor flavor) indicates whether or not the
specified flavor is supported; true returns when flavor is supported.

Each time that you invoke setContents(), the object passed to owner is the owner of the clipboard
content. If you call this method with a different owner, AWT notifies the previous owner that it’s no
longer the owner (some other content is on the clipboard) by calling ClipboardOwner’s void
lostOwnership(Clipboard clipboard, Transferable contents) method.

Because users typically want to copy, cut, and paste text, java.awt.datatransfer provides
StringSelection as an implementation of Transferable and ClipboardOwner (lostOwnership() is left
empty; you must subclass StringSelection and override lostOwnership() when you need this
notification). You would use StringSelection to transfer strings to and from a clipboard.

The following example presents copy(), cut(), and paste() methods that show you how to perform
copy, cut, and paste operations in the context of the TextArea class. The example specifies a ta variable
that references a TextArea instance, and a clipboard variable that references a Clipboard instance:

void copy()
{
 StringSelection ss = new StringSelection(ta.getSelectedText());
 clipboard.setContents(ss, ss);
}
void cut()
{
 copy();
 ta.replaceRange("", ta.getSelectionStart(), ta.getSelectionEnd());
}
void paste()
{
 Transferable clipData = clipboard.getContents(this);
 if (clipData != null)
 try
 {

http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/Internet_media_type

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

463

 if (clipData.isDataFlavorSupported(DataFlavor.stringFlavor))
 {
 String text = (String) clipData.getTransferData(DataFlavor.stringFlavor);
 ta.replaceRange(text, ta.getSelectionStart(),
 ta.getSelectionEnd());
 }
 }
 catch (UnsupportedFlavorException ufe)
 {
 ta.setText("Flavor not supported");
 }
 catch (IOException ioe)
 {
 ta.setText("No data to paste");
 }
}

copy()’s first task is to extract the selected text from the textarea by calling TextComponent’s String
getSelectedText() method. It then passes this text to the StringSelection(String data) constructor to
create a transferable object that contains this text.

Continuing, copy() passes this object to the clipboard by invoking clipboard.setContents(ss, ss).
The same StringSelection object (ss) is passed as the transferable object and the clipboard owner
because StringSelection implements Transferable and ClipboardOwner.

cut() is much simpler. This method first invokes copy() to copy the selected text to the clipboard. It
then invokes TextArea’s void replaceRange(String str, int start, int end) method to remove the
selected text (delimited by the integer values returned from TextComponent’s int getSelectionStart()
and int getSelectionEnd() methods) by replacing it with the empty string.

paste() is the most complex of the three methods. It first invokes Clipboard’s Transferable
getContents(Object requestor) method to return a transferable object representing the current
contents of the clipboard (or null when the clipboard is empty). The requestor parameter is currently
not used; it may be implemented in a future release of the java.awt.datatransfer package.

If the returned transferable isn’t null, paste() invokes isDataFlavorSupported() on this object with
DataFlavor.stringFlavor as the argument. This method returns true when the requested flavor is
supported. In other words, isDataFlavorSupported() returns true when the clipboard contains text; it
would return false when the clipboard contained an image (for example).

If isDataFlavorSupported() returns true, paste() calls getTransferData() to return the string and
then replaces the selected string with this content.

TextArea contains built-in support for performing copy, cut, and paste operations by pressing the
Ctrl-C, Ctrl-X, and Ctrl-V key combinations. However, neither TextArea nor its TextComponent superclass
provides methods for performing these tasks. As a result, you would have to supply your own copy(),
cut(), and paste() methods (such as those shown previously) when you wanted to programmatically
perform these operations (perhaps in response to the user selecting Copy, Cut, or Paste from an Edit
menu).

I’ve created a CopyCutAndPaste application that demonstrates copy, cut, and paste on a textarea via
the previous copy(), cut(), and paste() methods. Consult this book’s code file for CopyCutAndPaste’s
source code. (This book’s introduction presents instructions on obtaining the code file.)

Swing
Swing is a windowing system-independent API for creating GUIs that are based on components,
containers, layout managers, and events. Although Swing extends AWT (you can use AWT layout

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

464

managers and events in your Swing GUIs), this API differs from its predecessor in several ways, including
the following:

• AWT-based GUIs adopt the looks and feels (behaviors) of the windowing systems
on which they run because they leverage windowing system native screen
resources. For example, a button looks and feels like a Windows button on
Windows and a Motif button on X Window-Motif. In contrast, a Swing GUI can
look and feel the same when run on any windowing system or (at the developer’s
discretion) adopt the look and feel of the windowing system on which it’s running.

• To be windowing-system independent, AWT components adopt the lowest
common denominator of component features. For example, if buttons on one
windowing system can display images with text whereas buttons on another
windowing system display text only, AWT cannot provide a button feature for
optionally displaying an image. In contrast, Swing’s noncontainer components
and a few of its containers are completely managed by Java so that they can have
whatever features are necessary (e.g., tooltips); these features are available
regardless of the windowing system. For the same reason, Swing can offer
components that might not be available on every windowing system; for example,
tables and trees.

The standard class library organizes Swing’s many types into the javax.swing package and various
subpackages. For example, the javax.swing.table subpackage stores types that support Swing’s table
component.

This section introduces you to Swing by presenting its architecture and sampling Swing
components.

An Extended Architecture
By extending AWT, Swing shares AWT’s architecture. However, Swing goes beyond what AWT has to
offer by providing an extended architecture. This architecture is largely based on new heavyweight
containers, new lightweight components and containers, UI delegates, and pluggable look and feels.

New Heavyweight Containers
The javax.swing package includes JDialog, JFrame, and JWindow container classes that extend their
java.awt.Dialog, java.awt.Frame, and java.awt.Window counterparts. These heavyweight containers
manage their contained lightweight components (such as javax.swing.JButton) and containers (such as
javax.swing.JPanel).

JDialog, JFrame, JWindow, and two other Swing containers use panes (special-purpose containers) to
organize their contained components/containers. Swing supports root, layered, content, and glass
panes:

• The root pane contains the layered pane and the glass pane. It’s implemented via
the javax.swing.JRootPane class.

• The layered pane contains the application’s menubar and the content pane. It’s
implemented via the javax.swing.JLayeredPane class.

• The content pane is a Container subclass instance that stores the GUI’s nonmenu
content.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

465

• The glass pane is a transparent Component instance that covers the layered pane.

Figure 7-11 reveals a container’s pane-based architecture.

Figure 7-11. Using panes to architect a GUI.

Container classes that support panes store a single JRootPane instance. This instance stores a
JLayeredPane instance and a Component instance that serves as the glass pane. The JLayeredPane instance
stores a javax.swing.JMenuBar instance and a Container subclass instance that serves as the content
pane.

The following example demonstrates how you might create a frame window with a single button:

JFrame f = new JFrame();
JRootPane rp = f.getRootPane();
Container cp = rp.getContentPane();
cp.add(new JButton("Ok")); // Add the button to the frame's content pane.
f.pack();
f.setVisible(true);

Container classes that support panes implement the javax.swing.RootPaneContainer interface,
which provides convenience methods for accessing the root pane and setting/getting the content, glass,
and layered panes. For example, RootPaneContainer’s Container getContentPane() method behaves as if
you called getRootPane().getContentPane(). It lets you shorten the previous example to the following:

JFrame f = new JFrame();
getContentPane().add(new JButton("Ok")); // Add the button to the frame's content pane.
f.pack();
f.setVisible(true);

RootPaneContainer complements getContentPane() with a void setContentPane(Container
content) method that you’ll find helpful when you want to replace the current content pane with a new
content pane. The following example demonstrates setContentPane() by creating a new panel,
populating the panel (as described by the comment), and using setContentPane() to replace the existing
content pane with this panel:

JFrame f = new JFrame();
JPanel pnl = new JPanel();
// Populate the panel.
f.setContentPane(pnl);

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

466

 Tip Because the glass pane is painted last, you can draw over the GUI. Also, because events are first sent to the
glass pane, you can use this pane to block mouse and other events from reaching the GUI.

JFrame declares a void setDefaultCloseOperation(int operation) method for specifying the
operation that occurs by default when the user chooses to close this window. The argument passed to
operation is one of the following constants (declared in the javax.swing.WindowConstants interface,
which JFrame and JDialog implement):

• DO_NOTHING_ON_CLOSE: Don’t do anything; require the program to handle the
operation in the windowClosing() method of a registered WindowListener object.
This operation is equivalent to what you would do in AWT as discussed earlier.

• HIDE_ON_CLOSE: Automatically hide the frame window after invoking any registered
WindowListener objects. This is the default operation.

• DISPOSE_ON_CLOSE: Automatically hide and dispose of the frame window after
invoking any registered WindowListener objects.

• EXIT_ON_CLOSE (also declared in JFrame): Exit the application via System.exit().

 Note EXIT_ON_CLOSE was introduced into the JFrame class in Java 1.3, and subsequently added to
WindowsConstants in Java 1.4 (for completeness).

New Lightweight Components and Containers
Swing’s lightweight components and containers are implemented by subclasses of the abstract
javax.swing.JComponent class, which extends Container. (I previously mentioned that components and
containers created from custom Component and Container subclasses are known as lightweight
components and containers.) They do not have peers but reuse the peers of their closest heavyweight
ancestors. After all, Swing must eventually ensure that the platform’s windowing system can display
them.

JComponent introduces several new features, including tooltips, borders, and the option of creating
nonrectangular components:

• A tooltip is a small (typically rectangular) window appearing over a component
with a small amount of help text. JComponent declares a void
setToolTipText(String text) method for specifying the component’s tooltip text.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

467

• A border is an object that sits between a Swing component’s edges and that of its
container. JComponent declares a void setBorder(Border border) method for
setting the border to border, which is an instance of a class that implements the
javax.swing.border.Border interface. The javax.swing.BorderFactory class
declares several class methods for returning different kinds of borders. For
example, Border createEtchedBorder(int type) creates an etched border by
instantiating the javax.swing.border.EtchedBorder class. The argument passed to
type must be one of EtchedBorder.RAISED or EtchedBorder.LOWERED.

• Predefined AWT components (such as buttons) are rectangular because their
native screen resources are rectangular. When you create your own components
(by subclassing JComponent), you can make them nonrectangular by passing false
to JComponent’s void setOpaque(boolean isOpaque) method, which indicates that
not every pixel is painted (so background pixels can show through). Passing true
to this method indicates that the component paints every pixel. (The default value
is false.)

I’ll demonstrate tooltips and borders later in this chapter.

 Note AWT provides the java.awt.Insets class to specify the amount of space that a container leaves empty at
its edges. For example, Frame has a top inset that corresponds to the height of the frame window’s titlebar.
Borders extend the insets concept by letting you select an object that draws over this empty space. Borders
leverage insets. For example, Border declares Insets getBorderInsets(Component c) to return the insets for
the specified container component.

UI Delegates
In the late 1970s, Xerox PARC invented the Model-View-Controller (MVC) architecture as an
architectural pattern for separating application logic from the user interface, to simplify GUI creation.

MVC consists of the following entities:

• The model maintains a component’s state, such as a button’s press information or
the characters that appear in a textfield.

• The view presents a visual representation of the model, giving a component its
look. For example, a button view would typically display a button as pressed or
unpressed according to its model’s pressed state.

• The controller determines how (and even if) a component responds to input
events that originate from input devices (such as mice and keyboards), giving the
component its feel. For example, when the user presses a button, the controller
notifies the model to update its pressed state and the view to repaint the button.

Experience has shown that it’s easier to manage an integrated view and controller than to deal with
them separately. The integrated result is known as a User Interface (UI) delegate.

Swing components are based on models and UI delegates, where the UI delegate makes it possible
for a component to look the same no matter what windowing system underlies the GUI. Models and UI

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

468

delegates are separate and communicate via events, making it possible for a UI delegate to associate
with multiple models and for a model to associate with multiple UI delegates.

A Swing component consists of a main class whose name starts with J, a current model, and a
current UI delegate. The main class connects the model to the UI delegate and is used to create the
component.

For example, the JButton class describes a button component. It’s associated with a model that’s
described by the javax.swing.ButtonModel interface. The model is attached to the component by
invoking void setModel(ButtonModel model), which JButton inherits from its
javax.swing.AbstractButton superclass.

JButton is associated with a UI delegate that’s described by the abstract javax.swing.plaf.ButtonUI
class, which extends the abstract javax.swing.plaf.ComponentUI class. Swing attaches the UI delegate to
the component by invoking void setUI(ButtonUI ui), which JButton inherits from AbstractButton.

Pluggable Look and Feels
A look and feel is a set of UI delegates with one UI delegate per component. For example, Swing provides
a look and feel for making a Swing GUI look like a Windows XP GUI. It also provides look and feels that
make the GUI look and feel the same regardless of the underlying windowing system.

Swing also provides a mechanism for selecting a specific look and feel. Because this mechanism is
used to plug the look and feel into the GUI before the GUI is displayed (or even after it is displayed), a
look and feel is also known as a pluggable look and feel (PLAF).

The following PLAFs are supported:

• Basic is an abstract PLAF that serves as the foundation on which the other PLAFs
are based. It’s located in the javax.swing.plaf.basic package and its main class is
BasicLookAndFeel.

• Metal is a cross-platform PLAF and is also the default. It’s located in the
javax.swing.plaf.metal package and its main class is MetalLookAndFeel.

• Multi is a multiplexing PLAF that combines PLAFs. It’s located in the
javax.swing.plaf.multi package and its main class is MultiLookAndFeel. (Each
multiplexing UI delegate manages its child UI delegates. Multi was created
primarily for use with the Accessibility API.)

• Nimbus is a polished cross-platform PLAF that uses Java 2D-based vector graphics
to draw the GUI so that it looks crisp at any resolution. Nimbus is located in the
javax.swing.plaf.nimbus package; its main class is NimbusLookAndFeel.

• Synth is a skinnable PLAF that’s based on an XML file. It’s located in the
javax.swing.plaf.synth package and its main class is SynthLookAndFeel.

• GTK is a PLAF that implements the look and feel of the X Window-oriented GTK
widget toolkit. It’s located in the com.sun.java.swing.plaf.gtk package and its
main class is GTKLookAndFeel.

• Motif is a PLAF that implements the look and feel of the X Window-oriented Motif
widget toolkit. It’s located in the com.sun.java.swing.plaf.motif package and its
main class is MotifLookAndFeel.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

469

• Windows is a PLAF that implements the look and feel of the current Windows
platform (e.g., classic Windows, Windows XP, or Windows Vista). It’s located in the
com.sun.java.swing.plaf.windows package and its main class is
WindowsLookAndFeel.

The main PLAF classes ultimately extend the abstract javax.swing.LookAndFeel class. Also, for
licensing reasons, Swing lets you use the GTK PLAF only on X Window-based platforms, and lets you use
the Windows PLAF only on a Windows platform.

The javax.swing.UIManager class provides the void setLookAndFeel(String className) class
method for installing a look and feel prior to displaying the GUI. This method throws one of
java.lang.ClassNotFoundException when the LookAndFeel subclass named by className cannot be
found, java.lang.InstantiationException when a new instance of the class could not be created
reflectively, java.lang.IllegalAccessException when the class or initializer isn’t accessible,
javax.swing.UnsupportedLookAndFeelException when the PLAF won’t run on the current platform, and
java.lang.ClassCastException when className identifies a class that doesn’t extend LookAndFeel.

The following example attempts to install Nimbus as the current look and feel before creating the
GUI:

try
{
 UIManager.setLookAndFeel("javax.swing.plaf.nimbus.NimbusLookAndFeel");
 new GUI();
}
catch (Exception e)
{
}

Suppose your application provides a menu that lets the user choose the GUI’s look and feel. After
selecting the menuitem, the visible GUI must be updated to reflect the choice. Swing lets you
accomplish this task from the menuitem’s action listener (or from somewhere else on the EDT) as
follows:

try
{
 UIManager.setLookAndFeel("javax.swing.plaf.nimbus.NimbusLookAndFeel");
 SwingUtilities.updateComponentTreeUI(frame); frame.pack();
}
catch (Exception e)
{
}

The javax.swing.SwingUtilities class declares a void updateComponentTreeUI(Component c) class
method that changes the look and feel by invoking the void updateUI() method of each component
located in the tree of components rooted in c, which typically references a frame window. updateUI()
invokes UIManager’s ComponentUI getUI(JComponent target) method to return the new look and feel’s UI
delegate, and passes this delegate to the component’s setUI() method. For example, JButton’s
updateUI() method is implemented as follows:

public void updateUI()
{
 setUI((ButtonUI) UIManager.getUI(this));
}

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

470

frame.pack(); resizes components to their preferred sizes because these sizes will probably change
under the new look and feel.

 Note For more information on PLAFs, check out The Java Tutorial’s “Modifying the Look and Feel” lesson
(http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/index.html).

Sampling Swing Components
Swing provides a wide variety of components that you can explore by running the SwingSet2 demo
application, which you probably installed with the other demos when installing JDK 7 (see Chapter 1 for
installation instructions). If you didn’t install the demos, rerun the JDK 7 installer and make sure that it’s
configured to install them.

To run SwingSet2, change to the JDK 7 home directory’s demo\jfc\SwingSet2 directory and execute
java -jar SwingSet2.jar. Figure 7-12 reveals that this application presents a GUI consisting of a menu,
a toolbar, and a tabbed workspace that lets you switch between interacting with various component
demos and viewing the current demo’s source code.

Figure 7-12. SwingSet2 lets you view and interact with Swing components in diverse look and feel

contexts.

When SwingSet2 starts running, it presents its GUI based on the default Metal (also known as Java)
Look and Feel. However, you can change to another look and feel by selecting from the Look & Feel

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/index.html

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

471

menu. For example, Figure 7-12 reveals SwingSet2’s GUI after the look and feel has been changed to
Nimbus.

 Note Unfortunately, the need for brevity restrains me from fully covering Swing components in this chapter.
You’ll find additional component coverage in subsequent chapters and Appendix C.

Revisiting TempVerter
I previously presented a TempVerter application that demonstrates AWT containers, components, layout
managers, and events. Listing 7-6 presents a Swing version of this application, to help you compare and
contrast Swing GUI code with its AWT counterpart.

Listing 7-6. Refactoring TempVerter for Swing

import java.awt.Container;
import java.awt.EventQueue;
import java.awt.FlowLayout;
import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.BorderFactory;
import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

import javax.swing.border.Border;
import javax.swing.border.EtchedBorder;

class TempVerter
{
 static JPanel createGUI()
 {
 JPanel pnlLayout = new JPanel();
 pnlLayout.setLayout(new GridLayout(3, 1));
 JPanel pnlTemp = new JPanel();
 ((FlowLayout) pnlTemp.getLayout()).setAlignment(FlowLayout.LEFT);
 pnlTemp.add(new JLabel("Degrees"));
 final JTextField txtDegrees = new JTextField(10);
 txtDegrees.setToolTipText("Enter a numeric value in this field.");
 pnlTemp.add(txtDegrees);
 pnlLayout.add(pnlTemp);
 pnlTemp = new JPanel();

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

472

 ((FlowLayout) pnlTemp.getLayout()).setAlignment(FlowLayout.LEFT);
 pnlTemp.add(new JLabel("Result"));
 final JTextField txtResult = new JTextField(30);
 txtResult.setToolTipText("Don't enter anything in this field.");
 pnlTemp.add(txtResult);
 pnlLayout.add(pnlTemp);
 pnlTemp = new JPanel();
 ImageIcon ii = new ImageIcon("thermometer.gif");
 ActionListener al;
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 double value = Double.parseDouble(txtDegrees.getText());
 double result = (value-32.0)*5.0/9.0;
 txtResult.setText("Celsius = "+result);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("bad input");
 }
 }
 };
 JButton btnConvertToCelsius = new JButton("Convert to Celsius", ii);
 btnConvertToCelsius.addActionListener(al);
 pnlTemp.add(btnConvertToCelsius);
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 double value = Double.parseDouble(txtDegrees.getText());
 double result = value*9.0/5.0+32.0;
 txtResult.setText("Fahrenheit = "+result);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("bad input");
 }
 }
 };
 JButton btnConvertToFahrenheit = new JButton("Convert to Fahrenheit", ii);
 btnConvertToFahrenheit.addActionListener(al);
 pnlTemp.add(btnConvertToFahrenheit);
 Border border = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);
 pnlTemp.setBorder(border);
 pnlLayout.add(pnlTemp);

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

473

 return pnlLayout;
 }
 static void fixGUI(Container c)
 {
 JPanel pnlRow = (JPanel) c.getComponents()[0];
 JLabel l1 = (JLabel) pnlRow.getComponents()[0];
 pnlRow = (JPanel) c.getComponents()[1];
 JLabel l2 = (JLabel) pnlRow.getComponents()[0];
 l2.setPreferredSize(l1.getPreferredSize());
 pnlRow = (JPanel) c.getComponents()[2];
 JButton btnToC = (JButton) pnlRow.getComponents()[0];
 JButton btnToF = (JButton) pnlRow.getComponents()[1];
 btnToC.setPreferredSize(btnToF.getPreferredSize());
 }
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 final JFrame f = new JFrame("TempVerter");
 f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 Border b = BorderFactory.createEmptyBorder(5, 5, 5, 5);
 f.getRootPane().setBorder(b);
 f.setContentPane(createGUI());
 fixGUI(f.getContentPane());
 f.pack();
 f.setResizable(false);
 f.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
 }
}

Listing 7-6 presents a similar architecture to that shown in Listing 7-2. However, it also
demonstrates various Swing features, including Swing components/containers, ImageIcon, tooltips,
borders, and setDefaultCloseOperation().

Because Swing component classes have similar APIs to their AWT counterparts, you can often just
prefix an AWT class name with J to refer to the equivalent Swing class—don’t forget to change the
import statement. For example, prefix Label with J to change from AWT’s Label class to
javax.swing.JLabel.

ImageIcon is instantiated to load a thermometer icon image—behind the scenes MediaTracker is
used to ensure that the image is completely loaded. The ImageIcon instance is then passed to the
constructor of each JButton instance so that the button will display this icon along with its label.

Tooltips are handy for presenting small help messages that assist the user in interacting with the
GUI. Listing 7-6 demonstrates this feature by invoking setToolTipText() on each of the txtDegrees and
txtResult textfields. When the user moves the mouse over a textfield, a tooltip will appear to reveal its
help message.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

474

Listing 7-6 attaches an etched border to the panel surrounding the pair of buttons, to set them apart
from the other components. Because this border butts up against the frame window, an empty border is
created and assigned to the frame’s root pane to leave some space around this window’s edges.

The setDefaultCloseOperation() method and its DISPOSE_ON_CLOSE argument reduces verbosity by
disposing of a window (in response to a user close request) without having to install a window listener.

You may have noticed that I’ve placed the void fixGUI(Container c) class method before the
pack() method call, instead of placing it after pack() as I discussed following Listing 7-2. I previously
recommended placing fixGUI() after pack() because (in AWT) preferred sizes are not available until
after the pack() method call, and fixGUI() needs to access preferred sizes. In Swing, preferred sizes are
available prior to calling pack(), and changing them after calling pack() would require another call to
pack() to ensure that the GUI is properly sized.

Compile Listing 7-6 and run this application. Figure 7-13 shows the resulting GUI.

Figure 7-13. A tooltip appears when you move the mouse cursor over a textfield.

 Note TempVerter demonstrates some of Swing’s many components, which are located in the javax.swing
package. Other components that you’ll find useful include JScrollPane (Swing’s version of ScrollPane),
JTextArea (Swing’s version of TextArea), and JOptionPane (a class that makes it easy to pop up a standard
dialog box that prompts users for a value or informs them of something). JOptionPane declares
showConfirmDialog(), showInputDialog(), showMessageDialog(), and showOptionDialog() class methods to
ask confirming questions (yes/no/cancel), prompt for input, tell the user about something that has happened, and
combine confirmation with input and message display.

TempVerter Meets JLayer

Suppose you plan to distribute your Swing application as shareware (see
http://en.wikipedia.org/wiki/Shareware) and want to display a translucent UNREGISTERED message
over the GUI until the user registers their copy. You could accomplish this task by working with the glass
pane directly, or you could work with the javax.swing.JLayer class, which is new in Java 7.

JLayer’s Javadoc describes this class as “a universal decorator for Swing components, which enables
you to implement various advanced painting effects as well as receive notifications of all AWTEvents
generated within its borders.” JLayer works with a glass pane on your behalf.

To use JLayer, first extend the javax.swing.plaf.LayerUI class, overriding various methods to
customize painting and event handling. Continuing, pass an instance of this class along with the
component being decorated to the JLayer(V view, LayerUI<V> ui) constructor (JLayer’s generic type is
JLayer<V extends Component>; LayerUI’s generic type is LayerUI<V extends Component>.)

http://en.wikipedia.org/wiki/Shareware

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

475

The first argument passed to this constructor is the component that you want to decorate, which is
known as a view. The second argument identifies the decorator object.

The following excerpt from a revised version of Listing 7-6 shows you how to use JLayer to add a
translucent UNREGISTERED message over the center of TempVerter’s GUI:

public static void main(String[] args)
{
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 final JFrame f = new JFrame("TempVerter");
 f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 Border b = BorderFactory.createEmptyBorder(5, 5, 5, 5);
 f.getRootPane().setBorder(b);
 LayerUI<JPanel> layerUI;
 layerUI = new LayerUI<JPanel>()
 {
 final Color PALE_BLUE = new Color(0.0f, 0.0f,
 1.0f, 0.1f);
 final Font FONT = new Font("Arial", Font.BOLD, 30);
 final String MSG = "UNREGISTERED";
 @Override
 public void paint(Graphics g, JComponent c)
 {
 super.paint(g, c); // Paint the view.
 g.setColor(PALE_BLUE);
 g.setFont(FONT);
 int w = g.getFontMetrics().stringWidth(MSG);
 int h = g.getFontMetrics().getHeight();
 g.drawString(MSG, (c.getWidth()-w)/2,
 c.getHeight()/2+h/4);
 }
 };
 JLayer<JPanel> layer;
 layer = new JLayer<JPanel>(createGUI(), layerUI);
 f.setContentPane(layer);
 fixGUI(f.getContentPane());
 f.pack();
 f.setResizable(false);
 f.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
}

To create a decorator, you minimally override LayerUI’s void paint(Graphics g, JComponent c)
method. The component passed to c is the view.

The first painting step is to paint the view via the super.paint(g, c); method call. Anything painted
in subsequent code appears over the view.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

476

Continuing, a pale blue color is installed via setColor(). This color is created via Color(0.0f, 0.0f,
1.0f, 0.1f)—the first three arguments represent red, green, and blue percentages (between 0.0f and
1.0f), and the last argument represents opacity (from 0.0f, transparent, to 1.0f, opaque).

A font is then installed to ensure that the message being painted is large enough to be seen.
At this point, all that’s left to do is obtain the message’s width and height, and use these values to

determine the location of the first message character and the baseline, and then draw the text.
After creating this decorator, it and the view (returned from createGUI()) are passed to a new JLayer

instance, which is installed as the content pane.
Figure 7-14 shows the resulting GUI with the centered and translucent UNREGISTERED message.

Figure 7-14. The UNREGISTERED message is centered within the frame window’s borders.

SwingCanvas
AWT provides the Canvas class whose paint() method can be overridden to paint graphics or an image
over its surface. You can introduce your own Swing-based canvas class by subclassing JComponent and
overriding its paint() method, as follows:

class SwingCanvas extends JComponent
{
 private Dimension d;
 SwingCanvas()
 {
 d = new Dimension(300, 300); // Create object here to avoid unnecessary
 // object creation should getPreferredSize()
 // be called more than once.
 // perform other initialization (such as registering a mouse listener) here
 }
 @Override
 public Dimension getPreferredSize()
 {
 return d;
 }
 @Override
 public void paint(Graphics g)
 {
 // perform painting here
 }
}

It is often not a good idea to override paint() in the context of Swing because JComponent overrides
this method to delegate the work of painting to three protected methods: paintComponent(),

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

477

paintBorder(), and paintChildren(). These methods are called in this order to ensure that children
appear on top of the component.

Generally speaking, the component and its children should not paint in the insets area allocated to
the border.

Although, subclasses can override this method, a subclass that only wants to specialize the UI
delegate’s paint() method should just override paintComponent().

If you’re not concerned about UI delegates, borders, and children, the previous SwingCanvas class
should meet your needs. For more information, check out The Java Tutorial’s “Performing Custom
Painting” lesson (http://download.oracle.com/javase/tutorial/uiswing/painting/index.html).

Java 2D
Java 2D is a collection of AWT extensions that provide advanced two-dimensional graphical, textual, and
imaging capabilities. This API offers a flexible framework for developing richer GUIs through line art
(also known as vector graphics—see http://en.wikipedia.org/wiki/Vector_graphics), text, and images.

Java 2D is implemented by various types located in the java.awt and java.awt.image packages, and
by the Java 2D-specific java.awt.color, java.awt.font, java.awt.geom, java.awt.image.renderable, and
java.awt.print packages.

This section introduces Java 2D by first presenting the java.awt package’s GraphicsEnvironment,
GraphicsDevice, and GraphicsConfiguration classes. It then explores the Graphics2D class followed by
Java 2D’s support for shapes and buffered images. (I don’t explore text or printing, for brevity.)

GraphicsEnvironment, GraphicsDevice, and
GraphicsConfiguration
Java 2D provides a GraphicsEnvironment class that applications can use to learn about their graphics
environments (e.g., available font family names and graphics devices) and perform specialized tasks
(e.g., register a font or create a Graphics2D instance for drawing into a buffered image).

Before you can use GraphicsEnvironment, you need to obtain an instance of this class. Accomplish
this task by invoking GraphicsEnvironment’s GraphicsEnvironment getLocalGraphicsEnvironment() class
method to return the platform’s GraphicsEnvironment instance, as follows:

GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();

GraphicsEnvironment’s Java documentation states that the returned GraphicsEnvironment instance’s
resources might be local or located on a remote machine. For example, Linux platforms let users use
Secure Shell (see http://en.wikipedia.org/wiki/Secure_Shell) to run GUI applications on another
machine and view the GUI on the local machine. (If you’re interested in learning more about this, check
out “X Over SSH2 - A Tutorial” [http://www.vanemery.com/Linux/XoverSSH/X-over-SSH2.html].)

Once an application has a GraphicsEnvironment instance, it can call GraphicsEnvironment’s String[]
getAvailableFontFamilyNames() method to enumerate font family names (such as Arial), as Listing 7-7
demonstrates.

Listing 7-7. Enumerating font family names

import java.awt.EventQueue;
import java.awt.GraphicsEnvironment;

class EnumFontFamilyNames
{

http://download.oracle.com/javase/tutorial/uiswing/painting/index.html
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Secure_Shell

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

478

 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 enumerate();
 }
 };
 EventQueue.invokeLater(r);
 }
 static void enumerate()
 {
 GraphicsEnvironment ge;
 ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
 String[] ffns = ge.getAvailableFontFamilyNames();
 for (String ffn: ffns)
 System.out.println(ffn);
 }
}

An application might need to enumerate font family names and present this list to the user. For
example, a custom font chooser dialog box would probably let the user choose a font based on a list of
font family names, styles, and sizes.

GraphicsEnvironment also declares a GraphicsDevice[] getScreenDevices() method that returns an
array of GraphicsDevice instances. Each instance describes an image buffer, printer, or raster screen (a
screen of pixels) that’s available to the application. (Because image buffers and printers are not screens,
it would have been less confusing to have named this method getGraphicsDevices().)

Assuming that ge references a GraphicsEnvironment instance, execute the following line to obtain
this array:

GraphicsDevice[] gd = ge.getScreenDevices();

You can find out what kind of graphics device is represented by a particular GraphicsDevice
instance, by calling GraphicsDevice’s int getType() method and comparing the result to one of
GraphicsDevice’s TYPE_IMAGE_BUFFER, TYPE_PRINTER, and TYPE_RASTER_SCREEN constants.

 Note You can access the default graphics device by invoking GraphicsEnvironment’s GraphicsDevice
getDefaultScreenDevice() method. If there’s only one supported device, getDefaultScreenDevice() is
equivalent to getScreenDevices()[0].

getScreenDevices() throws java.awt.HeadlessException when called on a headless platform (a
platform that doesn’t support a keyboard, mouse, or monitor). For example, the platform may be part of
a server farm (see http://en.wikipedia.org/wiki/Server_farm). If you’re concerned about this
possibility, you can have your application first call GraphicsEnvironment’s boolean isHeadless() class
method, which returns true when the platform is headless.

http://en.wikipedia.org/wiki/Server_farm

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

479

Once you have a graphics device, you can obtain all supported configurations (color models, bounds
[origin and extents in device coordinates], and so on) by calling GraphicsDevice’s
GraphicsConfiguration[] getConfigurations() method.

Assuming that gd references a GraphicsDevice instance, execute the following line to obtain this
array:

GraphicsConfiguration[] gc = gd.getConfigurations();

After you have a GraphicsConfiguration instance, you can learn about its color model by invoking
ColorModel getColorModel(), its bounds by invoking Rectangle getBounds(), and so on.

 Note You can access the default configuration by invoking GraphicsDevice’s GraphicsConfiguration
getDefaultConfiguration() method. If there’s only one supported configuration, getDefaultConfiguration()
is equivalent to getConfigurations()[0].

After obtaining an array of GraphicsConfigurations, an application can determine whether it’s
running in a single-screen environment or in a multiscreen environment.

MULTISCREEN ENVIRONMENTS

A multiscreen environment consists of two or more independent screens, two or more screens where one
screen is the default and the other screens display copies of what appears on the default screen, or two or
more screens that form a virtual desktop, which is also called a virtual device. Figure 7-15 reveals a
multiscreen environment.

Figure 7-15. Each screen in this example has a resolution of 1024x768 pixels.

When two or more screens are combined into a virtual desktop, Java 2D establishes a virtual coordinate
system. This coordinate system exists outside of any screen’s bounds and is used to identify pixel
coordinates within the virtual desktop.

One of the screens is known as the default screen and its upper-left corner is located at (0, 0). If the
default screen is not positioned in the upper-left corner of a grid of screens, Java 2D may require you to
use negative coordinates, as illustrated in Figure 7-15.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

480

The application accomplishes this task by calling Rectangle getBounds() on each
GraphicsConfiguration returned by getConfigurations(), and then checking to see if the origin is
something other than (0, 0). GraphicsConfiguration’s getBounds() method returns a java.awt.Rectangle
instance whose x, y, width, and height fields (of type int) reflect the virtual coordinate system. If any (x,
y) origin isn’t (0, 0), the environment is a virtual device environment.

I’ve created an IsVDE application that determines if its environment is a virtual device environment.
Listing 7-8 presents this application’s source code.

Listing 7-8. Detecting a virtual device environment

import java.awt.EventQueue;
import java.awt.GraphicsConfiguration;
import java.awt.GraphicsDevice;
import java.awt.GraphicsEnvironment;
import java.awt.Rectangle;

class IsVDE
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 public void run()
 {
 test();
 }
 };
 EventQueue.invokeLater(r);
 }
 static void test()
 {
 GraphicsEnvironment ge;
 ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
 GraphicsDevice[] gds = ge.getScreenDevices();
 for (GraphicsDevice gd: gds)
 {
 GraphicsConfiguration[] gcs = gd.getConfigurations();
 for (GraphicsConfiguration gc: gcs)
 {
 Rectangle rect = gc.getBounds();
 if (rect.x != 0 || rect.y != 0)
 {
 System.out.println("virtual device environment detected");
 return;
 }
 }
 System.out.println("no virtual device environment detected");
 }
 }
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

481

Assuming that the environment is a virtual device environment, you can create Frame,
javax.swing.JFrame, Window, or javax.swing.JWindow container windows that refer to different graphics
devices by calling appropriate constructors, such as Frame(GraphicsConfiguration gc).

In a multiscreen environment in which the desktop area could span multiple physical screen
devices, the bounds of GraphicsConfiguration objects are relative to the virtual coordinate system.
When setting the location of a component in this coordinate system, use getBounds() to get the bounds
of the desired GraphicsConfiguration and offset the location with these coordinates, as the following
example illustrates:

Frame f = new Frame(gc); // Assume gc is a GraphicsConfiguration instance.
Rectangle bounds = gc.getBounds();
f.setLocation(10+bounds.x, 10+bounds.y);

Graphics2D
Java 2D’s abstract Graphics2D class (a Graphics subclass) describes a logical drawing surface on which
graphics primitives (2D shapes [such as rectangles and ellipses], text, and images) are drawn.

The logical drawing surface is associated with user space, which is a 2D Cartesian (x/y) plane whose
pixels are known as logical pixels, and which have floating-point coordinates. As a result, various
Graphics2D methods accept floating-point coordinate values; for example, void drawString(String str,
float x, float y).

While discussing AWT graphics, I previously mentioned that a Graphics subclass instance is passed
to a component’s paint() method. Prior to Java 1.2, this was always the case. Starting with Java 1.2, a
Graphics2D subclass instance is passed to paint(). You can work with this instance as a Graphics
instance or (after casting Graphics to Graphics2D) as a Graphics2D instance.

The Graphics2D subclass instance that’s passed to a component’s paint() method identifies an
output device (e.g., monitor or printer) with a physical drawing surface (e.g., raster screen or printer
page). This surface is associated with device space, which is a 2D Cartesian plane whose pixels are known
as physical pixels, and which have integer coordinates.

Typically, the output device is the default monitor, or is the monitor associated with the
GraphicsConfiguration that was passed to the Frame, JFrame, Window, or JWindow constructor that
contains the component.

At some point, Graphics2D must map logical pixels to physical pixels. It accomplishes this task via an
affine transformation (a mathematical transformation that transforms straight lines into straight lines
and parallel lines into parallel lines).

By default, Java 2D specifies an affine transformation that aligns user space with device space so
that you end up with the coordinate system shown in Figure 7-7. Furthermore, it maps 72 user space
coordinates to one physical inch. (Some scaling may be performed behind the scenes to ensure that this
relationship holds on a particular output device.)

You typically don’t need to be concerned with device space and this mapping process. Just keep in
mind the default 72 user space coordinates to one inch mapping and Java 2D will make sure that your
Java 2D creations appear at the proper sizes on various output devices.

Rendering Pipeline
Graphics2D is also a rendering pipeline that renders (processes) shapes, text, and images into device-
specific pixel colors. This rendering pipeline maintains an internal state that consists of the following
attributes:

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

482

• Paint: A solid color, gradient (transition between two solid colors), or texture
(replicated image) applied to shape interiors and to a shape’s outline shape.

• Stroke: An object that creates a shape to specify another shape’s outline. The
resulting outline shape, which is also known as a stroked outline, is filled with the
paint attribute. Outline shapes don’t have outlines.

• Font: Java 2D renders text by creating shapes that represent the text’s characters.
The font attribute selects the shapes that are created for these characters. These
shapes are then filled.

• Transformation: Before being stroked and filled, graphics primitives are
geometrically transformed. They may be rotated, translated (moved), scaled
(stretched), or otherwise manipulated. The transformation attribute converts
graphics primitives from user space to device space; the default transformation
maps 72 user space coordinates to one inch on the output device.

• Composite rule: Graphics2D combines graphics primitive colors with the drawing
surface’s existing colors by using a composite rule, which determines the manner
in which the combining occurs.

• Clipping shape: Graphics2D restricts its rendering operations to the interior of a
clipping shape; pixels outside of this shape are not affected. The clipping shape
defaults to the entire drawing surface.

• Rendering hints: Graphics2D recognizes various rendering hints that can be
specified to control rendering. For example, you can specify antialiasing to
remove the jagged edges that often surround shapes (e.g., lines) and text.

Graphics primitives enter this pipeline via various Graphics methods (e.g., drawLine() and
fillOval()) and the following Graphics2D methods:

• void fill(Shape s) fills a shape’s interior with the current paint. Shapes
implement the Shape interface.

• void draw(Shape s) draws a shape’s outline with the current paint.

• The drawstring() methods draw text via character shapes with the current paint.

• The drawImage() methods draw images.

 Note Although you can call Graphics methods to draw shapes, these methods are limited in that they only
accept integer coordinates. Furthermore, these shapes (apart from polygon-based shapes) are not reusable.
Regarding polygonal shapes, they can only consist of straight line-segments. In contrast, Java 2D’s Shape classes,
which I briefly introduce later in this chapter don’t have these limitations.

Figure 7-16 conceptualizes the rendering pipeline into separate operations. Operations could be
combined in a particular implementation.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

483

Figure 7-16. The rendering process reveals that stroke, font, and paint attributes don’t apply to images.

Graphics primitives are presented to the rendering pipeline via various method calls that determine
how the rendering proceeds:

• Shapes passed to fill() are not stroked. Instead, they are first transformed and
eventually painted (filled).

• Shapes passed to draw() are first stroked and the resulting outline shapes are
transformed.

• Text characters are first converted to the shapes specified by the current font.
These character shapes are then transformed.

• Image outlines are first transformed.

As Figure 7-16 shows, Graphics2D only fills shapes and draws images. Drawing outline shapes and
character shapes are variants of the shape-filling operation.

Rasterizing follows the transformation step. The rasterizer converts vector-based shapes to alpha
(coverage) values that determine how much of each destination pixel underlying the shape is covered by
the shape. Regarding images, only image outlines are rasterized. The rasterizer takes any specified
rendering hints into account.

The rasterized results are clipped via the current clipping shape. Those portions of filled shapes not
thrown away by clipping are colorized via the current paint. Images are not colorized because their
pixels provide the colors.

Finally, Graphics2D combines the colored pixels (source pixels) with existing destination pixels to
form new pixels according to its current composite rule.

Rasterizing and Compositing

The rasterizer creates a rectangular image that contains only alpha values. There are no colors at this
point. An alpha value ranges from 0 (no coverage) to 255 (full coverage), and the image’s collection of
alpha values is known as its alpha channel. (Alpha values also can be expressed as floating-point values
ranging from 0.0 through 1.0.)

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

484

The rasterizer defaults to choosing alpha values of 255 or 0. Because the resulting source pixel will
either fully cover the existing destination pixel or will not cover this pixel, lines, text, and other geometric
primitives will tend to have jagged edges. This is known as aliasing.

When you specify antialiasing as a rendering hint, the rasterizer slows down somewhat (it has more
work to do), but chooses a wider range of alpha values so that graphics primitives look smoother. This
smoothness derives from combining percentages of source and current destination pixel red, green, and
blue color components (whose values each range from 0 [darkest] through 255 [brightest]) so that parts
of the current destination pixels show through when the new destination pixels are drawn.

The final step in the rendering process involves combining source pixels with destination pixels.
This step is carried out according to the current composite rule, which determines how this combining
takes place.

The composite rule takes alpha value percentages into account. For example, the “source over” rule
(which is the most intuitive) combines 100 percent of the source pixel’s color (depending on its alpha)
with a percentage of the destination pixel’s color, which happens to be (255-source pixel’s alpha
value)/255*100.

Consider a source pixel with an alpha of 255 (it contributes 100 percent to the final color). According
to the equation, the destination pixel would have an alpha of 0 (it contributes 0 percent), which means
that the destination pixel is completely covered. If the source pixel has an alpha of 0 (it contributes
nothing), the destination pixel would have an alpha of 255 (it contributes everything), which means that
the source pixel is invisible. Intermediate alpha values combine different percentages of source and
destination pixels.

Rendering Attributes
Now that you’ve grasped the basics of the Graphics2D rendering pipeline, you’re ready to further explore
its rendering attributes. To help you with this exploration, I’ve created a Swing-based
Graphics2DAttribDemo application. Figure 7-17 shows you this menu-driven application’s initial screen.

Figure 7-17. Select a menuitem from the Demo menu to view a demonstration of the associated attribute.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

485

Paint

Graphics2D declares void setPaint(Paint paint) for setting the paint attribute. Pass any object whose
class implements the java.awt.Paint interface to paint. Call Paint getPaint() to return the current
paint.

Several classes implement Paint, including the java.awt package’s Color, GradientPaint, and
TexturePaint classes. Instances of these classes can be passed to setPaint() or returned from
getPaint().

 Note The Graphics class’s setColor() method is equivalent to calling setPaint().

Color lets you create a solid color. Among its various constructors are Color(int r, int g, int b)
for creating an opaque solid color and Color(int r, int g, int b, int a) for creating a solid color
with an alpha value.

You aren’t restricted to specifying integer-based component values that range from 0 through 255. If
you prefer values ranging from 0.0 through 1.0, you can call constructors such as Color(float r, float
g, float b) and Color(float r, float g, float b, float a).

For your convenience, Color declares several precreated Color constants: BLACK, BLUE, CYAN,
DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, and YELLOW. Although all-lowercase
variants are available, you should avoid using them—constants should be uppercased.

GradientPaint lets you create a gradient. It declares several constructors, including
GradientPaint(float x1, float y1, Color color1, float x2, float y2, Color color2), which
describes a gradient that transitions from upper-left corner (x1, y1) to lower-left corner (x2, y2) in user
space. The color at (x1, y1) is color1 and the color at (x2, y2) is color2.

 Note Java 6 introduced an abstract java.awt.MultipleGradientPaint class and concrete
java.awt.LinearGradientPaint and java.awt.RadialGradientPaint subclasses to create different kinds of
gradients that are based on multiple (typically more than two) colors. I explore these classes and present demos in
my “Java 2D MultiColor Gradient Paints” tutorial (http://tutortutor.ca/cgi-
bin/makepage.cgi?/tutorials/ct/j2dmcgp).

TexturePaint lets you create a texture. It declares a TexturePaint(BufferedImage txtr, Rectangle2D
anchor) constructor for creating the texture from a combination of a buffered image (which specifies the
image on which the texture is based) and a rectangular anchor (which identifies a rectangular portion of
the image to be replicated).

Figure 7-18 demonstrates solid color (upper-left corner), gradient (upper-right corner), and texture
(bottom) paints.

http://tutortutor.ca/cgi-bin/makepage.cgi?/tutorials/ct/j2dmcgp
http://tutortutor.ca/cgi-bin/makepage.cgi?/tutorials/ct/j2dmcgp
http://tutortutor.ca/cgi-bin/makepage.cgi?/tutorials/ct/j2dmcgp

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

486

Figure 7-18. Select Paint from the Demo menu to view the paint demonstration.

Stroke

Graphics2D declares void setStroke(Stroke stroke) for setting the stroke attribute. Pass any object
whose class implements the java.awt.Stroke interface to stroke. Call Stroke getStroke() to return the
current stroke.

HOW STROKING WORKS

Stroking is the act of drawing a shape’s outline. The first step is to call setStroke() to specify how you
want the outline to be drawn (e.g., its width and whether it is solid or consists of a mixtures of dashes and
spaces). The next step is to call setPaint() to specify how you want the outline to be painted (e.g., using
solid colors, gradients, or textures). The final step is to draw the outline via Graphics2D’s draw() method.

When draw() is called, Graphics2D uses the object passed to setStroke() to figure out what the outline
looks like and uses the object passed to setPaint() to paint the outline’s pixels.

The only class that implements this interface is java.awt.BasicStroke, which lets you define a shape

outline in terms of a pen width (measured perpendicularly to the pen’s trajectory), end caps, join styles,
miter limit, and dash attributes.

A shape’s outline is infinitely thin and is drawn with a pen that has a certain width, which is
expressed as a floating-point value. The resulting outline shape extends beyond this outline and into the
shape’s interior.

Line segments can be drawn with or without decorations at both ends. These decorations are
known as end caps. BasicStroke declares CAP_BUTT, CAP_ROUND, and CAP_SQUARE constants to indicate that
no end caps are present, that a semicircle with a radius equal to half of the pen width appears at both
ends, or that a rectangle with a length equal to half of the pen width appears at both ends.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

487

When two line segments meet, Graphics2D uses a join style to join them together so that they don’t
present a ragged edge. BasicStroke declares JOIN_BEVEL, JOIN_MITER, and JOIN_ROUND constants to
indicate beveled (squared off), mitered (sharpened to triangular points), or rounded joins. When the
miter exceeds a specified miter limit, the join is beveled.

Finally, BasicStroke lets you specify dashed lines by providing a dash array and a dash phase value.
The dash array contains floating-point values representing the user space lengths of visible and invisible
sections of line segments. Even-indexed array elements determine lengths of visible sections; odd-
indexed array elements determine lengths of invisible sections.

For example, consider a dash array of [8.0, 6.0]. This array’s first (even) element indicates that visible
line segments are 8.0 units long, and its second (odd) element indicates that invisible line segments are
6.0 units long. You end up with a pattern of 8 visible units, 6 invisible units, 8 visible units, 6 invisible
units, and so on.

The dash phase is a floating-point offset into the dash pattern specified by the dash array; it is not an
offset into the array. When the dash phase is 0, the line segment is stroked as indicated in the previous
example. However, when a nonzero dash phase is specified, the first line segment begins dash phase
units from the value provided by the first array entry.

For example, given the previous array, suppose you specified a dash phase of 3.0. This value
indicates that the first visible line segment is 8-3 or 5 units long, and is followed by 6 invisible units, 8
visible units, 6 invisible units, and so on.

BasicStroke declares several constructors including BasicStroke(float width, int cap, int join,
float miterlimit, float[] dash, float dash_phase), which gives you complete control over a stroke’s
characteristics, and the shorter BasicStroke(float width, int cap, int join) constructor, which
strokes a solid line.

Graphics2DAttribDemo demonstrates both constructors along with pen width, end caps, join styles,
miter limit, and dash attributes. These characteristics are shown in Figure 7-19.

Figure 7-19. Select Stroke from the Demo menu to view the stroke demonstration.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

488

Font

Graphics2D inherits (from Graphics) void setFont(Font font) for setting the font attribute to the
specified Font object. Call Font getFont() (also inherited from Graphics) to return the current font.

Figure 7-20 shows the Arial font’s plain, bold, italic, and bold plus italic styles.

Figure 7-20. Select Font from the Demo menu to view the font demonstration.

Transformation

Graphics2D contains an internal transformation matrix (transform) for geometrically reorienting
graphics primitives during rendering. Primitives can be translated (moved), scaled (resized), rotated,
sheared (laterally shifted), or transformed in some other developer-specified fashion.

The internal transformation matrix is an instance of the java.awt.geom.AffineTransform class,
which ensures that straight lines map to straight lines and parallel lines map to parallel lines. The initial
affine transform represents the identity transformation in which nothing changes (e.g., no rotations are
performed).

You can modify this matrix in several ways. For example, you can invoke Graphics2D’s void
setTransform(AffineTransform Tx) method to replace the current transformation matrix with the affine
transform passed to Tx. Alternatively, you can invoke Graphics2D’s void transform(AffineTransform Tx)
method to concatenate Tx to the existing transformation matrix.

 Tip It’s a good idea to use transform() instead of setTransform() because the Graphics2D instance passed
to a component’s paint() method is set up with a default transformation that gives you the coordinate system
shown in Figure 7-7. Invoking setTransform() may change this organization and lead to confusing results unless
you know what you’re doing.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

489

For common transformations, Graphics2D declares methods such as void rotate(double theta),
void scale(double sx, double sy), and void translate(double tx, double ty). These methods offer a
convenient alternative to instantiating AffineTransform and passing this instance to transform().

 Caution Graphics2D declares a void translate(int x, int y) method for translating the origin of the
Graphics2D context to the point (x, y) in the current coordinate system. This method is invoked instead of
translate(double, double) when you pass integer arguments, so be careful when passing arguments or you
might end up with unexpected results.

Figure 7-21 shows untransformed (blue), rotated (gradient green to red), and sheared (gradient
green to red with almost no green) rectangles.

Figure 7-21. Select Transformation from the Demo menu to view the transformation demonstration.

Composite Rule

Graphics2D declares void setComposite(Composite comp) for setting the composite rule attribute. Pass
any object whose class implements the java.awt.Composite interface to comp. Call Composite
getComposite() to return the current composite rule.

The only class that implements this interface is java.awt.AlphaComposite, which implements basic
alpha composite rules for combining source and destination colors to achieve blending and
transparency effects with graphics and images. The specific rules implemented by this class are the basic
set of 12 rules described in T. Porter’s and T. Duff’s “Compositing Digital Images” paper (SIGGRAPH
1984, pages 253-259).

AlphaComposite declares CLEAR, DST, DST_ATOP, DST_IN, DST_OUT, DST_OVER, SRC, SRC_ATOP, SRC_IN,
SRC_OUT, SRC_OVER, and XOR integer constants that describe these rules—SRC_OVER is the default. It also

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

490

declares precreated AlphaComposite instance constants named Clear, Dst, DstAtop, DstIn, DstOut,
DstOver, Src, SrcAtop, SrcIn, SrcOut, SrcOver, and Xor.

The difference between these two sets of constants has to do with alpha values. The precreated
AlphaComposite instances are wired to an alpha value of 1.0 (opaque). The integer constants and specific
floating-point alpha values can be passed to AlphaComposite’s AlphaComposite getInstance(int rule,
float alpha) class method. This alpha value is used to modify the opacity or coverage of every source
pixel before it’s used in the blending equations described in AlphaComposite’s Java documentation.

Figure 7-22 shows the results of applying these rules.

Figure 7-22. Select Composite Rule from the Demo menu to view the composite rule demonstration.

Figure 7-22 shows you the rules with an alpha value of 1.0. However, you can also vary the alpha
value by using getInstance(int rule, float alpha). I demonstrated the result of doing so in Figure 7-
17. If I had not done so, you would have seen the window shown in Figure 7-23.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

491

Figure 7-23. Applying the default SRC_OVER rule with an alpha value of 1.0 .

Clipping Shape

Graphics2D declares void clip(Shape clipShape) and inherits void setClip(Shape clipShape) from
Graphics for setting the clipping shape attribute. Call clip() to make the overall clipping shape smaller;
call setClip() to make the overall clipping shape larger. Pass any object whose class implements the
java.awt.Shape interface to clipShape. Call Shape getClip() (inherited from Graphics) to return the
current clipping shape; null returns when the clipping shape is the entire drawing surface.

Java 2D provides a collection of Shape implementation classes. Also, the java.awt.Polygon class that
predates Java 2D has been retrofitted to implement this interface. The following example demonstrates
how to create and install a Polygon-based rectangular clip:

Polygon polygon = new Polygon();
polygon.addPoint(30, 30);
polygon.addPoint(60, 30);
polygon.addPoint(60, 60);
polygon.addPoint(30, 60);
g.clip(polygon);

Figure 7-24 shows the result of trying to paint the entire drawing surface green after a clip has been
installed.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

492

Figure 7-24. Select Clipping Shape from the Demo menu to view the clipping shape demonstration.

Rendering Hints

Graphics2D declares void setRenderingHint(RenderingHints.Key hintKey, Object hintValue) for
setting one of the rendering hints used by the rasterizer. Call its companion Object
getRenderingHint(RenderingHints.Key hintKey) method to return the current value of the specified
rendering hint.

The value passed to hintKey is a java.awt.RenderingHints.Key constant declared in the
RenderingHints class (e.g., KEY_ANTIALIASING). The value is one of the value constants declared in this
class (e.g., VALUE_ANTIALIAS_ON).

The following example shows you how to activate antialiasing:

g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

Figure 7-25 reveals the difference between aliased and antialiased text.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

493

Figure 7-25. Select Rendering Hints from the Demo menu to view the rendering hints demonstration.

 Note Graphics2D also declares void setRenderingHints(Map<?,?> hints) for discarding all rendering hints
and installing only those rendering hints in the specified map.

Shapes
The Shape interface represents a vector-based geometric shape, such as a rectangle or an ellipse. It
declares getBounds(), contains(), intersects(), and getPathIterator() methods:

• The getBounds() methods return rectangles that enclose the shape’s boundaries;
these rectangles serve as bounding boxes.

• Shapes have interiors and exteriors. The contains() methods tell you if a point or
a rectangle lies inside a shape.

• The intersects() methods tell you if any part of a rectangle intersects the shape’s
interior.

• The getPathIterator() methods return shape outlines.

The first three method categories are useful in a wide range of tasks, such as game-based collision
detection (are two shapes occupying the same space?) and graphics application-based hit testing (was
the mouse cursor over a specific shape when the mouse button was pressed?)—perhaps the graphics
application lets the user drag a selected shape. The latter method helps the rendering pipeline obtain a
shape outline.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

494

One of the contains() methods takes a java.awt.geom.Point2D argument. Instances of this class
specify points in user space. (Point2D instances aren’t shapes because Point2D doesn’t implement
Shape.)

Point2D reveals a pattern that’s followed by the shape classes. This abstract class contains a pair of
nested Double and Float concrete subclasses, which override its abstract methods. Instantiate Double to
increase accuracy and instantiate Float to increase performance.

The following example shows you how to instantiate Point2D, to specify points in user space:

Point2D pt1 = new Point2D.Double(10.0, 20.0);
Point2D pt2 = new Point2D.Float(20.0f, 30.0f);

The java.awt.geom package contains various geometric classes that implement Shape: Arc2D, Area,
CubicCurve2D, Ellipse2D, GeneralPath, Line2D, Path2D, QuadCurve2D, Rectangle2D, RectangularShape, and
RoundRectangle2D. RectangularShape is the abstract superclass of Arc2D, Ellipse2D, Rectangle2D, and
RoundRectangle2D. Also, the java.awt.Rectangle class that I introduced earlier in this chapter has been
retrofitted to extend Rectangle2D. Finally, GeneralPath is a legacy final class (you cannot extend it) that
extends Path2D.Float.

RoundRectangle2D describes a rectangle with rounded corners of a specific radius. Its nested Double
and Float subclasses declare noargument constructors for constructing a new RoundRectangle2D
instance that’s initialized to location (0.0, 0.0), size (0.0, 0.0), and corner arcs with radius 0.0. They also
declare constructors for specifying location, size, and corner arcs.

If you call the noargument constructors, you can subsequently call Double’s or Float’s
setRoundRect() methods to specify location, size, and rounded corner radius. However, if all you have is
a RoundRectangle2D reference (not a RoundRectangle2D.Double or RoundRectangle2D.Float reference),
you can call RoundRectangle2D’s void setRoundRect(double x, double y, double w, double h, double
arcWidth, double arcHeight) method. (You’ll find this constructor/set pattern repeated in other shape
classes.)

I’ve created a DragRect application that demonstrates RoundRectangle2D and Shape’s boolean
contains(double x, double y) method. DragRect shows you how to drag this round rectangle over its
drawing surface, and Listing 7-9 presents its source code.

Listing 7-9. Dragging a round rectangle

import java.awt.Color;
import java.awt.Dimension;
import java.awt.EventQueue;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;

import java.awt.event.MouseEvent;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseMotionAdapter;

import java.awt.geom.RoundRectangle2D;

import javax.swing.JComponent;
import javax.swing.JFrame;

class DragRect
{
 public static void main(String[] args)

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

495

 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 JFrame f = new JFrame("Drag Rectangle");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(new DragRectPane());
 f.pack();
 f.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
 }
}
final class DragRectPane extends JComponent
{
 private boolean dragging;
 private double dragX, dragY;
 private Dimension d;
 private RoundRectangle2D rect;
 DragRectPane()
 {
 d = new Dimension(200, 200);
 rect = new RoundRectangle2D.Double(0.0, 0.0, 30.0, 30.0, 10.0, 10.0);
 addMouseListener(new MouseAdapter()
 {
 @Override
 public void mousePressed(MouseEvent me)
 {
 if (!rect.contains(me.getX(), me.getY()))
 return;
 dragX = me.getX();
 dragY = me.getY();
 dragging = true;
 }
 @Override
 public void mouseReleased(MouseEvent me)
 {
 dragging = false;
 }
 });
 addMouseMotionListener(new MouseMotionAdapter()
 {
 @Override
 public void mouseDragged(MouseEvent me)
 {
 if (!dragging)
 return;
 double x = rect.getX()+me.getX()-dragX;
 double y = rect.getY()+me.getY()-dragY;

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

496

 rect.setRoundRect(x, y, rect.getWidth(),
 rect.getHeight(),
 rect.getArcWidth(),
 rect.getArcHeight());
 repaint();
 dragX = me.getX();
 dragY = me.getY();
 }
 });
 }
 @Override
 public Dimension getPreferredSize()
 {
 return d;
 }
 @Override
 public void paint(Graphics g)
 {
 Graphics2D g2d = (Graphics2D) g;
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setColor(Color.RED);
 g2d.fill(rect);
 }
}

Listing 7-9’s DragRectPane class subclasses JComponent, presents a noargument constructor, and
overrides getPreferredSize() and paint().

The constructor first instantiates Dimension and RoundRectangle2D.Double, and then registers mouse
and motion listeners with this component.

When the user presses a mouse button to initiate a drag operation (the mouse button is held down
while the mouse cursor is moved), the mouse listener’s void mousePressed(MouseEvent me) method is
called. This method first invokes the int getX() and int getY() methods on its MouseEvent argument to
obtain the component-relative location of the mouse cursor when the mouse button was pressed.

These mouse coordinates are passed to the round rectangle’s contains() method to determine
whether or not the mouse cursor was over this shape when the button press occurred. If the mouse
cursor was not over the round rectangle, this method returns.

Otherwise, the mouse coordinates are saved in dragX and dragY variables to record the origin of the
drag operation, and the dragging Boolean variable is assigned true so that the shape is dragged only
when the mouse cursor is over the shape when the drag operation begins.

During a drag operation, the mouse motion listener’s void mouseDragged(MouseEvent me) method is
invoked. Its first task is to test dragging to see if the mouse cursor was over the shape. If this variable
contains false, this method returns. (Without this test, pressing the mouse button while the mouse
cursor was not on the round rectangle, and then starting to drag the mouse cursor, would result in the
shape snapping to the location of the drag and subsequently being dragged.)

If dragging contains true, mouseDragged() next calculates a new upper-left corner origin for the
round rectangle by offsetting its current origin with the difference between the current mouse
coordinates and the coordinates saved in dragX and dragY. It then passes the new origin along with the
current size and arc radius to the round rectangle via a setRoundRect() method call.

Continuing, a call to repaint() causes the round rectangle to be repainted at the new location, and a
pair of assignment statements update dragX and dragY to the current mouse coordinates so that the next

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

497

call to mouseDragged() calculates the new round rectangle origin relative to the origin that was just
calculated.

When the mouse button is released, the mouse listener’s void mouseReleased(MouseEvent me)
method is called. This method assigns false to dragging so that the shape isn’t dragged when a drag
operation is subsequently started but the mouse cursor isn’t over the shape when that operation begins.

Compile this source code (javac DragRect.java) and run the application (java DragRect). Figure 7-
26 shows the resulting GUI with a drag operation in progress.

Figure 7-26. Press the mouse pointer over the round rectangle to begin dragging this shape.

Constructive Area Geometry
Constructive Area Geometry (CAG) is the creation of a new shape by performing a Boolean operation on
two existing shapes. The operations are Boolean OR (create a new shape that combines the existing
shapes’ pixels), Boolean NOT (create a new shape that contains only the pixels in one shape that are not
also in the other shape), Boolean AND (create a new shape that contains only overlapping pixels), and
Boolean XOR (create a new shape that contains only nonoverlapping pixels). Boolean OR is also known
as union, Boolean NOT is also known as subtraction, and Boolean AND is also known as intersection.

Java 2D provides the java.awt.geom.Area class for performing Boolean operations via its void
add(Area rhs) [union], void subtract(Area rhs), void intersect(Area rhs), and void
exclusiveOr(Area rhs) methods. Each method performs the specified Boolean operation on the current
Area object and its Area object argument, and stores the result in the current Area object.

To use Area, first pass a Shape object to its Area(Shape s) constructor and then invoke one of the
aforementioned methods on this Area object to perform the operation. Because Area also implements
Shape, you can pass the Area object with the Boolean result to Graphics2D’s draw() and fill() methods.

The following example demonstrates the union operation on a pair of ellipses:

Ellipse2D ell1 = new Ellipse2D.Double(10.0, 10.0, 40.0, 40.0);
Ellipse2D ell2 = new Ellipse2D.Double(30.0, 10.0, 40.0, 40.0);
Area area1 = new Area(ell1);
Area area2 = new Area(ell2);

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

498

area1.add(area2);

After creating two ellipse shapes, the example creates two Area objects, where each object contains
one ellipse. It then invokes add() on the first Area object to create a union of pixels in the area ranging
from upper-left corner (10.0, 10.0) to lower-right corner (70.0, 50.0). The result is stored in the first Area
object.

I’ve created a CAG application that demonstrates these Boolean operations—the application’s
source code is available in this book’s accompanying code file. This application’s output appears in
Figure 7-27.

Figure 7-27. Press the mouse pointer over the round rectangle to begin dragging this shape.

Buffered Images
AWT’s Image class associates with a rectangular array of colored pixels. Although you can draw these
pixels (via drawImage()), you need to work with AWT’s somewhat tedious producer/consumer model
(which I don’t discuss for brevity) to access them. In contrast, Java 2D’s java.awt.image.BufferedImage
class, which extends Image, makes these pixels available to applications and is easier to use.

For example, you can call BufferedImage’s int getWidth() and int getHeight() methods to obtain
an image’s width and height without having to deal with image observers. (Because BufferedImage
extends Image, the image observer-oriented width and height getter methods are also available.)

BufferedImage declares three constructors, with BufferedImage(int width, int height, int
imageType) being the simplest. The arguments passed to this constructor identify a buffered image’s
width (in pixels), height (in pixels), and type (the format used to store pixels).

Although BufferedImage declares several type constants, TYPE_INT_RGB (each pixel has red, green,
and blue color components but no alpha component), TYPE_INT_ARGB (each pixel has alpha, red, green,
and blue components), and TYPE_INT_ARGB_PRE (same as TYPE_INT_ARGB except that each pixel’s color
component values are premultiplied with its alpha value) are commonly used.

 Note The compositing portion of the rendering pipeline normally has to multiply each pixel’s color component
by its alpha value. Because this takes time, BufferedImage lets you optimize this process by premultiplying each
pixel’s color components and storing the results as new color component values.

The following example instantiates BufferedImage to describe a 100-column-by-50-row buffered
image that stores pixels of RGB type:

BufferedImage bi = new BufferedImage(100, 50, BufferedImage.TYPE_INT_RGB);

BufferedImage zeros each pixel’s color components so that the image is initially empty. If the
buffered image is of TYPE_INT_RGB, these pixels are black. If the buffered image is of TYPE_INT_ARGB, these
pixels are transparent. Drawing a transparent buffered image over a destination results in only the
destination pixels appearing.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

499

One way to populate a buffered image is to invoke its void setRGB(int x, int y, int rgb) method.
setRGB() sets the pixel at (x, y) to the 32-bit rgb value. If you specify an alpha component (as the most
significant 8 bits), the alpha component is ignored when the type is TYPE_INT_RGB. However, the alpha
component is stored with the red, green, and blue color components when the type is TYPE_INT_ARGB.

The following example sets one of the previously created buffered image’s pixels to a specific value:

bi.setRGB(10, 10, 0x80ff0000);

This example sets the pixel at (10, 10) to 0x80ff0000. You interpret this 32-bit hexadecimal value
(from left to right) as 50% translucency, bright red, no green, and no blue. Because the buffered image
was created as TYPE_INT_RGB, the alpha component is ignored.

You can access a pixel’s value by invoking int getRGB(int x, int y). The following example
returns the value stored at location (10, 10):

int rgb = bi.getRGB(10, 10);

 Note Regardless of the buffered image’s type, the setRGB() and getRGB() methods always access the
buffered image as if it was created in RGB/ARGB format. setRGB() and getRGB() translate to or from the
underlying format.

Another way to populate a buffered image is to create an Image instance and draw its associated
image onto the buffered image after the image has fully loaded. You can accomplish this task as follows:

Image image = Toolkit.getDefaultToolkit().getImage("image.png");
MediaTracker mt = new MediaTracker(this); // this represents current component
mt.addImage(image, 1);
try { mt.waitForID(1); } catch (InterruptedException ie) { assert false; }
BufferedImage bi = new BufferedImage(image.getWidth(null), image.getHeight(null),
 BufferedImage.TYPE_INT_ARGB);
Graphics2D bg = bi.createGraphics();
bg.drawImage(image, 0, 0, null);
bg.dispose(); // Always dispose of a created Graphics2D context.

I specified TYPE_INT_ARGB as the buffered image’s type because PNG images are associated with an
alpha channel. Also, I passed null to getWidth(), getHeight(), and drawImage() because an image
observer isn’t required after the image is fully loaded.

BufferedImage declares a Graphics2D createGraphics() method that returns a Graphics2D instance
for use in drawing images or graphics on the buffered image. After you finish drawing, you must dispose
of this context.

The previous example is verbose because it uses MediaTracker to load the image before drawing.
You can eliminate the image-loading verbosity by using Swing’s ImageIcon class, as demonstrated here:

ImageIcon ii = new ImageIcon("image.png");
BufferedImage bi = new BufferedImage(ii.getIconWidth(), ii.getIconHeight(),
 BufferedImage.TYPE_INT_ARGB);
Graphics2D bg = bi.createGraphics();
bg.drawImage(ii.getImage(), 0, 0, null);
bg.dispose();

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

500

Buffered Image Architecture
You now have enough knowledge to do a lot with buffered images. (I also show you how to save buffered
images to files in Appendix C.) However, because you might want to improve the performance of
application code that works with buffered images (or for some other reason), you should also
understand buffered image architecture. Consider Figure 7-28.

Figure 7-28. A buffered image contains a raster and a color model.

Figure 7-28 reveals that a buffered image encapsulates a raster and a color model. The raster stores
each pixel in terms of sample values that provide color lookup information. For an RGB image, three
samples are stored for each pixel, whereas four samples are stored for an ARGB image.

Samples are stored in a data buffer, which consists of one or more arrays of primitive type values
(such as bytes or short integers). For an RGB image, all red samples would be stored in one array, all
green samples would be stored in a second array, and all blue samples would be stored in a third array.
Each array of samples is referred to as a band or channel.

Associated with the data buffer is a sample model that communicates with the data buffer to store
sample values and retrieve sample values on behalf of the raster.

Finally, the color model interprets a pixel’s samples as a color according to a specific color space (see
http://en.wikipedia.org/wiki/Color_space).

When you invoke getRGB() to obtain a pixel’s red, green, blue, and (possibly) alpha components
(depending on the buffer’s type), this method tells the raster to obtain pixel samples, the raster tells the
sample model to find the samples, the sample model fetches the samples from the data buffer and
passes them to the raster, which passes them to getRGB(). At this point, getRGB() tells the color model to
convert the samples to color information. The color model uses the color space to help it perform this
conversion.

When you invoke setRGB() to set a pixel’s color components, this method tells the color model to
obtain sample values corresponding to the color components, and then tells the raster to store these
samples. The raster tells the sample model to store the pixel’s samples, and the sample model stores
these samples in the data buffer.

 Note The raster and color model need to be compatible. In other words, the number of samples (per pixel) must
equal the number of color model components.

The java.awt.image package contains a concrete Raster class for describing read-only rasters, an
abstract DataBuffer class for describing data buffers, an abstract SampleModel class for describing sample
models, and an abstract ColorModel class for describing color models. The java.awt.color package
contains an abstract ColorSpace class for describing color spaces. Consult the Java documentation to
learn more about these classes and their subclasses (e.g., Raster’s WritableRaster subclass).

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://en.wikipedia.org/wiki/Color_space

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

501

Buffered Image Processing
Image processing is a form of signal processing (http://en.wikipedia.org/wiki/Signal_processing)
where mathematical transformations convert digital images into other digital images. Transformations
exist to blur, sharpen, colorize, emboss, sepia tone, and apply other kinds of operations to images.

Java 2D lets you process buffered images or their rasters by providing the
java.awt.image.BufferedImageOp and java.awt.image.RasterOp interfaces. Although these interfaces are
similar (e.g., each interface declares five methods that perform equivalent tasks), they differ in that
BufferedImageOp can access the buffered image’s color model, whereas RasterOp cannot access the color
model. Also, RasterOp is somewhat more performant than BufferedImageOp, but is a bit more involved to
work with.

 Note BufferedImageOp and/or RasterOp implementations are known as image operators. They are also known
as filters because each interface declares a filter() method—filters are used in photography.

The central method of the BufferedImageOp interface is BufferedImage filter(BufferedImage src,
BufferedImage dest), which filters (transforms) the contents of a source BufferedImage instance into
results that are stored in a destination BufferedImage instance. If the color models of both buffered
images don’t match, a color conversion into the destination buffered image’s color model is performed.
If you pass null to dest, a BufferedImage instance with an appropriate ColorModel instance is created.
This method throws java.lang.IllegalArgumentException when the source and/or destination buffered
images are not compatible with the types of images allowed by the class implementing this interface.

The central method of the RasterOp interface is WritableRaster filter(Raster src,
WritableRaster dest), which filters the contents of a source Raster instance into results that are stored
in a destination WritableRaster instance. If you pass null to dest, a WritableRaster instance is created.
This method may throw IllegalArgumentException when the source and/or destination rasters are
incompatible with the types of rasters allowed by the class implementing this interface.

 Note Depending on the implementing class, BufferedImageOp’s and/or RasterOp’s filter() methods may
allow in-place filtering where the source and destination buffered images/rasters are the same.

Java 2D provides five java.awt.image classes that implement both interfaces: AffineTransformOp,
ColorConvertOp, ConvolveOp, LookupOp, and RescaleOp. Furthermore, this package provides the
BandCombineOp class, which only implements RasterOp:

• AffineTransformOp geometrically transforms (e.g., rotates) buffered image colors
or raster samples.

• BandCombineOp combines raster sample arrays according to a set of coefficient
values. You can use this class to invert the sample equivalent of color component
bands and perform other operations efficiently.

http://en.wikipedia.org/wiki/Signal_processing

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

502

• ColorConvertOp converts buffered image colors/raster samples from one color
space to another.

• ConvolveOp lets you perform spatial convolutions (combining source pixel and
neighbor pixel colors/samples) such as blurring and sharpening.

• LookupOp lets you modify pixel component values through lookup tables.

• RescaleOp multiplies pixel component values by a scale factor and then adds an
offset to the result. This class is useful for brightening and darkening images
(although lookup tables can be used for this purpose as well).

 Caution LookupOp’s Java documentation for its WritableRaster filter(Raster src, WritableRaster
dst) method states that a new raster is created when you pass null to dst. However, passing null to dst causes
java.lang.NullPointerException to be thrown instead.

Convolving Images

ConvolveOp combines fractions of a source pixel’s alpha (when present) and color components with
fractions of its immediate neighbor pixels’ components to produce a destination pixel. The percentage
of each pixel’s component values to combine is obtained from a table of floating-point values, which is
known as a kernel. A component’s values are multiplied by the corresponding kernel value and the
results are summed. Each sum is clamped to a 0/0.0 (darkest/transparent) minimum and a 255/1.0
(brightest/opaque) maximum.

ConvolveOp moves the kernel across the image to convolve each pixel. The kernel’s center value (or
the value nearest the center) applies to the source pixel being convolved, whereas the other values apply
to the neighboring pixels.

The identity kernel has all values set to 0.0 except for the center value, which is set to 1.0. This special
kernel doesn’t change the image because multiplying the source pixel’s component values by 1.0 doesn’t
change these components, and multiplying neighbor pixel component values by 0.0 results in 0.0 values,
which contribute nothing when added to the multiplication results.

Kernels are represented by instances of the java.awt.image.Kernel class. To create a kernel, first
create an array of floating-point percentage values, and then pass this array along with the table’s width
(number of columns) and height (number of rows) to the Kernel(int width, int height, float[]
data) constructor.

The following example shows you how to create an identity-based kernel:

float[] identityKernel =
{
 0.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f
};
Kernel kernel = new Kernel(3, 3, identityKernel);

This kernel describes a 3-by-3 table of values that’s applied to each source pixel and its eight
immediate neighbors. To involve more neighbors, increase the size of the floating-point array and the

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

503

number of rows and columns. For example, you could create a 5-by-5 kernel that involves the source
pixel and its 24 immediate neighbors.

 Note Although Kernel doesn’t require odd-numbered width and height arguments, you might find kernels with
an odd number of columns and an odd number of rows easier to understand.

After creating a kernel, you need to consider what happens when the kernel is positioned over pixels
at the edges of an image. Some kernel elements will have no corresponding image pixels. For example,
when a 3-by-3 kernel is positioned with its center row over the top image row, the kernel’s top row of
neighbor values has no corresponding row of image pixels.

ConvolveOp addresses this situation by declaring EDGE_ZERO_FILL and EDGE_NO_OP constants.
Specifying EDGE_ZERO_FILL causes ConvolveOp to set edge destination pixels to zero, which is interpreted
as black (RGB) or transparent (ARGB). EDGE_NO_OP causes ConvolveOp to copy source edge pixels to the
destination unchanged.

To perform a convolution using this kernel, first instantiate ConvolveOp, as follows:

BufferedImageOp identityOp = new ConvolveOp(kernel);
RasterOp identityOp = new ConvolveOp(kernel);

The ConvolveOp(Kernel kernel) constructor sets the edge behavior to EDGE_ZERO_FILL.

 Tip Use the ConvolveOp(Kernel kernel, int edgeCondition, RenderingHints hints) constructor to
select the edge behavior and the rendering hints for controlling the rasterizer.

Continue by invoking a filter() method, as follows:

BufferedImage biResult = identityOp.filter(bi, null);
WriteableRaster wrResult = identityOp.filter(bi.getRaster(), null);

The first filter() method call is passed an existing BufferedImage instance named bi as its first
argument. Its second argument is null, which tells filter() to create a new BufferedImage instance as
the destination. You cannot pass the same BufferedImage instance as the second argument because
ConvolveOp doesn’t support in-place filtering for buffered images.

The second filter() method call is passed the buffered image’s raster (obtained by invoking
BufferedImage’s WritableRaster getRaster() method) as its first argument. It is also passed null as its
second argument because ConvolveOp doesn’t support in-place filtering for rasters.

 Note For convenience, I focus on buffered image-based processing. Also, I demonstrate various filters/image
operators in the context of a BIP application that’s included with this book’s code.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

504

You can create a blur kernel that blurs an image by combining equal amounts of source and
neighbor pixel component values. The resulting kernel appears here:

float ninth = 1.0f/9.0f;
float[] blurKernel =
{
 ninth, ninth, ninth,
 ninth, ninth, ninth,
 ninth, ninth, ninth
};
Kernel kernel = new Kernel(3, 3, blurKernel);

Figure 7-29 shows the blur kernel’s results—compare with Figure 7-10.

Figure 7-29. Select Blur from the Process menu to blur the image.

If you were to apply the blur kernel to an ARGB image, where all alpha component values are 255 (or
1.0) to indicate an opaque image, the destination image’s alpha values would be the same as the source
image’s alpha values. The reason is that the blur kernel divides each of the source and neighbor alpha
values by nine and then adds the results together, resulting in the source pixel’s original alpha value.

You can create an edge kernel that emphasizes an image’s edges by subtracting neighbor pixel
components from source pixel components. The resulting kernel appears here:

float[] edgeKernel =
{
 0.0f, -1.0f, 0.0f,
 -1.0f, 4.0f, -1.0f,
 0.0f, -1.0f, 0.0f
};
Kernel kernel = new Kernel(3, 3, edgeKernel);

Figure 7-30 shows the edge kernel’s results.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

505

Figure 7-30. Select Edge from the Process menu to generate an image that reveals edges only.

If you were to apply the edge kernel to an ARGB image, where all alpha component values are
255/1.0, the destination image would be transparent because each alpha value would be set to 0
(transparent) by the edge kernel.

Finally, you can create a sharpen kernel by adding the identity kernel to the edge kernel. The
resulting kernel is as follows:

float[] sharpenKernel =
{
 0.0f, -1.0f, 0.0f,
 -1.0f, 5.0f, -1.0f,
 0.0f, -1.0f, 0.0f
};
Kernel kernel = new Kernel(3, 3, sharpenKernel);

Figure 7-31 shows the sharpen kernel’s results.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

506

Figure 7-31. Select Sharpen from the Process menu to sharpen the image.

If you were to apply the sharpen kernel to an ARGB image, where all alpha component values are
255/1.0, the destination image’s alpha values would be the same as the source image’s alpha values. The
reason is that the sharpen kernel multiplies the source pixel’s alpha value by 4 and subtracts four of its
neighbor’s alpha values from the multiplied result, arriving at the source pixel’s original alpha value.

 Note Kernels whose elements sum to 1.0 preserve an image’s brightness, as demonstrated in the blur and
sharpen kernels. Kernels whose elements sum to less than 1.0 generate darker images, which the edge kernel
demonstrates. Kernels whose elements sum to greater than 1.0 generate brighter images.

Using Lookup Tables

LookupOp lets you process a buffered image by using lookup tables, where a lookup table contains one or
more arrays of values that are indexed by pixel component values.

Lookup tables are described by concrete subclasses of the abstract java.awt.image.LookupTable
class, specifically java.awt.image.ByteLookupTable and java.awt.image.ShortLookupTable, which store
byte integers and short integers, respectively. Either subclass can be used, although you’ll probably use
ShortLookupTable because you can easily represent unsigned byte integers. In contrast, you would have
to use negative values to represent byte values ranging from 128 to 255 when choosing ByteLookupTable.

To create a short integer lookup table that applies to all components, first create its underlying
array, as follows:

short[] invert = new short[256];
for (int i = 0; i < invert.length; i++)
 invert[i] = (short) 255-i;

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

507

This array is designed to invert a pixel’s color (and, when present, alpha) components, and is
intended for use with ShortLookupTable.

Continue by instantiating ShortLookupTable, as follows:

LookupTable table = new ShortLookupTable(0, invert);

The first argument is an offset to subtract from component values prior to indexing into the array. I
pass 0 because I don’t want to subtract an offset. The second argument is the array itself.

Finally, instantiate LookupOp by calling its LookupOp(LookupTable lookup, RenderingHints hints)
constructor, as follows:

BufferedImageOp invertOp = new LookupOp(new ShortLookupTable(0, invert), null);

I’ve chosen to not specify rendering hints by passing null as the second argument.
There’s a problem with using a single array when dealing with an ARGB image because it can screw

up the alpha channel—the lookup table also applies to alpha. To address this situation, you can process
the alpha channel separately by providing one array for each component, as demonstrated here:

short[] alpha = new short[256];
short[] red = new short[256];
short[] green = new short[256];
short[] blue = new short[256];
for (int i = 0; i < alpha.length; i++)
{
 alpha[i] = 255;
 red[i] = (short) (255-i);
 green[i] = (short) (255-i);
 blue[i] = (short) (255-i);
}
short[][] invert = { red, green, blue, alpha };
BufferedImageOp invertOp = new LookupOp(new ShortLookupTable(0, invert), null);

This example first creates a separate array for inverting each component except for alpha—each
alpha array entry is assigned 255 to specify opaque. Next, these arrays are passed to a two-dimensional
invert array—the alpha array must be passed last. Finally, an alternate ShortLookupTable constructor is
called with the two-dimensional invert array and a 0 offset as its arguments. The resulting table along
with null (that indicates no rendering hints) are passed to LookupOp’s constructor.

Figure 7-32 shows this image operator’s results.

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

508

Figure 7-32. Select Negative from the Process menu to invert pixel components.

EXERCISES

The following exercises are designed to test your understanding of AWT, Swing, and Java 2D:

1. Create an AWT application named RandomCircles that presents a canvas for
displaying filled circular ovals (rendered via fillOval()). A new randomly
colored, randomly positioned, and randomly sized (from 5 to 35 pixels for both the
width and height—use the same value for each extent) filled circle is displayed by
the paint() method at application startup and each time the mouse button is
pressed while the mouse pointer appears over the canvas. At startup, you might
notice that the canvas first displays one randomly colored/positioned/sized circle
and immediately displays another. This has to do with AWT invoking the paint()
method at least twice at startup. Because you don’t know how many times
paint() will be called, never rely on paint() to change the state of the
component. Instead, you must only use this method to render the component in
response to the current state.

2. Modify Listing 7-6’s Swing-based TempVerter application to install the Nimbus
Look and Feel before the GUI is created.

3. Swing’s AbstractButton class, which JButton extends, declares a void
setMnemonic(int mnemonic) method for setting a keyboard mnemonic (memory
aid), which serves as a keyboard shortcut alternative to clicking a mouse button.
The argument passed to mnemonic is one of the virtual key constants declared in
the KeyEvent class (e.g., VK_C). When you invoke this method, the first occurrence

CHAPTER 7 CREATING AND ENRICHING GRAPHICAL USER INTERFACES

509

of the character (from left to right on the button label) defined by the mnemonic is
underlined. When you press this key with the current look and feel’s mouseless
modifier (typically the Alt key), the button is clicked. Modify Listing 7-6’s Swing-
based TempVerter application to assign the VK_C mnemonic to the Convert to
Celsius button and the VK_F mnemonic to the Fahrenheit button.

4. The pseudo-splash screen created by Listing 7-3’s SplashCanvas class suffers
from aliasing that makes the text and graphics look jagged. You can fix this
problem by installing the antialiasing rendering hint before rendering graphics.
Create a new version of SplashCanvas that takes advantage of antialiasing.

5. Adding the previous exercise’s support for antialiasing slows down rendering. As a
result, you may notice that it takes time to redraw the pseudo-splash screen and
that the GUI’s response to mouse clicks becomes sluggish. You can solve this
problem for nonresizable components by precreating the noninverted and inverted
images with the help of the BufferedImage class. Create a new version of
SplashCanvas that accomplishes this task.

6. Because you might find Figure 7-29’s blurred image hard to distinguish from
Figure 7-10, modify BIP by adding a Blur More menuitem. The associated listener
will create a 5-by-5-element kernel with each element set to 1.0f/25.0f.
Involving more neighbor pixels results in more blurring. Compare the Blur More
and Blur results to see this for yourself.

7. The ColorSpace and ColorConvertOp classes can be used to create a grayscale
version of a colored image. Introduce a Grayscale menuitem to BIP and have its
associated listener use these classes to generate a grayscale version of the rose.

Summary
Abstract Window Toolkit is Java’s original windowing system-independent API for creating GUIs that are
based on components, containers, layout managers, and events. AWT also supports graphics, colors,
fonts, images, data transfer, and more.

Swing is a windowing system-independent API for creating GUIs that are based on components,
containers, layout managers, and events. Although Swing extends AWT (you can use AWT layout
managers and events in your Swing GUIs), this API differs from its predecessor in that Swing GUIs can
look and feel the same when run on any windowing system or (at the developer’s discretion) adopt the
look and feel of the windowing system on which it’s running. Furthermore, Swing’s noncontainer
components and a few of its containers are completely managed by Java so that they can have whatever
features are necessary (such as tooltips); these features are available regardless of the windowing system.
Also, Swing can offer components that might not be available on every windowing system; for example,
tables and trees.

Finally, Java 2D is a collection of AWT extensions that provide advanced two-dimensional graphical,
textual, and imaging capabilities. This API offers a flexible framework for developing richer GUIs through
line art, text, and images.

Applications often interact with the filesystem to output data to and/or input data from files.
Chapter 8 introduces you to the standard class library’s classic I/O APIs for accomplishing these tasks.

C H A P T E R 8

511

Interacting with Filesystems

Applications often interact with the filesystem to output data to and/or input data from files. Java’s
standard class library supports filesystem access via its classic File, RandomAccessFile, stream, and
writer/reader APIs. Chapter 8 introduces you to File, RandomAccessFile, and various stream and
writer/reader APIs.

 Note Although it’s preferred to access filesystems via Java’s New I/O APIs, I don’t discuss New I/O in this
chapter because aspects of New I/O involve networking, which I don’t discuss until Chapter 9. Also, you should
know about this chapter’s classic I/O APIs because you’ll encounter them while modifying legacy code that uses
classic I/O. I discuss New I/O in Appendix C.

File
Applications often interact with a filesystem, which is usually expressed as a hierarchy of files and
directories starting from a root directory.

Windows and other platforms on which a Java Virtual Machine (JVM) runs typically support at least
one filesystem. For example, a Unix or Linux platform combines all mounted (attached and prepared)
disks into one virtual filesystem. In contrast, Windows associates a separate filesystem with each active
disk drive.

Java offers access to the platform’s available filesystem(s) via its concrete java.io.File class. File
declares the File[] listRoots() class method to return the root directories (roots) of available
filesystems as an array of File objects.

 Note The set of available filesystem roots is affected by various platform-level operations, such as inserting or
ejecting removable media, and disconnecting or unmounting physical or virtual disk drives.

Listing 8-1 presents a DumpRoots application that uses listRoots() to obtain an array of available
filesystem roots and then outputs the array’s contents.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 8 INTERACTING WITH FILESYSTEMS

512

Listing 8-1. Dumping available filesystem roots to the standard output device

import java.io.File;

class DumpRoots
{
 public static void main(String[] args)
 {
 File[] roots = File.listRoots();
 for (File root: roots)
 System.out.println(root);
 }
}

When I run this application on my Windows XP platform, I receive the following output, which
reveals four available roots:

A:\
C:\
D:\
E:\

If I ran DumpRoots on a Unix or Linux platform, I would receive one output line consisting of the
virtual filesystem root (/).

Apart from using listRoots(), you can obtain a File instance by calling a File constructor such as
File(String pathname), which creates a File instance that stores the pathname string. The following
assignment statements demonstrate this constructor:

File file1 = new File("/x/y");
File file2 = new File("C:\\temp\\x.dat");

The first statement assumes a Unix or Linux platform, starts the pathname with root directory
symbol /, and continues with directory name x, separator character /, and file or directory name y. (It
also works on Windows, which assumes this path begins at the root directory on the current drive.)

 Note A path is a hierarchy of directories that must be traversed to locate a file or a directory. A pathname is a
string representation of a path; a platform-dependent separator character (such as the Windows backslash [\]
character) appears between consecutive names.

The second statement assumes a Windows platform, starts the pathname with drive specifier C:,
and continues with root directory symbol \, directory name temp, separator character \, and filename
x.dat (although x.dat might refer to a directory).

CHAPTER 8 INTERACTING WITH FILESYSTEMS

513

 Caution Always double backslash characters that appear in a string literal, especially when specifying a
pathname; otherwise, you run the risk of bugs or compiler error messages. For example, I doubled the backslash
characters in the second statement to denote a backslash and not a tab (\t), and to avoid a compiler error
message (\x is illegal).

Each statement’s pathname is an absolute pathname, which is a pathname that starts with the root
directory symbol; no other information is required to locate the file/directory that it denotes. In contrast,
a relative pathname doesn’t start with the root directory symbol; it’s interpreted via information taken
from some other pathname.

 Note The java.io package’s classes default to resolving relative pathnames against the current user (also
known as working) directory, which is identified by system property user.dir, and which is typically the directory
in which the JVM was launched. (Chapter 4 shows you how to read system properties via the java.lang.System
class’s getProperty() method.)

File instances contain abstract representations of file and directory pathnames (these files or
directories may or may not exist in their filesystems) by storing abstract pathnames, which offer
platform-independent views of hierarchical pathnames. In contrast, user interfaces and operating
systems use platform-dependent pathname strings to name files and directories.

An abstract pathname consists of an optional platform-dependent prefix string, such as a disk-drive
specifier, “/” for the Unix root directory, or “\\” for a Windows Universal Naming Convention (UNC)
pathname; and a sequence of zero or more string names. The first name in an abstract pathname may be
a directory name or, in the case of Windows UNC pathnames, a hostname. Each subsequent name
denotes a directory; the last name may denote a directory or a file. The empty abstract pathname has no
prefix and an empty name sequence.

The conversion of a pathname string to or from an abstract pathname is inherently platform-
dependent. When a pathname string is converted to an abstract pathname, the names within it are
separated by the default name-separator character or by any other name-separator character that is
supported by the underlying platform. For example, File(String pathname) converts pathname string
/x/y to abstract pathname /x/y on a Unix or Linux platform, and this same pathname string to abstract
pathname \x\y on a Windows platform.

 Note The default name-separator character is obtainable from system property file.separator, and is also
stored in File’s separator and separatorChar class fields. The first field stores the character in a
java.lang.String instance and the second field stores it as a char value. Neither name of these final fields
follows the convention of appearing entirely in uppercase.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

514

When an abstract pathname is converted into a pathname string, each name is separated from the
next by a single copy of the default name-separator character.

File offers additional constructors for instantiating this class. For example, the following
constructors merge parent and child pathnames into combined pathnames that are stored in File
objects:

• File(String parent, String child) creates a new File instance from a parent
pathname string and a child pathname string.

• File(File parent, String child) creates a new File instance from a parent
pathname File instance and a child pathname string.

Each constructor’s parent parameter is passed a parent pathname, a string that consists of all
pathname components except for the last name, which is specified by child. The following statement
demonstrates this concept via File(String, String):

File file3 = new File("prj/books/", "bj7");

The constructor merges relative parent pathname prj/books/ with child pathname bj7 into relative
pathname prj/books/bj7. (If I had specified prj/books as the parent pathname, the constructor would
have added the separator character after books.)

 Tip Because File(String pathname), File(String parent, String child), and File(File parent,
String child) don’t detect invalid pathname arguments (apart from throwing
java.lang.NullPointerException when pathname or child is null), you must be careful when specifying
pathnames. You should strive to only specify pathnames that are valid for all platforms on which the application
will run. For example, instead of hard-coding a drive specifier (such as C:) in a pathname, use the roots that are
returned from listRoots(). Even better, keep your pathnames relative to the current user/working directory
(returned from the user.dir system property).

After obtaining a File object, you can interrogate it to learn about its stored abstract pathname by
calling the methods that are described in Table 8-1.

Table 8-1. File Methods for Learning About a Stored Abstract Pathname

Method Description

File getAbsoluteFile() Return the absolute form of this File object’s abstract
pathname. This method is equivalent to new
File(this.getAbsolutePath()).

String getAbsolutePath() Return the absolute pathname string of this File object’s
abstract pathname. If it’s already absolute, the pathname
string is returned as if by calling getPath(). If it’s the empty
abstract pathname, the pathname string of the current user
directory (identified via user.dir) is returned. Otherwise, the

CHAPTER 8 INTERACTING WITH FILESYSTEMS

515

abstract pathname is resolved in a platform-dependent
manner. On Unix platforms, a relative pathname is made
absolute by resolving it against the current user directory.
On Windows platforms, the pathname is made absolute by
resolving it against the current directory of the drive named
by the pathname, or the current user directory when there’s
no drive.

File getCanonicalFile() Return the canonical (simplest possible, absolute and
unique) form of this File object’s abstract pathname. This
method throws java.io.IOException when an I/O error
occurs (creating the canonical pathname may require
filesystem queries); it equates to new
File(this.getCanonicalPath()).

String getCanonicalPath() Return the canonical pathname string of this File object’s
abstract pathname. This method first converts this
pathname to absolute form when necessary, as if by
invoking getAbsolutePath(), and then maps it to its unique
form in a platform-dependent way. Doing so typically
involves removing redundant names such as “.” and “..”
from the pathname, resolving symbolic links (on Unix
platforms), and converting drive letters to a standard case
(on Windows platforms). This method throws IOException
when an I/O error occurs (creating the canonical pathname
may require filesystem queries).

String getName() Return the filename or directory name denoted by this File
object’s abstract pathname. This name is the last in a
pathname’s name sequence. The empty string is returned
when the pathname’s name sequence is empty.

String getParent() Return the parent pathname string of this File object’s
abstract pathname, or return null when this pathname
doesn’t name a parent directory.

File getParentFile() Return a File object storing this File object’s abstract
pathname’s parent abstract pathname; return null when the
parent pathname isn’t a directory.

String getPath() Convert this File object’s abstract pathname into a
pathname string where the names in the sequence are
separated by the character stored in File’s separator field.
Return the resulting pathname string.

boolean isAbsolute() Return true when this File object’s abstract pathname is
absolute; otherwise, return false when it’s relative. The
definition of absolute pathname is system dependent. On
Unix platforms, a pathname is absolute when its prefix is “/”.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

516

On Windows platforms, a pathname is absolute when its
prefix is a drive specifier followed by “\”, or when its prefix is
“\\”.

String toString() A synonym for getPath().

Table 8-1 refers to IOException, which is the common exception superclass for those exception

classes that describe various kinds of I/O errors, such as java.io.FileNotFoundException.
Listing 8-2 instantiates File with its pathname command-line argument, and calls some of the File

methods described in Table 8-1 to learn about this pathname.

Listing 8-2. Obtaining abstract pathname information

import java.io.File;
import java.io.IOException;

class PathnameInfo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java PathnameInfo pathname");
 return;
 }
 File file = new File(args[0]);
 System.out.println("Absolute path = "+file.getAbsolutePath());
 System.out.println("Canonical path = "+file.getCanonicalPath());
 System.out.println("Name = "+file.getName());
 System.out.println("Parent = "+file.getParent());
 System.out.println("Path = "+file.getPath());
 System.out.println("Is absolute = "+file.isAbsolute());
 }
}

For example, when I specify java PathnameInfo . (the period represents the current directory on
my XP platform), I observe the following output:

Absolute path = C:\prj\dev\bj7\ch08\code\PathnameInfo\.
Canonical path = C:\prj\dev\bj7\ch08\code\PathnameInfo
Name = .
Parent = null
Path = .
Is absolute = false

This output reveals that the canonical pathname doesn’t include the period. It also shows that
there’s no parent pathname and that the pathname is relative.

Continuing, I now specify java PathnameInfo c:\reports\2011\..\2010\February. This time, I
observe the following output:

Absolute path = c:\reports\2011\..\2010\February
Canonical path = C:\reports\2010\February

CHAPTER 8 INTERACTING WITH FILESYSTEMS

517

Name = February
Parent = c:\reports\2011\..\2010
Path = c:\reports\2011\..\2010\February
Is absolute = true

This output reveals that the canonical pathname doesn’t include 2011. It also shows that the
pathname is absolute.

For my final example, suppose I specify java PathnameInfo "" to obtain information for the empty
pathname. In response, this application generates the following output:

Absolute path = C:\prj\dev\bj7\ch08\code\PathnameInfo
Canonical path = C:\prj\dev\bj7\ch08\code\PathnameInfo
Name =
Parent = null
Path =
Is absolute = false

The output reveals that getName() and getPath() return the empty string ("") because the empty
pathname is empty.

You can interrogate the filesystem to learn about the file or directory represented by a File object’s
abstract pathname by calling the methods that are described in Table 8-2.

Table 8-2. File Methods for Learning About a File or Directory

Method Description

boolean canExecute() Return true when this File object’s abstract pathname
represents an existing file that the application is allowed to
execute.

boolean canRead() Return true when this File object’s abstract pathname
represents an existing readable file.

boolean canWrite() Return true when this File object’s abstract pathname
represents an existing file that can be modified.

boolean exists() Return true if and only if the file or directory that’s denoted
by this File object’s abstract pathname exists.

boolean isDirectory() Return true when this File object’s abstract pathname refers
to an existing directory.

boolean isFile() Return true when this File object’s abstract pathname refers
to an existing normal file. A file is normal when it’s not a
directory and satisfies other platform-dependent criteria: it’s
not a symbolic link or a named pipe, for example. Any
nondirectory file created by a Java application is guaranteed
to be a normal file.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

518

boolean isHidden() Return true when the file denoted by this File object’s
abstract pathname is hidden. The exact definition of hidden
is platform dependent. On Unix/Linux platforms, a file is
hidden when its name begins with a period character. On
Windows platforms, a file is hidden when it has been marked
as such in the filesystem.

long lastModified() Return the time that the file denoted by this File object’s
abstract pathname was last modified, or 0 when the file
doesn’t exist or an I/O error occurred during this method
call. The returned value is measured in milliseconds since
the Unix epoch (00:00:00 GMT, January 1, 1970).

long length() Return the length of the file denoted by this File object’s
abstract pathname. The return value is unspecified when the
pathname denotes a directory, and will be 0 when the file
doesn’t exist.

Listing 8-3 instantiates File with its pathname command-line argument, and calls all the File

methods described in Table 8-2 to learn about the pathname’s file/directory.

Listing 8-3. Obtaining file/directory information

import java.io.File;
import java.io.IOException;

import java.util.Date;

class FileDirectoryInfo
{
 public static void main(final String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java FileDirectoryInfo pathname");
 return;
 }
 File file = new File(args[0]);
 System.out.println("About "+file+":");
 System.out.println("Can execute = "+file.canExecute());
 System.out.println("Can read = "+file.canRead());
 System.out.println("Can write = "+file.canWrite());
 System.out.println("Exists = "+file.exists());
 System.out.println("Is directory = "+file.isDirectory());
 System.out.println("Is file = "+file.isFile());
 System.out.println("Is hidden = "+file.isHidden());
 System.out.println("Last modified = "+new Date(file.lastModified()));
 System.out.println("Length = "+file.length());
 }
}

CHAPTER 8 INTERACTING WITH FILESYSTEMS

519

For example, suppose I have a three-byte read-only file named x.dat. When I specify java
FileDirectoryInfo x.dat, I observe the following output:

About x.dat:
Can execute = true
Can read = true
Can write = true
Exists = true
Is directory = false
Is file = true
Is hidden = false
Last modified = Wed Aug 24 18:45:07 CDT 2011
Length = 3

 Note Java 6 added long getFreeSpace(), long getTotalSpace(), and long getUsableSpace() methods to
File that return disk space information about the partition (a platform-specific portion of storage for a filesystem;
for example, C:\) described by the File instance’s pathname.

File declares five methods that return the names of files and directories located in the directory
identified by a File object’s abstract pathname. Table 8-3 describes these methods.

Table 8-3. File Methods for Obtaining Directory Content

Method Description

String[] list() Return a potentially empty array of strings naming the
files and directories in the directory denoted by this
File object’s abstract pathname. If the pathname
doesn’t denote a directory, or if an I/O error occurs, this
method returns null. Otherwise, it returns an array of
strings, one string for each file or subdirectory in the
directory.

Names denoting the directory itself and the directory’s
parent directory are not included in the result. Each
string is a filename rather than a complete path. Also,
there’s no guarantee that the name strings in the
resulting array will appear in alphabetical or any other
order.

String[] list(FilenameFilter
filter)

A convenience method for calling list() and returning
only those Strings that satisfy filter.

File[] listFiles() A convenience method for calling list(), converting its
array of Strings to an array of Files, and returning the
Files array.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

520

File[] listFiles(FileFilter
filter)

A convenience method for calling list(), converting its
array of Strings to an array of Files, but only for those
Strings that satisfy filter, and returning the Files
array.

File[] listFiles(FilenameFilter
filter)

A convenience method for calling list(), converting its
array of Strings to an array of Files, but only for those
Strings that satisfy filter, and returning the Files
array.

The overloaded list() methods return arrays of Strings denoting file and directory names. The

second method lets you return only those names of interest (such as only names ending with extension
.txt) via a java.io.FilenameFilter-based filter object.

The FilenameFilter interface declares a single boolean accept(File dir, String name) method
that’s called for each file/directory located in the directory identified by the File object’s abstract
pathname:

• dir identifies the parent portion of the pathname (the directory path).

• name identifies the final directory name or the filename portion of the pathname.

The accept() method uses these arguments to determine whether or not the file or directory
satisfies its criteria for what is acceptable. It returns true when the file/directory name should be
included in the returned array; otherwise, this method returns false.

Listing 8-4 presents a Dir(ectory) application that uses list(FilenameFilter) to obtain only those
names that end with a specific extension.

Listing 8-4. Listing specific names

import java.io.File;
import java.io.FilenameFilter;

class Dir
{
 public static void main(final String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Dir dirpath ext");
 return;
 }
 File file = new File(args[0]);
 FilenameFilter fnf = new FilenameFilter()
 {
 public boolean accept(File dir, String name)
 {
 return name.endsWith(args[1]);
 }
 };
 String[] names = file.list(fnf);
 for (String name: names)

CHAPTER 8 INTERACTING WITH FILESYSTEMS

521

 System.out.println(name);
 }
}

When I, for example, specify java Dir c:\windows bmp on my XP platform, Dir outputs only those
\windows directory filenames that have the bmp (bitmap) extension:

Blue Lace 16.bmp
Coffee Bean.bmp
FeatherTexture.bmp
Gone Fishing.bmp
Greenstone.bmp
Prairie Wind.bmp
Rhododendron.bmp
River Sumida.bmp
Santa Fe Stucco.bmp
Soap Bubbles.bmp
winnt.bmp
winnt256.bmp
Zapotec.bmp

The overloaded listFiles() methods return arrays of Files. For the most part, they’re symmetrical
with their list() counterparts. However, listFiles(FileFilter) introduces an asymmetry.

The java.io.FileFilter interface declares a single boolean accept(String pathname) method that’s
called for each file/directory located in the directory identified by the File object’s abstract pathname.
The argument passed to pathname identifies the complete path of the file or directory.

The accept() method uses this argument to determine whether or not the file or directory satisfies
its criteria for what is acceptable. It returns true when the file/directory name should be included in the
returned array; otherwise, this method returns false.

 Tip Because each interface’s accept() method accomplishes the same task, you might be wondering which
interface to use. If you prefer a path broken into its directory and name components, use FilenameFilter.
However, if you prefer a complete pathname, use FileFilter; you can always call getParent() and getName()
to get these components.

File also declares several methods for creating files and manipulating existing files. Table 8-4
describes these methods.

Table 8-4. File Methods for Creating Files and Manipulating Existing Files

Method Description

boolean createNewFile() Atomically create a new, empty file named by this
File object’s abstract pathname if and only if a file
with this name does not yet exist. The check for file
existence and the creation of the file when it doesn’t
exist are a single operation that’s atomic with respect

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 8 INTERACTING WITH FILESYSTEMS

522

to all other filesystem activities that might affect the
file. This method returns true when the named file
doesn’t exist and was successfully created, and
returns false when the named file already exists. It
throws IOException when an I/O error occurs.

static File createTempFile(String
prefix, String suffix)

Create an empty file in the default temporary file
directory using the given prefix and suffix to
generate its name. This overloaded class method
calls its three-parameter variant, passing prefix,
suffix, and null to this other method, and returning
this other method’s return value.

static File createTempFile(String
prefix, String suffix, File
directory)

Create an empty file in the specified directory using
the given prefix and suffix to generate its name.
The name begins with the character sequence
specified by prefix and ends with the character
sequence specified by suffix; “.tmp” is used as the
suffix when suffix is null. This method returns the
created file’s pathname when successful. It throws
java.lang.IllegalArgumentException when prefix
contains fewer than three characters, and
IOException when the file couldn’t be created.

boolean delete() Delete the file or directory denoted by this File
object’s abstract pathname. Return true when
successful; otherwise, return false. If the pathname
denotes a directory, the directory must be empty in
order to be deleted.

void deleteOnExit() Request that the file or directory denoted by this File
object’s abstract pathname be deleted when the JVM
terminates. Reinvoking this method on the same
File object has no effect. Once deletion has been
requested, it’s not possible to cancel the request.
Therefore, this method should be used with care.

boolean mkdir() Create the directory named by this File object’s
abstract pathname. Return true when successful;
otherwise, return false.

boolean mkdirs() Create the directory and any necessary intermediate
directories named by this File object’s abstract
pathname. Return true when successful; otherwise,
return false.

boolean renameTo(File dest) Rename the file denoted by this File object’s abstract
pathname to dest. Return true when successful;
otherwise, return false. This method throws

CHAPTER 8 INTERACTING WITH FILESYSTEMS

523

NullPointerException when dest is null.

Many aspects of this method’s behavior are platform
dependent. For example, the rename operation
might not be able to move a file from one filesystem
to another, the operation might not be atomic, or it
might not succeed when a file with the destination
pathname already exists. The return value should
always be checked to make sure that the rename
operation was successful.

boolean setLastModified(long time) Set the last-modified time of the file or directory
named by this File object’s abstract pathname.
Return true when successful; otherwise, return false.
This method throws IllegalArgumentException when
time is negative.

All platforms support file-modification times to the
nearest second, but some provide more precision.
The time value will be truncated to fit the supported
precision. If the operation succeeds and no
intervening operations on the file take place, the next
call to lastModified() will return the (possibly
truncated) time value passed to this method.

boolean setReadOnly() Mark the file or directory denoted by this File
object’s abstract pathname so that only read
operations are allowed. After calling this method, the
file or directory is guaranteed not to change until it’s
deleted or marked to allow write access. Whether or
not a read-only file or directory can be deleted
depends upon the filesystem.

Suppose you’re designing a text-editor application that a user will use to open a text file and make

changes to its content. Until the user explicitly saves these changes to the file, you want the text file to
remain unchanged.

Because the user doesn’t want to lose these changes when the application crashes or the computer
loses power, you design the application to save these changes to a temporary file every few minutes. This
way, the user has a backup of the changes.

You can use the overloaded createTempFile() methods to create the temporary file. If you don’t
specify a directory in which to store this file, it’s created in the directory identified by the java.io.tmpdir
system property.

You probably want to remove the temporary file after the user tells the application to save or discard
the changes. The deleteOnExit() method lets you register a temporary file for deletion; it’s deleted when
the JVM ends without a crash/power loss.

Listing 8-5 presents a TempFileDemo application that lets you experiment with the createTempFile()
and deleteOnExit() methods.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

524

Listing 8-5. Experimenting with temporary files

import java.io.File;
import java.io.IOException;

class TempFileDemo
{
 public static void main(String[] args) throws IOException
 {
 System.out.println(System.getProperty("java.io.tmpdir"));
 File temp = File.createTempFile("text", ".txt");
 System.out.println(temp);
 temp.deleteOnExit();
 }
}

After outputting the location where temporary files are stored, TempFileDemo creates a temporary file
whose name begins with text and has extension .txt. TempFileDemo next outputs the temporary file’s
name and registers the temporary file for deletion upon the successful termination of the application.

I observed the following output during one run of TempFileDemo (and the file disappeared on exit):

C:\DOCUME~1\JEFFFR~1\LOCALS~1\Temp\
C:\DOCUME~1\JEFFFR~1\LOCALS~1\Temp\text3436502412322813057.txt

■ Note Java 6 added to File new boolean setExecutable(boolean executable), boolean
setExecutable(boolean executable, boolean ownerOnly), boolean setReadable(boolean readable),
boolean setReadable(boolean readable, boolean ownerOnly), boolean setWritable(boolean
writable), and boolean setWritable(boolean writable, boolean ownerOnly) methods that let you set the
owner’s or everybody’s execute, read, and write permissions (respectively) for the file identified by the File
object’s abstract pathname.

Finally, File implements the java.lang.Comparable interface’s compareTo() method, and overrides
equals() and hashCode(). Table 8-5 describes these miscellaneous methods.

Table 8-5. File’s Miscellaneous Methods

Method Description

int compareTo(File pathname) Compare two pathnames lexicographically. The ordering
defined by this method depends upon the underlying
platform. On Unix/Linux platforms, alphabetic case is
significant when comparing pathnames; on Windows
platforms, alphabetic case is insignificant. Return zero when
pathname’s abstract pathname equals this File object’s
abstract pathname, a negative value when this File object’s

CHAPTER 8 INTERACTING WITH FILESYSTEMS

525

pathname is less than pathname, and a positive value
otherwise. To accurately compare two File objects, call
getCanonicalFile() on each File object and then compare
the returned File objects.

boolean equals(Object obj) Compare this File object with obj for equality. Abstract
pathname equality depends upon the underlying platform.
On Unix/Linux platforms, alphabetic case is significant
when comparing pathnames; on Windows platforms,
alphabetic case is not significant. Return true if and only if
obj is not null and is a File object whose abstract pathname
denotes the same file/directory as this File object’s abstract
pathname.

int hashCode() Calculate and return a hash code for this abstract pathname.
This calculation depends upon the underlying platform. On
Unix/Linux platforms, a pathname’s hash code is the
exclusive OR of its pathname string’s hash code and decimal
value 1234321. On Windows platforms, the hash code is the
exclusive OR of the lowercased pathname string’s hash code
and decimal value 1234321. The current locale (discussed in
Appendix C) is not taken into account when lowercasing the
pathname string.

RandomAccessFile
Files can be created and/or opened for random access in which write and read operations can occur until
the file is closed. Java supports this random access via its concrete java.io.RandomAccessFile class.

RandomAccessFile declares the following constructors:

• RandomAccessFile(File file, String mode) creates and opens a new file if it
doesn’t exist, or opens an existing file. The file is identified by file’s abstract
pathname and is created and/or opened according to mode.

• RandomAccessFile(String pathname, String mode) creates and opens a new file if
it doesn’t exist, or opens an existing file. The file is identified by pathname and is
created and/or opened according to mode.

Either constructor’s mode argument must be one of "r", "rw", "rws", or "rwd"; otherwise, the
constructor throws IllegalArgumentException. These string literals have the following meanings:

• "r" informs the constructor to open an existing file for reading only. Any attempt
to write to the file results in a thrown instance of the IOException class.

• "rw" informs the constructor to create and open a new file when it doesn’t exist
for reading and writing, or open an existing file for reading and writing.

• "rwd" informs the constructor to create and open a new file when it doesn’t exist
for reading and writing, or open an existing file for reading and writing.
Furthermore, each update to the file’s content must be written synchronously to
the underlying storage device.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

526

• "rws" informs the constructor to create and open a new file when it doesn’t exist
for reading and writing, or open an existing file for reading and writing.
Furthermore, each update to the file’s content or metadata must be written
synchronously to the underlying storage device.

 Note A file’s metadata is data about the file and not actual file contents. Examples of metadata include the file’s
length and the time the file was last modified.

The "rwd" and "rws" modes ensure than any writes to a file located on a local storage device are
written to the device, which guarantees that critical data isn’t lost when the operating system crashes.
No guarantee is made when the file doesn’t reside on a local device.

 Note Operations on a random access file opened in "rwd" or "rws" mode are slower than these same
operations on a random access file opened in "rw" mode.

These constructors throw FileNotFoundException when mode is "r" and the file identified by
pathname cannot be opened (it might not exist or it might be a directory), or when mode is "rw" and
pathname is read-only or a directory.

The following example demonstrates the second constructor by attempting to open an existing
random access file via the "r" mode string:

RandomAccessFile raf = new RandomAccessFile("employee.dat", "r");

A random access file is associated with a file pointer, a cursor that identifies the location of the next
byte to write or read. When an existing file is opened, the file pointer is set to its first byte, at offset 0. The
file pointer is also set to 0 when the file is created.

Write and read operations start at the file pointer and advance it past the number of bytes written or
read. Operations that write past the current end of the file cause the file to be extended. These
operations continue until the file is closed.

RandomAccessFile declares a wide variety of methods. I present a representative sample of these
methods in Table 8-6.

Table 8-6. RandomAccessFile Methods

Method Description

void close() Close the file and release any associated platform resources.
Subsequent writes or reads result in IOException. Also, the
file cannot be reopened with this RandomAccessFile object.
This method throws IOException when an I/O error occurs.

FileDescriptor getFD() Return the file’s associated file descriptor object. This

CHAPTER 8 INTERACTING WITH FILESYSTEMS

527

method throws IOException when an I/O error occurs.

long getFilePointer() Return the file pointer’s current zero-based byte offset into
the file. This method throws IOException when an I/O error
occurs.

long length() Return the length (measured in bytes) of the file. This
method throws IOException when an I/O error occurs.

int read() Read and return (as an int in the range 0 to 255) the next
byte from the file, or return -1 when the end of the file is
reached. This method blocks when no input is available, and
throws IOException when an I/O error occurs.

int read(byte[] b) Read up to b.length bytes of data from the file into byte
array b. This method blocks until at least one byte of input is
available. It returns the number of bytes read into the array,
or returns -1 when the end of the file is reached. It throws
NullPointerException when b is null, and IOException when
an I/O error occurs.

char readChar() Read and return a character from the file. This method reads
two bytes from the file starting at the current file pointer. If
the bytes read, in order, are b1 and b2, where 0 <= b1, b2 <=
255, the result is equal to (char) ((b1<<8)|b2). This method
blocks until the two bytes are read, the end of the file is
detected, or an exception is thrown. It throws
java.io.EOFException (a subclass of IOException) when the
end of the file is reached before reading both bytes, and
IOException when an I/O error occurs.

int readInt() Read and return a signed 32-bit integer from the file. This
method reads four bytes from the file starting at the current
file pointer. If the bytes read, in order, are b1, b2, b3, and b4,
where 0 <= b1, b2, b3, b4 <= 255, the result is equal to
(b1<<24)|(b2<<16)+(b3<<8)+b4. This method blocks until the
four bytes are read, the end of the file is detected, or an
exception is thrown. It throws EOFException when the end of
the file is reached before reading all four bytes, and
IOException when an I/O error occurs.

void seek(long pos) Set the file pointer’s current offset to pos (which is measured
in bytes from the beginning of the file). When the offset is set
beyond the end of the file, the file’s length doesn’t change.
The file length will only change by writing after the offset has
been set beyond the end of the file. This method throws
IOException when the value in pos is negative, or when an
I/O error occurs.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

528

void setLength(long
newLength)

Set the file’s length. If the present length as returned by
length() is greater than newLength, the file is truncated. In
this case, if the file offset as returned by getFilePointer() is
greater than newLength, the offset will be equal to newLength
after setLength() returns. If the present length is smaller
than newLength, the file is extended. In this case, the contents
of the extended portion of the file are not defined. This
method throws IOException when an I/O error occurs.

int skipBytes(int n) Attempt to skip over n bytes. This method skips over a
smaller number of bytes (possibly zero) when the end of file
is reached before n bytes have been skipped. It doesn’t throw
EOFException in this situation. When n is negative, no bytes
are skipped. The actual number of bytes skipped is returned.
This method throws IOException when an I/O error occurs.

void write(byte[] b) Write b.length bytes from byte array b to the file starting at
the current file pointer position. This method throws
IOException when an I/O error occurs.

void write(int b) Write the lower eight bits of b to the file at the current file
pointer position. This method throws IOException when an
I/O error occurs.

void writeChars(String s) Write string s to the file as a sequence of characters starting
at the current file pointer position. This method throws
IOException when an I/O error occurs.

void writeInt(int i) Write 32-bit integer i to the file starting at the current file
pointer position. The four bytes are written with the high
byte first. This method throws IOException when an I/O
error occurs.

Most of Table 8-6’s methods are fairly self-explanatory. However, the getFD() method requires

further enlightenment.

 Note RandomAccessFile’s read-prefixed methods and skipBytes() originate in the java.io.DataInput
interface, which this class implements. Furthermore, RandomAccessFile’s write-prefixed methods originate in
the java.io.DataOutput interface, which this class also implements.

When a file is opened, the underlying platform creates a platform-dependent structure to represent
the file. A handle to this structure is stored in an instance of the java.io.FileDescriptor class, which
getFD() returns.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

529

 Note A handle is an identifier that Java passes to the underlying platform to identify, in this case, a specific
open file when it requires that the underlying platform perform a file operation.

FileDescriptor is a small class that declares three FileDescriptor constants named in, out, and err.
These constants let System.in, System.out, and System.err provide access to the standard input,
standard output, and standard error streams.

FileDescriptor also declares a pair of methods:

• void sync() tells the underlying platform to flush (empty) the contents of the
open file’s output buffers to their associated local disk device. sync() returns after
all modified data and attributes have been written to the relevant device. It throws
java.io.SyncFailedException when the buffers cannot be flushed, or because the
platform cannot guarantee that all the buffers have been synchronized with
physical media.

• boolean valid() determines whether or not this file descriptor object is valid. It
returns true when the file descriptor object represents an open file or other active
I/O connection; otherwise, it returns false.

Data that is written to an open file ends up being stored in the underlying platform’s output buffers.
When the buffers fill to capacity, the platform empties them to the disk. Buffers improve performance
because disk access is slow.

However, when you write data to a random access file that’s been opened via mode "rwd" or "rws",
each write operation’s data is written straight to the disk. As a result, write operations are slower than
when the random access file was opened in "rw" mode.

Suppose you have a situation that combines writing data through the output buffers and writing
data directly to the disk. The following example addresses this hybrid scenario by opening the file in
mode "rw" and selectively calling FileDescriptor’s sync() method:

RandomAccessFile raf = new RandomAccessFile("employee.dat", "rw");
FileDescriptor fd = raf.getFD();
// Perform a critical write operation.
raf.write(...);
// Synchronize with underlying disk by flushing platform's output buffers to disk.
fd.sync();
// Perform non-critical write operation where synchronization is not necessary.
raf.write(...);
// Do other work.
// Close file, emptying output buffers to disk.
raf.close();

RandomAccessFile is useful for creating a flat file database, a single file organized into records and
fields. A record stores a single entry (e.g., a part in a parts database) and a field stores a single attribute of
the entry (e.g., a part number).

A flat file database typically organizes its content into a sequence of fixed-length records. Each
record is further organized into one or more fixed-length fields. Figure 8-1 illustrates this concept in the
context of a parts database.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

530

Figure 8-1. This flat file database describes automotive parts.

According to Figure 8-1, each field has a name (partnum, desc, qty, and ucost). Also, each record is
assigned a number starting at 0. This example consists of five records, of which only three are shown for
brevity.

 Note The term field is also used to refer to a variable declared within a class. To avoid confusion with this
overloaded terminology, think of a field variable as being analogous to a record’s field attribute.

To show you how to implement a flat file database in terms of RandomAccessFile, I’ve created a
simple PartsDB class to model Figure 8-1. Check out Listing 8-6.

Listing 8-6. Implementing the parts flat file database

import java.io.Closeable;
import java.io.IOException;
import java.io.RandomAccessFile;

class PartsDB implements Closeable
{
 final static int PNUMLEN = 20;
 final static int DESCLEN = 30;
 final static int QUANLEN = 4;
 final static int COSTLEN = 4;
 private final static int RECLEN = 2*PNUMLEN+2*DESCLEN+QUANLEN+COSTLEN;
 private RandomAccessFile raf;
 PartsDB(String pathname) throws IOException
 {
 raf = new RandomAccessFile(pathname, "rw");
 }
 void append(String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {

CHAPTER 8 INTERACTING WITH FILESYSTEMS

531

 raf.seek(raf.length());
 write(partnum, partdesc, qty, ucost);
 }
 @Override
 public void close() throws IOException
 {
// throw new IOException("cannot close raf");
 raf.close();
 }
 int numRecs() throws IOException
 {
 return (int) raf.length()/RECLEN;
 }
 Part select(int recno) throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno+" out of range");
 raf.seek(recno*RECLEN);
 return read();
 }
 void update(int recno, String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno+" out of range");
 raf.seek(recno*RECLEN);
 write(partnum, partdesc, qty, ucost);
 }
 private Part read() throws IOException
 {
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < PNUMLEN; i++)
 sb.append(raf.readChar());
 String partnum = sb.toString().trim();
 sb.setLength(0);
 for (int i = 0; i < DESCLEN; i++)
 sb.append(raf.readChar());
 String partdesc = sb.toString().trim();
 int qty = raf.readInt();
 int ucost = raf.readInt();
 return new Part(partnum, partdesc, qty, ucost);
 }
 private void write(String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {
 StringBuffer sb = new StringBuffer(partnum);
 if (sb.length() > PNUMLEN)
 sb.setLength(PNUMLEN);
 else
 if (sb.length() < PNUMLEN)
 {
 int len = PNUMLEN-sb.length();

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 8 INTERACTING WITH FILESYSTEMS

532

 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 sb = new StringBuffer(partdesc);
 if (sb.length() > DESCLEN)
 sb.setLength(DESCLEN);
 else
 if (sb.length() < DESCLEN)
 {
 int len = DESCLEN-sb.length();
 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 raf.writeInt(qty);
 raf.writeInt(ucost);
 }
 static class Part
 {
 private String partnum;
 private String desc;
 private int qty;
 private int ucost;
 Part(String partnum, String desc, int qty, int ucost)
 {
 this.partnum = partnum;
 this.desc = desc;
 this.qty = qty;
 this.ucost = ucost;
 }
 String getDesc()
 {
 return desc;
 }
 String getPartnum()
 {
 return partnum;
 }
 int getQty()
 {
 return qty;
 }
 int getUnitCost()
 {
 return ucost;
 }
 }
}

Listing 8-6’s PartsDB class implements the java.io.Closeable interface so that it can be used in the
context of the try-with-resources statement (see Chapter 3). I could have chosen to implement

CHAPTER 8 INTERACTING WITH FILESYSTEMS

533

Closeable’s java.lang.AutoCloseable superinterface, but chose Closeable instead because its close()
method is declared to throw IOException.

PartsDB declares constants that identify the lengths of the string and 32-bit integer fields. It then
declares a constant that calculates the record length in terms of bytes. The calculation takes into account
the fact that a character occupies two bytes in the file.

These constants are followed by a field named raf that’s of type RandomAccessFile. This field is
assigned an instance of the RandomAccessFile class in the subsequent constructor, which creates/opens
a new file or opens an existing file because of "rw".

PartsDB next declares append(), close(), numRecs(), select(), and update(). These methods append
a record to the file, close the file, return the number of records in the file, select and return a specific
record, and update a specific record:

• The append() method first calls length() and seek(). Doing so ensures that the file
pointer is positioned to the end of the file before calling the private write()
method to write a record containing this method’s arguments.

• The close() method is declared public because it’s inherited from Closeable and
interface methods are public—you cannot make an overriding method less
accessible. This method is also declared to throw IOException because
RandomAccessFile’s close() method can throw IOException. Because this is a rare
occurrence, I’ve commented out a throw statement that you can use to
experiment with suppressed exceptions—I’ll show you how to do so when I
present UsePartsDB.

• The numRecs() method returns the number of records in the file. These records are
numbered starting with 0 and ending with numRecs()-1. Each of the select() and
update() methods verifies that its recno argument lies within this range.

• The select() method calls the private read() method to return the record
identified by recno as an instance of the Part static member class. Part’s
constructor initializes a Part object to a record’s field values, and its getter
methods return these values.

• The update() method is equally simple. As with select(), it first positions the file
pointer to the start of the record identified by recno. As with append(), it calls
write() to write out its arguments, but replaces a record instead of adding one.

Records are written via the private write() method. Because fields must have exact sizes, write()
pads String-based values that are shorter than a field size with spaces on the right, and truncates these
values to the field size when needed.

Records are read via the private read() method. read() removes the padding before saving a String-
based field value in the Part object.

By itself, PartsDB is useless. We need an application that lets us experiment with this class, and
Listing 8-7 fulfills this requirement.

Listing 8-7. Experimenting with the parts flat file database

import java.io.IOException;

class UsePartsDB
{
 public static void main(String[] args)

CHAPTER 8 INTERACTING WITH FILESYSTEMS

534

 {
 try (PartsDB pdb = new PartsDB("parts.db"))
 {
 if (pdb.numRecs() == 0)
 {
 // Populate the database with records.
 pdb.append("1-9009-3323-4x", "Wiper Blade Micro Edge", 30, 2468);
 pdb.append("1-3233-44923-7j", "Parking Brake Cable", 5, 1439);
 pdb.append("2-3399-6693-2m", "Halogen Bulb H4 55/60W", 22, 813);
 pdb.append("2-599-2029-6k", "Turbo Oil Line O-Ring ", 26, 155);
 pdb.append("3-1299-3299-9u", "Air Pump Electric", 9, 20200);
 }
 dumpRecords(pdb);
 pdb.update(1, "1-3233-44923-7j", "Parking Brake Cable", 5, 1995);
 dumpRecords(pdb);
// throw new IOException("I/O error");
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 if (ioe.getSuppressed().length == 1)
 System.err.println("Suppressed = "+ioe.getSuppressed()[0]);
 }
 }
 static void dumpRecords(PartsDB pdb) throws IOException
 {
 for (int i = 0; i < pdb.numRecs(); i++)
 {
 PartsDB.Part part = pdb.select(i);
 System.out.print(format(part.getPartnum(), PartsDB.PNUMLEN, true));
 System.out.print(" | ");
 System.out.print(format(part.getDesc(), PartsDB.DESCLEN, true));
 System.out.print(" | ");
 System.out.print(format(""+part.getQty(), 10, false));
 System.out.print(" | ");
 String s = part.getUnitCost()/100+"."+part.getUnitCost()%100;
 if (s.charAt(s.length()-2) == '.') s += "0";
 System.out.println(format(s, 10, false));
 }
 System.out.println("Number of records = "+pdb.numRecs());
 System.out.println();
 }
 static String format(String value, int maxWidth, boolean leftAlign)
 {
 StringBuffer sb = new StringBuffer();
 int len = value.length();
 if (len > maxWidth)
 {
 len = maxWidth;
 value = value.substring(0, len);
 }
 if (leftAlign)

CHAPTER 8 INTERACTING WITH FILESYSTEMS

535

 {
 sb.append(value);
 for (int i = 0; i < maxWidth-len; i++)
 sb.append(" ");
 }
 else
 {
 for (int i = 0; i < maxWidth-len; i++)
 sb.append(" ");
 sb.append(value);
 }
 return sb.toString();
 }
}

Listing 8-7’s main() method first instantiates PartsDB with parts.db as the name of the database file.
When this file has no records, numRecs() returns 0 and several records are appended to the file via the
append() method.

main() next dumps the five records stored in parts.db to the standard output device, updates the
unit cost in the record whose number is 1, once again dumps these records to the standard output
device to show this change, and closes the database.

 Note I store unit cost values as integer-based penny amounts. For example, I specify literal 1995 to represent
1995 pennies, or $19.95. If I were to use java.math.BigDecimal objects to store currency values, I would have to
refactor PartsDB to take advantage of object serialization, and I am not prepared to do that right now. (I discuss
object serialization later in this chapter.)

main() relies on a dumpRecords() helper method to dump these records, and dumpRecords() relies on
a format() helper method to format field values so that they can be presented in properly aligned
columns. The following output reveals this alignment:

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 14.39
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

Listing 8-7 relies on the try-with-resources statement to simplify the code—notice try (PartsDB pdb
= new PartsDB("parts.db")). To observe a suppressed exception, uncomment the throw statement in

CHAPTER 8 INTERACTING WITH FILESYSTEMS

536

Listing 8-6’s close() method (make sure to comment out raf.close(); in that method or the compiler
will complain about unreachable code), and uncomment the throw statement in Listing 8-7’s try block.
This time, when you run the application, you’ll notice the following two lines at the end of the output:

java.io.IOException: I/O error
Suppressed = java.io.IOException: cannot close raf

And there you have it: a simple flat file database. Despite its lack of support for advanced database
features such as transaction management, a flat file database might be all that your application requires.

 Note To learn more about flat file databases, check out Wikipedia’s “Flat file database” entry
(http://en.wikipedia.org/wiki/Flat_file_database).

Streams
Along with File and RandomAccessFile, Java uses streams to perform I/O operations. A stream is an
ordered sequence of bytes of arbitrary length. Bytes flow over an output stream from an application to a
destination, and flow over an input stream from a source to an application. Figure 8-2 illustrates these
flows.

Figure 8-2. Conceptualizing output and input streams as flows.

 Note Java’s use of stream is analogous to saying “stream of water”, “stream of electrons”, and so on.

Java recognizes various stream destinations; for example, byte arrays, files, screens, and sockets
(network endpoints). Java also recognizes various stream sources. Examples include byte arrays, files,
keyboards, and sockets. (I discuss sockets in Chapter 9.)

Stream Classes Overview
The java.io package provides several output stream and input stream classes that are descendents of
the abstract OutputStream and InputStream classes. Figure 8-3 reveals the hierarchy of output stream
classes.

http://en.wikipedia.org/wiki/Flat_file_database

CHAPTER 8 INTERACTING WITH FILESYSTEMS

537

Figure 8-3. All output stream classes except for PrintStream are denoted by their OutputStream suffixes.

Figure 8-4 reveals the hierarchy of input stream classes.

Figure 8-4. LineNumberInputStream and StringBufferInputStream are deprecated.

LineNumberInputStream and StringBufferInputStream have been deprecated because they don’t
support different character encodings, a topic I discuss later in this chapter. LineNumberReader and
StringReader are their replacements. (I discuss readers later in this chapter.)

 Note PrintStream is another class that should be deprecated because it doesn’t support different character
encodings; PrintWriter is its replacement. However, it’s doubtful that Oracle will deprecate this class because
PrintStream is the type of the System class’s out and err class fields; too much legacy code depends upon this
fact.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

538

Other Java packages provide additional output stream and input stream classes. For example,
java.util.zip provides five output stream classes that compress uncompressed data into various
formats, and five matching input stream classes that uncompress compressed data from the same
formats:

• CheckedOutputStream

• CheckedInputStream

• DeflaterOutputStream

• DeflaterInputStream

• GZIPOutputStream

• GZIPInputStream

• InflaterOutputStream

• InflaterInputStream

• ZipOutputStream

• ZipInputStream

For brevity, I focus only on the OutputStream, InputStream, FileOutputStream, FileInputStream,
FilterOutputStream, FilterInputStream, BufferedOutputStream, BufferedInputStream,
DataOutputStream, DataInputStream, ObjectOutputStream, ObjectInputStream, and PrintStream classes in
this chapter. Appendix C discusses additional stream classes.

OutputStream and InputStream
Java provides the OutputStream and InputStream classes for performing stream I/O. OutputStream is the
superclass of all output stream subclasses. Table 8-7 describes OutputStream’s methods.

Table 8-7. OutputStream Methods

Method Description

void close() Close this output stream and release any system resources
associated with the stream. This method throws IOException
when an I/O error occurs. (Because OutputStream
implements Closeable, you can use output streams with the
try-with-resources statement.)

void flush() Flush this output stream by writing any buffered output
bytes to the destination. If the intended destination of this
output stream is an abstraction provided by the underlying
platform (for example, a file), flushing the stream only
guarantees that bytes previously written to the stream are
passed to the underlying platform for writing; it doesn’t
guarantee that they’re actually written to a physical device
such as a disk drive. This method throws IOException when

CHAPTER 8 INTERACTING WITH FILESYSTEMS

539

an I/O error occurs.

void write(byte[] b) Write b.length bytes from byte array b to this output stream.
In general, write(b) behaves as if you specified write(b, 0,
b.length). This method throws NullPointerException when
b is null, and IOException when an I/O error occurs.

void write(byte[] b, int
off, int len)

Write len bytes from byte array b starting at offset off to this
output stream. This method throws NullPointerException
when b is null; java.lang.IndexOutOfBoundsException when
off is negative, len is negative, or off+len is greater than
b.length; and IOException when an I/O error occurs.

void write(int b) Write byte b to this output stream. Only the eight low-order
bits are written; the 24 high-order bits are ignored. This
method throws IOException when an I/O error occurs.

The flush() method is useful in a long-running application where you need to save changes every

so often; for example, the previously mentioned text-editor application that saves changes to a
temporary file every few minutes. Remember that flush() only flushes bytes to the platform; doing so
doesn’t necessarily result in the platform flushing these bytes to the disk.

 Note The close() method automatically flushes the output stream. When an application ends before close()
is called, the output stream is automatically closed and its data is flushed.

InputStream is the superclass of all input stream subclasses. Table 8-8 describes InputStream’s
methods.

Table 8-8. InputStream Methods

Method Description

int available() Return an estimate of the number of bytes that can be read
from this input stream via the next read() method call (or
skipped over via skip()) without blocking the calling thread.
This method throws IOException when an I/O error occurs.

It’s never correct to use this method’s return value to
allocate a buffer for holding all the stream’s data because a
subclass might not return the total size of the stream.

void close() Close this input stream and release any system resources
associated with the stream. This method throws IOException
when an I/O error occurs. (Because InputStream implements
Closeable, you can use input streams with the try-with-

CHAPTER 8 INTERACTING WITH FILESYSTEMS

540

resources statement.)

void mark(int readlimit) Mark the current position in this input stream. A subsequent
call to reset() repositions this stream to the last marked
position so that subsequent read operations reread the same
bytes. The readlimit argument tells this input stream to
allow that many bytes to be read before invalidating this
mark (so that the stream cannot be reset to the marked
position).

boolean markSupported() Return true when this input stream supports mark() and
reset(); otherwise, return false.

int read() Read and return (as an int in the range 0 to 255) the next
byte from this input stream, or return -1 when the end of the
stream is reached. This method blocks until input is
available, the end of the stream is detected, or an exception
is thrown. It throws IOException when an I/O error occurs.

int read(byte[] b) Read some number of bytes from this input stream and store
them in byte array b. Return the number of bytes actually
read (which might be less than b’s length but is never more
than this length), or return -1 when the end of the stream is
reached (no byte is available to read). This method blocks
until input is available, the end of the stream is detected, or
an exception is thrown. It throws NullPointerException
when b is null, and IOException when an I/O error occurs.

int read(byte[] b, int off,
int len)

Read no more than len bytes from this input stream and
store them in byte array b, starting at the offset specified by
off. Return the number of bytes actually read (which might
be less than len but is never more than len), or return -1
when the end of the stream is reached (no byte is available to
read). This method blocks until input is available, the end of
the stream is detected, or an exception is thrown. It throws
NullPointerException when b is null;
IndexOutOfBoundsException when off is negative, len is
negative, or len is greater than b.length-off; and
IOException when an I/O error occurs.

void reset() Reposition this input stream to the position at the time
mark() was last called. This method throws IOException
when this input stream has not been marked or the mark has
been invalidated.

long skip(long n) Skip over and discard n bytes of data from this input stream.
This method might skip over some smaller number of bytes
(possibly zero); for example, when the end of the file is
reached before n bytes have been skipped. The actual

CHAPTER 8 INTERACTING WITH FILESYSTEMS

541

number of bytes skipped is returned. When n is negative, no
bytes are skipped. This method throws IOException when
this input stream doesn’t support skipping or when some
other I/O error occurs.

InputStream subclasses such as ByteArrayInputStream support marking the current read position in

the input stream via the mark() method, and later return to that position via the reset() method.

 Caution Don’t forget to call markSupported() to find out if the stream subclass supports mark() and reset().

FileOutputStream and FileInputStream
Files are common stream destinations and sources. The concrete FileOutputStream class lets you write a
stream of bytes to a file; the concrete FileInputStream class lets you read a stream of bytes from a file.

FileOutputStream subclasses OutputStream and declares five constructors for creating file output
streams. For example, FileOutputStream(String name) creates a file output stream to the existing file
identified by name. This constructor throws FileNotFoundException when the file doesn’t exist and
cannot be created, it is a directory rather than a normal file, or the file cannot be otherwise opened for
output.

The following example uses FileOutputStream(String name) to create a file output stream with
employee.dat as its destination:

FileOutputStream fos = new FileOutputStream("employee.dat");

 Tip FileOutputStream(String name) overwrites an existing file. To append data instead of overwriting
existing content, call a FileOutputStream constructor that includes a boolean append parameter and pass true
to this parameter.

FileInputStream subclasses InputStream and declares three constructors for creating file input
streams. For example, FileInputStream(String name) creates a file input stream from the existing file
identified by name. This constructor throws FileNotFoundException when the file doesn’t exist, it is a
directory rather than a normal file, or there is some other reason for why the file cannot be opened for
input.

The following example uses FileInputStream(String name) to create a file input stream with
employee.dat as its source:

FileInputStream fis = new FileInputStream("employee.dat");

Listing 8-8 presents the source code to a DumpFileInHex application that uses FileOutputStream and
FileInputStream to create a file that contains a hexadecimal representation of another file.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 8 INTERACTING WITH FILESYSTEMS

542

Listing 8-8. Creating a hexadecimal representation of a file

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

class DumpFileInHex
{
 final static String LINE_SEPARATOR = System.getProperty("line.separator");
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DumpFileInHex pathname");
 return;
 }
 String dest = args[0]+".hex";
 try (FileInputStream fis = new FileInputStream(args[0]);
 FileOutputStream fos = new FileOutputStream(dest))
 {
 StringBuffer sb = new StringBuffer();
 int offset = 0;
 int ch;
 while ((ch = fis.read()) != -1)
 {
 if ((offset%16) == 0)
 {
 writeStr(fos, toHexStr(offset, 8));
 fos.write(' ');
 }
 writeStr(fos, toHexStr(ch, 2));
 fos.write(' ');
 if (ch < 32 || ch > 127)
 sb.append('.');
 else
 sb.append((char) ch);
 if ((++offset%16) == 0)
 {
 writeStr(fos, sb.toString()+LINE_SEPARATOR);
 sb.setLength(0);
 }
 }
 if (sb.length() != 0)
 {
 for (int i = 0; i < 16-sb.length(); i++)
 writeStr(fos, " ");
 writeStr(fos, sb.toString()+LINE_SEPARATOR);
 }
 }
 catch (IOException ioe)
 {

CHAPTER 8 INTERACTING WITH FILESYSTEMS

543

 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
 static String toHexStr(int value, int fieldWidth)
 {
 StringBuffer sb = new StringBuffer(Integer.toHexString(value));
 sb.reverse();
 int len = sb.length();
 for (int i = 0; i < fieldWidth-len; i++)
 sb.append('0');
 sb.reverse();
 return sb.toString();
 }
 static void writeStr(FileOutputStream fos, String s) throws IOException
 {
 for (int i = 0; i < s.length(); i++)
 fos.write(s.charAt(i));
 }
}

Listing 8-8’s DumpFileInHex class first declares a LINE_SEPARATOR constant that contains the value of
the line.separator system property. This constant’s value is output to end the current text line and start
a new text line. Because different platforms provide different line separators (e.g., newline on
Unix/Linux or carriage return followed by newline on Windows), outputting LINE_SEPARATOR ensures
maximum portability.

DumpFileInHex next presents its main() method, whose first task is to ensure that only a single
command-line argument (identifying the input file) has been specified. Assuming that this is the case,
main() next creates the name of the output file by appending .hex to the value of the command-line
argument.

Continuing, main() presents a try-with-resources statement that initially opens the input file and
creates the output file. The try block then employs a while loop to read each byte from the input file and
write that byte’s hexadecimal representation and literal value to the output file, with the help of
toHexStr() and writeStr() methods:

• toHexStr() ensures that leading zeros are prepended to a hexadecimal value string
to fit a field width. For example, if a hexadecimal value must occupy exactly eight
field positions, and if its length is less than 8, leading 0s are prepended to the
string. (Although Java provides the java.util.Formatter class to handle this task,
toHexStr() will have to suffice for now because I don’t discuss Formatter until
Appendix C.)

• writeStr() writes a string of 8-bit characters to the file output stream. Ordinarily,
you would not create such a method because it ignores different character sets
(discussed later in this chapter). However, character sets are not an issue with this
example.

After compiling this listing (javac DumpFileInHex.java), suppose you want to create a hexadecimal
representation of the resulting DumpFileInHex.class file. You can accomplish this task by executing java
DumpFileInHex DumpFileInHex.class. If all goes well, this command line creates a
DumpFileInHex.class.hex file. The first part of this file is shown below:

00000000 ca fe ba be 00 00 00 33 00 88 0a 00 29 00 42 093....).B.
00000010 00 43 00 44 08 00 45 0a 00 46 00 47 07 00 48 0a .C.D..E..F.G..H.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

544

00000020 00 05 00 42 0a 00 05 00 49 08 00 4a 0a 00 05 00 ...B....I..J....
00000030 4b 07 00 4c 0a 00 0a 00 4d 07 00 4e 0a 00 0c 00 K..L....M..N....
00000040 4d 07 00 4f 0a 00 0e 00 42 0a 00 0a 00 50 0a 00 M..O....B....P..
00000050 28 00 51 0a 00 28 00 52 0a 00 0c 00 53 0a 00 0e (.Q..(.R....S...
00000060 00 54 0a 00 0e 00 4b 09 00 28 00 55 0a 00 0e 00 .T....K..(.U....
00000070 56 0a 00 0e 00 57 08 00 58 0a 00 0c 00 59 07 00 V....W..X....Y..
00000080 5a 0a 00 1b 00 5b 0a 00 0a 00 59 07 00 5c 08 00 Z....[....Y..\..
00000090 5d 0a 00 1e 00 5e 0a 00 5f 00 60 0a 00 0e 00 4d]....^.._.`....M
000000a0 0a 00 0e 00 61 0a 00 62 00 57 0a 00 62 00 63 08a..b.W..b.c.
000000b0 00 64 0a 00 43 00 65 07 00 66 07 00 67 01 00 0e .d..C.e..f..g...
000000c0 4c 49 4e 45 5f 53 45 50 41 52 41 54 4f 52 01 00 LINE_SEPARATOR..
000000d0 12 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 .Ljava/lang/Stri
000000e0 6e 67 3b 01 00 06 3c 69 6e 69 74 3e 01 00 03 28 ng;...<init>...(
000000f0 29 56 01 00 04 43 6f 64 65 01 00 0f 4c 69 6e 65)V...Code...Line

FilterOutputStream and FilterInputStream
File streams pass bytes unchanged to their destinations. Java also supports filter streams that buffer,
compress/uncompress, encrypt/decrypt, or otherwise manipulate an input stream’s byte sequence
before it reaches its destination.

A filter output stream takes the data passed to its write() methods (the input stream), filters it, and
writes the filtered data to an underlying output stream, which might be another filter output stream or a
destination output stream such as a file output stream.

Filter output streams are created from subclasses of the concrete FilterOutputStream class, an
OutputStream subclass. FilterOutputStream declares a single FilterOutputStream(OutputStream out)
constructor that creates a filter output stream built on top of out, the underlying output stream.

Listing 8-9 reveals that it’s easy to subclass FilterOutputStream. At minimum, declare a constructor
that passes its OutputStream argument to FilterOutputStream’s constructor and override
FilterOutputStream’s void write(int b) method.

Listing 8-9. Scrambling a stream of bytes

import java.io.FilterOutputStream;
import java.io.IOException;
import java.io.OutputStream;

class ScrambledOutputStream extends FilterOutputStream
{
 private int[] map;
 ScrambledOutputStream(OutputStream out, int[] map)
 {
 super(out);
 if (map == null)
 throw new NullPointerException("map is null");
 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }
 @Override
 public void write(int b) throws IOException
 {

CHAPTER 8 INTERACTING WITH FILESYSTEMS

545

 out.write(map[b]);
 }
}

Listing 8-9 presents a ScrambledOutputStream class that performs trivial encryption on its input
stream by scrambling the input stream’s bytes via a remapping operation. Its constructor takes a pair of
arguments:

• out identifies the output stream on which to write the scrambled bytes.

• map identifies an array of 256 byte integer values to which input stream bytes map.

The constructor first passes its out argument to the FilterOutputStream parent via a super(out) call.
It then verifies its map argument’s integrity (map must be nonnull and have a length of 256—a byte stream
offers exactly 256 bytes to map) before saving map.

The write() method is trivial: it calls the underlying output stream’s write() method with the byte
to which argument b maps. FilterOutputStream declares out to be protected (for performance), which is
why I can directly access this field.

 Note It’s only essential to override write(int) because FilterOutputStream’s other two write() methods
are implemented in terms of this method.

Listing 8-10 presents the source code to a Scramble application for experimenting with scrambling a
source file’s bytes via ScrambledOutputStream and writing these scrambled bytes to a destination file.

Listing 8-10. Scrambling a file’s bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

class Scramble
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Scramble srcpath destpath");
 return;
 }
 try (FileInputStream fis = new FileInputStream(args[0]);
 ScrambledOutputStream sos =
 new ScrambledOutputStream(new FileOutputStream(args[1]),
 makeMap()))
 {
 int b;

z

CHAPTER 8 INTERACTING WITH FILESYSTEMS

546

 while ((b = fis.read()) != -1)
 sos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;
 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }
 return map;
 }
}

Scramble’s main() method first verifies the number of command-line arguments: the first argument
identifies the source path of the file with unscrambled content; the second argument identifies the
destination path of the file that stores scrambled content.

Assuming that two command-line arguments have been specified, main() instantiates
FileInputStream, creating a file input stream that’s connected to the file identified by args[0].

Continuing, main() instantiates FileOutputStream, creating a file output stream that’s connected to
the file identified by args[1]. It then instantiates ScrambledOutputStream, passing the FileOutputStream
instance to ScrambledOutputStream’s constructor.

 Note When a stream instance is passed to another stream class’s constructor, the two streams are chained
together. For example, the scrambled output stream is chained to the file output stream.

main() now enters a loop, reading bytes from the file input stream and writing them to the
scrambled output stream by calling ScrambledOutputStream’s void write(int b) method. This loop
continues until FileInputStream’s int read() method returns -1 (end of file).

The try-with-resources statement closes the file input stream and scrambled output stream by
calling their close() methods. It doesn’t call the file output stream’s close() method because
FilterOutputStream automatically calls the underlying output stream’s close() method.

The makeMap() method is responsible for creating the map array that’s passed to
ScrambledOutputStream’s constructor. The idea is to populate the array with all 256 byte integer values,
storing them in random order.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

547

 Note I pass 0 as the seed argument when creating the java.util.Random object in order to return a
predictable sequence of random numbers. I need to use the same sequence of random numbers when creating
the complementary map array in the Unscramble application, which I will present shortly. Unscrambling will not
work without the same sequence.

Suppose you have a simple 15-byte file named hello.txt that contains “Hello, World!” (followed
by a carriage return and a line feed). When you execute java Scramble hello.txt hello.out on an XP
platform, you’ll observe Figure 8-5’s scrambled output.

Figure 8-5. Different fonts yield different-looking scrambled output.

A filter input stream takes the data obtained from its underlying input stream, which might be
another filter input stream or a source input stream such as a file input stream, filters it, and makes this
data available via its read() methods (the output stream).

Filter input streams are created from subclasses of the concrete FilterInputStream class, an
InputStream subclass. FilterInputStream declares a single FilterInputStream(InputStream in)
constructor that creates a filter input stream built on top of in, the underlying input stream.

Listing 8-11 shows that it’s easy to subclass FilterInputStream. At minimum, declare a constructor
that passes its InputStream argument to FilterInputStream’s constructor and override
FilterInputStream’s int read() and int read(byte[] b, int off, int len) methods.

Listing 8-11. Unscrambling a stream of bytes

import java.io.FilterInputStream;
import java.io.InputStream;
import java.io.IOException;

class ScrambledInputStream extends FilterInputStream
{
 private int[] map;
 ScrambledInputStream(InputStream in, int[] map)
 {
 super(in);
 if (map == null)
 throw new NullPointerException("map is null");
 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }
 @Override
 public int read() throws IOException
 {

CHAPTER 8 INTERACTING WITH FILESYSTEMS

548

 int value = in.read();
 return (value == -1) ? -1 : map[value];
 }
 @Override
 public int read(byte[] b, int off, int len) throws IOException
 {
 int nBytes = in.read(b, off, len);
 if (nBytes <= 0)
 return nBytes;
 for (int i = 0; i < nBytes; i++)
 b[off+i] = (byte) map[off+i];
 return nBytes;
 }
}

Listing 8-11 presents a ScrambledInputStream class that performs trivial decryption on its underlying
input stream by unscrambling the underlying input stream’s scrambled bytes via a remapping
operation.

The read() method first reads the scrambled byte from its underlying input stream. If the returned
value is -1 (end of file), this value is returned to its caller. Otherwise, the byte is mapped to its
unscrambled value, which is returned.

The read(byte[], int, int) method is similar to read(), but stores bytes read from the underlying
input stream in a byte array, taking an offset into this array and a length (number of bytes to read) into
account.

Once again, -1 might be returned from the underlying read() method call. If so, this value must be
returned. Otherwise, each byte in the array is mapped to its unscrambled value, and the number of bytes
read is returned.

 Note It’s only essential to override read() and read(byte[], int, int) because FilterInputStream’s int
read(byte[] b) method is implemented via the latter method.

Listing 8-12 presents the source code to an UnScramble application for experimenting with
ScrambledInputStream by unscrambling a source file’s bytes and writing these unscrambled bytes to a
destination file.

Listing 8-12. Unscrambling a file’s bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

class Unscramble
{
 public static void main(String[] args)
 {

CHAPTER 8 INTERACTING WITH FILESYSTEMS

549

 if (args.length != 2)
 {
 System.err.println("usage: java Unscramble srcpath destpath");
 return;
 }
 try (FileOutputStream fos = new FileOutputStream(args[1]);
 ScrambledInputStream sis =
 new ScrambledInputStream(new FileInputStream(args[0]),
 makeMap()))

 {
 int b;
 while ((b = sis.read()) != -1)
 fos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;
 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }
 int[] temp = new int[256];
 for (int i = 0; i < temp.length; i++)
 temp[map[i]] = i;
 return temp;
 }
}

Unscramble’s main() method first verifies the number of command-line arguments: the first
argument identifies the source path of the file with scrambled content; the second argument identifies
the destination path of the file that stores unscrambled content.

Assuming that two command-line arguments have been specified, main() instantiates
FileOutputStream, creating a file output stream that’s connected to the file identified by args[1].

Continuing, main() instantiates FileInputStream, creating a file input stream that’s connected to the
file identified by args[0]. It then instantiates ScrambledInputStream, passing the FileInputStream
instance to ScrambledInputStream’s constructor.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

550

 Note When a stream instance is passed to another stream class’s constructor, the two streams are chained
together. For example, the scrambled input stream is chained to the file input stream.

main() now enters a loop, reading bytes from the scrambled input stream and writing them to the
file output stream. This loop continues until ScrambledInputStream’s read() method returns -1 (end of
file).

The try-with-resources statement closes the file output stream and scrambled input stream by
calling their close() methods. It doesn’t call the file input stream’s close() method because
FilterInputStream automatically calls the underlying input stream’s close() method.

The makeMap() method is responsible for creating the map array that’s passed to
ScrambledInputStream’s constructor. The idea is to duplicate Listing 8-10’s map array and then invert it
so that unscrambling can be performed.

Continuing from the previous hello.txt/hello.out example, execute java Unscramble hello.out
hello.bak and you’ll see the same unscrambled content in hello.bak that’s present in hello.txt.

BufferedOutputStream and BufferedInputStream
FileOutputStream and FileInputStream have a performance problem. Each file output stream write()
method call and file input stream read() method call results in a call to one of the underlying platform’s
native methods, and these native method calls slow down I/O. (I discuss native methods in Appendix C.)

The concrete BufferedOutputStream and BufferedInputStream filter stream classes improve
performance by minimizing underlying output stream write() and underlying input stream read()
method calls. Instead, calls to BufferedOutputStream’s write() and BufferedInputStream’s read()
methods take Java buffers into account:

• When a write buffer is full, write() calls the underlying output stream write()
method to empty the buffer. Subsequent calls to BufferedOutputStream’s write()
methods store bytes in this buffer until it’s once again full.

• When the read buffer is empty, read() calls the underlying input stream read()
method to fill the buffer. Subsequent calls to BufferedInputStream’s read()
methods return bytes from this buffer until it’s once again empty.

BufferedOutputStream declares the following constructors:

• BufferedOutputStream(OutputStream out) creates a buffered output stream that
streams its output to out. An internal buffer is created to store bytes written to out.

• BufferedOutputStream(OutputStream out, int size) creates a buffered output
stream that streams its output to out. An internal buffer of length size is created to
store bytes written to out.

The following example chains a BufferedOutputStream instance to a FileOutputStream instance.
Subsequent write() method calls on the BufferedOutputStream instance buffer bytes and occasionally
result in internal write() method calls on the encapsulated FileOutputStream instance:

FileOutputStream fos = new FileOutputStream("employee.dat");
BufferedOutputStream bos = new BufferedOutputStream(fos); // Chain bos to fos.
bos.write(0); // Write to employee.dat through the buffer.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

551

// Additional write() method calls.
bos.close(); // This method call internally calls fos's close() method.

BufferedInputStream declares the following constructors:

• BufferedInputStream(InputStream in) creates a buffered input stream that
streams its input from in. An internal buffer is created to store bytes read from in.

• BufferedInputStream(InputStream in, int size) creates a buffered input stream
that streams its input from in. An internal buffer of length size is created to store
bytes read from in.

The following example chains a BufferedInputStream instance to a FileInputStream instance.
Subsequent read() method calls on the BufferedInputStream instance unbuffer bytes and occasionally
result in internal read() method calls on the encapsulated FileInputStream instance:

FileInputStream fis = new FileInputStream("employee.dat");
BufferedInputStream bis = new BufferedInputStream(fis); // Chain bis to fis.
int ch = bis.read(); // Read employee.dat through the buffer.
// Additional read() method calls.
bis.close(); // This method call internally calls fis's close() method.

DataOutputStream and DataInputStream
FileOutputStream and FileInputStream are useful for writing and reading bytes and arrays of bytes.
However, they provide no support for writing and reading primitive type values (such as integers) and
strings.

For this reason, Java provides the concrete DataOutputStream and DataInputStream filter stream
classes. Each class overcomes this limitation by providing methods to write or read primitive type values
and strings in a platform-independent way:

• Integer values are written and read in big-endian format (the most significant byte
comes first). Check out Wikipedia’s “Endianness” entry
(http://en.wikipedia.org/wiki/Endianness) to learn about the concept of
endianness.

• Floating-point and double precision floating-point values are written and read
according to the IEEE 754 standard, which specifies four bytes per floating-point
value and eight bytes per double precision floating-point value.

• Strings are written and read according to a modified version of UTF-8, a variable-
length encoding standard for efficiently storing two-byte Unicode characters.
Check out Wikipedia’s “UTF-8” entry (http://en.wikipedia.org/wiki/Utf-8) to
learn more about UTF-8.

DataOutputStream declares a single DataOutputStream(OutputStream out) constructor. Because this
class implements the DataOutput interface, DataOutputStream also provides access to the same-named
write methods as provided by RandomAccessFile.

DataInputStream declares a single DataInputStream(InputStream in) constructor. Because this class
implements the DataInput interface, DataInputStream also provides access to the same-named read
methods as provided by RandomAccessFile.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Utf-8

CHAPTER 8 INTERACTING WITH FILESYSTEMS

552

Listing 8-13 presents the source code to a DataStreamsDemo application that uses a DataOutputStream
instance to write multibyte values to a FileOutputStream instance, and uses DataInputStream to read
multibyte values from a FileInputStream instance.

Listing 8-13. Outputting and then inputting a stream of multibyte values

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

class DataStreamsDemo
{
 final static String FILENAME = "values.dat";
 public static void main(String[] args)
 {
 try (DataOutputStream dos =
 new DataOutputStream(new FileOutputStream(FILENAME)))
 {
 dos.writeInt(1995);
 dos.writeUTF("Saving this String in modified UTF-8 format!");
 dos.writeFloat(1.0F);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 try (DataInputStream dis =
 new DataInputStream(new FileInputStream(FILENAME)))
 {
 System.out.println(dis.readInt());
 System.out.println(dis.readUTF());
 System.out.println(dis.readFloat());
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
}

DataStreamsDemo creates a file named values.dat, calls DataOutputStream methods to write an
integer, a string, and a floating-point value to this file, and calls DataInputStream methods to read back
these values. Unsurprisingly, it generates the following output:

1995
Saving this String in modified UTF-8 format!
1.0

CHAPTER 8 INTERACTING WITH FILESYSTEMS

553

 Caution When reading a file of values written by a sequence of DataOutputStream method calls, make sure to
use the same method-call sequence. Otherwise, you’re bound to end up with erroneous data and, in the case of
the readUTF() methods, thrown instances of the java.io.UTFDataFormatException class (a subclass of
IOException).

Object Serialization and Deserialization
Java provides the DataOutputStream and DataInputStream classes to stream primitive type values and
String objects. However, you cannot use these classes to stream non-String objects. Instead, you must
use object serialization and deserialization to stream objects of arbitrary types.

Object serialization is a JVM mechanism for serializing object state into a stream of bytes. Its
deserialization counterpart is a JVM mechanism for deserializing this state from a byte stream.

 Note An object’s state consists of instance fields that store primitive type values and/or references to other
objects. When an object is serialized, the objects that are part of this state are also serialized (unless you prevent
them from being serialized), their objects are serialized unless prevented, and so on.

Java supports three forms of serialization and deserialization: default serialization and
deserialization, custom serialization and deserialization, and externalization.

Default Serialization and Deserialization
Default serialization and deserialization is the easiest form to use but offers little control over how
objects are serialized and deserialized. Although Java handles most of the work on your behalf, there are
a couple of tasks that you must perform.

Your first task is to have the class of the object that’s to be serialized implement the
java.io.Serializable interface (directly, or indirectly via the class’s superclass). The rationale for
implementing Serializable is to avoid unlimited serialization.

 Note Serializable is an empty marker interface (there are no methods to implement) that a class implements
to tell the JVM that it’s okay to serialize the class’s objects. When the serialization mechanism encounters an
object whose class doesn’t implement Serializable, it throws an instance of the
java.io.NotSerializableException class (an indirect subclass of IOException).

CHAPTER 8 INTERACTING WITH FILESYSTEMS

554

Unlimited serialization is the process of serializing an entire object graph (all objects that are
reachable from a starting object). Java doesn’t support unlimited serialization for the following reasons:

• Security: If Java automatically serialized an object containing sensitive
information (such as a password or a credit card number), it would be easy for a
hacker to discover this information and wreak havoc. It’s better to give the
developer a choice to prevent this from happening.

• Performance: Serialization leverages the Reflection API, which I introduced in
Chapter 4. In that chapter, you learned that reflection slows down application
performance. Unlimited serialization could really hurt an application’s
performance.

• Objects not amenable to serialization: Some objects exist only in the context of a
running application and it’s meaningless to serialize them. For example, a file
stream object that’s deserialized no longer represents a connection to a file.

Listing 8-14 declares an Employee class that implements the Serializable interface to tell the JVM
that it’s okay to serialize Employee objects.

Listing 8-14. Implementing Serializable

class Employee implements java.io.Serializable
{
 private String name;
 private int age;
 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 String getName() { return name; }
 int getAge() { return age; }
}

Because Employee implements Serializable, the serialization mechanism will not throw
NotSerializableException when serializing an Employee object. Not only does Employee implement
Serializable, the String class also implements this interface.

Your second task is to work with the ObjectOutputStream class and its void writeObject(Object
obj) method to serialize an object, and the OutputInputStream class and its Object readObject() method
to deserialize the object.

 Note Although ObjectOutputStream extends OutputStream instead of FilterOutputStream, and although
ObjectInputStream extends InputStream instead of FilterInputStream, these classes behave as filter
streams.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

555

Java provides the concrete ObjectOutputStream class to initiate the serialization of an object’s state
to an object output stream. This class declares an ObjectOutputStream(OutputStream out) constructor
that chains the object output stream to the output stream specified by out.

When you pass an output stream reference to out, this constructor attempts to write a serialization
header to that output stream. It throws NullPointerException when out is null, and IOException when
an I/O error prevents it from writing this header.

ObjectOutputStream serializes an object via its writeObject() method. This method attempts to
write information about obj’s class followed by the values of obj’s instance fields to the underlying
output stream.

writeObject() doesn’t serialize the contents of static fields. In contrast, it serializes the contents of
all instance fields that are not explicitly prefixed with the transient reserved word. For example,
consider the following field declaration:

public transient char[] password;

This declaration specifies transient to avoid serializing a password for some hacker to encounter.
The JVM’s serialization mechanism ignores any instance field that’s marked transient.

writeObject() throws IOException or an instance of an IOException subclass when something goes
wrong. For example, this method throws NotSerializableException when it encounters an object whose
class doesn’t implement Serializable.

 Note Because ObjectOutputStream implements DataOutput, it also declares methods for writing primitive
type values and strings to an object output stream.

Java provides the concrete ObjectInputStream class to initiate the deserialization of an object’s state
from an object input stream. This class declares an ObjectInputStream(InputStream in) constructor that
chains the object input stream to the input stream specified by in.

When you pass an input stream reference to in, this constructor attempts to read a serialization
header from that input stream. It throws NullPointerException when in is null, IOException when an
I/O error prevents it from reading this header, and java.io.StreamCorruptedException (an indirect
subclass of IOException) when the stream header is incorrect.

ObjectInputStream deserializes an object via its readObject() method. This method attempts to read
information about obj’s class followed by the values of obj’s instance fields from the underlying input
stream.

readObject() throws java.lang.ClassNotFoundException, IOException, or an instance of an
IOException subclass when something goes wrong. For example, this method throws
java.io.OptionalDataException when it encounters primitive values instead of objects.

 Note Because ObjectInputStream implements DataInput, it also declares methods for reading primitive type
values and strings from an object input stream.

Listing 8-15 presents an application that uses these classes to serialize and deserialize an instance of
Listing 8-14’s Employee class to and from an employee.dat file.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

556

Listing 8-15. Serializing and deserializing an Employee object

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

class SerializationDemo
{
 final static String FILENAME = "employee.dat";
 public static void main(String[] args)
 {
 try (ObjectOutputStream oos =
 new ObjectOutputStream(new FileOutputStream(FILENAME)))
 {
 Employee emp = new Employee("John Doe", 36);
 oos.writeObject(emp);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 return;
 }
 try (ObjectInputStream ois =
 new ObjectInputStream(new FileInputStream(FILENAME)))
 {
 Employee emp = (Employee) ois.readObject();
 System.out.println(emp.getName());
 System.out.println(emp.getAge());
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println(cnfe.getMessage());
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 }
}

Listing 8-15’s main() method first instantiates Employee and serializes this instance via
writeObject() to employee.dat. It then deserializes this instance from this file via readObject() and
invokes the instance’s getName() and getAge() methods. Along with employee.dat, you’ll discover the
following output when you run this application:

John Doe
36

There’s no guarantee that the same class will exist when a serialized object is deserialized (perhaps
an instance field has been deleted). During deserialization, this mechanism causes readObject() to

CHAPTER 8 INTERACTING WITH FILESYSTEMS

557

throw an instance of java.io.InvalidClassException (an indirect subclass of IOException) when it
detects a difference between the deserialized object and its class.

Every serialized object has an identifier. The deserialization mechanism compares the identifier of
the object being deserialized with the serialized identifier of its class (all serializable classes are
automatically given unique identifiers unless they explicitly specify their own identifiers) and causes
InvalidClassException to be thrown when it detects a mismatch.

Perhaps you’ve added an instance field to a class, and you want the deserialization mechanism to
set the instance field to a default value rather than have readObject() throw an InvalidClassException
instance. (The next time you serialize the object, the new field’s value will be written out.)

You can avoid the thrown InvalidClassException instance by adding a static final long
serialVersionUID = long integer value; declaration to the class. The long integer value must be
unique and is known as a stream unique identifier (SUID).

During deserialization, the JVM will compare the deserialized object’s SUID to its class’s SUID. If
they match, readObject() won’t throw InvalidClassException when it encounters a compatible class
change (e.g., adding an instance field). However, it will still throw this exception when it encounters an
incompatible class change (e.g., changing an instance field’s name or type).

 Note Whenever you change a class in some way, you must calculate a new SUID and assign it to
serialVersionUID.

The JDK provides a serialver tool for calculating the SUID. For example, to generate an SUID for
Listing 8-14’s Employee class, change to the directory containing Employee.class and execute serialver
Employee. In response, serialver generates the following output, which you paste (except for Employee:)
into Employee.java:

Employee: static final long serialVersionUID = -6768634186769913248L;

The Windows version of serialver also provides a graphical user interface (GUI) that you might find
more convenient to use. To access this GUI, specify serialver -show. When the GUI appears, enter
Employee in the Full Class Name textfield and click the Show button, as demonstrated in Figure 8-6.

Figure 8-6. The serialver GUI reveals Employee’s SUID.

Custom Serialization and Deserialization
My previous discussion focused on default serialization and deserialization (with the exception of
marking an instance field transient to prevent it from being included during serialization). However,
situations arise where you need to customize these tasks.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

558

For example, suppose you want to serialize instances of a class that doesn’t implement
Serializable. As a workaround, you subclass this other class, have the subclass implement
Serializable, and forward subclass constructor calls to the superclass.

Although this workaround lets you serialize subclass objects, you cannot deserialize these serialized
objects when the superclass doesn’t declare a noargument constructor, which is required by the
deserialization mechanism. Listing 8-16 demonstrates this problem.

Listing 8-16. Problematic deserialization

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

class Employee
{
 private String name;
 Employee(String name) { this.name = name; }
 @Override
 public String toString() { return name; }
}
class SerEmployee extends Employee implements Serializable
{
 SerEmployee(String name) { super(name); }
}
class SerializationDemo
{
 public static void main(String[] args)
 {
 try (ObjectOutputStream oos =
 new ObjectOutputStream(new FileOutputStream("employee.dat")))
 {
 SerEmployee se = new SerEmployee("John Doe");
 System.out.println(se);
 oos.writeObject(se);
 System.out.println("se object written to file");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 try (ObjectInputStream ois =
 new ObjectInputStream(new FileInputStream("employee.dat")))
 {
 Object o = ois.readObject();
 System.out.println("se object read from byte array");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

CHAPTER 8 INTERACTING WITH FILESYSTEMS

559

 }
}

Listing 8-16’s main() method instantiates SerEmployee with an employee name. This class’s
SerEmployee(String) constructor passes this argument to its Employee counterpart.

main() next calls Employee’s toString() method indirectly via System.out.println(), to obtain this
name, which is then output.

Continuing, main() serializes the SerEmployee instance to an employee.dat file via writeObject(). It
then attempts to deserialize this object via readObject(), and this is where the trouble occurs as revealed
by the following output:

John Doe
se object written to file
java.io.InvalidClassException: SerEmployee; SerEmployee; no valid constructor
 at java.io.ObjectStreamClass.checkDeserialize(ObjectStreamClass.java:730)
 at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1751)
 at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1347)
 at java.io.ObjectInputStream.readObject(ObjectInputStream.java:369)
 at SerializationDemo.main(SerializationDemo.java:37)
Caused by: java.io.InvalidClassException: SerEmployee; no valid constructor
 at java.io.ObjectStreamClass.<init>(ObjectStreamClass.java:488)
 at java.io.ObjectStreamClass.lookup(ObjectStreamClass.java:327)
 at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1130)
 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:346)
 at SerializationDemo.main(SerializationDemo.java:27)

This output reveals a thrown instance of the InvalidClassException class. This exception object was
thrown during deserialization because Employee doesn’t possess a noargument constructor.

We can overcome this problem by taking advantage of the wrapper class pattern that I presented in
Chapter 2. Furthermore, we declare a pair of private methods in the subclass that the serialization and
deserialization mechanisms look for and call.

Normally, the serialization mechanism writes out a class’s instance fields to the underlying output
stream. However, you can prevent this from happening by declaring a private void
writeObject(ObjectOutputStream oos) method in that class.

When the serialization mechanism discovers this method, it calls the method instead of
automatically outputting instance field values. The only values that are output are those explicitly output
via the method.

Conversely, the deserialization mechanism assigns values to a class’s instance fields that it reads
from the underlying input stream. However, you can prevent this from happening by declaring a private
void readObject(ObjectInputStream ois) method.

When the deserialization mechanism discovers this method, it calls the method instead of
automatically assigning values to instance fields. The only values that are assigned to instance fields are
those explicitly assigned via the method.

Because SerEmployee doesn’t introduce any fields, and because Employee doesn’t offer access to its
internal fields (assume you don’t have the source code for this class), what would a serialized
SerEmployee object include?

Although we cannot serialize Employee’s internal state, we can serialize the argument(s) passed to its
constructors, such as the employee name.

Listing 8-17 reveals the refactored SerEmployee and SerializationDemo classes.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

560

Listing 8-17. Solving problematic deserialization

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

class Employee
{
 private String name;
 Employee(String name) { this.name = name; }
 @Override
 public String toString() { return name; }
}
class SerEmployee implements Serializable
{
 private Employee emp;
 private String name;
 SerEmployee(String name)
 {
 this.name = name;
 emp = new Employee(name);
 }
 private void writeObject(ObjectOutputStream oos) throws IOException
 {
 oos.writeUTF(name);
 }
 private void readObject(ObjectInputStream ois)
 throws ClassNotFoundException, IOException
 {
 name = ois.readUTF();
 emp = new Employee(name);
 }
 @Override
 public String toString()
 {
 return name;
 }
}
class SerializationDemo
{
 public static void main(String[] args)
 {
 try (ObjectOutputStream oos =
 new ObjectOutputStream(new FileOutputStream("employee.dat")))
 {
 SerEmployee se = new SerEmployee("John Doe");
 System.out.println(se);
 oos.writeObject(se);

CHAPTER 8 INTERACTING WITH FILESYSTEMS

561

 System.out.println("se object written to file");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 try (ObjectInputStream ois =
 new ObjectInputStream(new FileInputStream("employee.dat")))
 {
 SerEmployee se = (SerEmployee) ois.readObject();
 System.out.println("se object read from file");
 System.out.println(se);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

SerEmployee’s writeObject() and readObject() methods rely on DataOutput and DataInput methods:
they don’t need to call writeObject() and readObject() to perform their tasks.

When you run this application, it generates the following output:

John Doe
se object written to file
se object read from file
John Doe

The writeObject() and readObject() methods can be used to serialize/deserialize data items
beyond the normal state (non-transient instance fields); for example, serializing/deserializing the
contents of a static field.

However, before serializing or deserializing the additional data items, you must tell the serialization
and deserialization mechanisms to serialize or deserialize the object’s normal state. The following
methods help you accomplish this task:

• ObjectOutputStream’s defaultWriteObject() method outputs the object’s normal
state. Your writeObject() method first calls this method to output that state, and
then outputs additional data items via ObjectOutputStream methods such as
writeUTF().

• ObjectInputStream’s defaultReadObject() method inputs the object’s normal
state. Your readObject() method first calls this method to input that state, and
then inputs additional data items via ObjectInputStream methods such as
readUTF().

Externalization
Along with default serialization/deserialization and custom serialization/deserialization, Java supports
externalization. Unlike default/custom serialization/deserialization, externalization offers complete
control over the serialization and deserialization tasks.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 8 INTERACTING WITH FILESYSTEMS

562

 Note Externalization helps you improve the performance of the reflection-based serialization and deserialization
mechanisms by giving you complete control over what fields are serialized and deserialized.

Java supports externalization via its java.io.Externalizable interface. This interface declares the
following pair of public methods:

• void writeExternal(ObjectOutput out) saves the calling object’s contents by
calling various methods on the out object. This method throws IOException when
an I/O error occurs. (java.io.ObjectOutput is a subinterface of DataOutput and is
implemented by ObjectOutputStream.)

• void readExternal(ObjectInput in) restores the calling object’s contents by
calling various methods on the in object. This method throws IOException when
an I/O error occurs, and ClassNotFoundException when the class of the object
being restored cannot be found. (java.io.ObjectInput is a subinterface of
DataInput and is implemented by ObjectInputStream.)

If a class implements Externalizable, its writeExternal() method is responsible for saving all field
values that are to be saved. Also, its readExternal() method is responsible for restoring all saved field
values and in the order they were saved.

Listing 8-18 presents a refactored version of Listing 8-14’s Employee class to show you how to take
advantage of externalization.

Listing 8-18. Refactoring Listing 8-14’s Employee class to support externalization

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

class Employee implements Externalizable
{
 private String name;
 private int age;
 public Employee()
 {
 System.out.println("Employee() called");
 }
 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 String getName() { return name; }
 int getAge() { return age; }
 @Override
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException
 {

CHAPTER 8 INTERACTING WITH FILESYSTEMS

563

 System.out.println("readExternal() called");
 name = in.readUTF();
 age = in.readInt();
 }
 @Override
 public void writeExternal(ObjectOutput out) throws IOException
 {
 System.out.println("writeExternal() called");
 out.writeUTF(name);
 out.writeInt(age);
 }
}

Employee declares a public Employee() constructor because each class that participates in
externalization must declare a public noargument constructor. The deserialization mechanism calls this
constructor to instantiate the object.

 Caution The deserialization mechanism throws InvalidClassException with a “no valid constructor”
message when it doesn’t detect a public noargument constructor.

Initiate externalization by instantiating ObjectOutputStream and calling its writeObject() method,
or by instantiating ObjectInputStream and calling its readObject() method.

 Note When passing an object whose class (directly/indirectly) implements Externalizable to writeObject(),
the writeObject()-initiated serialization mechanism writes only the identity of the object’s class to the object
output stream.

Suppose you compiled Listing 8-15’s SerializationDemo.java source code and Listing 8-18’s
Employee.java source code in the same directory. Now suppose you executed java SerializationDemo.
In response, you would observe the following output:

CHAPTER 8 INTERACTING WITH FILESYSTEMS

564

writeExternal() called
Employee() called
readExternal() called
John Doe
36

Before serializing an object, the serialization mechanism checks the object’s class to see if it
implements Externalizable. If so, the mechanism calls writeExternal(). Otherwise, it looks for a private
writeObject(ObjectOutputStream) method, and calls this method if present. If this method isn’t present,
the mechanism performs default serialization, which includes only non-transient instance fields.

Before deserializing an object, the deserialization mechanism checks the object’s class to see if it
implements Externalizable. If so, the mechanism attempts to instantiate the class via the public
noargument constructor. Assuming success, it calls readExternal().

If the object’s class doesn’t implement Externalizable, the deserialization mechanism looks for a
private readObject(ObjectInputStream) method. If this method isn’t present, the mechanism performs
default deserialization, which includes only non-transient instance fields.

PrintStream
Of all the stream classes, PrintStream is an oddball: it should have been named PrintOutputStream for
consistency with the naming convention. This filter output stream class writes string representations of
input data items to the underlying output stream.

 Note PrintStream uses the default character encoding to convert a string’s characters to bytes. (I’ll discuss
character encodings when I introduce you to writers and readers in the next section.) Because PrintStream
doesn’t support different character encodings, you should use the equivalent PrintWriter class instead of
PrintStream. However, you need to know about PrintStream when working with System.out and System.err
because these class fields are of type PrintStream.

PrintStream instances are print streams whose various print() and println() methods print string
representations of integers, floating-point values, and other data items to the underlying output stream.
Unlike the print() methods, println() methods append a line terminator to their output.

 Note The line terminator (also known as line separator) isn’t necessarily the newline (also commonly referred to
as line feed). Instead, to promote portability, the line separator is the sequence of characters defined by system
property line.separator. On Windows platforms, System.getProperty("line.separator") returns the actual
carriage return code (13), which is symbolically represented by \r, followed by the actual newline/line feed code
(10), which is symbolically represented by \n. In contrast, System.getProperty("line.separator") returns only
the actual newline/line feed code on Unix and Linux platforms.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

565

The println() methods call their corresponding print() methods followed by the equivalent of the
void println() method, which eventually results in line.separator’s value being output. For example,
void println(int x) outputs x’s string representation and calls this method to output the line separator.

 Caution Never hard-code the \n escape sequence in a literal string that you are going to output via a print()
or println() method. Doing so isn’t portable. For example, when Java executes System.out.print("first
line\n"); followed by System.out.println("second line");, you’ll see first line on one line followed by
second line on a subsequent line when this output is viewed at the Windows command line. In contrast, you’ll
see first linesecond line when this output is viewed in the Windows Notepad application (which requires a
carriage return/line feed sequence to terminate lines). When you need to output a blank line, the easiest way to do
this is to call System.out.println();, which is why you find this method call scattered throughout my book. I
confess that I don’t always follow my own advice, so you might find instances of \n in literal strings being passed
to System.out.print() or System.out.println() elsewhere in this book.

PrintStream offers two other features that you’ll find useful:

• Unlike other output streams, a print stream never rethrows an IOException
instance thrown from the underlying output stream. Instead, exceptional
situations set an internal flag that can be tested by calling PrintStream’s boolean
checkError() method, which returns true to indicate a problem.

• PrintStream objects can be created to automatically flush their output to the
underlying output stream. In other words, the flush() method is automatically
called after a byte array is written, one of the println() methods is called, or a
newline is written. The PrintStream instances assigned to System.out and
System.err automatically flush their output to the underlying output stream.

Writers and Readers
Java’s stream classes are good for streaming sequences of bytes, but they’re not good for streaming
sequences of characters because bytes and characters are two different things: a byte represents an 8-bit
data item and a character represents a 16-bit data item. Also, Java’s char and String types naturally
handle characters instead of bytes.

More importantly, byte streams have no knowledge of character sets (sets of mappings between
integer values [known as code points] and symbols, such as Unicode) and their character encodings
(mappings between the members of a character set and sequences of bytes that encode these characters
for efficiency, such as UTF-8).

If you need to stream characters, you should take advantage of Java’s writer and reader classes,
which were designed to support character I/O (they work with char instead of byte). Furthermore, the
writer and reader classes take character encodings into account.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

566

A BRIEF HISTORY OF CHARACTER SETS AND CHARACTER ENCODINGS

Early computers and programming languages were created mainly by English-speaking programmers in
countries where English was the native language. They developed a standard mapping between code
points 0 through 127 and the 128 commonly used characters in the English language (e.g., A-Z). The
resulting character set/encoding was named American Standard Code for Information Interchange (ASCII).

The problem with ASCII is that it’s inadequate for most non-English languages. For example, ASCII doesn’t
support diacritical marks such as the cedilla used in the French language. Because a byte can represent a
maximum of 256 different characters, developers around the world started creating different character
sets/encodings that encoded the 128 ASCII characters, but also encoded extra characters to meet the
needs of languages such as French, Greek, or Russian. Over the years, many legacy (and still important)
files have been created whose bytes represent characters defined by specific character sets/encodings.

The International Organization for Standardization (ISO) and the International Electrotechnical Commission
(IEC) have worked to standardize these eight-bit character sets/encodings under a joint umbrella standard
called ISO/IEC 8859. The result is a series of substandards named ISO/IEC 8859-1, ISO/IEC 8859-2, and so
on. For example, ISO/IEC 8859-1 (also known as Latin-1) defines a character set/encoding that consists of
ASCII plus the characters covering most Western European countries. Also, ISO/IEC 8859-2 (also known as
Latin-2) defines a similar character set/encoding covering Central and Eastern European countries.

Despite ISO’s/IEC’s best efforts, a plethora of character sets/encodings is still inadequate. For example,
most character sets/encodings only allow you to create documents in a combination of English and one
other language (or a small number of other languages). You cannot, for example, use an ISO/IEC character
set/encoding to create a document using a combination of English, French, Turkish, Russian, and Greek
characters.

This and other problems are being addressed by an international effort that has created and is continuing
to develop Unicode, a single universal character set. Because Unicode characters are twice as big as
ISO/IEC characters, Unicode uses one of several variable-length encoding schemes known as Unicode
Transformation Format (UTF) to encode Unicode characters for efficiency. For example, UTF-8 encodes
every character in the Unicode character set in one to four bytes (and is backward compatible with ASCII).

The terms character set and character encoding are often used interchangeably. They mean the same
thing in the context of ISO/IEC character sets, where a code point is the encoding. However, these terms
are different in the context of Unicode, where Unicode is the character set and UTF-8 is one of several
possible character encodings for Unicode characters.

Writer and Reader Classes Overview
The java.io package provides several writer and reader classes that are descendents of the abstract
Writer and Reader classes. Figure 8-7 reveals the hierarchy of writer classes.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

567

Figure 8-7. Unlike FilterOutputStream, FilterWriter is abstract.

Figure 8-8 reveals the hierarchy of reader classes.

Figure 8-8. Unlike FilterInputStream, FilterReader is abstract.

Although the writer and reader class hierarchies are similar to their output stream and input stream
counterparts, there are differences. For example, FilterWriter and FilterReader are abstract, whereas
their FilterOutputStream and FilterInputStream equivalents are not abstract. Also, BufferedWriter and
BufferedReader don’t extend FilterWriter and FilterReader, whereas BufferedOutputStream and
BufferedInputStream extend FilterOutputStream and FilterInputStream.

The output stream and input stream classes were introduced in JDK 1.0. After their release, design
issues emerged. For example, FilterOutputStream and FilterInputStream should have been abstract.
However, it was too late to make these changes because the classes were already being used; making
these changes would have resulted in broken code. The designers of JDK 1.1’s writer and reader classes
took the time to correct these mistakes.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

568

 Note Regarding BufferedWriter and BufferedReader directly subclassing Writer and Reader instead of
FilterWriter and FilterReader, I believe that this change has to do with performance. Calls to
BufferedOutputStream’s write() methods and BufferedInputStream’s read() methods result in calls to
FilterOutputStream’s write() methods and FilterInputStream’s read() methods. Because a file I/O activity
such as copying one file to another can involve many write()/read() method calls, you want the best
performance possible. By not subclassing FileWriter and FileReader, BufferedWriter and BufferedReader
achieve better performance.

For brevity, I focus only on the Writer, Reader, OutputStreamWriter, OutputStreamReader, FileWriter,
and FileReader classes in this chapter.

Writer and Reader
Java provides the Writer and Reader classes for performing character I/O. Writer is the superclass of all
writer subclasses. The following list identifies differences between Writer and OutputStream:

• Writer declares several append() methods for appending characters to this writer.
These methods exist because Writer implements the java.lang.Appendable
interface, which is used in partnership with the Formatter class (see Appendix C)
to output formatted strings.

• Writer declares additional write() methods, including a convenient void
write(String str) method for writing a String object’s characters to this writer.

Reader is the superclass of all reader subclasses. The following list identifies differences between
Reader and InputStream:

• Reader declares read(char[]) and read(char[], int, int) methods instead of
read(byte[]) and read(byte[], int, int) methods.

• Reader doesn’t declare an available() method.

• Reader declares a boolean ready() method that returns true when the next read()
call is guaranteed not to block for input.

• Reader declares an int read(CharBuffer target) method for reading characters
from a character buffer. (I discuss CharBuffer in Appendix C.)

OutputStreamWriter and InputStreamReader
The concrete OutputStreamWriter class (a Writer subclass) is a bridge between an incoming sequence of
characters and an outgoing stream of bytes. Characters written to this writer are encoded into bytes
according to the default or specified character encoding.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

569

 Note The default character encoding is accessible via the file.encoding system property.

Each call to an OutputStreamWriter write() method causes an encoder to be called on the given
character(s). The resulting bytes are accumulated in a buffer before being written to the underlying
output stream. The characters passed to the write() methods are not buffered.

OutputStreamWriter declares four constructors, including the following:

• OutputStreamWriter(OutputStream out) creates a bridge between an incoming
sequence of characters (passed to OutputStreamWriter via its append() and write()
methods) and underlying output stream out. The default character encoding is
used to encode characters into bytes.

• OutputStreamWriter(OutputStream out, String charsetName) creates a bridge
between an incoming sequence of characters (passed to OutputStreamWriter via
its append() and write() methods) and underlying output stream out. charsetName
identifies the character encoding used to encode characters into bytes. This
constructor throws java.io.UnsupportedEncodingException when the named
character encoding isn’t supported.

 Note OutputStreamWriter depends on the abstract java.nio.charset.Charset and
java.nio.charset.CharsetEncoder classes to perform character encoding. (I discuss these classes in Appendix
C.)

The following example uses the second constructor to create a bridge to an underlying file output
stream so that Polish text can be written to an ISO/IEC 8859-2-encoded file.

FileOutputStream fos = new FileOutputStream("polish.txt");
OutputStreamWriter osw = new OutputStreamWriter(fos, "8859_2");
char ch = '\u0323'; // Accented N.
osw.write(ch);

The concrete InputStreamReader class (a Reader subclass) is a bridge between an incoming stream of
bytes and an outgoing sequence of characters. Characters read from this reader are decoded from bytes
according to the default or specified character encoding.

Each call to an InputStreamReader read() method may cause one or more bytes to be read from the
underlying input stream. To enable the efficient conversion of bytes to characters, more bytes may be
read ahead from the underlying stream than are necessary to satisfy the current read operation.

InputStreamReader declares four constructors, including the following:

• InputStreamReader(InputStream in) creates a bridge between underlying input
stream in and an outgoing sequence of characters (returned from
InputStreamReader via its read() methods). The default character encoding is used
to decode bytes into characters.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

570

• InputStreamReader(InputStream in, String charsetName) creates a bridge
between underlying input stream in and an outgoing sequence of characters
(returned from InputStreamReader via its read() methods). charsetName identifies
the character encoding used to decode bytes into characters. This constructor
throws UnsupportedEncodingException when the named character encoding isn’t
supported.

 Note InputStreamReader depends on the abstract Charset and java.nio.charset.CharsetDecoder classes
to perform character decoding. (I discuss CharsetDecoder in Appendix C.)

The following example uses the second constructor to create a bridge to an underlying file input
stream so that Polish text can be read from an ISO/IEC 8859-2-encoded file.

FileInputStream fis = new FileInputStream("polish.txt");
InputStreamReader isr = new InputStreamReader(fis, "8859_2");
char ch = isr.read(ch);

 Note OutputStreamWriter and InputStreamReader declare a String getEncoding() method that returns
the name of the character encoding in use. When the encoding has a historical name, that name is returned;
otherwise, the encoding’s canonical name is returned.

FileWriter and FileReader
FileWriter is a convenience class for writing characters to files. It subclasses OutputStreamWriter, and its
constructors call OutputStreamWriter(OutputStream). An instance of this class is equivalent to the
following code fragment:

FileOutputStream fos = new FileOutputStream(pathname);
OutputStreamWriter osw;
osw = new OutputStreamWriter(fos, System.getProperty("file.encoding"));

In Chapter 3, I presented a logging library with a File class (Listing 3-20) that didn’t incorporate file-
writing code. Listing 8-19 addresses this situation by presenting a revised File class that uses FileWriter
to log messages to a file.

Listing 8-19. Logging messages to an actual file

package logging;

import java.io.FileWriter;
import java.io.IOException;

class File implements Logger

CHAPTER 8 INTERACTING WITH FILESYSTEMS

571

{
 private final static String LINE_SEPARATOR =
 System.getProperty("line.separator");
 private String dstName;
 private FileWriter fw;
 File(String dstName)
 {
 this.dstName = dstName;
 }
 @Override
 public boolean connect()
 {
 if (dstName == null)
 return false;
 try
 {
 fw = new FileWriter(dstName);
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }
 @Override
 public boolean disconnect()
 {
 if (fw == null)
 return false;
 try
 {
 fw.close();
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }
 @Override
 public boolean log(String msg)
 {
 if (fw == null)
 return false;
 try
 {
 fw.write(msg+LINE_SEPARATOR);
 }
 catch (IOException ioe)
 {
 return false;
 }

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 8 INTERACTING WITH FILESYSTEMS

572

 return true;
 }
}

Listing 8-19 refactors Listing 3-20 to support FileWriter by making changes to each of the
connect(), disconnect(), and log() methods:

• connect() attempts to instantiate FileWriter, whose instance is saved in fw upon
success; otherwise, fw continues to store its default null reference.

• disconnect() attempts to close the file by calling FileWriter’s close() method,
but only when fw doesn’t contain its default null reference.

• log() attempts to write its String argument to the file by calling FileWriter’s void
write(String str) method, but only when fw doesn’t contain its default null
reference.

connect()’s catch clause specifies IOException instead of FileNotFoundException because
FileWriter’s constructors throw IOException when they cannot connect to existing normal files;
FileOutputStream’s constructors throw FileNotFoundException.

log()’s write(String) method appends the line.separator value (which I assigned to a constant for
convenience) to the string being output instead of appending \n, which would violate portability.

FileReader is a convenience class for reading characters from files. It subclasses InputStreamReader,
and its constructors call InputStreamReader(InputStream). An instance of this class is equivalent to the
following code fragment:

FileInputStream fis = new FileInputStream(pathname);
InputStreamReader isr;
isr = new InputStreamReader(fis, System.getProperty("file.encoding"));

It’s often necessary to search text files for occurrences of specific strings. Although regular
expressions are ideal for this task, I have yet to discuss them—I discuss regular expressions in the
context of New I/O in Appendix C. As a result, Listing 8-20 presents the more verbose alternative to
regular expressions.

Listing 8-20. Finding all files that contain content matching a search string

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

class FindAll
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java FindAll start search-string");
 return;
 }
 if (!findAll(new File(args[0]), args[1]))
 System.err.println("not a directory");
 }

CHAPTER 8 INTERACTING WITH FILESYSTEMS

573

 static boolean findAll(File file, String srchText)
 {
 File[] files = file.listFiles();
 if (files == null)
 return false;
 for (int i = 0; i < files.length; i++)
 if (files[i].isDirectory())
 findAll(files[i], srchText);
 else
 if (find(files[i].getPath(), srchText))
 System.out.println(files[i].getPath());
 return true;
 }
 static boolean find(String filename, String srchText)
 {
 try (BufferedReader br = new BufferedReader(new FileReader(filename)))
 {
 int ch;
 outer_loop:
 do
 {
 if ((ch = br.read()) == -1)
 return false;
 if (ch == srchText.charAt(0))
 {
 for (int i = 1; i < srchText.length(); i++)
 {
 if ((ch = br.read()) == -1)
 return false;
 if (ch != srchText.charAt(i))
 continue outer_loop;
 }
 return true;
 }
 }
 while (true);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 return false;
 }
}

Listing 8-20’s FindAll class declares main(), findAll(), and find() class methods.
main() validates the number of command-line arguments, which must be two. The first argument

identifies the starting location within the filesystem for the search, and is used to construct a File object.
The second argument specifies search text. main() then passes the File object and the search text to
findAll() to perform a search for all files containing this text.

The recursive findAll() method first invokes listFiles() on the File object passed to this method,
to obtain the names of all files in the current directory. If listFiles() returns null, meaning that the File

CHAPTER 8 INTERACTING WITH FILESYSTEMS

574

object doesn’t refer to an existing directory, findAll() returns false and a suitable error message is
output.

For each name in the returned list, findAll() either recursively invokes itself when the name
represents a directory, or invokes the find() method to search the file for the text; the file’s pathname
string is output when the file contains this text.

The find() method first opens the file identified by its first argument via the FileReader class, and
then passes the FileReader instance to a BufferedReader instance to improve file-reading performance.
It then enters a loop that continues to read characters from the file until the end of the file is reached.

If the currently read character matches the first character in the search text, an inner loop is entered
to read subsequent characters from the file and compare them with subsequent characters in the search
text. When all characters match, find() returns true. Otherwise, the labeled continue statement is used
to skip the remaining iterations of the inner loop and transfer execution to the labeled outer loop. After
the last character has been read and there’s still no match, find() returns false.

Now that you know how FindAll works, you’ll probably want to try it out. The following examples
show you how I might use this application on my XP platform:

java FindAll \prj\dev OpenGL

This example searches the \prj\dev directory on my default drive (C:) for all files that contain the
word OpenGL (case is significant) and generates the following output:

\prj\dev\bj7\ch13\978-1-4302-3909-3_Friesen_13_Java7Android.doc
\prj\dev\bogl\article.html
\prj\dev\ew32pp\appa\CWinApp.html
\prj\dev\ws\articles\articles.html
\prj\dev\ws\tutorials\ct\air26gsp1\air26gsp1.html
\prj\dev\ws\tutorials\ct\jfx20bgsp1\jfx20bgsp1.html
\prj\dev\ws\tutorials\ct\jfx20bgsp2\jfx20bgsp2.html

If I now specify java FindAll \prj\dev opengl, I observe the following abbreviated output:

\prj\dev\bogl\article.html

FindAll presents a Standard I/O-based user interface, which is appropriate when you only want to
run this application from the command line. Because you might prefer a GUI, Listing 8-21 presents a
Swing-based version of this application.

Listing 8-21. Refactoring FindAll to support a GUI

import java.awt.EventQueue;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;

CHAPTER 8 INTERACTING WITH FILESYSTEMS

575

import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

class FindAll
{
 final static String LINE_SEPARATOR = System.getProperty("line.separator");
 static JTextArea txtSrchResults;
 static JFrame f;
 static volatile String result;
 static JPanel createGUI()
 {
 JPanel pnl = new JPanel();
 pnl.setLayout(new BoxLayout(pnl, BoxLayout.Y_AXIS));
 JPanel pnlTemp = new JPanel();
 JLabel lblStartDir = new JLabel("Start directory");
 pnlTemp.add(lblStartDir);
 final JTextField txtStartDir = new JTextField(30);
 pnlTemp.add(txtStartDir);
 pnl.add(pnlTemp);
 pnlTemp = new JPanel();
 JLabel lblSrchText = new JLabel("Search text");
 pnlTemp.add(lblSrchText);
 lblSrchText.setPreferredSize(lblStartDir.getPreferredSize());
 final JTextField txtSrchText = new JTextField(30);
 pnlTemp.add(txtSrchText);
 pnl.add(pnlTemp);
 pnlTemp = new JPanel();
 JButton btnSearch = new JButton("Search");
 pnlTemp.add(btnSearch);
 pnl.add(pnlTemp);
 pnlTemp = new JPanel();
 txtSrchResults = new JTextArea(20, 30);
 pnlTemp.add(new JScrollPane(txtSrchResults));
 pnl.add(pnlTemp);
 ActionListener al;
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 final String startDir = txtStartDir.getText();
 final String srchText = txtSrchText.getText();
 txtSrchResults.setText("");
 Runnable r;
 r = new Runnable()
 {
 @Override
 public void run()
 {
 if (!findAll(new File(startDir), srchText))

CHAPTER 8 INTERACTING WITH FILESYSTEMS

576

 {
 Runnable r;
 r = new Runnable()
 {
 @Override
 public void run()
 {
 String msg = "not a directory";
 JOptionPane.showMessageDialog(f, msg);
 }
 };
 EventQueue.invokeLater(r);
 }
 }
 };
 new Thread(r).start();
 }
 };
 btnSearch.addActionListener(al);
 return pnl;
 }
 static boolean findAll(File file, String srchText)
 {
 File[] files = file.listFiles();
 if (files == null)
 return false;
 for (int i = 0; i < files.length; i++)
 if (files[i].isDirectory())
 findAll(files[i], srchText);
 else
 if (find(files[i].getPath(), srchText))
 {
 result = files[i].getPath();
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 txtSrchResults.append(result+LINE_SEPARATOR);
 }
 };
 EventQueue.invokeLater(r);
 }
 return true;
 }
 static boolean find(String filename, String srchText)
 {
 try (BufferedReader br = new BufferedReader(new FileReader(filename)))
 {
 int ch;
 outer_loop:
 do

CHAPTER 8 INTERACTING WITH FILESYSTEMS

577

 {
 if ((ch = br.read()) == -1)
 return false;
 if (ch == srchText.charAt(0))
 {
 for (int i = 1; i < srchText.length(); i++)
 {
 if ((ch = br.read()) == -1)
 return false;
 if (ch != srchText.charAt(i))
 continue outer_loop;
 }
 return true;
 }
 }
 while (true);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 return false;
 }
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 f = new JFrame("FindAll");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setContentPane(createGUI());
 f.pack();
 f.setResizable(false);
 f.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
 }
}

Listing 8-21’s FindAll class declares several class fields along with createGUI(), findAll(), find()
and main() class methods. Because much of this content has previously been discussed (in Chapter 7
and earlier in this chapter), I’ll focus on only a few items.

FindAll is a multithreaded application. As well as the main thread that executes main(), FindAll’s
GUI runs on the event-dispatch thread (EDT) and creates a worker thread to execute the findAll()
method off of the EDT, to keep the GUI responsive.

At some point, threads must communicate with shared variables and this is where lack-of-
synchronization problems can arise. I’ve eliminated these problems by creating a single volatile result
field and using final local variables.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

578

The result field is volatile so that the EDT and worker thread can see result’s String reference
value on multicore or multiprocessor platforms where each core/processor has a local cached copy of
this field. If result wasn’t volatile, the EDT might not see the reference to a new String object assigned
to result when findAll() finds a match, and would probably append a copy of the previously found
match to the textarea. (This isn’t a problem on single processor/single core platforms.)

Although this rationale also holds for the startDir and srchText local variables, they’re declared
final instead of volatile. They need to be declared final so that they can be accessed from the
anonymous class that implements java.lang.Runnable in the search button’s action listener.

If you recall, Chapter 4 states that final fields can be safely accessed without synchronization. As a
result, volatile isn’t required for a final field, and you cannot declare a field to be volatile and final at
the same time. (A final field can be safely accessed but not necessarily the objects to which final
reference fields refer. Because String objects are immutable, there would be no problem if I called
String methods on startDir, srchText, and result.)

The search button’s action listener declares a runnable within a runnable, and the code probably
looks complicated. The following sequence of steps explains how this code works:

1. When the user clicks the search button, its actionPerformed() method is
invoked on the EDT.

2. actionPerformed() accesses the starting directory and search text textfields,
clears the results textarea so that new search results are not appended to
previous search results, creates the runnable, and starts a worker thread (that
executes this runnable) on the EDT.

3. Shortly thereafter, the worker thread will start to execute the runnable by
invoking its run() method.

4. run() invokes findAll() to begin the search. If findAll() returns false, a new
runnable is created that outputs an error message via a
javax.swing.JOptionPane-based dialog box. The worker thread executes
java.awt.EventQueue’s invokeLater() method to ensure that the dialog box is
displayed on the EDT.

 Note Appendix C introduces the javax.swing.SwingWorker class, which simplifies communicating between a
worker thread and the EDT.

Listing 8-21 reveals the following code:

pnl.setLayout(new BoxLayout(pnl, BoxLayout.Y_AXIS));

This code uses Swing’s javax.swing.BoxLayout class to layout a container’s components in a vertical
column. Unlike java.awt.GridLayout, BoxLayout doesn’t give each component the same size.

Because many search results may be returned, the textarea needs to be scrollable. However, this
component isn’t scrollable by default, so it must be added to a scrollpane. This task is accomplished with
the help of the javax.swing.JScrollPane class.

JScrollPane provides constructors that are called with the component that needs to be made
scrollable; for example, JScrollPane(Component view). In contrast, AWT’s java.awt.ScrollPane class
requires you to pass the component to its add() method.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

579

Figure 8-9 shows FindAll’s Swing-based GUI.

Figure 8-9. Search results are presented in a scrollable textarea.

Figure 8-10 shows FindAll’s GUI with its “not a directory” dialog box.

Figure 8-10. A dialog box appears when you leave the Start directory textfield empty, or when you enter a

path to a filename or a nonexistent directory in this textfield.

CHAPTER 8 INTERACTING WITH FILESYSTEMS

580

EXERCISES

The following exercises are designed to test your understanding of File and various stream and
writer/reader APIs:

1. Create an application named Touch for setting a file’s or directory’s timestamp to
the current or specified time. This application has the following usage syntax:
java Touch [-d timestamp] pathname. If you don’t specify [-d timestamp],
pathname’s timestamp is set to the current time; otherwise, it is set to the
specified timestamp value, which has the format yyyy-MM-dd HH:mm:ss z (2010-
08-13 02:37:45 UTC and 2006-04-22 12:35:45 EST are examples). Hints: The
java.util.Date class (which I formally introduce in Appendix C) has a getTime()
method whose return value can be passed to File’s setLastModified() method.
Also, you’ll find Date date = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss
z").parse(args[1]); and System.err.println("invalid option: " +
args[0]); to be helpful. (Wikipedia’s “touch (Unix)” entry
[http://en.wikipedia.org/wiki/Touch_(Unix)] introduces you to a standard
Unix program named touch. In addition to changing a file’s access and
modification timestamps, touch is used to create a new empty file.)

2. Create an application named Split for splitting a large file into a number of
smaller partx files (where x starts at 0 and increments; for example, part0,
part1, part2, and so on). Each partx file (except possibly the last partx file,
which holds the remaining bytes) will have the same size. This application has the
following usage syntax: java Split pathname. Furthermore, your implementation
must use the BufferedInputStream, BufferedOutputStream, File,
FileInputStream, and FileOutputStream classes. (I find Split helpful for
storing huge files that don’t fit onto a single CD/DVD across multiple CDs/DVDs,
and also for emailing huge files to friends. To recombine the part files on a
Windows platform, I use the copy command and its /B binary option. When
recombining the part files, recombine them in order: part0, part1 … part9,
part10, and so on.)

3. It’s often convenient to read lines of text from standard input, and the
InputStreamReader and BufferedReader classes make this task possible.
Create an application named CircleInfo that, after obtaining a BufferedReader
instance that’s chained to standard input, enters a loop that prompts the user to
enter a radius, parses the entered radius into a double value, and outputs a pair of
messages that report the circle’s circumference and area based on this radius.

4. FindAll is problematic in that you can start a new search operation while an
ongoing search is in progress. Also, there’s no way to stop an ongoing search
except by starting a new search or closing the window. Modify FindAll by
disabling its Search button when a search is in progress. Also, add a Stop button
that’s initially disabled, and that lets you stop an existing search (and also
reenables Search).

http://en.wikipedia.org/wiki/Touch_

CHAPTER 8 INTERACTING WITH FILESYSTEMS

581

Summary
Applications often interact with the filesystem to output data to and/or input data from files. Java’s
standard class library supports filesystem access via its classic File, RandomAccessFile, stream, and
writer/reader APIs.

Java offers access to the underlying platform’s available filesystem(s) via its concrete File class. File
instances contain the abstract pathnames of files and directories that may or may not exist in their
filesystems.

Files can be opened for random access in which a mixture of write and read operations can occur
until the file is closed. Java supports this random access by providing the concrete RandomAccessFile
class.

Java uses streams to perform I/O operations. A stream is an ordered sequence of bytes of arbitrary
length. Bytes flow over an output stream from an application to a destination, and flow over an input
stream from a source to an application.

The java.io package provides several output stream and input stream classes that are descendents
of the abstract OutputStream and InputStream classes. Examples of subclasses include FileOutputStream
and BufferedInputStream.

Java’s stream classes are good for streaming sequences of bytes, but are not good for streaming
sequences of characters because bytes and characters are two different things, and because byte streams
have no knowledge of character sets and encodings.

If you need to stream characters, you should take advantage of Java’s writer and reader classes,
which were designed to support character I/O (they work with char instead of byte). Furthermore, the
writer and reader classes take character encodings into account.

The java.io package provides several writer and reader classes that are descendents of the abstract
Writer and Reader classes. Examples of subclasses include OutputStreamWriter, FileWriter,
InputStreamReader, FileReader, and BufferedReader.

As well as filesystems, applications often must interact with networks and databases. Chapter 9
provides an introduction to the standard class library’s network-oriented and database-oriented APIs.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

C H A P T E R 9

583

Interacting with Networks and
Databases

You have three targets for accessing data that’s external to an application: filesystem, network, and
database. Chapter 8 introduced you to filesystem-oriented data access, whereas this chapter introduces
you to data access via networks and databases.

Interacting with Networks
A network is a collection of interconnected nodes (computers and peripherals [e.g., printers]) that can
share hardware and software among users. An intranet is a network within an organization and an
internet is a network that links organizations together. The Internet is the global network of networks.

 Note Intranets and internets typically use Transmission Control Protocol (TCP), User Datagram Protocol (UDP),
and Internet Protocol (IP) to communicate between nodes. TCP is a two-way communication protocol, UDP is a
one-way communication protocol, and IP is the fundamental communication protocol over which TCP and UDP
perform their communication tasks. TCP, UDP, and IP are combined with other protocols into a model known as
TCP/IP (see http://en.wikipedia.org/wiki/TCP/IP_model).

The java.net package supplies assorted classes that support TCP/IP communication between
processes (executing applications) that are running on the same or different hosts (computer-based
TCP/IP nodes). After introducing you to each of these classes, this section presents authentication and
cookie management.

Communicating via Sockets
A socket is an endpoint in a communications link between two processes. The endpoint consists of an IP
address, which identifies a host, and a port number, which identifies a process running on that network
node.

One process writes a message (sequence of bytes) to a socket, which breaks this message into a
series of packets (addressable message chunks, which are commonly known as IP datagrams) and
forwards these packets to the other process’s socket, which recombines them into the original message
for that process’s consumption. Figure 9-1 shows this scenario.

http://en.wikipedia.org/wiki/TCP/IP_model

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

584

Figure 9-1. Two processes use sockets to communicate.

According to Figure 9-1, Process A on Host A sends a message to a socket. Host A’s network
management software, which is often referred to as a protocol stack, breaks this message into a series of
packets (each packet includes the destination host’s IP address and port number), and sends these
packets through Host A’s Network Interface Card (NIC) to the destination host, which is Host B in the
figure. Host B’s protocol stack receives packets through the NIC and reassembles them into the original
message, which it then makes available to Process B. This situation reverses when Process B
communicates with Process A.

IP ADDRESSES AND PORT NUMBERS

IP addresses are 32-bit or 128-bit unsigned integers that uniquely identify network hosts and other nodes.
A 32-bit IP address is commonly specified as four 8-bit integer components in period-separated decimal
notation, where each component is a decimal integer ranging from 0 through 255 and is separated from
the next component via a period (e.g., 127.0.0.1). In contrast, a 128-bit IP address is commonly specified
as eight 16-bit integer components in colon-separated hexadecimal notation, where each component is a
hexadecimal integer ranging from 0 through FFFF and is separated from the next component via a colon
(e.g., 1080:0:0:0:8:800:200C:417A). A 32-bit IP address is often referred to as an Internet Protocol Version
4 (IPv4) address (see http://en.wikipedia.org/wiki/IPv4). Similarly, a 128-bit IP address is often
referred to as an Internet Protocol Version 6 (IPv6) address (see http://en.wikipedia.org/wiki/IPv6).

Port numbers are 16-bit unsigned integers that uniquely identify processes, which are the sources or
recipients of messages. Port numbers less than 1024 are reserved for standard processes. For example,
port number 25 has traditionally identified the Simple Mail Transfer Protocol (SMTP) process for sending
email, although port number 587 is commonly being used these days (see
http://en.wikipedia.org/wiki/Smtp).

TCP is used to create an ongoing conversation between two hosts by sending messages back and

forth. Before this conversation can occur, a connection must be established between these hosts. After
this connection has been established, TCP enters a pattern of sending a message packet and waiting for
a reply that the packet arrived correctly (or for a timeout to expire when the reply doesn’t arrive because
of a network problem). This send/reply cycle guarantees a reliable connection.

Because it can take time to establish a connection, and because it also takes time to send packets
because of the need to receive reply acknowledgments (or timeouts), TCP is fairly slow. UDP, which
doesn’t require connections and packet acknowledgement, is much faster than TCP. However, UDP isn’t

http://en.wikipedia.org/wiki/IPv4
http://en.wikipedia.org/wiki/IPv6
http://en.wikipedia.org/wiki/Smtp

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

585

as reliable (there’s no guarantee that a packet will arrive correctly or even arrive) as TCP because there’s
no acknowledgment. Furthermore, UDP is limited to single-packet one-way conversations.

The java.net package provides Socket and ServerSocket classes for performing TCP-based
communications. It also provides DatagramSocket, DatagramPacket, and MulticastSocket classes for
performing UDP communications. MulticastSocket is a subclass of DatagramSocket.

Socket Addresses
Instances of the Socket-suffixed classes are associated with socket addresses that are comprised of IP
addresses and port numbers.

The Socket class relies on the java.net.InetAddress class to represent the IPv4 or IPv6 address
portion of the socket address. It represents the port number separately. (The other Socket-suffixed
classes also take advantage of InetAddress.)

 Note InetAddress relies on its java.net.Inet4Address subclass to represent an IPv4 address and on its
java.net.Inet6Address subclass to represent an IPv6 address.

InetAddress declares several class methods for obtaining an InetAddress instance. These methods
include the following:

• InetAddress[] getAllByName(String host) returns an array of InetAddresses that
store the IP addresses associated with host. You can pass either a domain name
(e.g., "tutortutor.ca") or an IP address (e.g., "70.33.247.10") argument to this
parameter. (Check out Wikipedia’s “Domain name” entry
[http://en.wikipedia.org/wiki/Domain_name] to learn about domain names.)
Passing null results in an InetAddress instance that stores the IP address of the
loopback interface (defined shortly). This method throws
java.net.UnknownHostException when no IP address for the specified host can be
found, or when a scope identifier is specified for a global IPv6 address.

• InetAddress getByAddress(byte[] addr) returns an InetAddress object for the
given raw IP address. The argument passed to addr is in network byte order (most
significant byte first) where the highest order byte is in addr[0]. The length of the
addr array must be four bytes long for an IPv4 address and sixteen bytes long for
an IPv6 address. This method throws UnknownHostException when the array’s
length is neither 4 nor 16.

• InetAddress getByAddress(String host, byte[] addr) returns an InetAddress
instance based on the provided host name and IP address. This method throws
UnknownHostException when the array’s length is neither 4 nor 16.

• InetAddress getByName(String host) is equivalent to specifying
getAllByName(host)[0].

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

586

• InetAddress getLocalHost() returns the address of the local host (the current
host), which is represented by hostname localhost or by an IP address that is
typically 127.0.0.1 [IPv4] or ::1 [IPv6)]. This method throws UnknownHostException
when localhost couldn’t be resolved into an address.

• InetAddress getLoopbackAddress() returns the loopback address (a special IP
address that allows network-management software to treat outgoing messages as
incoming messages). The returned InetAddress instance represents the IPv4
loopback address, 127.0.0.1, or the IPv6 loopback address, ::1. The IPv4 loopback
address returned is only one of many in the form 127.*.*.*, where * is a wildcard
that ranges from 0 through 255.

Once you have an InetAddress instance, you can interrogate it by invoking instance methods such
as byte[] getAddress() (return the raw IP address [in network byte order] of this InetAddress object)
and boolean isLoopbackAddress() (determine whether or not this InetAddress instance represents a
loopback address).

Java 1.4 introduced the abstract java.net.SocketAddress class to represent a socket address “with
no protocol attachment.” Perhaps this class’s creator anticipated that Java would eventually support
low-level communication protocols other than the widely popular Internet Protocol.

SocketAddress is subclassed by the concrete java.net.InetSocketAddress class, which represents a
socket address as an IP address and a port number. It can also represent a hostname and a port number,
and will make an attempt to resolve the hostname.

InetSocketAddress instances are created by invoking constructors such as
InetSocketAddress(InetAddress addr, int port). After an instance has been created, you can call
methods such as InetAddress getAddress() and int getPort() to return socket address components.

Socket Options
As well as sharing the concept of socket addresses, the various Socket-suffixed classes share the concept
of socket options. A socket option is a parameter for configuring socket behavior. The following C
language constants identify socket options that the Socket-suffixed classes support via various methods:

• TCP_NODELAY: Disable Nagle’s algorithm
(http://en.wikipedia.org/wiki/Nagle's_algorithm). This option is valid for
Socket.

• SO_LINGER: Specify a linger-on-close timeout. This option is valid for Socket.

• SO_TIMEOUT: Specify a timeout on blocking socket operations. (Don’t block
forever!) This option is valid for Socket, ServerSocket, and DatagramSocket.

• SO_BINDADDR: Fetch the socket’s local address binding. This option is valid for
Socket, ServerSocket, and DatagramSocket.

• SO_REUSEADDR: Enable a socket’s reuse address. This option is valid for Socket,
ServerSocket, and DatagramSocket.

• SO_BROADCAST: Enable a socket to send broadcast messages. This option is valid for
DatagramSocket.

• SO_SNDBUF: Set or get the maximum socket send buffer in bytes. This option is valid
for Socket, ServerSocket, and DatagramSocket.

http://en.wikipedia.org/wiki/Nagle's_algorithm

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

587

• SO_RCVBUF: Set or get the maximum socket receive buffer in bytes. This option is
valid for Socket, ServerSocket, and DatagramSocket.

• SO_KEEPALIVE: Turn on socket keepalive. This option is valid for Socket.

• SO_OOBINLINE: Enable inline reception of TCP urgent data. This option is valid for
Socket.

• IP_MULTICAST_IF: Specify the outgoing interface for multicast packets (on
multihomed [e.g., multiple NIC] hosts). This option is valid for MulticastSocket
only.

• IP_MULTICAST_LOOP: Enable or disable local loopback of multicast datagrams. This
option is valid for MulticastSocket only.

• IP_TOS: Set the type-of-service or traffic class field in the IP header for a TCP or
UDP socket. This option is valid for Socket and DatagramSocket.

The Socket-suffixed classes provide setter and getter methods for setting/getting these options. For
example, Socket declares void setKeepAlive(boolean on) for setting the SO_KEEPALIVE option and
MulticastSocket declares void setLoopbackMode(boolean disable) for setting the IP_MULTICAST_LOOP
option. Check out the JDK documentation on java.net’s Socket-suffixed classes to learn about these and
other socket option methods, to learn more about the various socket options.

 Note Socket options that apply to DatagramSocket also apply to its MulticastSocket subclass.

Socket and ServerSocket
The Socket and ServerSocket classes let you perform TCP-based communications between client
processes (e.g., an application running on your desktop) and server processes (e.g., an application
running on one of your Internet Service Provider’s computers that provides access to the World Wide
Web). Because Socket is associated with the java.io.InputStream and java.io.OutputStream classes,
sockets based on the Socket class are often referred to as stream sockets.

Socket is used to create a socket on the client side. It declares several constructors, including the
following pair:

• Socket(InetAddress address, int port) creates a stream socket and connects it
to the specified port number at the specified IP address. This constructor throws
java.io.IOException when an I/O error occurs while creating the socket,
java.lang.IllegalArgumentException when the argument passed to port is
outside the valid range of port values, which is 0 through 65535, and
java.lang.NullPointerException when address is null.

• Socket(String host, int port) creates a stream socket and connects it to the
specified port number on the named host. When host is null, this constructor is
equivalent to invoking Socket(InetAddress.getByName(null), port). It throws the
same IOException and IllegalArgumentException instances as the previous
constructor. However, instead of throwing NullPointerException, it throws
UnknownHostException when the host’s IP address couldn’t be determined.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

588

When a Socket instance is created via these constructors, it binds to an arbitrary local host socket
address before connecting to the remote host socket address. Binding makes a client socket address
available to a server socket so that a server process can communicate with the client process via the
server socket.

Socket offers additional constructors to give you flexibility. For example, Socket() and Socket(Proxy
proxy) create unbound and unconnected sockets. Before you can use these sockets, you need to bind
them to local socket addresses by calling void bind(SocketAddress bindpoint), and then make
connections by calling Socket’s connect() methods, such as void connect(SocketAddress endpoint).

 Note A proxy is a computer that sits between an intranet and the Internet for security purposes. Proxy settings
are represented by instances of the java.net.Proxy class and help sockets communicate through proxies.

Another constructor is Socket(InetAddress address, int port, InetAddress localAddr, int
localPort), which lets you specify your own local host socket address via localAddr and localPort. This
constructor automatically binds to the local socket address and then attempts a connection to the
remote address.

After creating a Socket instance, and possibly invoking bind() and connect() on that instance, an
application typically invokes Socket’s InputStream getInputStream() and OutputStream
getOutputStream() methods to obtain an input stream for reading bytes from the socket and an output
stream for writing bytes to the socket. Also, the application typically calls Socket’s void close() method
to close the socket once it no longer needs to perform input or output operations.

The following example demonstrates how to create a socket that’s bound to port number 1500 on
the local host and then access its input and output streams—exceptions are ignored for brevity:

Socket socket = new Socket("localhost", 1500);
InputStream is = socket.getInputStream();
OutputStream os = socket.getOutputStream();

I’ve created a GetTime application that demonstrates the Socket class by creating a socket to connect
to an American National Institute of Standards & Technology (NIST) timeserver to retrieve and output
the current time. Listing 9-1 presents this application’s source code.

Listing 9-1. Getting and outputting the current time according to NIST’s implementation of the Daytime

Protocol

import java.io.InputStream;
import java.io.IOException;

import java.net.Socket;
import java.net.UnknownHostException;

class GetTime
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

589

 System.err.println("usage : java GetTime server");
 System.err.println("example: java GetTime time.nist.gov");
 return;
 }
 try (Socket socket = new Socket(args[0], 13))
 {
 InputStream is = socket.getInputStream();
 int ch;
 while ((ch = is.read()) != -1)
 System.out.print((char) ch);
 }
 catch (UnknownHostException uhe)
 {
 System.err.println("unknown host: "+uhe.getMessage());
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
}

Listing 9-1 describes an application that creates a Socket instance connected to a remote server on
port 13, which is reserved for the Internet’s Daytime Protocol. According to this protocol, a client socket
connects to a server process on port 13 and the process implementing Daytime immediately returns an
ASCII (http://en.wikipedia.org/wiki/Ascii) character string containing the current date and time to
the client socket.

 Note The Internet Engineering Task Force publishes memoranda that describe methods, behaviors, research, or
innovations applicable to the working of the Internet and Internet-connected systems. These memoranda are
collectively known as Request For Comment (RFC) documents. RFC 867 describes the Daytime Internet protocol
(http://tools.ietf.org/html/rfc867) and doesn’t mandate a specific syntax for the ASCII string (its
implementers are free to use their own syntax).

Various timeservers implement Daytime (e.g., the server running on the computer associated with
Internet domain name time.nist.gov). Recognizing this fact, GetTime requires you to specify the
timeserver domain name as a command-line argument. For example, when you specify java GetTime
time.nist.gov, you’ll receive output similar to that shown here:

55811 11-09-07 22:03:15 50 0 0 816.1 UTC(NIST) *

This output conforms to the following NIST syntax for the Daytime protocol:

JJJJJ YR-MO-DA HH:MM:SS TT L H msADV UTC(NIST) OTM

These fields have the following meanings:

• JJJJJ specifies the Julian date.

http://en.wikipedia.org/wiki/Ascii
http://tools.ietf.org/html/rfc867

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

590

• YR-MO-DA specifies the date in year/month/day format.

• HH:MM:SS specifies the time in hour/minute/second format. This time is expressed
in Coordinated Universal Time (UTC)—see http://en.wikipedia.org/wiki/UTC.

• TT indicates whether the timer server is on Standard Time (ST) or Daylight Saving
Time (DST), where 00 indicates Standard Time and 50 indicates DST.

• L indicates how to deal with a leap second at the end of the month; it’s one of 0 (no
leap second), +1 (add one leap second), or -1 (subtract one leap second).

• H indicates the health of the timeserver. It’s one of 0 (healthy) or a positive integer
(not healthy).

• msADV indicates the number of milliseconds that the time has been advanced to
compensate for network delays.

• UTC(NIST) identifies the originator of the msADV value.

• OTM indicates an ontime marker.

Check out the web page at http://www.nist.gov/pml/div688/grp40/its.cfm to learn more about this
syntax.

Although you can read bytes from or write bytes to the socket via the InputStream and OutputStream
references, you’ll typically use these references as the basis for more convenient character I/O streams
by wrapping them in instances of the java.io.BufferedReader and java.io.PrintWriter classes, as
demonstrated as follows:

InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
PrintWriter pw = new PrintWriter(os);

The first line creates a reader that bridges an incoming stream of bytes to an outgoing stream of
characters that are decoded from the bytes according to the default character encoding (see Chapter 8).
The returned reader is then passed to BufferedReader to improve performance and to obtain access to
BufferedReader’s String readLine() method, which conveniently lets you read a string of characters
terminated by any one of a line feed ('\n'), a carriage return ('\r'), or a carriage return followed
immediately by a linefeed.

The third line uses the PrintWriter(OutputStream out) constructor to create a PrintWriter instance
for writing a string of characters to the output stream, and converting these characters to a stream of
bytes via an internally created output stream writer instance set to the default character encoding.

When you call this constructor, it doesn’t automatically flush bytes to the output stream when you
invoke a println() method. To ensure that bytes are output, you’ll need to invoke the flush() method
after println(). However, you can ensure that flushing takes place by using the
PrintWriter(OutputStream out, boolean autoFlush) constructor and passing true to autoFlush.

ServerSocket is used to create the server end of a TCP connection. A server socket waits for requests
to come in over the network. It performs some operation based on that request, and then possibly
returns a result to the requester.

While the server socket is processing a request, additional requests might arrive. These requests are
stored in a queue for subsequent processing.

ServerSocket declares four constructors:

http://en.wikipedia.org/wiki/UTC
http://www.nist.gov/pml/div688/grp40/its.cfm

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

591

• ServerSocket() creates an unbound server socket. You can bind this socket to a
specific socket address (to which client sockets communicate) by invoking either
of ServerSocket’s two bind() methods. Binding makes the server socket address
available to a client socket so that a client process can communicate with the
server process via the client socket. This constructor throws IOException when an
I/O error occurs while attempting to open the socket.

• ServerSocket(int port) creates a server socket bound to the specified port value
and an IP address associated with one of the host’s NICs. When you pass 0 to port,
an arbitrary port number is chosen. The port number can be retrieved by calling
int getLocalPort(). The maximum queue length for incoming connection
indications (connection requests from clients) is set to 50. If a connection
indication arrives when the queue is full, the connection is refused. This
constructor throws IOException when an I/O error occurs while attempting to
open the socket, and IllegalArgumentException when port’s value lies outside the
specified range of valid port values, which is between 0 and 65535, inclusive.

• ServerSocket(int port, int backlog) is equivalent to the previous constructor,
but it also lets you specify the maximum queue length by passing a positive
integer to backlog.

• ServerSocket(int port, int backlog, InetAddress bindAddr) is equivalent to
the previous constructor, but it also lets you specify a different IP address to which
the server socket binds. This constructor is useful for machines that have multiple
NICs and you want to listen for connection indications on a specific NIC.

After creating a server socket, a server application enters a loop where it first invokes ServerSocket’s
Socket accept() method to listen for a connection indication and return a Socket instance that lets it
communicate with the associated client socket. It then communicates with the client socket to perform
some kind of processing. When processing finishes, the server socket calls the client socket’s close()
method to terminate its connection with the client.

 Note ServerSocket declares a void close() method for closing a server socket before terminating the server
application.

The following example demonstrates how to create a server socket that’s bound to port 1500 on the
current host, listen for incoming connection indications, return their sockets, perform work on those
sockets, and close the sockets—exceptions are ignored for brevity:

ServerSocket ss = new ServerSocket(1500);
while (true)
{
 Socket socket = ss.accept();
 // obtain socket input/output streams and communicate with socket
 socket.close();
}

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

592

The accept() method call blocks until a connection indication is available, and then returns a
Socket object so that the server application can communicate with its associated client. The socket is
closed after this communication takes place.

This example assumes that socket communication takes place on the server application’s main
thread, which is a problem when processing takes time to perform because server response time to
incoming connection indications decreases. To speed up this response time, it’s often necessary to
communicate with the socket on a worker thread, as demonstrated in the following example:

ServerSocket ss = new ServerSocket(1500);
while (true)
{
 final Socket s = ss.accept();
 new Thread(new Runnable()
 {
 private volatile Socket socket = s;
 @Override
 public void run()
 {
 // obtain socket input/output streams and communicate with socket
 try { socket.close(); } catch (IOException ioe) {}
 }
 }).start();
}

Each time a connection indication arrives, accept() returns a Socket instance, and then a
java.lang.Thread object is created whose runnable accesses that socket for communicating with the
socket on a worker thread.

Because the socket assignment (socket = s) takes place on the server application’s main thread,
and because socket is also accessed on the worker thread, socket must be declared volatile to address
situations where the main and worker threads run on different processors or cores and have their own
cached copies of the socket reference variable.

 Tip Although this example uses the Thread class, you could use an executor (see Chapter 6) instead.

To demonstrate ServerSocket and Socket, I’ve created ChatServer and ChatClient applications that
let multiple users communicate. Listing 9-2 presents ChatServer’s source code.

Listing 9-2. Letting multiple users communicate

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.PrintWriter;

import java.net.ServerSocket;
import java.net.Socket;

import java.util.ArrayList;

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

593

import java.util.List;

class ChatServer
{
 private final static int PORT_NO = 8010;
 private ServerSocket listener;
 private List<Connection> clients;
 ChatServer() throws IOException
 {
 listener = new ServerSocket(PORT_NO);
 clients = new ArrayList<>();
 System.out.println("listening on port "+PORT_NO);
 }
 void runServer()
 {
 try
 {
 while (true)
 {
 Socket socket = listener.accept();
 System.out.println("accepted connection");
 Connection con = new Connection(socket);
 synchronized(clients)
 {
 clients.add(con);
 con.start();
 if (clients.size() == 1)
 con.send("welcome...you're the first user");
 else
 con.send("welcome...you're the latest of "+clients.size()+
 " users");
 }
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 return;
 }
 }
 private class Connection extends Thread
 {
 private volatile BufferedReader br;
 private volatile PrintWriter pw;
 private String clientName;
 Connection(Socket s) throws IOException
 {
 br = new BufferedReader(new InputStreamReader(s.getInputStream()));
 pw = new PrintWriter(s.getOutputStream(), true);
 }
 @Override
 public void run()

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

594

 {
 String line;
 try
 {
 clientName = br.readLine();
 sendClientsList();
 while ((line = br.readLine()) != null)
 broadcast(clientName+": "+line);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 finally
 {
 System.out.println(clientName+": "+"finished");
 synchronized(clients)
 {
 clients.remove(this);
 broadcast("now "+clients.size()+" users");
 sendClientsList();
 }
 }
 }
 private void broadcast(String message)
 {
 System.out.println("broadcasting "+message);
 synchronized(clients)
 {
 for (Connection con: clients)
 con.send(message);
 }
 }
 private void send(String message)
 {
 pw.println(message);
 }
 private void sendClientsList()
 {
 StringBuilder sb = new StringBuilder();
 synchronized(clients)
 {
 for (Connection con: clients)
 {
 sb.append(con.clientName);
 sb.append(" ");
 }
 broadcast("!"+sb.toString());
 }
 }
 }
 public static void main(String[] args)

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

595

 {
 try
 {
 System.out.println("ChatServer starting");
 new ChatServer().runServer();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to create server socket");
 }
 }
}

Listing 9-2’s ChatServer class consists of private constant/nonconstant fields, a constructor, a void
runServer() method, a private Connection nested class that subclasses Thread, and a main() method that
invokes this constructor followed by runServer() via method call chaining (see Chapter 2).

The constructor attempts to create a server socket; when successful, it creates an array list that
stores Connection objects representing incoming connection indications from chat clients.

The runServer() method enters an infinite loop that first invokes accept() to wait for a connection
indication and return a Socket instance for communicating with the associated client. It then creates a
Connection object that’s linked to the Socket instance, adds the Connection object to the clients array,
starts the Connection thread, and sends a greeting message to the client associated with the Connection
object’s socket.

When the Connection thread’s run() method starts running, it first obtains the client’s name (the
name of the user running the client application) via a readLine() method call. It then invokes
Connection’s void sendClientsList() method to notify all clients about the latest client to join the chat.

sendClientsList() provides this notification by first building an exclamation mark (!)-prefixed
string of space-separated client names, and then invoking Connection’s void broadcast(String
message) method to broadcast this string to all clients participating in the chat.

In turn, broadcast() invokes Connection’s void send(message) method on each Connection object
stored in the clients array.

The Connection thread’s run() method then enters a loop that uses readLine() to read each line
from the client, and then broadcasts this line with the client name as a prefix to all clients.

At some point, the client’s socket will be closed when its user chooses to quit the chat. This act
causes readLine() to return null, which ends the loop and causes the try statement’s finally clause to
execute. This clause removes the client’s Connection object from the clients array and broadcasts
messages that identify the number of remaining clients and their names.

Although ChatServer is conceptually simple, its use of volatile and thread synchronization make it
appear more difficult.

I declare a variable volatile wherever it can be accessed by multiple threads. The idea is to ensure
that ChatServer will work on multicore/multiprocessor machines that contain separated cached copies
of the variable.

I use synchronization to ensure that clients have a consistent view of the chat server’s state. For
example, runServer() executes clients.add(con); through con.send("welcome...you're the latest of
"+clients.size()+" users"); in a synchronized block, and also executes clients.remove(this);
through sendClientsList(); in another synchronized block that synchronizes on the same clients
object, so that a client cannot be removed in between a client being added and a message sent to that
client about the current number of clients, and also so that a client cannot be added in between a client
being removed and all remaining clients being notified about the current number of clients.

Compile this source code (javac ChatServer.java) and run the application (java ChatServer). It
responds by presenting the following output in its command window:

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

596

ChatServer starting
listening on port 8010

Listing 9-3 presents ChatClient’s source code.

Listing 9-3. Accessing the chat server

import java.awt.BorderLayout;
import java.awt.EventQueue;
import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.PrintWriter;

import java.net.Socket;

import javax.swing.BorderFactory;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

import javax.swing.border.Border;
import javax.swing.border.EtchedBorder;

class ChatClient
{
 final static String SERVER_ADDR = "localhost";
 final static int SERVER_PORT = 8010;
 static Socket socket;
 static volatile BufferedReader br;
 static PrintWriter pw;
 static JButton btnSend;
 static JPanel createGUI()
 {
 JPanel pnlLayout = new JPanel();
 pnlLayout.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
 pnlLayout.setLayout(new BorderLayout());
 JPanel pnlLeft = new JPanel();
 pnlLeft.setLayout(new BorderLayout());
 final JTextField txtUsername = new JTextField(30);
 pnlLeft.add(txtUsername, BorderLayout.NORTH);
 final JTextArea txtInput = new JTextArea(5, 30);
 txtInput.setEnabled(false);
 pnlLeft.add(new JScrollPane(txtInput), BorderLayout.CENTER);

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

597

 final JTextArea txtOutput = new JTextArea(10, 30);
 txtOutput.setFocusable(false);
 pnlLeft.add(new JScrollPane(txtOutput), BorderLayout.SOUTH);
 pnlLayout.add(pnlLeft, BorderLayout.WEST);
 JPanel pnlRight = new JPanel();
 pnlRight.setLayout(new BorderLayout());
 final JTextArea txtUsers = new JTextArea(10, 10);
 txtUsers.setFocusable(false);
 Border border = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);
 txtUsers.setBorder(border);
 pnlRight.add(txtUsers, BorderLayout.NORTH);
 JPanel pnlButtons = new JPanel();
 pnlButtons.setLayout(new GridLayout(3, 1));
 final JButton btnConnect = new JButton("Connect");
 ActionListener al;
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 txtUsername.setFocusable(false);
 String username = txtUsername.getText().trim();
 try
 {
 socket = new Socket(SERVER_ADDR, SERVER_PORT);
 btnConnect.setEnabled(false);
 InputStreamReader isr;
 isr = new InputStreamReader(socket.getInputStream());
 br = new BufferedReader(isr);
 pw = new PrintWriter(socket.getOutputStream(), true);
 txtOutput.append(br.readLine()+"\n");
 pw.println((!username.equals(""))?username:"unknown");
 txtInput.setEnabled(true);
 btnSend.setEnabled(true);
 new Thread(new Runnable()
 {
 @Override
 public void run()
 {
 String line;
 try
 {
 while ((line = br.readLine()) != null)
 {
 if (line.charAt(0) != '!')
 {
 txtOutput.append(line+"\n");
 continue;
 }
 txtUsers.setText("");
 String[] users;
 users = line.substring(1)

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

598

 .split(" ");
 for (String user: users)
 {
 txtUsers.append(user);
 txtUsers.append("\n");
 }
 }
 }
 catch (IOException ioe)
 {
 txtOutput.append("lost the link");
 return;
 }
 }
 }).start();
 }
 catch (Exception e)
 {
 txtOutput.append("unable to connect to server");
 }
 }
 };
 btnConnect.addActionListener(al);
 pnlButtons.add(btnConnect);
 btnSend = new JButton("Send");
 btnSend.setEnabled(false);
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 pw.println(txtInput.getText());
 txtInput.setText("");
 }
 };
 btnSend.addActionListener(al);
 pnlButtons.add(btnSend);
 JButton btnQuit = new JButton("Quit");
 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 if (socket != null)
 socket.close();
 }
 catch (IOException ioe)
 {
 }
 System.exit(0);

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

599

 }
 };
 btnQuit.addActionListener(al);
 pnlButtons.add(btnQuit);
 pnlRight.add(pnlButtons, BorderLayout.SOUTH);
 pnlLayout.add(pnlRight, BorderLayout.EAST);
 return pnlLayout;
 }
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 JFrame f = new JFrame("ChatClient");
 f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 f.setContentPane(createGUI());
 f.pack();
 f.setResizable(false);
 f.setVisible(true);
 }
 };
 EventQueue.invokeLater(r);
 }
}

Listing 9-3’s ChatClient class consists of constant/nonconstant fields, a JPanel createGUI() class
method for creating this application’s graphical user interface (GUI), and a main() method for creating
the GUI and running the application.

The GUI-creation code presents a couple of items that I didn’t discuss in Chapter 7 (for brevity):

• The java.awt.Component class declares a void setFocusable(boolean focusable)
method for setting a component’s focusable state. In other words, it determines
whether or not the user can tab to or click on the component to give that
component input focus (e.g., letting the user enter characters in a textfield).
Passing false to this method prevents the component from receiving input focus,
and I do so on the various textfield/textarea components for this purpose.
Although I could have called setEnabled(false) to achieve the same result, I
didn’t do this because a disabled textfield’s/textarea’s text appears faint and is
hard to read (at least under the default Metal Look and Feel). In contrast, the text
is strong and easy to read when the component is not focusable.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

600

• The java.awt.BorderLayout class is used extensively to lay out the GUI. It lets you
arrange up to five components in the north, south, east, west, and center areas of
its associated container. Components are laid out according to their preferred
sizes and the constraints of the container’s size. The north and south components
may be stretched horizontally; the east and west components may be stretched
vertically; the center component may stretch horizontally and vertically to fill any
space left over. When adding a component to a container that’s managed by a
border layout, java.awt.Container’s void add(Component comp, Object
constraints) method is called with one of BorderLayout’s java.lang.String-based
constraint constants (e.g., NORTH) as the second argument, to tell the layout
manager where to place the component.

The listeners attached to the Connect, Send, and Quit buttons show you how to create a socket that
connects to the chat server, communicate with the chat server, and close the socket.

ChatServer and ChatClient communicate over the same port number (8010). Also, ChatClient
assumes that ChatServer is running on the same computer by specifying localhost (127.0.0.1). If
ChatServer ran on a different computer, you would specify that computer’s domain name/IP address
instead.

Compile Listing 9-3 (javac ChatClient.java). Assuming that ChatServer is running, start a pair of
ChatClient instances by executing java ChatClient in two different command windows.

Figure 9-2 shows users Jack and Jill communicating over their chat clients.

Figure 9-2. Jack is preparing to send a message to Jill.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

601

Enter a name in the top textfield and click the Connect button to connect to the chat server. When
no name is specified, the chat client chooses unknown for the username—you cannot change the
username after clicking Connect. The textarea to the right of the username textfield displays all users
engaged in the chat.

Continue by entering text in the input textarea that appears below the username textfield, and click
the Send button to send the entered text to all users. This text appears in the output textarea that
appears below the input textarea.

Finally, click the Quit button to terminate the chat.

DatagramSocket and MulticastSocket
The DatagramSocket and MulticastSocket classes let you perform UDP-based communications between
a pair of hosts (DatagramSocket) or between multiple hosts (MulticastSocket). With either class, you
communicate one-way messages via datagram packets, which are arrays of bytes associated with
instances of the DatagramPacket class.

 Note Although you might think that Socket and ServerSocket are all that you need, DatagramSocket (and its
MulticastSocket subclass) have their uses. For example, consider a scenario where a group of machines need to
occasionally tell a server that they’re alive. It shouldn’t matter when the occasional message is lost or even when
the message doesn’t arrive on time. Another example is a low-priority stock ticker that periodically broadcasts
stock prices. When a packet doesn’t arrive, odds are that the next packet will arrive and you’ll then receive
notification of the latest prices. Timely rather than reliable or orderly delivery is more important in realtime
applications.

DatagramPacket declares several constructors with DatagramPacket(byte[] buf, int length) being
the simplest. This constructor requires you to pass byte array and integer arguments to buf and length,
where buf is a data buffer that stores data to be sent or received, and length (which must be less than or
equal to buf.length) specifies the number of bytes (starting at buf[0]) to send or receive.

The following example demonstrates this constructor:

byte[] buffer = new byte[100];
DatagramPacket dgp = new DatagramPacket(buffer, buffer.length);

 Note Additional constructors let you specify an offset into buf that identifies the storage location of the first
outgoing or incoming byte, and/or let you specify a destination socket address.

DatagramSocket describes a socket for the client or server side of the UDP-communication link.
Although this class declares several constructors, I find it convenient in this chapter to use the
DatagramSocket() constructor for the client side and the DatagramSocket(int port) constructor for the

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

602

server side. Either constructor throws java.net.SocketException when it cannot create the datagram
socket or bind the datagram socket to a local port.

After an application instantiates DatagramSocket, it calls void send(DatagramPacket dgp) and void
receive(DatagramPacket dgp) to send and receive datagram packets.

Listing 9-4 demonstrates DatagramPacket and DatagramSocket in a server context.

Listing 9-4. Receiving datagram packets from and echoing them back to clients

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.DatagramSocket;

class DGServer
{
 final static int PORT = 10000;
 public static void main(String[] args) throws IOException
 {
 System.out.println("Server is starting");
 try (DatagramSocket dgs = new DatagramSocket(PORT))
 {
 System.out.println("Send buffer size = "+dgs.getSendBufferSize());
 System.out.println("Receive buffer size = "+
 dgs.getReceiveBufferSize());
 byte[] data = new byte[100];
 DatagramPacket dgp = new DatagramPacket(data, data.length);
 while (true)
 {
 dgs.receive(dgp);
 System.out.println(new String(data));
 dgs.send(dgp);
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
}

Listing 9-4’s main() method first creates a DatagramSocket object and binds the socket to port 10000
on the local host. It then invokes DatagramSocket’s int getSendBufferSize() and int
getReceiveBufferSize() methods to get the values of the SO_SNDBUF and SO_RCVBUF socket options, which
are then output.

 Note Sockets are associated with underlying platform send and receive buffers, and their sizes are accessed by
calling getSendBufferSize() and getReceiverBufferSize(). Similarly, their sizes can be set by calling
DatagramSocket’s void setReceiveBufferSize(int size) and void setSendBufferSize(int size)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

603

methods. Although you can adjust these buffer sizes to improve performance, there’s a practical limit with regard
to UDP. The maximum size of a UDP packet that can be sent or received is 65,507 bytes under IPv4—it’s derived
from subtracting the 8-byte UDP header and 20-byte IP header values from 65,535. Although you can specify a
send/receive buffer with a greater value, doing so is wasteful because the largest packet is restricted to 65,507
bytes. Also, attempting to send/receive a packet greater than 65,507 bytes (regardless of buffer size) results in
IOException.

main() next instantiates DatagramPacket in preparation for receiving a datagram packet from a client
and then echoing the packet back to the client. It assumes that packets will be 100 bytes or less in size.

Finally, main() enters an infinite loop that receives a packet, outputs packet content, and sends the
packet back to the client—the client’s addressing information is stored in DatagramPacket.

Compile Listing 9-4 (javac DGServer.java) and run the application (java DGClient). You should
observe output that’s the same as or similar to that shown here:

Server is starting
Send buffer size = 8192
Receive buffer size = 8192

Listing 9-5 demonstrates DatagramPacket and DatagramSocket in a client context.

Listing 9-5. Sending a datagram packet to and receiving it back from a server

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;

class DGClient
{
 final static int PORT = 10000;
 final static String ADDR = "localhost";
 public static void main(String[] args)
 {
 System.out.println("client is starting");
 DatagramSocket s = null;
 try (DatagramSocket dgs = new DatagramSocket())
 {
 byte[] buffer;
 buffer = "Send me a datagram".getBytes();
 InetAddress ia = InetAddress.getByName(ADDR);
 DatagramPacket dgp = new DatagramPacket(buffer, buffer.length, ia,
 PORT);
 dgs.send(dgp);
 byte[] buffer2 = new byte[100];
 dgp = new DatagramPacket(buffer2, buffer.length, ia, PORT);
 dgs.receive(dgp);
 System.out.println(new String(dgp.getData()));

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

604

 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
}

Listing 9-5 is similar to Listing 9-4, but there’s one big difference. I use the DatagramPacket(byte[]
buf, int length, InetAddress address, int port) constructor to specify the server’s destination,
which happens to be port 10000 on the local host, in the datagram packet. The send() method call routes
the packet to this destination.

Compile Listing 9-5 (javac DGClient.java) and run the application (java DGClient). Assuming that
DGServer is also running, you should observe the following output in DGClient’s command window (and
the last line of this output in DGServer’s command window):

client is starting
Send me a datagram

MulticastSocket describes a socket for the client or server side of a UDP-based multicasting session.
Two commonly used constructors are MulticastSocket() (create a multicast socket not bound to a port)
and MulticastSocket(int port) (create a multicast socket bound to the specified port).

WHAT IS MULTICASTING?

Previous examples have demonstrated unicasting, which occurs when a server sends a message to a
single client. However, it’s also possible to broadcast the same message to multiple clients (e.g., transmit
a “school closed due to bad weather” announcement to all members of a group of parents who have
registered with an online program to receive this announcement); this activity is known as multicasting.

A server multicasts by sending a sequence of datagram packets to a special IP address, which is known as
a multicast group address, and a specific port (as specified by a port number). Clients wanting to receive
those datagram packets create a multicast socket that uses that port number. They request to join the
group through a join group operation that specifies the special IP address. At this point, the client can
receive datagram packets sent to the group, and can even send datagram packets to other group
members. After the client has read all datagram packets that it wants to read, it removes itself from the
group by applying a leave group operation that specifies the special IP address.

IPv4 addresses 224.0.0.1 to 239.255.255.255 (inclusive) are reserved for use as multicast group
addresses.

Listing 9-6 presents a multicasting server.

Listing 9-6. Multicasting datagram packets

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.InetAddress;

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

605

import java.net.MulticastSocket;

class MCServer
{
 final static int PORT = 10000;
 public static void main(String[] args)
 {
 try (MulticastSocket mcs = new MulticastSocket())
 {
 InetAddress group = InetAddress.getByName("231.0.0.1");
 byte[] dummy = new byte[0];
 DatagramPacket dgp = new DatagramPacket(dummy, 0, group, PORT);
 int i = 0;
 while (true)
 {
 byte[] buffer = ("line "+i).getBytes();
 dgp.setData(buffer);
 dgp.setLength(buffer.length);
 mcs.send(dgp);
 i++;
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
}

Listing 9-6’s main() method first creates a MulticastSocket instance via the MulticastSocket()
constructor. The multicast socket doesn’t need to bind to a port number because the port number is
specified along with the multicast group’s IP address (231.0.0.1) as part of the DatagramPacket instance
that’s subsequently created. (The dummy array is present to prevent a NullPointerException object from
being thrown from the DatagramPacket constructor—this array isn’t used to store data to be
broadcasted.)

At this point, main() enters an infinite loop that first creates an array of bytes from a String instance,
and uses the platform’s default character encoding (see Chapter 8) to convert from Unicode characters
to bytes. (Although extraneous StringBuilder and String objects are created via expression "line "+i in
each loop iteration I’m not worried about their impact on garbage collection in this short throwaway
application.)

This data buffer is subsequently assigned to the DatagramPacket instance by calling its void
setData(byte[] buf) method, and then the datagram packet is broadcast to all members of the group
associated with port 10000 and multicast IP address 231.0.0.1.

Compile Listing 9-6 (javac MCServer.java) and run this application (java MCServer). You shouldn’t
observe any output.

Listing 9-7 presents a multicasting client.

Listing 9-7. Receiving multicasted datagram packets

import java.io.IOException;

import java.net.DatagramPacket;

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

606

import java.net.InetAddress;
import java.net.MulticastSocket;

class MCClient
{
 final static int PORT = 10000;
 public static void main(String[] args)
 {
 try (MulticastSocket mcs = new MulticastSocket(PORT))
 {
 InetAddress group = InetAddress.getByName("231.0.0.1");
 mcs.joinGroup(group);
 for (int i = 0; i < 10; i++)
 {
 byte[] buffer = new byte[256];
 DatagramPacket dgp = new DatagramPacket(buffer, buffer.length);
 mcs.receive(dgp);
 byte[] buffer2 = new byte[dgp.getLength()];
 System.arraycopy(dgp.getData(), 0, buffer2, 0, dgp.getLength());
 System.out.println(new String(buffer2));
 }
 mcs.leaveGroup(group);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
}

Listing 9-7’s main() method first creates a MulticastSocket instance bound to port 10000 via the
MulticastSocket(int port) constructor.

It then obtains an InetAddress object that contains multicast group IP address 231.0.0.1, and uses
this object to join the group at this address by calling MulticastSocket’s void joinGroup(InetAddress
mcastaddr) method.

main() next receives ten datagram packets, prints their contents, and leaves the group by calling
MulticastSocket’s void leaveGroup(InetAddress mcastaddr) method with the same multicast IP address
as its argument.

 Note joinGroup() and leaveGroup() throw IOException when an I/O error occurs while attempting to join or
leave the group, or when the IP address is not a multicast IP address.

Because the client doesn’t know exactly how long the arrays of bytes will be, it assumes 256 bytes to
ensure that the data buffer will hold the entire array. If it tried to print out the returned array, you would
see a lot of empty space after the actual data had been printed. To eliminate this space, it invokes
DatagramPacket’s int getLength() method to obtain the actual length of the array, creates a second byte
array (buffer2) with this length, and uses System.arraycopy()—discussed in Chapter 4—to copy this

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

607

many bytes to buffer2. After converting this byte array to a String object (via the String(byte[] bytes)
constructor, which uses the platform’s default character set—see Chapter 8 to learn about character
sets), it prints the resulting characters to the standard output device.

Compile Listing 9-7 (javac MCClient.java) and run this application (java MCClient). You should
observe output similar to the following:

line 521103
line 521104
line 521105
line 521106
line 521107
line 521108
line 521109
line 521110
line 521111
line 521112

Communicating via URLs
A Uniform Resource Locator (URL) is a character string that specifies where a resource (e.g., a web page)
is located on a TCP/IP-based network (e.g., the Internet). Also, it provides the means to retrieve that
resource. For example, http://tutortutor.ca is a URL that locates my website’s main page. The http://
prefix specifies that HyperText Transfer Protocol (HTTP), which is a high-level protocol on top of TCP/IP
for locating HTTP resources (e.g., web pages), must be used to retrieve the web page located at
tutortutor.ca.

URNS AND URIS

A Uniform Resource Name (URN) is a character string that doesn’t imply a resource’s availability. Even
when the resource is available, the URN doesn’t provide a way to locate it. For example,
urn:isbn:9781430234135 identifies an Apress book named Android Recipes, and that’s all.

URNs and URLs are examples of Uniform Resource Identifiers (URIs), which are character strings for
identifying names (URNs) or resources (URLs). Every URN and URL is also a URI, a fact that I take
advantage of in subsequent chapters by specifying URI instead of URL.

The java.net package provides URL and URLConnection classes for accessing URL-based resources. It

also provides URLEncoder and URLDecoder classes for encoding and decoding URLs, and the URI class for
performing URI-based operations (e.g., relativization) and returning URL instances containing the
results.

URL and URLConnection
The URL class represents URLs and provides access to the resources to which they refer. Each URL
instance unambiguously identifies an Internet resource.

URL declares several constructors with URL(String s) being the simplest. This constructor creates a
URL instance from the String argument passed to s and is demonstrated as follows:

http://tutortutor.ca

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

608

try
{
 URL url = new URL("http://tutortutor.ca");
}
catch (MalformedURLException murle)
{
}

This example creates a URL object that uses HTTP to access the web page at http://tutortutor.ca. If
I specified an illegal URL (e.g., foo), the constructor would throw java.net.MalformedURLException (an
IOException subclass).

Although you’ll commonly specify http:// as the protocol prefix, this isn’t your only choice. For
example, you can also specify file:/// when the resource is located on the local host. Furthermore, you
can prepend jar: to either http:// or file:/// when the resource is stored in a JAR file, as demonstrated
here:

jar:file:///C:./rt.jar!/com/sun/beans/TypeResolver.class

The jar: prefix indicates that you want to access a JAR file resource (e.g., a stored classfile). The
file:/// prefix identifies the local host’s resource location, which happens to be rt.jar (Java 7’s
runtime JAR file) in the current directory on the Windows C: hard drive in this example.

The path to the JAR file is followed by an exclamation mark (!) to separate the JAR file path from the
JAR resource path, which happens to be the /com/sun/beans/TypeResolver.class classfile entry in this
JAR file (the leading / character is required).

 Note The URL class in Oracle’s Java reference implementation supports additional protocols, including ftp and
mailto.

After creating a URL object, you can invoke various URL methods to access portions of the URL. For
example, String getProtocol() returns the protocol portion of the URL (e.g., http). You can also retrieve
the resource by calling the InputStream openStream() method.

openStream() creates a connection to the resource and returns an InputStream instance for reading
resource data from that connection, as demonstrated here:

try (InputStream is = url.openStream())
{
 int ch;
 while ((ch = is.read()) != -1)
 System.out.print((char) ch);
}

 Note For an HTTP connection, an internal socket is created that connects to HTTP port 80 on the server
identified via the URL’s domain name/IP address, unless you append a different port number to the domain
name/IP address (e.g., http://tutortutor.ca:8080).

http://tutortutor.ca
http://tutortutor.ca
http://tutortutor.ca:8080

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

609

I’ve created an application that demonstrates locating and accessing an arbitrary resource. Listing
9-8 presents its source code.

Listing 9-8. Outputting the contents of the resource identified via a URL command-line argument

import java.io.InputStream;
import java.io.IOException;

import java.net.MalformedURLException;
import java.net.URL;

class GetResource
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java GetResource url");
 return;
 }
 try
 {
 URL url = new URL(args[0]);
 try (InputStream is = url.openStream())
 {
 int ch;
 while ((ch = is.read()) != -1)
 System.out.print((char) ch);
 }
 }
 catch (MalformedURLException murle)
 {
 System.err.println("invalid URL");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: "+ioe.getMessage());
 }
 }
}

Compile this source code (javac GetResource.java) and execute java GetResource
http://tutortutor.ca. The following output presents a short prefix of the returned web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

<html>
 <head>
 <title>
 TutorTutor -- /main
 </title>

http://tutortutor.ca
http://www.w3.org/TR/html4/strict.dtd

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

610

openStream() is a convenience method for invoking openConnection().getInputStream(). Each of
URL’s URLConnection openConnection() and URLConnection openConnection(Proxy proxy) methods
returns an instance of the java.net.URLConnection class, which represents a communications link
between the application and a URL.

URLConnection gives you additional control over client/server communication. For example, you can
use this class to output content to various resources that accept content. In contrast, URL only lets you
input content via openStream().

URLConnection declares various methods, including the following:

• InputStream getInputStream() returns an input stream that reads from this open
connection.

• OutputStream getOutputStream() returns an output stream that writes to this open
connection.

• void setDoInput(boolean doinput) specifies that this URLConnection object
supports (pass true to doinput) or doesn’t support (pass false to doinput) input.
Because true is the default, you would only pass true to this method to document
your intention to perform input (as I demonstrate in Chapter 11).

• void setDoOutput(boolean dooutput) specifies that this URLConnection object
supports (pass true to dooutput) or doesn’t support (pass false to dooutput)
output. Because false is the default, you must call this method before you can
perform output (as demonstrated in Chapter 11).

• void setRequestProperty(String key, String value) sets a request property
(e.g., HTTP’s accept property). When a key already exists, its value is overwritten
with the specified value.

The following example shows you how to obtain a URLConnection object from a URL object
referenced by precreated variable url, set its dooutput property, and obtain an output stream for writing
to the resource:

URLConnection urlc = url.openConnection();
urlc.setDoOutput(true);
OutputStream os = urlc.getOutputStream();

URLConnection is subclassed by java.net.HttpURLConnection and java.net.JarURLConnection. These
classes declare constants and/or methods that are specific to working with the HTTP protocol or
interacting with JAR-based resources.

 Note For brevity, I refer you to the JDK documentation on URLConnection, HttpURLConnection, and
JarURLConnection; and to Chapter 11’s HttpURLConnection examples for more information.

URLEncoder and URLDecoder
HyperText Markup Language (HTML) lets you introduce forms into web pages that solicit information
from page visitors. After filling out a form’s fields, the visitor clicks the form’s Submit button (which
often has a different label) and the form content (field names and values) is sent to some server program.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

611

Before sending the form content to the server program, a web browser encodes this data by
replacing spaces and other URL-illegal characters, and sets the content’s Multipurpose Internet Mail
Extensions (MIME) type to application/x-www-form-urlencoded.

 Note The data is encoded for HTTP POST and GET operations. Unlike POST, GET requires a query string (a ?-
prefixed string containing the encoded content) to be appended to the server program’s URL.

The java.net package provides URLEncoder and URLDecoder classes to assist you with the tasks of
encoding and decoding form content.

URLEncoder applies the following encoding rules:

• Alphanumeric characters “a” through “z”, “A” through “Z”, and “0” through “9”
remain the same.

• Special characters “.”, “-”, “*”, and “_” remain the same.

• The space character “ ” is converted into a plus sign “+” on Internet Explorer and
“%20” on Firefox.

• All other characters are unsafe and are first converted into one or more bytes
using some encoding scheme. Each byte is then represented by the three-
character string %xy, where xy is the two-digit hexadecimal representation of that
byte. The recommended encoding scheme to use is UTF-8. However, for
compatibility reasons, the platform’s default encoding is used when an encoding
isn’t specified.

For example, using UTF-8 as the encoding scheme, the string "The string ü@foo-bar" is converted
to "The+string+%C3%BC%40foo-bar". In UTF-8, character ü is encoded as two bytes C3 (hex) and BC (hex),
and character @ is encoded as one byte 40 (hex).

URLEncoder declares the following class method for encoding a string:

String encode(String s, String enc)

This method translates the String argument passed to s into application/x-www-form-urlencoded
format using encoding scheme enc. It uses the supplied encoding scheme to obtain the bytes for unsafe
characters, and throws java.io.UnsupportedEncodingException when enc’s value isn’t supported.

URLDecoder applies the following decoding rules:

• Alphanumeric characters “a” through “z”, “A” through “Z”, and “0” through “9”
remain the same.

• Special characters “.”, “-”, “*”, and “_” remain the same.

• The plus sign “+”/“%20” is converted into a space character “ ”.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

612

• A sequence of the form %xy will be treated as representing a byte where xy is the
two-digit hexadecimal representation of the 8 bits. Then, all substrings containing
one or more of these byte sequences consecutively will be replaced by the
character(s) whose encoding would result in those consecutive bytes. The
encoding scheme used to decode these characters may be specified; when
unspecified, the platform’s default encoding is used.

URLDecoder declares the following class method for decoding an encoded string:

String decode(String s, String enc)

This method decodes an application/x-www-form-urlencoded string using the specified encoding
scheme. The supplied encoding is used to determine what characters are represented by any
consecutive sequences of the form %xy. UnsupportedEncodingException is thrown when enc’s value isn’t
supported.

There are two possible ways in which the decoder could deal with illegally encoded strings. It could
either leave illegal characters alone or it could throw IllegalArgumentException. Which approach the
decoder takes is left to the implementation.

 Note The World Wide Web Consortium Recommendation
(http://www.w3.org/TR/html40/appendix/notes.html#non-ascii-chars), which is similar to an RFC, states
that UTF-8 should be used as the encoding scheme for encode() and decode(). Not doing so may introduce
incompatibilities.

I’ve created an application that demonstrates URLEncoder and URLDecoder in the context of the
previous "The string ü@foo-bar" and "The+string+%C3%BC%40foo-bar"example. Listing 9-9 presents the
application’s source code.

Listing 9-9. Encoding and decoding an encoded string

import java.io.UnsupportedEncodingException;

import java.net.URLDecoder;
import java.net.URLEncoder;

class EncDec
{
 public static void main(String[] args) throws UnsupportedEncodingException
 {
 String encodedData = URLEncoder.encode("The string ü@foo-bar", "UTF-8");
 System.out.println(encodedData);
 System.out.println(URLDecoder.decode(encodedData, "UTF-8"));
 }
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://www.w3.org/TR/html40/appendix/notes.html#non-ascii-chars

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

613

 Note You might want to check out Wikipedia’s “Percent-encoding” topic
(http://en.wikipedia.org/wiki/Percent-encoding) to learn more about URL encoding (and the more accurate
percent-encoding term).

URI
The URI class represents URIs (e.g., URNs and URLs). It doesn’t provide access to a resource when the
URI is a URL.

A URI instance stores a character string that conforms to the following syntax at the highest level:

[scheme:]scheme-specific-part[#fragment]

This syntax reveals that every URI optionally begins with a scheme followed by a colon character,
where a scheme can be thought of as an application-level protocol for obtaining an Internet resource.
However, this definition is too narrow because it implies that the URI is always a URL. A scheme can
have nothing to do with resource location. For example, urn is the scheme for identifying URNs.

A scheme is followed by a scheme-specific-part that provides an instance of the scheme. For
example, given the http://tutortutor.ca URI, tutortutor.ca is an instance of the http scheme.
Scheme-specific-parts conform to the allowable syntax of their schemes and to the overall syntax
structure of a URI (including what characters can be specified literally and what characters must be
encoded).

A scheme concludes with an optional #-prefixed fragment, which is a short string of characters that
refers to a resource subordinate to another primary resource. The primary resource is identified by a
URI; the fragment points to the subordinate resource. For example,
http://tutortutor.ca/document.txt#line=5,10 identifies lines 5 through 10 of a text document named
document.txt on my website. (This example is only illustrative; the resource doesn’t actually exist.)

URIs can be categorized as absolute or relative. An absolute URI begins with a scheme followed by a
colon character. The earlier http://tutortutor.ca URI is an example of an absolute URI. Other
examples include mailto:jeff@tutortutor.ca and news:comp.lang.java.help. Consider an absolute URI
as referring to a resource in a manner independent of the context in which that identifier appears. To
use a filesystem analogy, an absolute URI is equivalent to a pathname to a file that starts from the root
directory.

A relative URI doesn’t begin with a scheme (followed by a colon character). An example is
tutorials/tutorials.html. Consider a relative URI as referring to a resource in a manner dependent on
the context in which that identifier appears. Using the filesystem analogy, the relative URI is like a
pathname to a file that starts from the current directory.

URIs also can be categorized as opaque or hierarchical. An opaque URI is an absolute URI whose
scheme-specific-part doesn’t begin with a forward slash (/) character. Examples include
http://tutortutor.ca and mailto:jeff@tutortutor.ca. Opaque URIs aren’t parsed (beyond identifying
their schemes) because scheme-specific-parts don’t need to be validated.

A hierarchical URI is either an absolute URI whose scheme-specific-part begins with a forward slash
character, or is a relative URI.

Unlike an opaque URI, a hierarchical URI’s scheme-specific-part must be parsed into the various
components identified by the following syntax:

[//authority] [path] [?query] [#fragment]

http://en.wikipedia.org/wiki/Percent-encoding
http://tutortutor.ca
http://tutortutor.ca/document.txt#line=5,10
http://tutortutor.ca
mailto:jeff@tutortutor.ca
http://tutortutor.ca
mailto:jeff@tutortutor.ca

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

614

authority identifies the naming authority for the URI’s namespace. When present, this component
begins with a pair of forward slash characters, is either server-based or registry-based, and terminates
with the next forward slash character, question mark character, or no more characters—the end of the
URI. Registry-based authority components have scheme-specific syntaxes (and aren’t discussed because
they’re not commonly used), whereas server-based authority components commonly adopt the
following syntax:

[userinfo@] host [:port]

This syntax specifies that a server-based authority component optionally begins with user
information (e.g., a username) and an “at” (@) character, then continues with the host’s name, and
optionally concludes with a colon character and a port. For example, jeff@tutortutor.ca is a server-
based authority component, in which jeff denotes the user information and tutortutor.ca denotes the
host—there’s no port.

path identifies the resource’s location according to the authority component (when present) or the
scheme (when the authority component is absent). A path divides into a sequence of path segments
(portions of the path), in which forward slash characters are used to separate the segments. The path is
absolute when the first path segment begins with a forward slash character; otherwise, the path is
relative. For example, /a/b/c constitutes a path with three path segments—a, b, and c. Furthermore, the
path is absolute because a forward slash character prefixes the first path segment (a).

query identifies data to be passed to the resource. The resource uses the data to obtain or produce
other data that it passes back to the caller. For example, in http://tutortutor.ca/cgi-
bin/makepage.cgi?/software/Aquarium, /software/Aquarium represents a query. According to that
query, /software/Aquarium is data to be passed to a resource (makepage.cgi), and this data happens to be
the absolute path to a directory whose same-named file is merged with boilerplate HTML by a Perl script
to generate a resulting web page.

The final component is fragment. Although it appears to be part of a URI, it’s not. When a URI is
used in a retrieval action, the primary resource that performs that action uses the fragment to retrieve
the subordinate resource. For example, makepage.cgi is the primary resource and /software/Aquarium is
the subordinate resource.

The previous discussion reveals that a complete URI consists of scheme, authority, path, query, and
fragment components; or it consists of scheme, user-info, host, port, path, query, and fragment
components. To construct a URI instance in the former case, call the URI(String scheme, String
authority, String path, String query, String fragment) constructor. In the latter case, call
URI(String scheme, String userInfo, String host, int port, String path, String query, String
fragment).

Additional constructors are available for creating URI instances. For example, URI(String uri)
creates a URI by parsing uri. Regardless of which constructor you call, it throws
java.net.URISyntaxException when the resulting URI string has invalid syntax.

 Tip The java.io.File class declares a URI toURI() method that you can call to convert a File object’s
abstract pathname to a URI object. The internal URI’s scheme is set to file.

URI declares various getter methods that let you retrieve URI components. For example, String
getScheme() lets you retrieve the scheme, and String getFragment() returns a URL-decoded fragment.
This class also declares boolean isAbsolute() and boolean isOpaque() methods that return true when a
URI is absolute and opaque.

mailto:jeff@tutortutor.ca
http://tutortutor.ca/cgi-bin/makepage.cgi?/software/Aquarium
http://tutortutor.ca/cgi-bin/makepage.cgi?/software/Aquarium
http://tutortutor.ca/cgi-bin/makepage.cgi?/software/Aquarium

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

615

Listing 9-10 presents an application that lets you learn about URI components along with absolute
and opaque URIs.

Listing 9-10. Learning about a URI

import java.net.URI;
import java.net.URISyntaxException;

class URIComponents
{
 public static void main(String[] args) throws URISyntaxException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java URIComponents uri");
 return;
 }
 URI uri = new URI(args[0]);
 System.out.println("Authority = "+uri.getAuthority());
 System.out.println("Fragment = "+uri.getFragment());
 System.out.println("Host = "+uri.getHost());
 System.out.println("Path = "+uri.getPath());
 System.out.println("Port = "+uri.getPort());
 System.out.println("Query = "+uri.getQuery());
 System.out.println("Scheme = "+uri.getScheme());
 System.out.println("Scheme-specific part = "+uri.getSchemeSpecificPart());
 System.out.println("User Info = "+uri.getUserInfo());
 System.out.println("URI is absolute: "+uri.isAbsolute());
 System.out.println("URI is opaque: "+uri.isOpaque());
 }
}

Compile Listing 9-10 (javac URIComponents.java) and run the application as follows: java
URIComponents http://tutortutor.ca/cgi-bin/makepage.cgi?/software/Aquarium. You’ll observe the
following output:

Authority = tutortutor.ca
Fragment = null
Host = tutortutor.ca
Path = /cgi-bin/makepage.cgi
Port = -1
Query = /software/Aquarium
Scheme = http
Scheme-specific part = //tutortutor.ca/cgi-bin/makepage.cgi?/software/Aquarium
User Info = null
URI is absolute: true
URI is opaque: false

After creating a URI instance, you can perform normalization, resolution, and, relativization
operations (discussed shortly) on its contained URI. Although you cannot communicate via this
instance, you can convert it to a URL instance for communication purposes (assuming that the URI is
actually a URL and not a URN or something else) by invoking its URL toURL() method.

http://tutortutor.ca/cgi-bin/makepage.cgi?/software/Aquarium

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

616

This method throws IllegalArgumentException when the URI doesn’t represent an absolute URL,
and throws MalformedURLException when a protocol handler for the URL couldn’t be found (i.e., the URL
doesn’t start with a supported protocol such as http or file), or when some other error occurred while
constructing the URL instance.

Normalization

Normalization is the process of removing unnecessary “.” and “..” path segments from a hierarchical
URI’s path component. Each “.” segment is removed. A “..” segment is removed only when it’s preceded
by a non-“..” segment. Normalization has no effect upon opaque URIs.

URI declares a URI normalize() method for normalizing a URI. This method returns a new URI object
that contains the normalized equivalent of its caller’s URI.

Listing 9-11 presents an application that lets you experiment with normalize().

Listing 9-11. Normalizing URIs

import java.net.URI;
import java.net.URISyntaxException;

class Normalize
{
 public static void main(String[] args) throws URISyntaxException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Normalize uri");
 return;
 }
 URI uri = new URI(args[0]);
 System.out.println("Normalized URI = "+uri.normalize());
 }
}

Compile Listing 9-11 (javac Normalize.java) and run the application as follows: java Normalize
a/b/../c/./d. You should observe the following output, which shows that b isn’t part of a normalized
URI:

Normalized URI = a/c/d

Resolution

Resolution is the process of resolving one URI against another URI, which is known as the base. The
resulting URI is constructed from components of both URIs in the manner specified by RFC 2396 (see
http://tools.ietf.org/html/rfc2396), taking components from the base URI for those not specified in
the original URI. For hierarchical URIs, the path of the original is resolved against the path of the base
and then normalized.

For example, the result of resolving original URI docs/guide/collections/designfaq.html#28
against base URI http://java.sun.com/j2se/1.3/ is result URI
http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28. As a second example,
resolving relative URI ../../../demo/jfc/SwingSet2/src/SwingSet2.java against this result yields
http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java.

http://tools.ietf.org/html/rfc2396
http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28
http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

617

Resolution of both absolute and relative URIs, and of both absolute and relative paths in the case of
hierarchical URIs, is supported.

URI declares URI resolve(String str) and URI resolve(URI uri) methods for resolving the original
URI argument (passed to str or uri) against the base URI contained in the current URI object (on which
this method was called). These methods return either a new URI object containing the original URI or the
URI argument when the original URI is already absolute or opaque. Otherwise, they return a new URI
object containing the resolved URI. NullPointerException is thrown when str or uri is null.
IllegalArgumentException is thrown when str violates RFC 2396 syntax.

Listing 9-12 presents an application that lets you experiment with resolve(String).

Listing 9-12. Resolving URIs

import java.net.URI;
import java.net.URISyntaxException;

class Resolve
{
 public static void main(String[] args) throws URISyntaxException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Resolve baseuri uri");
 return;
 }
 URI uri = new URI(args[0]);
 System.out.println("Resolved URI = "+uri.resolve(args[1]));
 }
}

Compile Listing 9-12 (javac Resolve.java) and run the application as follows: java Resolve
http://java.sun.com/j2se/1.3/ docs/guide/collections/designfaq.html#28. You should observe the
following output:

Resolved URI = http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28

Relativization

Relativization is the inverse of resolution. For any two normalized URIs, relativization undoes the work
performed by resolution and resolution undoes the work performed by relativization.

URI declares a URI relativize(URI uri) method for relativizing its uri argument against the URI in
the current URI object (on which this method was called)—relativize() throws NullPointerException
when uri is null.

 Note For any two normalized URI instances u and v, u.relativize(u.resolve(v)).equals(v) and
u.resolve(u.relativize(v)).equals(v) evaluate to true.

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

618

relativize() performs relativization of its URI argument’s URI against the URI in the URI object on
which this method was called as follows:

• If either this URI or the argument URI is opaque, or if the scheme and authority
components of the two URIs aren’t identical, or if the path of this URI isn’t a prefix
of the path of the argument URI, the argument URI is returned.

• Otherwise, a new relative hierarchical URI is constructed with query and fragment
components taken from the argument URI, and with a path component computed
by removing this URI’s path from the beginning of the argument URI’s path.

Listing 9-13 presents an application that lets you experiment with relativize().

Listing 9-13. Relativizing URIs

import java.net.URI;
import java.net.URISyntaxException;

class Relativize
{
 public static void main(String[] args) throws URISyntaxException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Relativize uri1 uri2");
 return;
 }
 URI uri1 = new URI(args[0]);
 URI uri2 = new URI(args[1]);
 System.out.println("Relativized URI = "+uri1.relativize(uri2));
 }
}

Compile Listing 9-13 (javac Relativize.java) and run the application as follows: java Relativize
http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28. You should observe the
following output:

Relativized URI = docs/guide/collections/designfaq.html#28

Authentication
RFC 1945: Hypertext Transfer Protocol—HTTP/1.0 (http://www.ietf.org/rfc/rfc1945.txt) informs you
about HTTP 1.0 providing a simple challenge-response mechanism that a server can use to challenge a
client’s request to access some resource. Furthermore, the client can use this mechanism to provide
credentials (typically username and password) that authenticate (prove) the client’s identity. When the
supplied credentials satisfy the server, the user is authorized (allowed) to access the resource.

To challenge a client, the originating server issues a “401 Unauthorized” message. This message
includes a WWW-Authenticate HTTP header that identifies an authentication scheme (the approach taken
to achieve authentication) via a case-insensitive token. A comma-separated sequence of attribute/value
pairs follows the token to supply scheme-specific parameters necessary for performing authentication.
The client replies with an Authorization header that provides the credentials.

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28
http://www.ietf.org/rfc/rfc1945.txt

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

619

 Note HTTP 1.1 made it possible to authenticate a client with a proxy. To challenge a client, a proxy server
issues a “407 Proxy Authentication Required” message, which includes a Proxy-Authenticate header. A client
replies via a Proxy-Authorization header.

Basic Authentication and the Authenticator Class
HTTP 1.0 introduced the basic authentication scheme by which a client identifies itself via a username
and a password. The basic authentication scheme works as follows:

• The WWW-Authenticate header specifies Basic as the token and a single
realm="quoted string" pair that identifies the realm (a protected space to which a
resource belongs, such as a specific group of web pages) referred to by the browser
address.

• In response to this header, the browser displays a dialog box in which a username
and password are entered.

• Once entered, the username and password are concatenated into a string (a colon
is inserted between the username and password), the string is base64-encoded,
and the result is placed in an Authorization header that’s sent back to the server.
(To learn more about base64 encoding, check out Wikipedia’s Base64 entry at
http://en.wikipedia.org/wiki/Base64.)

• The server base64-decodes these credentials and compares them to values stored
in its username/password database. When there’s a match, the application is
granted access to the resource (and any other resource belonging to the realm).

Greg Stein maintains a testing server at http://test.webdav.org/ that can be used to test basic
authentication and more. For example, when you specify http://test.webdav.org/auth-basic/ in your
browser, you’ll be challenged with a 401 response, as the application in Listing 9-14 demonstrates.

Listing 9-14. Demonstrating the need for basic authentication by outputting the server’s various HTTP

headers

import java.io.IOException;

import java.net.HttpURLConnection;
import java.net.URL;
import java.net.URLConnection;

import java.util.List;
import java.util.Map;

class BasicAuthNeeded
{
 public static void main(String[] args) throws IOException
 {
 String s = "http://test.webdav.org/auth-basic/";

http://en.wikipedia.org/wiki/Base64
http://test.webdav.org/
http://test.webdav.org/auth-basic/
http://test.webdav.org/auth-basic/

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

620

 URL url = new URL(s);
 URLConnection urlc = url.openConnection();
 Map<String,List<String>> hf = urlc.getHeaderFields();
 for (String key: hf.keySet())
 System.out.println(key+": "+urlc.getHeaderField(key));
 System.out.println(((HttpURLConnection) urlc).getResponseCode());
 }
}

This application connects to the testing address and outputs all server-sent headers and its response
code. After compiling the source code (javac BasicAuthNeeded.java), run the application (java
BasicAuthNeeded). You should see output that is similar to the following:

null: HTTP/1.1 401 Authorization Required
WWW-Authenticate: Basic realm="basic auth area"
Date: Mon, 19 Sep 2011 03:06:06 GMT
Content-Length: 401
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=iso-8859-1
Server: Apache/2.0.54 (Debian GNU/Linux) DAV/2 SVN/1.3.2
401

The WWW-Authenticate header’s realm attribute reveals basic auth area as the realm. Although not
shown, any username from user1 through user9 and a password that’s the same as the username can be
specified to authenticate.

In order to pass this username and password back to the HTTP server, the application must work
with the java.net.Authenticator class, as Listing 9-15 demonstrates.

Listing 9-15. Performing basic authentication

import java.io.IOException;

import java.net.Authenticator;
import java.net.HttpURLConnection;
import java.net.PasswordAuthentication;
import java.net.URL;
import java.net.URLConnection;

import java.util.List;
import java.util.Map;

class BasicAuthGiven
{
 final static String USERNAME = "user1";
 final static String PASSWORD = "user1";
 static class BasicAuthenticator extends Authenticator
 {
 @Override
 public PasswordAuthentication getPasswordAuthentication()
 {
 System.out.println("Password requested from "+
 getRequestingHost()+" for authentication "+

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

621

 "scheme "+getRequestingScheme());
 return new PasswordAuthentication(USERNAME, PASSWORD.toCharArray());
 }
 }
 public static void main(String[] args) throws IOException
 {
 Authenticator.setDefault(new BasicAuthenticator());
 String s = "http://test.webdav.org/auth-basic/";
 URL url = new URL(s);
 URLConnection urlc = url.openConnection();
 Map<String,List<String>> hf = urlc.getHeaderFields();
 for (String key: hf.keySet())
 System.out.println(key+": "+urlc.getHeaderField(key));
 System.out.println(((HttpURLConnection) urlc).getResponseCode());
 }
}

Because Authenticator is abstract, it must be subclassed. Its protected PasswordAuthentication
getPasswordAuthentication() method must be overridden to return the username and password in a
java.net.PasswordAuthentication object. Finally, the void setDefault(Authenticator a) class method
must be called to install an instance of the Authenticator subclass for the entire Java Virtual Machine
(JVM).

After the authenticator has been installed, the JVM will invoke one of Authenticator’s
requestPasswordAuthentication() methods, which in turn invokes the overriding
getPasswordAuthentication() method, when the HTTP server requires basic authentication. This can be
seen in the following output, which proves that the server has granted access to the resource (sort of):

Password requested from test.webdav.org for authentication scheme basic
null: HTTP/1.1 404 Not Found
Date: Mon, 19 Sep 2011 03:09:11 GMT
Content-Length: 209
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=iso-8859-1
Server: Apache/2.0.54 (Debian GNU/Linux) DAV/2 SVN/1.3.2
404

This output shows that authorization has succeeded. However, it also shows that the resource
cannot be found. (I guess one can’t have everything.)

Digest Authentication
Because the basic authentication scheme assumes a secure and trusted connection between client and
server, it transmits credentials in the clear (there’s no encryption [the process of transforming
information, referred to as plaintext, via an algorithm known as a cipher, into something unreadable
except to those possessing special knowledge, usually referred to as a key]); base64 can be readily
decoded), making it easy for eavesdroppers to access this information. For this reason, HTTP 1.1, which
is described in RFC 2616: Hypertext Transfer Protocol—HTTP/1.1
(http://www.ietf.org/rfc/rfc2616.txt), introduced the digest authentication scheme to deal with the
basic authentication scheme’s lack of security. According to this scheme, the WWW-Authenticate header
specifies Digest as the token. It also specifies the realm="quoted string" attribute pair.

http://test.webdav.org/auth-basic/
http://www.ietf.org/rfc/rfc2616.txt

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

622

The digest authentication scheme uses MD5, which is a one-way cryptographic hashing algorithm,
to encrypt the password. It also uses server-generated one-time nonces (values that vary with time, such
as timestamps and visitor counters) to prevent replay (also known as man-in-the-middle) attacks.
Although the password is secure, the rest of the data is transferred in plain text, accessible to
eavesdroppers. Also, there’s no way for the client to determine that it’s communicating with the
appropriate server (there’s no way for the server to authenticate itself).

 Note For more information about digest authentication, check out Wikipedia’s “Digest access authentication”
entry (http://en.wikipedia.org/wiki/Digest_access_authentication).

NTLM and Kerberos Authentication
Microsoft developed a proprietary NTLM authentication scheme, which is based on its Windows NT
Local Area Network (LAN) Manager authentication protocol, to let clients access Internet Information
Server (IIS) resources via their Windows credentials. This authentication scheme is often used in
corporate environments where single sign-on to intranet sites is desired. The WWW-Authenticate header
specifies NTLM as the token; there’s no realm="quoted string" attribute pair. Unlike the previous two
schemes, which are request-oriented, NTLM is connection-oriented.

In the 1980s, MIT developed Kerberos for authenticating users on large, distributed networks. This
protocol is more flexible and efficient than NTLM. Furthermore, Kerberos is also considered to be more
secure. Some of Kerberos’s benefits over NTLM are more efficient authentication to servers, mutual
authentication, and delegation of credentials to remote machines.

GSS-API, SPNEGO, and the Negotiate Authentication Scheme
Various security services have been developed to secure networked applications. Services include
multiple versions of Kerberos, NTLM, and SESAME (an extension of Kerberos). Because it’s difficult to
rework an application to remove its dependence on one security service and place its dependence on
another security service, the Generic Security Services Application Program Interface (GSS-API) was
developed as a standard API for simplifying access to these services. A security service vendor typically
provides an implementation of GSS-API as a set of libraries that are installed with the vendor’s security
software. Underlying a GSS-API implementation sits the actual Kerberos, NTLM, or other mechanism for
providing credentials.

 Note Microsoft provides its own proprietary GSS-API variant, known as Security Service Provider Interface
(SSPI), which is highly Windows-specific and somewhat interoperable with the GSS-API.

A pair of networked peers (hosts that can be clients or servers) may have multiple installed GSS-API
implementations from which to choose. As a result, the Simple and Protected GSS-API Negotiation
(SPNEGO) pseudo-mechanism is used by these peers to identify shared GSS-API mechanisms, make an
appropriate selection, and establish a security context based on this choice.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://en.wikipedia.org/wiki/Digest_access_authentication

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

623

Microsoft’s negotiate authentication scheme (introduced with Windows 2000) uses SPNEGO to
select a GSS-API mechanism for HTTP authentication. Initially, this scheme supported only Kerberos
and NTLM. Under Integrated Windows authentication (which was formerly known as NTLM
authentication, and also known as Windows NT Challenge/Response authentication), when Internet
Explorer tries to access a protected resource from IIS, IIS sends two WWW-Authenticate headers to this
browser. The first header has Negotiate as the token; the second header has NTLM as the token. Because
Negotiate is listed first, it has first crack at being recognized by Internet Explorer. When recognized, the
browser returns both NTLM and Kerberos information to IIS. IIS uses Kerberos when the following are
true:

• The client is Internet Explorer 5.0 or later.

• The server is IIS 5.0 or later.

• The operating system is Windows 2000 or later.

• Both the client and server are members of the same domain or trusted domains.

Otherwise, NTLM is used. If Internet Explorer doesn’t recognize Negotiate, it returns NTLM
information via the NTLM authentication scheme to IIS.

A Java client can provide an Authenticator subclass whose getPasswordAuthentication() method
checks the scheme name returned from the protected final String getRequestingScheme() method to
determine whether the current scheme is "negotiate". When this is the case, the method can pass the
username and password to the HTTP SPNEGO module (assuming that they’re needed—no credential
cache is available), as illustrated in the following code fragment:

class MyAuthenticator extends Authenticator
{
 @Override
 public PasswordAuthentication getPasswordAuthentication()
 {
 if (getRequestingScheme().equalsIgnoreCase("negotiate"))
 {
 String krb5user; // Assume Kerberos 5.
 char[] krb5pass;
 // get krb5user and krb5pass in your own way
 ...
 return (new PasswordAuthentication(krb5user, krb5pass));
 }
 else
 {
 ...
 }
 }
}

 Note For more information on Java’s support for SPNEGO and the other authentication schemes, check out the
JDK 7 documentation’s “Http Authentication” page at
http://download.oracle.com/javase/7/docs/technotes/guides/net/http-auth.html.

http://download.oracle.com/javase/7/docs/technotes/guides/net/http-auth.html

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

624

Cookie Management
Server applications commonly use HTTP cookies (state objects)—cookies for short—to persist small
amounts of information on clients. For example, the identifiers of currently selected items in a shopping
cart can be stored as cookies. It’s preferable to store cookies on the client, rather than on the server,
because of the potential for millions of cookies (depending on a website’s popularity). In that case, not
only would a server require a massive amount of storage just for cookies, but also searching for and
maintaining cookies would be time consuming.

 Note Check out Wikipedia’s “HTTP cookie” entry (http://en.wikipedia.org/wiki/HTTP_cookie) for a quick
refresher on cookies.

A server application sends a cookie to a client as part of an HTTP response. A client (e.g., a web
browser) sends a cookie to the server as part of an HTTP request. Before Java 5, applications worked with
the URLConnection class (and its HttpURLConnection subclass) to get an HTTP response’s cookies and to
set an HTTP request’s cookies. The String getHeaderFieldKey(int n) and String getHeaderField(int
n) methods were used to access a response’s Set-Cookie headers, and the void
setRequestProperty(String key, String value) method was used to create a request’s Cookie header.

 Note RFC 2109: HTTP State Management Mechanism (http://www.ietf.org/rfc/rfc2109.txt) describes
the Set-Cookie and Cookie headers.

Java 5 introduced the abstract java.net.CookieHandler class as a callback mechanism that connects
HTTP state management to an HTTP protocol handler (think concrete HttpURLConnection subclass). An
application installs a concrete CookieHandler subclass as the system-wide cookie handler via the
CookieHandler class’s void setDefault(CookieHandler cHandler) class method. A companion
CookieHandler getDefault() class method returns this cookie handler, which is null when a system-
wide cookie handler hasn’t been installed.

An HTTP protocol handler accesses response and request headers. This handler invokes the system-
wide cookie handler’s void put(URI uri, Map<String, List<String>> responseHeaders) method to
store response cookies in a cookie cache, and invokes the Map<String, List<String>> get(URI uri,
Map<String, List<String>> requestHeaders) method to fetch request cookies from this cache. Unlike
Java 5, Java 6 introduced a concrete implementation of CookieHandler so that HTTP protocol handlers
and applications can work with cookies.

The concrete java.net.CookieManager class extends CookieHandler to manage cookies. A
CookieManager object is initialized as follows:

• With a cookie store for storing cookies. The cookie store is based on the
java.net.CookieStore interface.

• With a cookie policy for determining which cookies to accept for storage. The
cookie policy is based on the java.net.CookiePolicy interface.

http://en.wikipedia.org/wiki/HTTP_cookie
http://www.ietf.org/rfc/rfc2109.txt

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

625

Create a cookie manager by calling either the CookieManager() constructor or the
CookieManager(CookieStore store, CookiePolicy policy) constructor. The CookieManager()
constructor invokes the latter constructor with null arguments, using the default in-memory cookie
store and the default accept-cookies-from-the-original-server-only cookie policy. Unless you plan to
create your own CookieStore and CookiePolicy implementations, you’ll most likely work with the default
constructor. The following example creates and establishes a new CookieManager object as the system-
wide cookie handler:

CookieHandler.setDefault(new CookieManager());

Along with the aforementioned constructors, CookieManager declares the following methods:

• Map<String, List<String>> get(URI uri, Map<String, List<String>>
requestHeaders) returns an immutable map of Cookie and Cookie2 request
headers for cookies obtained from the cookie store whose path matches uri’s
path. Although requestHeaders isn’t used by the default implementation of this
method, it can be used by subclasses. IOException is thrown when an I/O error
occurs.

• CookieStore getCookieStore() returns the cookie manager’s cookie store.

• void put(URI uri, Map<String, List<String>> responseHeaders) stores all
applicable cookies whose Set-Cookie and Set-Cookie2 response headers were
retrieved from the specified uri value and placed (with all other response headers)
in the immutable responseHeaders map in the cookie store. IOException is thrown
when an I/O error occurs.

• void setCookiePolicy(CookiePolicy cookiePolicy) sets the cookie manager’s
cookie policy to one of CookiePolicy.ACCEPT_ALL (accept all cookies),
CookiePolicy.ACCEPT_NONE (accept no cookies), or
CookiePolicy.ACCEPT_ORIGINAL_SERVER (accept cookies from original server only—
this is the default). Passing null to this method has no effect on the current policy.

In contrast to the get() and put() methods, which are called by HTTP protocol handlers, an
application works with the getCookieStore() and setCookiePolicy() methods. Consider Listing 9-16.

Listing 9-16. Listing all cookies for a specific domain

import java.io.IOException;

import java.net.CookieHandler;
import java.net.CookieManager;
import java.net.CookiePolicy;
import java.net.HttpCookie;
import java.net.URL;

import java.util.List;

class ListAllCookies
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

626

 {
 System.err.println("usage: java ListAllCookies url");
 return;
 }

 CookieManager cm = new CookieManager();
 cm.setCookiePolicy(CookiePolicy.ACCEPT_ALL);
 CookieHandler.setDefault(cm);
 new URL(args[0]).openConnection().getContent();
 List<HttpCookie> cookies = cm.getCookieStore().getCookies();
 for (HttpCookie cookie: cookies)
 {
 System.out.println("Name = "+cookie.getName());
 System.out.println("Value = "+cookie.getValue());
 System.out.println("Lifetime (seconds) = "+cookie.getMaxAge());
 System.out.println("Path = "+cookie.getPath());
 System.out.println();
 }
 }
}

Listing 9-16 describes a command-line application that obtains and lists all cookies from its single
domain-name argument.

After creating a cookie manager and invoking setCookiePolicy() to set the cookie manager’s policy
to accept all cookies, ListAllCookies installs the cookie manager as the system-wide cookie handler. It
next connects to the domain identified by the command-line argument and reads the content (via URL’s
Object getContent() method).

The cookie store is obtained via getCookieStore() and used to retrieve all nonexpired cookies via its
List<HttpCookie> getCookies() method. For each of these java.net.HttpCookies, String getName(),
String getValue(), and other HttpCookie methods are invoked to return cookie-specific information.

The following output resulted from invoking java ListAllCookies http://apress.com:

Name = frontend
Value = tk95grc7tko42ghghu3qcep5l6
Lifetime (seconds) = 29985
Path = /

 Note For more information about cookie management, including examples that show you how to create your
own CookiePolicy and CookieStore implementations, check out The Java Tutorial’s “Working With Cookies”
lesson (http://java.sun.com/docs/books/tutorial/networking/cookies/index.html).

Interacting with Databases
A database (http://en.wikipedia.org/wiki/Database) is an organized collection of data. Although there
are many kinds of databases (e.g., hierarchical, object-oriented, and relational), relational databases,
which organize data into tables that can be related to each other, are common. (Each table row stores a

http://apress.com:
http://java.sun.com/docs/books/tutorial/networking/cookies/index.html
http://en.wikipedia.org/wiki/Database

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

627

single item, such as an employee, and each column stores a single item attribute, such as an employee’s
name.)

Except for the most trivial of databases (e.g., Chapter 8’s flat file database), databases are created
and managed through a database management system (DBMS). Relational DBMSes (RDBMSes) support
Structured Query Language (SQL) for working with tables and more.

 Note For brevity, I assume that you’re familiar with SQL. If not, you might want to check out Wikipedia’s “SQL”
entry (http://en.wikipedia.org/wiki/SQL) for an introduction.

Java supports database creation, access, and more via its relational database-oriented JDBC (Java
DataBase Connectivity) API, and this section introduces you to JDBC. Before doing so, it introduces you
to Java DB, the RDBMS that I’ll use to demonstrate various JDBC features.

Java DB
First introduced by Sun Microsystems as part of JDK 6 (and not included in the JRE) to give developers
an RDBMS to test their JDBC code, Java DB is a distribution of Apache’s open-source Derby product,
which is based on IBM’s Cloudscape RDBMS code base. This pure-Java RDBMS is also bundled with JDK
7 (and not also in the JRE). It’s secure, supports JDBC and SQL (including transactions, stored
procedures, and concurrency), and has a small footprint—its core engine and JDBC driver occupy 2MB.

 Note A JDBC driver is a classfile plug-in for communicating with a database. I’ll have more to say about JDBC
drivers when I introduce JDBC later in this chapter.

Java DB is capable of running in an embedded environment or in a client/server environment. In an
embedded environment, where an application accesses the database engine via Java DB’s embedded
driver, the database engine runs in the same JVM as the application. Figure 9-3 illustrates the embedded
environment architecture, where the database engine is embedded in the application.

Figure 9-3. No separate processes are required to start up or shut down an embedded database engine.

http://en.wikipedia.org/wiki/SQL

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

628

In a client/server environment, client applications and the database engine run in separate JVMs. A
client application accesses the network server through Java DB’s client driver. The network server, which
runs in the same JVM as the database engine, accesses the database engine through the embedded
driver. Figure 9-4 illustrates this architecture.

Figure 9-4. Multiple clients communicate with the same database engine through the network server.

Java DB implements the database portion of the architectures shown in Figures 9-3 and 9-4 as a
directory with the same name as the database. Within this directory, Java DB creates a log directory to
store transaction logs, a seg0 directory to store the data files, and a service.properties file to store
configuration parameters.

 Note Java DB doesn’t provide an SQL command to drop (destroy) a database. Destroying a database requires
that you manually delete its directory structure.

Java DB Installation and Configuration
When you install JDK 7 with the default settings, the bundled Java DB is installed into %JAVA_HOME%\db on
Windows platforms, or into the db subdirectory in the equivalent location on Unix/Linux platforms. (For
convenience, I adopt the Windows convention when presenting environment variable paths.)

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

629

 Note I focus on Java DB 10.8.1.2 in this chapter because it’s included with JDK 7 build 1.7.0-b147, which is
the Java build on which this book is based.

The db directory contains five files and the following pair of subdirectories:

• The bin directory contains scripts for setting up embedded and client/server
environments, running command-line tools, and starting/stopping the network
server. You should add this directory to your PATH environment variable so that
you can conveniently execute its scripts from anywhere in the filesystem.

• The lib directory contains various JAR files that house the engine library
(derby.jar), the command-line tools libraries (derbytools.jar and derbyrun.jar),
the network server library (derbynet.jar), the network client library
(derbyclient.jar), and various locale libraries. This directory also contains
derby.war, which is used to register the network server’s servlet at the /derbynet
relative path—it’s also possible to manage the Java DB network server remotely
via the servlet interface (see
http://db.apache.org/derby/docs/10.8/adminguide/cadminservlet98430.html).

Additionally, the %JAVA_HOME%\demo\db directory contains various Java DB demos.
Before you can run the tools and demos, and start/stop the network server, you must set the

DERBY_HOME environment variable. Set this variable for Windows via set DERBY_HOME=%JAVA_HOME%\db, and
for Unix (Korn shell) via export DERBY_HOME=$JAVA_HOME/db.

 Note The embedded and client/server environment setup scripts refer to a DERBY_INSTALL environment
variable. According to the “Re: DERBY_INSTALL and DERBY_HOME” mail item (http://www.mail-
archive.com/derby-dev@db.apache.org/msg22098.html), DERBY_HOME is equivalent to and replaces
DERBY_INSTALL for consistency with other Apache projects.

You must also set the CLASSPATH environment variable. The easiest way to set this environment
variable is to run a script file included with Java DB. Windows and Unix/Linux versions of various
“setxxxCP” script files (which extend the current classpath) are located in the %JAVA_HOME%\db\bin
directory. The script file(s) to run will depend on whether you work with the embedded or client/server
environment:

• For the embedded environment, invoke setEmbeddedCP to add derby.jar and
derbytools.jar to the classpath.

• For the client/server environment, invoke setNetworkServerCP to add
derbynet.jar and derbytools.jar to the classpath. In a separate command
window, invoke setNetworkClientCP to add derbyclient.jar and derbytools.jar
to the classpath.

http://db.apache.org/derby/docs/10.8/adminguide/cadminservlet98430.html

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

630

 Caution There’s a problem with the Windows setEmbeddedCP.bat, setNetworkClientCP.bat, and
setNetworkServerCP.bat files. Each file’s @FOR %%X in ("%DERBY_HOME%") DO SET DERBY_HOME=%%~sX line
screws up the CLASSPATH environment variable—I think the problem’s related to ~sX. I’ve found that commenting
out this line (by prefixing the line with rem and a space) solves the problem.

Java DB Demos
The %JAVA_HOME%\demo\db\programs directory contains HTML documentation that describes the demos
included with Java DB; the demo.html file is the entry point into this documentation. These demos
include a simple JDBC application for working with Java DB, a network server sample program, and
sample programs that are introduced in the Working with Derby manual.

 Note The Working with Derby manual underscores Java DB’s Derby heritage. You can download this manual
and other Derby manuals from the documentation section (http://db.apache.org/derby/manuals/index.html)
of Apache’s Derby project site (http://db.apache.org/derby/index.html).

For brevity, I’ll focus only on the simple JDBC application that’s located in the programs directory’s
simple subdirectory. This application runs in either the default embedded environment or the
client/server environment. It creates and connects to a derbyDB database, introduces a table into this
database, performs insert/update/select operations on this table, drops (removes) the table, and
disconnects from the database.

To run this application in the embedded environment, open a command window and make sure
that the DERBY_HOME and CLASSPATH environment variables have been set properly; invoke setEmbeddedCP
to set the classpath. Assuming that simple is the current directory, invoke java SimpleApp or java
SimpleApp embedded to run this application. You should observe the following output:

SimpleApp starting in embedded mode
Loaded the appropriate driver
Connected to and created database derbyDB
Created table location
Inserted 1956 Webster
Inserted 1910 Union
Updated 1956 Webster to 180 Grand
Updated 180 Grand to 300 Lakeshore
Verified the rows
Dropped table location
Committed the transaction
Derby shut down normally
SimpleApp finished

This output reveals that an application running in the embedded environment shuts down the
database engine before exiting. This is done to perform a checkpoint and release resources. When this

http://db.apache.org/derby/manuals/index.html
http://db.apache.org/derby/index.html

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

631

shutdown doesn’t occur, Java DB notes the absence of the checkpoint, assumes a crash, and causes
recovery code to run before the next database connection (which takes longer to complete).

 Tip When running SimpleApp (or any other Java DB application) in the embedded environment, you can
determine where the database directory will be created by setting the derby.system.home property. For example,
java -Dderby.system.home=c:\ SimpleApp causes derbyDB to be created in the root directory of the C: drive on
a Windows platform.

To run this application in the client/server environment, you need to start the network server and
run the application in separate command windows.

In one command window, set DERBY_HOME. Start the network server via the startNetworkServer script
(located in %JAVA_HOME%\db\bin), which takes care of setting the classpath. You should see output similar
to this:

Mon Sep 19 21:23:14 CDT 2011 : Security manager installed using the Basic server security
policy.
Mon Sep 19 21:23:16 CDT 2011 : Apache Derby Network Server - 10.8.1.2 - (1095077) started
and ready to accept connections on port 1527

In the other command window, set DERBY_HOME followed by CLASSPATH (via setNetworkClientCP).
Assuming that simple is the current directory, invoke java SimpleApp derbyClient to run this
application. This time, you should observe the following output:

SimpleApp starting in derbyclient mode
Loaded the appropriate driver
Connected to and created database derbyDB
Created table location
Inserted 1956 Webster
Inserted 1910 Union
Updated 1956 Webster to 180 Grand
Updated 180 Grand to 300 Lakeshore
Verified the rows
Dropped table location
Committed the transaction
SimpleApp finished

Notice that the database engine is not shut down in the client/server environment. Although not
indicated in the output, there’s a second difference between running SimpleApp in the embedded and
client/server environments. In the embedded environment, the derbyDB database directory is created in
the simple directory. In the client/server environment, this database directory is created in the directory
that was current when you executed startNetworkServer.

When you’re finished playing with SimpleApp in the client/server environment, you should shut
down the network server and database engine. Accomplish this task by invoking the stopNetworkServer
script (located in %JAVA_HOME%\db\bin). You can also shut down (or start and otherwise control) the
network server by running the NetworkServerControl script (also located in %JAVA_HOME%\db\bin). For
example, NetworkServerControl shutdown shuts down the network server and database engine.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

632

Java DB Command-Line Tools
The %JAVA_HOME%\db\bin directory contains sysinfo, ij, and dblook Windows and Unix/Linux script files
for launching command-line tools:

• Run sysinfo to view the Java environment/Java DB configuration.

• Run ij to run scripts that execute ad hoc SQL commands and perform repetitive
tasks.

• Run dblook to view all or part of a database’s Data Definition Language (DDL).

If you experience trouble with Java DB (e.g., not being able to connect to a database), you can run
sysinfo to find out if the problem is configuration-related. This tool reports various settings under the
Java Information, Derby Information, and Locale Information headings—I discuss locales in Appendix
C. It outputs the following information on my platform:

------------------ Java Information ------------------
Java Version: 1.7.0
Java Vendor: Oracle Corporation
Java home: C:\Program Files\Java\jdk1.7.0\jre
Java classpath: C:\Program Files\Java\jdk1.7.0\db\lib\derby.jar;C:\Program
Files\Java\jdk1.7.0\db\lib\derbytools.jar;;C:\Program
Files\Java\jdk1.7.0\db/lib/derby.jar;C:\Program
Files\Java\jdk1.7.0\db/lib/derbynet.jar;C:\Program
Files\Java\jdk1.7.0\db/lib/derbyclient.jar;C:\Program
Files\Java\jdk1.7.0\db/lib/derbytools.jar
OS name: Windows XP
OS architecture: x86
OS version: 5.1
Java user name: Jeff Friesen
Java user home: C:\Documents and Settings\Jeff Friesen
Java user dir: C:\PROGRA~1\Java\JDK17~1.0\db\bin
java.specification.name: Java Platform API Specification
java.specification.version: 1.7
java.runtime.version: 1.7.0-b147
--------- Derby Information --------
JRE - JDBC: Java SE 6 - JDBC 4.0
[C:\Program Files\Java\jdk1.7.0\db\lib\derby.jar] 10.8.1.2 - (1095077)
[C:\Program Files\Java\jdk1.7.0\db\lib\derbytools.jar] 10.8.1.2 - (1095077)
[C:\Program Files\Java\jdk1.7.0\db\lib\derbynet.jar] 10.8.1.2 - (1095077)
[C:\Program Files\Java\jdk1.7.0\db\lib\derbyclient.jar] 10.8.1.2 - (1095077)
--
----------------- Locale Information -----------------
Current Locale : [English/United States [en_US]]
Found support for locale: [cs]
 version: 10.8.1.2 - (1095077)
Found support for locale: [de_DE]
 version: 10.8.1.2 - (1095077)
Found support for locale: [es]
 version: 10.8.1.2 - (1095077)
Found support for locale: [fr]
 version: 10.8.1.2 - (1095077)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

633

Found support for locale: [hu]
 version: 10.8.1.2 - (1095077)
Found support for locale: [it]
 version: 10.8.1.2 - (1095077)
Found support for locale: [ja_JP]
 version: 10.8.1.2 - (1095077)
Found support for locale: [ko_KR]
 version: 10.8.1.2 - (1095077)
Found support for locale: [pl]
 version: 10.8.1.2 - (1095077)
Found support for locale: [pt_BR]
 version: 10.8.1.2 - (1095077)
Found support for locale: [ru]
 version: 10.8.1.2 - (1095077)
Found support for locale: [zh_CN]
 version: 10.8.1.2 - (1095077)
Found support for locale: [zh_TW]
 version: 10.8.1.2 - (1095077)
--

The ij script is useful for creating a database and initializing a user’s schema (a namespace that
logically organizes tables and other database objects) by running a script file that specifies appropriate
DDL statements. For example, you’ve created an EMPLOYEES table with its NAME and PHOTO columns, and
have created a create_emp_schema.sql script file in the current directory that contains the following line:

CREATE TABLE EMPLOYEES(NAME VARCHAR(30), PHOTO BLOB);

The following embedded ij script session creates the employees database and EMPLOYEES table:

C:\db>ij
ij version 10.8
ij> connect 'jdbc:derby:employees;create=true';
ij> run 'create_emp_schema.sql';
ij> CREATE TABLE EMPLOYEES(NAME VARCHAR(30), PHOTO BLOB);
0 rows inserted/updated/deleted
ij> disconnect;
ij> exit;
C:>\db>

The connect command causes the employees database to be created—I’ll have more to say about this
command’s syntax when I introduce JDBC later in this chapter. The run command causes
create_emp_schema.sql to execute, and the subsequent pair of lines is generated as a result.

The CREATE TABLE EMPLOYEES(NAME VARCHAR(30), PHOTO BLOB); line is an SQL statement for creating
a table named EMPLOYEES with NAME and PHOTO columns. Data items entered into the NAME column are of
SQL type VARCHAR (a varying number of characters—a string) with a maximum of 30 characters, and data
items entered into the PHOTO column are of SQL type BLOB (a binary large object, such as an image).

 Note I specify SQL statements in uppercase, but you can also specify them in lowercase or mixed case.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

634

After run 'create_emp_schema.sql' finishes, the specified EMPLOYEES table is added to the newly
created employees database. To verify the table’s existence, run dblook against the employees directory, as
the following session demonstrates.

C:\db>dblook -d jdbc:derby:employees
-- Timestamp: 2011-09-19 22:17:20.375
-- Source database is: employees
-- Connection URL is: jdbc:derby:employees
-- appendLogs: false

-- --
-- DDL Statements for tables
-- --

CREATE TABLE "APP"."EMPLOYEES" ("NAME" VARCHAR(30), "PHOTO" BLOB(2147483647));

C:\db>

All database objects (e.g., tables and indexes) are assigned to user and system schemas, which
logically organize these objects in the same way that packages logically organize classes. When a user
creates or accesses a database, Java DB uses the specified username as the namespace name for newly
added database objects. In the absence of a username, Java DB chooses APP, as the preceding session
output shows.

JDBC
JDBC is an API (associated with the java.sql, javax.sql, javax.sql.rowset, javax.sql.rowset.serial,
and javax.sql.rowset.spi packages—I mainly focus on java.sql in this chapter) for communicating
with RDBMSes in an RDBMS-independent manner. You can use JDBC to perform various database
operations, such as submitting SQL statements that tell the RDBMS to create a relational database or
table, and to update or query tabular data.

 Note Java 7 supports JDBC 4.1. For a list of JDBC 4.1-specific features, check out
http://download.oracle.com/javase/7/docs/technotes/guides/jdbc/jdbc_41.html.

Data Sources, Drivers, and Connections
Although JDBC is typically used to communicate with RDBMSes, it also can be used to communicate
with a flat file database. For this reason, JDBC uses the term data source (a data-storage facility ranging
from a simple file to a complex relational database managed by an RDBMS) to abstract the source of
data.

Because data sources are accessed in different ways (e.g., Chapter 8’s flat file database is accessed
via methods of the java.io.RandomAccessFile class, whereas Java DB databases are accessed via SQL
statements), JDBC uses drivers (classfile plug-ins) to abstract over their implementations. This
abstraction lets you write an application that can be adapted to an arbitrary data source without having
to change a single line of code (in most cases). Drivers are implementations of the java.sql.Driver
interface.

http://download.oracle.com/javase/7/docs/technotes/guides/jdbc/jdbc_41.html

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

635

JDBC recognizes four types of drivers:

• Type 1 drivers implement JDBC as a mapping to another data-access API (e.g.,
Open Database Connectivity, or ODBC—see
http://en.wikipedia.org/wiki/ODBC). The driver converts JDBC method calls into
function calls on the other library. The JDBC-ODBC Bridge Driver is an example
and is not supported by Oracle. It was commonly used in the early days of JDBC
when other kinds of drivers were uncommon.

• Type 2 drivers are written partly in Java and partly in native code (see Appendix C).
They interact with a data source-specific native client library and are not portable
for this reason. Oracle’s OCI (Oracle Call Interface) client-side driver is an
example.

• Type 3 drivers don’t depend on native code and communicate with a middleware
server (a server that sits between the application client and the data source) via an
RDBMS-independent protocol. The middleware server then communicates the
client’s requests to the data source.

• Type 4 drivers don’t depend on native code and implement the network protocol
for a specific data source. The client connects directly to the data source instead of
going through a middleware server.

Before you can communicate with a data source, you need to establish a connection. JDBC provides
the java.sql.DriverManager class and the javax.sql.DataSource interface for this purpose:

• DriverManager lets an application connect to a data source by specifying a URL.
When this class first attempts to establish a connection, it automatically loads any
JDBC 4.x drivers located via the classpath. (Pre-JDBC 4.x drivers must be loaded
manually.)

• DataSource hides connection details from the application to promote data source
portability and is preferred over DriverManager for this reason. Because a
discussion of DataSource is somewhat involved (and is typically used in a Java EE
context), I focus on DriverManager in this chapter.

Before letting you obtain a data source connection, early JDBC versions required you to explicitly
load a suitable driver, by specifying Class.forName() with the name of the class that implements the
Driver interface. For example, the JDBC-ODBC Bridge driver was loaded via
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");. Later JDBC versions relaxed this requirement by
letting you specify a list of drivers to load via the jdbc.drivers system property. DriverManager would
attempt to load all these drivers during its initialization.

Under Java 7, DriverManager first loads all drivers identified by the jdbc.drivers system property. It
then uses the java.util.ServiceLoader-based service provider mechanism (discussed in Appendix C) to
load all drivers from accessible driver JAR files so that you don’t have to explicitly load drivers. This
mechanism requires a driver to be packaged into a JAR file that includes META-
INF/services/java.sql.Driver. The java.sql.Driver text file must contain a single line that names the
driver’s implementation of the Driver interface.

Each loaded driver instantiates and registers itself with DriverManager via DriverManager’s void
registerDriver(Driver driver) class method. When invoked, a getConnection() method walks through
registered drivers, returning an implementation of the java.sql.Connection interface from the first
driver that recognizes getConnection()’s JDBC URL. (You might want to check out DriverManager’s
source code to see how this is done.)

http://en.wikipedia.org/wiki/ODBC

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

636

 Note To maintain data source-independence, much of JDBC consists of interfaces. Each driver provides
implementations of the various interfaces.

To connect to a data source and obtain a Connection instance, call one of DriverManager’s
Connection getConnection(String url), Connection getConnection(String url, Properties info), or
Connection getConnection(String url, String user, String password) methods. With either method,
the url argument specifies a string-based URL that starts with the jdbc: prefix and continues with data
source-specific syntax.

Consider Java DB. The URL syntax varies depending on the driver. For the embedded driver (when
you want to access a local database), this syntax is as follows:

jdbc:derby:databaseName;URLAttributes

For the client driver (when you want to access a remote database, although you can also access a
local database with this driver), this syntax is as follows:

jdbc:derby://host:port/databaseName;URLAttributes

With either syntax, URLAttributes is an optional sequence of semicolon-delimited name=value pairs.
For example, create=true tells Java DB to create a new database.

The following example demonstrates the first syntax by telling JDBC to load the Java DB embedded
driver and create the database named testdb on the local host:

Connection con = DriverManager.getConnection("jdbc:derby:testdb;create=true");

The following example demonstrates the second syntax by telling JDBC to load the Java DB client
driver and create the database named testdb on port 8500 of the xyz host:

Connection con;
con = DriverManager.getConnection("jdbc:derby://xyz:8500/testdb;create=true");

 Note For convenience, this chapter’s applications use only the embedded driver connection syntax.

Exceptions
DriverManager’s getConnection() methods (and other JDBC methods in the various JDBC interfaces)
throw java.sql.SQLException or one of its subclasses when something goes wrong. Along with the
methods it inherits from java.lang.Throwable (e.g., String getMessage()), SQLException declares
various constructors (not discussed for brevity) and the following methods:

• int getErrorCode() returns a vendor-specific integer error code. Normally this
value will be the actual error code returned by the underlying data source.

• SQLException getNextException() returns the SQLException instance chained to
this SQLException object (via a call to setNextException(SQLException ex)), or null
when there isn’t a chained exception.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

637

• String getSQLState() returns a “SQLstate” string that provides an X/Open or
SQL:2003 error code identifying the exception.

• Iterator<Throwable> iterator() returns an iterator over the chained
SQLExceptions and their causes in proper order. The iterator will be used to iterate
over each SQLException and its underlying cause (if any). You would normally not
call this method, but would instead use the enhanced for statement (discussed in
Chapter 5), which calls iterator(), when you need to iterate over the chain of
SQLExceptions.

• void setNextException(SQLException sqlex) appends sqlex to the end of the
chain.

One or more SQLExceptions might occur while processing a request, and the code that throws these
exceptions can add them to a chain of SQLExceptions by invoking setNextException(). Also, an
SQLException instance might be thrown as a result of a different exception (e.g., IOException), which is
known as that exception’s cause (see Chapter 3).

SQL state error codes are defined by the ISO/ANSI and Open Group (X/Open) SQL standards. The
error code is a 5-character string consisting of a 2-character class value followed by a 3-character
subclass value. Class value “00"”indicates success, class value “01” indicates a warning, and other class
values normally indicate an exception. Examples of SQL state error codes are 00000 (success) and 08001
(unable to connect to the data source).

The following example shows you how you might structure your application to make a connection
to a Java DB data source, perform some work, and respond to a thrown SQLException instance:

String url = "jdbc:derby:employee;create=true";
try (Connection con = DriverManager.getConnection(url))
{
 // Perform useful work. The following throw statement simulates a
 // JDBC method throwing SQLException.
 throw new SQLException("Unable to access database table",
 new java.io.IOException("File I/O problem"));
}
catch (SQLException sqlex)
{
 while (sqlex != null)
 {
 System.err.println("SQL error : "+sqlex.getMessage());
 System.err.println("SQL state : "+sqlex.getSQLState());
 System.err.println("Error code: "+sqlex.getErrorCode());
 System.err.println("Cause: "+sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
}

Connections must be closed when no longer needed; Connection declares a void close() method
for this purpose. Because Connection implements java.lang.AutoCloseable, you can use the try-with-
resources statement (see Chapter 3) to have this method automatically called whether or not an
exception is thrown.

Assuming that Java DB hasn’t been configured (by setting the DERBY_HOME and CLASSPATH
environment variables), you should expect the following output:

SQL error : No suitable driver found for jdbc:derby:employee;create=true

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

638

SQL state : 08001
Error code: 0
Cause: null

If you’ve configured Java DB, you should observe no output.
SQLException declares several subclasses (e.g., java.sql.BatchUpdateException—an error has

occurred during a batch update operation). Many of these subclasses are categorized under
java.sql.SQLNonTransientException- and java.sql.SQLTransientException-rooted class hierarchies,
where SQLNonTransientException describes failed operations that cannot be retried without changing
application source code or some aspect of the data source, and SQLTransientException describes failed
operations that can be retried immediately.

Statements
After obtaining a connection to a data source, an application interacts with the data source by issuing
SQL statements (e.g., CREATE TABLE, INSERT, SELECT, UPDATE, DELETE, and DROP TABLE). JDBC supports SQL
statements via the java.sql.Statement, java.sql.PreparedStatement, and java.sql.CallableStatement
interfaces. Furthermore, Connection declares various createStatement(), prepareStatement, and
prepareCall() methods that return Statement, PreparedStatement, or CallableStatement
implementation instances, respectively.

Statement and ResultSet

Statement is the easiest-to-use interface, and Connection’s Statement createStatement() method is the
easiest-to-use method for obtaining a Statement instance. After calling this method, you can execute
various SQL statements by invoking Statement methods such as the following:

• ResultSet executeQuery(String sql) executes a SELECT statement and (assuming
no exception is thrown) provides access to its results via a java.sql.ResultSet
instance.

• int executeUpdate(String sql) executes a CREATE TABLE, INSERT, UPDATE, DELETE,
or DROP TABLE statement and (assuming no exception is thrown) typically returns
the number of table rows affected by this statement.

I’ve created an EmployeeDB application that demonstrates these methods. Listing 9-17 presents its
source code.

Listing 9-17. Creating, inserting values into, querying, and dropping an EMPLOYEES table

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

class EmployeeDB
{
 public static void main(String[] args)
 {
 String url = "jdbc:derby:employee;create=true";

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

639

 try (Connection con = DriverManager.getConnection(url))
 {
 try (Statement stmt = con.createStatement())
 {
 String sql = "CREATE TABLE EMPLOYEES(ID INTEGER, NAME VARCHAR(30))";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(1, 'John Doe')";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(2, 'Sally Smith')";
 stmt.executeUpdate(sql);
 ResultSet rs = stmt.executeQuery("SELECT * FROM EMPLOYEES");
 while (rs.next())
 System.out.println(rs.getInt("ID")+" "+rs.getString("NAME"));
 sql = "DROP TABLE EMPLOYEES";
 stmt.executeUpdate(sql);
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : "+sqlex.getMessage());
 System.err.println("SQL state : "+sqlex.getSQLState());
 System.err.println("Error code: "+sqlex.getErrorCode());
 System.err.println("Cause: "+sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 }
}

After successfully establishing a connection to the employee data source, main() creates a statement
and uses it to execute SQL statements for creating, inserting values into, querying, and dropping an
EMPLOYEES table.

The executeQuery() method returns a ResultSet object that provides access to a query’s tabular
results. Each result set is associated with a cursor that provides access to a specific row of data. The
cursor initially points before the first row; call ResultSet’s boolean next() method to advance the cursor
to the next row. As long as there’s a next row, this method returns true; it returns false when there are no
more rows to examine.

ResultSet also declares various methods for returning the current row’s column values based on
their types. For example, int getInt(String columnLabel) returns the integer value corresponding to
the INTEGER-based column identified by columnLabel. Similarly, String getString(String columnLabel)
returns the string value corresponding to the VARCHAR-based column identified by columnLabel.

 Tip If you don’t have column names but have zero-based column indexes, call ResultSet methods such as int
getInt(int columnIndex) and String getString(int columnIndex). However, best practice is to call int
getInt(String columnLabel).

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

640

Compile Listing 9-17 (javac EmployeeDB.java) and run this application (java EmployeeDB). You
should observe the following output:

1 John Doe
2 Sally Smith

SQL’s INTEGER and VARCHAR types map to Java’s int and String types. Table 9-1 presents a more
complete list of type mappings.

Table 9-1. SQL Type/Java Type Mapping

SQL TYPE Java Type

ARRAY java.sql.Array

BIGINT long

BINARY byte[]

BIT boolean

BLOB java.sql.Blob

BOOLEAN boolean

CHAR java.lang.String

CLOB java.sql.Clob

DATE java.sql.Date

DECIMAL java.math.BigDecimal

DOUBLE double

FLOAT double

INTEGER int

LONGVARBINARY byte[]

LONGVARCHAR java.lang.String

NUMERIC java.math.BigDecimal

REAL float

REF java.sql.Ref

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

641

SMALLINT short

STRUCT java.sql.Struct

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

TINYINT byte

VARBINARY byte[]

VARCHAR java.lang.String

PreparedStatement

PreparedStatement is the next easiest-to-use interface, and Connection’s PreparedStatement
prepareStatement() method is the easiest-to-use method for obtaining a PreparedStatement instance—
PreparedStatement is a subinterface of Statement.

Unlike a regular statement, a prepared statement represents a precompiled SQL statement. The SQL
statement is compiled to improve performance and prevent SQL injection (see
http://en.wikipedia.org/wiki/SQL_injection), and the compiled result is stored in a
PreparedStatement implementation instance.

You typically obtain this instance when you want to execute the same prepared statement multiple
times (e.g., you want to execute an SQL INSERT statement multiple times to populate a database table).
Consider the following example:

sql = "INSERT INTO EMPLOYEES VALUES(?, ?)";
try (PreparedStatement pstmt = con.prepareStatement(sql))
{
 String[] empNames = {"John Doe", "Sally Smith"};
 for (int i = 0; i < empNames.length; i++)
 {
 pstmt.setInt(1, i+1);
 pstmt.setString(2, empNames[i]);
 pstmt.executeUpdate();
 }
}

This example first creates a String object that specifies an SQL INSERT statement. Each “?” character
serves as a placeholder for a value that’s specified before the statement is executed.

After the PreparedStatement implementation instance has been obtained, this interface’s void
setInt(int parameterIndex, int x) and void setString(int parameterIndex, String x) methods are
called on this instance to provide these values (the first argument passed to each method is a 1-based
integer column index into the table associated with the statement—1 corresponds to the leftmost
column), and then PreparedStatement’s int executeUpdate() method is called to execute this SQL
statement. The end result: a pair of rows containing John Doe, Sally Smith, and their respective
identifiers are added to the EMPLOYEES table.

http://en.wikipedia.org/wiki/SQL_injection

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

642

CallableStatement

CallableStatement is the most specialized of the statement interfaces; it extends PreparedStatement.
You use this interface to execute SQL stored procedures, where a stored procedure is a list of SQL
statements that perform a specific task (e.g., fire an employee). Java DB differs from other RDBMSes in
that a stored procedure’s body is implemented as a public static Java method. Furthermore, the class in
which this method is declared must be public.

You create a stored procedure by executing an SQL statement that typically begins with CREATE
PROCEDURE and then continues with RDBMS-specific syntax. For example, the Java DB syntax for creating
a stored procedure, as specified on the web page at
http://db.apache.org/derby/docs/dev/ref/rrefcreateprocedurestatement.html, is as follows:

CREATE PROCEDURE procedure-name ([procedure-parameter [, procedure-parameter]]*)
[procedure-element]*

procedure-name is expressed as

[schemaName .] SQL92Identifier

procedure-parameter is expressed as

[{ IN | OUT | INOUT }] [parameter-Name] DataType

procedure-element is expressed as

{
| [DYNAMIC] RESULT SETS INTEGER
| LANGUAGE { JAVA }
| DeterministicCharacteristic
| EXTERNAL NAME string
| PARAMETER STYLE JAVA
| EXTERNAL SECURITY { DEFINER | INVOKER }
| { NO SQL | MODIFIES SQL DATA | CONTAINS SQL | READS SQL DATA }
}

Anything between [] is optional, the * to the right of [] indicates that anything between these
metacharacters can appear zero or more times, the {} metacharacters surround a list of items, and |
separates possible items—only one of these items can be specified.

For example, CREATE PROCEDURE FIRE(IN ID INTEGER) PARAMETER STYLE JAVA LANGUAGE JAVA
DYNAMIC RESULT SETS 0 EXTERNAL NAME 'EmployeeDB.fire' creates a stored procedure named FIRE. This
procedure specifies an input parameter named ID and is associated with a public static method
named fire in a public class named EmployeeDB.

After creating the stored procedure, you need to obtain a CallableStatement implementation
instance in order to call that procedure, and you do so by invoking one of Connection’s prepareCall()
methods; for example, CallableStatement prepareCall(String sql).

The string passed to prepareCall() is an escape clause (RDBMS-independent syntax) consisting of
an open {, followed by the word call, followed by a space, followed by the name of the stored procedure,
followed by a parameter list with “?” placeholder characters for the arguments that will be passed,
followed by a closing }.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://db.apache.org/derby/docs/dev/ref/rrefcreateprocedurestatement.html

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

643

 Note Escape clauses are JDBC’s way of smoothing out some of the differences in how different RDBMS
vendors implement SQL. When a JDBC driver detects escape syntax, it converts it into the code that the particular
RDBMS understands. This makes escape syntax RDBMS-independent.

Once you have a CallableStatement reference, you pass arguments to these parameters in the same
way as with PreparedStatement. The following example demonstrates:

try (CallableStatement cstmt = con.prepareCall("{ call FIRE(?)}"))
{
 cstmt.setInt(1, 2);
 cstmt.execute();
}

The cstmt.setInt(1, 2) method call assigns 2 to the leftmost stored procedure parameter—
parameter index 1 corresponds to the leftmost parameter (or to a single parameter when there’s only
one). The cstmt.execute() method call executes the stored procedure, which results in a callback to the
application’s public static void fire(int id) method.

I’ve created another version of the EmployeeDB application that demonstrates this callable statement.
Listing 9-18 presents its source code.

Listing 9-18. Firing an employee via a stored procedure

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class EmployeeDB
{
 public static void main(String[] args)
 {
 String url = "jdbc:derby:employee;create=true";
 try (Connection con = DriverManager.getConnection(url))
 {
 try (Statement stmt = con.createStatement())
 {
 String sql = "CREATE PROCEDURE FIRE(IN ID INTEGER)"+
 " PARAMETER STYLE JAVA"+
 " LANGUAGE JAVA"+
 " DYNAMIC RESULT SETS 0"+
 " EXTERNAL NAME 'EmployeeDB.fire'";
 stmt.executeUpdate(sql);
 sql = "CREATE TABLE EMPLOYEES(ID INTEGER, NAME VARCHAR(30), "+
 "FIRED BOOLEAN)";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(1, 'John Doe', false)";

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

644

 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(2, 'Sally Smith', false)";
 stmt.executeUpdate(sql);
 dump(stmt.executeQuery("SELECT * FROM EMPLOYEES"));
 try (CallableStatement cstmt = con.prepareCall("{ call FIRE(?)}"))
 {
 cstmt.setInt(1, 2);
 cstmt.execute();
 }
 dump(stmt.executeQuery("SELECT * FROM EMPLOYEES"));
 sql = "DROP TABLE EMPLOYEES";
 stmt.executeUpdate(sql);
 sql = "DROP PROCEDURE FIRE";
 stmt.executeUpdate(sql);
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : "+sqlex.getMessage());
 System.err.println("SQL state : "+sqlex.getSQLState());
 System.err.println("Error code: "+sqlex.getErrorCode());
 System.err.println("Cause: "+sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 }
 static void dump(ResultSet rs) throws SQLException
 {
 while (rs.next())
 System.out.println(rs.getInt("ID")+" "+rs.getString("NAME")+
 " "+rs.getBoolean("FIRED"));
 System.out.println();
 }
 public static void fire(int id) throws SQLException
 {
 Connection con = DriverManager.getConnection("jdbc:default:connection");
 String sql = "UPDATE EMPLOYEES SET FIRED=TRUE WHERE ID="+id;
 try (Statement stmt = con.createStatement())
 {
 stmt.executeUpdate(sql);
 }
 }
}

Much of this listing should be fairly understandable so I’ll only discuss the fire() method. As
previously stated, this method is invoked as a result of the callable statement invocation.

fire() is called with the integer identifier of the employee to fire. It first accesses the current
Connection object by invoking getConnection() with the jdbc.default:connection argument, which is
supported by Oracle JVMs through a special internal driver.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

645

After creating an SQL UPDATE statement string to set the FIRED column to true in the EMPLOYEES table
row where its ID field equals the value in id, fired() invokes executeUpdate() to update the table
appropriately.

Compile Listing 9-18 (javac EmployeeDB.java) and run this application (java EmployeeDB). You
should observe the following output:

1 John Doe false
2 Sally Smith false

1 John Doe false
2 Sally Smith true

Metadata
A data source is typically associated with metadata (data about data) that describes the data source.
When the data source is an RDBMS, this data is typically stored in a collection of tables.

Metadata includes a list of catalogs (RDBMS databases whose tables describe RDBMS objects such
as base tables [tables that physically exist], views [virtual tables], and indexes [files that improve the speed
of data retrieval operations]), schemas (namespaces that partition database objects), and additional
information (e.g., version numbers, identifications strings, and limits).

To access a data source’s metadata, invoke Connection’s DatabaseMetaData getMetaData() method.
This method returns an implementation instance of the java.sql.DatabaseMetaData interface.

I’ve created a MetaData application that demonstrates getMetaData() and various DatabaseMetaData
methods. Listing 9-19 presents MetaData’s source code.

Listing 9-19. Obtaining metadata from an employee data source

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

class MetaData
{
 public static void main(String[] args)
 {
 String url = "jdbc:derby:employee;create=true";
 try (Connection con = DriverManager.getConnection(url))
 {
 try (Statement stmt = con.createStatement())
 {
 dump(con.getMetaData());
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : "+sqlex.getMessage());

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

646

 System.err.println("SQL state : "+sqlex.getSQLState());
 System.err.println("Error code: "+sqlex.getErrorCode());
 System.err.println("Cause: "+sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 }
 static void dump(DatabaseMetaData dbmd) throws SQLException
 {
 System.out.println("DB Major Version = "+dbmd.getDatabaseMajorVersion());
 System.out.println("DB Minor Version = "+dbmd.getDatabaseMinorVersion());
 System.out.println("DB Product = "+dbmd.getDatabaseProductName());
 System.out.println("Driver Name = "+dbmd.getDriverName());
 System.out.println("Numeric function names for escape clause = "+
 dbmd.getNumericFunctions());
 System.out.println("String function names for escape clause = "+
 dbmd.getStringFunctions());
 System.out.println("System function names for escape clause = "+
 dbmd.getSystemFunctions());
 System.out.println("Time/date function names for escape clause = "+
 dbmd.getTimeDateFunctions());
 System.out.println("Catalog term: "+dbmd.getCatalogTerm());
 System.out.println("Schema term: "+dbmd.getSchemaTerm());
 System.out.println();
 System.out.println("Catalogs");
 System.out.println("--------");
 ResultSet rsCat = dbmd.getCatalogs();
 while (rsCat.next())
 System.out.println(rsCat.getString("TABLE_CAT"));
 System.out.println();
 System.out.println("Schemas");
 System.out.println("-------");
 ResultSet rsSchem = dbmd.getSchemas();
 while (rsSchem.next())
 System.out.println(rsSchem.getString("TABLE_SCHEM"));
 System.out.println();
 System.out.println("Schema/Table");
 System.out.println("------------");
 rsSchem = dbmd.getSchemas();
 while (rsSchem.next())
 {
 String schem = rsSchem.getString("TABLE_SCHEM");
 ResultSet rsTab = dbmd.getTables(null, schem, "%", null);
 while (rsTab.next())
 System.out.println(schem+" "+rsTab.getString("TABLE_NAME"));
 }
 }
}

Listing 9-19’s dump() method invokes various methods on its dbmd argument to output assorted
metadata.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

647

The int getDatabaseMajorVersion() and int getDatabaseMinorVersion() methods return the major
(e.g., 10) and minor (e.g., 8) parts of Java DB’s version number. Similarly, String
getDatabaseProductName() returns the name of this product (e.g., Apache Derby), and String
getDriverName() returns the name of the driver (e.g., Apache Derby Embedded JDBC Driver).

SQL defines various functions that can be invoked as part of SELECT and other statements. For
example, you can specify SELECT COUNT(*) AS TOTAL FROM EMPLOYEES to return a one-row-by-one-
column result set with the column named TOTAL and the row value containing the number of rows in the
EMPLOYEES table.

Because not all RDMSes adopt the same syntax for specifying function calls, JDBC uses a function
escape clause, consisting of { fn functionname(arguments) }, to abstract over differences. For example,
SELECT {fn UCASE(NAME)} FROM EMPLOYEES selects all NAME column values from EMPLOYEES and uppercases
their values in the result set.

The String getNumericFunctions(), String getStringFunctions(), String getSystemFunctions(),
and String getTimeDateFunctions() methods return lists of function names that can appear in function
escape clauses. For example, getNumericFunctions() returns
ABS,ACOS,ASIN,ATAN,ATAN2,CEILING,COS,COT,DEGREES,EXP,FLOOR,LOG,LOG10,MOD,PI,RADIANS,RAND,SIGN,
SIN,SQRT,TAN for Java DB 10.8.

Not all vendors use the same terminology for catalog and schema. For this reason, the String
getCatalogTerm() and String getSchemaTerm() methods are present to return the vendor-specific terms,
which happen to be CATALOG and SCHEMA for Java DB 10.8.

The ResultSet getCatalogs() method returns a result set of catalog names, which are accessible via
the result set’s TABLE_CAT column. This result set is empty for Java DB 10.8, which divides a single default
catalog into various schemas.

The ResultSet getSchemas() method returns a result set of schema names, which are accessible via
the result set’s TABLE_SCHEM column. This column contains APP, NULLID, SQLJ, SYS, SYSCAT, SYSCS_DIAG,
SYSCS_UTIL, SYSFUN, SYSIBM, SYSPROC, and SYSSTAT values for Java DB 10.8. APP is the default schema in
which a user’s database objects are stored.

The ResultSet getTables(String catalog, String schemaPattern, String tableNamePattern,
String[] types) method returns a result set containing table names (in the TABLE_NAME column) and
other table-oriented metadata that match the specified catalog, schemaPattern, tableNamePattern, and
types. To obtain a result set of all tables for a specific schema, pass null to catalog and types, the
schema name to schemaPattern, and the % wildcard to tableNamePattern.

For example, the SYS schema stores SYSALIASES, SYSCHECKS, SYSCOLPERMS, SYSCOLUMNS,
SYSCONGLOMERATES, SYSCONSTRAINTS, SYSDEPENDS, SYSFILES, SYSFOREIGNKEYS, SYSKEYS, SYSPERMS, SYSROLES,
SYSROUTINEPERMS, SYSSCHEMAS, SYSSEQUENCES, SYSSTATEMENTS, SYSSTATISTICS, SYSTABLEPERMS, SYSTABLES,
SYSTRIGGERS, and SYSVIEWS tables.

Listings 9-17 and 9-18 suffer from an architectural problem. After creating the EMPLOYEES table,
suppose that SQLException is thrown before the table is dropped. The next time the EmployeeDB
application is run, SQLException is thrown when the application attempts to recreate EMPLOYEES because
this table already exists. You have to manually delete the employee directory before you can rerun
EmployeeDB.

It would be nice to call some kind of isExist() method before creating EMPLOYEES, but that method
doesn’t exist. However, we can create this method with help from getTables(), and Listing 9-20 shows
you how to accomplish this task.

Listing 9-20. Determining the existence of EMPLOYEES before creating this table

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

648

import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

class EmployeeDB
{
 public static void main(String[] args)
 {
 String url = "jdbc:derby:employee;create=true";
 try (Connection con = DriverManager.getConnection(url))
 {
 try (Statement stmt = con.createStatement())
 {
 String sql;
 if (!isExist(con, "EMPLOYEES"))
 {
 System.out.println("EMPLOYEES doesn't exist");
 sql = "CREATE TABLE EMPLOYEES(ID INTEGER, NAME VARCHAR(30))";
 stmt.executeUpdate(sql);
 }
 else
 System.out.println("EMPLOYEES already exists");
 sql = "INSERT INTO EMPLOYEES VALUES(1, 'John Doe')";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(2, 'Sally Smith')";
 stmt.executeUpdate(sql);
 ResultSet rs = stmt.executeQuery("SELECT * FROM EMPLOYEES");
 while (rs.next())
 System.out.println(rs.getInt("ID")+" "+rs.getString("NAME"));
 sql = "DROP TABLE EMPLOYEES";
 stmt.executeUpdate(sql);
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : "+sqlex.getMessage());
 System.err.println("SQL state : "+sqlex.getSQLState());
 System.err.println("Error code: "+sqlex.getErrorCode());
 System.err.println("Cause: "+sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 }
 static boolean isExist(Connection con, String tableName) throws SQLException
 {
 DatabaseMetaData dbmd = con.getMetaData();
 ResultSet rs = dbmd.getTables(null, "APP", tableName, null);
 return rs.next();
 }
}

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

649

Listing 9-20 refactors Listing 9-17 by introducing a boolean isExist(Connection con, String
tableName) class method, which returns true when tableName exists, and using this method to determine
the existence of EMPLOYEES before creating this table.

When the specified table exists, a ResultSet object containing one row is returned, and ResultSet’s
next() method returns true. Otherwise, the result set contains no rows and next() returns false.

 Caution isExist() assumes the default APP schema, which might not be the case when usernames are
involved (each user’s database objects are stored in a schema corresponding to the user’s name).

The Planets
Although helpful, the previous JDBC applications fall short in revealing the power of JDBC, especially
when combined with Swing. For this reason, I’ve created a more extensive application named Planets
that gives you an opportunity to explore these APIs in a more useful context. Additionally, you’ll discover
something new about each API.

The Planets application helps its user learn about the solar system’s planets by presenting images of
the eight planets along with their names and statistics on their diameters (in kilometers), masses (in
kilograms), and distances from the Sun (measured in astronomical units, or AUs, where Earth is 1 AU
from the Sun).

I’ve designed Planets to run in two modes. When you execute java Planets initdb, this application
creates a planets database, populates its PLANETS table with eight entries (where each entry records a
String-based name, a double diameter, a double mass, a double distance, and a javax.swing.ImageIcon
object storing the planet’s image), and then terminates. When you execute java Planets, this table’s
content is loaded, and then you see the GUI shown in Figure 9-5.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

650

Figure 9-5. Planets makes it easy to learn about the solar system’s planets.

I’ve organized Planets into Planets and SwingCanvas classes:

• Planets is organized into names, diameters, masses, distances, and iiPhotos static
fields that hold planetary information read from the database; a JPanel
createGUI() class method that creates the GUI; a void initDB() class method that
initializes the database when you execute java Planets initdb; a void loadDB()
class method that loads planetary information from the database’s PLANETS table
(before the GUI is displayed) when you execute java Planets; and the main()
entry-point method that launches the application.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

651

• SwingCanvas is organized into iiPhoto and d (dimension) static fields, a
SwingCanvas(ImageIcon iiPhoto) constructor that dimensions this component to
the size of each image and saves the initial image icon for display, an overriding
Dimension getPreferredSize() method that returns the preferred size of this
component so that images are fully displayed, an overriding void paint(Graphics
g) method that paints the current image icon’s image over the component’s
surface, and a void setPhoto(ImageIcon iiPhoto) method that assigns a new
image icon to the canvas component and causes its image to be painted over the
component’s drawing surface.

The need for brevity restrains me from presenting the entire source code, so I’ll present code
fragments instead—you’ll find the complete source code in this book’s accompanying code file (see this
book’s introduction for more information).

Consider the following initDB() source code:

static void initDB()
{
 String[] planets = { "mercury", "venus", "earth", "mars", "jupiter",
 "saturn", "uranus", "neptune" };
 double[] diameters = { 4880, 12103.6, 12756.3, 6794, 142984, 120536,
 51118, 49532 };
 double[] masses = { 3.3e23, 4.869e24, 5.972e24, 6.4219e23, 1.9e27,
 5.68e26, 8.683e25, 1.0247e26 };
 double[] distances = { 0.38, 0.72, 1, 1.52, 5.2, 9.54, 19.218, 30.06 };
 String url = "jdbc:derby:planets;create=true";
 try (Connection con = DriverManager.getConnection(url))
 {
 try (Statement stmt = con.createStatement())
 {
 String sql = "CREATE TABLE PLANETS(NAME VARCHAR(30),"+
 "DIAMETER REAL,"+
 "MASS REAL,"+
 "DISTANCE REAL,"+
 "PHOTO BLOB)";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO PLANETS VALUES(?, ?, ?, ?, ?)";
 try (PreparedStatement pstmt = con.prepareStatement(sql))
 {
 for (int i = 0; i < planets.length; i++)
 {
 pstmt.setString(1, planets[i]);
 pstmt.setDouble(2, diameters[i]);
 pstmt.setDouble(3, masses[i]);
 pstmt.setDouble(4, distances[i]);
 Blob blob = con.createBlob();
 try (ObjectOutputStream oos =
 new ObjectOutputStream(blob.setBinaryStream(1)))
 {
 ImageIcon photo = new ImageIcon(planets[i]+".jpg");
 oos.writeObject(photo);
 }
 catch (IOException ioe)

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

652

 {
 System.err.println("unable to write "+planets[i]+".jpg");
 }
 pstmt.setBlob(5, blob);
 pstmt.executeUpdate();
 blob.free(); // Free the blob and release any held resources.
 }
 }
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : "+sqlex.getMessage());
 System.err.println("SQL state : "+sqlex.getSQLState());
 System.err.println("Error code: "+sqlex.getErrorCode());
 System.err.println("Cause: "+sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
}

This method most importantly demonstrates how to serialize an ImageIcon object to a
java.sql.Blob object, and then store the Blob object in a table column of BLOB type.

You first invoke Connection’s Blob createBlob() method to create an object that implements the
Blob interface. Because the returned object initially contains no data, you need to call Blob’s
OutputStream setBinaryStream(long pos) method (pos is passed the 1-based starting position within the
blob where writing begins) or one of its overloaded setBytes() methods.

If you choose setBinaryStream(), you would then use object serialization (see Chapter 8) to serialize
the object to the blob. Don’t forget to close the object output stream when you’re finished—the try-with-
resources statement nicely handles this task for you.

After the Blob object has been created and populated, call one of PreparedStatement’s setBlob()
methods (e.g., void setBlob(int parameterIndex, Blob x)) to pass the blob to the prepared statement
before its execution. Following this execution, the blob must be freed and its resources released.

Consider the following loadDB() source code:

static boolean loadDB()
{
 String url = "jdbc:derby:planets;create=false";
 try (Connection con = DriverManager.getConnection(url))
 {
 try (Statement stmt = con.createStatement())
 {
 ResultSet rs = stmt.executeQuery("SELECT COUNT(*) FROM PLANETS");
 rs.next();
 int size = rs.getInt(1);
 names = new String[size];
 diameters = new double[size];
 masses = new double[size];
 distances = new double[size];
 iiPhotos = new ImageIcon[size];

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

653

 rs = stmt.executeQuery("SELECT * FROM PLANETS");
 for (int i = 0; i < size; i++)
 {
 rs.next();
 names[i] = rs.getString(1);
 diameters[i] = rs.getDouble(2);
 masses[i] = rs.getDouble(3);
 distances[i] = rs.getDouble(4);
 Blob blob = rs.getBlob(5);
 try (ObjectInputStream ois =
 new ObjectInputStream(blob.getBinaryStream()))
 {
 iiPhotos[i] = (ImageIcon) ois.readObject();
 }
 catch (ClassNotFoundException|IOException cnfioe)
 {
 System.err.println("unable to read "+names[i]+".jpg");
 }
 blob.free(); // Free the blob and release any held resources.
 }
 return true;
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : "+sqlex.getMessage());
 System.err.println("SQL state : "+sqlex.getSQLState());
 System.err.println("Error code: "+sqlex.getErrorCode());
 System.err.println("Cause: "+sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 return false;
 }
}

This method, the inverse of initDB(), shows how to obtain a result set’s row count by executing a
SQL statement such as SELECT COUNT(*) FROM PLANETS, and how to deserialize a blob’s contained object.

The Swing-based GUI consists of a SwingCanvas component (see Chapter 7) and an instance of the
javax.swing.JTable class, which is used to display and edit regular two-dimensional tables of cells, and
is the perfect component for displaying tabular data.

A complete discussion of JTable and its many supporting types (in the javax.swing and
javax.swing.table packages) is beyond the scope of this chapter. Instead, consider the following excerpt
from the createGUI() method:

TableModel model = new AbstractTableModel()
{
 @Override
 public int getColumnCount()
 {
 return 4;

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

654

 }
 @Override
 public String getColumnName(int column)
 {
 switch (column)
 {
 case 0: return "Name";
 case 1: return "Diameter (KM)";
 case 2: return "Mass (KG)";
 default: return "Distance (AU)";
 }
 }
 @Override
 public int getRowCount()
 {
 return names.length;
 }
 @Override
 public Object getValueAt(int row, int col)
 {
 switch (col)
 {
 case 0: return Character.toUpperCase(names[row].charAt(0))+
 names[row].substring(1);
 case 1: return diameters[row];
 case 2: return masses[row];
 default: return distances[row];
 }
 }
};
final JTable table = new JTable(model);
table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
table.setRowSelectionInterval(0, 0);
ListSelectionListener lsl;
lsl = new ListSelectionListener()
 {
 @Override
 public void valueChanged(ListSelectionEvent lse)
 {
 sc.setPhoto(iiPhotos[table.getSelectedRow()]);
 }
 };
table.getSelectionModel().addListSelectionListener(lsl);

Every JTable instance obtains its data from a table model, which is an instance of a class that
implements the javax.swing.table.TableModel interface. I find it convenient to subclass the
javax.swing.table.AbstractTableModel class, which implements many of TableModel’s methods.

AbstractTableModel doesn’t implement int getColumnCount() (the number of columns in the table),
int getRowCount() (the number of rows in the table), and Object getValueAt(int row, int col) (the
value at the specified row and column), and so it falls to the table model implementation to override
these methods to return suitable values.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

655

Although AbstractTableModel implements String getColumnName(int column), this implementation
only returns default names for the columns using spreadsheet conventions: A, B, C, ... Z, AA, AB, and so
on. To return a meaningful name, this method must also be overridden.

The table component will invoke these methods as necessary. When it does, any passed column
and/or row values are relative to 0.

After creating the model, it’s passed to JTable’s JTable(TableModel dm) constructor, which creates
the table component. Along with the specified table model, the constructor installs a default column
model (for use in selecting, adding, removing, and performing other operations on columns) and a
default list selection model (for use in selecting one or more rows).

JTable(TableModel)’s default list selection model lets the user select one or more rows. Because the
user should only be able to select one row at a time (how would the application display multiple planet
images simultaneously?), JTable’s void setSelectionMode(int selectionMode) method is invoked with
argument javax.swing.ListSelectionModel.SINGLE_SELECTION being passed to selectionMode.

When the application starts running, the first table row (Mercury) should be highlighted (to
correspond with the displayed Mercury image). This task is accomplished by invoking JTable’s void
setRowSelectionInterval(int index0, int index1) method. Because only row 0 (the first or topmost
row) needs to be selected, this value to passed to both index0 and index1. (setRowSelectionInterval()
lets you select multiple rows, but only when the selection mode isn’t SINGLE_SELECTION.)

The SwingCanvas component initially displays an image of Mercury. When the user selects another
table row, that row’s planet image must be displayed. This task is accomplished by registering a
javax.swing.event.ListSelectionListener implementation instance with the table component’s
ListSelectionModel implementation instance, which JTable’s ListSelectionModel getSelectionModel()
method returns.

ListSelectionListener declares a void valueChanged(ListSelectionEvent lse) method that’s
called whenever the user selects a row. The selected row is obtained by calling JTable’s int
getSelectedRow() method, which is used to index into iiPhotos, whose ImageIcon instance is passed to
SwingCanvas’s void setPhoto(ImageIcon iiPhoto) method, which causes the new photo to be displayed.

The architectural style that I chose for the Planets application is appropriate for small database
tables that can fit entirely in memory. However, you might run into a situation where you need to obtain
data from a database table with millions (or more) rows and populate a table component with all this
data. Because there isn’t enough memory to make this practical, what do you do?

The solution is to read only a small number of rows into a cache (perhaps with help from the
Reference API—see Chapter 4) and keep track of the current location. For example, assuming that each
row has a unique 1-based integer identifier, you might specify an SQL statement such as SELECT * FROM
EMPLOYEE WHERE ID >= 20 && ID <= 30 to return those rows whose ID column contains one of the integer
values from 20 through 30. Also, check out “Java: Loading Large Data into JTable or JList”
(http://www.snippetit.com/2009/11/java-loading-large-data-into-jtable-or-jlist/) to learn how to
create an appropriate table model for use in this situation.

 Note For more information on JDBC, check out The Java Tutorial’s “JDBC: Database Access” trail at
http://download.oracle.com/javase/tutorial/jdbc/TOC.html.

http://www.snippetit.com/2009/11/java-loading-large-data-into-jtable-or-jlist/
http://download.oracle.com/javase/tutorial/jdbc/TOC.html

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

656

EXERCISES

The following exercises are designed to test your understanding of network APIs and JDBC:

1. Create a networked version of Blackjack—the version of this game to implement
is described after this exercise. Implement a BJDealer application that serves as
the dealer and a BJPlayer application that serves as the player. BJDealer waits
for a player connection indication and then creates a background thread to service
the player—this makes it possible for the dealer to play independent games with
multiple players. When BJDealer accepts a socket from a player, it creates
java.io.ObjectInputStream and java.io.ObjectOutputStream objects for
communicating with the player. Similarly, when BJPlayer creates a socket for
communicating with the dealer, it creates ObjectInputStream and
ObjectOutputStream objects. Because the ObjectInputStream(InputStream
in) constructor blocks until the corresponding ObjectOutputStream instance has
written and flushed a serialization stream header, have each of BJDealer and
BJPlayer immediately call the flush() method on the created
ObjectOutputStream instance. BJDealer serializes Card objects and String-
based status messages to BJPlayer; BJPlayer serializes Card objects and
String-based commands to BJDealer. BJDealer doesn’t present a user
interface, whereas BJPlayer presents the user interface shown in Figure 9-6.

Figure 9-6. BJPlayer’s GUI consists of a component to render playing cards (player’s cards in top half and

dealer’s cards in bottom half) and a panel to display status messages and buttons.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

657

The player clicks the Deal button to have the Dealer deal a new hand. This button is subsequently disabled
until the player loses or wins. The player clicks the Hit button to request another card from the dealer, and
clicks the Stand button when the dealer is standing—these buttons are disabled when Deal is enabled.
Finally, the player clicks the Exit button to terminate the game.

To save you some work, Listing 9-21 presents the Card class that each of BJDealer and BJPlayer uses.

Listing 9-21. Describing a playing card in terms of suit and rank

import java.io.Serializable;

import java.util.ArrayList;
import java.util.List;

class Card implements Serializable
{
 enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }
 enum Rank { ACE, DEUCE, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
 JACK, QUEEN, KING;
 int getValue()
 {
 return ordinal()+1;
 }
 }
 private Suit suit;
 private Rank rank;
 private static final List<Card> initialDeck = new ArrayList<Card>();
 Card(Suit suit, Rank rank)
 {
 this.suit = suit;
 this.rank = rank;
 }
 Rank getRank()
 {
 return rank;
 }
 Suit getSuit()
 {
 return suit;
 }
 int getValue()
 {
 return rank.ordinal()+1;
 }
 static
 {
 for (Suit suit: Suit.values())
 for (Rank rank: Rank.values())
 initialDeck.add(new Card(suit, rank));
 }
 static List<Card> newDeck() // Return a new unshuffled deck.

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

658

 {
 // Copy initial deck to new deck.
 List<Card> deck = new ArrayList<Card>(initialDeck);
 return deck;
 }
}

 Note Blackjack is a card game in which a player competes against the card dealer to see who can come
closest to 21 without going over. The first one to reach 21 wins and ends the current round of play. The dealer
begins a round by dealing two cards to the player and two cards to herself. The player sees both of her cards and
only the first card in the dealer’s hand. The dealer checks her hand for a blackjack (exactly 21 points). When this is
the case, the player loses unless the player also has a blackjack. In this situation, the result is known as a push
and no one wins or loses. When the dealer’s hand is not a blackjack, the player checks her cards for a blackjack
and wins when this is the case. Otherwise, since neither the dealer nor the player initially has a blackjack, the
game proceeds as follows: A player can request hits (additional cards from the dealer—one per hit) until either the
sum of a player’s cards exceeds 21 (the player loses) or the player decides to stand (the player is satisfied with her
cards and will wait to see how the dealer’s hand progresses). Players typically stand when they believe their hands
are good and/or another hit may cause them to exceed 21. After the player stands, the dealer proceeds by
showing her second card to the player. The dealer always takes a hit when the sum of her cards is less than 17,
and always stands when the sum of her cards is 17 or more. When evaluating the dealer’s interim score to see if a
hit is required, the ACE always counts for 11, but may count for 1 in the final determination. When the dealer is
finished with her hits, her hand is compared with the player’s. When it’s higher, the dealer wins; when it’s lower,
the player wins (unless the player exceeded 21); and when they’re the same, it’s a push and no one wins. Cards
deuce (2) through 10 have their face value, JACK is 10, QUEEN is 10, KING is 10, and ACE is 1 or 11 (until the hand
is evaluated).

2. Extend the Planets application with new statistics (e.g., number of moons,
composition, and internal temperature). Also, provide additional notes (displayed
via a label) about the planet. Save all this extra information in the database and
retrieve it when the application starts running. You’ll find useful information at
http://nineplanets.org/.

Summary
A network is a collection of interconnected nodes that can share hardware and software among users.
Communication between host nodes occurs via sockets, where a socket is an endpoint in a
communications link between two processes. The endpoint consists of an IP address that identifies a
host, and a port number that identifies a process running on that network node.

http://nineplanets.org/

CHAPTER 9 INTERACTING WITH NETWORKS AND DATABASES

659

One process writes a message to a socket, which breaks this message into a series of packets and
forwards these packets to the other process’s socket, which recombines them into the original message
for that process’s consumption.

TCP is used to create an ongoing conversation between two hosts by sending messages back and
forth. Before this conversation can occur, a connection must be established between these hosts. After
this connection has been established, TCP enters a pattern of sending a message packet and waiting for
a reply that the packet arrived correctly (or for a timeout to expire when the reply doesn’t arrive because
of a network problem). This send/reply cycle guarantees a reliable connection.

Because it can take time to establish a connection, and because it also takes time to send packets
because of the need to receive reply acknowledgments (or timeouts), TCP is fairly slow. In contrast,
UDP, which doesn’t require connections and packet acknowledgement, is much faster than TCP.
However, UDP isn’t as reliable (there’s no guarantee that a packet will arrive correctly or even arrive) as
TCP because there’s no acknowledgment. Furthermore, UDP is limited to single-packet one-way
conversations.

The java.net package provides Socket and ServerSocket classes for performing TCP-based
communications. It also provides DatagramSocket, DatagramPacket, and MulticastSocket classes for
performing UDP communications.

A URL is a character string that specifies where a resource (e.g., a web page) is located on a TCP/IP-
based network (e.g., the Internet). Also, it provides the means to retrieve that resource.

The java.net package provides URL and URLConnection classes for accessing URL-based resources. It
also provides URLEncoder and URLDecoder classes for encoding and decoding URLs, and the URI class for
performing URI-based operations (e.g., relativization) and returning URL instances containing the
results.

HTTP supports authentication whereby clients (e.g., browser users) must prove their authenticity.
Various authentication schemes have been proposed to handle this task; for example, basic and digest.
Java provides Authenticator and related types so that networked Java applications can interact with
these authentication schemes.

Server applications commonly use HTTP cookies (state objects)—cookies for short—to persist small
amounts of information on clients. Java supports cookie management via CookieManager, CookieHandler,
and related types.

A database is an organized collection of data. Although there are many kinds of databases (e.g.,
hierarchical, object-oriented, and relational), relational databases, which organize data into tables—
each row stores a single item, such as an employee, and each column stores a single item attribute, such
as an employee’s name—that can be related to each other, are common.

Except for the most trivial of databases (e.g., flat file databases), databases are created and managed
through a DBMS. RDBMSes support SQL for working with tables and more.

Java supports database creation, access, and more via its relational database-oriented JDBC (Java
DataBase Connectivity) API. The JDK also provides Java DB, which is an RDBMS that you can use to test
your JDBC-enabled applications.

JDBC provides many features, including drivers for connecting to data sources, connections to data
sources, exceptions that store various kinds of information about a data source problem, statements
(regular, prepared, and callable) for executing SQL, result sets that store SQL query results, and metadata
for learning more about a data source. Prepared statements are precompiled statements and callable
statements are used to execute stored procedures.

Chapter 10 introduces you to XML, along with Java’s SAX, DOM, StAX, XPath, and XSLT APIs. You
even briefly learn about its Validation API.

C H A P T E R 10

661

Parsing, Creating, and
Transforming XML Documents

Applications commonly use XML documents to store and exchange data. Java provides extensive
support for XML via the SAX, DOM, StAX, XPath, and XSLT APIs. Understanding these APIs is a
prerequisite to exploring other Java APIs that depend on XML; for example, web services (discussed in
Chapter 11).

Chapter 10 introduces you to SAX, DOM, StAX, XPath, and XSLT. Before delving into these APIs, this
chapter provides an introduction to XML for the benefit of those unfamiliar with this technology.

 Note SAX, DOM, StAX, XPath, and XSLT are independent API members of a broader API called Java API for XML
Processing (JAXP). JAXP was created to let applications use XML processors to parse, create, transform, or
perform other operations on XML documents independently of processor implementations, by providing a
pluggability layer that lets vendors offer their own implementations without introducing dependencies in
application code. Java 7 supports JAXP 1.4.5.

What Is XML?
XML (eXtensible Markup Language) is a metalanguage (a language used to describe other languages) for
defining vocabularies (custom markup languages), which is key to XML’s importance and popularity.
XML-based vocabularies (e.g., XHTML) let you describe documents in a meaningful way.

XML vocabulary documents are like HTML (see http://en.wikipedia.org/wiki/HTML) documents in
that they are text-based and consist of markup (encoded descriptions of a document’s logical structure)
and content (document text not interpreted as markup). Markup is evidenced via tags (angle bracket-
delimited syntactic constructs) and each tag has a name. Furthermore, some tags have attributes (name-
value pairs).

 Note XML and HTML are descendents of Standard Generalized Markup Language (SGML), which is the original
metalanguage for creating vocabularies—XML is essentially a restricted form of SGML, while HTML is an
application of SGML. The key difference between XML and HTML is that XML invites you to create your own

http://en.wikipedia.org/wiki/HTML

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

662

vocabularies with their own tags and rules, whereas HTML gives you a single precreated vocabulary with its own
fixed set of tags and rules. XHTML and other XML-based vocabularies are XML applications. XHTML was created
to be a cleaner implementation of HTML.

If you haven’t previously encountered XML, you might be surprised by its simplicity and how closely
its vocabularies resemble HTML. You don’t need to be a rocket scientist to learn how to create an XML
document. To prove this to yourself, check out Listing 10-1.

Listing 10-1. XML-based recipe for a grilled cheese sandwich

<recipe>
 <title>
 Grilled Cheese Sandwich
 </title>
 <ingredients>
 <ingredient qty="2">
 bread slice
 </ingredient>
 <ingredient>
 cheese slice
 </ingredient>
 <ingredient qty="2">
 margarine pat
 </ingredient>
 </ingredients>
 <instructions>
 Place frying pan on element and select medium heat. For each bread slice, smear
 one pat of margarine on one side of bread slice. Place cheese slice between bread
 slices with margarine-smeared sides away from the cheese. Place sandwich in frying
 pan with one margarine-smeared side in contact with pan. Fry for a couple of
 minutes and flip. Fry other side for a minute and serve.
 </instructions>
</recipe>

Listing 10-1 presents an XML document that describes a recipe for making a grilled cheese
sandwich. This document is reminiscent of an HTML document in that it consists of tags, attributes, and
content. However, that’s where the similarity ends. Instead of presenting HTML tags such as <html>,
<head>, , and <p>, this informal recipe language presents its own <recipe>, <ingredients>, and
other tags.

 Note Although Listing 10-1’s <title> and </title> tags are also found in HTML, they differ from their HTML
counterparts. Web browsers typically display the content between these tags in their titlebars. In contrast, the
content between Listing 10-1’s <title> and </title> tags might be displayed as a header, spoken aloud, or
presented in some other way, depending on the application that parses this document.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

663

XML documents are based on the XML declaration, elements and attributes, character references
and CDATA sections, namespaces, and comments and processing instructions. After learning about
these fundamentals, you’ll learn what it means for an XML document to be well formed, and what it
means for an XML document to be valid.

XML Declaration
An XML document will typically begin with the XML declaration, special markup that informs an XML
parser that the document is XML. The absence of the XML declaration in Listing 10-1 reveals that this
special markup isn’t mandatory. When the XML declaration is present, nothing can appear before it.

The XML declaration minimally looks like <?xml version="1.0"?>, where the nonoptional version
attribute identifies the version of the XML specification to which the document conforms. The initial
version of this specification (1.0) was introduced in 1998 and is widely implemented.

 Note The World Wide Web Consortium (W3C), which maintains XML, released version 1.1 in 2004. This version
mainly supports the use of line-ending characters used on EBCDIC platforms (see
http://en.wikipedia.org/wiki/EBCDIC), and the use of scripts and characters that are absent from Unicode
3.2 (see http://en.wikipedia.org/wiki/Unicode). Unlike XML 1.0, XML 1.1 is not widely implemented and
should be used only by those needing its unique features.

XML supports Unicode, which means that XML documents consist entirely of characters taken from
the Unicode character set. The document’s characters are encoded into bytes for storage or
transmission, and the encoding is specified via the XML declaration’s optional encoding attribute. One
common encoding is UTF-8 (see http://en.wikipedia.org/wiki/UTF-8), which is a variable-length
encoding of the Unicode character set. UTF-8 is a strict superset of ASCII (see
http://en.wikipedia.org/wiki/Ascii), which means that pure ASCII text files are also UTF-8
documents.

 Note In the absence of the XML declaration, or when the XML declaration’s encoding attribute is not present,
an XML parser typically looks for a special character sequence at the start of a document to determine the
document’s encoding. This character sequence is known as the byte-order-mark (BOM), and is created by an
editor program (such as Microsoft Windows Notepad) when it saves the document according to UTF-8 or some
other encoding. For example, the hexadecimal sequence EF BB BF signifies UTF-8 as the encoding. Similarly, FE
FF signifies UTF-16 big endian (see http://en.wikipedia.org/wiki/UTF-16/UCS-2), FF FE signifies UTF-16
little endian, 00 00 FE FF signifies UTF-32 big endian (see http://en.wikipedia.org/wiki/UTF-16/UCS-2), and
FF FE 00 00 signifies UTF-32 little endian. UTF-8 is assumed if no BOM is present.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/Ascii
http://en.wikipedia.org/wiki/UTF-16/UCS-2
http://en.wikipedia.org/wiki/UTF-16/UCS-2

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

664

If you’ll never use characters apart from the ASCII character set, you can probably forget about the
encoding attribute. However, if your native language isn’t English, or if you are called upon to create XML
documents that include nonASCII characters, you need to properly specify encoding. For example, if
your document contains ASCII plus characters from a nonEnglish Western European Language (such as
ç, the cedilla used in French, Portuguese, and other languages), you might want to choose ISO-8859-1 as
the encoding attribute’s value—the document will probably have a smaller size when encoded in this
manner than when encoded with UTF-8. Listing 10-2 shows you the resulting XML declaration.

Listing 10-2. An encoded document containing nonASCII characters

<?xml version="1.0" encoding="ISO-8859-1"?>
<movie>
 <name>Le Fabuleux Destin d'Amélie Poulain</name>
 <language>français</language>
</movie>

The final attribute that can appear in the XML declaration is standalone. This optional attribute
determines whether the XML document relies on an external DTD (discussed later in this chapter)—its
value is no—or not—its value is yes. The value defaults to no, implying that there is an external DTD.
However, because there is no guarantee of a DTD, standalone is rarely used and will not be discussed
further.

Elements and Attributes
Following the XML declaration is a hierarchical (tree) structure of elements, where an element is a
portion of the document delimited by a start tag (such as <name>) and an end tag (such as </name>), or is
an empty-element tag (a standalone tag whose name ends with a forward slash [/], such as <break/>).
Start tags and end tags surround content and possibly other markup whereas empty-element tags do not
surround anything. Figure 10-1 reveals Listing 10-1’s XML document tree structure.

Figure 10-1. Listing 10-1’s tree structure is rooted in the recipe element.

As with HTML document structure, the structure of an XML document is anchored in a root element
(the topmost element). In HTML, the root element is html (the <html> and </html> tag pair). Unlike in
HTML, you can choose the root element for your XML documents. Figure 10-1 shows the root element to
be recipe.

Unlike the other elements, which have parent elements, recipe has no parent. Also, recipe and
ingredients have child elements: recipe’s children are title, ingredients, and instructions; and

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

665

ingredients’ children are three instances of ingredient. The title, instructions, and ingredient
elements don’t have child elements.

Elements can contain child elements, content, or mixed content (a combination of child elements
and content). Listing 10-2 reveals that the movie element contains name and language child elements, and
also reveals that each of these child elements contains content (language contains français, for
example). Listing 10-3 presents another example that demonstrates mixed content along with child
elements and content.

Listing 10-3. An abstract element containing mixed content

<?xml version="1.0"?>
<article title="The Rebirth of JavaFX" lang="en">
 <abstract>
 JavaFX 2.0 marks a significant milestone in the history of JavaFX. Now that
 Sun Microsystems has passed the torch to Oracle, we have seen the demise of
 JavaFX Script and the emerge of Java APIs (such as
 <code-inline>javafx.application.Application</code-inline>) for interacting
 with this technology. This article introduces you to this new flavor of
 JavaFX, where you learn about JavaFX 2.0 architecture and key APIs.
 </abstract>
 <body>
 </body>
</article>

This document’s root element is article, which contains abstract and body child elements. The
abstract element mixes content with a code-inline element, which contains content. In contrast, the
body element is empty.

 Note As with Listings 10-1 and 10-2, Listing 10-3 also contains whitespace (invisible characters such as
spaces, tabs, carriage returns, and line feeds). The XML specification permits whitespace to be added to a
document. Whitespace appearing within content (such as spaces between words) is considered part of the
content. In contrast, the parser typically ignores whitespace appearing between an end tag and the next start tag.
Such whitespace is not considered part of the content.

An XML element’s start tag can contain one or more attributes. For example, Listing 10-1’s
<ingredient> tag has a qty (quantity) attribute, and Listing 10-3’s <article> tag has title and lang
attributes. Attributes provide additional information about elements. For example, qty identifies the
amount of an ingredient that can be added, title identifies an article’s title, and lang identifies the
language in which the article is written (en for English). Attributes can be optional. For example, if qty is
not specified, a default value of 1 is assumed.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

666

 Note Element and attribute names may contain any alphanumeric character from English or another language,
and may also include the underscore (_), hyphen (-), period (.), and colon (:) punctuation characters. The colon
should only be used with namespaces (discussed later in this chapter), and names cannot contain whitespace.

Character References and CDATA Sections
Certain characters cannot appear literally in the content that appears between a start tag and an end tag,
or within an attribute value. For example, you cannot place a literal < character between a start tag and
an end tag because doing so would confuse an XML parser into thinking that it had encountered another
tag.

One solution to this problem is to replace the literal character with a character reference, which is a
code that represents the character. Character references are classified as numeric character references
or character entity references:

• A numeric character reference refers to a character via its Unicode code point, and
adheres to the format &#nnnn; (not restricted to four positions) or &#xhhhh; (not
restricted to four positions), where nnnn provides a decimal representation of the
code point and hhhh provides a hexadecimal representation. For example, Σ
and Σ represent the Greek capital letter sigma. Although XML mandates
that the x in &#xhhhh; be lowercase, it is flexible in that the leading zero is optional
in either format, and in allowing you to specify an uppercase or lowercase letter
for each h. As a result, Σ, Σ, and Σ are also valid representations
of the Greek capital letter sigma.

• A character entity reference refers to a character via the name of an entity (aliased
data) that specifies the desired character as its replacement text. Character entity
references are predefined by XML and have the format &name;, where name is the
entity’s name. XML predefines five character entity references: < (<), > (>),
& (&), ' ('), and " (").

Consider <expression>6 < 4</expression>. You could replace the < with numeric reference <,
yielding <expression>6 < 4</expression>, or better yet with <, yielding <expression>6 <
4</expression>. The second choice is clearer and easier to remember.

Suppose you want to embed an HTML or XML document within an element. To make the
embedded document acceptable to an XML parser, you would need to replace each literal < (start of tag)
and & (start of entity) character with its < and & predefined character entity reference, a tedious
and possibly error prone undertaking—you might forget to replace one of these characters. To save you
from tedium and potential errors, XML provides an alternative in the form of a CDATA (character data)
section.

A CDATA section is a section of literal HTML or XML markup and content surrounded by the
<![CDATA[prefix and the]]> suffix. You do not need to specify predefined character entity references
within a CDATA section, as demonstrated in Listing 10-4.

Listing 10-4. Embedding an XML document in another document’s CDATA section

<?xml version="1.0"?>
<svg-examples>
 <example>

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

667

 The following Scalable Vector Graphics document describes a blue-filled and
 black-stroked rectangle.
 <![CDATA[<svg width="100%" height="100%" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <rect width="300" height="100"
 style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 </svg>]]>
 </example>
</svg-examples>

Listing 10-4 embeds a Scalable Vector Graphics (SVG) [see http://en.wikipedia.org/wiki/Svg] XML
document within the example element of an SVG examples document. The SVG document is placed in a
CDATA section, obviating the need to replace all < characters with < predefined character entity
references.

Namespaces
It is common to create XML documents that combine features from different XML languages.
Namespaces are used to prevent name conflicts when elements and other XML language features
appear. Without namespaces, an XML parser could not distinguish between same-named elements or
other language features that mean different things, for example, two same-named title elements from
two different languages.

 Note Namespaces are not part of XML 1.0. They arrived about a year after this specification was released. To
ensure backward compatibility with XML 1.0, namespaces take advantage of colon characters, which are legal
characters in XML names. Parsers that don’t recognize namespaces return names that include colons.

A namespace is a Uniform Resource Identifier (URI)-based container that helps differentiate XML
vocabularies by providing a unique context for its contained identifiers. The namespace URI is
associated with a namespace prefix (an alias for the URI) by specifying, typically on an XML document’s
root element, either the xmlns attribute by itself (which signifies the default namespace) or the
xmlns:prefix attribute (which signifies the namespace identified as prefix), and assigning the URI to
this attribute.

 Note A namespace’s scope starts at the element where it is declared and applies to all of the element’s content
unless overridden by another namespace declaration with the same prefix name.

When prefix is specified, it and a colon character are prepended to the name of each element tag
that belongs to that namespace—see Listing 10-5.

http://www.w3.org/2000/svg

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

668

Listing 10-5. Introducing a pair of namespaces

<?xml version="1.0"?>
<h:html xmlns:h="http://www.w3.org/1999/xhtml"
 xmlns:r="http://www.tutortutor.ca/">
 <h:head>
 <h:title>
 Recipe
 </h:title>
 </h:head>
 <h:body>
 <r:recipe>
 <r:title>
 Grilled Cheese Sandwich
 </r:title>
 <r:ingredients>
 <h:ul>
 <h:li>
 <r:ingredient qty="2">
 bread slice
 </r:ingredient>
 </h:li>
 <h:li>
 <r:ingredient>
 cheese slice
 </r:ingredient>
 </h:li>
 <h:li>
 <r:ingredient qty="2">
 margarine pat
 </r:ingredient>
 </h:li>
 </h:ul>
 </r:ingredients>
 <h:p>
 <r:instructions>
 Place frying pan on element and select medium heat. For each bread slice, smear
 one pat of margarine on one side of bread slice. Place cheese slice between
 bread slices with margarine-smeared sides away from the cheese. Place sandwich
 in frying pan with one margarine-smeared side in contact with pan. Fry for a
 couple of minutes and flip. Fry other side for a minute and serve.
 </r:instructions>
 </h:p>
 </r:recipe>
 </h:body>
</h:html>

Listing 10-5 describes a document that combines elements from the XHTML language (see
http://en.wikipedia.org/wiki/XHTML) with elements from the recipe language. All element tags that
associate with XHTML are prefixed with h:, and all element tags that associate with the recipe language
are prefixed with r:.

http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://en.wikipedia.org/wiki/XHTML

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

669

The h: prefix associates with the http://www.w3.org/1999/xhtml URI and the r: prefix associates
with the http://www.tutortutor.ca/ URI. XML doesn’t mandate that URIs point to document files. It
only requires that they be unique in order to guarantee unique namespaces.

This document’s separation of the recipe data from the XHTML elements makes it possible to
preserve this data’s structure while also allowing an XHTML-compliant web browser (e.g., Google
Chrome) to present the recipe via a web page (see Figure 10-2).

Figure 10-2. Google Chrome presents the recipe data via XHTML tags.

A tag’s attributes don’t need to be prefixed when those attributes belong to the element. For
example, qty is not prefixed in <r:ingredient qty="2">. However, a prefix is required for attributes
belonging to other namespaces. For example, suppose you want to add an XHTML style attribute to the
document’s <r:title> tag, to provide styling for the recipe title when displayed via an application. You
can accomplish this task by inserting an XHTML attribute into the title tag, as follows: <r:title
h:style="font-family: sans-serif;">. The XHTML style attribute has been prefixed with h: because
this attribute belongs to the XHTML language namespace and not to the recipe language namespace.

When multiple namespaces are involved, it can be convenient to specify one of these namespaces
as the default namespace, to reduce the tedium in entering namespace prefixes. Consider Listing 10-6.

Listing 10-6. Specifying a default namespace

<?xml version="1.0"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:r="http://www.tutortutor.ca/">
 <head>
 <title>
 Recipe
 </title>
 </head>
 <body>
 <r:recipe>
 <r:title>

http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

670

 Grilled Cheese Sandwich
 </r:title>
 <r:ingredients>

 <r:ingredient qty="2">
 bread slice
 </r:ingredient>

 <r:ingredient>
 cheese slice
 </r:ingredient>

 <r:ingredient qty="2">
 margarine pat
 </r:ingredient>

 </r:ingredients>
 <p>
 <r:instructions>
 Place frying pan on element and select medium heat. For each bread slice, smear
 one pat of margarine on one side of bread slice. Place cheese slice between
 bread slices with margarine-smeared sides away from the cheese. Place sandwich
 in frying pan with one margarine-smeared side in contact with pan. Fry for a
 couple of minutes and flip. Fry other side for a minute and serve.
 </r:instructions>
 </p>
 </r:recipe>
 </body>
</html>

Listing 10-6 specifies a default namespace for the XHTML language. No XHTML element tag needs
to be prefixed with h:. However, recipe language element tags must still be prefixed with the r: prefix.

Comments and Processing Instructions
XML documents can contain comments, which are character sequences beginning with <!-- and ending
with -->. For example, you might place <!-- Todo --> in Listing 10-3’s body element to remind yourself
that you need to finish coding this element.

Comments are used to clarify portions of a document. They can appear anywhere after the XML
declaration except within tags, cannot be nested, cannot contain a double hyphen (--) because doing so
might confuse an XML parser that the comment has been closed, should not contain a hyphen (-) for the
same reason, and are typically ignored during processing. Comments are not content.

XML also permits processing instructions to be present. A processing instruction is an instruction
that is made available to the application parsing the document. The instruction begins with <? and ends
with ?>. The <? prefix is followed by a name known as the target. This name typically identifies the
application to which the processing instruction is intended. The rest of the processing instruction
contains text in a format appropriate to the application. Two examples of processing instructions are

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

671

<?xml-stylesheet href="modern.xsl" type="text/xml"?> (associate an eXtensible Stylesheet Language
[XSL] style sheet [see http://en.wikipedia.org/wiki/XSL] with an XML document) and <?php /* PHP
code */ ?> (pass a PHP code fragment to the application). Although the XML declaration looks like a
processing instruction, this is not the case.

 Note The XML declaration is not a processing instruction.

Well-Formed Documents
HTML is a sloppy language in which elements can be specified out of order, end tags can be omitted,
and so on. The complexity of a web browser’s page layout code is partly due to the need to handle these
special cases. In contrast, XML is a much stricter language. To make XML documents easier to parse,
XML mandates that XML documents follow certain rules:

• All elements must either have start and end tags or consist of empty-element tags.
For example, unlike the HTML <p> tag that is often specified without a </p>
counterpart, </p> must also be present from an XML document perspective.

• Tags must be nested correctly. For example, while you’ll probably get away with
specifying <i>JavaFX</i> in HTML, an XML parser would report an error.
In contrast, <i>JavaFX</i> doesn’t result in an error.

• All attribute values must be quoted. Either single quotes (') or double quotes (")
are permissible (although double quotes are the more commonly specified
quotes). It is an error to omit these quotes.

• Empty elements must be properly formatted. For example, HTML’s
 tag would
have to be specified as
 in XML. You can specify a space between the tag’s
name and the / character, although the space is optional.

• Be careful with case. XML is a case-sensitive language in which tags differing in
case (such as <author> and <Author>) are considered different. It is an error to mix
start and end tags of different cases, for example, <author> with </Author>.

XML parsers that are aware of namespaces enforce two additional rules:

• All element and attribute names must not include more than one colon character.

• No entity names, processing instruction targets, or notation names (discussed
later) can contain colons.

An XML document that conforms to these rules is well formed. The document has a logical and
clean appearance, and is much easier to process. XML parsers will only parse well-formed XML
documents.

Valid Documents
It is not always enough for an XML document to be well formed; in many cases the document must also
be valid. A valid document adheres to constraints. For example, a constraint could be placed upon

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

672

Listing 10-1’s recipe document to ensure that the ingredients element always precedes the
instructions element; perhaps an application must first process ingredients.

 Note XML document validation is similar to a compiler analyzing source code to make sure that the code
makes sense in a machine context. For example, each of int, count, =, 1, and ; are valid Java character
sequences, but 1 count ; int = is not a valid Java construct (whereas int count = 1; is a valid Java
construct).

Some XML parsers perform validation, whereas other parsers do not because validating parsers are
harder to write. A parser that performs validation compares an XML document to a grammar document.
Any deviation from this document is reported as an error to the application—the document is not valid.
The application may choose to fix the error or reject the document. Unlike wellformedness errors,
validity errors are not necessarily fatal and the parser can continue to parse the document.

 Note Validating XML parsers often don’t validate by default because validation can be time consuming. They
must be instructed to perform validation.

Grammar documents are written in a special language. Two commonly used grammar languages
that are supported by JAXP are Document Type Definition and XML Schema.

Document Type Definition
Document Type Definition (DTD) is the oldest grammar language for specifying an XML document’s
grammar. DTD grammar documents (known as DTDs) are written in accordance to a strict syntax that
states what elements may be present and in what parts of a document, and also what is contained within
elements (child elements, content, or mixed content) and what attributes may be specified. For example,
a DTD may specify that a recipe element must have an ingredients element followed by an
instructions element.

Listing 10-7 presents a DTD for the recipe language that was used to construct Listing 10-1’s
document.

Listing 10-7. The recipe language’s DTD

<!ELEMENT recipe (title, ingredients, instructions)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT ingredients (ingredient+)>
<!ELEMENT ingredient (#PCDATA)>
<!ELEMENT instructions (#PCDATA)>
<!ATTLIST ingredient qty CDATA "1">

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

673

This DTD first declares the recipe language’s elements. Element declarations take the form
<!ELEMENT name content-specifier>, where name is any legal XML name (it cannot contain whitespace,
for example), and content-specifier identifies what can appear within the element.

The first element declaration states that exactly one recipe element can appear in the XML
document –this declaration does not imply that recipe is the root element. Furthermore, this element
must include exactly one each of the title, ingredients, and instructions child elements, and in that
order. Child elements must be specified as a comma-separated list. Furthermore, a list is always
surrounded by parentheses.

The second element declaration states that the title element contains parsed character data
(nonmarkup text). The third element declaration states that at least one ingredient element must
appear in ingredients. The + character is an example of a regular expression that means one or more.
Other expressions that may be used are * (zero or more) and ? (once or not at all). The fourth and fifth
element declarations are similar to the second by stating that ingredient and instructions elements
contain parsed character data.

 Note Element declarations support three other content specifiers. You can specify <!ELEMENT name ANY> to
allow any type of element content or <!ELEMENT name EMPTY> to disallow any element content. To state that an
element contains mixed content, you would specify #PCDATA and a list of element names, separated by vertical
bars (|). For example, <!ELEMENT ingredient (#PCDATA | measure | note)*> states that the ingredient
element can contain a mix of parsed character data, zero or more measure elements, and zero or more note
elements. It does not specify the order in which the parsed character data and these elements occur. However,
#PCDATA must be the first item specified in the list. When a regular expression is used in this context, it must
appear to the right of the closing parenthesis.

Listing 10-7’s DTD lastly declares the recipe language’s attributes, of which there is only one: qty.
Attribute declarations take the form <!ATTLIST ename aname type default-value>, where ename is the
name of the element to which the attribute belongs, aname is the name of the attribute, type is the
attribute’s type, and default-value is the attribute’s default value.

The attribute declaration identifies qty as an attribute of ingredient. It also states that qty’s type is
CDATA (any string of characters not including the ampersand, less than or greater than signs, or double
quotes may appear; these characters may be represented via &, <, >, or ", respectively),
and that qty is optional, assuming default value 1 when not present.

MORE ABOUT ATTRIBUTES

DTD lets you specify additional attribute types: ID (create a unique identifier for an attribute that identifies
an element), IDREF (an attribute’s value is an element located elsewhere in the document), IDREFS (the
value consists of multiple IDREFs), ENTITY (you can use external binary data or unparsed entities),
ENTITIES (the value consists of multiple entities), NMTOKEN (the value is restricted to any valid XML name),
NMTOKENS (the value is composed of multiple XML names), NOTATION (the value is already specified via a

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

674

DTD notation declaration), and enumerated (a list of possible values to choose from; values are separated
with vertical bars).

Instead of specifying a default value verbatim, you can specify #REQUIRED to mean that the attribute must
always be present with some value (<!ATTLIST ename aname type #REQUIRED>), #IMPLIED to mean
that the attribute is optional and no default value is provided (<!ATTLIST ename aname type #IMPLIED>),
or #FIXED to mean that the attribute is optional and must always take on the DTD-assigned default value
when used (<!ATTLIST ename aname type #FIXED "value">).

You can specify a list of attributes in one ATTLIST declaration. For example, <!ATTLIST ename aname1
type1 default-value1 aname2 type2 default-value2> declares two attributes identified as aname1
and aname2.

A DTD-based validating XML parser requires that a document include a document type declaration

identifying the DTD that specifies the document’s grammar before it will validate the document.

 Note Document Type Definition and document type declaration are two different things. The DTD acronym
identifies a Document Type Definition and never identifies a document type declaration.

A document type declaration appears immediately after the XML declaration and is specified in one
of the following ways:

• <!DOCTYPE root-element-name SYSTEM uri> references an external but private
DTD via uri. The referenced DTD is not available for public scrutiny. For example,
I might store my recipe language’s DTD file (recipe.dtd) in a private dtds
directory on my www.tutortutor.ca website, and use <!DOCTYPE recipe SYSTEM
"http://www.tutortutor.ca/dtds/recipe.dtd"> to identify this DTD’s location via
system identifier http://www.tutortutor.ca/dtds/recipe.dtd.

• <!DOCTYPE root-element-name PUBLIC fpi uri> references an external but public
DTD via fpi, a formal public identifier (see
http://en.wikipedia.org/wiki/Formal_Public_Identifier), and uri. If a
validating XML parser cannot locate the DTD via public identifier fpi, it can use
system identifier uri to locate the DTD. For example, <!DOCTYPE html PUBLIC "-
//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> references the
XHTML 1.0 DTD first via public identifier -//W3C//DTD XHTML 1.0
Transitional//EN, and second via system identifier
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd.

• <!DOCTYPE root-element [dtd]> references an internal DTD, one that is
embedded within the XML document. The internal DTD must appear between
square brackets.

Listing 10-8 presents Listing 10-1 (minus the child elements between the <recipe> and </recipe>
tags) with an internal DTD.

http://www.tutortutor.ca
http://www.tutortutor.ca/dtds/recipe.dtd
http://www.tutortutor.ca/dtds/recipe.dtd
http://en.wikipedia.org/wiki/Formal_Public_Identifier
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

675

Listing 10-8. The recipe document with an internal DTD

<?xml version="1.0"?>
<!DOCTYPE recipe [
 <!ELEMENT recipe (title, ingredients, instructions)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT ingredients (ingredient+)>
 <!ELEMENT ingredient (#PCDATA)>
 <!ELEMENT instructions (#PCDATA)>
 <!ATTLIST ingredient qty CDATA "1">
]>
<recipe>
 <!-- Child elements removed for brevity. -->
</recipe>

 Note A document can have internal and external DTDs; for example, <!DOCTYPE recipe SYSTEM
"http://www.tutortutor.ca/dtds/recipe.dtd" [<!ELEMENT ...>]>. The internal DTD is referred to as the
internal DTD subset and the external DTD is referred to as the external DTD subset. Neither subset can override
the element declarations of the other subset.

You can also declare notations, and general and parameter entities within DTDs. A notation is an
arbitrary piece of data that typically describes the format of unparsed binary data, and typically has the
form <!NOTATION name SYSTEM uri>, where name identifies the notation and uri identifies some kind of
plugin that can process the data on behalf of the application that is parsing the XML document. For
example, <!NOTATION image SYSTEM "psp.exe"> declares a notation named image and identifies Windows
executable psp.exe as a plugin for processing images.

It is also common to use notations to specify binary data types via Internet media types (see
http://en.wikipedia.org/wiki/Internet_media_type). For example, <!NOTATION image SYSTEM
"image/jpeg"> declares an image notation that identifies the image/jpeg Internet media type for Joint
Photographic Experts Group images.

General entities are entities referenced from inside an XML document via general entity references,
syntactic constructs of the form &name;. Examples include the predefined lt, gt, amp, apos, and quot
character entities, whose <, >, &, ', and " character entity references are aliases for
characters <, >, &, ', and ", respectively.

General entities are classified as internal or external. An internal general entity is a general entity
whose value is stored in the DTD, and has the form <!ENTITY name value>, where name identifies the
entity and value specifies its value. For example, <!ENTITY copyright "Copyright © 2011 Jeff
Friesen. All rights reserved."> declares an internal general entity named copyright. The value of this
entity may include another declared entity, such as © (the HTML entity for the copyright symbol),
and can be referenced from anywhere in an XML document by specifying ©right;.

An external general entity is a general entity whose value is stored outside the DTD. The value might
be textual data (such as an XML document), or it might be binary data (such as a JPEG image). External
general entities are classified as external parsed general entity and external unparsed entity.

An external parsed general entity references an external file that stores the entity’s textual data,
which is subject to being inserted into a document and parsed by a validating parser when a general

http://www.tutortutor.ca/dtds/recipe.dtd
http://en.wikipedia.org/wiki/Internet_media_type

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

676

entity reference is specified in the document, and which has the form <!ENTITY name SYSTEM uri>,
where name identifies the entity and uri identifies the external file. For example, <!ENTITY chapter-
header SYSTEM "http://www.tutortutor.ca/entities/chapheader.xml"> identifies chapheader.xml as
storing the XML content to be inserted into an XML document wherever &chapter-header; appears in
the document. The alternative <!ENTITY name PUBLIC fpi uri> form can be specified.

 Caution Because the contents of an external file may be parsed, this content must be well formed.

An external unparsed entity references an external file that stores the entity’s binary data, and has
the form <!ENTITY name SYSTEM uri NDATA nname>, where name identifies the entity, uri locates the
external file, and NDATA identifies the notation declaration named nname. The notation typically identifies
a plugin for processing the binary data or the Internet media type of this data. For example, <!ENTITY
photo SYSTEM "photo.jpg" NDATA image> associates name photo with external binary file photo.png and
notation image. The alternative <!ENTITY name PUBLIC fpi uri NDATA nname> form can be specified.

 Note XML does not allow references to external general entities to appear in attribute values. For example, you
cannot specify &chapter-header; in an attribute’s value.

Parameter entities are entities referenced from inside a DTD via parameter entity references,
syntactic constructs of the form %name;. They are useful for eliminating repetitive content from element
declarations. For example, you are creating a DTD for a large company, and this DTD contains three
element declarations: <!ELEMENT salesperson (firstname, lastname)>, <!ELEMENT lawyer (firstname,
lastname)>, and <!ELEMENT accountant (firstname, lastname)>. Each element contains repeated child
element content. If you need to add another child element (such as middleinitial), you’ll need to make
sure that all the elements are updated; otherwise, you risk a malformed DTD. Parameter entities can
help you solve this problem.

Parameter entities are classified as internal or external. An internal parameter entity is a parameter
entity whose value is stored in the DTD, and has the form <!ENTITY % name value>, where name identifies
the entity and value specifies its value. For example, <!ENTITY % person-name "firstname, lastname">
declares a parameter entity named person-name with value firstname, lastname. Once declared, this
entity can be referenced in the three previous element declarations, as follows: <!ELEMENT salesperson
(%person-name;)>, <!ELEMENT lawyer (%person-name;)>, and <!ELEMENT accountant (%person-name;)>.
Instead of adding middleinitial to each of salesperson, lawyer, and accountant, as was done previously,
you would now add this child element to person-name, as in <!ENTITY % person-name "firstname,
middleinitial, lastname">, and this change would be applied to these element declarations.

An external parameter entity is a parameter entity whose value is stored outside the DTD. It has the
form <!ENTITY % name SYSTEM uri>, where name identifies the entity and uri locates the external file. For
example, <!ENTITY % person-name SYSTEM "http://www.tutortutor.ca/entities/names.dtd"> identifies
names.dtd as storing the firstname, lastname text to be inserted into a DTD wherever %person-name;
appears in the DTD. The alternative <!ENTITY % name PUBLIC fpi uri> form can be specified.

http://www.tutortutor.ca/entities/chapheader.xml
http://www.tutortutor.ca/entities/names.dtd

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

677

 Note This discussion sums up the basics of DTD. One additional topic that was not covered (for brevity) is
conditional inclusion, which lets you specify those portions of a DTD to make available to parsers, and is typically
used with parameter entity references.

XML Schema
XML Schema is a grammar language for declaring the structure, content, and semantics (meaning) of an
XML document. This language’s grammar documents are known as schemas that are themselves XML
documents. Schemas must conform to the XML Schema DTD (see
http://www.w3.org/2001/XMLSchema.dtd).

XML Schema was introduced by the W3C to overcome limitations with DTD, such as DTD’s lack of
support for namespaces. Also, XML Schema provides an object-oriented approach to declaring an XML
document’s grammar. This grammar language provides a much larger set of primitive types than DTD’s
CDATA and PCDATA types. For example, you’ll find integer, floating-point, various date and time, and
string types to be part of XML Schema.

 Note XML Schema predefines 19 primitive types, which are expressed via the following identifiers: anyURI,
base64Binary, boolean, date, dateTime, decimal, double, duration, float, hexBinary, gDay, gMonth,
gMonthDay, gYear, gYearMonth, NOTATION, QName, string, and time.

XML Schema provides restriction (reducing the set of permitted values through constraints), list
(allowing a sequence of values), and union (allowing a choice of values from several types) derivation
methods for creating new simple types from these primitive types. For example, XML Schema derives 13
integer types from decimal through restriction; these types are expressed via the following identifiers:
byte, int, integer, long, negativeInteger, nonNegativeInteger, nonPositiveInteger, positiveInteger,
short, unsignedByte, unsignedInt, unsignedLong, and unsignedShort. It also provides support for creating
complex types from simple types.

A good way to become familiar with XML Schema is to follow through an example, such as creating
a schema for Listing 10-1’s recipe language document. The first step in creating this recipe language
schema is to identify all its elements and attributes. The elements are recipe, title, ingredients,
instructions, and ingredient; qty is the solitary attribute.

The next step is to classify the elements according to XML Schema’s content model, which specifies
the types of child elements and text nodes (see
http://en.wikipedia.org/wiki/Node_(computer_science)) that can be included in an element. An
element is considered to be empty when the element has no child elements or text nodes, simple when
only text nodes are accepted, complex, when only child elements are accepted, and mixed when child
elements and text nodes are accepted. None of Listing 10-1’s elements have empty or mixed content
models. However, the title, ingredient, and instructions elements have simple content models; and
the recipe and ingredients elements have complex content models.

For elements that have a simple content model, we can distinguish between elements having
attributes and elements not having attributes. XML Schema classifies elements having a simple content
model and no attributes as simple types. Furthermore, it classifies elements having a simple content

http://www.w3.org/2001/XMLSchema.dtd
http://en.wikipedia.org/wiki/Node_

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

678

model and attributes, or elements from other content models as complex types. Furthermore, XML
Schema classifies attributes as simple types because they only contain text values—attributes don’t have
child elements. Listing 10-1’s title and instructions elements, and its qty attribute are simple types. Its
recipe, ingredients, and ingredient elements are complex types.

At this point, we can begin to declare the schema. The following example presents the introductory
schema element:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

The schema element introduces the grammar. It also assigns the commonly used xs namespace
prefix to the standard XML Schema namespace; xs: is subsequently prepended to XML Schema element
names.

Next, we use the element element to declare the title and instructions simple type elements, as
follows:

<xs:element name="title" type="xs:string"/>
<xs:element name="instructions" type="xs:string"/>

XML Schema requires that each element have a name and (unlike DTD) be associated with a type,
which identifies the kind of data stored in the element. For example, the first element declaration
identifies title as the name via its name attribute and string as the type via its type attribute (string or
character data appears between the <title> and </title> tags). The xs: prefix in xs:string is required
because string is a predefined W3C type.

Continuing, we now use the attribute element to declare the qty simple type attribute, as follows:

<xs:attribute name="qty" type="xs:unsignedInt" default="1"/>

This attribute element declares an attribute named qty. I’ve chosen unsignedInt as this attribute’s
type because quantities are nonnegative values. Furthermore, I’ve specified 1 as the default value for
when qty is not specified—attribute elements default to declaring optional attributes.

 Note The order of element and attribute declarations is not significant within a schema.

 Now that we’ve declared the simple types, we can start to declare the complex types. To begin, we’ll
declare recipe, as follows:

<xs:element name="recipe">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element ref="ingredients"/>
 <xs:element ref="instructions"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

This declaration states that recipe is a complex type (via the complexType element) consisting of a
sequence (via the sequence element) of one title element followed by one ingredients element
followed by one instructions element. Each of these elements is declared by a different element that is
referred to by its element’s ref attribute.

http://www.w3.org/2001/XMLSchema

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

679

The next complex type to declare is ingredients. The following example provides its declaration:

<xs:element name="ingredients">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ingredient" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

This declaration states that ingredients is a complex type consisting of a sequence of one or more
ingredient elements. The “or more” is specified by including element’s maxOccurs attribute and setting
this attribute’s value to unbounded.

 Note The maxOccurs attribute identifies the maximum number of times that an element can occur. A similar
minOccurs attribute identifies the minimum number of times that an element can occur. Each attribute can be
assigned 0 or a positive integer. Furthermore, you can specify unbounded for maxOccurs, which means that there
is no upper limit on occurrences of the element. Each attribute defaults to a value of 1, which means that an
element can appear only one time when neither attribute is present.

The final complex type to declare is ingredient. Although ingredient can contain only text nodes,
which implies that it should be a simple type, it is the presence of the qty attribute that makes it
complex. Check out the following declaration:

<xs:element name="ingredient">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="qty"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

The element named ingredient is a complex type (because of its optional qty attribute). The
simpleContent element indicates that ingredient can only contain simple content (text nodes), and the
extension element indicates that ingredient is a new type that extends the predefined string type
(specified via the base attribute), implying that ingredient inherits all of string’s attributes and
structure. Furthermore, ingredient is given an additional qty attribute.

Listing 10-9 combines the previous examples into a complete schema.

Listing 10-9. The recipe document’s schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="title" type="xs:string"/>
<xs:element name="instructions" type="xs:string"/>

http://www.w3.org/2001/XMLSchema

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

680

<xs:attribute name="qty" type="xs:unsignedInt" default="1"/>
<xs:element name="recipe">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element ref="ingredients"/>
 <xs:element ref="instructions"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="ingredients">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ingredient" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="ingredient">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="qty"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

After creating the schema, you’ll want to reference it from a recipe document. Accomplish this task
by specifying xmlns:xsi and xsi:schemaLocation attributes on the document’s root element start tag
(<recipe>), as follows:

<recipe xmlns="http://www.tutortutor.ca/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.tutortutor.ca/schemas recipe.xsd">

The xmlns attribute identifies http://www.tutortutor.ca/ as the document’s default namespace.
Unprefixed elements and their unprefixed attributes belong to this namespace.

The xmlns:xsi attribute associates the conventional xsi (XML Schema Instance) prefix with the
standard http://www.w3.org/2001/XMLSchema-instance namespace. The only item in the document
that’s prefixed with xsi: is schemaLocation.

The schemaLocation attribute is used to locate the schema. This attribute’s value can be multiple
pairs of space-separated values, but is specified as a single pair of such values in this example. The first
value (http://www.tutortutor.ca/schemas) identifies the target namespace for the schema, and the
second value (recipe.xsd) identifies the location of the schema within this namespace.

 Note Schema files that conform to XML Schema’s grammar are commonly assigned the .xsd file extension.

http://www.tutortutor.ca/
http://www.w3.org/2001/XMLSchema-instance
http://www.tutortutor.ca/schemasrecipe.xsd
http://www.tutortutor.ca/
http://www.w3.org/2001/XMLSchema-instance
http://www.tutortutor.ca/schemas

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

681

If an XML document declares a namespace (xmlns default or xmlns:prefix), that namespace must
be made available to the schema so that a validating parser can resolve all references to elements and
other schema components for that namespace. We also need to mention which namespace the schema
describes, and we do so by including the targetNamespace attribute on the schema element. For example,
suppose our recipe document declares a default XML namespace, as follows:

<?xml version="1.0"?>
<recipe xmlns="http://www.tutortutor.ca/">

At minimum, we would need to modify Listing 10-9’s schema element to include targetNameSpace
and the recipe document’s default namespace as targetNameSpace’s value, as follows:

<xs:schema targetNamespace="http://www.tutortutor.ca/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

Perhaps you’re wondering why you need to learn about XML Schema when DTD should be good
enough for your XML projects. The reason for learning XML Schema is that Chapter 11 introduces you to
the XML-based Web Services Description Language (WSDL), and the WSDL example that’s presented in
that chapter includes an XML Schema-based schema.

Parsing XML Documents with SAX
Simple API for XML (SAX) is an event-based API for parsing an XML document sequentially from start to
finish. As a SAX-oriented parser encounters an item from the document’s infoset (an abstract data model
describing an XML document’s information—see http://en.wikipedia.org/wiki/XML_Information_Set),
it makes this item available to an application as an event, by calling one of the methods in one of the
application's handlers (an object whose methods are called by the parser to make event information
available), which the application has previously registered with the parser. The application can then
consume this event by processing the infoset item in some manner.

 Note According to its official website (http://www.saxproject.org/), SAX originated as an XML parsing API
for Java. However, SAX is not exclusive to Java. Microsoft also supports SAX for its .NET framework (see
http://saxdotnet.sourceforge.net/).

After taking you on a tour of the SAX API, this section provides a simple demonstration of this API to
help you become familiar with its event-based parsing paradigm. It then shows you how to create a
custom entity resolver.

Exploring the SAX API
SAX exists in two major versions. Java implements SAX 1 through the javax.xml.parsers package’s
abstract SAXParser and SAXParserFactory classes, and implements SAX 2 through the org.xml.sax
package’s XMLReader interface and through the org.xml.sax.helpers package’s XMLReaderFactory class.
The org.xml.sax, org.xml.sax.ext, and org.xml.sax.helpers packages provide various types that
augment both Java implementations.

http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.w3.org/2001/XMLSchema
http://en.wikipedia.org/wiki/XML_Information_Set
http://www.saxproject.org/
http://saxdotnet.sourceforge.net/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

682

 Note I explore only the SAX 2 implementation because SAX 2 makes available additional infoset items about an
XML document (such as comments and CDATA section notifications).

Classes that implement the XMLReader interface describe SAX 2-based parsers. Instances of these
classes are obtained by calling the XMLReaderFactory class’s createXMLReader() methods. For example,
the following example invokes this class’s static XMLReader createXMLReader() method to create and
return an XMLReader instance:

XMLReader xmlr = XMLReaderFactory.createXMLReader();

This method call returns an instance of an XMLReader-implementing class and assigns its reference
to xmlr.

 Note Behind the scenes, createXMLReader() attempts to create an XMLReader instance from system defaults,
according to a lookup procedure that first examines the org.xml.sax.driver system property to see if it has a
value. If so, this property’s value is used as the name of the class that implements XMLReader, and an attempt is
made to instantiate this class and return the instance. An instance of the org.xml.sax.SAXException class is
thrown when createXMLReader() cannot obtain an appropriate class or instantiate the class.

The returned XMLReader object makes available several methods for configuring the parser and
parsing a document’s content. These methods are described here:

• ContentHandler getContentHandler() returns the current content handler, which
is an instance of a class that implements the org.xml.sax.ContentHandler
interface, or the null reference when none has been registered.

• DTDHandler getDTDHandler() returns the current DTD handler, which is an
instance of a class that implements the org.xml.sax.DTDHandler interface, or the
null reference when none has been registered.

• EntityResolver getEntityResolver() returns the current entity resolver, which is
an instance of a class that implements the org.xml.sax.EntityResolver interface,
or the null reference when none has been registered.

• ErrorHandler getErrorHandler() returns the current error handler, which is an
instance of a class that implements the org.xml.sax.ErrorHandler interface, or the
null reference when none has been registered.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

683

• boolean getFeature(String name) returns the Boolean value that corresponds to
the feature identified by name, which must be a fully-qualified URI. This method
throws org.xml.sax.SAXNotRecognizedException when the name is not recognized
as a feature, and throws org.xml.sax.SAXNotSupportedException when the name is
recognized but the associated value cannot be determined when getFeature() is
called. SAXNotRecognizedException and SAXNotSupportedException are subclasses
of SAXException.

• Object getProperty(String name) returns the java.lang.Object instance that
corresponds to the property identified by name, which must be a fully-qualified
URI. This method throws SAXNotRecognizedException when the name is not
recognized as a property, and throws SAXNotSupportedException when the name is
recognized but the associated value cannot be determined when getProperty() is
called.

• void parse(InputSource input) parses an XML document and does not return
until the document has been parsed. The input parameter stores a reference to an
org.xml.sax.InputSource instance, which describes the document’s source (such
as a java.io.InputStream instance, or even a java.lang.String-based system
identifier URI). This method throws java.io.IOException when the source cannot
be read, and SAXException when parsing fails, probably due to a wellformedness
violation.

• void parse(String systemId) parses an XML document by executing parse(new
InputSource(systemId));.

• void setContentHandler(ContentHandler handler) registers the content handler
identified by handler with the parser. The ContentHandler interface provides
eleven callback methods that are called to report various parsing events (such as
the start and end of an element).

• void setDTDHandler(DTDHandler handler) registers the DTD handler identified by
handler with the parser. The DTDHandler interface provides a pair of callback
methods for reporting on notations and external unparsed entities.

• void setEntityResolver(EntityResolver resolver) registers the entity resolver
identified by resolver with the parser. The EntityResolver interface provides a
single callback method for resolving entities.

• void setErrorHandler(ErrorHandler handler) registers the error handler
identified by handler with the parser. The ErrorHandler interface provides three
callback methods that report fatal errors (problems that prevent further parsing,
such as wellformedness violations), recoverable errors (problems that don’t
prevent further parsing, such as validation failures), and warnings (nonerrors that
need to be addressed, such as prefixing an element name with the W3C-reserved
xml prefix).

• void setFeature(String name, boolean value) assigns value to the feature
identified by name, which must be a fully-qualified URI. This method throws
SAXNotRecognizedException when the name is not recognized as a feature, and
throws SAXNotSupportedException when the name is recognized but the associated
value cannot be set when setFeature() is called.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

684

• void setProperty(String name, Object value) assigns value to the property
identified by name, which must be a fully-qualified URI. This method throws
SAXNotRecognizedException when the name is not recognized as a property, and
throws SAXNotSupportedException when the name is recognized but the associated
value cannot be set when setProperty() is called.

If a handler is not installed, all events pertaining to that handler are silently ignored. Not installing
an error handler can be problematic because normal processing might not continue, and the application
would not be aware that anything had gone wrong. If an entity resolver is not installed, the parser
performs its own default resolution. I’ll have more to say about entity resolution later in this chapter.

 Note You can install a new content handler, DTD handler, entity resolver, or error handler while the document is
being parsed. The parser starts using the handler when the next event occurs.

After obtaining an XMLReader instance, you can configure that instance by setting its features and
properties. A feature is a name-value pair that describes a parser mode, such as validation. In contrast, a
property is a name-value pair that describes some other aspect of the parser interface, such as a lexical
handler that augments the content handler by providing callback methods for reporting on comments,
CDATA delimiters, and a few other syntactic constructs.

Features and properties have names, which must be absolute URIs beginning with the http://
prefix. A feature’s value is always a Boolean true/false value. In contrast, a property’s value is an arbitrary
object. The following example demonstrates setting a feature and a property:

xmlr.setFeature("http://xml.org/sax/features/validation", true);
xmlr.setProperty("http://xml.org/sax/properties/lexical-handler",
 new LexicalHandler() { /* … */ });

The setFeature() call enables the validation feature so that the parser will perform validation.
Feature names are prefixed with http://xml.org/sax/features/.

 Note Parsers must support the namespaces and namespace-prefixes features. namespaces decides whether
URIs and local names are passed to ContentHandler’s startElement() and endElement() methods. It defaults
to true—these names are passed. The parser can pass empty strings when false. namespace-prefixes decides
whether a namespace declaration’s xmlns and xmlns:prefix attributes are included in the Attributes list
passed to startElement(), and also decides whether qualified names are passed as the method’s third
argument—a qualified name is a prefix plus a local name. It defaults to false, meaning that xmlns and
xmlns:prefix are not included, and that parsers don’t have to pass qualified names. No properties are
mandatory. The JDK documentation’s org.xml.sax package page lists standard SAX 2 features and properties.

The setProperty() call assigns an instance of a class that implements the
org.xml.sax.ext.LexicalHandler interface to the lexical-handler property so that interface methods

http://xml.org/sax/features/validation
http://xml.org/sax/properties/lexical-handler
http://xml.org/sax/features/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

685

can be called to report on comments, CDATA sections, and so on. Property names are prefixed with
http://xml.org/sax/properties/.

 Note Unlike ContentHandler, DTDHandler, EntityResolver, and ErrorHandler, LexicalHandler is an
extension (it is not part of the core SAX API), which is why XMLReader does not declare a void
setLexicalHandler(LexicalHandler handler) method. If you want to install a lexical handler, you must use
XMLReader’s setProperty() method to install the handler as the value of the
http://xml.org/sax/properties/lexical-handler property.

Features and properties can be read-only or read-write. (In some rare cases, a feature or property
might be write-only.) When setting or reading a feature or property, either a SAXNotSupportedException
or a SAXNotRecognizedException instance might be thrown. For example, if you try to modify a read-only
feature/property, an instance of the SAXNotSupportedException class is thrown. This exception could also
be thrown if you call setFeature() or setProperty() during parsing. Trying to set the validation feature
for a parser that doesn’t perform validation is a scenario where an instance of the
SAXNotRecognizedException class is thrown.

The handlers installed by setContentHandler(), setDTDHandler(), and setErrorHandler(), the entity
resolver installed by setEntityResolver(), and the handler installed by the lexical-handler
property/LexicalHandler interface provide various callback methods that you need to understand
before you can codify them to respond effectively to parsing events. ContentHandler declares the
following content-oriented informational callback methods:

• void characters(char[] ch, int start, int length) reports an element’s
character data via the ch array. The arguments that are passed to start and length
identify that portion of the array that’s relevant to this method call. Characters are
passed via a char[] array instead of via a String instance as a performance
optimization. Parsers commonly store a large amount of the document in an array
and repeatedly pass a reference to this array along with updated start and length
values to characters().

• void endDocument() reports that the end of the document has been reached. An
application might use this method to close an output file or perform some other
cleanup.

• void endElement(String uri, String localName, String qName) reports that the
end of an element has been reached. uri identifies the element’s namespace URI,
or is empty when there is no namespace URI or namespace processing has not
been enabled. localName identifies the element’s local name, which is the name
without a prefix (the html in html or h:html, for example). qName references the
qualified name; for example, h:html or html when there is no prefix. endElement()
is invoked when an end tag is detected, or immediately following startElement()
when an empty-element tag is detected.

• void endPrefixMapping(String prefix) reports that the end of a namespace
prefix mapping (xmlns:h, for example) has been reached, and prefix reports this
prefix (h, for example).

http://xml.org/sax/properties/
http://xml.org/sax/properties/lexical-handler

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

686

• void ignorableWhitespace(char[] ch, int start, int length) reports ignorable
whitespace (whitespace located between tags where the DTD doesn’t allow mixed
content). This whitespace is often used to indent tags. The parameters serve the
same purpose as those in the characters() method.

• void processingInstruction(String target, String data) reports a processing
instruction, where target identifies the application to which the instruction is
directed and data provides the instruction’s data (the null reference when there is
no data).

• void setDocumentLocator(Locator locator) reports an org.xml.sax.Locator
object (an instance of a class implementing the Locator interface) whose int
getColumnNumber(), int getLineNumber(), String getPublicId(), and String
getSystemId() methods can be called to obtain location information at the end
position of any document-related event, even when the parser is not reporting an
error. This method is called prior to startDocument(), and is a good place to save
the Locator object so that it can be accessed from other callback methods.

• void skippedEntity(String name) reports all skipped entities. Validating parsers
resolve all general entity references, but nonvalidating parsers have the option of
skipping them because nonvalidating parsers do not read DTDs where these
entities are declared. If the nonvalidating parser doesn’t read a DTD, it will not
know if an entity is properly declared. Instead of attempting to read the DTD and
report the entity’s replacement text, the nonvalidating parser calls
skippedEntity() with the entity’s name.

• void startDocument() reports that the start of the document has been reached. An
application might use this method to create an output file or perform some other
initialization.

• void startElement(String uri, String localName, String qName, Attributes
attributes) reports that the start of an element has been reached. uri identifies
the element’s namespace URI, or is empty when there is no namespace URI or
namespace processing has not been enabled. localName identifies the element’s
local name, qName references its qualified name, and attributes references an
array of org.xml.sax.Attribute objects that identify the element’s attributes—this
array is empty when there are no attributes. startElement() is invoked when a
start tag or an empty-element tag is detected.

• void startPrefixMapping(String prefix, String uri) reports that the start of a
namespace prefix mapping (xmlns:h="http://www.w3.org/1999/xhtml", for
example) has been reached, where prefix reports this prefix (e.g., h) and uri
reports the URI to which the prefix is mapped (http://www.w3.org/1999/xhtml, for
example).

Each method except for setDocumentLocator() is declared to throw SAXException, which an
overriding callback method might choose to throw when it detects a problem.

DTDHandler declares the following DTD-oriented informational callback methods:

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

687

• void notationDecl(String name, String publicId, String systemId) reports a
notation declaration, where name provides this declaration’s name attribute value,
publicId provides this declaration’s public attribute value (the null reference
when this value is not available), and systemId provides this declaration’s system
attribute value.

• void unparsedEntityDecl(String name, String publicId, String systemId,
String notationName) reports an external unparsed entity declaration, where name
provides the value of this declaration’s name attribute, publicId provides the value
of the public attribute (the null reference when this value is not available),
systemId provides the value of the system attribute, and notationName provides
the NDATA name.

Each method is declared to throw SAXException, which an overriding callback method might choose
to throw when it detects a problem.

EntityResolver declares the following callback method:

• InputSource resolveEntity(String publicId, String systemId) is called to let
the application resolve an external entity (such as an external DTD subset) by
returning a custom InputSource instance that’s based on a different URI. This
method is declared to throw SAXException when it detects a SAX-oriented
problem, and is also declared to throw IOException when it encounters an I/O
error, possibly in response to creating an InputStream instance or a
java.io.Reader instance for the InputSource being created.

ErrorHandler declares the following error-oriented informational callback methods:

• void error(SAXParseException exception) reports that a recoverable parser error
(typically the document is not valid) has occurred; the details are specified via the
argument passed to exception. This method is typically overridden to report the
error via a command window (see Chapter 1) or to log it to a file or a database.

• void fatalError(SAXParseException exception) reports that an unrecoverable
parser error (the document is not well formed) has occurred; the details are
specified via the argument passed to exception. This method is typically
overridden so that the application can log the error before it stops processing the
document (because the document is no longer reliable).

• void warning(SAXParseException e) reports that a nonerror (e.g., an element
name begins with the reserved xml character sequence) has occurred; the details
are specified via the argument passed to exception. This method is typically
overridden to report the warning via a console or to log it to a file or a database.

Each method is declared to throw SAXException, which an overriding callback method might choose
to throw when it detects a problem.

LexicalHandler declares the following additional content-oriented informational callback methods:

• void comment(char[] ch, int start, int length) reports a comment via the ch
array. The arguments that are passed to start and length identify that portion of
the array that’s relevant to this method call.

• void endCDATA() reports the end of a CDATA section.

• void endDTD() reports the end of a DTD.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

688

• void endEntity(String name) reports the start of the entity identified by name.

• void startCDATA() reports the start of a CDATA section.

• void startDTD(String name, String publicId, String systemId) reports the
start of the DTD identified by name. publicId specifies the declared public
identifier for the external DTD subset, or is the null reference when none was
declared. Similarly, systemId specifies the declared system identifier for the
external DTD subset, or is the null reference when none was declared.

• void startEntity(String name) reports the start of the entity identified by name.

Each method is declared to throw SAXException, which an overriding callback method might choose
to throw when it detects a problem.

Because it can be tedious to implement all the methods in each interface, the SAX API conveniently
provides the org.xml.sax.helpers.DefaultHandler adapter class to relieve you of this tedium.
DefaultHandler implements ContentHandler, DTDHandler, EntityResolver, and ErrorHandler. SAX also
provides org.xml.sax.ext.DefaultHandler2, which subclasses DefaultHandler, and which also
implements LexicalHandler.

Demonstrating the SAX API
I’ve created a SAXDemo application to demonstrate the SAX API. The application consists of a SAXDemo
entry-point class and a Handler subclass of DefaultHandler2. Listing 10-10 presents the source code to
SAXDemo.

Listing 10-10. SAXDemo

import java.io.FileReader;
import java.io.IOException;

import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;

import org.xml.sax.helpers.XMLReaderFactory;

class SAXDemo
{
 public static void main(String[] args)
 {
 if (args.length < 1 || args.length > 2)
 {
 System.err.println("usage: java SAXDemo xmlfile [v]");
 return;
 }
 try
 {
 XMLReader xmlr = XMLReaderFactory.createXMLReader();
 if (args.length == 2 && args[1].equals("v"))
 xmlr.setFeature("http://xml.org/sax/features/validation", true);
 xmlr.setFeature("http://xml.org/sax/features/namespace-prefixes",

http://xml.org/sax/features/validation
http://xml.org/sax/features/namespace-prefixes

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

689

 true);
 Handler handler = new Handler();
 xmlr.setContentHandler(handler);
 xmlr.setDTDHandler(handler);
 xmlr.setEntityResolver(handler);
 xmlr.setErrorHandler(handler);
 xmlr.setProperty("http://xml.org/sax/properties/lexical-handler", handler);
 xmlr.parse(new InputSource(new FileReader(args[0])));
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: "+ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: "+saxe);
 }
 }
}

SAXDemo is to be run from the command line. After verifying that one or two command-line
arguments (the name of an XML document optionally followed by lowercase letter v, which tells SAXDemo
to create a validating parser) have been specified, main() creates an XMLReader instance; conditionally
enables the validation feature and enables the namespace-prefixes feature; instantiates the companion
Handler class; installs this Handler instance as the parser’s content handler, DTD handler, entity resolver,
and error handler; installs this Handler instance as the value of the lexical-handler property; creates an
input source to read the document from a file; and parses the document.

The Handler class’s source code is presented in Listing 10-11.

Listing 10-11. Handler

import org.xml.sax.Attributes;
import org.xml.sax.InputSource;
import org.xml.sax.Locator;
import org.xml.sax.SAXParseException;

import org.xml.sax.ext.DefaultHandler2;

class Handler extends DefaultHandler2
{
 private Locator locator;
 @Override
 public void characters(char[] ch, int start, int length)
 {
 System.out.print("characters() [");
 for (int i = start; i < start+length; i++)
 System.out.print(ch[i]);
 System.out.println("]");
 }
 @Override
 public void comment(char[] ch, int start, int length)

http://xml.org/sax/properties/lexical-handler

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

690

 {
 System.out.print("characters() [");
 for (int i = start; i < start+length; i++)
 System.out.print(ch[i]);
 System.out.println("]");
 }
 @Override
 public void endCDATA()
 {
 System.out.println("endCDATA()");
 }
 @Override
 public void endDocument()
 {
 System.out.println("endDocument()");
 }
 @Override
 public void endDTD()
 {
 System.out.println("endDTD()");
 }
 @Override
 public void endElement(String uri, String localName, String qName)
 {
 System.out.print("endElement() ");
 System.out.print("uri=["+uri+"], ");
 System.out.print("localName=["+localName+"], ");
 System.out.println("qName=["+qName+"]");
 }
 @Override
 public void endEntity(String name)
 {
 System.out.print("endEntity() ");
 System.out.println("name=["+name+"]");
 }
 @Override
 public void endPrefixMapping(String prefix)
 {
 System.out.print("endPrefixMapping() ");
 System.out.println("prefix=["+prefix+"]");
 }
 @Override
 public void error(SAXParseException saxpe)
 {
 System.out.println("error() "+saxpe);
 }
 @Override
 public void fatalError(SAXParseException saxpe)
 {
 System.out.println("fatalError() "+saxpe);
 }
 @Override

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

691

 public void ignorableWhitespace(char[] ch, int start, int length)
 {
 System.out.print("ignorableWhitespace() [");
 for (int i = start; i < start+length; i++)
 System.out.print(ch[i]);
 System.out.println("]");
 }
 @Override
 public void notationDecl(String name, String publicId, String systemId)
 {
 System.out.print("notationDecl() ");
 System.out.print("name=["+name+"]");
 System.out.print("publicId=["+publicId+"]");
 System.out.println("systemId=["+systemId+"]");
 }
 @Override
 public void processingInstruction(String target, String data)
 {
 System.out.print("processingInstruction() [");
 System.out.println("target=["+target+"]");
 System.out.println("data=["+data+"]");
 }
 @Override
 public InputSource resolveEntity(String publicId, String systemId)
 {
 System.out.print("resolveEntity() ");
 System.out.print("publicId=["+publicId+"]");
 System.out.println("systemId=["+systemId+"]");
 // Do not perform a remapping.
 InputSource is = new InputSource();
 is.setPublicId(publicId);
 is.setSystemId(systemId);
 return is;
 }
 @Override
 public void setDocumentLocator(Locator locator)
 {
 System.out.print("setDocumentLocator() ");
 System.out.println("locator=["+locator+"]");
 this.locator = locator;
 }
 @Override
 public void skippedEntity(String name)
 {
 System.out.print("skippedEntity() ");
 System.out.println("name=["+name+"]");
 }
 @Override
 public void startCDATA()
 {
 System.out.println("startCDATA()");
 }

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

692

 @Override
 public void startDocument()
 {
 System.out.println("startDocument()");
 }
 @Override
 public void startDTD(String name, String publicId, String systemId)
 {
 System.out.print("startDTD() ");
 System.out.print("name=["+name+"]");
 System.out.print("publicId=["+publicId+"]");
 System.out.println("systemId=["+systemId+"]");
 }
 @Override
 public void startElement(String uri, String localName, String qName,
 Attributes attributes)
 {
 System.out.print("startElement() ");
 System.out.print("uri=["+uri+"], ");
 System.out.print("localName=["+localName+"], ");
 System.out.println("qName=["+qName+"]");
 for (int i = 0; i < attributes.getLength(); i++)
 System.out.println(" Attribute: "+attributes.getLocalName(i)+", "+
 attributes.getValue(i));
 System.out.println("Column number=["+locator.getColumnNumber()+"]");
 System.out.println("Line number=["+locator.getLineNumber()+"]");
 }
 @Override
 public void startEntity(String name)
 {
 System.out.print("startEntity() ");
 System.out.println("name=["+name+"]");
 }
 @Override
 public void startPrefixMapping(String prefix, String uri)
 {
 System.out.print("startPrefixMapping() ");
 System.out.print("prefix=["+prefix+"]");
 System.out.println("uri=["+uri+"]");
 }
 @Override
 public void unparsedEntityDecl(String name, String publicId,
 String systemId, String notationName)
 {
 System.out.print("unparsedEntityDecl() ");
 System.out.print("name=["+name+"]");
 System.out.print("publicId=["+publicId+"]");
 System.out.print("systemId=["+systemId+"]");
 System.out.println("notationName=["+notationName+"]");
 }
 @Override
 public void warning(SAXParseException saxpe)

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

693

 {
 System.out.println("warning() "+saxpe);
 }
}

The Handler subclass is pretty straightforward; it outputs every possible piece of information about
an XML document, subject to feature and property settings. You will find this class handy for exploring
the order in which events occur along with various features and properties.

After compiling Handler’s source code, execute java SAXDemo svg-examples.xml (see Listing 10-4).
SAXDemo responds by presenting the following output:

setDocumentLocator()
locator=[com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser$LocatorProxy@1f98d58
]
startDocument()
startElement() uri=[], localName=[svg-examples], qName=[svg-examples]
Column number=[15]
Line number=[2]
characters() [
]
startElement() uri=[], localName=[example], qName=[example]
Column number=[13]
Line number=[3]
characters() [
 The following Scalable Vector Graphics document describes a blue-filled and]
characters() [
 black-stroked rectangle.
]
startCDATA()
characters() [<svg width="100%" height="100%" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <rect width="300" height="100"
 style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 </svg>]
endCDATA()
characters() [
]
endElement() uri=[], localName=[example], qName=[example]
characters() [
]
endElement() uri=[], localName=[svg-examples], qName=[svg-examples]
endDocument()

The first output line (the @1f98d58 value will probably be different) proves that
setDocumentLocator() is called first. It also identifies the Locator instance whose getColumnNumber() and
getLineNumber() methods are called to output the parser location when startElement() is called—these
methods return column and line numbers starting at 1.

Perhaps you’re curious about the three instances of the following output:

characters() [
]

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://www.w3.org/2000/svg

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

694

The instance of this output that follows the endCDATA() output is reporting a carriage return/line
feed combination that wasn’t included in the preceding character() method call, which was passed the
contents of the CDATA section minus these line terminator characters. In contrast, the instances of this
output that follow the startElement() call for svg-examples and follow the endElement() call for example
are somewhat curious. There’s no content between <svg-examples> and <example>, and between
</example> and </svg-examples>, or is there?

You can satisfy this curiosity by modifying svg-examples.xml to include an internal DTD. Place the
following DTD (which indicates that an svg-element contains one or more example elements, and that an
example element contains parsed character data) between the XML declaration and the <svg-examples>
start tag:

<!DOCTYPE svg-examples [
<!ELEMENT svg-examples (example+)>
<!ELEMENT example (#PCDATA)>
]>

Continuing, execute java SAXDemo svg-examples.html. This time, you should see the following
output:

setDocumentLocator()
locator=[com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser$LocatorProxy@1f98d58
]
startDocument()
startDTD() name=[svg-examples]publicId=[null]systemId=[null]
endDTD()
startElement() uri=[], localName=[svg-examples], qName=[svg-examples]
Column number=[15]
Line number=[6]
ignorableWhitespace() [
]
startElement() uri=[], localName=[example], qName=[example]
Column number=[13]
Line number=[7]
characters() [
 The following Scalable Vector Graphics document describes a blue-filled and
 black-stroked rectangle.]
characters() [
]
startCDATA()
characters() [<svg width="100%" height="100%" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <rect width="300" height="100"
 style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 </svg>]
endCDATA()
characters() [
]
endElement() uri=[], localName=[example], qName=[example]
ignorableWhitespace() [
]
endElement() uri=[], localName=[svg-examples], qName=[svg-examples]
endDocument()

http://www.w3.org/2000/svg

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

695

This output reveals that the ignorableWhitespace() method was called after startElement() for svg-
examples and after endElement() for example. The former two calls to characters() that produced the
strange output were reporting ignorable whitespace.

Recall that I previously defined ignorable whitespace as whitespace located between tags where the
DTD doesn’t allow mixed content. For example, the DTD indicates that svg-examples shall contain only
example elements, not example elements and parsed character data. However, the line terminator
following the <svg-examples> tag and the leading whitespace before <example> are parsed character data.
The parser now reports these characters by calling ignorableWhitespace().

This time, there are only two occurrences of the following output:

characters() [

]
The first occurrence reports the line terminator separately from the example element’s text (before

the CDATA section); it did not do so previously, which proves that characters() is called with either all
or part of an element’s content. Once again, the second occurrence reports the line terminator that
follows the CDATA section.

Suppose you want to validate svg-examples.xml without the previously presented internal DTD. If
you attempt to do so (by executing java SAXDemo svg-examples.xml v), you will discover among its
output a couple of lines that are similar to those shown here:

error() org.xml.sax.SAXParseException; lineNumber: 2; columnNumber: 14; Document is invalid:
no grammar found.
error() org.xml.sax.SAXParseException; lineNumber: 2; columnNumber: 14; Document root
element "svg-examples", must match DOCTYPE root "null".

These lines reveal that a DTD grammar has not been found. Furthermore, the parser reports a
mismatch between svg-examples (it considers the first encountered element to be the root element) and
null (it considers null to be the name of the root element in the absence of a DTD). Neither violation is
considered to be fatal, which is why error() is called instead of fatalError().

Add the internal DTD to svg-examples.xml, and reexecute java SAXDemo svg-examples.xml v. This
time, you should see no error()-prefixed lines in the output.

 Note SAX 2 validation defaults to validating against a DTD. To validate against an XML Schema-based schema
instead, add the schemaLanguage property with the http://www.w3.org/2001/XMLSchema value to the
XMLReader instance. Accomplish this task for SAXDemo by specifying
xmlr.setProperty("http://java.sun.com/xml/jaxp/properties/schemaLanguage",

"http://www.w3.org/2001/XMLSchema"); before xmlr.parse(new InputSource(new
FileReader(args[0])));.

Creating a Custom Entity Resolver
While exploring XML, I introduced you to the concept of entities, which are aliased data. I then discussed
general entities and parameter entities in terms of their internal and external variants.

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/jaxp/properties/schemaLanguage
http://www.w3.org/2001/XMLSchema

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

696

Unlike internal entities, whose values are specified in a DTD, the values of external entities are
specified outside of a DTD, and are identified via public and/or system identifiers. The system identifier
is a URI whereas the public identifier is a formal public identifier.

An XML parser reads an external entity (including the external DTD subset) via an InputSource
instance that’s connected to the appropriate system identifier. In many cases, you pass a system
identifier or InputSource instance to the parser, and let it discover where to find other entities that are
referenced from the current document entity.

However, for performance or other reasons, you might want the parser to read the external entity’s
value from a different system identifier, such as a local DTD copy’s system identifier. You can
accomplish this task by creating an entity resolver that uses the public identifier to choose a different
system identifier. Upon encountering an external entity, the parser calls the custom entity resolver to
obtain this identifier.

Consider Listing 10-12’s formal specification of Listing 10-1’s grilled cheese sandwich recipe.

Listing 10-12. XML-based recipe for a grilled cheese sandwich specified in Recipe Markup Language

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE recipeml PUBLIC "-//FormatData//DTD RecipeML 0.5//EN"
 "http://www.formatdata.com/recipeml/recipeml.dtd">
<recipeml version="0.5">
 <recipe>
 <head>
 <title>Grilled Cheese Sandwich</title>
 </head>
 <ingredients>
 <ing>
 <amt><qty>2</qty><unit>slice</unit></amt>
 <item>bread</item>
 </ing>
 <ing>
 <amt><qty>1</qty><unit>slice</unit></amt>
 <item>cheese</item>
 </ing>
 <ing>
 <amt><qty>2</qty><unit>pat</unit></amt>
 <item>margarine</item>
 </ing>
 </ingredients>
 <directions>
 <step>Place frying pan on element and select medium heat.</step>
 <step>For each bread slice, smear one pat of margarine on one side of
 bread slice.</step>
 <step>Place cheese slice between bread slices with margarine-smeared
 sides away from the cheese.</step>
 <step>Place sandwich in frying pan with one margarine-smeared size in
 contact with pan.</step>
 <step>Fry for a couple of minutes and flip.</step>
 <step>Fry other side for a minute and serve.</step>
 </directions>
 </recipe>
</recipeml>

http://www.formatdata.com/recipeml/recipeml.dtd

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

697

Listing 10-12 specifies the grilled cheese sandwich recipe in Recipe Markup Language (RecipeML),
an XML-based language for marking up recipes. (A company named FormatData [see
http://www.formatdata.com/] released this format in 2000.)

The document type declaration reports -//FormatData//DTD RecipeML 0.5//EN as the formal public
identifier and http://www.formatdata.com/recipeml/recipeml.dtd as the system identifier. Instead of
keeping the default mapping, let’s map this formal public identifier to recipeml.dtd, a system identifier
for a local copy of this DTD file.

To create a custom entity resolver to perform this mapping, we declare a class that implements the
EntityResolver interface in terms of its InputSource resolveEntity(String publicId, String
systemId) method. We then use the passed publicId value as a key into a map that points to the desired
systemId value, and then use this value to create and return a custom InputSource. Listing 10-13 presents
the resulting class.

Listing 10-13. LocalRecipeML

import java.util.HashMap;
import java.util.Map;

import org.xml.sax.EntityResolver;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

class LocalRecipeML implements EntityResolver
{
 private Map<String, String> mappings = new HashMap<>();
 LocalRecipeML()
 {
 mappings.put("-//FormatData//DTD RecipeML 0.5//EN", "recipeml.dtd");
 }
 @Override
 public InputSource resolveEntity(String publicId, String systemId)
 {
 if (mappings.containsKey(publicId))
 {
 System.out.println("obtaining cached recipeml.dtd");
 systemId = mappings.get(publicId);
 InputSource localSource = new InputSource(systemId);
 return localSource;
 }
 return null;
 }
}

Listing 10-13 declares LocalRecipeML. This class’s constructor stores the formal public identifier for
the RecipeML DTD and the system identifier for a local copy of this DTD’s document in a map—notice
the use of Java 7’s diamond operator (<>) to simplify the hashmap instantiation expression.

http://www.formatdata.com/recipeml/recipeml.dtd

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

698

 Note Although it’s unnecessary to use a map in this example (an if (publicId.equals("-
//FormatData//DTD RecipeML 0.5//EN")) return new InputSource("recipeml.dtd") else return null;
statement would suffice), I’ve chosen to use a map in case I want to expand the number of mappings in the future.
In another scenario, you would probably find a map to be very convenient. For example, it’s easier to use a map
than to use a series of if statements in a custom entity resolver that maps XHTML’s strict, transitional, and
frameset formal public identifiers, and also maps its various entity sets to local copies of these document files.

The overriding resolveEntity() method uses publicId’s argument to locate the corresponding
system identifier in the map—the systemId parameter value is ignored because it never refers to the local
copy of recipeml.dtd. When the mapping is found, an InputSource object is created and returned. If the
mapping could not be found, the null reference would be returned.

To install this custom entity resolver in SAXDemo, specify xmlr.setEntityResolver(new
LocalRecipeML()); prior to the parse() method call. After recompiling the source code, execute java
SAXDemo gcs.xml, where gcs.xml stores Listing 10-12’s text. In the resulting output, you should observe
the message “obtaining cached recipeml.dtd” prior to the call to startEntity().

 Tip The SAX API includes an org.xml.sax.ext.EntityResolver2 interface that provides improved support for
resolving entities. If you prefer to implement EntityResolver2 instead of EntityResolver, you must replace the
setEntityResolver() call to install the entity resolver with a setFeature() call whose feature name is use-
entity-resolver2 (don’t forget the http://xml.org/sax/features/ prefix).

Parsing and Creating XML Documents with DOM
Document Object Model (DOM) is an API for parsing an XML document into an in-memory tree of nodes,
and for creating an XML document from a tree of nodes. After a DOM parser has created a document
tree, an application uses the DOM API to navigate over and extract infoset items from the tree’s nodes.

 Note DOM originated as an object model for the Netscape Navigator 3 and Microsoft Internet Explorer 3 web
browsers. Collectively, these implementations are known as DOM Level 0. Because each vendor’s DOM
implementation was only slightly compatible with the other, the W3C subsequently took charge of DOM’s
development to promote standardization, and has so far released DOM Levels 1, 2, and 3. Java 7 supports all
three DOM levels through its DOM API.

http://xml.org/sax/features/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

699

DOM has two big advantages over SAX. First, DOM permits random access to a document’s infoset items whereas
SAX only permits serial access. Second, DOM lets you also create XML documents, whereas you can only parse
documents with SAX. However, SAX is advantageous over DOM in that it can parse documents of arbitrary size,
whereas the size of documents parsed or created by DOM is limited by the amount of available memory for storing
the document’s node-based tree structure.

This section first introduces you to DOM’s tree structure. It then takes you on a tour of the DOM
API; you learn how to use this API to parse and create XML documents.

A Tree of Nodes
DOM views an XML document as a tree that’s composed of several kinds of nodes. This tree has a single
root node, and all nodes except for the root have a parent node. Also, each node has a list of child nodes.
If this list is empty, the child node is known as a leaf node.

 Note DOM permits nodes to exist that are not part of the tree structure. For example, an element node’s
attribute nodes are not regarded as child nodes of the element node. Also, nodes can be created but not inserted
into the tree; they can also be removed from the tree.

Each node has a node name, which is the complete name for nodes that have names (such as an
element’s or an attribute’s prefixed name), and #node-type for unnamed nodes, where node-type is one
of cdata-section, comment, document, document-fragment, or text. Nodes also have local names (names
without prefixes), prefixes, and namespace URIs (although these attributes may be null for certain kinds
of nodes, such as comments). Finally, nodes have string values, which happen to be the content of text
nodes, comment nodes, and similar text-oriented nodes; normalized values of attributes; and null for
everything else.

DOM classifies nodes into twelve types, of which seven types can be considered part of a DOM tree.
All these types are described here:

• Attribute node: one of an element’s attributes. It has a name, a local name, a prefix,
a namespace URI, and a normalized string value. The value is normalized by
resolving any entity references and by converting sequences of whitespace to a
single whitespace character. An attribute node has children, which are the text
and any entity reference nodes that form its value. Attributes nodes are not
regarded as children of their associated element nodes.

• CDATA section node: the contents of a CDATA section. Its name is #cdata-section
and its value is the CDATA section’s text.

• Comment node: a document comment. Its name is #comment and its value is the
comment text. A comment node has a parent, which is the node that contains the
comment.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

700

• Document fragment node: an alternative root node. Its name is #document-
fragment and it contains anything that an element node can contain (such as other
element nodes and even comment nodes). A parser never creates this kind of a
node. However, an application can create a document fragment node when it
extracts part of a DOM tree to be moved somewhere else. Document fragment
nodes let you work with subtrees.

• Document node: the root of a DOM tree. Its name is #document, it always has a
single element node child, and it will also have a document type child node when
the document has a document type declaration. Furthermore, it can have
additional child nodes describing comments or processing instructions that
appear before or after the root element’s start tag. There can be only one
document node in the tree.

• Document type node: a document type declaration. Its name is the name specified
by the document type declaration for the root element. Also, it has a (possibly
null) public identifier, a required system identifier, an internal DTD subset (which
is possibly null), a parent (the document node that contains the document type
node), and lists of DTD-declared notations and general entities. Its value is always
set to null.

• Element node: a document’s element. It has a name, a local name, a (possibly null)
prefix, and a namespace URI, which is null when the element doesn’t belong to
any namespace. An element node contains children, including text nodes, and
even comment and processing instruction nodes.

• Entity node: the parsed and unparsed entities that are declared in a document’s
DTD. When a parser reads a DTD, it attaches a map of entity nodes (indexed by
entity name) to the document type node. An entity node has a name and a system
identifier, and can also have a public identifier if one appears in the DTD. Finally,
when the parser reads the entity, the entity node is given a list of read-only child
nodes that contain the entity’s replacement text.

• Entity reference node: a reference to a DTD-declared entity. Each entity reference
node has a name, and is included in the tree when the parser does not replace
entity references with their values. The parser never includes entity reference
nodes for character references (such as & or Σ) because they are
replaced by their respective characters and included in a text node.

• Notation node: a DTD-declared notation. A parser that reads the DTD attaches a
map of notation nodes (indexed by notation name) to the document type node.
Each notation node has a name, and a public identifier or a system identifier,
whichever identifier was used to declare the notation in the DTD. Notation nodes
do not have children.

• Processing instruction node: a processing instruction that appears in the
document. It has a name (the instruction’s target), a string value (the instruction’s
data), and a parent (its containing node).

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

701

• Text node: document content. Its name is #text and it represents a portion of an
element’s content when an intervening node (e.g., a comment) must be created.
Characters such as < and & that are represented in the document via character
references are replaced by the literal characters that they represent. When these
nodes are written to a document, these characters must be escaped.

Although these node types store considerable information about an XML document, there are
limitations (such as not exposing whitespace outside of the root element). In contrast, most DTD or
schema information, such as element types (<!ELEMENT...>) and attribute types (<xs:attribute...>),
cannot be accessed through the DOM.

DOM Level 3 addresses some of the DOM’s various limitations. For example, although DOM does
not provide a node type for the XML declaration, DOM Level 3 makes it possible to access the XML
declaration’s version, encoding, and standalone attribute values via attributes of the document node.

 Note Nonroot nodes never exist in isolation. For example, it is never the case for an element node to not belong
to a document or to a document fragment. Even when such nodes are disconnected from the main tree, they
remain aware of the document or document fragment to which they belong.

Exploring the DOM API
Java implements DOM through the javax.xml.parsers package’s abstract DocumentBuilder and
DocumentBuilderFactory classes, along with the nonabstract FactoryConfigurationError and
ParserConfigurationException classes. The org.w3c.dom, org.w3c.dom.bootstrap, org.w3c.dom.events,
and org.w3c.dom.ls packages provide various types that augment this implementation.

The first step in working with DOM is to instantiate DocumentBuilderFactory by calling one its
newInstance() methods. For example, the following example invokes DocumentBuilderFactory’s static
DocumentBuilderFactory newInstance() method:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

Behind the scenes, newInstance() follows an ordered lookup procedure to identify the
DocumentBuilderFactory implementation class to load. This procedure first examines the
javax.xml.parsers.DocumentBuilderFactory system property, and lastly chooses the Java platform’s
default DocumentBuilderFactory implementation class when no other class is found. If an
implementation class is not available (perhaps the class identified by the
javax.xml.parsers.DocumentBuilderFactory system property doesn’t exist) or cannot be instantiated,
newInstance() throws an instance of the FactoryConfigurationError class. Otherwise, it instantiates the
class and returns its instance.

After obtaining a DocumentBuilderFactory instance, you can call various configuration methods to
configure the factory. For example, you could call DocumentBuilderFactory’s void
setNamespaceAware(boolean awareness) method with a true argument to tell the factory that any
returned parser (known as a document builder to DOM) must provide support for XML namespaces. You
can also call void setValidating(boolean validating) with true as the argument to validate documents
against their DTDs, or call void setSchema(Schema schema) to validate documents against the
javax.xml.validation.Schema instance identified by schema.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

702

VALIDATION API

JAXP includes the Validation API to decouple document parsing from validation, which makes it easier for
applications to take advantage of specialized validation libraries that support additional schema languages
(e.g., Relax NG—see http://en.wikipedia.org/wiki/RELAX_NG), and which makes it easier to specify
the location of a schema.

The Validation API is associated with the javax.xml.validation package, which consists of six classes:
Schema, SchemaFactory, SchemaFactoryLoader, TypeInfoProvider, Validator, and
ValidatorHandler. Schema is the central class that represents an immutable in-memory representation of
a grammar.

The DOM API supports the Validation API via DocumentBuilderFactory’s void setSchema(Schema
schema) and Schema getSchema() methods. Similarly, SAX 1.0 supports Validation via
SAXParserFactory’s void setSchema(Schema schema) and Schema getSchema() methods. SAX 2.0 and
StAX don’t support the Validation API.

The following example provides a demonstration of the Validation API in a DOM context:

// Parse an XML document into a DOM tree.
DocumentBuilder parser =

 DocumentBuilderFactory.newInstance().newDocumentBuilder();

Document document = parser.parse(new File("instance.xml"));
// Create a SchemaFactory capable of understanding W3C XML Schema (WXS).
SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

// Load a WXS schema, represented by a Schema instance.
Source schemaFile = new StreamSource(new File("mySchema.xsd"));
Schema schema = factory.newSchema(schemaFile);
// Create a Validator instance, which is used to validate an XML document.
Validator validator = schema.newValidator();
// Validate the DOM tree.
try
{
 validator.validate(new DOMSource(document));
}
catch (SAXException saxe)
{
 // XML document is invalid!
}

This example refers to XSLT types such as Source. I explore XSLT later in this chapter.

After the factory has been configured, call its DocumentBuilder newDocumentBuilder() method to

return a document builder that supports the configuration, as demonstrated here:

DocumentBuilder db = dbf.newDocumentBuilder();

http://en.wikipedia.org/wiki/RELAX_NG

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

703

If a document builder cannot be returned (perhaps the factory cannot create a document builder
that supports XML namespaces), this method throws a ParserConfigurationException instance.

Assuming that you’ve successfully obtained a document builder, what happens next depends on
whether you want to parse or create an XML document.

Parsing XML Documents
DocumentBuilder provides several overloaded parse() methods for parsing an XML document into a
node tree. These methods differ in how they obtain the document. For example, Document parse(String
uri) parses the document that’s identified by its string-based URI argument.

 Note Each parse() method throws java.lang.IllegalArgumentException when null is passed as the
method’s first argument, IOException when an input/output problem occurs, and SAXException when the
document cannot be parsed. This last exception type implies that DocumentBuilder’s parse() methods rely on
SAX to take care of the actual parsing work. Because they are more involved in building the node tree, DOM
parsers are commonly referred to as document builders.

The returned org.w3c.dom.Document object provides access to the parsed document through
methods such as DocumentType getDoctype(), which makes the document type declaration available
through the org.w3c.dom.DocumentType interface. Conceptually, Document is the root of the document’s
node tree.

 Note Apart from DocumentBuilder, DocumentBuilderFactory, and a few other classes, DOM is based on
interfaces, of which Document and DocumentType are examples. Behind the scenes, DOM methods (such as the
parse() methods) return objects whose classes implement these interfaces.

Document and all other org.w3c.dom interfaces that describe different kinds of nodes are
subinterfaces of the org.w3.dom.Node interface. As such, they inherit Node’s constants and methods.

Node declares twelve constants that represent the various kinds of nodes; ATTRIBUTE_NODE and
ELEMENT_NODE are examples. When you want to identify the kind of node represented by a given Node
object, call Node’s short getNodeType() method and compare the returned value to one of these
constants.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

704

 Note The rationale for using getNodeType() and these constants, instead of using instanceof and a
classname, is that DOM (the object model, not the Java DOM API) was designed to be language independent, and
languages such as AppleScript don’t have the equivalent of instanceof.

Node declares several methods for getting and setting common node properties. These methods
include String getNodeName(), String getLocalName(), String getNamespaceURI(), String getPrefix(),
void setPrefix(String prefix), String getNodeValue(), and void setNodeValue(String nodeValue),
which let you get and (for some properties) set a node’s name (such as #text), local name, namespace
URI, prefix, and normalized string value properties.

 Note Various Node methods (e.g., setPrefix() and getNodeValue()) throw an instance of the
org.w3c.dom.DOMException class when something goes wrong. For example, setPrefix() throws this exception
when the prefix argument contains an illegal character, the node is read-only, or the argument is malformed.
Similarly, getNodeValue() throws DOMException when getNodeValue() would return more characters than can
fit into a DOMString (a W3C type) variable on the implementation platform. DOMException declares a series of
constants (such as DOMSTRING_SIZE_ERR) that classify the reason for the exception.

Node declares several methods for navigating the node tree. Three of its navigation methods are
boolean hasChildNodes() (return true when a node has child nodes), Node getFirstChild() (return the
node’s first child), and Node getLastChild() (return the node’s last child). For nodes with multiple
children, you’ll find the NodeList getChildNodes() method to be handy. This method returns an
org.w3c.dom.NodeList instance whose int getLength() method returns the number of nodes in the list,
and whose Node item(int index) method returns the node at the indexth position in the list (or null
when index’s value is not valid—it’s less than 0 or greater than or equal to getLength()’s value).

Node declares four methods for modifying the tree by inserting, removing, replacing, and appending
child nodes. The Node insertBefore(Node newChild, Node refChild) method inserts newChild before
the existing node specified by refChild and returns newChild, Node removeChild(Node oldChild)
removes the child node identified by oldChild from the tree and returns oldChild, Node
replaceChild(Node newChild, Node oldChild) replaces oldChild with newChild and returns oldChild,
and Node appendChild(Node newChild) adds newChild to the end of the current node’s child nodes and
returns newChild.

Finally, Node declares several utility methods, including Node cloneNode(boolean deep) (create and
return a duplicate of the current node, recursively cloning its subtree when true is passed to deep), and
void normalize() (descend the tree from the given node and merge all adjacent text nodes, deleting
those text nodes that are empty).

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

705

 Tip To obtain an element node’s attributes, first call Node’s NamedNodeMap getAttributes() method. This
method returns an org.w3c.dom.NamedNodeMap implementation when the node represents an element; otherwise,
it returns null. In addition to declaring methods for accessing these nodes by name (e.g., Node
getNamedItem(String name)), NamedNodeMap declares int getLength() and Node item(int index) methods
for returning all attribute nodes by index. You would then obtain the Node’s name by calling a method such as
getNodeName().

As well as inheriting Node’s constants and methods, Document declares its own methods. For
example, you can call Document’s String getXmlEncoding(), boolean getXmlStandalone(), and String
getXmlVersion() methods to return the XML declaration’s encoding, standalone, and version attribute
values, respectively.

Document declares three methods for locating one or more elements: Element
getElementById(String elementId), NodeList getElementsByTagName(String tagname), and NodeList
getElementsByTagNameNS(String namespaceURI,String localName). The first method returns the element
that has an id attribute (as in) matching the value specified by elementId, the second
method returns a nodelist of a document’s elements (in document order) matching the specified
tagName, and the third method is essentially the same as the second method except that only elements
matching the given localName and namespaceURI are returned in the nodelist. Pass "*" to namespaceURI to
match all namespaces; pass "*" to localName to match all local names.

The returned element node and each element node in the list implement the org.w3c.dom.Element
interface. This interface declares methods to return nodelists of descendent elements in the tree,
attributes associated with the element, and more. For example, String getAttribute(String name)
returns the value of the attribute identified by name, whereas Attr getAttributeNode(String name)
returns an attribute node by name. The returned node is an implementation of the org.w3c.dom.Attr
interface.

You now have enough information to explore an application for parsing an XML document and
outputting the element and attribute information from the resulting DOM tree. Listing 10-14 presents
this application’s source code.

Listing 10-14. DOMDemo (version 1)

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Attr;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

706

class DOMDemo
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DOMDemo xmlfile");
 return;
 }
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(args[0]);
 System.out.println("Version = "+doc.getXmlVersion());
 System.out.println("Encoding = "+doc.getXmlEncoding());
 System.out.println("Standalone = "+doc.getXmlStandalone());
 System.out.println();
 if (doc.hasChildNodes())
 {
 NodeList nl = doc.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node.getNodeType() == Node.ELEMENT_NODE)
 dump((Element) node);
 }
 }
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: "+ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: "+saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: "+pce);
 }
 }
 static void dump(Element e)
 {
 System.out.println("Element: "+e.getNodeName()+", "+e.getLocalName()+
 ", "+e.getPrefix()+", "+e.getNamespaceURI());

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

707

 NamedNodeMap nnm = e.getAttributes();
 if (nnm != null)
 for (int i = 0; i < nnm.getLength(); i++)
 {
 Node node = nnm.item(i);
 Attr attr = e.getAttributeNode(node.getNodeName());
 System.out.printf(" Attribute %s = %s%n", attr.getName(),
 attr.getValue());
 }
 NodeList nl = e.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node instanceof Element)
 dump((Element) node);
 }
 }
}

DOMDemo is designed to run at the command line. After verifying that one command-line argument
(the name of an XML document) has been specified, main() creates a document builder factory, informs
the factory that it wants a namespace-aware document builder, and has the factory return this
document builder.

Continuing, main() parses the document into a node tree; outputs the XML declaration’s version
number, encoding, and standalone attribute values; and recursively dumps all element nodes (starting
with the root node) and their attribute values.

 Note Regarding the multiple catch blocks, consider it an exercise to replace them with multicatch.

Notice the use of getNodeType() in one part of this listing and instanceof in another part. The
getNodeType() method call isn’t necessary (it is only present for demonstration) because instanceof can
be used instead. However, the cast from Node type to Element type in the dump() method calls is
necessary.

Assuming that you’ve compiled the source code, execute java DOMDemo article.xml to dump Listing
10-3’s article XML content. You should observe the following output:

Version = 1.0
Encoding = null
Standalone = false

Element: article, article, null, null
 Attribute lang = en
 Attribute title = The Rebirth of JavaFX
Element: abstract, abstract, null, null
Element: code-inline, code-inline, null, null
Element: body, body, null, null

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

708

Each Element-prefixed line outputs the node name, followed by the local name, followed by the
namespace prefix, followed by the namespace URI. The node and local names are identical because
namespaces are not being used. For the same reason, the namespace prefix and namespace URI are
null.

Continuing, execute java DOMDemo recipe.xml, where recipe.xml contains the content shown in
Listing 10-5. This time, you observe the following output, which includes namespace information:

Version = 1.0
Encoding = null
Standalone = false

Element: h:html, html, h, http://www.w3.org/1999/xhtml
 Attribute xmlns:h = http://www.w3.org/1999/xhtml
 Attribute xmlns:r = http://www.tutortutor.ca/
Element: h:head, head, h, http://www.w3.org/1999/xhtml
Element: h:title, title, h, http://www.w3.org/1999/xhtml
Element: h:body, body, h, http://www.w3.org/1999/xhtml
Element: r:recipe, recipe, r, http://www.tutortutor.ca/
Element: r:title, title, r, http://www.tutortutor.ca/
Element: r:ingredients, ingredients, r, http://www.tutortutor.ca/
Element: h:ul, ul, h, http://www.w3.org/1999/xhtml
Element: h:li, li, h, http://www.w3.org/1999/xhtml
Element: r:ingredient, ingredient, r, http://www.tutortutor.ca/
 Attribute qty = 2
Element: h:li, li, h, http://www.w3.org/1999/xhtml
Element: r:ingredient, ingredient, r, http://www.tutortutor.ca/
Element: h:li, li, h, http://www.w3.org/1999/xhtml
Element: r:ingredient, ingredient, r, http://www.tutortutor.ca/
 Attribute qty = 2
Element: h:p, p, h, http://www.w3.org/1999/xhtml
Element: r:instructions, instructions, r, http://www.tutortutor.ca/

Creating XML Documents
DocumentBuilder declares the abstract Document newDocument() method for creating a document tree.
The returned Document object declares various “create” and other methods for creating this tree. For
example, Element createElement(String tagName) creates an element named by tagName, returning a
new Element object with the specified name, but with its local name, prefix, and namespace URI set to
null.

Listing 10-15 presents another version of the DOMDemo application that briefly demonstrates the
creation of a document tree.

Listing 10-15. DOMDemo (version 2)

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

709

import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.w3c.dom.Text;

class DOMDemo
{
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.newDocument();
 // Create the root element.
 Element root = doc.createElement("movie");
 doc.appendChild(root);
 // Create name child element and add it to the root.
 Element name = doc.createElement("name");
 root.appendChild(name);
 // Add a text element to the name element.
 Text text = doc.createTextNode("Le Fabuleux Destin d'Amélie Poulain");
 name.appendChild(text);
 // Create language child element and add it to the root.
 Element language = doc.createElement("language");
 root.appendChild(language);
 // Add a text element to the language element.
 text = doc.createTextNode("français");
 language.appendChild(text);
 System.out.println("Version = "+doc.getXmlVersion());
 System.out.println("Encoding = "+doc.getXmlEncoding());
 System.out.println("Standalone = "+doc.getXmlStandalone());
 System.out.println();
 NodeList nl = doc.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node.getNodeType() == Node.ELEMENT_NODE)
 dump((Element) node);
 }
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: "+pce);
 }
 }
 static void dump(Element e)
 {
 System.out.println("Element: "+e.getNodeName()+", "+e.getLocalName()+

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

710

 ", "+e.getPrefix()+", "+e.getNamespaceURI());
 NodeList nl = e.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++)
 {
 Node node = nl.item(i);
 if (node instanceof Element)
 dump((Element) node);
 else
 if (node instanceof Text)
 System.out.println("Text: "+((Text) node).getWholeText());
 }
 }
}

DOMDemo creates Listing 10-2’s movie document. It uses Document’s createElement() method to create
the root movie element and movie’s name and language child elements. It also uses Document’s Text
createTextNode(String data) method to create text nodes that are attached to the name and language
nodes. Notice the calls to Node’s appendChild() method, to append child nodes (e.g., name) to parent
nodes (such as movie).

After creating this tree, DOMDemo outputs the tree’s element nodes and other information. This output
appears as follows:

Version = 1.0
Encoding = null
Standalone = false

Element: movie, null, null, null
Element: name, null, null, null
Text: Le Fabuleux Destin d'Amélie Poulain
Element: language, null, null, null
Text: français

The output is pretty much as expected, but there is one problem: the XML declaration’s encoding
attribute has not been set to ISO-8859-1. It turns out that you cannot accomplish this task via the DOM
API. Instead, you need to use the XSLT API for this task. While exploring XSLT, you’ll learn how to set the
encoding attribute, and you’ll also learn how to output this tree to an XML document file.

However, there is one more document-parsing-and-document-creation API to explore (and a tour
of the XPath API to accomplish) before we turn our attention to XSLT.

Parsing and Creating XML Documents with StAX
Streaming API for XML (StAX) is an API for parsing an XML document sequentially from start to finish. It
is also a document creation API. StAX became a core Java API in the Java 6 release (in late 2006).

STAX VERSUS SAX AND DOM

Because Java already supports SAX and DOM for document parsing and DOM for document creation, you
might be wondering why another XML API is needed. The following points justify StAX’s presence in core
Java:

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

711

Summing up, StAX can parse or create documents of arbitrary size, makes infoset items available to
applications almost immediately, and uses the pull model to put the application in charge. Neither SAX nor
DOM offers all these advantages.

Java implements StAX through types stored in the javax.xml.stream, javax.xml.stream.events, and

javax.xml.stream.util packages. This section introduces you to various types from the first two
packages while showing you how to use StAX to parse and create XML documents.

STREAM-BASED VERSUS EVENT-BASED READERS AND WRITERS

StAX parsers are known as document readers, and StAX document creators are known as document
writers. StAX classifies document readers and document writers as stream-based or event-based.

A stream-based reader extracts the next infoset item from an input stream via a cursor (infoset item
pointer). Similarly, a stream-based writer writes the next infoset item to an output stream at the cursor
position. The cursor can point to only one item at a time, and always moves forward, typically by one
infoset item.

Stream-based readers and writers are appropriate when writing code for memory-constrained
environments such as Java ME, because you can use them to create smaller and more efficient code. They
also offer better performance for low-level libraries, where performance is important.

• StAX (like SAX) can be used to parse documents of arbitrary sizes. In contrast, the
maximum size of documents parsed by DOM is limited by the available memory,
which makes DOM unsuitable for mobile devices with limited amounts of memory.

• StAX (like DOM) can be used to create documents of arbitrary sizes. In contrast,
the maximum size of a document created by DOM is constrained by available
memory. SAX cannot be used to create documents.

• StAX (like SAX) makes infoset items available to applications almost immediately.
In contrast, these items are not made available by DOM until after it finishes
building the tree of nodes.

• StAX (like DOM) adopts the pull model, in which the application tells the parser
when it is ready to receive the next infoset item. This model is based on the
iterator design pattern (see
http://sourcemaking.com/design_patterns/iterator), which results in an
application that is easier to write and debug. In contrast, SAX adopts the push
model, in which the parser passes infoset items via events to the application,
whether or not the application is ready to receive them. This model is based on the
observer design pattern (see
http://sourcemaking.com/design_patterns/observer), which results in an
application that is often harder to write and debug.

y

http://sourcemaking.com/design_patterns/iterator
http://sourcemaking.com/design_patterns/observer

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

712

An event-based reader extracts the next infoset item from an input stream by obtaining an event. Similarly,
an event-based writer writes the next infoset item to the stream by adding an event to the output stream.
In contrast to stream-based readers and writers, event-based readers and writers have no concept of a
cursor.

Event-based readers and writers are appropriate for creating XML processing pipelines (sequences of
components that transform the previous component’s input and pass the transformed output to the next
component in the sequence), for modifying an event sequence, and more.

Parsing XML Documents
Document readers are obtained by calling the various “create” methods that are declared in the
javax.xml.stream.XMLInputFactory class. These creational methods are organized into two categories:
methods for creating stream-based readers and methods for creating event-based readers.

Before you can obtain a stream-based or an event-based reader, you need to obtain an instance of
the factory by calling one of the newFactory() class methods, such as XMLInputFactory newFactory():

XMLInputFactory xmlif = XMLInputFactory.newFactory();

 Note You can also call the XMLInputFactory newInstance() class method but might not wish to do so
because its same-named but parameterized companion method has been deprecated to maintain API consistency,
and it is probable that newInstance() will be deprecated as well.

The newFactory() methods follow an ordered lookup procedure to locate the XMLInputFactory
implementation class. This procedure first examines the javax.xml.stream.XMLInputFactory system
property, and lastly chooses the name of the Java platform’s default XMLInputFactory implementation
class. If this procedure cannot find a classname, or if the class cannot be loaded (or instantiated), the
method throws an instance of the javax.xml.stream.FactoryConfigurationError class.

After creating the factory, call XMLInputFactory’s void setProperty(String name, Object value)
method to set various features and properties as necessary. For example, you might execute
xmlif.setProperty(XMLInputFactory.IS_VALIDATING, true); (true is passed as a Boolean object via
autoboxing, discussed in Chapter 5) to request a DTD-validating stream-based reader. However, the
default StAX factory implementation throws IllegalArgumentException because it doesn’t support DTD
validation. Similarly, you might execute xmlif.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE,
true); to request a namespace-aware event-based reader, which is supported.

Parsing Documents with Stream-Based Readers
A stream-based reader is created by calling one of XMLInputFactory’s createXMLStreamReader() methods,
such as XMLStreamReader createXMLStreamReader(Reader reader). These methods throw
javax.xml.stream.XMLStreamException when the stream-based reader cannot be created.

The following example creates a stream-based reader whose source is a file named recipe.xml:

Reader reader = new FileReader("recipe.xml");

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

713

XMLStreamReader xmlsr = xmlif.createXMLStreamReader(reader);

The low-level XMLStreamReader interface offers the most efficient way to read XML data with StAX.
This interface’s boolean hasNext() method returns true when there is a next infoset item to obtain;
otherwise, it returns false. The int next() method advances the cursor by one infoset item and returns
an integer code that identifies this item’s type.

Instead of comparing next()’s return value with an integer value, you would compare this value
against a javax.xml.stream.XMLStreamConstants infoset constant, such as START_ELEMENT or DTD—
XMLStreamReader extends the XMLStreamConstants interface.

 Note You can also obtain the type of the infoset item that the cursor is pointing to by calling
XMLStreamReader’s int getEventType() method. Specifying “Event” in the name of this method is unfortunate
because it confuses stream-based readers with event-based readers.

The following example uses the hasNext() and next() methods to codify a parsing loop that detects
the start and end of each element:

while (xmlsr.hasNext())
{
 switch (xmlsr.next())
 {
 case XMLStreamReader.START_ELEMENT: // Do something at element start.
 break;
 case XMLStreamReader.END_ELEMENT : // Do something at element end.
 }
}

XMLStreamReader also declares various methods for extracting infoset information. For example,
QName getName() returns the qualified name (as a javax.xml.namespace.QName instance) of the element at
the cursor position when next() returns XMLStreamReader.START_ELEMENT or
XMLStreamReader.END_ELEMENT.

 Note QName describes a qualified name as a combination of namespace URI, local part, and prefix components.
After instantiating this immutable class (via a constructor such as QName(String namespaceURI, String
localPart, String prefix)), you can return these components by calling QName’s String
getNamespaceURI(), String getLocalPart(), and String getPrefix() methods.

Listing 10-16 presents the source code to a StAXDemo application that reports an XML document’s
start and end elements via a stream-based reader.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

714

Listing 10-16. StAXDemo (version 1)

import java.io.FileNotFoundException;
import java.io.FileReader;

import javax.xml.stream.FactoryConfigurationError;
import javax.xml.stream.XMLInputFactory;
import javax.xml.stream.XMLStreamException;
import javax.xml.stream.XMLStreamReader;

class StAXDemo
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StAXDemo xmlfile");
 return;
 }
 try
 {
 XMLInputFactory xmlif = XMLInputFactory.newFactory();
 XMLStreamReader xmlsr;
 xmlsr = xmlif.createXMLStreamReader(new FileReader(args[0]));
 while (xmlsr.hasNext())
 {
 switch (xmlsr.next())
 {
 case XMLStreamReader.START_ELEMENT:
 System.out.println("START_ELEMENT");
 System.out.println(" Qname = "+xmlsr.getName());
 break;
 case XMLStreamReader.END_ELEMENT:
 System.out.println("END_ELEMENT");
 System.out.println(" Qname = "+xmlsr.getName());
 }
 }
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println("FNFE: "+fnfe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: "+xmlse);
 }
 }

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

715

}

After verifying the number of command-line arguments, Listing 10-16’s main() method creates a
factory, uses the factory to create a stream-based reader that obtains its XML data from the file identified
by the solitary command-line argument, and enters a parsing loop. Whenever next() returns
XMLStreamReader.START_ELEMENT or XMLStreamReader.END_ELEMENT, XMLStreamReader’s getName() method
is called to return the element’s qualified name.

For example, when you execute StAXDemo against Listing 10-2’s movie document file (movie.xml),
this application generates the following output:

START_ELEMENT
 Qname = movie
START_ELEMENT
 Qname = name
END_ELEMENT
 Qname = name
START_ELEMENT
 Qname = language
END_ELEMENT
 Qname = language
END_ELEMENT
 Qname = movie

 Note XMLStreamReader declares a void close() method that you will want to call to free any resources
associated with this stream-based reader when your application is designed to run for an extended period of time.
Calling this method doesn’t close the underlying input source.

Parsing Documents with Event-Based Readers
An event-based reader is created by calling one of XMLInputFactory’s createXMLEventReader() methods,
such as XMLEventReader createXMLEventReader(Reader reader). These methods throw
XMLStreamException when the event-based reader cannot be created.

The following example creates an event-based reader whose source is a file named recipe.xml:

Reader reader = new FileReader("recipe.xml");
XMLEventReader xmler = xmlif.createXMLEventReader(reader);

The high-level XMLEventReader interface offers a somewhat less efficient but more object-oriented
way to read XML data with StAX. This interface’s boolean hasNext() method returns true when there is a
next event to obtain; otherwise, it returns false. The XMLEvent nextEvent() method returns the next
event as an object whose class implements a subinterface of the javax.xml.stream.events.XMLEvent
interface.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

716

 Note XMLEvent is the base interface for handling markup events. It declares methods that apply to all
subinterfaces; for example, Location getLocation() (return a javax.xml.stream.Location object whose int
getCharacterOffset() and other methods return location information about the event) and int getEventType()
(return the event type as an XMLStreamConstants infoset constant, such as START_ELEMENT and
PROCESSING_INSTRUCTION—XMLEvent extends XMLStreamConstants). XMLEvent is subtyped by other
javax.xml.stream.events interfaces that describe different kinds of events (e.g., Attribute) in terms of
methods that return infoset item-specific information (such as Attribute’s QName getName() and String
getValue() methods).

The following example uses the hasNext() and nextEvent() methods to codify a parsing loop that
detects the start and end of an element:

while (xmler.hasNext())
{
 switch (xmler.nextEvent().getEventType())
 {
 case XMLEvent.START_ELEMENT: // Do something at element start.
 break;
 case XMLEvent.END_ELEMENT : // Do something at element end.
 }
}

Listing 10-17 presents the source code to a StAXDemo application that reports an XML document’s
start and end elements via an event-based reader.

Listing 10-17. StAXDemo (version 2)

import java.io.FileNotFoundException;
import java.io.FileReader;

import javax.xml.stream.FactoryConfigurationError;
import javax.xml.stream.XMLEventReader;
import javax.xml.stream.XMLInputFactory;
import javax.xml.stream.XMLStreamException;

import javax.xml.stream.events.EndElement;
import javax.xml.stream.events.StartElement;
import javax.xml.stream.events.XMLEvent;

class StAXDemo
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StAXDemo xmlfile");

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

717

 return;
 }
 try
 {
 XMLInputFactory xmlif = XMLInputFactory.newFactory();
 XMLEventReader xmler;
 xmler = xmlif.createXMLEventReader(new FileReader(args[0]));
 while (xmler.hasNext())
 {
 XMLEvent xmle = xmler.nextEvent();
 switch (xmle.getEventType())
 {
 case XMLEvent.START_ELEMENT:
 System.out.println("START_ELEMENT");
 System.out.println(" Qname = "+
 ((StartElement) xmle).getName());
 break;
 case XMLEvent.END_ELEMENT:
 System.out.println("END_ELEMENT");
 System.out.println(" Qname = "+
 ((EndElement) xmle).getName());
 }
 }
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println("FNFE: "+fnfe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: "+xmlse);
 }
 }
}

After verifying the number of command-line arguments, Listing 10-17’s main() method creates a
factory, uses the factory to create an event-based reader that obtains its XML data from the file identified
by the solitary command-line argument, and enters a parsing loop. Whenever nextEvent() returns
XMLEvent.START_ELEMENT or XMLEvent.END_ELEMENT, StartElement’s or EndElement’s getName() method is
called to return the element’s qualified name.

For example, when you execute StAXDemo against Listing 10-3’s article document file (article.xml),
this application generates the following output:

START_ELEMENT
 Qname = article
START_ELEMENT
 Qname = abstract
START_ELEMENT

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

718

 Qname = code-inline
END_ELEMENT
 Qname = code-inline
END_ELEMENT
 Qname = abstract
START_ELEMENT
 Qname = body
END_ELEMENT
 Qname = body
END_ELEMENT
 Qname = article

 Note You can also create a filtered event-based reader to accept or reject various events by calling one of
XMLInputFactory’s createFilteredReader() methods, such as XMLEventReader
createFilteredReader(XMLEventReader reader, EventFilter filter). The
javax.stream.xml.EventFilter interface declares a boolean accept(XMLEvent event) method that returns
true when the specified event is part of the event sequence; otherwise, it returns false.

Creating XML Documents
Document writers are obtained by calling the various “create” methods that are declared in the
javax.xml.stream.XMLOutputFactory class. These creational methods are organized into two categories:
methods for creating stream-based writers and methods for creating event-based writers.

Before you can obtain a stream-based or an event-based writer, you need to obtain an instance of
the factory by calling one of the newFactory() class methods, such as XMLOutputFactory newFactory():

XMLOutputFactory xmlof = XMLOutputFactory.newFactory();

 Note You can also call the XMLOutputFactory newInstance() class method but might not wish to do so
because its same-named but parameterized companion method has been deprecated to maintain API consistency,
and it is probable that newInstance() will be deprecated as well.

The newFactory() methods follow an ordered lookup procedure to locate the XMLOutputFactory
implementation class. This procedure first examines the javax.xml.stream.XMLOutputFactory system
property, and lastly chooses the name of the Java platform’s default XMLOutputFactory implementation
class. If this procedure cannot find a classname, or if the class cannot be loaded (or instantiated), the
method throws an instance of the FactoryConfigurationError class.

After creating the factory, call XMLOutputFactory’s void setProperty(String name, Object value)
method to set various features and properties as necessary. The only property currently supported by all
writers is XMLOutputFactory.IS_REPAIRING_NAMESPACES. When enabled (by passing true or a Boolean
object, such as Boolean.TRUE, to value), the document writer takes care of all namespace bindings and

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

719

declarations, with minimal help from the application. The output is always well formed with respect to
namespaces. However enabling this property adds some overhead to the job of writing the XML.

Creating Documents with Stream-Based Writers
A stream-based writer is created by calling one of XMLOutputFactory’s createXMLStreamWriter()
methods, such as XMLStreamWriter createXMLStreamWriter(Writer writer). These methods throw
XMLStreamException when the stream-based writer cannot be created.

The following example creates a stream-based writer whose destination is a file named recipe.xml:

Writer writer = new FileWriter("recipe.xml");
XMLStreamWriter xmlsw = xmlof.createXMLStreamWriter(writer);

The low-level XMLStreamWriter interface declares several methods for writing infoset items to the
destination. The following list describes a few of these methods:

• void close() closes this stream-based writer and frees any associated resources.
The underlying writer is not closed.

• void flush() writes any cached data to the underlying writer.

• void setPrefix(String prefix, String uri) identifies the namespace prefix to
which the uri value is bound. This prefix is used by variants of the
writeStartElement(), writeAttribute(), and writeEmptyElement() methods that
take namespace arguments but not prefixes. Also, it remains valid until the
writeEndElement() invocation that corresponds to the last writeStartElement()
invocation. This method does not create any output.

• void writeAttribute(String localName, String value) writes the attribute
identified by localName and having the specified value to the underlying writer. A
namespace prefix isn’t included. This method escapes & , < and >, and ".

• void writeCharacters(String text) writes text’s characters to the underlying
writer. This method escapes & , <, and >.

• void writeEndDocument() closes any start tags and writes corresponding end tags
to the underlying writer.

• void endElement() writes an end tag to the underlying writer, relying on the
internal state of the stream-based writer to determine the tag’s prefix and local
name.

• void writeNamespace(String prefix, String namespaceURI) writes a namespace
to the underlying writer. This method must be called to ensure that the
namespace specified by setPrefix() and duplicated in this method call is written;
otherwise, the resulting document will not be well formed from a namespace
perspective.

• void writeStartDocument() writes the XML declaration to the underlying writer.

• void writeStartElement(String namespaceURI, String localName) writes a start
tag with the arguments passed to namespaceURI and localName to the underlying
writer.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

720

Listing 10-18 presents the source code to a StAXDemo application that creates a recipe.xml file with
many of Listing 10-5’s infoset items via a stream-based writer.

Listing 10-18. StAXDemo (version 3)

import java.io.FileWriter;
import java.io.IOException;

import javax.xml.stream.FactoryConfigurationError;
import javax.xml.stream.XMLOutputFactory;
import javax.xml.stream.XMLStreamException;
import javax.xml.stream.XMLStreamWriter;

class StAXDemo
{
 public static void main(String[] args)
 {
 try
 {
 XMLOutputFactory xmlof = XMLOutputFactory.newFactory();
 XMLStreamWriter xmlsw;
 xmlsw = xmlof.createXMLStreamWriter(new FileWriter("recipe.xml"));
 xmlsw.writeStartDocument();
 xmlsw.setPrefix("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "html");
 xmlsw.writeNamespace("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeNamespace("r", "http://www.tutortutor.ca/");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "head");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "title");
 xmlsw.writeCharacters("Recipe");
 xmlsw.writeEndElement();
 xmlsw.writeEndElement();
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "body");
 xmlsw.setPrefix("r", "http://www.tutortutor.ca/");
 xmlsw.writeStartElement("http://www.tutortutor.ca/", "recipe");
 xmlsw.writeStartElement("http://www.tutortutor.ca/", "title");
 xmlsw.writeCharacters("Grilled Cheese Sandwich");
 xmlsw.writeEndElement();
 xmlsw.writeStartElement("http://www.tutortutor.ca/", "ingredients");
 xmlsw.setPrefix("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "ul");
 xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "li");
 xmlsw.setPrefix("r", "http://www.tutortutor.ca/");
 xmlsw.writeStartElement("http://www.tutortutor.ca/", "ingredient");
 xmlsw.writeAttribute("qty", "2");
 xmlsw.writeCharacters("bread slice");
 xmlsw.writeEndElement();
 xmlsw.setPrefix("h", "http://www.w3.org/1999/xhtml");
 xmlsw.writeEndElement();
 xmlsw.writeEndElement();
 xmlsw.setPrefix("r", "http://www.tutortutor.ca/");
 xmlsw.writeEndElement();

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

721

 xmlsw.writeEndDocument();
 xmlsw.flush();
 xmlsw.close();
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: "+ioe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: "+xmlse);
 }
 }
}

Although Listing 10-18 is fairly easy to follow, you might be somewhat confused by the duplication
of namespace URIs in the setPrefix() and writeStartElement() method calls. For example, you might
be wondering about the duplicate URIs in xmlsw.setPrefix("h", "http://www.w3.org/1999/xhtml");
and its xmlsw.writeStartElement("http://www.w3.org/1999/xhtml", "html"); successor.

The setPrefix() method call creates a mapping between a namespace prefix (the value) and a URI
(the key) without generating any output. The writeStartElement() method call specifies the URI key,
which this method uses to access the prefix value, which it then prepends (with a colon character) to the
html start tag’s name before writing this tag to the underlying writer.

Creating Documents with Event-Based Writers
An event-based writer is created by calling one of XMLOutputFactory’s createXMLEventWriter() methods,
such as XMLEventWriter createXMLEventWriter(Writer writer). These methods throw
XMLStreamException when the event-based writer cannot be created.

The following example creates an event-based writer whose destination is a file named recipe.xml:

Writer writer = new FileWriter("recipe.xml");
XMLEventWriter xmlew = xmlof.createXMLEventWriter(writer);

The high-level XMLEventWriter interface declares the void add(XMLEvent event) method for adding
events that describe infoset items to the output stream implemented by the underlying writer. Each
argument passed to event is an instance of a class that implements a subinterface of XMLEvent (such as
Attribute and StartElement).

 Tip XMLEventWriter also declares a void add(XMLEventReader reader) method that you can use to chain
an XMLEventReader instance to an XMLEventWriter instance.

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

722

To save you the trouble of implementing these interfaces, StAX provides
javax.xml.stream.EventFactory. This utility class declares various factory methods for creating XMLEvent
subinterface implementations. For example, Comment createComment(String text) returns an object
whose class implements the javax.xml.stream.events.Comment subinterface of XMLEvent.

Because these factory methods are declared abstract, you must first obtain an instance of the
EventFactory class. You can easily accomplish this task by invoking EventFactory’s XMLEventFactory
newFactory() class method, as follows:

XMLEventFactory xmlef = XMLEventFactory.newFactory();

You can then obtain an XMLEvent subinterface implementation, as follows:

XMLEvent comment = xmlef.createComment("ToDo");

Listing 10-19 presents the source code to a StAXDemo application that creates a recipe.xml file with
many of Listing 10-5’s infoset items via an event-based writer.

Listing 10-19. StAXDemo (version 4)

import java.io.FileWriter;
import java.io.IOException;

import java.util.Iterator;

import javax.xml.stream.FactoryConfigurationError;
import javax.xml.stream.XMLEventFactory;
import javax.xml.stream.XMLEventWriter;
import javax.xml.stream.XMLOutputFactory;
import javax.xml.stream.XMLStreamException;

import javax.xml.stream.events.Attribute;
import javax.xml.stream.events.Namespace;
import javax.xml.stream.events.XMLEvent;

class StAXDemo
{
 public static void main(String[] args)
 {
 try
 {
 XMLOutputFactory xmlof = XMLOutputFactory.newFactory();
 XMLEventWriter xmlew;
 xmlew = xmlof.createXMLEventWriter(new FileWriter("recipe.xml"));
 final XMLEventFactory xmlef = XMLEventFactory.newFactory();
 XMLEvent event = xmlef.createStartDocument();
 xmlew.add(event);
 Iterator<Namespace> nsIter;
 nsIter = new Iterator<Namespace>()
 {
 int index = 0;
 Namespace[] ns;
 {
 ns = new Namespace[2];

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

723

 ns[0] = xmlef.createNamespace("h",
 "http://www.w3.org/1999/xhtml");
 ns[1] = xmlef.createNamespace("r",
 "http://www.tutortutor.ca/");
 }
 public boolean hasNext()
 {
 return index != 2;
 }
 public Namespace next()
 {
 return ns[index++];
 }
 public void remove()
 {
 throw new UnsupportedOperationException();
 }
 };
 event = xmlef.createStartElement("h", "http://www.w3.org/1999/xhtml",
 "html", null, nsIter);
 xmlew.add(event);
 event = xmlef.createStartElement("h", "http://www.w3.org/1999/xhtml",
 "head");
 xmlew.add(event);
 event = xmlef.createStartElement("h", "http://www.w3.org/1999/xhtml",
 "title");
 xmlew.add(event);
 event = xmlef.createCharacters("Recipe");
 xmlew.add(event);
 event = xmlef.createEndElement("h", "http://www.w3.org/1999/xhtml",
 "title");
 xmlew.add(event);
 event = xmlef.createEndElement("h", "http://www.w3.org/1999/xhtml",
 "head");
 xmlew.add(event);
 event = xmlef.createStartElement("h", "http://www.w3.org/1999/xhtml",
 "body");
 xmlew.add(event);
 event = xmlef.createStartElement("r", "http://www.tutortutor.ca/",
 "recipe");
 xmlew.add(event);
 event = xmlef.createStartElement("r", "http://www.tutortutor.ca/",
 "title");
 xmlew.add(event);
 event = xmlef.createCharacters("Grilled Cheese Sandwich");
 xmlew.add(event);
 event = xmlef.createEndElement("r", "http://www.tutortutor.ca/",
 "title");
 xmlew.add(event);
 event = xmlef.createStartElement("r", "http://www.tutortutor.ca/",
 "ingredients");
 xmlew.add(event);

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.tutortutor.ca/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

724

 event = xmlef.createStartElement("h", "http://www.w3.org/1999/xhtml",
 "ul");
 xmlew.add(event);
 event = xmlef.createStartElement("h", "http://www.w3.org/1999/xhtml",
 "li");
 xmlew.add(event);
 Iterator<Attribute> attrIter;
 attrIter = new Iterator<Attribute>()
 {
 int index = 0;
 Attribute[] attrs;
 {
 attrs = new Attribute[1];
 attrs[0] = xmlef.createAttribute("qty", "2");
 }
 public boolean hasNext()
 {
 return index != 1;
 }
 public Attribute next()
 {
 return attrs[index++];
 }
 public void remove()
 {
 throw new UnsupportedOperationException();
 }
 };
 event = xmlef.createStartElement("r", "http://www.tutortutor.ca/",
 "ingredient", attrIter, null);
 xmlew.add(event);
 event = xmlef.createCharacters("bread slice");
 xmlew.add(event);
 event = xmlef.createEndElement("r", "http://www.tutortutor.ca/",
 "ingredient");
 xmlew.add(event);
 event = xmlef.createEndElement("h", "http://www.w3.org/1999/xhtml",
 "li");
 xmlew.add(event);
 event = xmlef.createEndElement("h", "http://www.w3.org/1999/xhtml",
 "ul");
 xmlew.add(event);
 event = xmlef.createEndElement("r", "http://www.tutortutor.ca/",
 "ingredients");
 xmlew.add(event);
 event = xmlef.createEndElement("r", "http://www.tutortutor.ca/",
 "recipe");
 xmlew.add(event);
 event = xmlef.createEndElement("h", "http://www.w3.org/1999/xhtml",
 "body");
 xmlew.add(event);
 event = xmlef.createEndElement("h", "http://www.w3.org/1999/xhtml",

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.tutortutor.ca/
http://www.tutortutor.ca/
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

725

 "html");
 xmlew.add(event);
 xmlew.flush();
 xmlew.close();
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: "+ioe);
 }
 catch (XMLStreamException xmlse)
 {
 System.err.println("XMLSE: "+xmlse);
 }
 }
}

Listing 10-19 should be fairly easy to follow; it is the event-based equivalent of Listing 10-18. Notice
that this listing includes the creation of java.util.Iterator instances from anonymous classes that
implement this interface. These iterators are created to pass namespaces or attributes to
XMLEventFactory’s StartElement createStartElement(String prefix, String namespaceUri, String
localName, Iterator attributes, Iterator namespaces) method. (You can pass null to this parameter
when an iterator is not applicable; for example, when the start tag has no attributes.)

Selecting XML Document Nodes with XPath
XPath is a nonXML declarative query language (defined by the W3C) for selecting an XML document’s
infoset items as one or more nodes. For example, you can use XPath to locate Listing 10-1’s third
ingredient element and return this element node.

XPath is often used to simplify access to a DOM tree’s nodes, and is also used in the context of XSLT
(discussed in the next section), typically to select those input document elements (via XPath
expressions) that are to be copied to an output document. Java 7 supports XPath 1.0 via JAXP’s XPath
API, which is assigned package javax.xml.xpath.

This section first acquaints you with the XPath 1.0 language. It then demonstrates how XPath
simplifies the selection of a DOM tree’s nodes. Lastly, the section introduces you to three advanced
XPath topics.

XPath Language Primer
XPath views an XML document as a tree of nodes that starts from a root node. XPath recognizes seven
kinds of nodes: element, attribute, text, namespace, processing instruction, comment, and document.
XPath does not recognize CDATA sections, entity references, or document type declarations.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

726

 Note A tree’s root node (a DOM Document instance) is not the same as a document’s root element. The root
node contains the entire document, including the root element, any comments or processing instructions that
appear before the root element’s start tag, and any comments or processing instructions that appear after the root
element’s end tag.

XPath provides location path expressions for selecting nodes. A location path expression locates
nodes via a sequence of steps starting from the context node (the root node or some other document
node that is the current node). The returned set of nodes might be empty, or it might contain one or
more nodes.

The simplest location path expression selects the document’s root node and consists of a single
forward slash character (/). The next simplest location path expression is the name of an element, which
selects all child elements of the context node that have that name. For example, ingredient refers to all
ingredient child elements of the context node in Listing 10-1’s XML document. This XPath expression
returns a set of three ingredient nodes when ingredients is the context node. However, if recipe or
instructions happened to be the context node, ingredient would not return any nodes (ingredient is a
child of ingredients only). When an expression starts with /, the expression represents an absolute path
that starts from the root node. For example, /movie selects all movie child elements of the root node in
Listing 10-2’s XML document.

Attributes are also handled by location path expressions. To select an element’s attribute, specify @
followed by the attribute’s name. For example, @qty selects the qty attribute node of the context node.

In most cases, you will work with root nodes, element nodes, and attribute nodes. However, you
might also need to work with namespace nodes, text nodes, processing-instruction nodes, and comment
nodes. Unlike namespace nodes, which are typically handled by XSLT, you’ll more likely need to process
comments, text, and processing instructions. XPath provides comment(), text(), and processing-
instruction() functions for selecting comment, text, and processing-instruction nodes.

The comment() and text() functions don’t require arguments because comment and text nodes
don’t have names. Each comment is a separate comment node, and each text node specifies the longest
run of text not interrupted by a tag. The processing-instruction() function may be called with an
argument that identifies the target of the processing instruction. If called with no argument, all the
context node’s processing-instruction child nodes are selected.

XPath supplies three wildcards for selecting unknown nodes. The * wildcard matches any element
node regardless of the node’s type. It does not match attributes, text nodes, comments, or processing-
instruction nodes. When you place a namespace prefix before the *, only elements belonging to that
namespace are matched. The node() wildcard is a function that matches all nodes. Finally, the @*
wildcard matches all attribute nodes.

 Note XPath lets you perform multiple selections by using the vertical bar (|). For example,
author/*|publisher/* selects the children of author and the children of publisher, and *|@* matches all
elements and attributes, but doesn’t match text, comment, or processing-instruction nodes.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

727

XPath lets you combine steps into compound paths by using the / character to separate them. For
paths beginning with /, the first path step is relative to the root node; otherwise, the first path step is
relative to another context node. For example, /movie/name starts with the root node, selects all movie
element children of the root node, and selects all name children of the selected movie nodes. If you
wanted to return all text nodes of the selected name elements, you would specify /movie/name/text().

Compound paths can include // to select nodes from all descendents of the context node (including
the context node). When placed at the start of an expression, // selects nodes from the entire tree. For
example, //ingredient selects all ingredient nodes in the tree.

As with filesystems that let you identify the current directory with a single period (.) and its parent
directory with a double period (..), you can specify a single period to represent the current node and a
double period to represent the parent of the current node. (You would typically use a single period in
XSLT to indicate that you want to access the value of the currently matched element.)

It might be necessary to narrow the selection of nodes returned by an XPath expression. For
example, /recipe/ingredients/ingredient returns all ingredient nodes, but perhaps you only want to
return the first ingredient node. You can narrow the selection by including predicates in the location
path.

A predicate is a square bracket-delimited Boolean expression that is tested against each selected
node. If the expression evaluates to true, that node is included in the set of nodes returned by the XPath
expression; otherwise, the node is not included in the set. For example,
/recipe/ingredients/ingredient[1] selects the first ingredient element that is a child of the
ingredients element.

Predicates can include predefined functions (e.g., last() and position()), operators (e.g., -, <, and
=), and other items. For example, /recipe/ingredients/ingredient[last()] selects the last ingredient
element that is a child of the ingredients element, /recipe/ingredients/ingredient[last()-1] selects
the next-to-last ingredient element that is a child of the ingredients element,
/recipe/ingredients/ingredient[position()<3] selects the first two ingredient elements that are
children of the ingredients element, //ingredient[@qty] selects all ingredient elements (no matter
where they are located) that have qty attributes, and //ingredient[@qty='1'] or //ingredient[@qty="1"]
selects all ingredient elements (no matter where they are located) that have qty attributes with value 1.

Although predicates are supposed to be Boolean expressions, the predicate might not evaluate to a
Boolean value. For example, it could evaluate to a number or a string—XPath supports Boolean, number
(IEEE 754 double precision floating-point values), and string expression types as well as a location path
expression’s nodeset type. If a predicate evaluates to a number, XPath converts that number to true
when it equals the context node’s position; otherwise, XPath converts that number to false. If a predicate
evaluates to a string, XPath converts that string to true when the string isn’t empty; otherwise, XPath
converts that string to false. Finally, if a predicate evaluates to a nodeset, XPath converts that nodeset to
true when the nodeset is nonempty; otherwise, XPath converts that nodeset to false.

 Note The previously presented location path expression examples demonstrate XPath’s abbreviated syntax.
However, XPath also supports an unabbreviated syntax that is more descriptive of what is happening and is based
on an axis specifier, which indicates the navigation direction within the XML document’s tree representation. For
example, where /movie/name selects all movie child elements of the root node followed by all name child elements
of the movie elements using the abbreviated syntax, /child::movie/child::name accomplishes the same task
with the expanded syntax. Check out Wikipedia’s “XPath 1.0” entry
(http://en.wikipedia.org/wiki/XPath_1.0) for more information.

http://en.wikipedia.org/wiki/XPath_1.0

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

728

Location path expressions (which return nodesets) are one kind of XPath expressions. XPath also
supports general expressions that evaluate to Boolean (e.g., predicates), number, or string type; for
example, position()=2, 6.8, and "Hello". General expressions are often used in XSLT.

XPath Boolean values can be compared via relational operators <, <=, >, >=, =, and != . Boolean
expressions can be combined by using operators and and or. XPath predefines the boolean() function to
convert its argument to a string, not() to return true when its Boolean argument is false and vice versa,
true() to return true, false() to return false, and lang() to return true or false depending on whether
the language of the context node (as specified by xml:lang attributes) is the same as or is a sublanguage
of the language specified by the argument string.

XPath provides the +, -, *, div, and mod (remainder) operators for working with numbers—forward
slash cannot be used for division because this character is used to separate location steps. All five
operators behave like their Java language counterparts. XPath also predefines the number() function to
convert its argument to a number, sum() to return the sum of the numeric values represented by the
nodes in its nodeset argument, floor() to return the largest (closest to positive infinity) number that is
not greater than its number argument and that is an integer, ceiling() to return the smallest (closest to
negative infinity) number that is not less than its number argument and that is an integer, and round()
to return the number that is closest to the argument and that is an integer. When there are two such
numbers, the one closest to positive infinity is returned.

XPath strings are ordered character sequences that are enclosed in single quotes or double quotes. A
string literal cannot contain the same kind of quote that is also used to delimit the string. For example, a
string that contains a single quote cannot be delimited with single quotes. XPath provides the = and !=
operators for comparing strings. XPath also predefines the string() function to convert its argument to
a string, concat() to return a concatenation of its string arguments, starts-with() to return true when
the first argument string starts with the second argument string (and otherwise returns false), contains()
to return true when the first argument string contains the second argument string (and otherwise
returns false), substring-before() to return the substring of the first argument string that precedes the
first occurrence of the second argument string in the first argument string, or the empty string when the
first argument string does not contain the second argument string, substring-after() to return the
substring of the first argument string that follows the first occurrence of the second argument string in
the first argument string, or the empty string when the first argument string does not contain the second
argument string, substring() to return the substring of the first (string) argument starting at the position
specified in the second (number) argument with length specified in the third (number) argument,
string-length() to return the number of characters in its string argument (or the length of the context
node when converted to a string in the absence of an argument), normalize-space() to return the
argument string with whitespace normalized by stripping leading and trailing whitespace and replacing
sequences of whitespace characters by a single space (or performing the same action on the context
node when converted to a string in the absence of an argument), and translate() to return the first
argument string with occurrences of characters in the second argument string replaced by the character
at the corresponding position in the third argument string.

Finally, XPath predefines several functions for use with nodesets: last() returns a number
identifying the last node, position() returns a number identifying a node’s position, count() returns the
number of nodes in its nodeset argument, id() selects elements by their unique IDs and returns a
nodeset of these elements, local-name() returns the local part of the qualified name of the first node in
its nodeset argument, namespace-uri() returns the namespace part of the qualified name of the first
node in its nodeset argument, and name() returns the qualified name of the first node in its nodeset
argument.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

729

XPath and DOM
Suppose you need someone in your home to purchase a bag of sugar. You can tell this person to “Please
buy me some sugar.” Alternatively, you could say the following: “Please open the front door. Walk down
to the sidewalk. Turn left. Walk up the sidewalk for three blocks. Turn right. Walk up the sidewalk one
block. Enter the store. Go to aisle 7. Walk two meters down the aisle. Pick up a bag of sugar. Walk to a
checkout counter. Pay for the sugar. Retrace your steps home.” Most people would expect to receive the
shorter instruction, and would probably have you committed to an institution if you made a habit out of
providing the longer set of instructions.

Traversing a DOM tree of nodes is similar to providing the longer sequence of instructions. In
contrast, XPath lets you traverse this tree via a succinct instruction. To see this difference for yourself,
consider a scenario where you have an XML-based contacts document that lists your various
professional contacts. Listing 10-20 presents a trivial example of such a document.

Listing 10-20. XML-based contacts database

<?xml version="1.0"?>
<contacts>
 <contact>
 <name>John Doe</name>
 <city>Chicago</city>
 <city>Denver</city>
 </contact>
 <contact>
 <name>Jane Doe</name>
 <city>New York</city>
 </contact>
 <contact>
 <name>Sandra Smith</name>
 <city>Denver</city>
 <city>Miami</city>
 </contact>
 <contact>
 <name>Bob Jones</name>
 <city>Chicago</city>
 </contact>
</contacts>

Listing 10-20 reveals a simple XML grammar consisting of a contacts root element that contains a
sequence of contact elements. Each contact element contains one name element and one or more city
elements (your contact travels frequently and spends a lot of time in each city). (To keep the example
simple, I’m not providing a DTD or a schema.)

Suppose you want to locate and output the names of all contacts that live at least part of each year
in Chicago. Listing 10-21 presents the source code to a DOMSearch application that accomplishes this task
with the DOM API.

Listing 10-21. Locating Chicago contacts with the DOM API

import java.io.IOException;

import java.util.ArrayList;
import java.util.List;

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

730

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

class DOMSearch
{
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("contacts.xml");
 List<String> contactNames = new ArrayList<String>();
 NodeList contacts = doc.getElementsByTagName("contact");
 for (int i = 0; i < contacts.getLength(); i++)
 {
 Element contact = (Element) contacts.item(i);
 NodeList cities = contact.getElementsByTagName("city");
 boolean chicago = false;
 for (int j = 0; j < cities.getLength(); j++)
 {
 Element city = (Element) cities.item(j);
 NodeList children = city.getChildNodes();
 StringBuilder sb = new StringBuilder();
 for (int k = 0; k < children.getLength(); k++)
 {
 Node child = children.item(k);
 if (child.getNodeType() == Node.TEXT_NODE)
 sb.append(child.getNodeValue());
 }
 if (sb.toString().equals("Chicago"))
 {
 chicago = true;
 break;
 }
 }
 if (chicago)
 {
 NodeList names = contact.getElementsByTagName("name");
 contactNames.add(names.item(0).getFirstChild().getNodeValue());
 }
 }

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

731

 for (String contactName: contactNames)
 System.out.println(contactName);
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: "+ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: "+saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);
 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: "+pce);
 }
 }
}

After parsing contacts.xml and building the DOM tree, main() uses Document’s
getElementsByTagName() method to return a NodeList of contact element nodes. For each member of
this list, main() extracts the contact element node, and uses this node with getElementsByTagName() to
return a NodeList of the contact element node’s city element nodes.

For each member of the cities list, main() extracts the city element node, and uses this node with
getElementsByTagName() to return a NodeList of the city element node’s child nodes—there is only a
single child text node in this example, but the presence of a comment or processing instruction would
increase the number of child nodes. For example, <city>Chicago<!--The windy city--></city>
increases the number of child nodes to 2.

If the child’s node type indicates that it is a text node, the child node’s value (obtained via
getNodeValue()) is stored in a string builder—only one child node is stored in the string builder in this
example. If the builder’s contents indicate that Chicago has been found, the chicago flag is set to true and
execution leaves the cities loop.

If the chicago flag is set when the cities loop exits, the current contact element node’s
getElementsByTagName() method is called to return a NodeList of the contact element node’s name
element nodes (of which there should only be one, and which I could enforce through a DTD or
schema). It is now a simple matter to extract the first item from this list, call getFirstChild() on this
item to return the text node (I assume that only text appears between <name> and </name>), and call
getNodeValue() on the text node to obtain its value, which is then added to the contactNames list.

After compiling this source code, run the application. You should observe the following output:

John Doe
Bob Jones

Traversing the DOM’s tree of nodes is a tedious exercise at best and is error-prone at worst.
Fortunately, XPath can greatly simplify this situation.

Before writing the XPath equivalent of Listing 10-21, it helps to define a location path expression.
For this example, that expression is //contact[city="Chicago"]/name/text(), which uses a predicate to
select all contact nodes that contain a Chicago city node, then select all child name nodes from these
contact nodes, and finally select all child text nodes from these name nodes.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

732

Listing 10-22 presents the source code to an XPathSearch application that uses this XPath expression
and the XPath API to locate Chicago contacts.

Listing 10-22. Locating Chicago contacts with the XPath API

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathException;
import javax.xml.xpath.XPathExpression;
import javax.xml.xpath.XPathFactory;

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

class XPathSearch
{
 public static void main(String[] args)
 {
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse("contacts.xml");
 XPathFactory xpf = XPathFactory.newInstance();
 XPath xp = xpf.newXPath();
 XPathExpression xpe;
 xpe = xp.compile("//contact[city='Chicago']/name/text()");
 Object result = xpe.evaluate(doc, XPathConstants.NODESET);
 NodeList nl = (NodeList) result;
 for (int i = 0; i < nl.getLength(); i++)
 System.out.println(nl.item(i).getNodeValue());
 }
 catch (IOException ioe)
 {
 System.err.println("IOE: "+ioe);
 }
 catch (SAXException saxe)
 {
 System.err.println("SAXE: "+saxe);
 }
 catch (FactoryConfigurationError fce)
 {
 System.err.println("FCE: "+fce);

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

733

 }
 catch (ParserConfigurationException pce)
 {
 System.err.println("PCE: "+pce);
 }
 catch (XPathException xpe)
 {
 System.err.println("XPE: "+xpe);
 }
 }
}

After parsing contacts.xml and building the DOM tree, main() instantiates XPathFactory by calling
its XPathFactory newInstance() method. The resulting XPathFactory instance can be used to set features
(such as secure processing, to process XML documents securely) by calling its void setFeature(String
name, boolean value) method, create an XPath object by calling its XPath newXPath() method, and more.

XPath declares an XPathExpression compile(String expression) method for compiling the specified
expression (an XPath expression) and returning the compiled expression as an instance of a class that
implements the XPathExpression interface. This method throws XPathExpressionException (a subclass of
XMLException) when the expression cannot be compiled.

XPath also declares several overloaded evaluate() methods for immediately evaluating an
expression and returning the result. Because it can take time to evaluate an expression, you might
choose to compile a complex expression first (to boost performance) when you plan to evaluate this
expression many times.

After compiling the expression, main() calls XPathExpression’s Object evaluate(Object item,
QName returnType) method to evaluate the expression. The first argument is the context node for the
expression, which happens to be a Document instance in the example. The second argument specifies the
kind of object returned by evaluate() and is set to XPathConstants.NODESET, a qualified name for the
XPath 1.0 nodeset type, which is implemented via DOM’s NodeList interface.

 Note The XPath API maps XPath’s Boolean, number, string, and nodeset types to Java’s java.lang.Boolean,
java.lang.Double, String, and org.w3c.dom.NodeList types, respectively. When calling an evaluate()
method, you specify XPath types via XPathConstants constants (BOOLEAN, NUMBER, STRING, and NODESET), and the
method takes care of returning an object of the appropriate type. XPathConstants also declares a NODE constant,
which doesn’t map to a Java type. Instead, it’s used to tell evaluate() that you only want the resulting nodeset to
contain a single node.

After casting Object to NodeList, main() uses this interface’s getLength() and item() methods to
traverse the nodelist. For each item in this list, getNodeValue() is called to return the node’s value, which
is subsequently output. XPathDemo generates the same output as DOMDemo.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

734

Advanced XPath
The XPath API provides three advanced features to overcome limitations with the XPath 1.0 language.
These features are namespace contexts, extension functions and function resolvers, and variables and
variable resolvers.

Namespace Contexts
When an XML document’s elements belong to a namespace (including the default namespace), XPath
expressions that query the document must account for this namespace. For nondefault namespaces, the
expression doesn’t need to use the same namespace prefix; it only needs to use the same URI. However,
when a document specifies the default namespace, the expression must use a prefix even though the
document doesn’t use a prefix.

To appreciate this situation, suppose Listing 10-20’s <contacts> tag was declared <contacts
xmlns="http://www.tutortutor.ca/"> to introduce a default namespace. Furthermore, suppose that
Listing 10-22 included dbf.setNamespaceAware(true); after the line that instantiates
DocumentBuilderFactory. If you were to run the revised XPathDemo application against the revised
contacts.xml file, you would not see any output.

You can correct this problem by implementing javax.xml.namespace.NamespaceContext to map an
arbitrary prefix to the namespace URI, and then registering this namespace context with the XPath
instance. Listing 10-23 presents a minimal implementation of the NamespaceContext interface.

Listing 10-23. Minimally implementing NamespaceContext

import java.util.Iterator;

import javax.xml.XMLConstants;

import javax.xml.namespace.NamespaceContext;

class NSContext implements NamespaceContext
{
 @Override
 public String getNamespaceURI(String prefix)
 {
 if (prefix == null)
 throw new IllegalArgumentException("prefix is null");
 else
 if (prefix.equals("tt"))
 return "http://www.tutortutor.ca/";
 else
 return null;
 }
 @Override
 public String getPrefix(String uri)
 {
 return null;
 }
 @Override
 public Iterator getPrefixes(String uri)

http://www.tutortutor.ca/
http://www.tutortutor.ca/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

735

 {
 return null;
 }
}

The getNamespaceURI() method is passed a prefix argument that must be mapped to a URI. If this
argument is null, an IllegalArgumentException object must be thrown (according to the Java
documentation). When the argument is the desired prefix value, the namespace URI is returned.

After instantiating the XPath class, you would instantiate NSContext and register this instance with
the XPath instance by calling XPath’s void setNamespaceContext(NamespaceContext nsContext) method.
For example, you would specify xp.setNamespaceContext(new NSContext()); after XPath xp =
xpf.newXPath(); to register the NSContext instance with xp.

All that’s left to accomplish is to apply the prefix to the XPath expression, which now becomes
//tt:contact[tt:city='Chicago']/tt:name/text() because the contact, city, and name elements are
now part of the default namespace, whose URI is mapped to arbitrary prefix tt in the NSContext
instance’s getNamespaceURI() method.

Compile and run the revised XPathSearch application and you’ll see John Doe followed by Bob Jones
on separate lines.

Extension Functions and Function Resolvers
The XPath API lets you define functions (via Java methods) that extend XPath’s predefined function
repertoire by offering new features not already provided. These Java methods cannot have side effects
because XPath functions can be evaluated multiple times and in any order. Furthermore, they cannot
override predefined functions; a Java method with the same name as a predefined function is never
executed.

Suppose you modify Listing 10-20’s XML document to include a birth element that records a
contact’s date of birth information in YYYY-MM-DD format. Listing 10-24 shows the resulting XML file.

Listing 10-24. XML-based contacts database with birth information

<?xml version="1.0"?>
<contacts xmlns="http://www.tutortutor.ca/">
 <contact>
 <name>John Doe</name>
 <birth>1953-01-02</birth>
 <city>Chicago</city>
 <city>Denver</city>
 </contact>
 <contact>
 <name>Jane Doe</name>
 <birth>1965-07-12</birth>
 <city>New York</city>
 </contact>
 <contact>
 <name>Sandra Smith</name>
 <birth>1976-11-22</birth>
 <city>Denver</city>
 <city>Miami</city>
 </contact>
 <contact>

http://www.tutortutor.ca/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

736

 <name>Bob Jones</name>
 <birth>1958-03-14</birth>
 <city>Chicago</city>
 </contact>
</contacts>

Now suppose that you want to select contacts based on birth information. For example, you only
want to select contacts whose date of birth is greater than 1960-01-01. Because XPath does not provide
this function for you, you decide to declare a date() extension function. Your first step is to declare a
Date class that implements the XPathFunction interface—see Listing 10-25.

Listing 10-25. An extension function for returning a date as a milliseconds value

import java.text.ParsePosition;
import java.text.SimpleDateFormat;

import java.util.List;

import javax.xml.xpath.XPathFunction;
import javax.xml.xpath.XPathFunctionException;

import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

class Date implements XPathFunction
{
 private final static ParsePosition POS = new ParsePosition(0);
 private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-mm-dd");
 @Override
 public Object evaluate(List args) throws XPathFunctionException
 {
 if (args.size() != 1)
 throw new XPathFunctionException("Invalid number of arguments");
 String value;
 Object o = args.get(0);
 if (o instanceof NodeList)
 {
 NodeList list = (NodeList) o;
 value = list.item(0).getTextContent();
 }
 else
 if (o instanceof String)
 value = (String) o;
 else
 throw new XPathFunctionException("Cannot convert argument type");
 POS.setIndex(0);
 return sdf.parse(value, POS).getTime();
 }
}

XPathFunction declares a single Object evaluate(List args) method that XPath calls when it needs
to execute the extension function. evaluate() is passed a java.util.List of objects that describe the

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

737

arguments that were passed to the extension function by the XPath evaluator. Furthermore, this method
returns a value of a type appropriate to the extension function (date()’s long integer return type is
compatible with XPath’s number type).

The date() extension function is intended to be called with a single argument, which is either of
type nodeset or of type string. This extension function throws XPathFunctionException when the number
of arguments (as indicated by the list’s size) is not equal to 1.

When the argument is of type NodeList (a nodeset), the textual content of the first node in the
nodeset is obtained; this content is assumed to be a year value in YYYY-MM-DD format (for brevity, I’m
overlooking error checking). When the argument is of type String, it is assumed to be a year value in this
format. Any other type of argument results in a thrown XPathFunctionException instance.

Date comparison is simplified by converting the date to a milliseconds value. This task is
accomplished with the help of the java.text.SimpleDateFormat and java.text.ParsePosition classes.
After resetting the ParsePosition object’s index (via setIndex(0)), SimpleDateFormat’s Date
parse(String text, ParsePosition pos) method is called to parse the string according to the pattern
established when SimpleDateFormat was instantiated, and starting from the parse position identified by
the ParsePosition index. This index is reset prior to the parse() method call because parse() updates
this object’s index.

The parse() method returns a java.util.Date instance whose long getTime() method is called to
return the number of milliseconds represented by the parsed date. (I discuss SimpleDateFormat,
ParsePosition, and Date in Appendix C’s Internationalization section.)

After implementing the extension function, you need to create a function resolver, which is an object
whose class implements the XPathFunctionResolver interface, and which tells the XPath evaluator about
the extension function (or functions). Listing 10-26 presents the DateResolver class.

Listing 10-26. A function resolver for the date() extension function

import javax.xml.namespace.QName;

import javax.xml.xpath.XPathFunction;
import javax.xml.xpath.XPathFunctionResolver;

class DateResolver implements XPathFunctionResolver
{
 private static final QName name = new QName("http://www.tutortutor.ca/",
 "date", "tt");
 @Override
 public XPathFunction resolveFunction(QName name, int arity)
 {
 if (name.equals(this.name) && arity == 1)
 return new Date();
 return null;
 }
}

XPathFunctionResolver declares a single XPathFunction resolveFunction(QName functionName, int
arity) method that XPath calls to identify the name of the extension function and obtain an instance of
a Java object whose evaluate() method implements the function.

The functionName parameter identifies the function’s qualified name because all extension
functions must live in a namespace, and must be referenced via a prefix (which doesn’t have to match
the prefix in the document). As a result, you must also bind a namespace to the prefix via a namespace
context (as demonstrated previously). The arity parameter identifies the number of arguments that the

http://www.tutortutor.ca/

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

738

extension function accepts, and is useful when overloading extension functions. If the functionName and
arity values are acceptable, the extension function’s Java class is instantiated and returned; otherwise,
null is returned.

Finally, the function resolver class is instantiated and registered with the XPath instance by calling
XPath’s void setXPathFunctionResolver(XPathFunctionResolver resolver) method.

The following example demonstrates all these tasks to use date() in XPath expression
//tt:contact[tt:date(tt:birth)>tt:date('1960-01-01')]/tt:name/text(), which returns only those
contacts whose date of birth is greater than 1960-01-01 (Jane Doe followed by Sandra Smith):

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("contacts.xml");
XPathFactory xpf = XPathFactory.newInstance();
XPath xp = xpf.newXPath();
xp.setNamespaceContext(new NSContext());
xp.setXPathFunctionResolver(new DateResolver());
XPathExpression xpe;
String expr;
expr = "//tt:contact[tt:date(tt:birth)>tt:date('1960-01-01')]"+
 "/tt:name/text()";
xpe = xp.compile(expr);
Object result = xpe.evaluate(doc, XPathConstants.NODESET);
NodeList nl = (NodeList) result;
for (int i = 0; i < nl.getLength(); i++)
 System.out.println(nl.item(i).getNodeValue());

Variables and Variable Resolvers
All the previously specified XPath expressions have been based on literal text. XPath also lets you specify
variables to parameterize these expressions, in a similar manner to using variables with SQL prepared
statements.

A variable appears in an expression by prefixing its name (which may or may not have a namespace
prefix) with a $. For example, /a/b[@c=$d]/text() is an XPath expression that selects all a elements of the
root node, and all of a’s b elements that have c attributes containing the value identified by variable $d,
and returns the text of these b elements. This expression corresponds to Listing 10-27’s XML document.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

739

Listing 10-27. A simple XML document for demonstrating an XPath variable

<?xml version="1.0"?>
<a>
 <b c="x">b1
 b2
 <b c="y">b3
 b4
 <b c="x">b5

To specify variables whose values are obtained during expression evaluation, you must register a
variable resolver with your XPath object. A variable resolver is an instance of a class that implements the
XPathVariableResolver interface in terms of its Object resolveVariable(QName variableName) method,
and which tells the evaluator about the variable (or variables).

The variableName parameter contains the qualified name of the variable’s name—remember that a
variable name may be prefixed with a namespace prefix. This method verifies that the qualified name
appropriately names the variable and then returns its value.

After creating the variable resolver, you register it with the XPath instance by calling XPath’s void
setXPathVariableResolver(XPathVariableResolver resolver) method.

The following example demonstrates all these tasks to specify $d in XPath expression
/a/b[@c=$d]/text(), which returns b1 followed by b5. It assumes that Listing 10-27 is stored in a file
named example.xml:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("example.xml");
XPathFactory xpf = XPathFactory.newInstance();
XPath xp = xpf.newXPath();
XPathVariableResolver xpvr;
xpvr = new XPathVariableResolver()
 {
 @Override
 public Object resolveVariable(QName varname)
 {
 if (varname.getLocalPart().equals("d"))
 return "x";
 else
 return null;
 }
 };
xp.setXPathVariableResolver(xpvr);
XPathExpression xpe;
xpe = xp.compile("/a/b[@c=$d]/text()");
Object result = xpe.evaluate(doc, XPathConstants.NODESET);
NodeList nl = (NodeList) result;
for (int i = 0; i < nl.getLength(); i++)
 System.out.println(nl.item(i).getNodeValue());

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

740

 Caution When you qualify a variable name with a namespace prefix (as in $ns:d), you must also register a
namespace context to resolve the prefix.

Transforming XML Documents with XSLT
Extensible Stylesheet Language (XSL) is a family of languages for transforming and formatting XML
documents. XSL Transformation (XSLT) is the XSL language for transforming XML documents to other
formats, such as HTML (for presenting an XML document’s content via a web browser).

XSLT accomplishes its work by using XSLT processors and stylesheets. An XSLT processor is a
software component that applies an XSLT stylesheet (an XML-based template consisting of content and
transformation instructions) to an input document (without modifying the document), and copies the
transformed result to a result tree, which can be output to a file or output stream, or even piped into
another XSLT processor for additional transformations. Figure 10-3 illustrates the transformation
process.

Figure 10-3. An XSLT processor transforms an XML input document into a result tree.

The beauty of XSLT is that you don’t need to develop custom software applications to perform the
transformations. Instead, you simply create an XSLT stylesheet and input it along with the XML
document needing to be transformed to an XSLT processor.

This section first introduces you to Java’s XSLT API. It then presents two demonstrations of XSLT’s
usefulness.

Exploring the XSLT API
Java implements XSLT through the types found in the javax.xml.transform, javax.xml.transform.dom,
javax.xml.transform.sax, javax.xml.transform.stax, and javax.xml.transform.stream packages. The
javax.xml.transform package defines the generic APIs for processing transformation instructions, and
for performing a transformation from a source (where the XSLT processor’s input originates) to a result
(where the processor’s output is sent). The remaining packages define the APIs for obtaining different
kinds of sources and results.

The javax.xml.transform.TransformerFactory class is the starting point for working with XSLT. You
instantiate TransformerFactory by calling one its newInstance() methods. The following example uses
TransformerFactory’s static TransformerFactory newInstance() method to create the factory:

TransformerFactory tf = TransformerFactory.newInstance();

Behind the scenes, newInstance() follows an ordered lookup procedure to identify the
TransformerFactory implementation class to load. This procedure first examines the

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

741

javax.xml.transform.TransformerFactory system property, and lastly chooses the Java platform’s
default TransformerFactory implementation class when no other class is found. If an implementation
class is not available (perhaps the class identified by the javax.xml.transform.TransformerFactory
system property doesn’t exist) or cannot be instantiated, newInstance() throws an instance of the
javax.xml.transform.TransformerFactoryConfigurationError class. Otherwise, it instantiates the class
and returns its instance.

After obtaining a TransformerFactory instance, you can call various configuration methods to
configure the factory. For example, you could call TransformerFactory’s void setFeature(String name,
boolean value) method to enable a feature (such as secure processing, to transform XML documents
securely).

Following the factory’s configuration, call one of its newTransformer() methods to create and return
instances of the javax.xml.transform.Transformer class. The following example calls Transformer
newTransformer() to accomplish this task:

Transformer t = tf.newTransformer();

The noargument newTransformer() method copies source input to the destination without making
any changes. This kind of transformation is known as the identity transformation.

To change input, you need to specify a stylesheet, and you accomplish this task by calling the
factory’s Transformer newTransformer(Source source) method, where the javax.xml.transform.Source
interface describes a source for the stylesheet. The following example demonstrates this task:

Transformer t = tf.newTransformer(new StreamSource(new FileReader("recipe.xsl")));

This example creates a transformer that obtains a stylesheet from a file named recipe.xsl via a
javax.xml.transform.stream.StreamSource instance connected to a file reader. It is customary to use the
.xsl or .xslt extension to identify XSLT stylesheet files.

The newTransformer() methods throw TransformerConfigurationException when they cannot
return a Transformer instance that corresponds to the factory configuration.

After obtaining a Transformer instance, you can call its void setOutputProperty(String name,
String value) method to influence a transformation. The javax.xml.transform.OutputKeys class
declares constants for frequently used keys. For example, OutputKeys.METHOD is the key for specifying the
method for outputting the result tree (as XML, HTML, plain text, or something else).

 Tip To set multiple properties in a single method call, create a java.util.Properties object and pass this
object as an argument to Transformer’s void setOutputProperties(Properties prop) method. Properties set
by setOutputProperty() and setOutputProperties() override the stylesheet’s xsl:output instruction settings.

Before you can perform a transformation, you need to obtain instances of classes that implement
the Source and javax.xml.transform.Result interfaces. You then pass these instances to Transformer’s
void transform(Source xmlSource, Result outputTarget) method, which throws an instance of the
javax.xml.transform.TransformerException class when a problem arises during the transformation.

The following example shows you how to obtain a source and a result, and perform the
transformation:

Source source = new DOMSource(doc);
Result result = new StreamResult(System.out);
t.transform(source, result);

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

742

The first line instantiates the javax.xml.transform.dom.DOMSource class, which acts as a holder for a
DOM tree rooted in the Document object specified by doc. The second line instantiates the
javax.xml.transform.stream.StreamResult class, which acts as a holder for the standard output stream,
to which transformed data is sent. The third line reads data from the Source instance and outputs
transformed data to the Result instance.

 Tip Although Java’s default transformers support the various Source and Result implementation classes
located in the javax.xml.transform.dom, javax.xml.transform.sax, javax.xml.transform.stax, and
javax.xml.transform.stream packages, a nondefault transformer (perhaps specified via the
javax.xml.transform.TransformerFactory system property) might be more limited. For this reason, each
Source and Result implementation class declares a FEATURE string constant that can be passed to
TransformerFactory’s boolean getFeature(String name) method. This method returns true when the Source
or Result implementation class is supported. For example, tf.getFeature(StreamSource.FEATURE) returns true
when stream sources are supported.

The javax.xml.transform.sax.SAXTransformerFactory class provides additional SAX-specific factory methods
that you can use, but only when the TransformerFactory instance is also an instance of this class. To help you
make the determination, SAXTransformerFactory also declares a FEATURE string constant that you can pass to
getFeature(). For example, tf.getFeature(SAXTransformerFactory.FEATURE) returns true when the
transformer factory referenced from tf is an instance of SAXTransformerFactory.

Most JAXP interface instances and the factories that return them are not thread-safe. This situation
also applies to transformers. Although you can reuse the same transformer multiple times on the same
thread, you cannot access the transformer from multiple threads.

This problem can be solved for transformers by using instances of classes that implement the
javax.xml.transform.Templates interface. The Java documentation for this interface has this to say:
Templates must be threadsafe for a given instance over multiple threads running concurrently, and may
be used multiple times in a given session. In addition to promoting thread safety, Templates instances can
improve performance because they represent compiled XSLT stylesheets.

The following example shows how you might perform a transformation without a Templates object:

TransformerFactory tf = TransformerFactory.newInstance();
StreamSource ssStyleSheet = new StreamSource(new FileReader("recipe.xsl"));
Transformer t = tf.newTransformer(ssStyleSheet);
t.transform(new DOMSource(doc), new StreamResult(System.out));

You cannot access t’s transformer from multiple threads. In contrast, the following example shows
you how to construct a transformer from a Templates object so that it can be accessed from multiple
threads:

TransformerFactory tf = TransformerFactory.newInstance();
StreamSource ssStyleSheet = new StreamSource(new FileReader("recipe.xsl"));
Templates te = tf.newTemplates(ssStylesheet);

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

743

Transformer t = te.newTransformer();
t.transform(new DOMSource(doc), new StreamResult(System.out));

The differences are the call to Transformerfactory’s Templates newTemplates(Source source)
method to create and return objects whose classes implement the Templates interface, and the call to
this interface’s Transformer newTransformer() method to obtain the Transformer instance.

Demonstrating the XSLT API
Listing 10-15 presents a DOMDemo application that creates a DOM document tree based on Listing 10-2’s
movie XML document. Unfortunately, it’s not possible to use the DOM API to assign ISO-8859-1 to the
XML declaration’s encoding attribute. Also, it’s not possible to use DOM to output this tree to a file or
other destination. These problems can be overcome by using XSLT, as demonstrated in the following
example:

TransformerFactory tf = TransformerFactory.newInstance();
Transformer t = tf.newTransformer();
t.setOutputProperty(OutputKeys.METHOD, "xml");
t.setOutputProperty(OutputKeys.ENCODING, "ISO-8859-1");
t.setOutputProperty(OutputKeys.INDENT, "yes");
t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "3");
Source source = new DOMSource(doc);
Result result = new StreamResult(System.out);
t.transform(source, result);

After creating a transformer factory and obtaining a transformer from this factory, four output
properties are specified to influence the transformation. OutputKeys.METHOD specifies that the result tree
will be written out as XML, OutputKeys.ENCODING specifies that ISO-8859-1 will be the value of the XML
declaration’s encoding attribute, and OutputKeys.INDENT specifies that the transformer can output
additional whitespace.

The additional whitespace is used to output the XML across multiple lines instead of on a single
line. Because it would be nice to indicate the number of spaces for indenting lines of XML, and because
this information cannot be specified via an OutputKeys property, the nonstandard
"{http://xml.apache.org/xslt}indent-amount" property (property keys begin with brace-delimited
URIs) is used to specify an appropriate value (such as 3 spaces). It’s okay to specify this property in this
example because Java’s default XSLT implementation is based on Apache’s XSLT implementation.

After setting properties, a source (the DOM document tree) and a result (the standard output
stream) are obtained, and transform() is called to transform the source to the result.

Although this example shows you how to output a DOM tree, and also how to specify an encoding
value for the XML declaration of the resulting XML document, the example doesn’t really demonstrate
the power of XSLT because (apart from setting the encoding attribute value) it performs an identity
transformation. A more interesting example would take advantage of a stylesheet.

Consider a scenario where you want to convert Listing 10-1’s recipe document to an HTML
document for presentation via a web browser. Listing 10-28 presents a stylesheet that a transformer can
use to perform the conversion.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://xml.apache.org/xslt
http://xml.apache.org/xslt

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

744

Listing 10-28. An XSLT stylesheet for converting a recipe document to an HTML document

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/recipe">
<html>
 <head>
 <title>Recipes</title>
 </head>

 <body>
 <h2>
 <xsl:value-of select="normalize-space(title)"/>
 </h2>

 <h3>Ingredients</h3>

 <xsl:for-each select="ingredients/ingredient">

 <xsl:value-of select="normalize-space(text())"/>
 <xsl:if test="@qty"> (<xsl:value-of select="@qty"/>)</xsl:if>

 </xsl:for-each>

 <h3>Instructions</h3>

 <xsl:value-of select="normalize-space(instructions)"/>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>

Listing 10-28 reveals that a stylesheet is an XML document. Its root element is stylesheet, which
identifies the standard namespace for stylesheets. It’s conventional to specify xsl as the namespace
prefix for referring to XSLT instruction elements, although any prefix could be specified.

A stylesheet is based on template elements that control how an element and its content are
converted. A template focuses on a single element that is identified via the match attribute. This
attribute’s value is an XPath location path expression, which matches all recipe child nodes of the root
element node. Regarding Listing 10-1, only the single recipe root element will be matched and selected.

A template element can contain literal text and stylesheet instructions. For example, the value-of
instruction in <xsl:value-of select="normalize-space(title)"/> specifies that the value of the title
element (which is a child of the recipe context node) is to be retrieved and copied to the output. Because
this text is surrounded by space and newline characters, XPath’s normalize-string() function is called
to remove this whitespace prior to the title being copied.

XSLT is a powerful declarative language that includes control flow instructions such as for-each and
if. In the context of <xsl:for-each select="ingredients/ingredient">, for-each causes all the
ingredient child nodes of the ingredients node to be selected and processed one at a time. For each
node, <xsl:value-of select="normalize-space(text())"/> is executed to copy the content of the

http://www.w3.org/1999/XSL/Transform

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

745

ingredient node, normalized to remove whitespace. Also, the if instruction in <xsl:if test="@qty">
(<xsl:value-of select="@qty"/>) determines whether the ingredient node has a qty attribute, and (if
so) copies a space character followed by this attribute’s value (surrounded by parentheses) to the
output.

 Note There’s a lot more to XSLT than can be demonstrated in this short example. To learn more about XSLT, I
recommend that you check out Beginning XSLT 2.0 From Novice to Professional
(http://www.apress.com/9781590593240), an Apress book written by Jeni Tennison. XSLT 2.0 is a superset of
XSLT 1.0—Java 7 supports XSLT 1.0.

The following excerpt from an XSLTDemo application that’s included with this book’s code shows you
how to write the Java code to process Listing 10-1 via Listing 10-28’s stylesheet:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("recipe.xml");
TransformerFactory tf = TransformerFactory.newInstance();
StreamSource ssStyleSheet;
ssStyleSheet = new StreamSource(new FileReader("recipe.xsl"));
Transformer t = tf.newTransformer(ssStyleSheet);
t.setOutputProperty(OutputKeys.METHOD, "html");
t.setOutputProperty(OutputKeys.INDENT, "yes");
Source source = new DOMSource(doc);
Result result = new StreamResult(System.out);
t.transform(source, result);

This excerpt reveals that the output method is set to html, and it also reveals that the resulting
HTML should be indented. However, the output is only partly indented, as shown in Listing 10-29.

Listing 10-29. The HTML equivalent of Listing 10-1’s recipe document

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Recipes</title>
</head>
<body>
<h2>Grilled Cheese Sandwich</h2>
<h3>Ingredients</h3>

bread slice (2)
cheese slice
margarine pat (2)

<h3>Instructions</h3>Place frying pan on element and select medium heat. For each bread slice,
smear one pat of margarine on one side of bread slice. Place cheese slice between bread slices
with margarine-smeared sides away from the cheese. Place sandwich in frying pan with one

http://www.apress.com/9781590593240

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

746

margarine-smeared side in contact with pan. Fry for a couple of minutes and flip. Fry other
side for a minute and serve.</body>
</html>

OutputKeys.INDENT and its "yes" value let you output the HTML across multiple lines as opposed to
outputting the HTML on a single line. However, the XSLT processor performs no additional indentation,
and ignores attempts to specify the number of spaces to indent via code such as
t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "3");.

 Note An XSLT processor outputs a <META> tag when OutputKeys.METHOD is set to "html".

EXERCISES

The following exercises are designed to test your understanding of XML document creation and the SAX,
DOM, StAX, XPath, and XSLT APIs:

1. Create a books.xml document file with a books root element. The books element
must contain one or more book elements, where a book element must contain one
title element, one or more author elements, and one publisher element (and in that
order). Furthermore, the book element’s <book> tag must contain isbn and
pubyear attributes. Record Advanced C++/James Coplien/Addison
Wesley/0201548550/1992 in the first book element, Beginning Groovy and
Grails/Christopher M. Judd/Joseph Faisal Nusairat/James
Shingler/Apress/9781430210450/2008 in the second book element, and Effective
Java/Joshua Bloch/Addison Wesley/0201310058/2001 in the third book element.

2. Modify books.xml to include an internal DTD that satisfies Exercise 1’s
requirements. Use Listing 10-10’s SAXDemo application to validate books.xml
against its DTD (java SAXDemo books.xml -v).

3. Create a SAXSearch application that searches books.xml for those book elements
whose publisher child elements contain text that equals the application’s single
command-line publisher name argument. Once there is a match, output the title
element’s text followed by the book element’s isbn attribute value. For example,
java SAXSearch Apress should output title = Beginning Groovy and Grails, isbn =
9781430210450, whereas java SAXSearch "Addison Wesley" should output title =
Advanced C++, isbn = 0201548550 followed by title = Effective Java, isbn =
0201310058 on separate lines. Nothing should output if the command-line
publisher name argument does not match a publisher element’s text.

4. Create a DOMSearch application that is the equivalent of Exercise 3’s SAXSearch
application.

5. Create a ParseXMLDoc application that uses a StAX stream-based reader to parse
its single command-line argument, an XML document. After creating this reader,

http://xml.apache.org/xslt

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

747

the application should verify that a START_DOCUMENT infoset item has been
detected, and then enter a loop that reads the next item and uses a switch
statement to output a message corresponding to the item that has been read:
ATTRIBUTE, CDATA, CHARACTERS, COMMENT, DTD, END_ELEMENT,
ENTITY_DECLARATION, ENTITY_REFERENCE, NAMESPACE,
NOTATION_DECLARATION, PROCESSING_INSTRUCTION, SPACE, or
START_ELEMENT. When START_ELEMENT is detected, output this element’s
name and local name, and output the local names and values of all attributes. The
loop ends when the END_DOCUMENT infoset item has been detected. Explicitly
close the stream reader followed by the file reader upon which it is based. Test
this application with Exercise 1’s books.xml file.

6. Modify Listing 10-20’s contacts document by changing <name>John
Doe</name> to <Name>John Doe</Name>. Because you no longer see John
Doe in the output when you run Listing 10-22’s XPathSearch application (you only
see Bob Jones), modify this application’s location path expression so that you see
John Doe followed by Bob Jones.

7. Create a books.xsl stylesheet file, and a MakeHTML application with a similar
structure to the application that processes Listing 10-28’s recipe.xsl stylesheet.
MakeHTML uses books.xsl to convert Exercise 1’s books.xml content to HTML.
When viewed in a web browser, the HTML should result in a web page that’s
similar to the page shown in Figure 10-4.

 Figure 10-4. Exercise 1’s books.xml content is presented via a web page.

CHAPTER 10 PARSING, CREATING, AND TRANSFORMING XML DOCUMENTS

748

Summary
Applications often use XML documents to store and exchange data. Before you can understand these
documents, you need to understand XML. This understanding requires knowledge of the XML
declaration, elements and attributes, character references and CDATA sections, namespaces, and
comments and processing instructions. It also involves learning what it means for a document to be well
formed, and also what it means for a document to be valid in terms of DTDs and XML Schema-based
schemas.

You also need to learn how to process XML documents via JAXP’s SAX, DOM, StAX, XPath, and XSLT
APIs. SAX is used to parse documents via a callback paradigm, DOM is used to parse and create
documents from node trees, StAX is used to parse and create documents in stream-based or event-based
contexts, XPath is used to search node trees in a more succinct manner than that offered by the DOM
API, and XSLT (with help from XPath) is used to transform XML content to XML, HTML, or another
format.

Now that you understand XML and the JAXP APIs for processing XML documents, you’ll put this
knowledge to good use in Chapter 11, where you learn about Java’s support for web services.

C H A P T E R 11

749

Working with Web Services

Web services are popular and widely used, and Java supports their development. This chapter shows you
how to use Java’s web service development features to create your own web services and/or access web
services created by others.

Chapter 11 first introduces you to the topic of web services, emphasizing the SOAP-based and
RESTful categories. This chapter then reveals Java’s support for web service development in terms of its
web service-oriented APIs, annotations, and tools. You also learn about Java’s lightweight HTTP server
for deploying your web services to a simple web server and testing them in this environment.

Armed with a basic understanding of web services and Java’s support for their development, you
next learn how to develop SOAP-based and RESTful web services. For each web service category, you
learn how to create and access your own web service, and then learn how to access an external web
service.

Chapter 11 closes by presenting five advanced web service topics: accessing SOAP-based web
services via the SAAJ API, installing a JAX-WS handler to log the flow of SOAP messages, installing a
customized lightweight HTTP server to perform authentication, sending attachments to clients from a
RESTful web service, and using dispatch clients with providers.

What Are Web Services?
No standard definition for web service has yet been devised because this term means different things to
different people. For example, some people define web service as a web application; others define web
service in terms of a protocol (e.g., SOAP) that’s used by applications to communicate across the Web.
Perhaps the best way to define web service is to first define this term’s parts:

• Web: A huge interconnected network of resources, where a resource is a Uniform
Resource Identifier (URI)-named data source such as a spreadsheet document, a
digitized video, a web page, or even an application. These resources can be
accessed via standard Internet protocols (e.g., HTTP or SMTP).

• Service: A server-based application or software component that exposes a resource
to clients via an exchange of messages according to a message exchange pattern
(MEP) —see http://en.wikipedia.org/wiki/Message_Exchange_Pattern. The
request-response MEP is typical.

Given these definitions, we can define web service as a server-based application/software
component that exposes a Web-based resource to clients via an exchange of messages. These messages
may or may not be based on XML, and can be thought of as invoking web service functions and receiving
invocation results. Figure 11-1 illustrates this message exchange.

http://en.wikipedia.org/wiki/Message_Exchange_Pattern

CHAPTER 11 WORKING WITH WEB SERVICES

750

Figure 11-1. A client exchanges messages with a web service to access a resource.

■ Note Web services are an implementation of Service-Oriented Architecture (SOA) —see
http://www.xml.com/lpt/a/1292. Think of SOA as a set of design principles or a framework for implementing
business logic as reusable services that can be combined in different ways to meet evolving business
requirements. SOA is concerned with specification and is not concerned with implementation.

Web services can be classified as simple or complex. Simple web services don’t interact with other
web services; for example, a standalone server-based application with a single function that returns the
current time for a specified timezone. In contrast, complex web services often interact with other web
services. For example, a generalized social network web service might interact with Twitter and
Facebook web services to obtain and return to its client all Twitter and all Facebook information for a
specific individual. Complex web services are also known as mashups because they mash (combine)
data from multiple web services.

THE RATIONALE FOR WEB SERVICES

Companies have historically relied on client/server systems where client applications communicate with
server-based backend software through server-based middleware software sandwiched between them.
Traditional middleware has been plagued by various problems such as being expensive to obtain and
maintain, being unable to communicate with backend software and client applications across the Internet,
and being inflexible.

Web services are a new form of middleware based on the Web and (typically) XML. They overcome these
and other traditional middleware problems by being based on free and open standards, by their
maintainability, by involving the Web, and by being flexible. For example, unlike traditional remote
procedure call (RPC)-based middleware (see http://en.wikipedia.org/wiki/Remote_procedure_call
for a brief introduction to RPC), which depends upon connections that are tightly coupled (and break easily
when an application is modified, hence leading to maintenance headaches), RESTful web services
(discussed later) rely on loosely coupled connections, which minimize the effects of application changes. A
web service interface (often an XML file) offers an abstraction between client and server software, so that
changing one of these components doesn’t automatically require that the other component be changed.
Maintenance costs are reduced, and reusability increases because the same interface makes it easier to
reuse a web service in other applications.

Another benefit of web services is that they preserve a company’s significant investment in legacy
software. Instead of having to rewrite this software (which was typically written in various languages) from
scratch to meet evolving business requirements (which can be a costly undertaking), this software can be

http://www.xml.com/lpt/a/1292
http://en.wikipedia.org/wiki/Remote_procedure_call

CHAPTER 11 WORKING WITH WEB SERVICES

751

exposed to clients via web services, which can be mashed with other web services to achieve these
requirements in a cost-effective manner.

SOAP-Based Web Services
A SOAP-based web service is a widely used category of web service based on SOAP, an XML language for
defining messages (abstract function invocations or their responses) that can be understood by both
ends of a network connection. An exchange of SOAP messages is called an operation, which corresponds
to a function call and its response, and which is depicted in Figure 11-2.

Figure 11-2. A web service operation consists of input and output messages.

Related operations are often grouped into an interface, which is conceptually similar to a Java
interface. A binding provides concrete details on how an interface is bound to a messaging protocol
(particularly SOAP) to communicate commands, error codes, and other items over the wire.

The combination of a binding and a network address (an IP address and a port) URI is known as an
endpoint, and a collection of endpoints is a web service. Figure 11-3 illustrates this architecture.

CHAPTER 11 WORKING WITH WEB SERVICES

752

Figure 11-3. Interfaces of operations are accessible via their endpoints.

Although SOAP can be used by itself, as demonstrated later in this chapter’s discussion of the SAAJ
API, SOAP is typically used with Web Services Description Language (WSDL, pronounced whiz-dull), an
XML language for defining the operations provided by the service. Unlike WSDL, SOAP, which once
stood for Simple Object Access Protocol, is no longer considered to be an acronym. (SOAP is neither
simple nor does it relate to objects.)

A WSDL document is a formal contract between a SOAP-based web service and its clients, providing
all the details needed to interact with the web service. This document lets you group messages into
operations and operations into interfaces. It also lets you define a binding for each interface as well as
the endpoint address. You will explore WSDL document architecture while learning how to create a
SOAP-based web service later in this chapter.

As well as supporting WSDL documents, SOAP-based web services have the following properties:

CHAPTER 11 WORKING WITH WEB SERVICES

753

• The ability to address complex nonfunctional requirements such as security and
transactions: These requirements are made available via a wide variety of
specifications. To promote interoperability among these specifications, an
industry consortium known as the Web Services Interoperability Organization
(WS-I) was formed. WS-I has established a set of profiles, where a profile is a set of
named web service specifications at specific revision levels, together with a set of
implementation and interoperability guidelines recommending how the
specifications may be used to develop interoperable web services. For example,
the very first profile, WS-I Basic Profile 1.0, consists of the following set of
nonproprietary web service specifications: SOAP 1.1, WSDL 1.1, UDDI 2.0, XML
1.0 (Second Edition), XML Schema Part 1: Structures, XML Schema Part 2:
Datatypes, RFC2246: The Transport Layer Security Protocol Version 1.0, RFC2459:
Internet X.509 Public Key Infrastructure Certificate and CRL Profile, RFC2616:
HyperText Transfer Protocol 1.1, RFC2818: HTTP over TLS, RFC2965: HTTP State
Management Mechanism, and The Secure Sockets Layer Protocol Version 3.0.
Additional profile examples include WS-I Basic Security Profile and Simple SOAP
Binding Profile. For more information on these and other profiles, visit the WS-I
website at http://www.ws-i.org/. Java 7 supports the WS-I Basic Profile.

• The ability to interact with a web service asynchronously: Web service clients
should be able to interact with a web service in a nonblocking, asynchronous
manner. Client-side asynchronous invocation support of web service operations is
provided in Java 7.

SOAP-based web services execute in an environment that includes a service requester (the client), a
service provider, and a service broker. This environment is shown in Figure 11-4.

Figure 11-4. A SOAP-based web service involves a service requester, a service provider, and a service broker

(UDDI, for example).

The service requester, typically a client application (e.g., a web browser), or perhaps another web
service, first locates the service provider in some manner. For example, the service requester might send
a WSDL document to a service broker, which responds with another WSDL document identifying the
service provider’s location. The service requester then communicates with the service provider via SOAP
messages.

Service providers need to be published so that others can locate and use them. In August 2000, an
open industry initiative known as Universal Description, Discovery, and Integration (UDDI) was
launched to let businesses publish service listings, discover each other, and define how the services or

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://www.ws-i.org/

CHAPTER 11 WORKING WITH WEB SERVICES

754

software applications interact over the Internet. However, this platform-independent, XML-based
registry was not widely adopted and currently isn’t used. Many developers found UDDI to be overly
complicated and lacking in functionality, and opted for alternatives such as publishing the information
on a website. For example, Google makes its public web services (e.g., Google Maps) available through
its http://code.google.com/more/ website.

The SOAP messages that flow between service requesters and service providers are often unseen,
being passed as requests and responses between the SOAP libraries of their web service protocol stacks
(see http://en.wikipedia.org/wiki/Web_services_protocol_stack). However, it’s possible to access
these messages directly, as you will discover later in this chapter.

■ Note SOAP-based web services are also known as big web services because they are based on many
specifications, such as the WS-I profiles mentioned earlier.

RESTful Web Services
SOAP-based web services can be delivered over various protocols such as HTTP, SMTP, FTP, and the
more recent Blocks Extensible Exchange Protocol —see http://www.rfc-editor.org/rfc/rfc3080.txt.
Delivering SOAP messages over HTTP can be thought of as a special case of a RESTful web service.

Representational State Transfer (REST) is a software architecture style for distributed hypermedia
systems (systems in which images, text, and other resources are located around networks and are
accessible via hyperlinks). The hypermedia system of interest in a web services context is the World Wide
Web.

■ Note Roy Fielding (one of the principal authors of the Hypertext Transfer Protocol [HTTP] specification versions
1.0 and 1.1, and cofounder of the Apache Software Foundation) introduced and defined REST in his doctoral
dissertation back in 2000. (Fielding conceived REST as the architectural style of the Web, although he wrote it up
long after the Web was a going concern.) REST is widely regarded as the solution to what is considered to be the
growing complexity of SOAP-based web services.

The central part of REST is the URI-identifiable resource. REST identifies resources by their
Multipurpose Internet Mail Extensions (MIME) types (such as text/xml). Also, resources have states that
are captured by their representations. When a client requests a resource from a RESTful web service, the
service sends a MIME-typed representation of the resource to the client.

Clients use HTTP’s POST, GET, PUT, and DELETE verbs to retrieve representations of resources and to
manipulate resources —REST views these verbs as an API and maps them onto the database Create,
Read, Update, and Delete (CRUD) operations (see
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete for an introduction to CRUD). Table
11-1 reveals this mapping.

http://code.google.com/more/
http://en.wikipedia.org/wiki/Web_services_protocol_stack
http://www.rfc-editor.org/rfc/rfc3080.txt
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

CHAPTER 11 WORKING WITH WEB SERVICES

755

Table 11-1. HTTP Verbs and Their CRUD Counterparts

HTTP Verb CRUD Operation

POST Create new resource
based on request
data.

GET Read existing
resource without
producing side
effects (don’t modify
the resource).

PUT Update existing
resource with request
data.

DELETE Delete existing
resource.

Each verb is followed by a URI that identifies the resource. (This immensely simple approach is

fundamentally incompatible with SOAP’s approach of sending encoded messages to a single resource.)
The URI might refer to a collection, such as http://tutortutor.ca/library, or to an element of the
collection, such as http://tutortutor.ca/library/9781430234135 —these URIs are only illustrations.

For POST and PUT requests, XML-based resource data is passed as the body of the request. For
example, you could interpret POST http://tutortutor.ca/library HTTP/ 1.1 (where HTTP/ 1.1
describes the requester’s HTTP version) as a request to insert POST’s XML data into the
http://tutortutor.ca/library collection resource.

For GET and DELETE requests, the data is typically passed as query strings, where a query string is that
portion of a URI beginning with a “?” character. For example, where GET http://tutortutor.ca/library
might return a list of identifiers for all books in a library resource, GET
http://tutortutor.ca/library?isbn=9781430234135 would probably return a representation of the book
resource whose query string identifies International Standard Book Number (ISBN) 9781430234135.

■ Note For a complete description of the mappings between HTTP verbs and their CRUD counterparts, check out
the “RESTful Web Service HTTP methods” table in Wikipedia’s “Representational State Transfer” entry
(http://en.wikipedia.org/wiki/Representational_State_Transfer).

As well as relying on HTTP verbs and MIME types when making requests, REST relies on HTTP’s
standard response codes, such as 404 (requested resource not found) and 200 (resource operation
successful), along with MIME types (when resource representations are being retrieved) for obtaining
responses.

http://tutortutor.ca/library
http://tutortutor.ca/library/9781430234135
http://tutortutor.ca/library
http://tutortutor.ca/library
http://tutortutor.ca/library
http://tutortutor.ca/library?isbn=9781430234135
http://en.wikipedia.org/wiki/Representational_State_Transfer

CHAPTER 11 WORKING WITH WEB SERVICES

756

■ Tip If you are wondering about whether to develop a web service using SOAP or REST, check out “RESTful Web
Services vs. “Big” Web Services: Making the Right Architectural Decision”
(http://www.jopera.org/files/www2008-restws-pautasso-zimmermann-leymann.pdf).

Java and Web Services
Prior to Java 6, Java-based web services were developed exclusively with the Java EE SDK. Although Java
EE is the preferred approach for developing web services from a production perspective, because Java
EE-based servers provide a very high degree of scalability, a security infrastructure, monitoring facilities,
and so on, the repeated deployment of a web service to a Java EE container is time consuming and slows
down development.

Java 6 simplified and accelerated web services development by incorporating APIs, annotations,
tools, and a lightweight HTTP server (for deploying your web services to a simple web server and testing
them in this environment) into its core. Java 7 also supports these components.

ADDING WEB SERVICES SUPPORT TO CORE JAVA CONTROVERSY

Many people have argued that Sun Microsystems should never have added support for web services to
Java 6. One criticism is that JAX-WS (the main web services API) encourages a bottom-up approach to
building a web service —develop a Java class first and then develop the WSDL contract. In contrast, those
who prefer a top-down approach believe that creating the WSDL and schemas first provides the best
chance for interoperability (especially when technologies and platforms at both ends of the connection are
different), because doing so encourages an interface-based design approach that provides maximum
reuse and interoperability.

Davanum Srinivas states two additional criticisms in his “Why bundling JAX-WS in Java6 was a bad idea!”
blog post (http://blogs.cocoondev.org/dims/archives/004717.html). First, he points out the need to
rely on the Java Endorsed Standards Override Mechanism (see
http://download.oracle.com/javase/6/docs/technotes/guides/standards/) to use a subsequent
version of JAX-WS (with its new features and/or bug fixes). For example, Java 6 shipped with JAX-WS 2.0.
To use its JAX-WS 2.1 successor, you would have to use the Java Endorsed Standards Override
Mechanism as described in Vivek Pandey’s “Webservices in JDK 6” blog post
(http://weblogs.java.net/blog/vivekp/archive/2006/12/webservices_in.html). Srinivas’s second
complaint is that Java 6’s web services implementation doesn’t support WS-I profiles such as WS-
Security.

Arun Gupta, a member of the Sun Microsystems team that integrated web services support into Java 6,
counters these criticisms in his “Web services native support in Java6” blog post
(http://blogs.oracle.com/arungupta/entry/web_services_native_support_in).

http://www.jopera.org/files/www2008-restws-pautasso-zimmermann-leymann.pdf
http://blogs.cocoondev.org/dims/archives/004717.html
http://download.oracle.com/javase/6/docs/technotes/guides/standards/
http://weblogs.java.net/blog/vivekp/archive/2006/12/webservices_in.html
http://blogs.oracle.com/arungupta/entry/web_services_native_support_in

CHAPTER 11 WORKING WITH WEB SERVICES

757

Web Service APIs
Java provides several APIs that support web services. In addition to the various JAXP APIs that I
discussed in Chapter 10 (and which are also used apart from web services), Java provides the JAX-WS,
JAXB, and SAAJ APIs:

• Java API for XML Web Services (JAX-WS): The main API for building web services
and clients (in Java) that communicate via XML. JAX-WS replaces the older Java
API for Remote Procedure Call Web Services (JAX-RPC) API, and is assigned
package javax.xml.ws and various subpackages. Java 7 supports JAX-WS 2.2.4.

• Java Architecture for XML Binding (JAXB): The API for mapping XML Schema-
based data types to Java objects and vice versa —see Chapter 10 to learn about
XML Schema. JAX-WS delegates data-binding tasks to JAXB. This API is assigned
package javax.xml.bind and various subpackages. Java 7 supports JAXB 2.2.4.

• Soap with Attachments API for Java (SAAJ): The API for creating, sending, and
receiving SOAP messages with/without attachments. According to Jitendra
Kotamraju’s “No SAAJ RI dependency in JAX-WS RI” blog post at
http://weblogs.java.net/blog/jitu/archive/2007/09/no_saaj_ri_depe_1.html,
JAX-WS’s dependency on SAAJ for SOAP messages was removed in the reference
implementation of JAX-WS 2.1.3 (known as Metro, see http://jax-ws.java.net/).
This API is assigned the javax.xml.soap package. Java 7 supports SAAJ 1.3.

I will explore JAX-WS and SAAJ in this chapter, but (for brevity) won’t be exploring JAXB. If you want
a detailed tutorial on this API, I recommend that you check out the extensive JAXB tutorial located at
http://jaxb.java.net/tutorial/.

Web Service Annotations
Java 6 introduced several web service annotation types that facilitate web service development, by
letting you describe web services declaratively via metadata —see Chapter 3 for an introduction to
annotations. You can still develop web services without these annotation types, but you’ll soon
appreciate their convenience if you decide not to use them.

Most web service annotation types are either part of the Web Services MetaData API (see
http://jcp.org/en/jsr/detail?id=181), which is assigned packages javax.jws and javax.jws.soap, or
belong to the javax.xml.ws package. The javax.jws package provides the following annotation types:

• HandlerChain associates the web service with an externally defined handler chain.
I’ll discuss handler chains from the client perspective later in this chapter.

• Oneway indicates that a given @WebMethod annotation has only an input message
and no output message.

• WebMethod customizes a method that is exposed as a web service operation.

• WebParam customizes the mapping of an individual parameter to a WSDL message
element’s part element.

• WebResult customizes the mapping of the return value to a WSDL message
element’s part element.

http://weblogs.java.net/blog/jitu/archive/2007/09/no_saaj_ri_depe_1.html
http://jax-ws.java.net/
http://jaxb.java.net/tutorial/
http://jcp.org/en/jsr/detail?id=181

CHAPTER 11 WORKING WITH WEB SERVICES

758

• WebService marks a Java class as implementing a web service, or a Java interface as
defining a service endpoint interface.

The following annotation types (three of which are deprecated in favor of using the HandlerChain
annotation type) belong to the javax.jws.soap package:

• InitParam describes an initialization parameter (a name/value pair passed to the
handler during initialization). This annotation type is deprecated.

• SOAPBinding specifies the mapping of the web service onto the SOAP protocol.

• SOAPMessageHandler specifies a single SOAP message handler that runs before and
after the web service’s business methods. This handler is called in response to
SOAP messages targeting the service. This annotation type is deprecated.

• SOAPMessageHandlers specifies a list of SOAP protocol handlers that run before and
after the web service’s business methods. These handlers are called in response to
SOAP messages targeting the service. This annotation type is deprecated.

Finally, javax.xml.ws’s most important annotation types from a RESTful webservice perspective are
WebServiceProvider and Binding. I will discuss these annotation types later in this chapter.

Web Service Tools
Java provides four command-line-based tools that facilitate web service development. Two of these tools
are used to convert between XML Schema-based schemas (see Chapter 10) and Java classes, and the
other pair of tools is used in the context of WSDL documents:

• schemagen: WSDL documents use XML Schema data types to describe web service
function return and parameter types. This tool generates a schema (often stored in
a file with a .xsd extension) from Java classes —one schema file is created for each
referenced namespace. After the schema has been created, XML instance
documents (XML documents that adhere to their schemas) can be converted to
and from Java objects via JAXB. The classes contain all the information needed by
JAXB to parse the XML for marshaling (converting Java objects to XML) and
unmarshaling (converting XML to Java objects) —the application doesn’t perform
XML parsing.

• wsgen: This tool reads a compiled web service endpoint interface and generates
JAX-WS portable artifacts for web service deployment and invocation. It can
alternatively generate a WSDL file and corresponding XML Schema document
(when its -wsdl option is specified). This tool isn’t required when publishing a web
service via Endpoint.publish(), which automatically generates the artifacts and
WSDL/schema. You’ll learn about Endpoint.publish() later in this chapter.

• wsimport: This tool generates client-support Java classes (artifacts) from a given
WSDL document. These classes facilitate writing a client against the service.

• xjc: This tool generates Java classes from a schema. The generated classes contain
properties mapped to the XML elements and attributes defined in the schema.

For brevity, I demonstrate only wsimport in this chapter. For demonstrations of schemagen and xjc,
check out “Using JAXB schemagen tooling to generate an XML schema file from a Java class”
(http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.expr

CHAPTER 11 WORKING WITH WEB SERVICES

759

ess.doc/info/exp/ae/twbs_jaxbjava2schema.html) and “Java Architecture for XML Binding (JAXB)”
(http://www.oracle.com/technetwork/articles/javase/index-140168.html), respectively.

Lightweight HTTP Server
The Java 7 reference implementation includes a lightweight HTTP server for deploying and testing web
services. The server implementation supports the HTTP and HTTPS protocols, and its associated API can
be used to create a customized web server to enhance your web service testing or for other purposes.

The server’s API is not a formal part of Java, which means that it’s not guaranteed to be part of
nonreference Java implementations. As a result, the lightweight HTTP server API is stored in the
following packages instead of being distributed in packages such as java.net.httpserver and
java.net.httpserver.spi:

• com.sun.net.httpserver: This package provides a high-level HTTP server API for
building embedded HTTP servers.

• com.sun.net.httpserver.spi: This package provides a pluggable service provider
API for installing HTTP server replacement implementations.

The com.sun.net.httpserver package contains an HttpHandler interface, which you must
implement to handle HTTP request-response exchanges when creating your own HTTP server. This
package also contains seventeen classes; the four most important classes are described in Table 11-2.

Table 11-2. Important Classes in com.sun.net.httpserver

Class Description

HttpServer Implements a simple HTTP server bound to an IP address/port
number, and listens for incoming TCP connections from clients.
One or more associated HttpHandlers process requests and create
responses.

HttpsServer An HttpServer subclass that provides support for HTTPS. It must be
associated with an HttpsConfigurator object to configure the
HTTPS parameters for each incoming Secure Sockets Layer (SSL)
connection.

HttpContext Describes a mapping between a root URI path and an HttpHandler
implementation that is invoked to handle those requests targeting
the path.

HttpExchange Encapsulates an HTTP request and its response. An instance of this
class is passed to HttpHandler’s void handle(HttpExchange
exchange) method to handle the request and generate a response.

Implementing your own lightweight HTTP server consists of three tasks:

1. Create the server. The abstract HttpServer class provides an HttpServer
create(InetSocketAddress addr, int backlog) class method for creating a server
that handles the HTTP protocol. This method’s addr argument specifies a
java.net.InetSocketAddress object containing an IP address and port number

http://www.oracle.com/technetwork/articles/javase/index-140168.html

CHAPTER 11 WORKING WITH WEB SERVICES

760

for the server’s listening socket. The backlog argument specifies the maximum
number of TCP connections that can be queued while waiting for acceptance
by the server; a value less than or equal to zero causes a system default value to
be used. Alternatively, you can pass null to addr or invoke HttpServer’s
HttpServer create() class method to create a server not bound to an
address/port. If you choose this alternative, you will need to invoke
HttpServer’s void bind(InetSocketAddress addr, int backlog) method before
you can use the server.

2. Create a context. After creating the server, you need to create at least one
context (an instance of a subclass of the abstract HttpContext class) that maps
a root URI path to an implementation of HTTPHandler. Contexts help you
organize the applications run by the server (via HTTP handlers). (The
HttpServer Java documentation shows how incoming request URIs are
mapped to HttpContext paths.) You create a context by invoking HttpServer’s
HttpContext createContext(String path, HttpHandler handler) method, where
path specifies the root URI path, and handler specifies the HttpHandler
implementation that handles all requests that target this path. If you prefer,
you can invoke HttpContext createContext(String path) without specifying an
initial handler. You would later specify the handler by calling HttpContext’s
void setHandler(HttpHandler h) method.

3. Start the server. After you have created the server and at least one context
(including a suitable handler), the final task is to start the server. Accomplish
this task by calling HttpServer’s void start() method.

I’ve created a minimal HTTP server application that demonstrates all three tasks. This application’s
source code appears in Listing 11-1.

Listing 11-1. A minimal HTTP server application

import java.io.IOException;
import java.io.OutputStream;

import java.net.InetSocketAddress;

import java.util.List;
import java.util.Map;
import java.util.Set;

import com.sun.net.httpserver.Headers;
import com.sun.net.httpserver.HttpExchange;
import com.sun.net.httpserver.HttpHandler;
import com.sun.net.httpserver.HttpServer;

class MinimalHTTPServer
{
 public static void main(String[] args) throws IOException
 {
 HttpServer server = HttpServer.create(new InetSocketAddress(8000), 0);
 server.createContext("/echo", new Handler());
 server.start();

CHAPTER 11 WORKING WITH WEB SERVICES

761

 }
}
class Handler implements HttpHandler
{
 @Override
 public void handle(HttpExchange xchg) throws IOException
 {
 Headers headers = xchg.getRequestHeaders();
 Set<Map.Entry<String, List<String>>> entries = headers.entrySet();
 StringBuffer response = new StringBuffer();
 for (Map.Entry<String, List<String>> entry: entries)
 response.append(entry.toString()+"\n");
 xchg.sendResponseHeaders(200, response.length());
 OutputStream os = xchg.getResponseBody();
 os.write(response.toString().getBytes());
 os.close();
 }
}

The handler demonstrates the following HttpExchange abstract methods:

• Headers getRequestHeaders() returns an immutable map of an HTTP request’s
headers.

• void sendResponseHeaders(int rCode, long responseLength) begins to send a
response back to the client using the current set of response headers and rCode’s
numeric code; 200 indicates success.

• OutputStream getResponseBody() returns an output stream to which the
response’s body is output. This method must be called after calling
sendResponseHeaders().

Collectively, these methods are used to echo an incoming request’s headers back to the client.
Figure 11-5 shows these headers after is sent to the server. Don’t forget that placing any path items
before echo results in a 404 Not Found page.

Figure 11-5. Echoing an incoming request’s headers back to the client.

CHAPTER 11 WORKING WITH WEB SERVICES

762

Before invoking start(), you can specify a java.util.concurrent.Executor instance (see Chapter 6)
that handles all HTTP requests. This task is accomplished by calling HttpServer’s void
setExecutor(Executor executor) method. You can also call Executor getExecutor() to return the
current executor (the return value is null when no executor has been set). If you do not call
setExecutor() before starting the server, or if you pass null to this method, a default implementation
based on the thread created by start() is used.

You can stop a started server by invoking HttpServer’s void stop(int delay) method. This method
closes the listening socket and prevents any queued exchanges from being processed. It then blocks
until all current exchange handlers have finished or delay seconds have elapsed (whichever comes first).
An instance of the java.lang.IllegalArgumentException class is thrown when delay is less than zero.
Continuing, all open TCP connections are closed, and the thread created by the start() method
finishes. A stopped HttpServer cannot be restarted.

Most of this chapter’s examples rely on the default lightweight HTTP server that’s created whenever
you call one of javax.xml.ws.EndPoint class’s publish() methods. However, I’ll also show you how to
create and install a custom lightweight HTTP server to perform authentication later in this chapter.

Working with SOAP-Based Web Services
JAX-WS supports SOAP-based web services. This section first shows you how to create and access your
own SOAP-based temperature-conversion web service, publish this web service locally via the default
lightweight HTTP server, and access the service via a simple client. It then shows you how to access the
Sloan Digital Sky Survey’s SOAP-based image cutout web service to obtain astronomy images.

Creating and Accessing a Temperature-Conversion Web Service
The temperature-conversion web service, which I’ve named TempVerter, consists of a pair of functions
for converting degrees Fahrenheit to degrees Celsius and vice versa. Although this example could be
architected as a single Java class, I’ve chosen to follow best practices by architecting it as a Java interface
and a Java class. Listing 11-2 presents the web service’s TempVerter interface.

Listing 11-2. TempVerter’s Service Endpoint Interface

package ca.tutortutor.tv;

import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService
public interface TempVerter
{
 @WebMethod double c2f(double degrees);
 @WebMethod double f2c(double degrees);
}

TempVerter describes a Service Endpoint Interface (SEI), which is a Java interface that exposes a web
service interface’s operations in terms of abstract Java methods. Clients communicate with SOAP-based
web services via their SEIs.

TempVerter is declared to be an SEI via the @WebService annotation. When a Java interface or class is
annotated @WebService, all public methods whose parameters, return values, and declared exceptions
follow the rules defined in Section 5 of the JAX-RPC 1.1 specification

CHAPTER 11 WORKING WITH WEB SERVICES

763

(http://download.oracle.com/otndocs/jcp/jax_rpc-1_1-mrel-oth-JSpec/) describe web service
operations. Because only public methods can be declared in interfaces, the public reserved word isn’t
necessary when declaring c2f() and f2c(). These methods are implicitly public.

Each of c2f() and f2c() is also annotated @WebMethod. Although @WebMethod is not essential in this
example, its presence reinforces the fact that the annotated method exposes a web service operation.

Listing 11-3 presents the web service’s TempVerterImpl class.

Listing 11-3. TempVerter’s Service Implementation Bean

package ca.tutortutor.tv;

import javax.jws.WebService;

@WebService(endpointInterface = "ca.tutortutor.tv.TempVerter")
public class TempVerterImpl implements TempVerter
{
 public double c2f(double degrees)
 {
 return degrees*9.0/5.0+32;
 }
 public double f2c(double degrees)
 {
 return (degrees-32)*5.0/9.0;
 }
}

TempVerterImpl describes a Service Implementation Bean (SIB), which provides an implementation
of the SEI. This class is declared to be a SIB via the @WebService(endpointInterface =
"ca.tutortutor.tv.TempVerter") annotation. The endpointInterface element connects this SIB to its
SEI, and is necessary to avoid undefined port type errors when running the client application presented
later.

The implements TempVerter clause isn’t absolutely necessary. If this clause is not present, the
TempVerter interface is ignored (and is redundant). However, it’s a good idea to keep implements
TempVerter so the compiler can verify that the SEI’s methods have been implemented in the SIB.

The SIB’s method headers aren’t annotated @WebMethod because this annotation is typically used in
the context of the SEI. However, if you were to add a public method (which conforms to the rules in
Section 5 of the JAX-RPC 1.1 specification) to the SIB, and if this method doesn’t expose a web service
operation, you would annotate the method header @WebMethod(exclude = true). By assigning true to
@WebMethod’s exclude element, you prevent that method from being associated with an operation.

This web service is ready to be published so that it can be accessed from clients. Listing 11-4
presents a TempVerterPublisher application that accomplishes this task in the context of the default
lightweight HTTP server.

Listing 11-4. Publishing TempVerter

import javax.xml.ws.Endpoint;

import ca.tutortutor.tv.TempVerterImpl;

class TempVerterPublisher
{
 public static void main(String[] args)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://download.oracle.com/otndocs/jcp/jax_rpc-1_1-mrel-oth-JSpec/

CHAPTER 11 WORKING WITH WEB SERVICES

764

 {
 Endpoint.publish("http://localhost:9901/TempVerter",
 new TempVerterImpl());
 }
}

Publishing the web service involves making a single call to the EndPoint class’s Endpoint
publish(String address, Object implementor) class method. The address parameter identifies the URI
assigned to the web service. I’ve chosen to publish this web service on the local host by specifying
localhost (equivalent to IP address 127.0.0.1) and port number 9901 (which is most likely available).
Also, I’ve arbitrarily choosen /TempVerter as the publication path. The implementor parameter identifies
an instance of TempVerter’s SIB.

The publish() method creates and publishes an endpoint for the specified implementor object at the
given address, and uses the implementor’s annotations to create WSDL and XML Schema documents. It
causes the necessary server infrastructure to be created and configured by the JAX-WS implementation
based on some default configuration. Furthermore, this method causes the application to run
indefinitely. (On Windows machines, press the Ctrl and C keys simultaneously to terminate the
application.)

Assuming that the current directory contains TempVerterPublisher.java and a ca subdirectory
(containing a tutortutor subdirectory, containing a tv subdirectory, containing TempVerter.java and
TempVerterImpl.java), execute javac TempVerterPublisher.java to compile this source file along with
Listings 11-2 and 11-3.

■ Tip The javac compiler tool provides a -d option that you can use to specify the directory where you want to
place generated classfiles. That way, you don’t mix source files with classfiles.

If the source code compiles successfully, execute java TempVerterPublisher to run this application.
You should see no messages and the application should not return to the command prompt.

You can use a web browser to test this web service and access its WSDL document. Start your
favorite web browser and enter http://localhost:9901/TempVerter in its address bar. Figure 11-6 shows
the resulting web page in the Mozilla Firefox web browser.

CHAPTER 11 WORKING WITH WEB SERVICES

765

Figure 11-6. TempVerter’s web page provides detailed information on the published web service.

Figure 11-6 presents the web service endpoint’s qualified service and port names. (Notice that the
package name has been inverted —tv.tutortutor.ca instead of ca.tutortutor.tv). A client uses these
names to access the service.

Figure 11-6 also presents the address URI of the web service, the location of the web service’s WSDL
document (the web service URI suffixed by the ?wsdl query string), and the package-qualified name of
the web service implementation class. The WSDL document’s location is presented as a link, which you
can click to view this document —see Listing 11-5.

Listing 11-5. TempVerter’s WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace="http://tv.tutortutor.ca/" name="TempVerterImplService">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://tv.tutortutor.ca/"
schemaLocation="http://localhost:9901/TempVerter?xsd=1"/>
 </xsd:schema>
 </types>
 <message name="c2f">
 <part name="parameters" element="tns:c2f"/>
 </message>
 <message name="c2fResponse">
 <part name="parameters" element="tns:c2fResponse"/>
 </message>
 <message name="f2c">
 <part name="parameters" element="tns:f2c"/>

http://tv.tutortutor.ca/
http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

766

 </message>
 <message name="f2cResponse">
 <part name="parameters" element="tns:f2cResponse"/>
 </message>
 <portType name="TempVerter">
 <operation name="c2f">
 <input wsam:Action="http://tv.tutortutor.ca/TempVerter/c2fRequest"
message="tns:c2f"/>
 <output wsam:Action="http://tv.tutortutor.ca/TempVerter/c2fResponse"
message="tns:c2fResponse"/>
 </operation>
 <operation name="f2c">
 <input wsam:Action="http://tv.tutortutor.ca/TempVerter/f2cRequest"
message="tns:f2c"/>
 <output wsam:Action="http://tv.tutortutor.ca/TempVerter/f2cResponse"
message="tns:f2cResponse"/>
 </operation>
 </portType>
 <binding name="TempVerterImplPortBinding" type="tns:TempVerter">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="c2f">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="f2c">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="TempVerterImplService">
 <port name="TempVerterImplPort" binding="tns:TempVerterImplPortBinding">
 <soap:address location="http://localhost:9901/TempVerter"/>
 </port>
 </service>
</definitions>

A WSDL document is an XML document with a definitions root element, which makes a WSDL
document nothing more than a set of definitions. The targetNamespace attribute creates a namespace for
all user-defined elements in the WSDL document (such as the c2f element defined via the message
element with this name). This namespace is used to distinguish between the user-defined elements of
the current WSDL document and user-defined elements of imported WSDL documents, which are
identified via WSDL’s import element. In a similar fashion, the targetNamespace attribute that appears on

http://tv.tutortutor.ca/TempVerter/c2fRequest
http://tv.tutortutor.ca/TempVerter/c2fResponse
http://tv.tutortutor.ca/TempVerter/f2cRequest
http://tv.tutortutor.ca/TempVerter/f2cResponse
http://schemas.xmlsoap.org/soap/http

CHAPTER 11 WORKING WITH WEB SERVICES

767

an XML Schema-based file’s schema element creates a namespace for its user-defined simple type
elements, attribute elements, and complex type elements.

The name attribute identifies the web service and is used only to document the service.

■ Note The generated <definitions> tag is incomplete. A complete tag would include the default namespace,
and namespaces for the soap, tns, wsam, and xsd prefixes, as follows: <definitions
name="TempVerterImplService" targetNamespace="http://tv.tutortutor.ca/"

xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://tv.tutortutor.ca/"

xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">. It appears that JAX-WS makes assumptions.

Nested within definitions are types, message, portType, binding, and service elements:

• types presents user-defined data types (used in the context of message elements)
under a data type system. Although any type definition language can be used,
XML Schema is mandated by the WS-I in Basic Profile 1.0. types can contain zero
or more schema elements. This example has a single schema element, which
imports an external schema. The types element is optional. It is not present when
the service uses only XML Schema builtin simple types, such as strings and
integers.

• message defines a one-way request or response message (conceptually a function
invocation or an invocation response) that may consist of one or more parts
(conceptually equivalent to function parameters or return values). Each part is
described by a part element whose name attribute identifies a parameter/return
value element. The element attribute identifies another element (defined
elsewhere) whose value is passed to this parameter or which provides the
response value. Zero or more part elements, and zero or more message elements
may be specified.

• portType describes a web service interface via its operations. Each operation
element contains input and/or output elements based on the MEP. Listing 11-5
includes both elements. (A fault element for communicating error information
can be specified when there is an output element.) The wsam:Action attribute is
used with message routing in the context of WS-Addressing —see
http://en.wikipedia.org/wiki/WS-Addressing. The message attribute identifies
the message element that describes the message via its name attribute (and also
provides the part elements describing parameters and return value). operation
elements are optional; at least one portType element must be specified.

http://tv.tutortutor.ca/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://tv.tutortutor.ca/
http://www.w3.org/2007/05/addressing/metadata
http://www.w3.org/2001/XMLSchema
http://en.wikipedia.org/wiki/WS-Addressing

CHAPTER 11 WORKING WITH WEB SERVICES

768

• binding provides details on how a portType operation (such as c2f or f2c) is
transmitted over the wire. This element’s type attribute identifies the portType
element defined earlier in the document. The nested soap:binding element
indicates that a SOAP 1.1 binding is being used. Its transport attribute’s URI value
identifies HTTP as the transport protocol (SOAP over HTTP), and its style
attribute identifies document as the default service style. Each operation element
consists of soap:operation, input, and output elements. The soap:operation
element is a SOAP extension element that provides extra binding information at
the operation level. Servers (such as firewalls) can use the SOAPAction attribute’s
URI value (when present) to filter SOAP request messages sent via HTTP. The
input and output elements contain soap:body elements whose use attributes
indicate how message parts appear inside of SOAP’s Body element —I present an
overview of SOAP later in this chapter. The literal value means that these parts
appear literally instead of being encoded. Multiple binding elements can be
specified.

• service defines a collection of endpoints in terms of nested port elements that
expose bindings —a port element’s binding attribute identifies a binding element.
Furthermore, the port element identifies the service’s address; because we are
dealing with a SOAP service, port contains a soap:address element whose
location attribute specifies this address.

The types, message, and portType elements are abstract definitions of the web service’s interface.
They form the interface between the web service and an application. The binding and service elements
provide concrete details on how this interface is mapped to messages transmitted over the wire. JAX-WS
handles these details on behalf of the application.

STYLE AND USE

The soap:binding element’s style attribute affects how a SOAP message’s Body element is built by
indicating whether the operation is document-oriented (messages contain documents) —the value is
document —or RPC-oriented (messages contain parameters and return values) —the value is rpc. I
discuss SOAP message architecture later in this chapter.

The soap:body element’s use attribute indicates whether the WSDL document’s message element’s part
child elements define the concrete schema of the message —the value is literal —or are encoded via
certain encoding rules —the value is encoded.

When use is set to literal, each part element references a concrete schema definition using either the
element or type attribute. For element, the referenced element will appear directly under the SOAP
message’s Body element (for document style bindings) or under an accessor element named after the
message part (for rpc style bindings). For type, the referenced type becomes the schema type of the
enclosing element (Body for document style or part accessor element for rpc style).

When use is set to encoded, each part element references an abstract type using the type attribute.
These abstract types are used to produce a concrete message by applying an encoding specified by the
SOAP message’s encodingStyle attribute.

CHAPTER 11 WORKING WITH WEB SERVICES

769

For more information on the style and use attributes, check out “Which style of WSDL should I use?”
(http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/).

The types element’s schema element identifies the location of the schema where each operation’s

return and parameter types are stored. The xsd:import tag’s schemaLocation attribute identifies this
location as http://localhost:9901/TempVerter?xsd=1. When you point your browser to this location,
you observe Listing 11-6.

Listing 11-6. The WSDL document’s referenced XML Schema document

<xs:schema version="1.0" targetNamespace="http://tv.tutortutor.ca/">
 <xs:element name="c2f" type="tns:c2f"/>
 <xs:element name="c2fResponse" type="tns:c2fResponse"/>
 <xs:element name="f2c" type="tns:f2c"/>
 <xs:element name="f2cResponse" type="tns:f2cResponse"/>
 <xs:complexType name="f2c">
 <xs:sequence>
 <xs:element name="arg0" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="f2cResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="c2f">
 <xs:sequence>
 <xs:element name="arg0" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="c2fResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

You might want to refer to Chapter 10 for a refresher on how an XML Schema document is formed.
When you’re finished, check out Listing 11-7’s TempVerterClient.java source code, which shows you
how a client accesses the TempVerter web service.

Listing 11-7. A client for accessing the TempVerter web service

import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

import ca.tutortutor.tv.TempVerter;

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

770

class TempVerterClient
{
 public static void main(String[] args) throws Exception
 {
 URL url = new URL("http://localhost:9901/TempVerter?wsdl");
 QName qname = new QName("http://tv.tutortutor.ca/",
 "TempVerterImplService");
 Service service = Service.create(url, qname);
 qname = new QName("http://tv.tutortutor.ca/", "TempVerterImplPort");
 TempVerter tv = service.getPort(qname, TempVerter.class);
// TempVerter tv = service.getPort(TempVerter.class);
 System.out.println(tv.c2f(37.0));
 System.out.println(tv.f2c(212.0));
 }
}

TempVerterClient first creates a java.net.URL instance that identifies the web service’s WSDL file. It
then creates a javax.xml.namespace.QName instance that identifies the endpoint’s qualified service name
(see Figure 11-6). These instances are passed to the javax.xml.ws.Service class’s Service create(URL
wsdlDocumentLocation, QName serviceName) class method to return a Service instance that provides a
client view of a web service.

Service’s T getPort(QName portName, Class<T> serviceEndpointInterface) method is then called
on the Service instance to return a proxy for communicating with the web service via its endpoint. The
qualified name passed to portName identifies the endpoint’s qualified port name (see Figure 11-6), which
identifies the web service interface whose operations are to be accessed —there is only one interface in
this example. The java.lang.Class instance passed to serviceEndpointInterface identifies the
TempVerter SEI. This method returns a proxy object whose class implements TempVerter, or throws
javax.xml.ws.WebServiceException when something goes wrong (such as when not specifying
endpointInterface in the TempVerterImpl SIB’s @WebService annotation, and calling Service’s T
getPort(Class<T> serviceEndpointInterface) method, which uses endpointInterface to access the
SEI).

Assuming that getPort() succeeds, the returned object is used to invoke the c2f() and f2c()
methods with arguments representing body temperature in degrees Celsius and the boiling point of
water in degrees Fahrenheit, respectively.

Compile this class (via javac TempVerterClient.java, which assumes that the current directory
contains this source file and a ca subdirectory, containing a tutortutor subdirectory, containing a tv
subdirectory, containing Listing 11-2’s TempVerter.java source file). If compilation succeeds, execute
java TempVerterClient to run this application, which should generate the following output:

98.6
100.0

Because the WSDL document in Listing 11-5 and the XML Schema document in Listing 11-6 contain
enough information to let clients communicate with the web service, you can alternatively use the
wsimport tool to generate client-support code from this document, to facilitate creating the client. In the
context of TempVerter, you would use this tool as follows:

wsimport -keep –p client http://localhost:9901/TempVerter?wsdl

wsimport outputs “parsing WSDL…”, “Generating code…”, and “Compiling code…” messages; and
generates the classfiles that a client needs to access this web service. The -keep option causes wsimport
to save the source code for these classfiles as well, which helps us learn how clients access the web

http://tv.tutortutor.ca/
http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

771

service, and makes it possible to add client-side handlers for intercepting messages (discussed later in
this chapter).

The -p option identifies the package directory in which to store the generated source and/or
classfiles. You can specify any meaningful name (such as client) and wsimport will create a package
directory with this name, and store the package directory structure underneath.

■ Caution If you don’t specify -p and the current directory contains TempVerter’s package directory structure,
Listing 11-2’s TempVerter interface source code (and the classfile) will be overwritten with the contents of a
generated TempVerter.java source file (and classfile).

Along with classfiles, wsimport stores TempVerter.java, TempVerterImplService.java, and other
source files in the client directory. The former source file’s Java interface declares the same methods as
Listing 11-2’s TempVerter SEI interface, but with c2F and f2C method names replacing c2f and f2c, to
adhere to a JAXB naming convention where the first letter of each subsequent word in a method name is
capitalized.

The latter file’s class, which is presented in Listing 11-8, provides a noargument constructor for
instantiating this class, and a getTempVerterImplPort() method that returns an instance of the generated
TempVerter interface; the client executes the web service’s operations on this instance.

Listing 11-8. A cleaned up service implementation class for accessing the TempVerter web service

package client;

import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;
import javax.xml.ws.WebEndpoint;
import javax.xml.ws.WebServiceClient;
import javax.xml.ws.WebServiceException;
import javax.xml.ws.WebServiceFeature;

/**
 * This class was generated by the JAX-WS RI.
 * JAX-WS RI 2.2.4-b01
 * Generated source version: 2.2
 *
 */
@WebServiceClient(name = "TempVerterImplService",
 targetNamespace = "http://tv.tutortutor.ca/",
 wsdlLocation = "http://localhost:9901/TempVerter?wsdl")
public class TempVerterImplService extends Service
{
 private final static URL TEMPVERTERIMPLSERVICE_WSDL_LOCATION;

http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

772

 private final static WebServiceException TEMPVERTERIMPLSERVICE_EXCEPTION;
 private final static QName TEMPVERTERIMPLSERVICE_QNAME =
 new QName("http://tv.tutortutor.ca/", "TempVerterImplService");
 static
 {
 URL url = null;
 WebServiceException e = null;
 try
 {
 url = new URL("http://localhost:9901/TempVerter?wsdl");
 }
 catch (MalformedURLException ex)
 {
 e = new WebServiceException(ex);
 }
 TEMPVERTERIMPLSERVICE_WSDL_LOCATION = url;
 TEMPVERTERIMPLSERVICE_EXCEPTION = e;
 }
 public TempVerterImplService()
 {
 super(__getWsdlLocation(), TEMPVERTERIMPLSERVICE_QNAME);
 }
 public TempVerterImplService(WebServiceFeature... features)
 {
 super(__getWsdlLocation(), TEMPVERTERIMPLSERVICE_QNAME, features);
 }
 public TempVerterImplService(URL wsdlLocation)
 {
 super(wsdlLocation, TEMPVERTERIMPLSERVICE_QNAME);
 }
 public TempVerterImplService(URL wsdlLocation, WebServiceFeature... features)
 {
 super(wsdlLocation, TEMPVERTERIMPLSERVICE_QNAME, features);
 }
 public TempVerterImplService(URL wsdlLocation, QName serviceName)
 {
 super(wsdlLocation, serviceName);
 }
 public TempVerterImplService(URL wsdlLocation, QName serviceName,
 WebServiceFeature... features)
 {
 super(wsdlLocation, serviceName, features);
 }
 /**
 *
 * @return
 * returns TempVerter
 */
 @WebEndpoint(name = "TempVerterImplPort")
 public TempVerter getTempVerterImplPort()
 {
 return super.getPort(new QName("http://tv.tutortutor.ca/",

http://tv.tutortutor.ca/
http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

773

 "TempVerterImplPort"), TempVerter.class);
 }
 /**
 *
 * @param features
 * A list of {@link javax.xml.ws.WebServiceFeature} to configure on the
 * proxy. Supported features not in the <code>features</code> parameter
 * will have their default values.
 * @return
 * returns TempVerter
 */
 @WebEndpoint(name = "TempVerterImplPort")
 public TempVerter getTempVerterImplPort(WebServiceFeature... features)
 {
 return super.getPort(new QName("http://tv.tutortutor.ca/",
 "TempVerterImplPort"), TempVerter.class, features);
 }
 private static URL __getWsdlLocation()
 {
 if (TEMPVERTERIMPLSERVICE_EXCEPTION!= null)
 {
 throw TEMPVERTERIMPLSERVICE_EXCEPTION;
 }
 return TEMPVERTERIMPLSERVICE_WSDL_LOCATION;
 }
}

TempVerterImplService extends the Service class to provide the client view of a web service. There
are two items to note:

• The noargument constructor is equivalent to Listing 11-7’s Service.create()
method call.

• getTempVerterImplPort() is equivalent to Listing 11-7’s getPort() method call.

Listing 11-9 presents the source code to a TempVerterClient class that demonstrates how a client
can use TempVerter and TempVerterImplService to access the web service.

Listing 11-9. A simplified client for accessing the TempVerter web service

import client.TempVerter;
import client.TempVerterImplService;

class TempVerterClient
{
 public static void main(String[] args) throws Exception
 {
 TempVerterImplService tvis = new TempVerterImplService();
 TempVerter tv = tvis.getTempVerterImplPort();
 System.out.println(tv.c2F(37.0));
 System.out.println(tv.f2C(212.0));
 }
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

774

Assuming that the web service is running, and that the current directory contains
TempVerterClient.java along with the client subdirectory, execute javac TempVerterClient.java to
compile this source code. Then execute java TempVerterClient to run this application. If all goes well,
you should observe the following output:

98.6
100.0

Accessing the Image Cutout Web Service
Although you can create and access your own SOAP-based web services, you might want to access
SOAP-based web services created by others. For example, the Sloan Digital Sky Survey
(http://www.sdss.org) makes available astronomical images from its image archive via its Image Cutout
web service.

Image Cutout’s operations are described by its WSDL document at
http://casjobs.sdss.org/ImgCutoutDR5/ImgCutout.asmx?wsdl. For example, this WSDL document
identifies an operation named GetJpeg for returning a JPEG image of an area of the night sky located in
terms of right accension (see http://en.wikipedia.org/wiki/Right_ascension) and declination (see
http://en.wikipedia.org/wiki/Declination) degree values.

Before you can write a Java application that lets you access this web service to obtain (and then
display) arbitrary images, you need to create artifacts (in the form of Java classes) that let this application
interact with the web service. You can generate these artifacts by executing the following wsimport
command line:

wsimport -keep http://casjobs.sdss.org/ImgCutoutDR5/ImgCutout.asmx?wsdl

wsimport creates an org directory within the current directory. org contains an sdss subdirectory,
which contains a skyserver subdirectory, which stores the generated classfiles. Furthermore, skyserver
stores their source files (thanks to the -keep option).

The generated ImgCutout.java source file reveals a noargument ImgCutout constructor along with an
ImgCutoutSoap getImgCutoutSoap() method. Furthermore, ImgCutoutSoap declares a public byte[]
getJpeg(double ra, double dec, double scale, int width, int height, String opt) method that
corresponds to the GetJpeg operation. Your application interacts with Image Cutout via this constructor
and these methods.

 The getJpeg() method’s parameters are described here:

• ra and dec specify the center coordinates of the image in terms of right ascension
and declination values, where each value is expressed in degrees.

• scale specifies a scaling value in terms of arcseconds per pixel. One arcsecond
equals 1/1296000 of a circle.

• width and height identify the dimensions of the returned image.

• opt identifies a sequence of character codes for drawing over the image; for
example, G (draw a grid over the image), L (label the image), and I (invert the
image).

The getJpeg() method returns the image as an array of bytes. It never returns a null reference.
When an error occurs, the method returns an image that presents the error message.

Given this information, you next need to figure out how to invoke getJpeg(). The following steps
accomplish this task:

http://www.sdss.org
http://casjobs.sdss.org/ImgCutoutDR5/ImgCutout.asmx?wsdl
http://en.wikipedia.org/wiki/Right_ascension
http://en.wikipedia.org/wiki/Declination
http://casjobs.sdss.org/ImgCutoutDR5/ImgCutout.asmx?wsdl

CHAPTER 11 WORKING WITH WEB SERVICES

775

1. Import ImgCutout and ImgCutoutSoap from the org.sdss.skyserver package.

2. Instantiate ImgCutout.

3. Invoke getImgCutoutSoap() on the ImgCutout instance.

4. Invoke getJpeg() on the returned ImgCutoutSoap instance.

I’ve created a SkyView application that demonstrates these tasks. This application presents a Swing-
based user interface for entering the values required by getJpeg(), and displays the resulting image.
Listing 11-10 presents this application’s source code.

Listing 11-10. A client for accessing the Image Cutout web service

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.EventQueue;
import java.awt.FlowLayout;
import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.BorderFactory;
import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;

import org.sdss.skyserver.ImgCutout;
import org.sdss.skyserver.ImgCutoutSoap;

class SkyView extends JFrame
{
 final static int IMAGE_WIDTH = 300;
 final static int IMAGE_HEIGHT = 300;
 static ImgCutoutSoap imgcutoutsoap;
 SkyView()
 {
 super("SkyView");
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setContentPane(createContentPane());
 pack();
 setResizable(false);
 setVisible(true);
 }
 JPanel createContentPane()
 {
 JPanel pane = new JPanel(new BorderLayout(10, 10));
 pane.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));

CHAPTER 11 WORKING WITH WEB SERVICES

776

 final JLabel lblImage = new JLabel("", JLabel.CENTER);
 lblImage.setPreferredSize(new Dimension(IMAGE_WIDTH+9,
 IMAGE_HEIGHT+9));
 lblImage.setBorder(BorderFactory.createEtchedBorder());
 pane.add(new JPanel() {{ add(lblImage); }}, BorderLayout.NORTH);
 JPanel form = new JPanel(new GridLayout(4, 1));
 final JLabel lblRA = new JLabel("Right ascension:");
 int width = lblRA.getPreferredSize().width+20;
 int height = lblRA.getPreferredSize().height;
 lblRA.setPreferredSize(new Dimension(width, height));
 lblRA.setDisplayedMnemonic('R');
 final JTextField txtRA = new JTextField(15);
 lblRA.setLabelFor(txtRA);
 form.add(new JPanel()
 {{
 add(lblRA); add(txtRA);
 setLayout(new FlowLayout(FlowLayout.CENTER, 0, 5));
 }});
 final JLabel lblDec = new JLabel("Declination:");
 lblDec.setPreferredSize(new Dimension(width, height));
 lblDec.setDisplayedMnemonic('D');
 final JTextField txtDec = new JTextField(15);
 lblDec.setLabelFor(txtDec);
 form.add(new JPanel()
 {{
 add(lblDec); add(txtDec);
 setLayout(new FlowLayout(FlowLayout.CENTER, 0, 5));
 }});
 final JLabel lblScale = new JLabel("Scale:");
 lblScale.setPreferredSize(new Dimension(width, height));
 lblScale.setDisplayedMnemonic('S');
 final JTextField txtScale = new JTextField(15);
 lblScale.setLabelFor(txtScale);
 form.add(new JPanel()
 {{
 add(lblScale); add(txtScale);
 setLayout(new FlowLayout(FlowLayout.CENTER, 0, 5));
 }});
 final JLabel lblDO = new JLabel("Drawing options:");
 lblDO.setPreferredSize(new Dimension(width, height));
 lblDO.setDisplayedMnemonic('o');
 final JTextField txtDO = new JTextField(15);
 lblDO.setLabelFor(txtDO);
 form.add(new JPanel()
 {{
 add(lblDO); add(txtDO);
 setLayout(new FlowLayout(FlowLayout.CENTER, 0, 5));
 }});

 pane.add(form, BorderLayout.CENTER);
 final JButton btnGP = new JButton("Get Picture");
 ActionListener al;

CHAPTER 11 WORKING WITH WEB SERVICES

777

 al = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent e)
 {
 try
 {
 double ra = Double.parseDouble(txtRA.getText());
 double dec = Double.parseDouble(txtDec.getText());
 double scale = Double.parseDouble(txtScale.getText());
 String dopt = txtDO.getText().trim();
 byte[] image = imgcutoutsoap.getJpeg(ra, dec, scale,
 IMAGE_WIDTH,
 IMAGE_HEIGHT,
 dopt);
 lblImage.setIcon(new ImageIcon(image));
 }
 catch (Exception exc)
 {
 JOptionPane.showMessageDialog(SkyView.this,
 exc.getMessage());
 }
 }
 };
 btnGP.addActionListener(al);
 pane.add(new JPanel() {{ add(btnGP); }}, BorderLayout.SOUTH);
 return pane;
 }
 public static void main(String[] args)
 {
 ImgCutout imgcutout = new ImgCutout();
 imgcutoutsoap = imgcutout.getImgCutoutSoap();
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 new SkyView();
 }
 };
 EventQueue.invokeLater(r);
 }
}

Listing 11-10 is largely concerned with creating SkyView’s user interface. (Chapter 7 explains the
classes and methods that are used in its construction.) Expressions such as new JPanel () {{ add
(lblImage); }} are a convenient shorthand for subclassing javax.swing.JPanel via an anonymous class
(see Chapter 3), creating an instance of the subclass panel, (for this example) adding the specified
component to the panel via its object initializer, and returning the panel instance.

Assuming that the current directory contains SkyView.java and the org subdirectory, invoke javac
SkyView.java to compile this application’s source code. Following compilation, invoke java SkyView to

CHAPTER 11 WORKING WITH WEB SERVICES

778

run the application. Figure 11-7 shows what you will see when you specify the values that are shown in
the figure’s text fields.

Figure 11-7. Viewing an image of New Galatic Catalog (NGC) 5792, a spiral galaxy seen nearly edge-on.

The bright red star is located in the Milky Way galaxy.

■ Note Check out the “Famous Places” page (http://cas.sdss.org/dr6/en/tools/places/) at the Sloan
Digital Sky Survey/SkyServer website (http://cas.sdss.org/) to obtain the right ascension and declination
values for various astronomical images.

http://cas.sdss.org/dr6/en/tools/places/
http://cas.sdss.org/

CHAPTER 11 WORKING WITH WEB SERVICES

779

Working with RESTful Web Services
JAX-WS also supports RESTful web services. This section first shows you how to create and access your
own RESTful library web service, publish this web service locally via the default lightweight HTTP server,
and access the service via a simple client. It then shows you how to access Google’s RESTful Charts web
service to obtain chart images corresponding to entered data values.

■ Note Java EE provides Java API for RESTful Web Services (JAX-RS) to simplify the creation of RESTful web
services via various annotations. For example, @GET is a request method (HTTP verb) designator corresponding to
the similarly named HTTP verb. The Java method annotated with this request method designator processes HTTP
GET requests. Check out Chapter 19 “Building RESTful Web Services with JAX-RS” in the Java EE 6 Tutorial (see
http://download.oracle.com/javaee/6/tutorial/doc/giepu.html) to learn about JAX-RS.

Creating and Accessing a Library Web Service
The library web service, which I’ve named Library, consists of the four HTTP operations that handle
requests to delete a specific book (identified via its ISBN) or all books, get a specific book (identified via
its ISBN) or the ISBNs of all books, insert a new book, or update an existing book. Listing 11-11 presents
the web service’s Library endpoint class.

Listing 11-11. Library’s endpoint class

import java.beans.XMLDecoder;
import java.beans.XMLEncoder;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.StringReader;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

import javax.annotation.Resource;

import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;

http://download.oracle.com/javaee/6/tutorial/doc/giepu.html

CHAPTER 11 WORKING WITH WEB SERVICES

780

import javax.xml.transform.dom.DOMResult;

import javax.xml.transform.stream.StreamSource;

import javax.xml.ws.BindingType;
import javax.xml.ws.Endpoint;
import javax.xml.ws.Provider;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceProvider;

import javax.xml.ws.handler.MessageContext;

import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.http.HTTPException;

import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import javax.xml.xpath.XPathExpressionException;
import javax.xml.xpath.XPathFactory;

import org.w3c.dom.NodeList;

@WebServiceProvider
@ServiceMode(value = javax.xml.ws.Service.Mode.MESSAGE)
@BindingType(value = HTTPBinding.HTTP_BINDING)
class Library implements Provider<Source>
{
 private final static String LIBFILE = "library.ser";
 @Resource
 private WebServiceContext wsContext;
 private Map<String, Book> library;
 Library()
 {
 try
 {
 library = deserialize();
 }
 catch (IOException ioe)
 {
 library = new HashMap<>();
 }
 }
 @Override
 public Source invoke(Source request)
 {
 if (wsContext == null)
 throw new RuntimeException("dependency injection failed on wsContext");
 MessageContext msgContext = wsContext.getMessageContext();
 switch ((String) msgContext.get(MessageContext.HTTP_REQUEST_METHOD))
 {

CHAPTER 11 WORKING WITH WEB SERVICES

781

 case "DELETE": return doDelete(msgContext);
 case "GET" : return doGet(msgContext);
 case "POST" : return doPost(msgContext, request);
 case "PUT" : return doPut(msgContext, request);
 default : throw new HTTPException(405);
 }
 }
 private Source doDelete(MessageContext msgContext)
 {
 try
 {
 String qs = (String) msgContext.get(MessageContext.QUERY_STRING);
 if (qs == null)
 {
 library.clear();
 serialize();
 StringBuilder xml = new StringBuilder("<?xml version=\"1.0\"?>");
 xml.append("<response>all books deleted</response>");
 return new StreamSource(new StringReader(xml.toString()));
 }
 else
 {
 String[] pair = qs.split("=");
 if (!pair[0].equalsIgnoreCase("isbn"))
 throw new HTTPException(400);
 String isbn = pair[1].trim();
 library.remove(isbn);
 serialize();
 StringBuilder xml = new StringBuilder("<?xml version=\"1.0\"?>");
 xml.append("<response>book deleted</response>");
 return new StreamSource(new StringReader(xml.toString()));
 }
 }
 catch (IOException ioe)
 {
 throw new HTTPException(500);
 }
 }
 private Source doGet(MessageContext msgContext)
 {
 String qs = (String) msgContext.get(MessageContext.QUERY_STRING);
 if (qs == null)
 {
 Set<String> keys = library.keySet();
 Iterator<String> iter = keys.iterator();
 StringBuilder xml = new StringBuilder("<?xml version=\"1.0\"?>");
 xml.append("<isbns>");
 while (iter.hasNext())
 xml.append("<isbn>"+iter.next()+"</isbn>");
 xml.append("</isbns>");
 return new StreamSource(new StringReader(xml.toString()));
 }

CHAPTER 11 WORKING WITH WEB SERVICES

782

 else
 {
 String[] pair = qs.split("=");
 if (!pair[0].equalsIgnoreCase("isbn"))
 throw new HTTPException(400);
 String isbn = pair[1].trim();
 Book book = library.get(isbn);
 if (book == null)
 throw new HTTPException(404);
 StringBuilder xml = new StringBuilder("<?xml version=\"1.0\"?>");
 xml.append("<book isbn=\""+book.getISBN()+"\" "+
 "pubyear=\""+book.getPubYear()+"\">");
 xml.append("<title>"+book.getTitle()+"</title>");
 for (Author author: book.getAuthors())
 xml.append("<author>"+author.getName()+"</author>");
 xml.append("<publisher>"+book.getPublisher()+"</publisher>");
 xml.append("</book>");
 return new StreamSource(new StringReader(xml.toString()));
 }
 }
 private Source doPost(MessageContext msgContext, Source source)
 {
 try
 {
 DOMResult dom = new DOMResult();
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.transform(source, dom);
 XPathFactory xpf = XPathFactory.newInstance();
 XPath xp = xpf.newXPath();
 NodeList books = (NodeList) xp.evaluate("/book", dom.getNode(),
 XPathConstants.NODESET);
 String isbn = xp.evaluate("@isbn", books.item(0));
 if (library.containsKey(isbn))
 throw new HTTPException(400);
 String pubYear = xp.evaluate("@pubyear", books.item(0));
 String title = xp.evaluate("title", books.item(0)).trim();
 String publisher = xp.evaluate("publisher", books.item(0)).trim();
 NodeList authors = (NodeList) xp.evaluate("author", books.item(0),
 XPathConstants.NODESET);
 List<Author> auths = new ArrayList<>();
 for (int i = 0; i < authors.getLength(); i++)
 auths.add(new Author(authors.item(i).getFirstChild()
 .getNodeValue().trim()));
 Book book = new Book(isbn, title, publisher, pubYear, auths);
 library.put(isbn, book);
 serialize();
 }
 catch (IOException | TransformerException e)
 {
 throw new HTTPException(500);
 }
 catch (XPathExpressionException xpee)

CHAPTER 11 WORKING WITH WEB SERVICES

783

 {
 throw new HTTPException(400);
 }
 StringBuilder xml = new StringBuilder("<?xml version=\"1.0\"?>");
 xml.append("<response>book inserted</response>");
 return new StreamSource(new StringReader(xml.toString()));
 }
 private Source doPut(MessageContext msgContext, Source source)
 {
 try
 {
 DOMResult dom = new DOMResult();
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.transform(source, dom);
 XPathFactory xpf = XPathFactory.newInstance();
 XPath xp = xpf.newXPath();
 NodeList books = (NodeList) xp.evaluate("/book", dom.getNode(),
 XPathConstants.NODESET);
 String isbn = xp.evaluate("@isbn", books.item(0));
 if (!library.containsKey(isbn))
 throw new HTTPException(400);
 String pubYear = xp.evaluate("@pubyear", books.item(0));
 String title = xp.evaluate("title", books.item(0)).trim();
 String publisher = xp.evaluate("publisher", books.item(0)).trim();
 NodeList authors = (NodeList) xp.evaluate("author", books.item(0),
 XPathConstants.NODESET);
 List<Author> auths = new ArrayList<>();
 for (int i = 0; i < authors.getLength(); i++)
 auths.add(new Author(authors.item(i).getFirstChild()
 .getNodeValue().trim()));
 Book book = new Book(isbn, title, publisher, pubYear, auths);
 library.put(isbn, book);
 serialize();
 }
 catch (IOException | TransformerException e)
 {
 throw new HTTPException(500);
 }
 catch (XPathExpressionException xpee)
 {
 throw new HTTPException(400);
 }
 StringBuilder xml = new StringBuilder("<?xml version=\"1.0\"?>");
 xml.append("<response>book updated</response>");
 return new StreamSource(new StringReader(xml.toString()));
 }
 private Map<String, Book> deserialize() throws IOException
 {
 try (BufferedInputStream bis
 = new BufferedInputStream(new FileInputStream(LIBFILE));
 XMLDecoder xmld = new XMLDecoder(bis))
 {

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 11 WORKING WITH WEB SERVICES

784

 @SuppressWarnings("unchecked")
 Map<String, Book> result = (Map<String, Book>) xmld.readObject();
 return result;
 }
 }
 private void serialize() throws IOException
 {
 try (BufferedOutputStream bos
 = new BufferedOutputStream(new FileOutputStream(LIBFILE));
 XMLEncoder xmle = new XMLEncoder(bos))
 {
 xmle.writeObject(library);
 }
 }
 public static void main(String[] args)
 {
 Endpoint.publish("http://localhost:9902/library", new Library());
 }
}

Following various import statements, Listing 11-11 presents the Library class, which is prefixed with
@WebServiceProvider, @ServiceMode, and @Binding annotations.

@WebServiceProvider specifies that Library is a web service endpoint class implementing the
javax.xml.ws.Provider<T> interface (an alternative to an SEI for services that need to work at the XML
message level) in terms of its T invoke(T request) method. The actual type argument passed to type
parameter T identifies the source of request and reponse data, and is one of
javax.xml.transform.Source, javax.activation.DataSource, or javax.xml.soap.SOAPMessage. For a
RESTful web service provider, you would specify Source or DataSource for T.

■ Note Although you can process SOAP messages directly with a web service provider, it is common to ignore
these messages by working with @WebService —annotated SEIs and SIBs, as previously discussed. Also, you can
work with SOAP messages from an API perspective by using the SAAJ API, which I present later in this chapter.

When a request is made to the RESTful web service, the provider class’s invoke() method is called
with a source of bytes, such as a POST request’s XML document. The invoke() method responds to the
request in some appropriate way, returning a source of bytes in XML format that form the service’s
response. This method throws an instance of the WebServiceException runtime exception class or one of
its descendent classes (e.g., javax.xml.ws.http.HTTPException) when something goes wrong.

■ Note A class annotated with @WebService exposes a separate method for each web service operation. For
example, TempVerter exposes c2f() and f2c() methods for the Celsius-to-Fahrenheit and Fahrenheit-to-Celsius
messages. In contrast, @WebServiceProvider exposes a single invoke() method to handle all operations.

CHAPTER 11 WORKING WITH WEB SERVICES

785

@ServiceMode specifies that Library’s invoke() method receives entire protocol messages (instead of
message payloads) by having its value() element initialized to javax.xml.ws.Service.Mode.MESSAGE.
When this annotation isn’t present, value() defaults to javax.xml.ws.Service.Mode.PAYLOAD.

■ Note @ServiceMode isn’t necessary in the context of a RESTful web service, where protocol messages and
payloads are identical —I’ve included this annotation in Listing 11-11 to bring it to your attention. However,
@ServiceMode would be necessary when working with SOAP messages (by implementing
Provider<SOAPMessage>) and wanting to process the entire message instead of just the payload. You’ll learn
about SOAP message architecture later in this chapter when I introduce the SAAJ API.

@BindingType specifies that Library’s invoke() method receives arbitrary XML messages over HTTP
by having its value() element initialized to HTTPBinding.HTTP_BINDING —the default binding is SOAP 1.1
over HTTP. Unlike @ServiceMode, @BindingType must be specified with this initialization; otherwise,
you’ll receive a runtime exception when a RESTful client sends a nonSOAP request message to this web
service provider.

Library first declares a LIBFILE constant that identifies the name of the file that stores information
about the books in the library. I could have used JDBC to create and access a library database, but
decided to use a file to keep Listing 11-11 from becoming longer.

This string constant is initialized to library.ser, where ser indicates that the file stores serialized
data. The stored data is an XML encoding of a map that contains Book and Author instances —I’ll present
the map, discuss its encoding/decoding, and present these classes shortly.

The LIBFILE constant declaration is followed by a wsContext field declaration, where wsContext is
declared to be of type javax.xml.ws.WebServiceContext and is annotated with @Resource.
WebServiceContext is an interface that makes it possible for a web service endpoint implementation class
to access a request message’s context and other information. The @Resource annotation causes an
implementation of this interface to be injected into an endpoint implementation class, and causes an
instance of this implementation class (a dependency) to be assigned to the variable.

■ Note Dependency injection refers to the insertion of a class into another class and of objects of the inserted
class to be inserted into a class instance. The inserted objects are known as dependencies because instances of
the class in which these objects were inserted depend upon them. Dependency injection reduces class complexity
by offloading developer tasks to a dependency injection framework.

A library field declaration follows the wsContext declaration, where library is declared to be of type
Map<String, Book>. This variable stores books in a map, where a book’s ISBN serves as a map entry’s key,
and the book’s information is recorded in a Book object that serves as the map entry’s value.

Library next declares a noargument constructor whose job is to initialize library. The constructor
first attempts to deserialize library.ser’s contents to a java.util.HashMap instance by calling the
deserialize() method (explained later), and assign the instance’s reference to library. If this file does
not exist, java.io.IOException is thrown and an empty HashMap instance is created and assigned to

CHAPTER 11 WORKING WITH WEB SERVICES

786

library —note the use of Java 7’s diamond operator to avoid having to respecify the map’s
java.lang.String and Book actual type arguments.

The invoke() method is now declared. Its first task is to verify that dependency injection succeeded
by testing wsContext to determine if it contains the null reference. If so, dependency injection failed and
an instance of the java.lang.RuntimeException class is created with a suitable message and thrown.

Continuing, invoke() calls WebServiceContext’s MessageContext getMessageContext() method to
return an instance of a class that implements the javax.xml.ws.handler.MessageContext interface. This
instance abstracts the message context for the request being served at the time this method is called.

MessageContext extends Map<String, Object>, making MessageContext a special kind of map. This
interface declares various constants that are used with the inherited Object get(String key) method to
obtain information about the request. For example, get(MessageContext.HTTP_REQUEST_METHOD) returns a
String object identifying the HTTP operation that the RESTful client wants performed; for example,
POST.

At this point, you might want to convert the string’s contents to uppercase and trim off any leading
or trailing whitespace. I don’t perform these tasks because the client that I present later will not allow an
HTTP verb to be specified that isn’t entirely uppercase and/or is preceded/followed by whitespace.

Java 7’s switch-on-string language feature is used to simplify the logic for invoking the method that
corresponds to the HTTP verb. The first argument passed to each of the doDelete(), doGet(), doPost(),
and doPut() helper methods is the MessageContext instance (assigned to msgContext). Although not used
by doPost() and doPut(), this instance is passed to these methods for consistency —I might want to
access the message context from doPost() and doPut() in the future. In contrast, invoke()’s request
argument is passed only to doPost() and doPut() so that these methods can access the request’s source
of bytes, which consist of the XML for the book to be inserted or updated.

If any other HTTP verb (such as HEAD) should be passed as the request method, invoke() responds
by throwing an instance of the HTTPException class with a 405 response code (request method not
allowed).

The doDelete() method first obtains the query string that identifies the book to delete via its ISBN
(as in ?isbn=9781430234135). It does so by calling get(MessageContext.QUERY_STRING) on the msgContext
argument passed to this method.

If the null reference returns, there is no query string and doDelete() deletes all entries in the map by
executing library.clear(). This method then calls the serialize() method to persist the library map to
library.ser, so that the next invocation of this web service will find an empty library.

If a query string was passed, it will be returned in the form key1 = value1 & key2 = value2 &….
doDelete() assumes that only a single key = value pair is passed, and splits this pair into an array with
two entries.

doDelete() first validates the key as one of isbn, ISBN, or any other uppercase/lowercase mix of these
letters. When this key is any other combination of characters, doDelete() throws HTTPException with a
400 response code indicating a bad request. This validation isn’t essential where a single key is
concerned, but if multiple key/value pairs were passed, you would need to perform validation to
differentiate between keys.

After extracting the ISBN value, doDelete() passes this value to library.remove(), which removes
the ISBN String object key/Book object value entry from the library map. It then calls serialize() to
persist the new map to library.ser, and creates an XML response message that is sent back to the client.
The message is returned from invoke() as a String object encapsulated in a java.io.StringReader
instance that’s encapsulated in a javax.xml.transform.stream.StreamSource object.

If doDelete() encounters a problem, it throws an HTTPException instance with response code 500
indicating an internal error.

The doGet() method is similar to doDelete(). However, it responds to the absence or presence of a
query string by returning an XML document containing a list of all ISBNs, or an XML document
containing book information for a specific ISBN.

CHAPTER 11 WORKING WITH WEB SERVICES

787

The doPost() and doPut() methods also have similar architectures. Each method first transforms
the argument passed to its source parameter (which identifies the XML body of the POST or PUT request)
to a javax.xml.transform.dom.DOMResult instance. This instance is then searched via XPath expressions,
first for a single book element, then for the <book> tag’s isbn and pubyear attributes, and finally for the
book element’s nested title, author, and publisher elements —multiple author elements might be
present. The gathered information is used to construct Author and Book objects, where the Author
object(s) is/are stored in the Book object. The resulting Book object is stored in the library map, the map
is serialized to library.ser, and a suitable XML message is sent to the client.

As well as providing a slightly different response message, doPost() and doPut() differ in whether or
not the book is already recorded (as determined by its ISBN) in the map. If doPost() is called and an
entry for the book is in the map, doPost() throws HTTPException with response code 400 (bad request). If
doPut() is called and an entry for the book is not in the map, doPut() throws the same exception.

The doPut() method is followed by deserialize() and serialize() methods that are responsible for
deserializing a serialized library map from library.ser and serializing this map to library.ser,
respectively. These methods accomplish their tasks with the help of the java.beans.XMLDecoder and
java.beans.XMLEncoder classes. According to their documentation, XMLEncoder and XMLDecoder are
designed to serialize a JavaBean component to an XML-based textual representation and deserialize this
representation to a JavaBean component, respectively.

JAVABEANS

JavaBeans is the Java architecture for creating self-contained and reusable components, which are known
as beans. A bean is instantiated from a class that adheres to at least the following three conventions:

The first convention allows applications and frameworks to easily instantiate a bean, the second
convention lets them automatically inspect and update bean state, and the third convention allows them to
reliably store bean state to and restore bean state from a persistent store (such as a file).

JavaBeans was created so that visual editors could present palettes of Swing components (e.g., JList and
JButton) that developers would access to quickly create graphical user interfaces. However, JavaBeans is
applicable to any kind of component-oriented editor.

JavaBeans is also useful with activation frameworks that determine the type of an arbitrary piece of data,
encapsulate access to the data, discover the available operations for the data, and instantiate the
appropriate bean to perform those operations.

For example, if a Java-based browser obtained a JPEG image, the JavaBeans Activation Framework would
enable the browser to identify that stream of data as a JPEG image. From that type, the browser could
locate and instantiate an object for manipulating or viewing that image.

• The class must include a public noargument constructor.

• Each of the class’s properties must include an accessor method prefixed by get or
is (for a Boolean property) and a mutator method prefixed by set. The name of
the property with the first letter uppercased must follow the prefix. For example, a
String name; property declaration would include a String getName() accessor
method and a void setName(String name) mutator method.

• Instances of the class must be serializable.

CHAPTER 11 WORKING WITH WEB SERVICES

788

For more information on JavaBeans, check out the “JavaBeans Trail” in Oracle’s online Java Tutorial
(http://download.oracle.com/javase/tutorial/javabeans/TOC.html).

After creating the necessary output stream to library.ser and instantiating XMLEncoder via Java 7’s

try-with-resources statement (to ensure proper resource cleanup whether or not an exception is
thrown), serialize() invokes XMLEncoder’s void writeObject(Object o) method with library as this
method’s argument so that the entire map will be serialized. The deserialize() method creates the
necessary input stream to library.ser, instantiates XMLDecoder, invokes this class’s XMLDecoder’s Object
readObject() method, and returns the deserialized object returned from this method after casting it to
Map<String, Book>.

Lastly, Listing 11-11 declares a main() method that publishes this web service on path /library of
port 9902 of the local host, by executing Endpoint.publish("http://localhost:9902/library", new
Library());.

For completeness, Listing 11-12 presents the Book class, whose beans store information about
individual books.

Listing 11-12. Library’s Book class

import java.util.List;

public class Book implements java.io.Serializable
{
 private String isbn;
 private String title;
 private String publisher;
 private String pubYear;
 private List<Author> authors;
 public Book() {} // Constructor and class must be public for instances to
 // be treated as beans.
 Book(String isbn, String title, String publisher, String pubYear,
 List<Author> authors)
 {
 setISBN(isbn);
 setTitle(title);
 setPublisher(publisher);
 setPubYear(pubYear);
 setAuthors(authors);
 }
 List<Author> getAuthors() { return authors; }
 String getISBN() { return isbn; }
 String getPublisher() { return publisher; }
 String getPubYear() { return pubYear; }
 String getTitle() { return title; }
 void setAuthors(List<Author> authors) { this.authors = authors; }
 void setISBN(String isbn) { this.isbn = isbn; }
 void setPublisher(String publisher) { this.publisher = publisher; }
 void setPubYear(String pubYear) { this.pubYear = pubYear; }
 void setTitle(String title) { this.title = title; }
}

http://download.oracle.com/javase/tutorial/javabeans/TOC.html

CHAPTER 11 WORKING WITH WEB SERVICES

789

Book depends on an Author class, whose beans store the names of individual authors, and which is
presented in Listing 11-13.

Listing 11-13. Library’s Author class

public class Author implements java.io.Serializable
{
 private String name;
 public Author() {}
 Author(String name) { setName(name); }
 String getName() { return name; }
 void setName(String name) { this.name = name; }
}

Now that you understand how the Library web service is implemented, you need a client to try out
this web service. Listing 11-14’s LibraryClient.java source code demonstrates how a client can access
the Library web service via the java.net.HttpURLConnection class.

Listing 11-14. A client for accessing the Library web service

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

import java.net.HttpURLConnection;
import java.net.URL;

class LibraryClient
{
 final static String LIBURI = "http://localhost:9902/library";
 public static void main(String[] args) throws Exception
 {
 String book1 = "<?xml version=\"1.0\"?>"+
 "<book isbn=\"0201548550\" pubyear=\"1992\">"+
 " <title>"+
 " Advanced C+"+
 " </title>"+
 " <author>"+
 " James O. Coplien"+
 " </author>"+
 " <publisher>"+
 " Addison Wesley"+
 " </publisher>"+
 "</book>";
 doPost(book1);
 String book2 = "<?xml version=\"1.0\"?>"+
 "<book isbn=\"9781430210450\" pubyear=\"2008\">"+
 " <title>"+
 " Beginning Groovy and Grails"+
 " </title>"+
 " <author>"+

CHAPTER 11 WORKING WITH WEB SERVICES

790

 " Christopher M. Judd"+
 " </author>"+
 " <author>"+
 " Joseph Faisal Nusairat"+
 " </author>"+
 " <author>"+
 " James Shingler"+
 " </author>"+
 " <publisher>"+
 " Apress"+
 " </publisher>"+
 "</book>";
 doPost(book2);
 doGet(null);
 doGet("0201548550");
 doGet("9781430210450");
 String book1u = "<?xml version=\"1.0\"?>"+
 "<book isbn=\"0201548550\" pubyear=\"1992\">"+
 " <title>"+
 " Advanced C++"+
 " </title>"+
 " <author>"+
 " James O. Coplien"+
 " </author>"+
 " <publisher>"+
 " Addison Wesley"+
 " </publisher>"+
 "</book>";
 doPut(book1u);
 doGet("0201548550");
 doDelete("0201548550");
 doGet(null);
 }
 static void doDelete(String isbn) throws Exception
 {
 URL url = new URL(LIBURI+((isbn != null) ? "?isbn="+isbn : ""));
 HttpURLConnection httpurlc = (HttpURLConnection) url.openConnection();
 httpurlc.setRequestMethod("DELETE");
 httpurlc.setDoInput(true);
 InputStreamReader isr;
 isr = new InputStreamReader(httpurlc.getInputStream());
 BufferedReader br = new BufferedReader(isr);
 StringBuilder xml = new StringBuilder();
 String line;
 while ((line = br.readLine()) != null)
 xml.append(line);
 System.out.println(xml);
 System.out.println();
 }
 static void doGet(String isbn) throws Exception
 {
 URL url = new URL(LIBURI+((isbn != null) ? "?isbn="+isbn : ""));

CHAPTER 11 WORKING WITH WEB SERVICES

791

 HttpURLConnection httpurlc = (HttpURLConnection) url.openConnection();
 httpurlc.setRequestMethod("GET");
 httpurlc.setDoInput(true);
 InputStreamReader isr;
 isr = new InputStreamReader(httpurlc.getInputStream());
 BufferedReader br = new BufferedReader(isr);
 StringBuilder xml = new StringBuilder();
 String line;
 while ((line = br.readLine()) != null)
 xml.append(line);
 System.out.println(xml);
 System.out.println();
 }
 static void doPost(String xml) throws Exception
 {
 URL url = new URL(LIBURI);
 HttpURLConnection httpurlc = (HttpURLConnection) url.openConnection();
 httpurlc.setRequestMethod("POST");
 httpurlc.setDoOutput(true);
 httpurlc.setDoInput(true);
 httpurlc.setRequestProperty("Content-Type", "text/xml");
 OutputStream os = httpurlc.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os, "UTF-8");
 osw.write(xml);
 osw.close();
 if (httpurlc.getResponseCode() == 200)
 {
 InputStreamReader isr;
 isr = new InputStreamReader(httpurlc.getInputStream());
 BufferedReader br = new BufferedReader(isr);
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = br.readLine()) != null)
 sb.append(line);
 System.out.println(sb.toString());
 }
 else
 System.err.println("cannot insert book: "+httpurlc.getResponseCode());
 System.out.println();
 }
 static void doPut(String xml) throws Exception
 {
 URL url = new URL(LIBURI);
 HttpURLConnection httpurlc = (HttpURLConnection) url.openConnection();
 httpurlc.setRequestMethod("PUT");
 httpurlc.setDoOutput(true);
 httpurlc.setDoInput(true);
 httpurlc.setRequestProperty("Content-Type", "text/xml");
 OutputStream os = httpurlc.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os, "UTF-8");
 osw.write(xml);
 osw.close();

CHAPTER 11 WORKING WITH WEB SERVICES

792

 if (httpurlc.getResponseCode() == 200)
 {
 InputStreamReader isr;
 isr = new InputStreamReader(httpurlc.getInputStream());
 BufferedReader br = new BufferedReader(isr);
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = br.readLine()) != null)
 sb.append(line);
 System.out.println(sb.toString());
 }
 else
 System.err.println("cannot update book: "+httpurlc.getResponseCode());
 System.out.println();
 }
}

LibraryClient is partitioned into a main() method and four do-prefixed methods for performing
DELETE, GET, POST, and PUT operations. main() invokes each “do” method to make a request and output a
response.

A “do” method first instantiates the URL class; doDelete() and doGet() attach query strings to their
URI arguments when these methods are called with nonnull isbn arguments. The method then invokes
URL’s URLConnection openConnection() method to return a communications link between the
application and URL instance as an instance of a concrete subclass of the abstract
java.net.URLConnection class. This concrete subclass is HttpConnection because of the http:// prefix in
the argument passed to URL’s constructor.

HttpURLConnection’s void setRequestMethod(String method) is then called to specify the HTTP
verb, which must appear in uppercase with no whitespace. Depending on the “do” method, either void
setDoInput(boolean doinput) is called with a true argument, or void setDoInput(boolean doinput) and
void setDoOutput(boolean dooutput) are called with true arguments, to signify that an input stream or
input and output streams are required to communicate with the web service.

Each of doPost() and doPut() is required to set the Content-Type request header to text/xml, which
it accomplishes by passing this header and MIME type to the void setRequestProperty(String key,
String value) method. Forgetting to set the content type to text/xml causes the JAX-WS infrastructure
to respond with an internal error response code (500).

doDelete() and doGet() read the XML from the connection’s input stream and output this XML
content to the standard output device. Behind the scenes, the JAX-WS infrastructure makes the string of
characters encapsulated in the StringReader instance, which is encapsulated in the StreamSource
instance returned from invoke(), available on the input stream.

doPost() and doPut() access the connection’s output stream and output their XML content to the
stream. Behind the scenes, JAX-WS makes this content available to invoke() as an instance of a class that
implements the Source interface. Assuming that the web service responds with a success code (200),
each method reads the XML reply from the connection’s input stream and outputs this content to the
standard output stream.

Compile Library.java (javac Library.java) and LibraryClient.java (javac LibraryClient.java).
Run Library in one command window (java Library) and LibraryClient in another command window
(java LibraryClient). If all goes well, LibraryClient should generate the following output:

<response>book inserted</response>

<response>book inserted</response>

CHAPTER 11 WORKING WITH WEB SERVICES

793

<isbns><isbn>9781430210450</isbn><isbn>0201548550</isbn></isbns>

<book isbn="0201548550" pubyear="1992"><title>Advanced C+</title><author>James O.
Coplien</author><publisher>Addison Wesley</publisher></book>

<book isbn="9781430210450" pubyear="2008"><title>Beginning Groovy and
Grails</title><author>Christopher M. Judd</author><author>Joseph Faisal
Nusairat</author><author>James Shingler</author><publisher>Apress</publisher></book>

<response>book updated</response>

<book isbn="0201548550" pubyear="1992"><title>Advanced C++</title><author>James O.
Coplien</author><publisher>Addison Wesley</publisher></book>

<response>book deleted</response>

<isbns><isbn>9781430210450</isbn></isbns>

Run LibraryClient a second time and you should observe that the second <response>book
inserted</response> message has been replaced with cannot insert book: 400. This message is output
because the library map already contains an entry whose key identifies ISBN 9781430210450.

■ Note When you rerun LibraryClient and observe the cannot insert book: 400 message, you might also
observe strange Library output. Specifically, you might notice a thrown exception whose first line begins with the
date and time and continues with com.sun.xml.internal.ws.server.provider.SyncProviderInvokerTube
processRequest, whose second line consists of SEVERE: null, and whose third line consists of
javax.xml.ws.http.HTTPException. This strange output results from doPost() detecting an attempt to reinsert
a book that has already been inserted, and then throwing HTTPException to Library’s invoke() method, which
is then thrown out of invoke() —it’s legal to throw this exception out of invoke(), which is documented to throw
WebServiceException (and HTTPException is a descendent of this class). When I first detected this problem, I
contacted Oracle (a couple of days before Java 7 was to be released) and was told to submit a bug report. I
submitted “Bug ID: 7068897 - Strange error when throwing HTTPException from Provider<Source> invoke()
method” and this bug report remained for a couple of days before strangely disappearing. Perhaps I’ve
experienced an anomaly peculiar to running Library on Windows XP Service Pack 3. However, this might be a
genuine Java bug.

Accessing Google’s Charts Web Service
Accessing someone else’s RESTful web service is easier than creating your own because you can forget
about JAX-WS and deal only with HttpURLConnection to make a request and retrieve the necessary data.
Furthermore, you aren’t restricted to retrieving XML data. For example, Google’s RESTful Charts web
service (http://code.google.com/apis/chart/image/docs/making_charts.html), which is also known as
the Chart API, lets you dynamically create and return images of bar, pie, and other kinds of charts.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://code.google.com/apis/chart/image/docs/making_charts.html

CHAPTER 11 WORKING WITH WEB SERVICES

794

Google Charts is accessed via the https://chart.googleapis.com/chart URI. You append a query
string to this URI that identifies the chart type, size, data, labels, and any other needed information. For
example, query string “?cht=p3&chs=450x200&chd=t:60,40&chl=Q1%20(60%)|Q2%20(40%)” describes the
following chart type, size, data, and label parameters:

• cht=p3 specifies the chart type as a three-dimensional pie chart.

• chs=450x200 specifies the chart size as 450 pixels wide by 200 pixels high —a chart
should be at least two-and-one-half times as wide as it is tall so that all labels are
fully visible.

• chd=t:60,40 specifies the chart data in a simple text format —this format consists
of a single series of comma-separated values; multiple series are specified by using
a vertical bar to separate one series from the next —where the first data item (for
the first pie chart slice) is 60 and the second data item (for the second slice) is 40.

• chl=Q1%20(60%)|Q2%20(40%) specifies the chart labels for the pie chart slices as Q1
(60%) and Q2 (40%) —labels are separated by vertical bars and must be URL-
encoded (which is why each space character is replaced with %20).

Google Charts defaults to returning the chart as a PNG image. You can return a GIF image instead by
including the chof=gif parameter in the query string, or even return a JavaScript Object Notation
(JSON)-formatted document (see http://en.wikipedia.org/wiki/JSON) by including the chof=json
parameter.

I’ve created a ViewChart application that passes the aforementioned URI with query string to Google
Charts, obtains the generated PNG image of the 3D pie chart, and displays this image. Listing 11-15
presents this application’s source code.

Listing 11-15. A client for accessing the Google Charts web service

import java.io.InputStream;
import java.io.IOException;

import java.net.HttpURLConnection;
import java.net.URL;

import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;

class ViewChart
{
 final static String BASEURI = "https://chart.googleapis.com/chart?";
 public static void main(String[] args)
 {
 String qs = "cht=p3&chs=450x200&chd=t:60,40&chl=Q1%20(60%)|Q2%20(40%)";
 ImageIcon ii = doGet(qs);
 if (ii != null)
 {
 JFrame frame = new JFrame("ViewChart");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setContentPane(new JLabel(ii));

https://chart.googleapis.com/chart
http://en.wikipedia.org/wiki/JSON
https://chart.googleapis.com/chart?

CHAPTER 11 WORKING WITH WEB SERVICES

795

 frame.pack();
 frame.setResizable(false);
 frame.setVisible(true);
 }
 }
 static ImageIcon doGet(String qs)
 {
 try
 {
 URL url = new URL(BASEURI+qs);
 HttpURLConnection httpurlc;
 httpurlc = (HttpURLConnection) url.openConnection();
 httpurlc.setRequestMethod("GET");
 httpurlc.setDoInput(true);
 if (httpurlc.getResponseCode() == 200)
 {
 InputStream is = httpurlc.getInputStream();
 byte[] bytes = new byte[10000];
 int b, i = 0;
 while ((b = is.read()) != -1)
 {
 bytes[i++] = (byte) b;
 if (i == bytes.length)
 {
 byte[] bytes2 = new byte[bytes.length*2];
 System.arraycopy(bytes, 0, bytes2, 0, i);
 bytes = bytes2;
 }
 }
 byte[] bytes2 = new byte[i];
 System.arraycopy(bytes, 0, bytes2, 0, i);
 return new ImageIcon(bytes2);
 }
 throw new IOException("HTTP Error: "+httpurlc.getResponseCode());
 }
 catch (IOException e)
 {
 JOptionPane.showMessageDialog(null, e.getMessage(), "ViewChart",
 JOptionPane.ERROR_MESSAGE);
 return null;
 }
 }
}

Listing 11-15 is fairly straightforward. Its main() method invokes doGet() with the query string. If
this method returns a javax.swing.ImageIcon object, a Swing-based frame window is created, this
window is told to terminate the application when the user clicks the X button on the window’s titlebar
(for Windows and similar operating systems), a label based on the icon is created and assigned to the
frame window as its content pane, the window is packed (sized to the preferred size) of the label (which
adopts the size of the image icon’s image as its preferred size), the window is made nonresizable, and
the window is displayed.

CHAPTER 11 WORKING WITH WEB SERVICES

796

The doGet() method creates a URL object, opens an HTTP connection to the URL instance, specifies
GET as the request method, tells the connection that it only wants to input content, and proceeds to read
the content when the response code is 200 (success).

The content is stored in an array of bytes. If the array is too small to hold all the content, the array is
dynamically resized by creating a larger array and copying the original array’s content to the new array
with help from System.arraycopy(). After all bytes have been read, this array is passed to ImageIcon’s
ImageIcon(byte[] imageData) constructor to store the PNG image as the basis of the ImageIcon object,
which is returned from doGet().

If something goes wrong, an instance of the IOException class or one of its subclasses (such as
java.net.MalformedURLException, which signifies that the argument passed to URL’s constructor is
illegal) is thrown. The catch block handles this exception by invoking javax.swing.JOptionPane’s void
showMessageDialog(Component parentComponent, Object message, String title, int messageType) to
display a suitable error message via a popup dialog box.

Compile Listing 11-15 (javac ViewChart.java) and run the application (java ViewChart). Figure 11-
8 shows the resulting chart.

Figure 11-8. A three-dimensional pie chart image is returned from Google’s RESTful Charts web service.

■ Note Visit http://www.programmableweb.com/apis/directory/ to discover additional examples of RESTful
and SOAP-based web services.

Advanced Web Service Topics
Now that the basics of creating and accessing SOAP-based and RESTful web services are out of the way,
you’re probably ready for more advanced material. This section introduces five advanced web service
topics.

You first receive an introduction to the SAAJ API for working with SOAP-based web services at a
lower level. You then learn how to create a JAX-WS handler to log the flow of SOAP messages. Next, you

http://www.programmableweb.com/apis/directory/

CHAPTER 11 WORKING WITH WEB SERVICES

797

learn how to create and install a custom lightweight HTTP server to perform authentication, and also
learn how to create a RESTful web service that returns attachments (e.g., a JPEG image) to its clients.
Finally, you dig deeper into JAX-WS by exploring the interplay between providers and dispatch clients,
and learn how to create a dispatch client that accesses the Source instance returned from a web service
provider’s invoke() method via a different Source instance in an alternate Library client application.

Working with SAAJ
Soap with Attachments API for Java (SAAJ) is the Java API for creating, sending, and receiving SOAP
messages that may or may not have MIME-typed attachments. SAAJ is a lower-level alternative to JAX-
WS for sending and receiving SOAP messages.

After presenting an overview of SOAP message architecture, I take you on a tour of SAAJ. When this
tour finishes, I present an application that uses this API to access a SOAP-based web service for
converting between integer values and Roman numerals. This application reinforces your
understanding of SAAJ.

SOAP Message Architecture
A SOAP message is an XML document sent from an initial SOAP sender node to an ultimate SOAP receiver
node, mostly likely passing through intermediate SOAP sender/receiver nodes along its path. A SOAP node
is processing logic that operates on a SOAP message.

The SOAP document consists of an Envelope root element that encapsulates an optional Header
element and a nonoptional Body element —see Figure 11-9.

Figure 11-9. A SOAP message’s architecture consists of an optional Header element and a mandatory Body

element within an Envelope element.

CHAPTER 11 WORKING WITH WEB SERVICES

798

The Header element specifies application-related information (such as authentication details to
verify who sent the message) via immediate child elements known as header blocks. A header block
represents a logical grouping of data that can target an intermediate SOAP node or the ultimate receiver
node.

Although header blocks are defined by the application, their start tags may contain the following
SOAP-defined attributes to indicate how SOAP nodes should process them:

• encodingStyle identifies the rules used to serialize parts of a SOAP message

• role identifies the SOAP node (via a URI) to which the header block is targeted —
this SOAP 1.2-introduced attribute replaces the SOAP 1.1 actor attribute, which
performs the same function

• mustUnderstand indicates whether processing of the header block is mandatory
(value 1 in SOAP 1.1; true in SOAP 1.2) or optional (value 0 in SOAP 1.1; false in
SOAP 1.2)

• relay indicates whether the header block targeted at a SOAP receiver must be
relayed to another node if not processed —this attribute was introduced in SOAP
1.2

The Body element contains information that targets the ultimate receiver node. This information is
known as the payload, and consists of a SOAP-defined Fault child element describing a fault (an error
being reported by the web service), or child elements that are specific to the web service.

The Fault element contains error and status information that a web service returns to a client. SOAP
1.1 specifies the following child elements of Fault:

• faultcode: This mandatory element provides information about the fault in a form
that can be processed by software. SOAP defines a small set of SOAP fault codes
that cover basic faults; this set can be extended by applications.

• faultstring: This mandatory element provides information about the fault in a
human-readable format.

• faultactor: This element contains the URI of the SOAP node that generated the
fault. A SOAP node that is not the ultimate SOAP receiver must include faultactor
when creating a fault; an ultimate SOAP receiver doesn’t have to include this
element, but might choose to do so.

• detail: This element carries application-specific error information related to the
Body element. It must be present when Body’s contents couldn’t be processed
successfully. The detail element must not be used to carry error information
belonging to header blocks; detailed error information belonging to header blocks
is carried within these blocks.

SOAP 1.2 specifies the following child elements of Fault:

• Code: This mandatory element provides information about the fault in a form that
can be processed by software. It contains a Value element and an optional Subcode
element.

• Reason: This mandatory element provides information about the fault in a human-
readable format. Reason contains one or more Text elements, each of which
contains information about the fault in a different language.

CHAPTER 11 WORKING WITH WEB SERVICES

799

• Node: This element contains the URI of the SOAP node that generated the fault. A
SOAP node that is not the ultimate SOAP receiver must include Node when
creating a fault; an ultimate SOAP receiver doesn’t have to include this element,
but might choose to do so.

• Role: This element contains a URI that identifies the role the node was operating
in when the fault occurred.

• Detail: This optional element contains application-specific error information
related to the SOAP fault codes describing the fault. Its presence has no
significance as to which parts of the faulty SOAP message were processed.

Listing 11-16 presents an example SOAP message.

Listing 11-16. A SOAP message for calling a SOAP-based library web service’s getTitle() function to

retrieve a book’s title when given its ISBN

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header />
 <SOAP-ENV:Body>
 <lns:getTitle xmlns:lns="http://tutortutor.ca/library">
 <isbn xsi:type="xsd:string">9781430234135</isbn>
 </lns:getTitle>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This SOAP message describes a request to a library web service to execute its getTitle() function.
Furthermore, it describes the type and value of the ISBN argument passed to this function’s isbn
parameter.

The message begins with the SOAP-ENV-prefixed <Envelope> tag, which describes the SOAP message’s
envelope. The commonly used SOAP-ENV prefix corresponds to the SOAP 1.1 namespace that provides the
schema for SOAP envelopes. The xsd and xsi prefixes correspond to the XML Schema structures and
XML Schema Instance namespaces, and are used to denote the XML Schema type that describes the
kind of data being passed to getTitle() (a string) via the isbn element.

The empty Header element signifies that there is no SOAP header. In contrast, the Body element
identifies a single getTitle operation request.

The getTitle element is namespace-qualified, as recommended by the SOAP 1.1 and 1.2
specifications. In contrast, the isbn child element of getTitle is not namespace-qualified because it
inherits getTitle’s namespace —the SOAP 1.1 and 1.2 specifications do not mandate that such child
elements be namespace-qualified.

SAAJ API Overview
SAAJ is a small API that lets you perform the following tasks:

• Create an endpoint-to-endpoint connection

• Create a SOAP message

• Create an XML fragment

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://tutortutor.ca/library

CHAPTER 11 WORKING WITH WEB SERVICES

800

• Add content to the header of a SOAP message

• Add content to the body of a SOAP message

• Create attachment parts and add content to them

• Access/add/modify parts of a SOAP message

• Create/add/modify SOAP fault information

• Extract content from a SOAP message

• Send a SOAP request-response message

SAAJ is associated with the javax.xml.soap package, which contains 14 interfaces and 13 classes.
Various interfaces and classes extend their counterparts in the org.w3c.dom package, implying that part
of a SOAP message is organized as a tree of nodes.

The following classes and interfaces are used to specify the structure of a SOAP message:

• SOAPMessage represents the entire SOAP message. It contains a single SOAPPart
instance and zero or more AttachmentPart instances.

• SOAPPart contains a SOAPEnvelope instance, which represents the actual SOAP
Envelope element.

• SOAPEnvelope optionally contains a SOAPHeader instance and also contains a
mandatory SOAPBody instance.

• SOAPHeader represents the SOAP message’s header block(s).

• SOAPBody contains either a SOAPFault object or a SOAPBodyElement object
containing the actual SOAP payload XML content.

• SOAPFault stores a SOAP fault message.

Working with SAAJ involves creating a SOAP connection, creating SOAP messages, populating each
message with content and optional attachments, sending the messages to an endpoint, and retrieving
replies.

You create a connection by working with the SOAPConnectionFactory and SOAPConnection classes. As
its name implies, SOAPConnectionFactory is a factory class for retrieving SOAPConnection instances
(actually, instances of subclasses of the abstract SOAPConnection class). A SOAPConnection instance
represents an endpoint-to-endpoint connection to the web service; the client and web service exchange
messages over this connection. The following example shows you how to instantiate the factory and
obtain a SOAP connection:

SOAPConnectionFactory soapcf = SOAPConnectionFactory.newInstance();
SOAPConnection soapc = soapcf.createConnection();

Instantiate the factory by calling SOAPConnectionFactory’s SOAPConnectionFactory newInstance()
method. This method throws SOAPException when a SOAPConnectionFactory instance cannot be created.
If a nonOracle Java implementation doesn’t support the SAAJ communication infrastructure, this
method throws an instance of the java.lang.UnsupportedOperationException class.

After instantiating SOAPConnectionFactory, call this instance’s SOAPConnection createConnection()
method to create and return a new SOAPConnection object. This method throws SOAPException when it’s
unable to create this object.

CHAPTER 11 WORKING WITH WEB SERVICES

801

Create a SOAP message by working with the MessageFactory and SOAPMessage classes.
MessageFactory provides a pair of methods for returning a MessageFactory instance:

• MessageFactory newInstance() creates a MessageFactory object based on the
default SOAP 1.1 implementation. This method follows an ordered lookup
procedure to locate the MessageFactory implementation class. This procedure first
examines the javax.xml.soap.MessageFactory system property, and lastly calls an
instance of the SAAJMetaFactory class’s MessageFactory
newMessageFactory(String protocol) method to return that factory. This method
throws SOAPException when it’s unable to create the factory.

• MessageFactory newInstance(String protocol) creates a MessageFactory object
that is based on the SOAP implementation specified by the protocol argument,
which is one of the SOAPConstants interface’s DEFAULT_SOAP_PROTOCOL,
DYNAMIC_SOAP_PROTOCOL, SOAP_1_1_PROTOCOL, or SOAP_1_2_PROTOCOL constants. This
method throws SOAPException when it’s unable to create the factory.

After instantiating MessageFactory, call one of the following methods to create a SOAPMessage
instance:

• SOAPMessage createMessage() creates and returns a new SOAPMessage object
(actually, an instance of a concrete subclass of this abstract class) with default
SOAPPart, SOAPEnvelope, SOAPBody (initially empty) and SOAPHeader objects. This
method throws SOAPException when a SOAPMessage instance cannot be created,
and UnsupportedOperationException when the MessageFactory instance’s protocol
is DYNAMIC_SOAP_PROTOCOL.

• SOAPMessage createMessage(MimeHeaders headers, InputStream in) internalizes
the contents of the given java.io.InputStream object into a new SOAPMessage
object and returns this object. The MimeHeaders instance specifies transport-
specific headers that describe the various attachments to the SOAP message. This
method throws SOAPException when a SOAPMessage instance cannot be created,
IOException when there’s a problem reading data from the input stream, and
IllegalArgumentException when the MessageFactory instance requires one or
more MIME headers to be present in the argument passed to headers and these
headers are missing.

The following example shows you how to instantiate the factory and create a SOAPMessage object
that is ready to be populated:

MessageFactory mf = MessageFactory.newInstance();
SOAPMessage soapm = mf.createMessage();

SOAPMessage describes a SOAP message optionally followed by MIME-typed attachments. The SOAP
message part of this object is defined by an instance of a concrete subclass of the abstract SOAPPart class.

SOAPPart encapsulates an instance of a class that implements the SOAPEnvelope interface, and the
SOAPEnvelope instance encapsulates instances of classes that implement the SOAPHeader and SOAPBody
interfaces. Call SOAPMessage’s SOAPPart getSOAPPart() method to return the SOAPPart instance. You can
then call SOAPPart’s SOAPEnvelope getEnvelope() method to return the SOAPEnvelope instance, and call
SOAPEnvelope’s SOAPBody getBody() and SOAPHeader getHeader() methods to return the SOAPEnvelope
instance’s SOAPBody and SOAPHeader instances.

CHAPTER 11 WORKING WITH WEB SERVICES

802

■ Tip Because a SOAPEnvelope instance defaults to storing an empty SOAPHeader instance, you can remove this
SOAPHeader instance when it’s not needed by calling SOAPHeader’s inherited (from the javax.xml.soap.Node
interface) void detachNode() method.

The following example shows you how to obtain the SOAPPart, SOAPEnvelope, and SOAPBody instances
from the SOAPMessage instance, and also how to detach the SOAPHeader instance:

SOAPPart soapp = soapm.getSOAPPart();
SOAPEnvelope soape = soapp.getEnvelope();
SOAPBody soapb = soape.getBody();
soape.getHeader().detachNode();

■ Tip SOAPMessage declares SOAPBody getSOAPBody() and SOAPHeader getSOAPHeader() methods that
conveniently let you access the SOAPBody and SOAPHeader instances without having to go through
getEnvelope(). Calling these methods is equivalent to calling getEnvelope().getBody() and
getEnvelope().getHeader(), respectively.

SOAPEnvelope and various other interfaces extend SOAPElement, which provides methods that are
applicable to different kinds of element implementation instances. For example, the SOAPElement
addNamespaceDeclaration(String prefix, String uri) method is useful for adding a namespace
declaration with the specified prefix and uri values to a SOAPEnvelope instance. The following example
shows how to add declarations for the xsd and xsi namespaces shown in Listing 11-16 to its Envelope
element:

soape.addNamespaceDeclaration("xsd", "http://www.w3.org/2001/XMLSchema");
soape.addNamespaceDeclaration("xsi", "http://www.w3.org/2001/XMLSchema-instance");

The SOAPBody instance contains either content or a fault. Adding content to the body first requires
that you create SOAPBodyElement objects (to store this content) and add these objects to the SOAPBody
instance. This task is accomplished by calling either of SOAPBody’s two addBodyElement() methods, which
create the SOAPBodyElement object, add it to the SOAPBody object, and return a reference to the created
object so that you can create method call chains (see Chapter 2 for a discussion of chaining together
method calls).

When a new subelement of the SOAP Body element is created, you must specify a fully qualified
name in the form of a Name instance or a QName instance. Because the Java documentation for the Name
interface states that it may be deprecated in favor of QName, you should get into the habit of using QName
instead of Name. As a result, you should use SOAPBody’s SOAPBodyElement addBodyElement(QName qname)
method instead of using this interface’s SOAPBodyElement addBodyElement(Name name) method, as
demonstrated here:

QName name = new QName("http://tutortutor.ca/library", "getTitle", "lns");
SOAPElement soapel = soapb.addBodyElement(name);

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://tutortutor.ca/library

CHAPTER 11 WORKING WITH WEB SERVICES

803

SOAPBodyElement instances store subelement instances. You create these subelements and add them
to the SOAPBodyElement instance by calling SOAPElement’s various addChildElement() methods, such as
SOAPElement addChildElement(String localName), which creates a subelement object having the
specified localName, adds this subelement object to the SOAPBodyElement object on which this method is
called, and returns a reference to the created SOAPElement object for chaining together method calls.

You can then attach a text node to a body element or a subelement by calling SOAPElement’s
SOAPElement addTextNode(String text) method. You can also call SOAPElement’s void
setAttribute(String name, String value) method (inherited from SOAPElement’s org.w3c.dom.Element
ancestor interface) to add attributes to the subelement as appropriate. The following example
demonstrates:

soapel.addChildElement("isbn").addTextNode("9781430234135").setAttribute("xsi:type",
 "xsd:string");

Attachments are instances of concrete subclasses of the abstract AttachmentPart class. If you need
to include an attachment with the SOAP message, call one of SOAPMessage’s createAttachmentPart()
methods to create and return an AttachmentPart object. After configuring this object, call SOAPMessage’s
void addAttachmentPart(AttachmentPart attachmentPart) method to add the given attachmentPart-
referenced object to this SOAPMessage object.

To send the SOAP message and receive a reply, invoke SOAPConnection’s SOAPMessage
call(SOAPMessage request, Object to) method. The specified request message is sent to the endpoint
identified by to, which may be a String or URL instance. This method throws SOAPException when a
SOAP problem occurs, and blocks until it receives a SOAP message, which it returns as a SOAPMessage
object. The following example provides a demonstration:

String endpoint = "http://tutortutor.ca/library/GetTitle";
// Send the request message identified by soapm to the web service at the specified
// endpoint and return the response message.
SOAPMessage response = soapc.call(soapm, endpoint);

Alternatively, you can call SOAPConnection’s SOAPMessage get(Object to) method to request a SOAP
message. As with call(), get() blocks until there is a reply, and throws SOAPException when a SOAP
problem occurs.

After finishing your call() and/or get() invocations, call SOAPConnection’s void close() method to
close the connection to the endpoint. If this method has already been called, a subsequent attempt to
close the connection results in a thrown SOAPException instance.

Roman Numerals and SAAJ
To demonstrate SAAJ in a more practical context, I’ve created a RomanNumerals application that uses this
API to communicate with a SOAP-based Roman Numerals Conversion web service, which converts
between Roman numerals and base-10 integer values. This web service’s WSDL document is located at
http://www.ebob42.com/cgi-bin/Romulan.exe/wsdl/IRoman, and appears in Listing 11-17.

Listing 11-17. WSDL for the Roman numerals/base-10 integer values conversion web service.

<definitions name="IRomanservice" targetNamespace="http://eBob42.org/">
 <message name="IntToRoman0Request">
 <part name="Int" type="xs:int"/>
 </message>
 <message name="IntToRoman0Response">

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://tutortutor.ca/library/GetTitle
http://www.ebob42.com/cgi-bin/Romulan.exe/wsdl/IRoman
http://eBob42.org/

CHAPTER 11 WORKING WITH WEB SERVICES

804

 <part name="return" type="xs:string"/>
 </message>
 <message name="RomanToInt1Request">
 <part name="Rom" type="xs:string"/>
 </message>
 <message name="RomanToInt1Response">
 <part name="return" type="xs:int"/>
 </message>
 <portType name="IRoman">
 <operation name="IntToRoman">
 <input message="tns:IntToRoman0Request"/>
 <output message="tns:IntToRoman0Response"/>
 </operation>
 <operation name="RomanToInt">
 <input message="tns:RomanToInt1Request"/>
 <output message="tns:RomanToInt1Response"/>
 </operation>
 </portType>
 <binding name="IRomanbinding" type="tns:IRoman">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="IntToRoman">
 <soap:operation soapAction="urn:Roman-IRoman#IntToRoman" style="rpc"/>
 <input message="tns:IntToRoman0Request">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:Roman-IRoman"/>
 </input>
 <output message="tns:IntToRoman0Response">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:Roman-IRoman"/>
 </output>
 </operation>
 <operation name="RomanToInt">
 <soap:operation soapAction="urn:Roman-IRoman#RomanToInt" style="rpc"/>
 <input message="tns:RomanToInt1Request">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:Roman-IRoman"/>
 </input>
 <output message="tns:RomanToInt1Response">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:Roman-IRoman"/>
 </output>
 </operation>
 </binding>
 <service name="IRomanservice">
 <port name="IRomanPort" binding="tns:IRomanbinding">
 <soap:address
 location="http://www.ebob42.com/cgi-bin/Romulan.exe/soap/IRoman"/>
 </port>

http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/

CHAPTER 11 WORKING WITH WEB SERVICES

805

 </service>
</definitions>

Listing 11-17’s WSDL document provides important information for constructing SOAP request and
response messages —note the absence of a types element because the service uses only XML Schema
builtin simple types; furthermore, the document style is rpc. This information includes the IntToRoman
and RomanToInt operation names (which the application calls to perform the conversions) along with
parameter and return type information. This listing also presents the service’s endpoint address.

Listing 11-18 reveals RomanNumerals.java.

Listing 11-18. Using SAAJ to access the Roman Numerals Conversion web service

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.EventQueue;
import java.awt.GradientPaint;
import java.awt.Graphics;
import java.awt.Graphics2D;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.io.IOException;

import java.util.Iterator;

import javax.swing.BorderFactory;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;

import javax.swing.border.Border;

import javax.xml.namespace.QName;

import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPConstants;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;

class RomanNumerals extends JFrame
{

CHAPTER 11 WORKING WITH WEB SERVICES

806

 private JTextField txtResult;
 RomanNumerals()
 {
 super("RomanNumerals");
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 // Create a gradient panel in which to present the GUI.
 GPanel pnl = new GPanel();
 pnl.setLayout(new BorderLayout());
 // Build input panel.
 JPanel pnlInput = new JPanel();
 Border inner = BorderFactory.createEtchedBorder();
 Border outer = BorderFactory.createEmptyBorder(10, 10, 10, 10);
 pnlInput.setBorder(BorderFactory.createCompoundBorder(outer, inner));
 pnlInput.setOpaque(false);
 pnlInput.add(new JLabel("Enter Roman numerals or integer:"));
 final JTextField txtInput = new JTextField(15);
 pnlInput.add(txtInput);
 pnl.add(pnlInput, BorderLayout.NORTH);
 // Build buttons panel.
 JPanel pnlButtons = new JPanel();
 inner = BorderFactory.createEtchedBorder();
 outer = BorderFactory.createEmptyBorder(10, 10, 10, 10);
 pnlButtons.setBorder(BorderFactory.createCompoundBorder(outer, inner));
 pnlButtons.setOpaque(false);
 JButton btnToRoman = new JButton("To Roman");
 ActionListener alToRoman;
 alToRoman = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {
 try
 {
 String roman = toRoman(txtInput.getText());
 txtResult.setText(roman);
 }
 catch (SOAPException se)
 {
 JOptionPane.showMessageDialog(RomanNumerals.this,
 se.getMessage());
 }
 }
 };
 btnToRoman.addActionListener(alToRoman);
 pnlButtons.add(btnToRoman);
 JButton btnToInteger = new JButton("To Integer");
 ActionListener alToInteger;
 alToInteger = new ActionListener()
 {
 @Override
 public void actionPerformed(ActionEvent ae)
 {

CHAPTER 11 WORKING WITH WEB SERVICES

807

 try
 {
 String integer = toInteger(txtInput.getText());
 txtResult.setText(integer);
 }
 catch (SOAPException se)
 {
 JOptionPane.showMessageDialog(RomanNumerals.this,
 se.getMessage());
 }
 }
 };
 btnToInteger.addActionListener(alToInteger);
 pnlButtons.add(btnToInteger);
 pnl.add(pnlButtons, BorderLayout.CENTER);
 // Build result panel.
 JPanel pnlResult = new JPanel();
 inner = BorderFactory.createEtchedBorder();
 outer = BorderFactory.createEmptyBorder(10, 10, 10, 10);
 pnlResult.setBorder(BorderFactory.createCompoundBorder(outer, inner));
 pnlResult.setOpaque(false);
 pnlResult.add(new JLabel("Result:"));
 txtResult = new JTextField(35);
 pnlResult.add(txtResult);
 pnl.add(pnlResult, BorderLayout.SOUTH);
 setContentPane(pnl);
 pack();
 setResizable(false);
 setLocationRelativeTo(null); // center on the screen
 setVisible(true);
 }
 String toInteger(String input) throws SOAPException
 {
 // Build a request message. The first step is to create an empty message
 // via a message factory. The default SOAP 1.1 message factory is used.
 MessageFactory mfactory = MessageFactory.newInstance();
 SOAPMessage request = mfactory.createMessage();
 // The request SOAPMessage object contains a SOAPPart object, which
 // contains a SOAPEnvelope object, which contains an empty SOAPHeader
 // object followed by an empty SOAPBody object.
 // Detach the header since a header is not required. This step is
 // optional.
 SOAPHeader header = request.getSOAPHeader();
 header.detachNode();
 // Access the body so that content can be added.
 SOAPBody body = request.getSOAPBody();
 // Add the RomanToInt operation body element to the body.
 QName bodyName = new QName("http://eBob42.org/", "RomanToInt", "tns");
 SOAPBodyElement bodyElement = body.addBodyElement(bodyName);
 // Add the Rom child element to the RomanToInt body element.
 QName name = new QName("Rom");
 SOAPElement element = bodyElement.addChildElement(name);

http://eBob42.org/

CHAPTER 11 WORKING WITH WEB SERVICES

808

 element.addTextNode(input).setAttribute("xsi:type", "xs:string");
 // Add appropriate namespaces and an encoding style to the envelope.
 SOAPEnvelope env = request.getSOAPPart().getEnvelope();
 env.addNamespaceDeclaration("env",
 "http://schemas.xmlsoap.org/soap/envelop/");
 env.addNamespaceDeclaration("enc",
 "http://schemas.xmlsoap.org/soap/encoding/");
 env.setEncodingStyle(SOAPConstants.URI_NS_SOAP_ENCODING);
 env.addNamespaceDeclaration("xs", "http://www.w3.org/2001/XMLSchema");
 env.addNamespaceDeclaration("xsi",
 "http://www.w3.org/2001/XMLSchema-instance");
 // Output the request just built to standard output, to see what the
 // SOAP message looks like (which is useful for debugging).
 System.out.println("\nSoap request:\n");
 try
 {
 request.writeTo(System.out);
 }
 catch (IOException ioe)
 {
 JOptionPane.showMessageDialog(RomanNumerals.this,
 ioe.getMessage());
 }
 System.out.println();
 // Prepare to send message by obtaining a connection factory and creating
 // a connection.
 SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance();
 SOAPConnection con = factory.createConnection();
 // Identify the message's target.
 String endpoint = "http://www.ebob42.com/cgi-bin/Romulan.exe/soap/IRoman";
 // Call the Web service at the target using the request message. Capture
 // the response message and send it to standard output.
 SOAPMessage response = con.call(request, endpoint);
 System.out.println("\nSoap response:\n");
 try
 {
 response.writeTo(System.out);
 }
 catch (IOException ioe)
 {
 JOptionPane.showMessageDialog(RomanNumerals.this,
 ioe.getMessage());
 }
 // Close the connection to release resources.
 con.close();
 // Return a response consisting of the reason for a SOAP Fault or the
 // value of the RomanToIntResponse body element's return child element.
 if (response.getSOAPBody().hasFault())
 return response.getSOAPBody().getFault().getFaultString();
 else
 {
 body = response.getSOAPBody();

http://schemas.xmlsoap.org/soap/envelop/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.ebob42.com/cgi-bin/Romulan.exe/soap/IRoman

CHAPTER 11 WORKING WITH WEB SERVICES

809

 bodyName = new QName("urn:Roman-IRoman", "RomanToIntResponse", "NS1");
 Iterator iter = body.getChildElements(bodyName);
 bodyElement = (SOAPBodyElement) iter.next();
 iter = bodyElement.getChildElements(new QName("return"));
 return ((SOAPElement) iter.next()).getValue();
 }
 }
 String toRoman(String input) throws SOAPException
 {
 // Build a request message. The first step is to create an empty message
 // via a message factory. The default SOAP 1.1 message factory is used.
 MessageFactory mfactory = MessageFactory.newInstance();
 SOAPMessage request = mfactory.createMessage();
 // The request SOAPMessage object contains a SOAPPart object, which
 // contains a SOAPEnvelope object, which contains an empty SOAPHeader
 // object followed by an empty SOAPBody object.
 // Detach the header since a header is not required. This step is
 // optional.
 SOAPHeader header = request.getSOAPHeader();
 header.detachNode();
 // Access the body so that content can be added.
 SOAPBody body = request.getSOAPBody();
 // Add the IntToRoman operation body element to the body.
 QName bodyName = new QName("http://eBob42.org/", "IntToRoman", "tns");
 SOAPBodyElement bodyElement = body.addBodyElement(bodyName);
 // Add the Int child element to the IntToRoman body element.
 QName name = new QName("Int");
 SOAPElement element = bodyElement.addChildElement(name);
 element.addTextNode(input).setAttribute("xsi:type", "xs:int");
 // Add appropriate namespaces and an encoding style to the envelope.
 SOAPEnvelope env = request.getSOAPPart().getEnvelope();
 env.addNamespaceDeclaration("env",
 "http://schemas.xmlsoap.org/soap/envelop/");
 env.addNamespaceDeclaration("enc",
 "http://schemas.xmlsoap.org/soap/encoding/");
 env.setEncodingStyle(SOAPConstants.URI_NS_SOAP_ENCODING);
 env.addNamespaceDeclaration("xs", "http://www.w3.org/2001/XMLSchema");
 env.addNamespaceDeclaration("xsi",
 "http://www.w3.org/2001/XMLSchema-instance");
 // Output the request just built to standard output, to see what the
 // SOAP message looks like (which is useful for debugging).
 System.out.println("\nSoap request:\n");
 try
 {
 request.writeTo(System.out);
 }
 catch (IOException ioe)
 {
 JOptionPane.showMessageDialog(RomanNumerals.this,
 ioe.getMessage());
 }
 System.out.println();

http://eBob42.org/
http://schemas.xmlsoap.org/soap/envelop/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 11 WORKING WITH WEB SERVICES

810

 // Prepare to send message by obtaining a connection factory and creating
 // a connection.
 SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance();
 SOAPConnection con = factory.createConnection();
 // Identify the message's target.
 String endpoint = "http://www.ebob42.com/cgi-bin/Romulan.exe/soap/IRoman";
 // Call the Web service at the target using the request message. Capture
 // the response message and send it to standard output.
 SOAPMessage response = con.call(request, endpoint);
 System.out.println("\nSoap response:\n");
 try
 {
 response.writeTo(System.out);
 }
 catch (IOException ioe)
 {
 JOptionPane.showMessageDialog(RomanNumerals.this,
 ioe.getMessage());
 }
 // Close the connection to release resources.
 con.close();
 // Return a response consisting of the reason for a SOAP Fault or the
 // value of the IntToRomanResponse body element's return child element.
 if (response.getSOAPBody().hasFault())
 return response.getSOAPBody().getFault().getFaultString();
 else
 {
 body = response.getSOAPBody();
 bodyName = new QName("urn:Roman-IRoman", "IntToRomanResponse", "NS1");
 Iterator iter = body.getChildElements(bodyName);
 bodyElement = (SOAPBodyElement) iter.next();
 iter = bodyElement.getChildElements(new QName("return"));
 return ((SOAPElement) iter.next()).getValue();
 }
 }
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 new RomanNumerals();
 }
 };
 EventQueue.invokeLater(r);
 }
}
class GPanel extends JPanel
{
 private GradientPaint gp;
 @Override

http://www.ebob42.com/cgi-bin/Romulan.exe/soap/IRoman

CHAPTER 11 WORKING WITH WEB SERVICES

811

 public void paintComponent(Graphics g)
 {
 if (gp == null)
 gp = new GradientPaint(0, 0, Color.pink, 0, getHeight(), Color.orange);
 // Paint a nice gradient background with pink at the top and orange at
 // the bottom.
 ((Graphics2D) g).setPaint(gp);
 g.fillRect(0, 0, getWidth(), getHeight());
 }
}

Listing 11-18 combines Swing/Abstract Window Toolkit code for creating a user interface with SAAJ
code for communicating with the Roman Numerals Conversion web service.

The user interface consists of a pair of textfields and a pair of buttons. One of these textfields is used
to enter the Roman numerals or base-10 integer digits of the value to be converted. The other textfield
displays the conversion result. Click one of the buttons to convert from Roman numerals to integer
digits; click the other button to achieve the opposite conversion. In response to a button click, either the
String toInteger(String input) method or the String toRoman(String input) method is called to
perform the conversion.

Because I discuss the basics of Java’s user interface APIs extensively in Chapter 7, I won’t revisit
them here. Instead, consider the GPanel (Gradient Panel) class.

I introduced GPanel so that I could generate a colorful background for the application’s window.
Some user interface designers might disagree with painting a pink-to-orange gradient (gradual change
in color from an initial color to a final color) as a window background, but I like it. (After all, beauty is in
the eye of the beholder.)

GPanel extends JPanel to describe a custom panel whose surface is painted with a gradient
whenever its inherited void paintComponent(Graphics g) method is called. This happens when the
window is first displayed, and when the window is restored after being minimized (at least on Windows
platforms).

GPanel uses the java.awt.GradientPaint class to paint the gradient. (I could have used the Java 6-
introduced java.awt.LinearGradientPaint class instead, but flipped a coin and ended up using
GradientPaint.) The first two arguments passed to this class’s constructor identify the upper-left corner
(in user space —see Chapter 7) of the rectangular area over which the gradient is drawn, the third
argument specifies the color at the top of the gradient, the fourth and fifth arguments identify the
rectangular area’s lower-right corner, and the final argument identifies the color at the bottom of the
gradient.

■ Note The instantiation of GradientPaint demonstrates lazy initialization, in which an object is not created until
the first time it is needed. Check out Wikipedia’s “Lazy initialization” entry
(http://en.wikipedia.org/wiki/Lazy_initialization) for more information about this pattern.

Ideally, the user interface’s components appear over a gradient background, and not over some
intermediate background. However, because the user interface is created from panels of components
added to the gradient panel, the gradient panel’s surface will not show through these “upper” panels
unless they are made transparent, by calling their void setOpaque(boolean opaque) method with false

http://en.wikipedia.org/wiki/Lazy_initialization

CHAPTER 11 WORKING WITH WEB SERVICES

812

as the argument. For example, pnlInput.setOpaque(false); makes the input panel (the panel containing
a label and input textfield) transparent so that the gradient background shows through.

Listing 11-18 uses SOAPMessage’s void writeTo(OutputStream out) method to output a request or
response message to the standard output stream. You’ll find this feature helpful for understanding the
relationship between SAAJ API calls and the SOAP messages that are constructed, especially if you are
having difficulty following the API calls. This feature is also helpful when you’ve created a SOAP-based
web service with a SEI and SIB and are trying to create a SAAJ-based client.

Compile Listing 11-18 (javac RomanNumerals.java) and run this application (java RomanNumerals).
Figure 11-10 shows the resulting window with an example conversion from 2011 to MMXI.

Figure 11-10. Converting 2011 to its Roman numerals counterpart.

Additionally RomanNumerals outputs the following request and response SOAP messages:

Soap request:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:env="http://schemas.xmlsoap.org/soap/envelop/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-
ENV:Body><tns:IntToRoman xmlns:tns="http://eBob42.org/"><Int
xsi:type="xs:int">2011</Int></tns:IntToRoman></SOAP-ENV:Body></SOAP-ENV:Envelope>

Soap response:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-ENV:Body SOAP-
ENC:encodingStyle="http://schemas.xmlsoap.org/soap/envelope/"><NS1:IntToRomanResponse
xmlns:NS1="urn:Roman-IRoman"><return
xsi:type="xsd:string">MMXI</return></NS1:IntToRomanResponse></SOAP-ENV:Body></SOAP-
ENV:Envelope>

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/envelop/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://eBob42.org/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/envelope/

CHAPTER 11 WORKING WITH WEB SERVICES

813

Although the output is tightly packed together and hard to read, you can clearly see the request 2011
and response MMXI values.

Each of Listing 11-18’s toInteger() and toRoman() methods extracts the response value by first
checking the response message’s body to learn if it describes a fault. This task is accomplished by
invoking SOAPBody’s boolean hasFault() method. If this method returns true, SOAPBody’s SOAPFault
getFault() method is called to return an object that describes the fault in terms of the SOAPFault
interface’s methods, and SOAPFault’s String getFaultString() method is called to return the string-
based fault message.

If hasFault() returns false, the message’s body provides the response value that must be extracted.
The following excerpt from the toRoman() method handles this extraction task:

body = response.getSOAPBody();
bodyName = new QName("urn:Roman-IRoman", "IntToRomanResponse", "NS1");
Iterator iter = body.getChildElements(bodyName);
bodyElement = (SOAPBodyElement) iter.next();
iter = bodyElement.getChildElements(new QName("return"));
return ((SOAPElement) iter.next()).getValue();

After calling SOAPMessage’s SOAPBody getSOAPBody() convenience method to return the SOAPBody
object describing the SOAP message’s body, the excerpt creates a QName object that identifies the
qualified name for the IntToRomanResponse element. This object is then passed to SOAPBody’s inherited
Iterator getChildElements(QName qname) method to return a java.util.Iterator instance that will be
used to iterate over all IntToRomanResponse child elements of the Body element.

Because there is only one such child element, only a single call to next() is made to return this
element, as a SOAPBodyElement instance. This instance is used to invoke getChildElements(), but this
time with the qualified name of the return element. The returned iterator’s next() method is called to
extract the return element as a SOAPElement instance, and getValue() is invoked on this instance to
return the value of the return element, which happens to be MMXI.

Logging SOAP Messages with a JAX-WS Handler
The RomanNumerals application used SOAPMessage’s void writeTo(OutputStream out) method to dump
SOAP messages to the standard output stream. If you want to accomplish this task in the context of
Listing 11-7’s TempVerterClient application, you need to install a JAX-WS handler.

JAX-WS lets you install a chain of handlers on a web service class, a client class, or both to perform
custom processing of request and response messages. For example, you might use a handler to add
security information to the message or to log message details.

A handler is an instance of a class that ultimately implements the javax.xml.ws.handler.Handler<C
extends MessageContext> interface in terms of the following methods:

• void close(MessageContext context) is called at the conclusion of a MEP just
before the JAX-WS runtime dispatches a message, fault or exception. This method
lets a handler clean up any resources used for processing request-only or request-
response message exchanges.

• boolean handleFault(C context) is invoked for fault message processing. This
method returns true when the handler wants to continue handling fault messages;
otherwise, it returns false. It may throw javax.xml.ws.ProtocolException (a
subclass of WebServiceException) or RuntimeException to cause the JAX-WS
runtime to cease the handler’s fault processing and dispatch the fault.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 11 WORKING WITH WEB SERVICES

814

• boolean handleMessage(C context) is invoked for normal processing of inbound
and outbound messages. This method returns true when the handler wants to
continue handling such messages; otherwise, it returns false. It may throw
ProtocolException or RuntimeException to cause the JAX-WS runtime to cease the
handler’s normal message processing and generate a fault.

Each method is called with a MessageContext or subinterface argument that stores a map of
properties for handlers to use to communicate with each other and for other purposes. For example,
MessageContext.MESSAGE_OUTBOUND_PROPERTY stores a Boolean object that identifies a message’s direction.
During a request (from client to web service), this property’s value is Boolean.TRUE from a client
handler’s perspective and Boolean.FALSE from a web service handler’s perspective.

JAX-WS supports logical and protocol handlers. A logical handler is independent of the message
protocol (it only has access to the message payload) and is associated with the
javax.xml.ws.handler.LogicalMessageContext and javax.xml.ws.handler.LogicalHandler<C extends
LogicalMessageContext> interfaces. In contrast, a protocol handler is tied to a specific protocol; JAX-WS
supports SOAP protocol handlers with the javax.xml.ws.handler.soap.SOAPMessageContext and
javax.xml.ws.handler.soap.SOAPHandler interfaces.

To log the flow of SOAP messages, we need to work with SOAPMessageContext and SOAPHandler.
Listing 11-19 presents a SOAPLoggingHandler class that implements SOAPHandler<SOAPMessageContext> to
log the flow of SOAP messages by outputting them to the standard output device.

Listing 11-19. Logging SOAP messages to standard output

import java.io.IOException;
import java.io.PrintStream;

import java.util.Map;
import java.util.Set;

import javax.xml.namespace.QName;

import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

import javax.xml.ws.handler.MessageContext;

import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

class SOAPLoggingHandler implements SOAPHandler<SOAPMessageContext>
{
 private static PrintStream out = System.out;
 @Override
 public Set<QName> getHeaders()
 {
 return null;
 }
 @Override
 public void close(MessageContext messageContext)
 {
 }
 @Override

CHAPTER 11 WORKING WITH WEB SERVICES

815

 public boolean handleFault(SOAPMessageContext soapmc)
 {
 log(soapmc);
 return true;
 }
 @Override
 public boolean handleMessage(SOAPMessageContext soapmc)
 {
 log(soapmc);
 return true;
 }
 private void log(SOAPMessageContext soapmc)
 {
 Boolean outboundProperty = (Boolean)
 soapmc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (outboundProperty.booleanValue())
 out.println("Outbound message:");
 else
 out.println("Inbound message:");
 SOAPMessage soapm = soapmc.getMessage();
 try
 {
 soapm.writeTo(out);
 out.println("\n");
 }
 catch (IOException|SOAPException e)
 {
 out.println("Handler exception: "+e);
 }
 }
}

SOAPLoggingHandler first declares a java.io.PrintStream field named out that identifies the
destination. Although System.out is assigned to out, you can assign a different output stream to this field
for logging SOAP messages to another destination.

SOAPHandler introduces a Set<QName> getHeaders() method for informing the JAX-WS runtime
about the SOAP headers that the handler is responsible for processing. This method returns a set of
qualified names for those SOAP message header blocks that the handler can process. Although we must
implement this method, it returns null because there are no headers to process.

■ Note Jim White’s “Working with Headers in JAX-WS SOAPHandlers” blog post
(http://www.intertech.com/Blog/post/Working-with-Headers-in-JAX-WS-SOAPHandlers.aspx)
demonstrates the usefulness of getHeaders().

The overriding close() method does nothing because there are no resources that need to be
cleaned up. In contrast, handleFault() and handleMessage() invoke the private log() method to log a
SOAP message.

http://www.intertech.com/Blog/post/Working-with-Headers-in-JAX-WS-SOAPHandlers.aspx

CHAPTER 11 WORKING WITH WEB SERVICES

816

The log() method uses its SOAPMessageContext argument to obtain the value of the property
identified as MessageContext.MESSAGE_OUTBOUND_PROPERTY. The return value determines whether an
Inbound message string or an Outbound message string is logged. log() next uses this argument to invoke
the SOAPMessage getMessage() method, which returns a SOAPMessage object whose write(Object o)
method is called to write the SOAP message to the stream identified by out.

You need to instantiate this class and add the resulting instance to the client’s or the web service’s
handler chain. Use the @HandlerChain annotation to add this handler to a web service’s handler chain. In
contrast, Listing 11-20 reveals the programmatic approach to adding a handler to a client’s handler
chain.

Listing 11-20. Adding a SOAPHandler instance to a client’s handler chain

import java.net.URL;

import java.util.List;

import javax.xml.namespace.QName;

import javax.xml.ws.Binding;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Service;

import javax.xml.ws.handler.Handler;

import ca.tutortutor.tv.TempVerter;

class TempVerterClient
{
 public static void main(String[] args) throws Exception
 {
 URL url = new URL("http://localhost:9901/TempVerter?wsdl");
 QName qname = new QName("http://tv.tutortutor.ca/",
 "TempVerterImplService");
 Service service = Service.create(url, qname);
 qname = new QName("http://tv.tutortutor.ca/", "TempVerterImplPort");
 TempVerter tv = service.getPort(qname, TempVerter.class);
// TempVerter tv = service.getPort(TempVerter.class);
 BindingProvider bp = (BindingProvider) tv;
 Binding binding = bp.getBinding();
 List<Handler> hc = binding.getHandlerChain();
 hc.add(new SOAPLoggingHandler());
 binding.setHandlerChain(hc);
 System.out.println(tv.c2f(37.0)+"\n");
 System.out.println(tv.f2c(212.0)+"\n");
 }
}

Listing 11-20’s main() method accesses the client’s handler chain and inserts an instance of
SOAPLoggingHandler into this chain by completing the following steps:

1. Cast the proxy instance returned from getPort() to
javax.xml.ws.BindingProvider because the proxy instance’s class implements

http://tv.tutortutor.ca/
http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

817

this interface. BindingProvider provides access to the protocol binding and
associated context objects for request and response message processing.

2. Call BindingProvider’s Binding getBinding() method to return the protocol
binding instance, which is an instance of a class that ultimately implements
the javax.xml.ws.Binding interface —the class actually implements Binding’s
javax.xml.ws.soap.SOAPBinding subinterface.

3. Invoke Binding’s List<Handler> getHandlerChain() method on this instance to
return a copy of the handler chain.

4. Instantiate SOAPLoggingHandler and add this instance to the java.util.List
instance of Handler instances.

5. Pass this list of handlers to Binding’s void setHandlerChain(List<Handler>
chain) method.

Compile the contents of Listing 11-20. Assuming that TempVerterPublisher is running, run
TempVerterClient. You should observe the following output:

Outbound message:
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"><S:Body><ns2:c2f
xmlns:ns2="http://tv.tutortutor.ca/"><arg0>37.0</arg0></ns2:c2f></S:Body></S:Envelope>

Inbound message:
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"><S:Header/><S:Body><ns2:c2fResponse
xmlns:ns2="http://tv.tutortutor.ca/"><return>98.6</return></ns2:c2fResponse></S:Body></S:E
nvelope>

98.6

Outbound message:
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"><S:Body><ns2:f2c
xmlns:ns2="http://tv.tutortutor.ca/"><arg0>212.0</arg0></ns2:f2c></S:Body></S:Envelope>

Inbound message:
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"><S:Header/><S:Body><ns2:f2cResponse
xmlns:ns2="http://tv.tutortutor.ca/"><return>100.0</return></ns2:f2cResponse></S:Body></S:
Envelope>

100.0

The S: and ns2: namespace prefixes are generated by JAX-WS.

■ Note To learn more about SOAP message handlers (especially on using @HandlerChain), check out Oracle’s
“Creating and Using SOAP Message Handlers” tutorial
(http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv/handlers.html).

http://schemas.xmlsoap.org/soap/envelope/
http://tv.tutortutor.ca/
http://schemas.xmlsoap.org/soap/envelope/
http://tv.tutortutor.ca/
http://schemas.xmlsoap.org/soap/envelope/
http://tv.tutortutor.ca/
http://schemas.xmlsoap.org/soap/envelope/
http://tv.tutortutor.ca/
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv/handlers.html

CHAPTER 11 WORKING WITH WEB SERVICES

818

Authentication and a Customized Lightweight HTTP Server
You can create a customized lightweight HTTP server that offers additional features for testing a web
service, and replace the default lightweight HTTP server that is started in response to an
Endpoint.publish() invocation with your server. What makes this possible is that Endpoint’s void
publish(Object serverContext) method can accept as its argument an instance of a class that
subclasses the abstract com.sun.net.httpserver.HTTPContext class.

■ Note You can find JDK 7 documentation on HTTPContext and the rest of the com.sun.net.httpserver
package’s interface and classes at
http://download.oracle.com/javase/7/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/pa

ckage-summary.html.

For example, suppose you want to test basic authentication with your web service —I introduced
this topic in Chapter 9. On the client side, you install a default authenticator that supplies a username
and password to the web service. Listing 11-21 reveals this authenticator in the context of
TempVerterClient.

Listing 11-21. Supporting basic authentication with the TempVerterClient application

import java.net.Authenticator;
import java.net.PasswordAuthentication;
import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

import ca.tutortutor.tv.TempVerter;

class TempVerterClient
{
 public static void main(String[] args) throws Exception
 {
 Authenticator auth;
 auth = new Authenticator()
 {
 @Override
 protected PasswordAuthentication getPasswordAuthentication()
 {
 return new PasswordAuthentication("x", new char[] { 'y' });
 }
 };
 Authenticator.setDefault(auth);
 URL url = new URL("http://localhost:9901/TempVerter?wsdl");
 QName qname = new QName("http://tv.tutortutor.ca/",

http://download.oracle.com/javase/7/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/pa
http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

819

 "TempVerterImplService");
 Service service = Service.create(url, qname);
 qname = new QName("http://tv.tutortutor.ca/", "TempVerterImplPort");
 TempVerter tv = service.getPort(qname, TempVerter.class);
// TempVerter tv = service.getPort(TempVerter.class);
 System.out.println(tv.c2f(37.0));
 System.out.println(tv.f2c(212.0));
 }
}

For simplicity, Listing 11-21 embeds x as the username and y as the password in the source code. A
more useful and secure application would prompt for this information. At runtime the Java Virtual
Machine invokes getPasswordAuthentication() to obtain these credentials and make them available to
the HTTP server when requested to do so.

This method will not be called if the HTTP server doesn’t make a request, and our current version of
TempVerterPublisher will never cause the HTTP server to make this request. However, you can install a
customized server that will result in this request, and Listing 11-22 presents an enhanced
TempVerterPublisher application that accomplishes this task.

Listing 11-22. Supporting basic authentication with the TempVerterPublisher application

import java.io.IOException;

import java.net.InetSocketAddress;

import javax.xml.ws.Endpoint;

import com.sun.net.httpserver.BasicAuthenticator;
import com.sun.net.httpserver.HttpContext;
import com.sun.net.httpserver.HttpServer;

import ca.tutortutor.tv.TempVerterImpl;

class TempVerterPublisher
{
 public static void main(String[] args) throws IOException
 {
 HttpServer server = HttpServer.create(new InetSocketAddress(9901), 0);
 HttpContext context = server.createContext("/TempVerter");
 BasicAuthenticator auth;
 auth = new BasicAuthenticator("myAuth")
 {
 @Override
 public boolean checkCredentials(String username, String password)
 {
 return username.equals("x") && password.equals("y");
 }
 };
 context.setAuthenticator(auth);
 Endpoint endpoint = Endpoint.create(new TempVerterImpl());
 endpoint.publish(context);
 server.start();

http://tv.tutortutor.ca/

CHAPTER 11 WORKING WITH WEB SERVICES

820

 }
}

The main() method first creates an HTTPServer instance that describes an HTTP server connected to
port 9901 of the local host. This method next creates the /TempVerter context, and returns the resulting
HttpContext subclass object.

Continuing, the abstract com.sun.net.httpserver.BasicAuthenticator class is anonymously
subclassed to describe a server side implementation of HTTP basic authentication; its boolean
checkCredentials(String username, String password) method is called to verify the given name and
password in the context of the basic authenticator’s realm. This method returns true for valid
credentials, and false when they are invalid.

After passing the BasicAuthenticator instance to HttpContext’s Authenticator
setAuthenticator(Authenticator auth) method, Endpoint’s Endpoint create(Object implementor)
method is called to create an Endpoint instance with the specified TempVerterImpl instance as
implementor’s argument. This method’s void publish(Object serverContext) method is then called
with the previous context, and the HttpServer instance is started.

If you were to run TempVerterPublisher and TempVerterClient, you would observe 98.6 followed by
100.0 on two successive lines of output. However, if you modified TempVerterClient’s credentials, you
would observe a thrown exception in regard to not being able to access the WSDL when Service service
= Service.create(url, qname); attempts to execute; the WSDL is not accessible because authentication
has failed.

■ Note Learn more about JAX-WS and basic authentication by checking out Illya Yalovyy’s “HTTP basic
authentication with JAX-WS (Client)” blog post at http://etfdevlab.blogspot.com/2009/12/http-basic-
authentication-with-jax-ws.html.

RESTful Web Services and Attachments
RESTful web services that implement Provider<Source> cannot return arbitrary MIME-typed data (e.g., a
JPEG image). They can only return XML messages with no attachments. If you want to return an
attachment (such as an image file), your web service class must implement the Provider<DataSource>
interface; the javax.activation.DataSource interface provides the JavaBeans Activation Framework with
an abstraction of an arbitrary collection of data.

Listing 11-23 presents an Image Publisher RESTful web service that demonstrates how you could
use DataSource with two other javax.activation package types to return a JPEG image to a client.

Listing 11-23. Returning a JPEG image in response to a GET request

import javax.activation.DataSource;
import javax.activation.FileDataSource;
import javax.activation.MimetypesFileTypeMap;

import javax.annotation.Resource;

import javax.xml.ws.BindingType;
import javax.xml.ws.Endpoint;

http://etfdevlab.blogspot.com/2009/12/http-basic-authentication-with-jax-ws.html
http://etfdevlab.blogspot.com/2009/12/http-basic-authentication-with-jax-ws.html
http://etfdevlab.blogspot.com/2009/12/http-basic-authentication-with-jax-ws.html

CHAPTER 11 WORKING WITH WEB SERVICES

821

import javax.xml.ws.Provider;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceProvider;

import javax.xml.ws.handler.MessageContext;

import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.http.HTTPException;

@WebServiceProvider
@ServiceMode(value = javax.xml.ws.Service.Mode.MESSAGE)
@BindingType(value = HTTPBinding.HTTP_BINDING)
class ImagePublisher implements Provider<DataSource>
{
 @Resource
 private WebServiceContext wsContext;
 @Override
 public DataSource invoke(DataSource request)
 {
 if (wsContext == null)
 throw new RuntimeException("dependency injection failed on wsContext");
 MessageContext msgContext = wsContext.getMessageContext();
 switch ((String) msgContext.get(MessageContext.HTTP_REQUEST_METHOD))
 {
 case "GET" : return doGet();
 default : throw new HTTPException(405);
 }
 }
 private DataSource doGet()
 {
 FileDataSource fds = new FileDataSource("balstone.jpg");
 MimetypesFileTypeMap mtftm = new MimetypesFileTypeMap();
 mtftm.addMimeTypes("image/jpeg jpg");
 fds.setFileTypeMap(mtftm);
 System.out.println(fds.getContentType());
 return fds;
 }
 public static void main(String[] args)
 {
 Endpoint.publish("http://localhost:9902/Image", new ImagePublisher());
 }
}

Listing 11-23’s ImagePublisher class describes a simple RESTful web service whose invoke() method
honors only the HTTP GET verb. Its doGet() method responds to a GET request by returning the contents
of the balstone.jpg image file to the client.

doGet() first instantiates the javax.activation.FileDataSource class, which implements
DataSource, and which encapsulates a file to be returned as an attachment. doGet() passes the name of
this file to the FileDataSource(String name) constructor.doGet() next instantiates the
javax.activation.MimetypesFileTypeMap class so that it can associate a MIME type with the JPEG file
based on its jpg file extension. This mapping is performed by invoking MimetypesFileTypeMap’s void

CHAPTER 11 WORKING WITH WEB SERVICES

822

addMimeTypes(String mime_types) method, passing "image/jpeg jpg" as the argument (image/jpeg is the
MIME type and jpg is the file extension).

Continuing, doGet() invokes FileDataSource’s void setFileTypeMap(FileTypeMap map) method to
associate the MimetypesFileTypeMap instance with the FileDataSource instance.

After invoking FileDataSource’s String getContentType() method to return the MIME type of the
file and outputting its return value, doGet() returns the FileDataSource object to invoke(), which returns
this object to the JAX-WS runtime.

I’ve created an ImageClient application to use with ImagePublisher. Because this application’s
source code is very similar to Listing 11-15’s ViewChart source code, I won’t present its code here (for
brevity) —ImageClient.java is included with this book’s source code, however.

Instead, I’ll demonstrate ImagePublisher in a web browser context. Compile ImagePublisher.java
and execute this application. Once this application is running, launch a web browser and enter
http://localhost:9902/Image in its address bar. Figure 11-11 shows the result in the Mozilla Firefox web
browser —you should also observe image/jpeg in the ImagePublisher application’s command window.

Figure 11-11. Balanced stone at Arches National Park in eastern Utah. (Image courtesy of Public Domain

Images, http://www.public-domain-image.com/nature-landscapes-public-domain-images-

pictures/rock-formations-public-domain-images-pictures/balanced-stone-at-arches-national-

park.jpg.html)

http://www.public-domain-image.com/nature-landscapes-public-domain-images-pictures/rock-formations-public-domain-images-pictures/balanced-stone-at-arches-national-park.jpg.html
http://www.public-domain-image.com/nature-landscapes-public-domain-images-pictures/rock-formations-public-domain-images-pictures/balanced-stone-at-arches-national-park.jpg.html
http://www.public-domain-image.com/nature-landscapes-public-domain-images-pictures/rock-formations-public-domain-images-pictures/balanced-stone-at-arches-national-park.jpg.html
http://www.public-domain-image.com/nature-landscapes-public-domain-images-pictures/rock-formations-public-domain-images-pictures/balanced-stone-at-arches-national-park.jpg.html
http://www.public-domain-image.com/nature-landscapes-public-domain-images-pictures/rock-formations-public-domain-images-pictures/balanced-stone-at-arches-national-park.jpg.html

CHAPTER 11 WORKING WITH WEB SERVICES

823

Modify Listing 11-23, either by removing the .jpg extension in balstone.jpg, or by commenting out
mtftm.addMimeTypes("image/jpeg jpg");. After recompiling ImagePublisher.java, reexecute this
application.

Reload the current web page in the browser. Instead of observing the image being redisplayed, you
should (under Firefox) observe a dialog box identifying application/octet-stream as the MIME type,
and prompting you to save the file or choose a viewer —you will also observe this MIME type in
ImagePublisher’s command window.

The reason for this change of MIME type has to do with MimetypesFileTypeMap’s String
getContentType(String filename) method. At some point, this method is called to return the content
type for the specified filename. When this name is missing an extension, or when a MIME type for the
file’s extension has not been registered (via a call to addMimeTypes()), getContentType() returns the
default application/octet-stream MIME type.

You might want to keep this scenario in mind when customizing ImagePublisher (and a client) to
work with the HTTP Accept request header. (The client specifies an Accept header [via URLConnection’s
void setRequestProperty(String key, String value) method] with one or more MIME types that tell
the server what kind(s) of data the client wants to receive; the server examines this header and returns
this data when the header includes a MIME type that the server can honor.)

■ Note If you’re wondering why @ServiceMode(value = javax.xml.ws.Service.Mode.MESSAGE) is specified in
Listing 11-23, the answer is that Provider<DataSource> is used for sending attachments, which means that
javax.xml.ws.Service.Mode.PAYLOAD mode is invalid.

Providers and Dispatch Clients
This chapter presents high-level and low-level approaches to working with JAX-WS. The high-level
approach requires you to work with SEIs and SIBs; it simplifies and hides the details of converting
between Java method invocations and their corresponding SOAP-based XML messages. The low-level
approach lets you work directly with XML messages, and must be followed to implement a RESTful web
service.

While discussing how to implement a RESTful web service with JAX-WS, I introduced you to this
API’s Provider<T> interface, whose invoke() method is called by a client to receive and process a
request, and to return a response. I then demonstrated how a client communicates with a provider by
using the HttpURLConnection class. Behind the scenes, the JAX-WS runtime takes the information
received from the URL connection and creates the proper object to pass to invoke(). It also takes the
object returned from invoke() and makes its contents available to the client via the URL connection’s
output stream.

JAX-WS also offers the javax.xml.ws.Dispatch<T> interface as a client-side companion to Provider.
A client uses Dispatch to construct messages or message payloads as XML, and is known as a dispatch
client. As with Provider, Dispatch offers a T invoke(T) method. Dispatch clients call this method to send
messages synchronously to providers, and to obtain provider responses from this method’s return value.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 11 WORKING WITH WEB SERVICES

824

■ Note Dispatch offers additional invocation methods, such as Response<T> invokeAsync(T msg) for invoking
the Provider’s invoke() method asynchronously. This method returns immediately; the result of the Provider’s
invoke() method is made available in the returned Response<T> object at some point in the future —the
javax.xml.ws.Response interface extends the java.util.concurrent.Future<T> interface, which I discuss in
Chapter 6.

A dispatch client obtains an object whose class implements Dispatch<T> by invoking one of
Service’s createDispatch() methods. For example, Dispatch<T> createDispatch(QName portName,
Class<T> type, Service.Mode mode) returns a Dispatch instance for communicating with the web
service through the port identified by portName, using the specified Source, SOAPMessage, or DataSource
counterpart to the actual type argument passed to Provider<T>, and via the service mode (message or
payload) passed to mode.

After the Dispatch instance has been obtained, a dispatch client will create an object conforming to
the actual type argument passed to T, and pass this instance to the web service provider in a call to
Dispatch’s invoke() method. To understand the interplay between a dispatch client and a provider,
consider a client that invokes Dispatch<Source>’s invoke() method with an XML document made
available via the Source argument. The following sequence occurs:

• The provider’s JAX-WS runtime dispatches the client request to
Provider<Source>’s invoke() method.

• The provider transforms the Source instance into an appropriate
javax.xml.transform.Result instance (such as a DOM tree), processes this Result
instance in some manner, and returns a Source instance containing XML content
to JAX-WS, which transmits the content to Dispatch’s invoke() method.

• Dispatch’s invoke() method returns another Source instance containing the XML
content, which the dispatch client transforms into an appropriate Result instance
for processing.

Listing 11-24 demonstrates this interplay by providing an alternate version of the doGet() method
that appears in Listing 11-14’s LibraryClient application. Instead of working with HttpURLConnection,
the alternate doGet() method works with Service and Dispatch.

Listing 11-24. Revised LibraryClient application’s doGet() method as a dispatch client

static void doGet(String isbn) throws Exception
{
 Service service = Service.create(new QName(""));
 String endpoint = "http://localhost:9902/library";
 service.addPort(new QName(""), HTTPBinding.HTTP_BINDING, endpoint);
 Dispatch<Source> dispatch;
 dispatch = service.createDispatch(new QName(""), Source.class,
 Service.Mode.MESSAGE);
 Map<String, Object> reqContext = dispatch.getRequestContext();
 reqContext.put(MessageContext.HTTP_REQUEST_METHOD, "GET");
 if (isbn != null)

CHAPTER 11 WORKING WITH WEB SERVICES

825

 reqContext.put(MessageContext.QUERY_STRING, "isbn="+isbn);
 Source result;
 try
 {
 result = dispatch.invoke(null);
 }
 catch (Exception e)
 {
 System.err.println(e);
 return;
 }
 try
 {
 DOMResult dom = new DOMResult();
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.transform(result, dom);
 XPathFactory xpf = XPathFactory.newInstance();
 XPath xp = xpf.newXPath();
 if (isbn == null)
 {
 NodeList isbns = (NodeList) xp.evaluate("/isbns/isbn/text()",
 dom.getNode(),
 XPathConstants.NODESET);
 for (int i = 0; i < isbns.getLength(); i++)
 System.out.println(isbns.item(i).getNodeValue());
 }
 else
 {
 NodeList books = (NodeList) xp.evaluate("/book", dom.getNode(),
 XPathConstants.NODESET);
 isbn = xp.evaluate("@isbn", books.item(0));
 String pubYear = xp.evaluate("@pubyear", books.item(0));
 String title = xp.evaluate("title", books.item(0)).trim();
 String publisher = xp.evaluate("publisher", books.item(0)).trim();
 NodeList authors = (NodeList) xp.evaluate("author", books.item(0),
 XPathConstants.NODESET);
 System.out.println("Title: "+title);
 for (int i = 0; i < authors.getLength(); i++)
 System.out.println("Author: "+authors.item(i).getFirstChild()
 .getNodeValue().trim());
 System.out.println("ISBN: "+isbn);
 System.out.println("Publication Year: "+pubYear);
 System.out.println("Publisher: "+publisher);
 }
 }
 catch (TransformerException e)
 {
 System.err.println(e);
 }
 catch (XPathExpressionException xpee)
 {
 System.err.println(xpee);

CHAPTER 11 WORKING WITH WEB SERVICES

826

 }
 System.out.println();
}

This method first invokes Service’s Service create(QName serviceName) method to create a Service
instance that provides a client view of a web service. In contrast to a Service instance created from a
WSDL file, where the qualified name of the service implementation class and other information is
known to the Service instance, a Service instance created by a dispatch client doesn’t need to have
knowledge of the service when created; the information will be provided to this instance shortly. As a
result, a QName instance with an empty qualified name can be passed to create().

A Dispatch<T> instance must be bound to a specific port and endpoint before use. As a result,
doGet() next invokes Service’s void addPort(QName portName, String bindingId, String
endpointAddress) method to create a new port for the service. (Ports created with this method contain
no WSDL port type information and can be used only for creating Dispatch instances.) The QName
argument passed to portName can contain an empty qualified name. However, an appropriate binding
must be specified via a String-based binding identifier. This example specifies
HTTPBinding.HTTP_BINDING because we are communicating with a RESTful web service via HTTP. Also,
the target service’s endpoint address must be specified as a URI, which happens to be
http://localhost:9902/library in this example.

After adding a port to the Service object, doGet() invokes createDispatch() as explained earlier.
Once again, a QName object with an empty qualified name is passed because there is no WSDL to indicate
a port name.

The returned Dispatch<Source> object’s Map<String,Object> getRequestContext() method (which
Dispatch inherits from its BindingProvider superinterface) is called to obtain the context that is used to
initialize the message context for request messages. doGet() inserts the request method verb (GET) and
query string (isbn=isbn) into this map, which will be made available to the provider.

At this point, doGet() executes Source result = dispatch.invoke(null);, passing null instead of a
Source object as an argument because the provider’s doGet() method expects to receive its data as a
query string. If an exception occurs during the invocation, a catch block outputs the exception
information and exits doGet(). Otherwise, the result object’s XML content is transformed into a
DOMResult object, which is processed via XPath expressions to obtain result data, which is then output.

If you were to run LibraryClient with Listing 11-24’s doGet() method, and if you were to use the
same book-related data presented earlier in this chapter, you would observe the following output:

<response>book inserted</response>

<response>book inserted</response>

9781430210450
0201548550

Title: Advanced C+
Author: James O. Coplien
ISBN: 0201548550
Publication Year: 1992
Publisher: Addison Wesley

Title: Beginning Groovy and Grails
Author: Christopher M. Judd
Author: Joseph Faisal Nusairat
Author: James Shingler
ISBN: 9781430210450

CHAPTER 11 WORKING WITH WEB SERVICES

827

Publication Year: 2008
Publisher: Apress

<response>book updated</response>

Title: Advanced C++
Author: James O. Coplien
ISBN: 0201548550
Publication Year: 1992
Publisher: Addison Wesley

<response>book deleted</response>

9781430210450

■ Note To simplify this chapter’s discussion of web services, I’ve avoided mention of threads and thread
synchronization, until now. According to the JAX-WS 2.2 specification
(http://download.oracle.com/otndocs/jcp/jaxws-2.2-mrel3-evalu-oth-JSpec/) client proxy instances
(returned from Service’s getPort() methods) are not guaranteed to be thread safe. Also, Dispatch instances
(returned from Service’s createDispatch() methods) are not thread safe. In either case, you must use thread
synchronization when these instances will be accessed from multiple threads.

EXERCISES

The following exercises are designed to test your understanding of Java’s web services support:

1. Create a SOAP-based Library web service that recognizes two operations,
expressed via methods void addBook(String isbn, String title) and
String getTitle(String isbn). Create a LibraryClient application that
invokes addBook() followed by getTitle() to test this web service.

2. Create a LibraryClientSAAJ application that uses SAAJ to perform the equivalent
of LibraryClient’s tasks. Use SOAPMessage’s writeTo() method to output each
of the request and response messages for the addBook and getTitle operations.

3. The RESTful web service described by Listing 11-11’s Library class is flawed in
that the doDelete() method doesn’t notify the client when requested to delete a
nonexistent book. How might you modify this method to report this attempt?

http://download.oracle.com/otndocs/jcp/jaxws-2.2-mrel3-evalu-oth-JSpec/

CHAPTER 11 WORKING WITH WEB SERVICES

828

Summary
Web services are server-based applications/software components that expose Web resources to clients
via exchanges of messages. Companies use web services because they overcome traditional middleware
problems by being based on free and open standards, by their maintainability, by involving the Web,
and by being flexible. Furthermore, they help companies preserve their significant investments in legacy
software.

Web services largely fall into two categories: SOAP-based and RESTful. SOAP-based web services
involve the flow of XML messages formatted according to the SOAP XML language protocol between
endpoints, which combine network addresses with bindings, where a binding provides concrete details
on how an interface of operations (where an operation consists of messages) is bound to the SOAP
messaging protocol to communicate commands, error codes, and other items over the wire.

SOAP-based web services typically rely on WSDL documents to identify the operations provided by
the service. An XML-based WSDL document serves as a formal contract between a SOAP-based web
service and its clients, providing all the details needed to interact with the web service. This document
lets you group messages into operations and operations into interfaces. It also lets you define a binding
for each interface as well as the endpoint address.

A RESTful web service is based on the REST software architecture style for the World Wide Web. The
central part of REST is the URI-identifiable resource. REST identifies resources by their MIME types (e.g.,
text/xml). Also, resources have states that are captured by their representations. When a client requests
a resource from a RESTful web service, the service sends a MIME-typed representation of the resource to
the client. Clients use HTTP’s POST, GET, PUT, and DELETE verbs to retrieve representations of and
manipulate resources —REST views these verbs as an API and maps them onto the database CRUD
operations.

Java simplifies and accelerates web services development by incorporating APIs, annotations, tools,
and a lightweight HTTP server (for deploying your web services to a simple web server and testing them
in this environment) into its core. Key APIs are JAX-WS, JAXB, and SAAJ. Important annotations include
WebService, WebMethod, WebServiceProvider, Binding, and ServiceMode. Four tools are also provided to
simplify development: schemagen, wsgen, wsimport, and xjc. The lightweight HTTP server is based on a
package of types located in the com.sun.net.httpserver package of Oracle’s Java reference
implementation. Web services published via JAX-WS’s Endpoint.publish() method call typically cause
the default lightweight HTTP server to be started, although you can create your own HTTP server, make
its context available to Endpoint.publish(), and start this server.

After learning how to create and access your own SOAP-based and RESTful web services, and access
the SOAP-based and RESTful web services created by others, you’ll probably want to learn about
advanced web service topics. Chapter 11 partly satisfies this desire by showing you how to access SOAP-
based web services via the SAAJ API, install a JAX-WS handler to log the flow of SOAP messages, install a
customized lightweight HTTP server to perform authentication, send attachments to clients from a
RESTful web service, and use dispatch clients with providers.

And now for something different! Chapter 12 closes the nonappendix portion of this book by
introducing you to Android and showing you how to create an Android app.

C H A P T E R 12

829

Java 7 Meets Android

Developing apps for Android devices is popular these days. Perhaps you would like to learn how to
develop your own Android apps with Java 7 (although you cannot use APIs and language features newer
than Java 5).

Chapter 12 presents a rapid introduction to app development. You first learn about Android
architecture and the architecture of an Android app. You then learn how to install the Android SDK and
a platform so that you have the tools and an environment to begin app development. Because the SDK
provides an emulator to emulate Android devices, you next learn how to create and start an Android
Virtual Device (AVD), which you can use to test your apps in lieu of an actual Android device. Finally,
you’re introduced to a simple app, learn how to create this app via the SDK, and learn how to install and
run the app on an AVD.

 Note If you want to learn more about Android after reading this chapter, check out Beginning Android 3 by Mark
Murphy (Apress, 2011; ISBN: 978-1-4302-3297-1). You might also want to check out Android Recipes by Dave
Smith and Jeff Friesen (Apress, 2011; ISBN: 978-1-4302-3413-5). Android Recipes teaches you additional Android
app architecture fundamentals, shows you how to install the Eclipse IDE and develop an app with that IDE,
presents solutions to various app development problems, introduces you to various third-party development tools
and the Android NDK, shows you how to create your own libraries and use third-party libraries, and presents app
design guidelines.

Exploring Android and Android App Architectures
The Android Developer’s Guide (http://developer.android.com/guide/index.html) defines Android as a
software stack (a set of software subsystems needed to deliver a fully functional solution) for mobile
devices. This stack includes an operating system (a modified version of the Linux kernel), middleware
(software that connects the low-level operating system to high-level apps), and key apps (written in Java)
such as a web browser (known as Browser) and a contact manager (known as Contacts).

Android offers the following features:

• Application framework enabling reuse and replacement of app components

• Bluetooth, EDGE, 3G, and WiFi support (hardware dependent)

http://developer.android.com/guide/index.html

CHAPTER 12 JAVA 7 MEETS ANDROID

830

• Camera, GPS, compass, and accelerometer support (hardware dependent)

• Dalvik virtual machine optimized for mobile devices

• GSM Telephony support (hardware dependent)

• Integrated browser based on the open source WebKit engine

• Media support for common audio, video, and still image formats (MPEG4, H.264,
MP3, AAC, AMR, JPG, PNG, GIF)

• Optimized graphics powered by a custom 2D graphics library; 3D graphics based
on the OpenGL ES 1.0 specification (hardware acceleration optional)

• SQLite for structured data storage

 Note Although not part of an Android device’s software stack, Android’s rich development environment
(including a device emulator and a plugin for the Eclipse IDE) could also be considered an Android feature.

Android apps are written in Java and can access only the Java APIs described in the API reference at
http://developer.android.com/reference/packages.html (as well as Android-oriented third-party APIs).
They cannot access Java APIs beyond Java 5. This restriction affects Java 7’s try-with-resources
statement, which is based on the new java.lang.AutoCloseable interface and API support for
suppressed exceptions. You cannot use try-with-resources in your Android source code.

 Note Not all Java 5 (and previous version) APIs are supported by Android. For example, Android doesn’t support
the Abstract Window Toolkit (AWT) or Swing. Instead, it offers a smaller set of user-interface APIs.

Android Architecture
The Android software stack consists of apps at the top, middleware (consisting of an application
framework, libraries, and the Android runtime) in the middle, and a Linux kernel with various drivers at
the bottom. Figure 12-1 shows this layered architecture.

http://developer.android.com/reference/packages.html

CHAPTER 12 JAVA 7 MEETS ANDROID

831

Figure 12-1. Android’s layered architecture consists of several major parts.

Users care about apps, and Android ships with a variety of useful core apps, which include Browser,
Contacts, and Phone. All apps are written in Java . Apps form the top layer of Android’s architecture.

Directly beneath the app layer is the application framework, a set of high-level building blocks for
creating apps. The application framework is preinstalled on Android devices and consists of the
following components:

• Activity Manager: This component provides an app’s lifecycle and maintains a
shared activity stack for navigating within and among apps. (I discuss both
concepts later in this chapter when I present activities.)

• Content Providers: These components encapsulate data (e.g., the Browser app’s
bookmarks) that can be shared among apps.

• Location Manager: This component makes it possible for an Android device to be
aware of its physical location.

CHAPTER 12 JAVA 7 MEETS ANDROID

832

• Notification Manager: This component lets an app notify the user of a significant
event (e.g., a message’s arrival) without interrupting what the user is currently
doing.

• Package Manager: This component lets an app learn about other app packages
that are currently installed on the device. (App packages are discussed later in this
chapter.)

• Resource Manager: This component lets an app access its application resources, a
topic that I discuss later in this chapter.

• Telephony Manager: This component lets an app learn about a device’s telephony
services. It also handles making and receiving phone calls.

• View System: This component manages user interface elements and user
interface-oriented event generation. (I briefly discuss these topics later in this
chapter.)

• Window Manager: This component organizes the screen’s real estate into
windows, allocates drawing surfaces, and performs other window-related jobs.

The components of the application framework rely on a set of C/C++ libraries to perform their jobs.
Developers interact with the following libraries by way of framework APIs:

• FreeType: This library supports bitmap and vector font rendering.

• libc: This library is a BSD-derived implementation of the standard C system
library, tuned for embedded Linux-based devices.

• LibWebCore: This library offers a modern and fast web browser engine that powers
the Android browser and an embeddable web view. It’s based on WebKit
(http://en.wikipedia.org/wiki/WebKit) and is also used by the Google Chrome
and Apple Safari browsers.

• Media Framework: These libraries, which are based on PacketVideo’s OpenCORE,
support the playback and recording of many popular audio and video formats, as
well as working with static image files. Supported formats include MPEG4, H.264,
MP3, AAC, AMR, JPEG, and PNG.

• OpenGL | ES: These 3D graphics libraries provide an OpenGL implementation
based on OpenGL ES 1.0 APIs. They use hardware 3D acceleration (where
available) or the included (and highly optimized) 3D software rasterizer.

• SGL: This library provides the underlying 2D graphics engine.

• SQLite: This library provides a powerful and lightweight relational database
engine that’s available to all apps, and that’s also used by Mozilla Firefox and
Apple’s iPhone for persistent storage.

• SSL: This library provides secure sockets layer-based security for network
communication.

• Surface Manager: This library manages access to the display subsystem, and
seamlessly composites 2D and 3D graphic layers from multiple apps.

http://en.wikipedia.org/wiki/WebKit

CHAPTER 12 JAVA 7 MEETS ANDROID

833

Android provides a runtime environment that consists of core libraries (implementing a subset of
the Apache Harmony Java 5 implementation) and the Dalvik virtual machine (a non-Java virtual
machine that’s based on processor registers instead of being stack-based).

 Note Google’s Dan Bornstein created Dalvik and named this virtual machine after an Icelandic fishing village
where some of his ancestors lived.

Each Android app defaults to running in its own Linux process, which hosts an instance of Dalvik.
This virtual machine has been designed so that devices can run multiple virtual machines efficiently.
This efficiency is largely due to Dalvik executing Dalvik Executable (DEX)-based files—DEX is a format
that’s optimized for a minimal memory footprint.

 Note Android starts a process when any part of the app needs to execute, and shuts down the process when
it’s no longer needed and environmental resources are required by other apps.

Perhaps you’re wondering how it’s possible to have a non-Java virtual machine run Java code. The
answer is that Dalvik doesn’t run Java code. Instead, Android transforms compiled Java classfiles into the
DEX format, and it’s this resulting code that gets executed by Dalvik.

Finally, the libraries and Android runtime rely on the Linux kernel (version 2.6.x) for underlying core
services, such as threading, low-level memory management, a network stack, process management, and
a driver model. Furthermore, the kernel acts as an abstraction layer between the hardware and the rest
of the software stack.

ANDROID SECURITY MODEL

Android’s architecture includes a security model that prevents apps from performing operations considered
harmful to other apps, Linux, or users. This security model, which is mostly based on process level
enforcement via standard Linux features (such as user and group IDs), places processes in a security
sandbox.

By default, the sandbox prevents apps from reading or writing the user’s private data (e.g., contacts or
emails), reading or writing another app’s files, performing network access, keeping the device awake,
accessing the camera, and so on. Apps that need to access the network or perform other sensitive
operations must first obtain permission to do so.

Android handles permission requests in various ways, typically by automatically allowing or disallowing the
request based upon a certificate, or by prompting the user to grant or revoke the permission. Permissions
required by an app are declared in the app’s manifest file (discussed later in this chapter) so that they are
known to Android when the app is installed. These permissions won’t subsequently change.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 12 JAVA 7 MEETS ANDROID

834

App Architecture
The architecture of an Android app differs from that of an application running on the desktop. App
architecture is based upon components that communicate with each other via intents, are described by
a manifest, and may use application resources. Collectively, these items are stored in an app package.

Components
An Android app is a collection of components (activities, broadcast receivers, content providers, and
services) that run in a Linux process and that are managed by Android. These components share a set of
environmental resources, including databases, preferences, a filesystem, and the Linux process.

 Note Not all these components need to be present in an app. For example, one app might consist of activities
only, whereas another app might consist of activities and a service.

This component-oriented architecture lets an app reuse the components of other apps, provided
that those other apps permit reuse of their components. Component reuse reduces overall memory
footprint, which is very important for devices with limited memory.

For example, suppose you’re creating a drawing app that lets users choose a color from a palette,
and suppose that another app has developed a suitable color chooser and permits this component to be
reused. In this scenario, the drawing app can call upon that other app’s color chooser to have the user
select a color rather than provide its own color chooser. The drawing app doesn’t contain the other app’s
color chooser or even link to this other app. Instead, it starts up the other app’s color chooser
component when needed.

Android starts a process when any part of the app (e.g., the aforementioned color chooser) is
needed, and instantiates the Java objects for that part. This is why Android’s apps don’t have a single
entry point (no C-style main() function, for example). Instead, apps use components that are
instantiated and run as needed.

COMMUNICATING VIA INTENTS

Activities, broadcast receivers, and services communicate with each other via intents, which are messages
that describe operations to perform (e.g., send an email or choose a photo), or (in the case of broadcasts)
provide descriptions of external events that have occurred (a device’s camera being activated, for example)
and are being announced.

Because nearly everything in Android involves intents, there are many opportunities to replace existing
components with your own components. For example, Android provides the intent for sending an email.
Your app can send that intent to activate the standard mail app, or it can register an activity (discussed
shortly) that responds to the “send an email” intent, effectively replacing the standard mail app with its
own activity.

CHAPTER 12 JAVA 7 MEETS ANDROID

835

These messages are implemented as instances of the android.content.Intent class. An Intent object
describes a message in terms of some combination of the following items:

Intents can be classified as explicit or implicit. An explicit intent designates the target component by its
name (the previously mentioned component name item is assigned a value). Because component names
are usually unknown to the developers of other apps, explicit intents are typically used for app-internal
messages (e.g., an activity that launches another activity located within the same app). Android delivers an
explicit intent to an instance of the designated target class. Only the Intent object’s component name
matters for determining which component should get the intent.

• Action: A string naming the action to be performed or, in the case of broadcast
intents, the action that took place and is being reported. Actions are described by
Intent constants such as ACTION_CALL (initiate a phone call), ACTION_EDIT
(display data for the user to edit), and ACTION_MAIN (start up as the initial activity).
You can also define your own action strings for activating the components in your
app. These strings should include the app package as a prefix
("com.example.project.SELECT_COLOR", for example).

• Category: A string that provides additional information about the kind of component
that should handle the intent. For example, CATEGORY_LAUNCHER means that the
calling activity should appear in the device’s app launcher as a top-level app. (The
app launcher is briefly discussed later in this chapter.)

• Component name: A string that specifies the fully qualified name (package plus
name) of a component class to use for the intent. The component name is
optional. When set, the Intent object is delivered to an instance of the designated
class. When not set, Android uses other information in the Intent object to locate
a suitable target.

• Data: The uniform resource identifier (URI) of the data on which to operate (e.g., a
person record in a contacts database).

• Extras: A set of key-value pairs providing additional information that should be
delivered to the component handling the intent. For example, given an action for
sending an e-mail message, this information could include the message’s subject,
body, and so on.

• Flags: Bit values that instruct Android on how to launch an activity (e.g., which task
the activity should belong to—tasks are discussed later in this chapter) and how
to treat the activity after launch (e.g., whether the activity can be considered a
recent activity). Flags are represented by constants in the Intent class; for
example, FLAG_ACTIVITY_NEW_TASK specifies that this activity will become the
start of a new task on this history stack—the history stack is discussed later in
this chapter.

• Type: The Multipurpose Internet Mail Extensions (MIME) type of the intent data.
Normally, Android infers a type from the data. By specifying a type, you disable
that inference.

CHAPTER 12 JAVA 7 MEETS ANDROID

836

An implicit intent doesn’t name a target (the component name isn’t assigned a value). Implicit intents are
often used to start components in other apps. Android searches for the best component (a single activity or
service to perform the requested action) or components (a set of broadcast receivers to respond to the
broadcast announcement) to handle the implicit intent. During the search, Android compares the contents
of the Intent object to intent filters, manifest information associated with components that can potentially
receive intents.

Filters advertise a component’s capabilities and identify only those intents that the component can handle.
They open up the component to the possibility of receiving implicit intents of the advertised type. When a
component has no intent filters, it can receive only explicit intents. In contrast, a component with filters
can receive explicit and implicit intents. Android consults an Intent object’s action, category, data, and
type when comparing the intent against an intent filter. It doesn’t take extras and flags into consideration.

Activities

An activity is a component that presents a user interface so that the user can interact with the app. For
example, Android’s Contacts app includes an activity for entering a new contact, its Phone app includes
an activity for dialing a phone number, and its Calculator app includes an activity for performing basic
calculations (see Figure 12-2).

Figure 12-2. The main activity of Android’s Calculator app lets the user perform basic calculations.

Although an app can include a single activity, it’s more typical for apps to include multiple activities.
For example, Calculator also includes an “advanced panel” activity that lets the user calculate square
roots, perform trigonometry, and carry out other advanced mathematical operations.

 Note Because activities are the most frequently used component, I discuss them in more detail than broadcast
receivers, content providers, and services. Check out Android Recipes for detailed coverage of these other
component categories.

Activities are described by subclasses of the android.app.Activity class, which is an indirect
subclass of the abstract android.content.Context class.

CHAPTER 12 JAVA 7 MEETS ANDROID

837

 Note Context is an abstract class whose methods let apps access global information about their environments
(e.g., their application resources), and allow apps to perform contextual operations, such as launching activities
and services, broadcasting intents, and opening private files.

Activity subclasses override various Activity lifecycle callback methods that Android calls during
the life of an activity. For example, Listing 12-1’s SimpleActivity class, which is placed in a package
because Android mandates that an app’s components are to be stored in a unique package, extends
Activity and also overrides the void onCreate(Bundle bundle) and void onDestroy() lifecycle callback
methods.

Listing 12-1. A skeletal activity

package ca.tutortutor.simpleapp;

import android.app.Activity;

import android.os.Bundle;

public class SimpleActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState); // Always call superclass method first.
 System.out.println("onCreate(Bundle) called");
 }
 @Override
 public void onDestroy()
 {
 super.onDestroy(); // Always call superclass method first.
 System.out.println("onDestroy() called");
 }
}

SimpleActivity’s overriding onCreate(Bundle) and onDestroy() methods first invoke their
superclass counterparts, a pattern that must be followed when overriding the void onStart(), void
onRestart(), void onResume(), void onPause(), and void onStop() lifecycle callback methods.

• onCreate(Bundle) is called when the activity is first created. This method is used to
create the activity’s user interface, create background threads as needed, and
perform other global initialization. onCreate() is passed an android.os.Bundle
object containing the activity’s previous state, when that state was captured;
otherwise, the null reference is passed. Android always calls the onStart() method
after calling onCreate(Bundle).

CHAPTER 12 JAVA 7 MEETS ANDROID

838

• onStart() is called just before the activity becomes visible to the user. Android
calls the onResume() method after calling onStart() when the activity comes to the
foreground, and calls the onStop() method after onStart() when the activity
becomes hidden.

• onRestart() is called after the activity has been stopped, just prior to it being
started again. Android always calls onStart() after calling onRestart().

• onResume() is called just before the activity starts interacting with the user. At this
point the activity has the focus and user input is directed to the activity. Android
always calls the onPause() method after calling onResume(), but only when the
activity must be paused.

• onPause() is called when Android is about to resume another activity. This method
is typically used to persist unsaved changes, stop animations that might be
consuming processor cycles, and so on. It should perform its job quickly, because
the next activity won’t be resumed until it returns. Android calls onResume() after
calling onPause() when the activity starts interacting with the user, and calls
onStop() when the activity becomes invisible to the user.

• onStop() is called when the activity is no longer visible to the user. This may
happen because the activity is being destroyed, or because another activity (either
an existing one or a new one) has been resumed and is covering the activity.
Android calls onRestart() after calling onStop(), when the activity is coming back
to interact with the user, and calls the onDestroy() method when the activity is
going away.

• onDestroy() is called before the activity is destroyed, unless memory is tight and
Android is forced to kill the activity’s process. In this scenario, onDestroy() is
never called. If onDestroy() is called, it will be the final call that the activity ever
receives.

 Note Android can kill the process hosting the activity at any time after onPause(), onStop(), or onDestroy()
returns. An activity is in a killable state from the time onPause() returns until the time onResume() is called. The
activity won’t again be killable until onPause() returns.

These seven methods define an activity’s entire lifecycle and describe the following three nested
loops:

• The entire lifetime of an activity is defined as everything from the first call to
onCreate(Bundle) through to a single final call to onDestroy(). An activity
performs all its initial setup of “global” state in onCreate(Bundle), and releases all
remaining environmental resources in onDestroy(). For example, when the
activity has a thread running in the background to download data from the
network, it might create that thread in onCreate(Bundle) and stop the thread in
onDestroy().

CHAPTER 12 JAVA 7 MEETS ANDROID

839

• The visible lifetime of an activity is defined as everything from a call to onStart()
through to a corresponding call to onStop(). During this time, the user can see the
activity onscreen, although it might not be in the foreground and interacting with
the user. Between these two methods, the activity can maintain resources that are
needed to show itself to the user. For example, it can register a broadcast receiver
in onStart() to monitor for changes that impact its user interface, and unregister
this object in onStop() when the user can no longer see what the activity is
displaying. The onStart() and onStop() methods can be called multiple times, as
the activity alternates between being visible to and being hidden from the user.

• The foreground lifetime of an activity is defined as everything from a call to
onResume() through to a corresponding call to onPause(). During this time, the
activity is in front of all other activities onscreen and is interacting with the user.
An activity can frequently transition between the resumed and paused states; for
example, onPause() is called when the device goes to sleep or when a new activity
is started, and onResume() is called when an activity result or a new intent is
delivered. The code in these two methods should be fairly lightweight.

 Note Each lifecycle callback method is a hook that an activity can override to perform appropriate work. All
activities must implement onCreate(Bundle) to carry out the initial setup when the activity object is first
instantiated. Many activities also implement onPause() to commit data changes and otherwise prepare to stop
interacting with the user.

Figure 12-3 illustrates an activity’s lifecycle in terms of these seven methods.

CHAPTER 12 JAVA 7 MEETS ANDROID

840

Figure 12-3. The lifecycle of an activity reveals that there’s no guarantee of onDestroy() being called.

Because onDestroy() might not be called, you shouldn’t count on using this method as a place for
saving data. For example, when an activity is editing a content provider’s data, those edits should
typically be committed in onPause().

In contrast, onDestroy() is usually implemented to free environmental resources (e.g., threads) that
are associated with an activity so that a destroyed activity doesn’t leave such things around while the rest
of its app is still running.

Figure 12-3 reveals that an activity is started by calling startActivity(). More specifically, the
activity is started by creating an Intent object describing an explicit or implicit intent, and by passing
this object to Context’s void startActivity(Intent intent) method (launch a new activity; no result is
returned when it finishes).

Alternatively, the activity could be started by calling Activity’s void
startActivityForResult(Intent intent, int requestCode) method. The specified int result is returned
to Activity’s void onActivityResult(int requestCode, int resultCode, Intent data) callback
method as an argument.

CHAPTER 12 JAVA 7 MEETS ANDROID

841

 Note The responding activity can look at the initial intent that caused it to be launched by calling Activity’s
Intent getIntent() method. Android calls the activity’s void onNewIntent(Intent intent) method (also
located in the Activity class) to pass any subsequent intents to the activity.

Listing 12-1’s package statement implies an app named SimpleApp. As well as SimpleActivity
serving as its main activity, let’s assume that this app includes a SimpleActivity2 class describing an
activity for viewing JPEG images. Suppose that you want to start SimpleActivity2 from SimpleActivity’s
onCreate(Bundle) method. The following example shows you how to accomplish this task:

Intent intent = new Intent(SimpleActivity.this, SimpleActivity2.class);
SimpleActivity.this.startActivity(intent);

The first line creates an Intent object that describes an explicit intent. It initializes this object by
passing the current SimpleActivity instance’s reference and SimpleActivity2’s java.lang.Class
instance to the Intent(Context packageContext, Class<?> clazz) constructor.

The second line passes this Intent object to startActivity(Intent), which is responsible for
starting the activity described by SimpleActivity2.class. If startActivity(Intent) was unable to find
the specified activity (which shouldn’t happen), it would throw an
android.content.ActivityNotFoundException instance.

The following example shows you how to start SimpleActivity2 implicitly:

Intent intent = new Intent();
intent.setAction(Intent.ACTION_VIEW); // Use Intent constants instead of literal ...
intent.setType("image/jpeg");
intent.addCategory(Intent.CATEGORY_DEFAULT); // ... strings to reduce errors.
SimpleActivity.this.startActivity(intent);

The first four lines create an Intent object describing an implicit intent. Values passed to Intent’s
Intent setAction(String action), Intent setType(String type), and Intent addCategory(String
category) methods specify the intent’s action, MIME type, and category. They help Android identify
SimpleActivity2 as the activity to be started.

ACTIVITIES, TASKS, AND THE ACTIVITY STACK

Android refers to a sequence of related activities as a task and provides an activity stack (also known as
history stack or back stack) to remember this sequence. The activity starting the task is the initial activity
pushed onto the stack and is known as the root activity. This activity is typically the activity selected by the
user via the device’s app launcher. The activity that’s currently running is located at the top of the stack.

When the current activity starts another, the new activity is pushed onto the stack and takes focus
(becomes the running activity). The previous activity remains on the stack, but is stopped. When an activity
stops, the system retains the current state of its user interface.

When the user presses the device’s BACK key, the current activity is popped from the stack (the activity is
destroyed), and the previous activity resumes operation as the running activity (the previous state of its
user interface is restored).

CHAPTER 12 JAVA 7 MEETS ANDROID

842

Activities in the stack are never rearranged, only pushed and popped from the stack. Activities are pushed
onto the stack when started by the current activity, and popped off the stack when the user leaves them
via the BACK key.

Each time the user presses BACK, an activity is popped off the stack to reveal the previous activity. This
continues until the user returns to the home screen or to whichever activity was running when the task
began. When all activities are removed from the stack, the task no longer exists.

Check out the “Tasks and Back Stack” section in Google’s online Android documentation to learn more
about activities and tasks: http://developer.android.com/guide/topics/fundamentals/tasks-and-
back-stack.html.

Broadcast Receivers

A broadcast receiver is a component that receives and reacts to broadcasts. Many broadcasts originate in
system code; for example, an announcement that the timezone has been changed or the battery power is
low.

Apps can also initiate broadcasts. For example, an app may want to let other apps know that some
data has finished downloading from the network to the device and is now available for them to use.

 Note The abstract android.content.BroadcastReceiver class implements broadcast receivers.

Content Providers

A content provider is a component that makes a specific set of an app’s data available to other apps. The
data can be stored in the Android filesystem, in an SQLite database, or in any other manner that makes
sense.

Content providers are preferable to directly accessing raw data because they decouple component
code from raw data formats. This decoupling prevents code breakage when formats change.

 Note The abstract android.content.ContentProvider class implements content providers.

Services

A service is a component that runs in the background for an indefinite period of time, and which doesn’t
provide a user interface. As with an activity, a service runs on the process’s main thread; it must spawn
another thread to perform a time-consuming operation. Services are classified as local or remote:

• A local service runs in the same process as the rest of the app. Such services make
it easy to implement background tasks.

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html

CHAPTER 12 JAVA 7 MEETS ANDROID

843

• A remote service runs in a separate process. Such services let you perform
interprocess communication.

 Note A service is not a separate process, although it can be specified to run in a separate process. Also, a
service is not a thread. Instead, a service lets the app tell Android about something it wants to be doing in the
background (even when the user is not directly interacting with the app), and lets the app expose some of its
functionality to other apps.

Consider a service that plays music in response to a user’s music choice via an activity. The user
selects the song to play via this activity, and a service is started in response to the selection. The rationale
for using a service to play the music is that the user expects the music to keep playing even after the
activity that initiated the music leaves the screen.

The service plays the music on another thread to prevent the Application Not Responding dialog
box (see Figure 12-4) from appearing.

Figure 12-4. The dreaded Application Not Responding dialog box may result in users uninstalling the app.

 Note The abstract android.app.Service class implements services.

Manifest
Android learns about an app’s various components (and more) by examining the app’s XML-structured
manifest file, AndroidManifest.xml. For example, Listing 12-2 shows how this file might declare Listing
12-1’s activity component.

Listing 12-2. SimpleApp’s manifest file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="ca.tutortutor.simpleapp">
 <application android:label="@string/app_name" android:icon="@drawable/icon">
 <activity android:name=".SimpleActivity" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://schemas.android.com/apk/res/android

CHAPTER 12 JAVA 7 MEETS ANDROID

844

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <!-- ... -->
 </application>
</manifest>

Listing 12-2 begins with the <?xml version="1.0" encoding="utf-8"?> prolog, which identifies this
file as an XML version 1.0 file whose content is encoded according to the UTF-8 encoding standard.
(Chapter 10 introduces you to XML.)

Listing 12-2 next presents the manifest element, which is this XML document’s root element:
android identifies the Android namespace, and package identifies the app’s Java package—each app
must have its own Java package, which is ca.tutortutor.simpleapp in this example. Additional attributes
can be specified. For example, you can specify versionCode and versionName attributes when you want to
identify version information.

Nested within manifest is application, which is the parent of app component elements. Its label
and icon attributes refer to label and icon application resources that Android devices display to
represent the app, and which serve as defaults for individual components whose start tags don’t specify
these attributes. (I’ll discuss application resources shortly.)

 Note Application resources are identified by the @ prefix, followed by a category name (e.g., string or
drawable), /, and the application resource ID (e.g., app_name or icon).

Nested within application is an activity element that describes an activity component. The name
attribute identifies a class (SimpleActivity) that implements the activity. This name begins with a period
character to imply that it’s relative to ca.tutortutor.simpleapp.

 Note The period isn’t present when AndroidManifest.xml is created at the command line. However, this
character is present when this file is created from within Eclipse. Regardless, SimpleActivity is relative to
<manifest>’s package value (ca.tutortutor.simpleapp).

The activity element can override application’s label and icon attributes with its own
component-specific label and icon attributes. When either attribute isn’t present, activity inherits
application’s label or icon attribute value.

Nested within activity is intent-filter. This element declares the capabilities of the component
described by the enclosing element. For example, it declares the capabilities of the SimpleActivity
component via its nested action and category elements:

• action identifies the action to perform. For example, this element’s name attribute
can be assigned "android.intent.action.MAIN" to identify the activity as the app’s
entry point (the first activity to run when the user launches the app).

CHAPTER 12 JAVA 7 MEETS ANDROID

845

• category identifies a component category. This tag’s name attribute is assigned
"android.intent.category.LAUNCHER" to identify the activity as needing to be
displayed in the app launcher (discussed later).

 Note Other components are similarly declared: broadcast receivers are declared via receiver elements,
content providers are declared via provider elements, and services are declared via service elements. Except
for broadcast receivers, which can be created at runtime, components not declared in the manifest are not created
by Android.

The <!-- ... --> comment tag indicates that a manifest can define multiple components. For
example, I referred to a SimpleActivity2 class while discussing activities. Before you could start this
activity (explicitly or implicitly), you would need to introduce an activity element into the manifest.

Consider the following activity element:

<activity android:name=".SimpleActivity2" ...>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="image/jpeg" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

SimpleActivity2’s intent-filter element helps Android determine that this activity is to be
launched when the Intent object’s values match the following tag attribute values:

• <action>’s name attribute is assigned "android.intent.action.VIEW".

• <data>’s mimeType attribute is assigned the "image/jpeg" MIME type.

• <category>’s name attribute is assigned "android.intent.category.DEFAULT" to
allow the activity to be launched without explicitly specifying its component.

 Note The data element describes the data on which an intent operates. Its mimeType attribute identifies the
data’s MIME type. Additional attributes can be specified. For example, you could specify path to identify the data’s
location URI.

AndroidManifest.xml may contain additional information, such as naming any libraries that the app
needs to be linked against (besides the default Android library), and identifying all app-enforced
permissions (via permission elements) to other apps, such as controlling who can start the app’s
activities.

CHAPTER 12 JAVA 7 MEETS ANDROID

846

Also, the manifest may contain uses-permission elements to identify permissions that the app
needs. For example, an app that needs to use the camera would specify the following element: <uses-
permission android:name="android.permission.CAMERA" />.

 Note uses-permission elements are nested within manifest elements—they appear at the same level as the
application element.

At app install time, permissions requested by the app (via uses-permission) are granted to it by
Android’s package installer, based on checks against the digital signatures of the apps declaring those
permissions and/or interaction with the user.

No checks with the user are done while an app is running. It was granted a specific permission when
installed and can use that feature as desired, or the permission wasn’t granted and any attempt to use
the feature will fail without prompting the user.

Application Resources
As well as having a set of environmental resources (e.g., databases, preferences, a filesystem, threads, and
the Linux process) for its components to share, an app can have its own application resources: property
animations, tween animations, state lists of colors, drawables, layouts, menus, raw files, simple values
(e.g., strings), and arbitrary XML files.

 Note Although you can embed application resources such as literal strings in source code, you should separate
them into files to facilitate maintenance, localization (discussed in Appendix C), and device adaptability (making
your app’s user interface look good at different screen sizes, for example).

Android requires that an app store its application resources files in Table 12-1’s subdirectories (and
their subdirectories, where appropriate) of the app’s res directory.

Table 12-1. Application Resource Subdirectories

Directory Description

anim Contains XML files that describe tween animations—see
http://developer.android.com/guide/topics/graphics/view-
animation.html#tween-animation to learn about tween animations.

animator Contains XML files that describe Android 3.0+ property animations—
see
http://developer.android.com/guide/topics/graphics/animation.html
to learn about property animations.

http://developer.android.com/guide/topics/graphics/view-animation.html#tween-animation
http://developer.android.com/guide/topics/graphics/view-animation.html#tween-animation
http://developer.android.com/guide/topics/graphics/view-animation.html#tween-animation
http://developer.android.com/guide/topics/graphics/animation.html

CHAPTER 12 JAVA 7 MEETS ANDROID

847

color Contains XML files that describe state lists of colors.

drawable Contains bitmap files (.png, .9.png, .jpg, .gif) or XML files that are
compiled into bitmap files, nine-patches (resizable bitmaps), state lists,
shapes, animation drawables, and other drawables.

layout Contains XML files that describe user interface layouts.

menu Contains XML files that describe app menus (e.g., an options menu or a
context menu).

raw Contains arbitrary files in their raw form (e.g., MP3 files). When you
need to access the original name of any of these files, you should save
that file in res’s assets subdirectory instead.

values Contains XML files that describe simple values, such as strings, integers,
and colors.

xml Contains arbitrary XML files that can be read at runtime.

Starting with Android 1.6, Android first looks for drawables in res’s drawable-hdpi, drawable-mdpi,

or drawable-ldpi subdirectory, depending on whether the device’s screen resolution is high (hdpi),
medium (mdpi), or low (ldpi). If it doesn’t find the drawable there, it looks in res’s drawable
subdirectory.

I’ll have more to say about application resources when I introduce you to the Java7MeetsAndroid
app later in this chapter.

 Note To learn more about application resources, check out Google’s “Application Resources” guide
(http://developer.android.com/guide/topics/resources/index.html).

App Package
Android apps are written in Java. The compiled Java code for an app’s components is further
transformed into Dalvik’s DEX format. The resulting code files along with any other required data and
application resources are subsequently bundled into an App PacKage (APK), a file identified by the .apk
suffix.

An APK isn’t an app, but is used to distribute at least part of the app and install it on a mobile device.
It’s not an app because its components may reuse another APK’s components, and (in this situation) not
all the app would reside in a single APK. Also, it may only distribute part of an app. However, it’s
common to refer to an APK as representing a single app.

An APK must be signed with a certificate (which identifies the app’s author) whose private key is
held by its developer. The certificate doesn’t need to be signed by a certificate authority. Instead,
Android allows APKs to be signed with self-signed certificates, which is typical. (Android Recipes
discusses APK signing.)

http://developer.android.com/guide/topics/resources/index.html

CHAPTER 12 JAVA 7 MEETS ANDROID

848

APKS, USER IDS, AND SECURITY

Each APK installed on an Android device is given its own unique Linux user ID, and this user ID remains
unchanged for as long as the APK resides on that device.

Because security enforcement occurs at the process level, the code contained in any two APKs cannot
normally run in the same process, because each APK’s code needs to run as a different Linux user.
However, you can have the code in both APKs run in the same process by assigning the same name of a
user ID to the <manifest> tag’s sharedUserId attribute in each APK’s AndroidManifest.xml file. When
you make these assignments, you tell Android that the two packages are to be treated as being the same
app, with the same user ID and file permissions.

In order to retain security, only two APKs signed with the same signature (and requesting the same
sharedUserId value in their manifests) will be given the same user ID.

Installing the Android SDK and an Android Platform
Now that you have a basic understanding of the Android and Android app architectures, you’ll probably
want to create an app. However, you cannot do so until you’ve installed the Android SDK and have also
installed an Android platform. This section shows you how to accomplish these tasks.

Accessing System Requirements
Google provides an Android SDK distribution file for each of the Windows, Intel-based Mac OS X, and
Linux (i386) operating systems. Before downloading and installing this file, you must be aware of SDK
requirements. You cannot use the SDK when your development platform doesn’t meet these
requirements.

The Android SDK supports the following operating systems:

• Windows XP (32-bit), Vista (32- or 64-bit), or Windows 7 (32- or 64-bit)

• Mac OS X 10.5.8 or later (x86 only)

• Linux (tested on Ubuntu Linux, Lucid Lynx): GNU C Library (glibc) 2.11 or later is
required. 64-bit distributions must be able to run 32-bit applications. To learn
how to add support for 32-bit applications, see the Ubuntu Linux installation
notes at http://developer.android.com/sdk/installing.html#troubleshooting.

You’ll quickly discover that the Android SDK is organized into various components: SDK tools, SDK
platform tools, different versions of the Android platform (also known as the Android software stack),
SDK add-ons, USB driver for Windows, samples, and offline documentation. Each component requires a
minimum amount of disk storage space; the total required amount of space depends on which
components you choose to install:

• SDK Tools: The SDK’s tools require approximately 35MB of disk storage space and
must be installed.

• SDK Platform Tools: The SDK’s platform tools require approximately 6MB of disk
storage space and must be installed.

http://developer.android.com/sdk/installing.html#troubleshooting

CHAPTER 12 JAVA 7 MEETS ANDROID

849

• Android platform: Each Android platform corresponds to a specific version of
Android and requires approximately 150MB of disk storage space. At least one
Android platform must be installed.

• SDK Add-on: Each optional SDK add-on (e.g., Google APIs or a third-party
vendor’s API libraries) requires approximately 100MB of disk storage space.

• USB Driver for Windows: The optional USB driver for the Windows platform
requires approximately 10MB of disk storage space. When you’re developing on
Mac OS X or Linux, you don’t need to install the USB driver.

• Samples: Each Android platform’s optional app examples require approximately
10MB of disk storage space.

• Offline documentation: Instead of having to be online to access the Android
documentation, you can choose to download the documentation so that you can
view it even when not connected to the Internet. The offline documentation
requires approximately 250MB of disk storage space.

Finally, you should ensure that the following additional software is installed:

• JDK 5, JDK 6, or JDK 7: You need to install one of these Java Development Kits
(JDKs) to compile Java code. It’s not sufficient to have only a Java Runtime
Environment (JRE) installed. Also, you cannot use Java 7 language features that
rely on APIs newer than Java 5; the try-with-resources statement is unusable.

• Apache Ant: You need to install Ant 1.8 or later so that you can build Android
projects.

 Note When a JDK is already installed on your development platform, take a moment to ensure that it meets the
previously listed version requirement (5, 6, or 7). Some Linux distributions may include JDK 1.4, which isn’t
supported for Android development. Also, Gnu Compiler for Java isn’t supported.

Installing the Android SDK
Point your browser to http://developer.android.com/sdk/index.html and download the current release
of the Android SDK for your platform. For example, you would download one of android-sdk_r12-
windows.zip (Windows), android-sdk_r12-mac_x86.zip (Mac OS X [Intel]), and android-sdk_r12-
linux_x86.tgz (Linux [i386]) to install Android SDK Release 12. (I focus on Release 12 in this chapter
because it’s current at time of writing; a new release may be available by the time this book is published.)

 Note Windows developers have the option of downloading and running installer_r12-windows.exe. Google
recommends that you use this tool, which automates most of the installation process.

http://developer.android.com/sdk/index.html

CHAPTER 12 JAVA 7 MEETS ANDROID

850

For example, if you run Windows, download android-sdk_r12-windows.zip. After unarchiving this
file, move the unarchived android-sdk-windows home directory to a convenient location in your
filesystem; for example, you might move the unarchived C:\unzipped\android-sdk_r12-
windows\android-sdk-windows home directory to the root directory on your C: drive, resulting in
C:\android-sdk-windows.

 Note To complete installation, add the tools subdirectory to your PATH environment variable so that you can
access the SDK’s command-line tools from anywhere in your filesystem.

A subsequent examination of android-sdk-windows shows that this home directory contains the
following subdirectories and files:

• add-ons: This initially empty directory stores add-ons from Google and other
vendors; for example, the Google APIs add-on is stored here.

• platforms: This initially empty directory stores Android platforms in separate
subdirectories. For example, Android 2.3 would be stored in one platforms
subdirectory, whereas Android 2.2 would be stored in another platforms
subdirectory.

• tools: This directory contains a set of platform-independent development and
profiling tools. The tools in this directory may be updated at any time,
independent of Android platform releases.

• SDK Manager.exe: A special tool that launches the Android SDK and AVD Manager
tool, which you use to add components to your SDK.

• SDK Readme.txt: This text file welcomes you to the Android SDK and discusses
installing an Android platform.

The tools directory contains a variety of useful tools, including the following:

• android: Creates and updates Android projects; updates the Android SDK with
new platforms, add-ons, and documentation; and creates, deletes, and views
AVDs (descriptors that describe virtual devices).

• emulator: Runs a full Android software stack down to the kernel level, and includes
a set of preinstalled apps (e.g., Browser) that you can access. The emulator tool
launches an AVD.

• sqlite3: Manages SQLite databases created by Android apps.

• zipalign: Performs archive alignment optimization on APKs.

Installing an Android Platform
Installing the Android SDK is insufficient for developing Android apps; you must also install at least one
Android platform. You can accomplish this task via the SDK Manager tool.

CHAPTER 12 JAVA 7 MEETS ANDROID

851

Run SDK Manager. This tool presents the Android SDK and AVD Manager dialog box, followed by the
Refresh Sources and Choose Packages to Install dialog boxes.

 Note You can also use the android tool to display Android SDK and AVD. Accomplish this task by specifying
android by itself on the command line.

The Android SDK and AVD Manager dialog box identifies virtual devices, installed packages, and
available packages. It also lets you configure proxy server and other settings.

When this dialog box appears for the first time, the Virtual devices entry in the list appearing on the
right side of the dialog box is highlighted, and the pane to the right of that list identifies all AVDs that
have been created (this list will probably be empty).

After presenting this dialog box, SDK Manager scans Google’s servers for available component
packages to install. The Refresh Sources dialog box reveals its progress.

After SDK Manager finishes its scan (which may take a few minutes), it presents the Choose Packages
to Install dialog box (see Figure 12-5) to let you choose SDK components to install. (If you’ve installed
Android SDK Release 12, and haven’t previously installed Android, the only installed component is
Android SDK Tools, revision 12.)

Figure 12-5. The Packages list identifies those packages that can be installed.

CHAPTER 12 JAVA 7 MEETS ANDROID

852

The Choose Packages to Install dialog box shows a Packages list that identifies those packages that
can be installed. It displays checkmarks beside packages that have been accepted for installation, and
displays question marks beside those packages that have yet to be accepted.

For the highlighted package, Package Description & License presents a package description, a list of
other packages that are dependent on this package being installed, information about the archive that
houses the package, and additional information. Also, you can select a radio button to accept or reject
the package. If you reject the highlighted package, an X icon will replace the checkmark or question
mark icon.

 Note In some cases, an SDK component may require a specific minimum revision of another component or SDK
tool. In addition to Package Description & License documenting these dependencies, the development tools will
notify you with debug warnings when there’s a dependency that you need to address.

Android Platform versions 3.0 and higher refer to tablet-oriented Android. Versions less than 3.0
refer to smartphone-oriented Android. Because this chapter focuses on Android 2.3.3, the only packages
that you need to install are Android SDK Platform-tools, revision 6 and SDK Platform Android 2.3.3, API
10, revision 2. All other checked package entries can be unchecked by clicking the Reject option radio
button on their respective panes (or by double-clicking list entries).

 Note If you plan to develop apps that will run on devices with older versions of Android, you might want to leave
the checkmarks beside those older versions. However, it’s not necessary to do so at this point because you can
always come back later and add those versions via SDK Manager or android.

After making sure that only these entries are checked, click the Install button to begin installation.
Figure 12-6 shows you the resulting Installing Archives dialog box.

CHAPTER 12 JAVA 7 MEETS ANDROID

853

Figure 12-6. The Installing Archives dialog box reveals the progress of downloading and installing each

selected package archive.

Installing Archives might present an “‘adb kill-server’ failed—run manually if necessary” message.
This message refers to a platform tool named adb, which stands for Android Debug Bridge (ADB).

ADB manages the state of an emulator instance or an Android-powered device. It includes a server
that runs as a background process on the development machine. The installer must kill this process
before installing platform tools. When this process isn’t running, you’ll see the aforementioned message.

You’ll probably encounter the ADB Restart dialog box, which tells you that a package dependent on
Android Debug Bridge (ADB) has been updated, and asking you whether you want to restart ADB now.
At this point, it doesn’t matter which button you click—you would probably click Yes when the ADB
server process had been running before you started to install a package and you want to resume this
process following the installation.

Click Close on the Installing Archives dialog box to finish installation.
You should now observe the Android SDK and AVD Manager’s Installed packages pane displaying

Android SDK Platform-tools, revision 6 and SDK Platform Android 2.3.3, API 10, revision 2 in addition to
Android SDK Tools, revision 12. You should also observe the following new subdirectories:

• platform-tools (in android-sdk-windows)

• android-10 (in android-sdk-windows/platforms)

platform-tools contains development tools that may be updated with each platform release. Its
tools include aapt (Android Asset Packaging Tool—view, create, and update Zip-compatible archives
(.zip, .jar, .apk); and compile resources into binary assets), the aforementioned adb tool, and dx (Dalvik

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

CHAPTER 12 JAVA 7 MEETS ANDROID

854

Executable—generate Dalvik DEX code from Java “.class” files). android-10 stores Android 2.3.3 data
and user interface-oriented files.

 Tip You might want to add platform-tools to your PATH environment variable so that you can access these
tools from anywhere in your filesystem.

Creating and Starting an AVD
After installing the Android SDK and an Android platform, you’re ready to start developing Android
apps. If you don’t have an actual Android device on which to install and run those apps, you can use the
emulator tool to emulate a device. This tool works in partnership with an AVD, which is a descriptor that
describes various characteristics of the emulated device (e.g., the screen size).

 Tip Even when you have an actual Android device, you should also test your apps with the emulator to see how
they appear under various screen sizes.

This section first shows you how to create an AVD to describe an emulated device. It then shows you
how to start the AVD, and takes you on a tour of its user interface.

Creating an AVD
Launch the Android SDK and AVD Manager dialog box via SDK Manager or android. You’ll probably prefer
to use android, which prevents the Refresh Sources and Choose Packages to Install dialog boxes from
appearing. As shown in Figures 12-5 and 12-6, no AVDs are listed on the Virtual devices pane.

Click the New button. Figure 12-7 shows you the resulting Create new Android Virtual Device (AVD)
dialog box.

CHAPTER 12 JAVA 7 MEETS ANDROID

855

Figure 12-7. An AVD consists of a name, a target platform,and other characteristics.

Figure 12-7 reveals that an AVD has a name, targets a specific Android platform, and more. Enter
test_AVD for the name, select Android 2.3.3 – API Level 10 for the target platform, and enter 100 into
the Size field for the SD card.

Selecting Android 2.3.3 – API Level 10 results in Default (WVGA800) being selected for the AVD’s
skin. Additionally, it presents the following three hardware properties:

• Abstracted LCD density, set to 240 dots per inch

• Max VM application heap size, set to 24MB

• Device ram size, set to 256MB

CHAPTER 12 JAVA 7 MEETS ANDROID

856

 Tip To see the entire device screen at a platform screen resolution of 1024x768, you'll need to change the skin
from Default (WVGA800) to something lower, such as HVGA. Switching to HVGA also changes Abstracted LCD
density to 160.

After keeping the screen defaults and/or making changes, click Create AVD. Then click OK on the
resulting Android Virtual Devices Manager dialog box, which summarizes the AVD. The virtual devices
pane now includes a test_AVD entry.

Starting the AVD
You must start the AVD, which can take a few minutes to get started, before you can install and run apps
on it. Accomplish this task by highlighting the test_AVD entry (on the Virtual devices pane) and clicking
the Start button.

A Launch Options dialog box appears, identifying the AVD’s skin and screen density. It also provides
unchecked checkboxes for scaling the resolution of the emulator’s display to match the physical device’s
screen size, and for wiping user data.

 Note As you update your apps, you’ll periodically package and install them on the emulated device, which
preserves the apps and their state data across AVD restarts in a user-data disk partition. To ensure that an app
runs properly as you update it, you might need to delete the AVD’s user-data partition, which is accomplished by
checking Wipe user data.

Click the Launch button on the Launch Options dialog box to launch the emulator with the AVD. A
Starting Android Emulator dialog box appears, and is followed by command windows (on Windows XP)
and the AVD’s main window.

The main window is divided into a left pane that displays the Android logo on a black background
followed by the home screen, and a right pane that displays phone controls and a keyboard. Figure 12-8
shows these panes for the test_AVD device.

CHAPTER 12 JAVA 7 MEETS ANDROID

857

Figure 12-8. The AVD window presents the home screen on its left, and presents phone controls and a

keyboard on its right.

If you’ve previously used an Android device, you’re probably familiar with the home screen, the
phone controls, and the keyboard. If not, there are a few items to keep in mind:

• The home screen (see Figure 12-8’s left pane) is a special app that serves as a
starting point for using an Android device. It displays wallpaper for its
background. You can change the wallpaper by clicking the MENU button (in the
phone controls), and selecting Wallpaper in the resulting pop-up menu.

• A status bar appears above the home screen (and every app screen). The status bar
presents the current time, amount of battery power remaining, and other
information; and also provides access to notifications.

• The home screen presents a wallpaper background. Click the MENU button in the
phone controls followed by Wallpaper in the pop-up menu to change the
wallpaper.

• The home screen is capable of displaying widgets, which are miniature app views
that can be embedded in the home screen and other app screens, and which
receive periodic updates. For example, the Google Search widget appears near the
top of the home screen in Figure 12-8.

• The app launcher appears near the bottom of the home screen. Click its
rectangular grid icon to switch to the app launcher screen of app icons, and click
any of these icons to launch the respective app. The launcher also presents icons
for launching the frequently used Phone and Browser apps.

CHAPTER 12 JAVA 7 MEETS ANDROID

858

• The home screen is organized around multiple panes. Click the dots on either side
of the app launcher to replace the current pane with the next pane to the left or
right. The number of panes that remain to be visited on the left or right is
indicated by the number of dots to the left or right of the app launcher.

• The house icon phone control button takes you from wherever you are to the
home screen.

• The MENU phone control button presents a context menu with app-specific
choices for the currently running app’s current screen.

• The curved arrow icon (BACK) phone control button takes you back to the
previous activity in the activity stack, which is a stack of previously visited screens.

While the AVD is running, you can interact with it by using your mouse to “touch” the touchscreen
and your keyboard to “press” the device keys. The following list identifies a few mappings from AVD keys
to the development computer’s keyboard keys:

• Home maps to Home

• Menu (left softkey) maps to F2 or Page Up

• Star (right softkey) maps to Shift-F2 or Page Down

• Back maps to Esc

• Switch to previous layout orientation (for example, portrait or landscape) maps to
KEYPAD_7, Ctrl-F11

• Switch to next layout orientation maps to KEYPAD_9, Ctrl-F12

 Tip You must first disable NumLock on your development computer before you can use keypad keys.

Figure 12-8 displays 5554:test_AVD in the titlebar. The 5554 value identifies a console port that you
can use to dynamically query and otherwise control the environment of the AVD.

 Note Android supports up to 16 concurrently executing AVDs. Each AVD is assigned an even-numbered console
port number starting with 5554.

Creating, Installing, and Running an App
Now that you’ve installed the Android SDK, installed an Android platform, and created and started an
AVD, you’re ready to create an app, and install and run this app on the AVD. This section introduces you
to an app named Java7MeetsAndroid. After presenting and discussing the app’s source code and related
files, it shows you how to create this app, and install and run it on the previously started AVD.

CHAPTER 12 JAVA 7 MEETS ANDROID

859

Introducing Java7MeetsAndroid
Java7MeetsAndroid is a single-activity app that presents an image and a button. The image shows Duke,
the Java mascot, over a glowing 7. The button, labeled Wave, starts an animation of Duke waving when
clicked.

 Note Check out “Duke, the Java mascot” (http://kenai.com/projects/duke/pages/Home) to learn more
about this cool character.

Listing 12-3 presents the Java7MeetsAndroid class.

Listing 12-3. An activity for making Duke wave

package ca.tutortutor.j7ma;

import android.app.Activity;

import android.graphics.drawable.AnimationDrawable;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.ImageView;

public class Java7MeetsAndroid extends Activity
{
 AnimationDrawable dukeAnimation;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ImageView dukeImage = (ImageView) findViewById(R.id.duke);
 dukeImage.setBackgroundResource(R.drawable.duke_wave);
 dukeAnimation = (AnimationDrawable) dukeImage.getBackground();
 final Button btnWave = (Button) findViewById(R.id.wave);
 View.OnClickListener ocl;
 ocl = new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 dukeAnimation.stop();
 dukeAnimation.start();
 }

http://kenai.com/projects/duke/pages/Home

CHAPTER 12 JAVA 7 MEETS ANDROID

860

 };
 btnWave.setOnClickListener(ocl);
 }
}

Listing 12-3 begins with a package statement that names the package (ca.tutortutor.j7ma) in which
its Java7MeetsAndroid class is stored, followed by a series of import statements that import various
Android API types. This listing next describes the Java7MeetsAndroid class, which extends Activity.

Java7MeetsAndroid first declares a dukeAnimation instance field of type
android.graphics.drawable.AnimationDrawable. Objects of type AnimationDrawable describe frame-by-
frame animations, in which the current drawable is replaced with the next drawable in the animation
sequence.

 Note AnimationDrawable indirectly extends the abstract android.graphics.drawable.Drawable class,
which is a general abstraction for a drawable, something that can be drawn (e.g., an image).

All the app’s work takes place in Java7MeetsAndroid’s overriding onCreate(Bundle) method: no other
methods are required, which helps to keep this app simple.

onCreate(Bundle) first invokes its same-named superclass method, a rule that must be followed by
all overriding activity methods.

This method then executes setContentView(R.layout.main) to establish the app’s user interface.
R.layout.main is an identifier (ID) for an application resource, which resides in a separate file. You
interpret this ID as follows:

• R is the name of a class that’s generated (by the aapt tool) when the app is being
built. This class is named R because its content identifies various kinds of
application resources (e.g., layouts, images, strings, and colors).

• layout is the name of a class that’s nested within R. All application resources
whose IDs are stored in this class describe specific layout resources. Each kind of
application resource is associated with a nested class that’s named in a similar
fashion. For example, string identifies string resources.

• main is the name of an int constant declared within layout. This resource ID
identifies the main layout resource. Specifically, main refers to a main.xml file that
stores the main activity’s layout information. main is Java7MeetsAndroid’s only
layout resource.

R.layout.main is passed to Activity’s void setContentView(int layoutResID) method to tell
Android to create a user interface screen using the layout information stored in main.xml. Behind the
scenes, Android creates the user interface components described in main.xml and positions them on the
screen as specified by main.xml’s layout data.

The screen is based on views (abstractions of user interface components) and view groups (views
that group related user interface components). Views are instances of classes that subclass the
android.view.View class and are analogous to AWT/Swing components. View groups are instances of
classes that subclass the abstract android.view.ViewGroup class and are analogous to AWT/Swing
containers. Android refers to specific views (e.g., buttons or spinners) as widgets.

CHAPTER 12 JAVA 7 MEETS ANDROID

861

 Note Don’t confuse widget in this context with widgets shown on the Android home screen. Although the same
term is used, user interface widgets and home screen widgets are different.

Continuing, onCreate(Bundle) executes ImageView dukeImage = (ImageView)
findViewById(R.id.duke);. This statement first calls View’s View findViewById(int id) method to find
the android.widget.ImageView element declared in main.xml and identified as duke, and instantiate
ImageView and initialize it to its declarative information. The statement then saves this object’s reference
in local variable dukeImage.

The subsequent dukeImage.setBackgroundResource(R.drawable.duke_wave); statement invokes
ImageView’s inherited (from View) void setBackgroundResourceMethod(int resID) method to set the
view’s background to the resource identified by resID. The R.drawable.duke_wave argument identifies an
XML file named duke_wave.xml (presented later), which stores information on the animation, and which
is stored in res’s drawable subdirectory. The setBackgroundResource() call links the dukeImage view to
the sequence of images described by duke_wave.xml and that will be drawn on this view; the initial image
is drawn as a result of this method call.

ImageView lets an app animate a sequence of drawables by calling AnimationDrawable methods.
Before the app can do this, it must obtain ImageView’s AnimationDrawable. The dukeAnimation =
(AnimationDrawable) dukeImage.getBackground(); assignment statement that follows accomplishes this
task by invoking ImageView’s inherited (from View) Drawable getBackground() method to return the
AnimationDrawable for this ImageView, which is subsequently assigned to the dukeAnimation field. The
AnimationDrawable instance is used to start and stop an animation (discussed shortly).

onCreate(Bundle) now turns its attention to creating the Wave button. It invokes findByViewId(int)
to obtain the button information from main.xml, and then instantiate the android.widget.Button class.

The View class’s nested onClickListener interface is then employed to create a listener object whose
void onClick(View v) method is invoked whenever the user clicks the button. The listener is registered
with its Button object by calling View’s void setOnClickListener(AdapterView.OnClickListener
listener) method.

Wave’s click listener invokes dukeAnimation.stop(); followed by dukeAnimation.start(); to stop
and then start the animation. The stop() method is called before start() to ensure that a subsequent
click of the Wave button causes a new animation to begin.

Along with Listing 12-3’s Java7MeetsAndroid.java source file, Java7MeetsAndroid relies on three XML
resource files and several PNG images. Listing 12-4 presents main.xml, which describes screen layout.

CHAPTER 12 JAVA 7 MEETS ANDROID

862

Listing 12-4. The main.xml file storing layout information that includes a pair of widgets

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center"
 android:background="#ffffff">
 <ImageView android:id="@+id/duke"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="10dip"/>
 <Button android:id="@+id/wave"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/wave"/>
</LinearLayout>

Following the XML declaration, Listing 12-4 declares a LinearLayout element that specifies a layout
(a view group that arranges contained views on an Android device’s screen in some manner) for
arranging contained widgets (including nested layouts) either horizontally or vertically across the
screen.

The <LinearLayout> tag specifies several attributes for controlling this linear layout. These attributes
include the following:

• orientation identifies the linear layout as horizontal or vertical – contained
widgets are laid out horizontally or vertically. The default orientation is horizontal.
"horizontal" and "vertical" are the only legal values that can be assigned to this
attribute.

• layout_width identifies the width of the layout. Legal values include "fill_parent"
(be as wide as the parent) and "wrap_content" (be wide enough to enclose
content). fill_parent was renamed to match_parent in Android 2.2, but is still
supported and widely used.

• layout_height identifies the height of the layout. Legal values include
"fill_parent" (be as tall as the parent) and "wrap_content" (be tall enough to
enclose content).

• gravity identifies how the layout is positioned relative to the screen. For example,
"center" specifies that the layout should be centered horizontally and vertically
on the screen.

• background identifies a background image, a gradient, or a solid color. For
simplicity, I’ve hardcoded a hexadecimal color identifier to signify a solid white
background (#ffffff).

The LinearLayout element encapsulates ImageView and Button elements. Each of these elements
specifies an id attribute that identifies the element so that it can be referenced from code. The resource
identifier (special syntax that begins with @) assigned to this attribute begins with the @+id prefix. For

http://schemas.android.com/apk/res/android

CHAPTER 12 JAVA 7 MEETS ANDROID

863

example, @+id/duke identifies the ImageView element as duke; this element is referenced from code by
specifying R.id.duke.

These elements also specify layout_width and layout_height attributes for determining how their
content is laid out. Each attribute is assigned wrap_content so that the element will appear at its natural
size.

ImageView specifies a layout_marginBottom attribute to identify a space separator between itself and
the button that follows vertically. The space is specified as 10 dips, or density-independent pixels (virtual
pixels that apps can use to express layout dimensions/positions in a screen density-independent way).

 Note A density-independent pixel is equivalent to one physical pixel on a 160-dpi screen, the baseline density
assumed by Android. At run time, Android transparently handles any scaling of the required dip units, based on the
actual density of the screen in use. Dip units are converted to screen pixels via equation pixels = dips * (density /
160). For example, on a 240-dpi screen, 1 dip equals 1.5 physical pixels. Google recommends using dip units to
define your app's user interface to ensure proper display of the UI on different screens.

The Button element’s text attribute is assigned @string/wave, which references a string resource
named wave. This string resource is stored in an XML file named strings.xml, which is stored in the
values subdirectory of res.

Listing 12-5 describes the contents of strings.xml.

Listing 12-5. The strings.xml file storing the app’s strings

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Java7MeetsAndroid</string>
 <string name="wave">Wave</string>
</resources>

As well as wave, Listing 12-5 reveals a string resource identified as app_name. This resource ID
identifies the app’s name and is referenced from the app’s manifest, typically from the label attribute of
the application element start tag (see Listing 12-2).

Listing 12-6 presents duke_wave.xml.

Listing 12-6. The duke_wave.xml file storing the app’s animation list of drawable items

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="true">
 <item android:drawable="@drawable/duke0" android:duration="100" />
 <item android:drawable="@drawable/duke1" android:duration="100" />
 <item android:drawable="@drawable/duke2" android:duration="100" />
 <item android:drawable="@drawable/duke3" android:duration="100" />
 <item android:drawable="@drawable/duke4" android:duration="100" />
 <item android:drawable="@drawable/duke5" android:duration="100" />
 <item android:drawable="@drawable/duke6" android:duration="100" />
 <item android:drawable="@drawable/duke7" android:duration="100" />
 <item android:drawable="@drawable/duke8" android:duration="100" />

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

http://schemas.android.com/apk/res/android

CHAPTER 12 JAVA 7 MEETS ANDROID

864

 <item android:drawable="@drawable/duke9" android:duration="100" />
 <item android:drawable="@drawable/duke0" android:duration="100" />
</animation-list>

Listing 12-6 presents the animation list of drawables that are connected to dukeImage via the
dukeImage.setBackgroundResource(R.drawable.duke_wave); statement.

 Note The animation-list element’s oneshot attribute determines whether the animation will cycle in a loop
(when this attribute is assigned "false") or occur only once (when it’s assigned "true"). When "true" is
assigned to oneshot, you must invoke AnimationDrawable()’s stop() method before its start() method to
generate another oneshot animation sequence.

Nested inside the animation-list element is a sequence of item elements. Each item element
identifies one drawable in the animation sequence via its drawable attribute. The @drawable/dukex
resource reference (where x ranges from 0 through 9) identifies an image file whose name starts with
duke in res’s drawable directory. The duration attribute identifies the number of milliseconds that must
elapse before the next item element’s drawable is displayed.

Listing 12-7 presents Java7MeetsAndroid’s AndroidManifest.xml file.

Listing 12-7. Describing the Java7MeetAndroid app

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="ca.tutortutor.j7ma"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/icon">
 <activity android:name="Java7MeetsAndroid"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Creating Java7MeetsAndroid
Several steps must be followed to create Java7MeetsAndroid. The first step is to use the android tool to
create a project. When used in this way, android requires you to adhere to the following syntax (which is
spread across multiple lines for readability):

android create project --target target_ID
 --name your_project_name
 --path /path/to/your/project/project_name
 --activity your_activity_name

http://schemas.android.com/apk/res/android

CHAPTER 12 JAVA 7 MEETS ANDROID

865

 --package your_package_namespace

Except for --name (or –n), which specifies the project’s name (when provided, this name will be used
for the resulting .apk filename when you build your app), all the following options are required:

• The --target (or -t) option specifies the app’s build target. The target_ID value is
an integer value that identifies an Android platform. You can obtain this value by
invoking android list targets. If you’ve only installed the Android 2.3.3
platform, this command should output a single Android 2.3.3 platform target
identified as integer ID 1.

• The --path (or -p) option specifies the project directory’s location. The directory is
created if it doesn’t exist.

• The --activity (or -a) option specifies the name for the default activity class. The
resulting classfile is created inside
/path/to/your/project/project_name/src/your_package_namespace/, and is used
as the .apk filename if --name (or -n) isn’t specified.

• The --package (or -k) option specifies the project’s package namespace, which
must follow the rules for packages that are specified in the Java language.

Assuming a Windows XP platform, and assuming a C:\prj\dev hierarchy where the
Java7MeetsAndroid project is to be stored in C:\prj\dev\Java7MeetsAndroid, invoke the following
command from anywhere in the filesystem to create Java7MeetsAndroid:

android create project -t 1 -p C:\prj\dev\Java7MeetsAndroid -a Java7MeetsAndroid -k
ca.tutortutor.j7ma

This command creates various directories and adds files to some of these directories. It specifically
creates the following file and directory structure within C:\prj\dev\Java7MeetsAndroid:

• AndroidManifest.xml is the manifest file for the app being built. This file is
synchronized to the Activity subclass previously specified via the --activity or -
a option.

• bin is the output directory for the Apache Ant build script.

• build.properties is a customizable properties file for the build system. You can
edit this file to override default build settings used by Apache Ant, and provide a
pointer to your keystore and key alias so that the build tools can sign your app
when built in release mode (discussed in Android Recipes).

• build.xml is the Apache Ant build script for this project.

• default.properties is the default properties file for the build system. Don’t
modify this file.

• libs contains private libraries (when required).

• local.properties contains the location of the Android SDK home directory.

• proguard.cfg contains configuration data for ProGuard, an SDK tool that lets
developers obfuscate their code (making it very difficult to reverse engineer the
code) as an integrated part of a release build.

CHAPTER 12 JAVA 7 MEETS ANDROID

866

• res contains the project’s application resources.

• src contains the project’s source code.

res contains the following directories:

• drawable-hdpi contains drawable resources (such as icons) for high-density
screens.

• drawable-ldpi contains drawable resources for low-density screens.

• drawable-mdpi contains drawable resources for medium-density screens.

• layout contains layout files.

• values contains value files.

Also, src contains the ca\tutortutor\j7ma directory structure, and the final j7ma subdirectory
contains a skeletal Java7MeetsAndroid.java source file.

Before you can create this app, you need to perform the following tasks:

• Replace the skeletal Java7MeetsAndroid.java source file with Listing 12-3.

• Replace the layout subdirectory’s skeletal main.xml file with Listing 12-4.

• Replace the values subdirectory’s skeletal strings.xml file with Listing 12-5.

• Create a drawable directory underneath res. Copy the duke0.png through
duke9.png images located in this book’s code file along with Listing 12-6’s
duke_wave.xml file to drawable.

The generated AndroidManifest.xml file should be fine, although you can replace it with Listing 12-7
if desired.

Assuming that C:\prj\dev\Java7MeetsAndroid is current, build this app with the help of Apache’s
ant tool, which defaults to processing this directory's build.xml file. At the command line, specify ant
followed by debug or release to indicate the build mode:

• Debug mode: Build the app for testing and debugging. The build tools sign the
resulting APK with a debug key and optimize the APK with zipalign. Specify ant
debug.

• Release mode: Build the app for release to users. You must sign the resulting APK
with your private key, and then optimize the APK with zipalign. (I discuss these
tasks in Android Recipes.) Specify ant release.

Build Java7MeetsAndroid in debug mode by invoking ant debug from the C:\prj\dev\Java7MeetsAndroid
directory. This command creates a gen subdirectory containing the ant-generated R.java file (in a
ca\tutortutor\j7ma directory hierarchy), and stores the created Java7MeetsAndroid-debug.apk file in the
bin subdirectory.

Installing and Running Java7MeetsAndroid
If you successfully created Java7MeetsAndroid-debug.apk, you can install this APK on the previously
started AVD. You can accomplish this task by using the adb tool, as follows:

adb install C:\prj\dev\Java7MeetsAndroid\bin\Java7MeetsAndroid-debug.apk

CHAPTER 12 JAVA 7 MEETS ANDROID

867

After a few moments, you should see several messages similar to those shown here:

325 KB/s (223895 bytes in 0.671s)
 pkg: /data/local/tmp/Java7MeetsAndroid-debug.apk
Success

You might have to repeat the aforementioned command line a few times should you encounter a
“device offline” error message.

Select the app launcher (grid) icon at the bottom of the home screen. Figure 12-9 shows you the
highlighted Java7MeetsAndroid entry.

Figure 12-9. The highlighted Java7MeetsAndroid app entry displays the standard icon and a label that

automatically scrolls horizontally when the icon and label are highlighted.

 Note Each of the res directory’s drawable-hdpi, drawable-mdpi, and drawable-ldpi subdirectories contains
an icon.png file that presents a different size of the default icon shown in Figure 12-9. You can replace all three
versions of the icon with your own icon, if desired.

Click the highlighted icon and you should see the screen shown in Figure 12-10—I’ve clicked the
Wave button so this screen is showing one frame of the animation.

CHAPTER 12 JAVA 7 MEETS ANDROID

868

Figure 12-10. Duke waves at you each time you click Wave.

When you’re tired of playing with this app, click the BACK (curved arrow) button in the phone
controls or press the Esc key to revert to the previous screen, which should be the app launcher with its
app icons.

You can uninstall this app by clicking the MENU button (on the app launcher screen), selecting
Manage apps from the pop-up menu, highlighting Java7MeetsAndroid in the apps list, clicking this entry,
and clicking the Uninstall button.

 Tip During development, you’ll find it easier and faster to use the adb tool to uninstall an app. For example,
specify adb uninstall ca.tutortutor.j7ma to uninstall Java7MeetsAndroid. You must specify the app’s
package name to uninstall it.

EXERCISES

The following exercises are designed to test your understanding of Android app development:

1. Create SimpleApp using Listing 12-1 as the source code for this app’s
SimpleActivity.java source file. You should end up with a SimpleApp-

CHAPTER 12 JAVA 7 MEETS ANDROID

869

debug.apk file in the bin subdirectory. (Hint: you’ll need to use the android
tool’s -n command-line option.) Install this APK on the running test_AVD
emulated device.

2. When you view this app’s icon and label on the app launcher screen, you’ll
notice that the label says SimpleActivity instead of SimpleApp. Why?

3. How would you uninstall SimpleApp from test_AVD?

4. Expand SimpleApp by including a SimpleActivity2.java source file whose
onCreate(Bundle) method is similar to SimpleActivity.java’s
onCreate(Bundle) method but consists of
super.onCreate(savedInstanceState); followed by Toast.makeText(this,
getIntent().toString(), Toast.LENGTH_LONG).show();. (The
android.widget.Toast class is useful for briefly displaying short debugging
messages in lieu of using System.out.println(), whose output can be viewed
only after invoking adb logcat. Because so many messages are output to this
log, it can be difficult to locate System.out.println() content, which is why
you’ll probably find Toast to be more useful.) Refactor SimpleActivity’s
onCreate(Bundle) method to start SimpleActivity2 via an implicit intent, as
demonstrated earlier in this chapter.

5. Continuing from Exercise 4, create SimpleApp (make sure to refactor
AndroidManifest.xml to account for SimpleActivity2). After installing the
refactored SimpleApp, click its app launcher StartActivity icon. What
happens?

Summary
The Android Developer’s Guide defines Android as a software stack (a set of software subsystems needed
to deliver a fully functional solution) for mobile devices. This stack includes an operating system (a
modified version of the Linux kernel), middleware (software that connects the low-level operating
system to high-level apps), and key apps (written in Java) such as a web browser (known as Browser) and
a contact manager (known as Contacts).

Android presents a layered architecture that includes an application framework (Activity Manager,
Content Providers, Location Manager, Notification Manager, Package Manager, Resource Manager,
Telephony Manager, View System, and Window Manager), libraries (FreeType, libc, LibWebCore, Media
Framework, OpenGL | ES, SGL, SQLite, SSL, and Surface Manager), the Android runtime (Core Libraries
and Dalvik Virtual Machine), and a Linux kernel.

The architecture of an Android app differs from that of an application running on the desktop. App
architecture is based upon components (activities, broadcast receivers, content providers, and services)
that communicate with each other via intents, are described by a manifest, and may use application
resources. Collectively, these items are stored in an app package, also known as an APK.

Before you can create an app, you need to install the Android SDK and an Android platform. You
then need to create an AVD and start the AVD before you can install and run your app.

Java7MeetsAndroid describes a single-activity app that presents an image and a button. The image
shows Duke, the Java mascot, over a glowing 7. The button, labeled Wave, starts an animation of Duke
waving when clicked. In addition to its Java7MeetsAndroid.java source file, this app consists of main.xml,
strings.xml, duke_wave.xml, and duke0.png through duke9.png application resource files. It also has its
own AndroidManifest.xml manifest.

871

Index

 A
ABD (Android Debug Bridge), 853
abs() method, 230
absolute pathname, 513–515
abstract classes, 109–110, 396
abstract methods, 109–110
abstract pathnames, 513, 581
abstract types, 123
Abstract Window Toolkit. See AWT
AbstractButton class, 508
AbstractCollection class, 320, 400
AbstractList class, 320, 396, 400
AbstractMap class, 320, 400
AbstractQueue class, 320, 395, 400
AbstractSequentialList class, 320, 400
AbstractSet class, 320, 400
AbstractTableModel class, 656
accept() method, 520–521, 593–594
AccessibleObject class, 271
accessing data, 585–661

databases, 628–659
Java DB, 629–636
JDBC API, 636–659

networks, 585–628
authentication, 620–625
cookies, 626–628
sockets, 585–609
URLs, 609–620

ActionEvent object, 442–443
actionPerformed() method, 578
activeCount() method, 289
activities, component of Android app, 836–

841
Activity class, 836, 841
activity lifecycle, 838
activity stack, 831, 841, 858
add() method, 138, 197, 322, 329, 331, 335, 342,

355, 360, 578
addAll() method, 323, 325, 329
addAppt() method, 101–103

addAppts() method, 101–102
addEmployee() method, 140
addFirst() method, 360
addition operator, 25
additive operators, 30
addLast() method, 360
addNotify() method, 439
addresses, socket, 587–588
addSuppressed() method, 158
addxListener() method, 442
advanced language features, 131–225

annotations, 184–194
discovering, 185–188
processing, 192–194

assertions, 175–184
avoiding, 183
control-flow invariants, 178–179
declaring, 176–177
enabling and disabling, 183–184
internal invariants, 177–178

enumerated type, 212–225
exceptions, 155–175

defined, 155
throwing exceptions, 161–163

generics, 194–212
arrays and, 208–210
collections and need for type safety,

195–197
generic methods, 206–208
varargs and, 211–212

nested types, 131–143
anonymous classes, 138–140
interfaces within classes, 143
local classes, 140–143
nonstatic member classes, 135–138
static member classes, 131–135

packages, 144–153
defined, 144–145
import statement, 146–147
and JAR files, 153
package statement, 145–146

 INDEX

872

advanced language features, packages (cont.)
playing with, 148–152
uniqueness of package names, 145

static imports, 153–154
AffineTransform class, 488
ages array, 36
agile software development, 122
algorithm, 181
allOf() method, 343–344
American National Institute of Standards &

Technology (NIST), 590
American Standard Code for Information

Interchange (ASCII), 566
AND operator, 342
Android apps, 829–869

architecture of, 829–847
Android software stack, 830–833
APK file, 847
application resources, 846–847
components, 834–843
manifest file, 843–846

AVD, 854–858
creating, installing, and running, 859–868
installing SDK and platform for, 848–854

Android Debug Bridge (ABD), 853
android-sdk-windows, 850, 853
Android software stack, 830–833
Android Virtual Devices (AVDs), 829, 854–858
AndroidManifest.xml file, 848, 866
Animals class, 128
animation-list element, 864
annotations, 184–194

discovering annotations, 185–188
processing annotations, 192–194
type declarations, meta-annotations in,

190–192
web service, 759–760

anonymous classes, 138–140
Apache Ant, 849, 865
APIs (Application Programming Interfaces)

JDBC, 647
legacy, 391–395
web service, 759

APK (App Package) files, 847
app launcher, 835, 841, 845, 858, 867–869
App Package (APK) files, 847
append() method, 278, 533, 535, 568
appendable interface, 568
appendChild() method, 712
application element, 846, 863
Application Not Responding dialog box, 843

Application Programming Interfaces. See APIs
application resources, 846–847
apps, Java7MeetsAndroid. See

Java7MeetsAndroid app
Appt object, 102
ApptCalendar class, 101–103
Area class, 497
area() method, 145
Area object, 497–498
arguments, passing to methods, 69
ArithmeticException object, 34, 163
Array class, 259, 271
array index operator, 25, 30–31
array initializers, 22
array types, 19, 198
ArrayBlockingQueue, 413–414, 416
arraycopy() method, 281, 318
ArrayDeque class, 363–364
ArrayDeque() method, 363
ArrayIndexOutOfBoundsException class, 232
ArrayList class, 122–123, 333–334
ArrayList() method, 320, 331, 333–334, 390–391,

396, 400
arrays and generics, 208–210
Arrays class, 181, 212, 320, 388–389, 395, 400,

432
arrays, creating with new operator, 57–59
ArrayStoreException class, 209, 224
ASCII (American Standard Code for

Information Interchange), 566
AssertionError class, 158, 176–178, 183
assertions, 175–184

avoiding assertions, 183
control-flow invariants, 178–179
declaring assertions, 176–177
enabling and disabling assertions, 183–184
internal invariants, 177–178

assignment operators, 25, 31
assignment statements, 36
associativity, 35
Atomic class, variables of, 419
AttachmentPart class, 805
AttachmentPart object, 805
attachments, RESTful web services and, 822–

825
Attr interface, 707
Attribute node, 701
ATTRIBUTE_NODE, 705
authentication

and customized lightweight HTTP server,
820–822

 INDEX

873

overview, 620–625
Authenticator class, 622
Author class, 789–791
autoboxing, and unboxing, 327–329
AutoCloseable interface, 175, 830
automatic resource management, 174–175
available() method, 568
AVDs (Android Virtual Devices), 829, 854–858
avoiding assertions, 183
await() method, 411–413
awaitTermination() method, 403–404
AWT (Abstract Window Toolkit) API, 435–463

component classes
demonstrating, 443–456
overview of, 437–440

containers
demonstrating, 443–456
overview of, 440–441

data transfer, 461–463
events

demonstrating, 443–456
overview of, 442–443

images, 456–461
layout managers

demonstrating, 443–456
overview of, 441–442

toolkits, 436
AWTEvent class, 442

 B
BACK key, 841–842
back stack, 841
BandCombineOp class, 501
BasicAuthenticator class, 822
Because class, 68, 84, 130
BigDecimal class, 306–311, 318
BigInteger class, 312–318
binary search, 388–389
Binding interface, 819
Birds class, 391
bitset, 342–343, 392–394
BitSet class, 394
BitSet() method, 391–395, 397, 399–400
Bitwise AND operator, 25
Bitwise complement operator, 25
Bitwise exclusive OR operator, 25
Bitwise inclusive OR operator, 25
bitwise operators, 31
blank final, 63

Blob interface, 654
Blob object, 654
BLOB type, 654
BlockingQueue, 413–416, 418
Book class, 787–790
boolean canExecute() method, 517
boolean canRead() method, 517
boolean canWrite() method, 517
Boolean class, 240–242
boolean createNewFile() method, 521
boolean delete() method, 522
boolean exists() method, 517
Boolean expression, 32, 36–37, 41–45, 47–48
boolean isAbsolute() method, 515
boolean isDirectory() method, 517
boolean isFile() method, 517
boolean isHidden() method, 518
Boolean literal, 21
boolean markSupported() method, 540
boolean mkdir() method, 522
Boolean object, 240–242, 714, 720, 816
Boolean property, 789
boolean setReadOnly() method, 523
Boolean type, 26–27, 373
boolean valid() method, 529
booleanValue() method, 241
Border interface, 467
BorderFactory class, 467
BorderLayout class, 602
boxing, autoboxing and unboxing, 327–329
BoxLayout class, 578
Bridge driver, 637
broadcast receivers, component of Android

app, 842
BroadcastReceiver class, 842
BrokenBarrierException class, 410
buffered images

architecture of, 500
processing, 501–507

convolving images, 502–506
lookup tables, 506–507

BufferedImage class
buffered images

architecture of, 500
processing, 501–507

overview, 498–500
BufferedImageOp interface, 501
BufferedInputStream class, 538, 550–551, 567–

568, 580–581
BufferedOutputStream class, 538, 550–551,

567–568, 580

 INDEX

874

BufferedReader, 567–568, 572–574, 576, 580–
581

BufferedWriter, 567–568
bugs, 156, 175
Bundle object, 837
Button class, 861
Button element, 862
Button object, 861
ButtonModel interface, 468
ButtonUI class, 468
Byte class, 247–249
bytecode verifier, 3

 C
CAG (Constructive Area Geometry), 497–498
Calculator app, 836
Calendar class, 186
call() method, 405, 409
Callable interface, 401
CallableStatement interface, 644–647
callback framework, 104
canonical, 515–517, 570
Canvas class, 453, 476
Car class, 60, 62–63, 65, 87, 89, 100
Car object, 60, 62–63, 87
Card class, 659
case-sensitive language, 16
cast operator, 26, 31–32
CDATA (Character Data) sections, 668–669, 701
ceiling() method, 730
Cell class, 398
Census class, 128
changing forms. See polymorphism
char readChar() method, 527
Character class, 135, 242–243, 399
Character Data (CDATA) sections, 668–669, 701
character encoding, 564, 566, 568–570
character literal, 21
character() method, 696
Character object, 242, 418
character references, and CDATA sections, 668–

669
character sets, 566
characters() method, 688
ChatClient class, 601
ChatServer class, 597
checkError() method, 565
Circle class, 48, 105–106, 108, 119, 145–147, 154,

202

Circle type, 144
class browser, 257
Class class, 257
class field initializers, 78–79, 81
class fields

declaring and accessing, 62–63
declaring read-only instance and, 63–64

class initializers, 78–79
class invariants, 182–183
class methods, 65, 68, 270
Class object, 91, 219, 257, 259–260, 265, 267,

271–272, 378
ClassCastException class, 111, 194, 210, 325,

369, 381–382, 384–386
classes and objects

creating arrays with new operator, 57–59
creating objects with new operator and

constructor, 52–53
declaring classes, 52
formalizing class interfaces, 115–124

declaring interfaces, 115–116
extending interfaces, 120–122
implementing interfaces, 117–120
use of, 122–124

garbage collectors, 124
inheriting state and behaviors, 84–104

composition, 100
extending classes, 85–91
trouble with implementation

inheritance, 100–104
initializing, 78–84

class initializers, 78–79
initialization order, 81–84
instance initializers, 80–81

polymorphism, 104–115
abstract classes and abstract methods,

109–110
covariant return types, 113–115
downcasting and runtime type

identification, 111–113
upcasting and late binding, 105–109

specifying constructor parameters and local
variables, 53–57

classes, extending, 85–91
classfiles, 2
classloader, 3
ClassName assertions, 184
ClassNotFoundException class, 263
cleanup, performing, 170–175
client code, 76
clients, dispatch, 825–828

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

 INDEX

875

clinit() method, 84
Clipboard object, 461
clipping shape attribute, 491
clone() method, 91–93, 95, 104, 116, 189, 218–

220
Cloneable interface, 93, 184, 189
CloneNotSupportedException, 92–94
Close file, 529
close() method, 172, 175, 536, 546, 550, 572,

593, 639, 805, 817
Closeable interface, 532
closed interval, 347
closed range, 347
code point, 17
Coin class, 220
col.iterator() method, 326, 328
Collection interface, Iterable interface and,

322–329
autoboxing and unboxing, 327–329
Iterator interface and enhanced for

statement, 325–327
collections, 319–400

Collections Framework API, 319–391
architecture of, 319–322
Deque interface, 359–364
Iterable and Collection interfaces, 322–

329
List interface, 329–335
Map interface, 364–380
NavigableMap interface, 383–387
NavigableSet interface, 351–354
Queue interface, 355–359
Set interface, 335–344
SortedMap interface, 380–383
SortedSet interface, 344–351
utility classes, 388–391

concurrent, 413–415
custom, 395–400
legacy APIs, 391–395
and need for type safety, 195–197

Collections class, 207, 319, 327, 344, 388, 390,
392, 396, 399, 432

Collections Framework API, 319–391
architecture of, 319–322
Deque interface, 359–364
Iterable and Collection interfaces, 322–329

autoboxing and unboxing, 327–329
Iterator interface and enhanced for

statement, 325–327
List interface, 329–335

ArrayList class, 333–334

LinkedList class, 334–335
Map interface, 364–380

EnumMap class, 379–380
HashMap class, 370–376
IdentityHashMap class, 376–378
TreeMap class, 369–370
WeakHashMap class, 378–379

NavigableMap interface, 383–387
NavigableSet interface, 351–354
Queue interface, 355–359
Set interface, 335–344

EnumSet class, 341–344
HashSet class, 337–341
TreeSet class, 336–337

SortedMap interface, 380–383
SortedSet interface, 344–351
utility classes, 388–391

collisions, 371
ColoredPoint[] type, 109
ColorModel class, 500
Colors interface, 121
ColorSpace class, 500
Command-line interface, 5
command-line tools, Java DB database, 634–

636
comment feature, 12
comment node, 701
comments

Javadoc, 13–15
multiline, 12–13
overview, 12
and processing instructions, 672–673
single-line, 12

Comparable interface, 202–204, 320–322, 336,
369, 389, 524

Comparator interface, 320–322
comparator() method, 347
compare() method, 427
compareTo() method, 202–203, 220, 320, 349–

351, 383, 388, 524
compatible class change, 557
compile-time constant, 64
compile-time search, 147–148
Component class, 437, 451, 601
component classes

AWT API, overview of, 437–440
demonstrating, 443–456

components, lightweight, 466–467
ComponentUI class, 468
Composite interface, 489
composite rule attribute, 489–490

 INDEX

876

compositing, rasterizing and, 483–484
composition, 100
Compound assignment operator, 26
compound expressions, 24–35

additive operators, 30
array index operator, 30–31
assignment operators, 31
bitwise operators, 31
cast operator, 31–32
conditional operators, 32–33
equality operators, 33
logical operators, 33
member access operator, 33
method call operator, 33
multiplicative operators, 33–34
object creation operator, 34
precedence and associativity, 35
relational operators, 34
shift operators, 34
unary minus/plus operators, 35

compound paths, 729
compound statements, 36, 39, 43, 45–46
compute() method, 424–426
concat() method, 730
concurrency utilities, 401–426

Atomic class variables, 419
concurrent collections, 413–415
executors, 401–410
Fork/Join framework, 420–426
locks package, 416–418
synchronizers, 410–413
ThreadLocalRandom class, 420

ConcurrentHashMap class, 413
ConcurrentSkipListMap class, 413–414
Conditional AND operator, 26
conditional operators, 26, 32–33
Conditional OR operator, 26
connect() method, 156, 222
Connection interface, 637
Connection object, 597, 646
connections, data sources, 636–638
Console class, 149
Constructive Area Geometry (CAG), 497–498
constructor parameters, specifying, 53–57
Container class, 440, 465
containers

demonstrating, 443–456
heavyweight, 464–466
lightweight, components and, 466–467
overview of, 440–441

contains() method, 493–494, 496

containsKey() method, 365, 378
content providers, component of Android app,

842
ContentHandler interface, 684–685
ContentProvider class, 842
Context class, 836
continue statements, 47–49
control-flow invariants, 177–179, 223
Conversions class, 68
convert() method, 161–162, 164–166
convolving, images, 502–506
CookieHandler class, 626
CookieManager class, 626–627
CookiePolicy interface, 626
cookies, 626–628
CookieStore interface, 626
copy() method, 173–175
CopyOnWriteArrayList, 414
Countable interface, 128
countdown latch, 410–413
countDown() method, 411–412
countdown() method, 413
CountDownLatch class, 410–411
counter variable, 22
CountingThreads, 284, 286, 317
covariant return types, 113–115
Create object, 476
Create, Read, Update, and Delete (CRUD), 756
createBlob() method, 654
createConnection() method, 802
Created table, 632–633
createDispatch() method, 826, 828–829
createElement() method, 712
createGraphics() method, 499
createGUI() method, 459, 655
createReturnType() method, 114
createStatement() method, 640
createTempFile() method, 522–524
createXMLReader() method, 684, 690
CRUD (Create, Read, Update, and Delete), 756
cstmt.execute() method, 645
curFile() method, 459
current() method, 420
currentThread() method, 285
currentTimeMillis() method, 279–281
custom exception classes, 159–160
cyclic barrier, 410
CyclicBarrier class, 410–411, 413

 INDEX

877

 D
Dalvik Executable (DEX), 833, 854
data access. See accessing data
Data Definition Language (DDL), 634
data sources, drivers, 636–638
data transfer, 461–463
database management system (DBMS), 629
DatabaseMetaData interface, 647
databases, 628–659

Java DB, 629–636
command-line tools, 634–636
demos, 632–633
installation and configuration of, 630–

631
JDBC API, 636–659

data sources, drivers, and connections,
636–638

exceptions, 638–640
metadata, 647–651
Planets application, 651–659
statements, 640–647

DataBuffer class, 500
DatagramSocket class, and MulticastSocket

class, 603–609
DataInput interface, 528, 552
DataInputStream class, DataOutputStream

class and, 551–552
DataOutput interface, 528, 552, 555, 561–562
DataOutputStream class, and DataInputStream

class, 551–552
DataOutputStream method, 552–553
DataSource interface, 637, 822
Date class, 94, 186, 281, 580, 738
DateResolver class, 739
Daylight Saving Time (DST), 592
DBMS (database management system), 629
DDL (Data Definition Language), 634
deadlock, 301, 303
debug mode, 866
decision statements, 36–40

if-else statement, 37–39
if statement, 36–37
switch statement, 40

Deck class, 188, 191, 194, 222
declaring

annotating source code, 188–192
annotation types, 188–192
assertions, 176–177

classes, 52
interfaces, 115–116
using own generic types, 198–200

deep cloning, 93
deep copying, 93
deepEquals() method, 427, 433
defaultReadObject() method, 561
defaultWriteObject() method, 561
delegates, UI, 467–468
deleteOnExit() method, 523
denomValue() method, 215
Deque interface, 359–364
describe() method, 88–91
deserialize() method, 787, 790
Design-by-Contract, 179–183

class invariants, 182–183
postconditions, 181–182
preconditions, 180–181

detachNode() method, 804
DEX (Dalvik Executable), 833, 854
diamond operator, 197, 334, 699
Dimension class, 441, 453, 461
dimensions, 19
discovering annotations, 185–188
dispatch clients, providers and, 825–828
dispose() method, 445
divide() method, 71, 410
Division operator, 26
do-while statement, 44–45
document fragment node, 702
document node, 702
Document object, 705, 710, 744
Document Object Model. See DOM
document readers, 713
Document Type Definition (DTD), 674–678
documentation comment, 13
DocumentBuilder class, 703–705, 708, 710–711,

734, 740–741, 747
DocumentBuilderFactory class, 703–704, 707–

708, 711, 732, 736, 740–741, 747
DocumentType interface, 705
doDelete() method, 788, 829
doGet() method, 788, 798, 823, 826, 828
doLayout() method, 459
DOM (Document Object Model), 700–712

API, 703–712
tree of nodes, 701–703
XPath language and, 731–735

DOMException class, 706
DOMResult object, 828
DOMSource class, 744

 INDEX

878

doPut() method, 788–789
Double class, Float class and, 243–247
Double object, 243–244
downcasting, 111–113
DragRectPane class, 496
draw() method, 104–106, 108–109, 116, 118,

122, 130, 486
drawable attribute, 864
Drawable class, 860
Drawable interface, 115, 117–119, 122
Driver class, 316
Driver driver, 637
Driver interface, 636–637
DriverDemo class, 316
DriverManager class, 637
drivers, data sources, 636–638
Dropped table, 632–633
DST (Daylight Saving Time), 592
DTD (Document Type Definition), 674–678
DTD file, 676, 699
DTDHandler interface, 684–685
dump() method, 221, 334, 648, 709
dumpBitset() method, 393–394
DumpFileInHex class, 542–543
DumpFileInHex.class file, 543
DumpFileInHex.class.hex file, 543

 E
early binding, 108
eat() method, 127
EchoArgs class, 48
EDT (event-dispatch thread), 577
Element interface, 707
element node, 702
Element object, 710
Element type, 709
ELEMENT_NODE, 705, 708, 711
elements array, 125
elements() method, 391
Employee class, 64, 74, 92, 146, 187, 350, 374,

556–557, 562
Employee() method, 562–564
Employee object, 69, 92, 94, 124, 183, 196–197,

349, 554, 556
Employee type, 197
employee.dat file, 556, 559
EMPLOYEES table, 635–636, 640–641, 647, 649
empty abstract pathname, 513–514
empty statements, 45–47, 56

EMPTY_LIST class, 391
emptyList() method, 391
enabling and disabling assertions, 183–184
encapsulating state and behaviors, 59–77

hiding information, 74–77
representing behaviors via methods, 65–73

chaining together instance method calls,
67

declaring and invoking class methods,
68

declaring and invoking instance
methods, 65–66

invoking methods recursively, 71–72
overloading methods, 72–73
passing arguments to methods, 69
returning from method via return

statement, 69–71
reviewing method-invocation rules, 73

representing state via fields, 60–64
declaring and accessing class fields, 62–

63
declaring and accessing instance fields,

60–62
declaring read-only instance and class

fields, 63–64
reviewing field-access rules, 64

EndPoint class, 764, 766
Endpoint.publish() method, 830
Enterprise Edition (Java EE) SDK, 4
entire lifetime, 838
entity node, 702
entity reference node, 702
entity resolvers, custom, 697–700
EntityResolver interface, 684–685, 699
entrySet() method, 365, 367–370, 381, 399
Enum class

extending, 220–225
overview, 218–225

enumerated type, 212–214, 224
Enumeration interface, 391, 395, 400
EnumMap class, 379–380
enums

enhancing, 215–218
overview, 214–218
trouble with traditional enumerated types,

213–214
EnumSet class, 341–344
equality operators, 26, 33
equals() method, 95, 218, 245, 321, 329, 340,

351, 374, 426, 433
EqualsDemo class, 433

 INDEX

879

equalsIgnoreCase() method, 275
equals(Object) method, 99
equalTo() method, 77
error codes versus objects, 155–156
ErrorHandler interface, 684–685
escape sequences, 20–21
EtchedBorder class, 467
evaluate() method, 735, 739
even() method, 37–38
event-based readers, parsing documents with,

717–719
event-based writers, creating documents with,

723–727
event-dispatch thread (EDT), 577
EventFactory class, 724
EventFilter interface, 720
EventQueue class, 445
events

demonstrating, 443–456
overview of, 442–443

example element, 669, 696–697
exceptions, 155–175, 638–640

defined, 155
throwing exceptions, 161–163

exchange() method, 410
Exchanger class, 410
EXE file, 265
execute() method, 413
executeQuery() method, 641
executeUpdate() method, 643
execution environment, 3
ExecutionException, 403–404, 406, 408–410
Executor interface, 401
executors, 401–410
ExecutorService, 402–403, 406–408, 412, 414,

416, 421, 434
explicit intent, 835, 841
expressions

overview, 20
simple, 20–24

extending
classes, 85–91
functions, and function resolvers, 737–740
interfaces, 120–122

Extensible Markup Language documents. See
XML

Extensible Stylesheet Language Transformation
(XSLT), 742–748

external general entity, 677
external parameter entity, 678
external parsed general entity, 677

external unparsed entity, 677–678, 689
externalization, 562–564

 F
factorial() method, 72, 313–315
FactoryConfigurationError class, 703, 714, 720
FailedInitialization class, 263
fatal errors, 685
field-access rules, 64
fields, representing state via, 60–64

declaring and accessing class fields, 62–63
declaring and accessing instance fields, 60–

62
declaring read-only instance and class

fields, 63–64
reviewing field-access rules, 64

FIFO (First-in, first-out), 355
File class, 56, 150, 238, 511–524, 570, 581, 616
File file, 512, 514, 516, 518, 520, 525, 573, 576
File getAbsoluteFile() method, 514
File getCanonicalFile() method, 515
File getParentFile() method, 515
File object, 511, 514–515, 518–519, 521–522,

524–525, 616
FileDataSource class, 823–824
FileDescriptor class, 526, 528–529
FileDescriptor getFD() method, 526
FileFilter interface, 521
FileInputStream class, 171, 173, 541–543
filename parameter, 53–56, 58, 127
FilenameFilter interface, 520
FileNotFoundException class, 162, 164–167,

170–173
FileOutputStream class, 541–543, 580
FileOutputStream object, 171
FileReader class, 568, 570–579
filesystem, 511
filesystems, 511–581

File class, 511–524
RandomAccessFile class, 525–536
streams, 536–565

classes of, 536–552, 564–565
object serialization and deserialization,

553–564
writer and reader classes, 565–579

FileWriter and FileReader, 570–579
OutputStreamWriter and

InputStreamReader, 568–570
overview of, 566–568

 INDEX

880

filesystems, writer and reader classes (cont.)
Writer and Reader, 568

FileWriter class, and FileReader class, 570–579
fill() method, 119
Fillable interface, 119
fillables, 119
fillInStackTrace() method, 157–158
filter() method, 501, 503
FilterInputStream class, 544–550, 555, 567–568
FilterOutputStream class, 544–550, 555, 568
FilterReader, 567–568
FilterWriter, 567–568
final rethrow feature, 167
finalize() method, 91–92, 97–98, 218–219, 249,

255
find() method, 574
FindAll class, 573, 577
findAll() method, 573–574, 577–578
fire() method, 646
FIRED column, 647
First-in, first-out (FIFO), 355
firstName variable, 19, 22
FLAG_ACTIVITY_NEW_TASK, 835
Flat file, 536
flat file database, 529–530, 533, 536
Float class, and Double class, 243–247
Float object, 244
floating-point literal, 22, 551
flush() method, 539, 565, 592, 658
font attribute, 488
Font object, 452, 488
FontMetrics class, 453
foo() method, 120
for statement

enhanced, Iterator interface and, 325–327
overview, 41–42

foreground lifetime, 839
Fork/Join framework, 420–426
ForkJoinPool, 421, 424–425
ForkJoinTask, 421, 425
formal type parameter list, 197–198, 203–204,

220, 224
format() method, 307
Formatter class, 543, 568
forms, changing. See polymorphism
forName() method, 193, 260, 271
forwarding, 103
fos.close() method, 175
Frame class, 445, 450
fromInclusive, 352, 386
fromIndex, 331, 333, 395

function resolvers, extension functions and,
737–740

Future interface, 405
Future object, 407

 G
garbage collectors, 124
general entities, 677
general entity references, 677, 688
generic methods, 206–208, 224
generic types, 197–205

declaring and using your own generic types,
198–200

need for wildcards, 204–205
type parameter bounds, 201–203
type parameter scope, 203–204

generics, 194–212
arrays and generics, 208–210
collections and need for type safety, 195–

197
generic methods, 206–208
varargs and generics, 211–212

get() method, 99, 251, 253, 255–256, 268, 306,
404, 407, 409

getAge() method, 554, 556–557, 563
getAndIncrement() method, 419
getAnnotation() method, 193
getAttributes() method, 707
getAvailableFontFamilyNames() method, 477
getBackground() method, 452, 861
getBinding() method, 819
getBounds() method, 480, 493
getCanonicalFile() method, 515, 524
getCapabilities() method, 316
getCapabilitiesEx() method, 316
getCatalogs() method, 649
getCause() method, 158
getChildNodes() method, 706
getClass() method, 219, 271
getColor() method, 452
getConfigurations() method, 479
getConnection() method, 637–638
getContent() method, 628
getContentHandler() method, 684
getContentPane() method, 465
getContentType() method, 824
getCookies() method, 628
getDeclaringClass() method, 219
getDefaultConfiguration() method, 479

 INDEX

881

getDefaultScreenDevice() method, 478
getDirectory() method, 459
getDTDHandler() method, 684
getElementsByTagName() method, 733
getEncoding() method, 570
getEntityResolver() method, 684
getEnvelope() method, 803
getErrorHandler() method, 684
getEventType() method, 715
getFault() method, 815
getFaultString() method, 815
getFD() method, 528
getFeature() method, 685, 744
getFont() method, 452
getFontMetrics() method, 453
getHandlerChain() method, 819
getHeaders() method, 817
getID() method, 128
getImage() method, 456, 459
getImgCutoutSoap() method, 776
getIntent() method, 841
getJpeg() method, 776
getLastChild() method, 706
getLength() method, 608, 706
getLocalName() method, 694, 706, 708, 711
getMessage() method, 818
getMessageContext() method, 788
getMetaData() method, 647
getMethods() method, 193
getName() method, 196, 285, 515–516, 521, 554,

556, 563, 717, 719
getNamespaceURI() method, 706, 708, 712,

715, 736–737
getNextID() method, 294–295, 419
getNodeName() method, 706–709, 711
getNodeType() method, 705–706, 708–709, 711,

732
getNodeValue() method, 706, 732–735, 740–741
getPasswordAuthentication() method, 623, 625
getPath() method, 514, 516–517, 573, 576
getPort() method, 775, 829
getPreferredSize() method, 653
getPrefix() method, 706, 708, 712, 715, 736
getPriority() method, 286
getProperty() method, 279–281, 328, 392, 513
getRadius() method, 106, 111
getRaster() method, 503
getRequestContext() method, 828
getRequestingScheme() method, 625
getSchemas() method, 649
getScreenDevices() method, 478

getSelectedRow() method, 657
getSelectedText() method, 463
getSelectionModel() method, 657
getSharedChar() method, 299–301
getSize() method, 127
getSOAPPart() method, 803
getStackTrace() method, 158
getSuppressed() method, 175
getSystemClipboard() method, 461
getTempVerterImplPort() method, 773
getText() method, 446
getThreadGroup() method, 288
getTime() method, 580, 739
getType() method, 478
getXmlEncoding() method, 707–708, 711
Google Charts web service, 795–798
GOTO statement, 51
gradeLetters variable, 19, 22
GradientPaint class, 813
Graph class, 232
graphical user interfaces. See GUIs
Graphics class, 80, 107, 109, 451, 453, 457, 485
Graphics2D class, 481–492

rendering attributes, 484–492
clipping shape, 491
composite rule, 489–490
font, 488
paint, 485
rendering hints, 492
stroke, 486–487
transformation, 488–489

rendering pipeline, 481–484
GraphicsConfiguration method,

GraphicsEnvironment class, GraphicsDevice
method and, 477–481

GraphicsDevice method, GraphicsEnvironment
class, GraphicsConfiguration method and,
477–481

GraphicsEnvironment class, 477–481
GUIs (graphical user interfaces), 435–509

AWT API, 435–463
component classes, 440–443
containers, 441–443
data transfer, 461–463
events, 442–443, 456
images, 456–461
layout managers, 441–443, 456
toolkits, 436

Java 2D extensions, 477–507
BufferedImage class, 498–507
Graphics2D class, 481–492

 INDEX

882

GUIs, Java 2D extensions (cont.)
GraphicsEnvironment class,

GraphicsDevice method, and
GraphicsConfiguration method, 477–
481

Shape interface, 493–498
Swing API, 463–477

extended architecture, 464–470
sampling components of, 470–477

 H
handle, 529
Handler class, 691
handlers, JAX-WS. See JAX-WS handler
handling exceptions, 163–170

handling multiple exception types, 164–166
rethrowing exceptions, 166–170

hasChildNodes() method, 706, 708
hasFault() method, 815
Hash table, 337
hashCode() method, 97, 99, 219, 323, 336, 340,

351, 373, 375, 396
HashCodeBuilder class, 374
HashMap class, 138, 370–376
HashMap() method, 320, 337, 370, 372, 374–

375, 377–378, 389, 400
HashMapDemo, 372–373, 376
HashSet class, 337–341
HashSet() method, 320, 337–341, 389, 400
Hashtable class, 392
hasMoreElements() method, 391
hasNext() method, 195, 326, 334, 353, 368, 396,

715, 717, 719, 726
hasPrevious() method, 331, 335
headSet() method, 345–347, 352, 354
heap pollution, 211–212, 224
heavyweight containers, 464–466
HelloWorld class, 6–11, 14–15, 55
helper methods, 74
hiding information, 74–77
history stack, 835, 841
home screen, 842, 856–858, 861, 867
homogenous, 196
HTTP (Hypertext Transfer Protocol), 761–764,

820–822
HttpContext class, 762
HTTPContext class, 820
HTTPException class, 788
HttpHandler interface, 761

HttpsConfigurator object, 761
HttpServer class, 761
HttpURLConnection class, 791, 825
Hypertext Transfer Protocol (HTTP), 761–764,

820–822

 I
I/O activity, 568
ID column, 657
ID (identifier), 860
identifiers, 16
identity check, 95
IdentityHashMap class, 320, 376–378, 400
if-else statement, 37–39
if statement, 36–37
ignorableWhitespace() method, 697
IIS (Internet Information Server), 624
IllegalAccessException class, 269
IllegalArgumentException class, 162, 424, 522–

523, 525, 531, 544, 547, 737, 764
IllegalMonitorStateException class, 298
IllegalStateException, 322–323, 326, 332, 355–

356, 359, 361, 368
Image class, 52–54, 74, 91, 127, 253
Image Cutout web service, 776–779
Image object, 52, 54–55, 58–59, 126, 253–254,

456, 460
ImageCache class, 253
ImageCanvas class, 457, 459
ImageIcon class, 499, 651, 654, 797–798
ImageObserver interface, 457
ImagePublisher class, 823
images

convolving, 502–506
overview, 456–461

imageType parameter, 53–56, 127
ImageView element, 859, 861–863
immutable class, 88
implementation inheritance, 100–104
implementing interfaces, 117–120
implicit intent, 836, 840–841, 869
import statement, 146–147
incompatible class change, 557
index.html file, 5, 15
IndexOutOfBoundsException, 329–331, 393
Inequality operator, 26
InetAddress class, 587–588, 608
InetSocketAddress class, 588, 761
infinite loop, 45–46

 INDEX

883

infix operator, 25
information hiding, 60–61, 74, 76, 87, 115
ingredient element, 664, 672, 674, 677, 680, 682,

722, 727, 746–747
InheritableThreadLocal class, 282, 305–306, 318
inheriting state and behaviors, 84–104

composition, 100
extending classes, 85–91
object class, 91–100

cloning, 92–94
equality, 95–97
finalization, 97–98
hash codes, 98–99
string representation, 100

trouble with implementation inheritance,
100–104

init() method, 80, 84
initCause() method, 157
InitDemo class, 82–83
initialCapacity, 333, 337–338, 357, 359, 372
initialization order, 81–84
initialize section, 41
initializers

class, 78–79
instance, 80–81

initializing classes and objects, 78–84
class initializers, 78–79
initialization order, 81–84
instance initializers, 80–81

Input class, 49
input stream, 536, 540, 544, 546, 548, 551, 556,

567, 570, 581
InputSource object, 700
InputStream class, 536, 538–541, 551–552, 555,

568–569
InputStream object, 803
InputStreamReader class, 568–570, 572, 580–

581
INSERT statement, 643
Insets class, 467
installing

JDK 7, 4–5
NetBeans 7, 8–9

instance field initializers, 78, 80–81
instance fields, 60–62, 74, 78, 83–84, 92–94
instance initializers, 80–81
instance methods, 270

chaining together, 67
declaring and invoking, 65–66

instanceMethod1() method, 302–303
instanceMethod2() method, 302–303

instanceof operator, 96–97, 111–112
InstantiationException class, 267
instructions elements, 675, 679–680
int available() method, 539
int hashCode() method, 525
int length() method, 393
int read() method, 527, 540, 546–548
int readInt() method, 527
int size() method, 324, 366, 393
INTEGER-based column, 641
Integer class, 247–249
integer literal, 21–24
Integer object, 247, 305–306, 327–329
integer type, 2, 16, 25, 27, 29–30
integer values, 551
Integer.MAX_VALUE, 324, 366
Intent class, 835
Intent object, 835–836, 840–841, 845
intents, 834–837, 841, 869
interface inheritance, 84, 118, 120, 130
interfaces, 115–124

within classes, 143
declaring interfaces, 115–116
extending interfaces, 120–122
implementing interfaces, 117–120
why use interfaces?, 122–124

intern() method, 275
internal general entity, 677
internal invariants, 177–178
International Organization for Standardization

(ISO), 566
International Standard Book Number (ISBN),

757
Internet Information Server (IIS), 624
Internet Protocol (IP), 585–586, 588
interpreter, 3
interrupt() method, 283–284
InterruptedException class, 403–404, 406, 409,

412, 414–415, 417
intValue() method, 327
InvalidClassException class, 559
InvalidMediaFormatException class, 160–162,

164–166
invariant, 177–179, 182, 222–223
InvocationTargetException class, 267
InvoiceCalc, 306–307, 310–311
invoke() method, 269–271, 786–787, 795, 799,

823, 825–826
invokeAll() method, 426
invokeLater() method, 578
invoke(T) method, 825

 INDEX

884

IOException class, 174, 525, 565, ?570, 571–574,
577, 798

IP addresses, 586–587
IP (Internet Protocol), 585–586, 588
isAlive() method, 287
isAnnotationPresent() method, 193
isBlank() method, 47
ISBN (International Standard Book Number),

757
isDone() method, 409, 426
isExist() method, 649
isFull() method, 222
isInfinite() method, 244
isLetter() method, 399
isLightweight() method, 439
isNaN() method, 244
isNegative() method, 242
ISO (International Organization for

Standardization), 566
isSorted() method, 182
isStopped() method, 296–297
Iter class, 141
Iterable interface, and Collection interface,

322–329
autoboxing and unboxing, 327–329
Iterator interface and enhanced for

statement, 325–327
Iterable method, 323
iterations, 41–42, 47
Iterator interface, 141–142, 325–327, 395, 400
iterator() method, 141, 322–330
Iterator object, 143

 J
JAR files, 144, 147, 153, 235, 239, 265, 610, 631,

637
jar tool, 5
Java

JDK 7, 4–7
installing, 4–5
working with, 5–7

as language, 1–3
NetBeans 7, 7–12

installing, 8–9
working with, 9–12

as platform, 3–4
Java 2D extensions, 477–507

BufferedImage class, 498–507
Graphics2D class, 481–492

rendering attributes, 484–492
rendering pipeline, 481–484

GraphicsEnvironment class,
GraphicsDevice method, and
GraphicsConfiguration method, 477–
481

Shape interface, 493–498
Java API for XML Processing (JAXP), 663, 744
Java API for XML Web Services (JAX-WS)

handler, 815–819
Java Architecture for XML Binding (JAXB), 759,

761
Java class, 634, 740, 758, 760, 764, 776, 833
Java Database Connectivity. See JDBC
Java DB database, 629–636

command-line tools, 634–636
demos, 632–633
installation and configuration of, 630–631

Java EE (Enterprise Edition) SDK, 4
Java Foundation Classes (JFC), 435
Java interface, 753, 760, 764, 773
Java language, and web services, 758–764

annotations, 759–760
APIs, 759
lightweight HTTP server, 761–764
tools, 760–761

Java ME (Mobile Edition) SDK, 4
Java method, 79, 81, 644, 737, 764, 781, 825
Java Native Interface (JNI), 3
Java object, 57, 739, 759–760, 834
Java Runtime Environment (JRE), 5, 849
Java Server Pages (JSP), 4
java tool, 5
Java type, 735
Java Virtual Machine (JVM), 3, 51, 139, 254, 511,

623
Java7MeetsAndroid app, 859–868
javac tool, 5, 7, 48
Javadoc comments, 13–15
javadoc tool, 5, 14
java.io.FileNotFoundException, 516
java.io.SyncFailedException, 529
java.io.UnsupportedEncodingException, 569
java.lang.ArithmeticException, 159
java.lang.ArrayIndexOutOfBoundsException,

159
java.lang.InterruptedException, 403
java.math.BigDecimal local variable, 410
JavaQuiz class, 399
JavaScript Object Notation (JSON), 796
java.util.concurrent package, 282

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

 INDEX

885

JAX-WS (Java API for XML Web Services)
handler, 815–819

JAXB (Java Architecture for XML Binding), 759,
761

JAXP (Java API for XML Processing), 663, 744
JButton class, 468
JComponent class, 466
JDBC (Java Database Connectivity) API, 636–

659
data sources, drivers, and connections, 636–

638
exceptions, 638–640
metadata, 647–651
Planets application, 651–659
statements, 640–647

CallableStatement interface, 644–647
PreparedStatement interface, 643
Statement interface and ResultSet

object, 640–642
JDBC method, 637–639
JDBCFilterDriver class, 79
JDK 7, 4–7

installing, 4–5
working with, 5–7

JFC (Java Foundation Classes), 435
JFrame class, 466
JIT (Just-In-Time) compiler, 3
JLayer class, 474
JLayeredPane class, 464
JNI (Java Native Interface), 3
join() method, 287
JPEG file, 823
jre directory, 5
JRE (Java Runtime Environment), 5, 849
JRootPane class, 464
JScrollPane class, 578
JSON (JavaScript Object Notation), 796
JSP (Java Server Pages), 4
JTable class, 655
JTable table, 656
Just-In-Time (JIT) compiler, 3
JVM (Java Virtual Machine), 3, 51, 139, 254, 511,

623

 K
Kernel class, 502
KeyEvent class, 508
keypad keys, 858
keywords, 16

 L
label attribute, 46, 863
Label class, 473
labeled continue statements, 47–49
LAN (Local Area Network), 624
language APIs, 227–318

BigDecimal class, 306–311
BigInteger class, 312–318
Math and StrictMath classes, 227–235
Package class, 235–240
primitive type wrapper classes, 240–249

Boolean, 240–242
Character, 242–243
Float and Double, 243–247
Integer, Long, Short, and Byte, 247–249
Number, 249

Reference, 249–256
basic terminology of, 250–251
PhantomReference class, 255–256
and ReferenceQueue class, 251–252
SoftReference class, 252–254
WeakReference class, 254–255

Reflection, 257–271
String class, 272–275
StringBuffer and StringBuilder classes, 276–

278
System class, 279–281
Threading, 282–306

Runnable and Thread interfaces, 282–
291

thread synchronization, 291–306
language features of Java, 12–49

array types, 19
assignment statements, 36
comments, 12
compound expressions, 24–35

additive operators, 30
array index operator, 30–31
assignment operators, 31
bitwise operators, 31
cast operator, 31–32
conditional operators, 32–33
equality operators, 33
logical operators, 33
member access operator, 33
method call operator, 33
multiplicative operators, 33–34
object creation operator, 34
precedence and associativity, 35

 INDEX

886

language features of Java, compound
expressions (cont.)

relational operators, 34
shift operators, 34
unary minus/plus operators, 35

decision statements, 36–40
if-else statement, 37–39
if statement, 36–37
switch statement, 40

expressions, 20
identifiers, 16
Javadoc comments, 13–15
loop statements, 41–49

continue and labeled continue
statements, 47–49

do-while statement, 44–45
looping over empty statement, 45–47
for statement, 41–42
while statement, 42–43

multiline comments, 12–13
overview, 1–3
primitive types, 17–18
simple expressions, 20–24
single-line comments, 12
statements, 36
types, 16
user-defined types, 18
variables, 19–20

LargeObject class, 256
LargeObject object, 256, 379
last-in, first-out (LIFO), 355, 421
late binding, 105–109
Launch Options dialog box, 856
LayerUI class, 474
layout managers

demonstrating, 443–456
overview of, 441–442

LayoutManager interface, 441
lazy initialization, 430
Left shift operator, 27
legacy APIs, 391–395
length() method, 33
LexicalHandler interface, 686–687
Library class, 786, 829
library web service, 781–795
lifecycle callback methods, 837
LIFO (last-in, first-out), 355, 421
lightweight components, and containers, 466–

467
lightweight HTTP server, 820–822
linear congruential generator, 430, 434

linear search, 388
LinearGradientPaint class, 813
LinearLayout element, 862
LinkedBlockingDeque class, 413
LinkedList class, 298, 334–335, 399–400
LinkedList() method, 320, 331, 334–335, 356,

396, 399–400
LinkedTransferQueue class, 414
List interface, 329–335

ArrayList class, 333–334
LinkedList class, 334–335

List.hashCode() method, 396
ListIterator interface, 331
listIterator() method, 330–331
literals, 16, 20
Local Area Network (LAN), 624
local classes, 140–143
local service, 842
local variables, 53–57, 64, 67, 93, 124
Location object, 718
location path expression, 728–729, 733, 746, 749
Locator interface, 688
Locator object, 688
lock() method, 294, 417–418
lockInterruptibly() method, 416
locks package, 416–418
log() method, 572, 817–818
Logger class, 102
Logger interface, 148–149, 155
logging SOAP messages, with JAX-WS handler,

815–819
LoggingApptCalendar class, 101–104
Logical AND operator, 27
Logical complement operator, 27
Logical exclusive OR operator, 27
Logical inclusive OR operator, 27
logical operators, 33
Long class, 247–249
long getFilePointer() method, 527
long lastModified() method, 518
long length() method, 518, 527
Long object, 247
LookAndFeel class, 469
lookup tables, 506–507
LookupTable class, 506
LookupTable table, 507
loop-control variables, 41
loop statements, 41–49

continue and labeled continue statements,
47–49

do-while statement, 44–45

 INDEX

887

looping over empty statement, 45–47
for statement, 41–42
while statement, 42–43

looping over empty statement, 45–47

 M
m() method, 111, 141
magnitude bits, 18
main() method, 6–7, 122, 127, 256, 269, 543,

546, 790
makeMap() method, 547, 550
manifest files, 843–846
Map interface, 364–380

EnumMap class, 379–380
HashMap class, 370–376
IdentityHashMap class, 376–378
TreeMap class, 369–370
WeakHashMap class, 378–379

Map.Entry interface, 368
mark() method, 540–541
marker annotations, 188–189
marker interface, 116
Math class, and StrictMath class, 227–235
Math.random() method, 58, 127, 412, 420, 431
MatMult class, 423, 425
Matrix class, 421
matrix variables, 22
matrix.length, 31, 42
matrix[row].length, 42
mayInterruptIfRunning, 405
Media class, 160–161
MediaTracker class, 460
member access operator, 27, 33
MENU button, 857, 868
MenuComponent class, 438
MEP (message exchange pattern), 751
merge() method, 212
message exchange pattern (MEP), 751
MessageContext interface, 788
MessageFactory object, 803
meta-annotations, 190–192, 223
metadata, 184–185, 189, 193, 223, 526, 647–651
metalanguage, 663
method call operator, 33
method-call stack, 67
method-invocation rules, 73
method-invocation stack, 67
Method method, 270
Method object, 193, 259, 269–270

MethodInvocationDemo, 270
methods

invoking recursively, 71–72
overloading, 72–73
passing arguments to, 69
representing behaviors via, 65–73

chaining together instance method calls,
67

declaring and invoking class methods,
68

declaring and invoking instance
methods, 65–66

invoking methods recursively, 71–72
overloading methods, 72–73
passing arguments to methods, 69
returning from method via return

statement, 69–71
reviewing method-invocation rules, 73

returning from via return statements, 69–71
MIME (Multipurpose Internet Mail Extensions),

613, 756, 835
MIME type, 757, 794, 823–825, 830, 841, 845
mimeType attribute, 845
MimetypesFileTypeMap class, 823
Mixing class, 79
Mobile Edition (Java ME) SDK, 4
Model-View-Controller (MVC), 467
Modifier class, 269
monitor, 294
move() method, 127–128
movie elements, 729
MulticastSocket class, DatagramSocket class

and, 603–609
multicatch language feature, 166
multiline comments, 12–13
multiple exception types, handling, 164–166
multiple inheritance, 84, 130
MultipleGradientPaint class, 485
multiplicative operators, 28, 33–34
multiply() method, 423
Multipurpose Internet Mail Extensions (MIME),

613, 756, 835
mutable keys, 376
mutual exclusion, 294, 297–298
MVC (Model-View-Controller), 467

 N
name attribute, 844–845
NAME column, 635, 649

 INDEX

888

Name interface, 804
name() method, 217
namespace contexts, 736–737
namespace prefix, 669, 710, 736, 746
NamespaceContext interface, 736
namespaces, 669–672
NavigableMap interface, 319, 383–387, 400
NavigableSet interface, 351–354, 414
negotiate authentication scheme, 625
nested loops, 46, 48
nested types, 131–143

anonymous classes, 138–140
interfaces within classes, 143
local classes, 140–143
nonstatic member classes, 135–138
static member classes, 131–135

NetBeans 7, 7–12
installing, 8–9
working with, 9–12

network endpoints, 536
Network Interface Card (NIC), 586
networks, 585–628

authentication, 620–625
cookies, 626–628
sockets, 585–609

addresses, 587–588
DatagramSocket and MulticastSocket

classes, 603–609
Socket and ServerSocket classes, 589–

603
socket options, 588–589

URLs, 609–620
URI class, 615–620
URL and URLConnection classes, 609–

612
URLEncoder and URLDecoder classes,

612–614
newDocument() method, 710
newDocumentBuilder() method, 704
newFactory() method, 714, 716, 719–720, 722,

724
newFixedThreadPool() method, 409
newInstance() method, 267, 703, 708, 714, 732,

735, 741, 743, 745, 802
newTransformer() method, 743, 745
newXPath() method, 735
next() method, 195, 197, 326, 399, 431, 641, 651,

715, 815
nextDouble() method, 431
nextElement() method, 391
nextEvent() method, 717–718

nextIndex() method, 332
NIC (Network Interface Card), 586
NIST (American National Institute of Standards

& Technology), 590
No argument assertions, 184
Node class, 397–398, 705
Node interface, 705, 804
node name, 701, 710
Node type, 709
NodeList interface, 735
nodes

tree of, 701–703
XML document, selecting with XPath

language, 727–741
Nodes class, 397
nonstatic member classes, 135–138
nonterminating decimal expansion, 410
normalize() method, 618
normalize-space() method, 730, 746
NoSuchElementException, 326, 331, 344–345,

356, 360–361, 381–382, 389
notation node, 673, 676–678, 689, 702
notifyAll() method, 264, 298
NotSerializableException class, 554
NullPointerException class, 126, 426, 429, 514,

522, 527, 539–540, 544, 547
NullPointerExceptions, 390, 428
Number class, 249
number() method, 730
NumberFormat class, 307
NumberFormatException object, 246
numElements, 364
numeric type, 18, 25–26, 28–29
NumLock, 858
numRecs() method, 533

 O
object class, 91–100

cloning, 92–94
equality, 95–97
finalization, 97–98
hash codes, 98–99
string representation, 100

object creation operator, 28, 34
object deserialization, serialization and, 553–

564
custom, 558–561
default, 553–557
externalization, 562–564

 INDEX

889

object graph, 554
Object object, 267–268, 273
object serialization, deserialization and, 553–

564
custom, 558–561
default, 553–557
externalization, 562–564

ObjectInputStream class, 555
ObjectOutputStream class, 538, 554–556, 558–

559, 561–564
Objects class, 92, 161, 400, 426–430, 434
Objects.requireNonNull() method, 429
odd() method, 37–38
offer() method, 356, 418
onClickListener interface, 861
onDestroy() method, 837–838, 840
onPause() method, 837–840
onRestart() method, 837–838
onResume() method, 837–839
onStart() method, 837–839
onStop() method, 837–839
openConnection() method, 794
openStream() method, 610
operand expression, 24
operator and constructor, creating objects with

new, 52–53
OR operator, 342
OutOfMemoryError class, 254
output stream, 536–537, 539, 545, 547, 550, 559,

564, 567, 581
OutputInputStream class, 554
OutputKeys class, 743
OutputKeys property, 745
outputList() method, 205
OutputReversedInt class, 49
OutputStream class, 536, 538–541, 550, 555,

569–570, 581
OutputStreamWriter class, 568–570
overloading methods, 72–73

 P
pack() method, 440, 459, 474
Package class, 235–240, 318
package helloworld statement, 11
Package object, 236, 238, 260
package statement, 145–146
PackageName assertions, 184
packages, 144–153

defined, 144–145

import statement, 146–147
package statement, 145–146
packages and JAR files, 153
playing with packages, 148–152
uniqueness of package names, 145

paint attribute, 485
Paint interface, 485
paint() method, 455, 460, 476–477, 481, 488,

508
Panel object, 449
parallelism, 420
parameter entities, 678
parameterized type, 196–198, 203, 211, 224
parent pathname, 514–516
parse() method, 700, 705, 739
parsed character data, 675, 696–697
parseDouble() method, 246
ParsePosition object, 739
ParserConfigurationException, 703, 705, 707–

708, 710–711, 732–735
parsing

documents
with event-based readers, 717–719
with stream-based readers, 714–717

XML documents
with DOM, 700–712
with SAX, 683–700
with StAX, 712–727

Parsing command, 246
Part object, 533
partition, 519
PartsDB class, 530, 532
PasswordAuthentication object, 623
PATH variable, 850, 854
pathname strings, 513
PC (producer-consumer application), 414
peek() method, 356, 360–361, 363–364
peekFirst() method, 363
PhantomReference class, 249, 255–256
PhantomReference object, 250–251, 255–256
Phaser class, 411
PHOTO column, 635
PLAFs (Pluggable Look And Feels), 468–470
Planet class, 338–340
Planets application, 651–659
PLANETS table, 651–652
platforms

Android, installing, 848–854
Java as, 3–4

playing with packages, 148–152
Pluggable Look And Feels (PLAFs), 468–470

 INDEX

890

PNG (Portable Network Graphics), 55, 265
Point class, 96–97, 99–100, 105, 109, 374
pointers, 3
poll() method, 356, 418
pollFirst() method, 352, 354, 361–363
Polygon class, 491
polymorphism, 104–115

abstract classes and abstract methods, 109–
110

covariant return types, 113–115
downcasting and runtime type

identification, 111–113
upcasting and late binding, 105–109

Pool class, 433
pop() method, 125–126, 363, 391
Portable Network Graphics (PNG), 55, 265
postconditions, 181–182
Postdecrement operator, 28
postfix operator, 25
Postincrement operator, 28
precedence, 35
preconditions, 180–181
predecessor() method, 348, 398
Predecrement operator, 28
prefix operator, 25
Preincrement operator, 28
PreparedStatement interface, 643
prepareStatement() method, 643
pressure simulation, 167
previous() method, 331–332, 335
previousIndex() method, 332
prime number, 316
primitive type wrapper classes, 240–249

Boolean, 240–242
Character, 242–243
Float and Double, 243–247
Integer, Long, Short, and Byte, 247–249
Number, 249

primitive types, 17–18
print() method, 564–565
printBalance() method, 67
printDetails() method, 65–66, 71, 73
println() method, 73, 87, 552, 556, 558, 564–

565, 572, 592
printReport() method, 69
printStackTrace() method, 162, 290
PrintStream class, 564–565
PrintWriter class, 564, 592
Priority queue, 355
PriorityQueue class, 356–359
PriorityQueue() method, 320, 356–359, 400

private command-line option, 14
PrivateAccess class, 77
PROCEDURE procedure, 644
processing annotations, 192–194
processing-instruction() method, 728
processing instruction node, 672–673, 688, 702,

727–728, 733
processing instructions, comments and, 672–

673
processing pipelines, 714
processLine() method, 47–48
producer-consumer application (PC), 414
profiling, 123
Properties object, 392, 743
provider elements, 845
providers, and dispatch clients, 825–828
Proxy class, 590
public method, 6, 93
publish() method, 764, 766
pull model, 713
push() method, 125
put() method, 99

 Q
QName object, 815, 828
Queue class, 222
Queue interface, 355–359, 363, 414

 R
random access, 525–526, 529, 581
Random class, 434
Random() method, 430–434
random number generators, 430, 434
Random object, 547
RandomAccess interface, 396
RandomAccessFile class, 525–536
Raster class, 500
rasterizing, and compositing, 483–484
RasterOp interface, 501
raw type, 198, 205, 210, 224
RDBMSes (Relational DBMSes), 629
Read file, 56
read() method, 533, 539, 546–548, 550–551,

568–570
read-only instance, declaring class fields and,

63–64
Reader class, Writer class and, 568
readers

 INDEX

891

classes of, 565–579
FileWriter and FileReader, 570–579
OutputStreamWriter and

InputStreamReader, 568–570
overview of, 566–568
Writer and Reader, 568

parsing documents with
event-based readers, 717–719
stream-based readers, 714–717

readExternal() method, 562–564
readLine() method, 45, 592, 597
readObject() method, 554–559, 561, 563, 790
ready() method, 568
receiver elements, 845
RecipeML (Recipe Markup Language), 698–699
recoverable errors, 685
Rectangle class, 109, 132–133, 146, 494
recursion, 71
recursive type bound, 203
RecursiveAction, 421, 424–425
ReentrantLock, 416
refactoring, 47–48
Reference API, 249–256

basic terminology of, 250–251
PhantomReference class, 255–256
and ReferenceQueue class, 251–252
SoftReference class, 252–254
WeakReference class, 254–255

Reference object, 250–252, 254–255
reference types, 18
reference variables, 19
referenced object, 113, 124
ReferenceQueue class, Reference API and, 251–

252
ReferenceQueue object, 251–252, 254–256
Reflection API, 257–271
reification, 209, 224
Reject option radio button, 852
RejectedExecutionException, 402–405
Relational DBMSes (RDBMSes), 629
Relational greater than operator, 28
Relational greater than or equal to operator, 28
Relational less than operator, 28
Relational less than or equal to operator, 28
relational operators, 34
Relational type, 29
relative pathname, 513–514
release mode, 866
Remainder operator, 29
remote procedure call (RPC), 158, 752
remote service, 843

remove() method, 324–325, 329, 331–332, 356,
361, 366, 384–385

removeFirst() method, 361–363
rendering attributes, 484–492

clipping shape, 491
composite rule, 489–490
font, 488
paint, 485
rendering hints, 492
stroke, 486–487
transformation, 488–489

rendering hints attribute, 492
rendering pipeline, 481–484
RenderingHints class, 492
repaint() method, 455–457
Representational State Transfer. See REST
requestPasswordAuthentication() method, 623
requireNonNull() method, 428–429
reserved words, 1–2, 16
reset() method, 540–541
resolveEntity() method, 700
resolvers

entity, custom, 697–700
function, extension functions and, 737–740
variable, variables and, 740–741

resource management, automatic, 174–175
Response interface, 826
REST (Representational State Transfer) web

services, 756–757, 780–798
and attachments, 822–825
Google Charts, 795–798
library, 781–795

ResultSet object, 640–642, 651
rethrowing exceptions, 166–170
return statement, returning from method via,

69–71
RGB type, 498
RI class, 615
R.java file, 866
RL class, 609
rnd() method, 231
Roman numerals, and SAAJ API, 805–815
root directory, 511–513
RootPaneContainer interface, 465
round() method, 306, 730
RPC (remote procedure call), 158, 752
RTTI (runtime type identification), 257
run() method, 282–283, 285, 289, 402, 405, 412,

445, 578, 597
Runnable interface, and Thread interface, 282–

291

 INDEX

892

RunnableTask() method, 401–402
runServer() method, 597
runtime exception, 159
runtime search, 148
runtime type identification, 105, 111–113
runtime type identification (RTTI), 257
RuntimeException class, 787

 S
SAAJ (Soap with Attachments API for Java),

799–815
overview of, 801–805
Roman numerals and, 805–815
SOAP messages, architecture of, 799–801

SAAJMetaFactory class, 803
safety, need for type, 195–197
SampleModel class, 500
SavingsAccount class, 67, 306
SAX (Streaming API for XML)

API
demonstrating, 690–697
overview, 683–690

custom entity resolver, 697–700
SAXException class, 684
SAXNotRecognizedException class, 687
SAXNotSupportedException class, 685–687
SAXTransformerFactory class, 744
Scalable Vector Graphics (SVG), 669, 695–696
ScheduledExecutorService interface, 407, 434
Schema-based file, 769
Schema type, 801
ScrambledInputStream class, 548
ScrambledOutputStream class, 545
ScrollPane class, 459, 578
SDK Manager, 850–852, 854
SDKs (Software Development Kits), Android,

848–854
searching for packages and types

compile-time search, 147–148
runtime search, 148

Secure Sockets Layer (SSL), 755, 761
security model, 833
Security Service Provider Interface (SSPI), 624
SEI interface, 773
select() method, 533
SELECT statement, 640
selector expression, 40, 42
Semaphore class, 411, 433
SemaphoreDemo class, 433

send() method, 606
sendClientsList() method, 597
separator character, 512–514
separatorChar class, 513
SerEmployee class, 558–561
Serializable interface, 553–554
SerializationDemo class, 556, 558–560, 563
serialize() method, 788–789
ServerSocket class, Socket class and, 589–603
Service class, 772, 775, 828, 843
service elements, 845
Service.create() method, 775
services, component of Android app, 842–843
Set interface, 335–344

EnumSet class, 341–344
HashSet class, 337–341
TreeSet class, 336–337

set() method, 186, 316, 332
setAge() method, 377
setColor() method, 485
setDefaultCloseOperation() method, 474
setDocumentLocator() method, 688, 693, 695–

696
setEntityResolver() method, 685, 687, 691, 700
setFeature() method, 685–687, 690, 700, 735,

743
setImage() method, 459–461
setLastModified() method, 580
setName() method, 70, 76, 377
setPrefix() method, 723
setPriority() method, 286
setProperty() method, 686–687, 691, 697, 714,

720
setRoundRect() method, 494, 496
setScale() method, 311
setSharedChar() method, 299–301
setStackTrace() method, 158
setUI() method, 469
setVisible() method, 451
Shape class, 104, 109–110, 122–123, 130, 201
Shape interface, 482, 491, 493–498
Shape object, 497
Shared object, 300–301
shift operators, 34
short-circuiting, 26–27, 32
Short class, 247–249, 328
shuffle() method, 188, 432
shutdown() method, 403–404
shutdownNow() method, 404, 409, 412, 415,

418
Signed right shift operator, 29

 INDEX

893

Simple and Protected GSS-API Negotiation
(SPNEGO), 624

simple expressions, 20–24
Simple Mail Transfer Protocol (SMTP), 586
Simple Object Access Protocol. See SOAP
simple statements, 36
SimpleActivity class, 837
SimpleApp-debug.apk file, 868
single inheritance, 84, 130
single-line comments, 12
size() method, 316
skippedEntity() method, 688, 693
SMTP (Simple Mail Transfer Protocol), 586
SOAP (Simple Object Access Protocol)-based

web services, 753–756, 764–779
Image Cutout, 776–779
temperature-conversion, 764–776

SOAP (Simple Object Access Protocol)
messages
architecture of, 799–801
logging with JAX-WS handler, 815–819

Soap with Attachments API for Java. See SAAJ
SOAPBody object, 804, 809, 811, 815
SOAPBodyElement object, 802, 804–805
SOAPConnection class, 802
SOAPConstants interface, 803
SOAPElement object, 805
SOAPEnvelope interface, 803
SOAPEnvelope object, 809, 811
SOAPFault interface, 815
SOAPFault object, 802
SOAPLoggingHandler class, 816
SOAPMessage object, 803, 805, 809, 811, 818
SOAPPart class, 803
SOAPPart object, 809, 811
Socket class, and ServerSocket class, 589–603
SocketAddress class, 588
sockets, 585–609

addresses, 587–588
DatagramSocket and MulticastSocket

classes, 603–609
Socket and ServerSocket classes, 589–603
socket options, 588–589

SoftReference class, 250, 252–254
Software Development Kits (SDKs), Android,

848–854
software stacks, Android, 830–833
sort() method, 181, 202–203
SortedMap interface, 380–383
SortedSet interface, 319, 336, 344–351, 357, 381,

400

SortedShapesList class, 203
source code, representing exceptions in, 155–

160
custom exception classes, 159–160
error codes versus objects, 155–156
throwable class hierarchy, 156–159

Source database, 636
Source interface, 743, 794
Source object, 828
speak() method, 139
Speaker class, 140
SplashCanvas class, 454–455, 509
split() method, 193
SPNEGO (Simple and Protected GSS-API

Negotiation), 624
SQL command, 630, 634
SQL statement, 635–636, 640–641, 643–644, 655,

657
SQL (Structured Query Language), 629, 635
SQLException object, 638
SQLite database, 842, 850
SQLTransientException-rooted class, 640
srchText variable, 573, 575–578
SSL (Secure Sockets Layer), 755, 761
SSPI (Security Service Provider Interface), 624
ST (Standard Time), 592
Stack class, 125–126, 391
Standard Time (ST), 592
start() method, 283, 285–286, 762, 764, 864
startActivity() method, 840
startDir variable, 575, 578
startElement() method, 686–688, 694–697
startSignal, 411–413
Statement interface, and ResultSet object, 640–

642
statements, 640–647

assignment, 36
CallableStatement interface, 644–647
overview, 36
PreparedStatement interface, 643
Statement interface and ResultSet object,

640–642
static imports, 153–154
static member classes, 131–135
status bar, 857
StAX (Streaming API for XML), creating

documents, 712–727
with event-based writers, 723–727
with stream-based writers, 721–723

StAX (Streaming API for XML), parsing
documents

 INDEX

894

StAX (Streaming API for XML), parsing
documents (cont.)

with event-based readers, 717–719
with stream-based readers, 714–717

stop() method, 295–296, 861, 864
stopThread() method, 295–297
stream-based readers, parsing documents with,

714–717
stream-based writers, creating documents with,

721–723
stream unique identifier (SUID), 557
Streaming API for XML. See SAX
StreamResult class, 744
streams, classes of, 536–565

BufferedOutputStream and
BufferedInputStream, 550–551

DataOutputStream and DataInputStream,
551–552

FileOutputStream and FileInputStream,
541–543

FilterOutputStream and FilterInputStream,
544–550

OutputStream and InputStream, 538–541
overview of, 536–538
PrintStream, 564–565

StreamSource object, 788
StrictMath class, Math class and, 227–235
String[] args, 6
String class, 18, 76, 147, 272–275, 318, 374, 554
String concatenation operator, 29
String getAbsolutePath() method, 514
String getCanonicalPath() method, 515
String getName() method, 515, 554, 563
String getParent() method, 515
String getPath() method, 515
string-length() method, 730
string literal, 20–21, 26
String() method, 578, 730, 746, 794
String object, 33, 42, 274–275, 347, 373, 455, 553,

643, 788
String parameter, 54
String toString() method, 516, 558, 560
String type, 29, 565, 642, 841
StringBuffer class, 95, 276–278
StringBuffer/StringBuilder object, 278
StringBuilder class, StringBuffer class and, 276–

278
StringBuilder object, 278
StringSelection object, 463
StringTokenizer class, 395
stroke attribute, 486–487

Stroke interface, 486
Structured Query Language (SQL), 629, 635
Stub class, 193
Stub type, 192
StubFinder, 257, 275
subList() method, 331–333, 345
submit() method, 407
SubReturnType class, 113–115
subSet() method, 345–348, 352, 354
substring-after() method, 730
substring-before() method, 730
substring() method, 730
Subtraction operator, 29
successor() method, 348
SUID (stream unique identifier), 557
sum() method, 69, 730
super() method, 87
SuppressWarnings type, 190
SVG (Scalable Vector Graphics), 669, 695–696
Swing API, 463–477

extended architecture, 464–470
heavyweight containers, 464–466
lightweight components and containers,

466–467
PLAFs, 468–470
UI delegates, 467–468

sampling components of, 470–477
SwingCanvas class, 476–477
TempVerter application, 471–476

Swing class, 473
SwingCanvas class, 476–477
SwingUtilities class, 469
SwingWorker class, 578
switch statement, 40
sync() method, 529
synchronizedSet() method, 389–390
synchronizers, 410–413
synchronizing, threads, 291–306
System class, 73, 279–281, 318, 328, 446, 513,

538
system requirements, Android SDK, 848–849
System.gc() method, 379
System.in.read() method, 43–46
System.out.println() method, 43, 54, 59, 73, 82,

86, 99, 107, 127, 301
System.out.println(msg), 102

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

 INDEX

895

 T
TABLE statement, 640
TABLE_CAT column, 649
TableModel interface, 656
TABLE_NAME column, 649
tables, lookup, 506–507
TABLE_SCHEM column, 649
tagging interface, 116
tags, 663–664, 666, 671–673, 676, 688, 697, 721
tailSet() method, 345–347, 353–354
target, 672
targetNamespace attribute, 683
TCP (Transmission Control Protocol), 585
TempConversion, 217–219
temperature-conversion web service, 764–776
temperature variable, 19, 22
Templates interface, 744–745
Templates object, 744
TempVerter application, 471–476
TempVerter class, 445, 450
TempVerter interface, 764–765, 773
TempVerterClient class, 775
TempVerterImpl class, 765
ternary operator, 24–25
test section, 41–42
text node, 703
TextArea class, 462
Thread class, 594
thread communication, 297–298
Thread interface, Runnable interface and, 282–

291
thread-local variable, 304
Thread object, 282–289, 296, 594
ThreadGroup class, 282, 288–290, 318
Threading API, 282–306

Runnable and Thread interfaces, 282–291
thread synchronization, 291–306

Thread.interrupt() method, 404
ThreadLocal class, 282, 304–305, 318
ThreadLocalRandom class, 419–420, 434
threads, synchronizing, 291–306
Thread.sleep() method, 293
Throwable class, 166
throwable class hierarchy

checked exceptions versus runtime
exceptions, 159

overview, 156–159
throwing exceptions, 161–163

throws clause, 161–165, 168, 189, 223
title elements, 669, 675, 680, 746, 748
toAlignedBinaryString() method, 248, 278
toArray() method, 324–325, 344, 381
Toast class, 869
toBoolean() method, 265
toDenomination() method, 215
ToDo class, 136, 142
ToDoList class, 137, 141–142
toHexStr() method, 542–543
toInclusive, 352, 386
toIndex, 331, 333
tokens, 217
Toolkit class, 436, 456
Toolkit method, 436
toolkits, 436
tools, web service, 760–761
toRoman() method, 815
toString() method, 92, 127, 202, 214, 219, 277,

311, 381, 391, 559
toUpperCase() method, 428–429
toURI() method, 616
toURL() method, 617
traditional enumerated types, trouble with,

213–214
TrafficFlow class, 154
Transferable interface, 461–462
transferring data, 461–463
transformation attribute, 488–489
Transformer class, 743
TransformerException class, 743
TransformerFactory class, 742
TransformerFactoryConfigurationError class,

743
translate() method, 730
Transmission Control Protocol (TCP), 585
tree of nodes, 701–703
TreeMap class, 369–370
TreeMap() method, 320, 348–349, 370, 381–382,

386–387, 395, 400
TreeSet class, 336–337
TreeSet() method, 320, 336, 338, 342, 346, 348,

350–351, 395, 400
Triangle class, 49, 146
Truck class, 85, 87, 91, 95
tryLock() method, 416
twos-complement, 18
Tx method, 488
Type parameter, 197–198, 200–201, 203–206
type parameter bounds, 201–203
type parameter scope, 203–204

 INDEX

896

type safety, need for, 195–197
types

array, 19
overview, 16
primitive, 17–18
user-defined, 18

 U
UDDI (Universal Description, Discovery, and

Integration), 756
UDP (User Datagram Protocol), 585
UIManager class, 469
UIs (User Interfaces), delegates, 467–468
unary minus operator, 29, 35
unary operator, 24–25
unary plus operator, 29, 35
unboxing, autoboxing and, 327–329
UNC (Universal Naming Convention), 513
uncaughtException() method, 290
unchecked exception, 159, 161–163
unicode escape sequences, 21
Unicode Transformation Format (UTF), 566
uniform resource identifier (URI), 669, 751, 835
Uniform Resource Locators. See URLs
uniqueness of package names, 145
Universal Character Set, 17
Universal Description, Discovery, and

Integration (UDDI), 756
Universal Naming Convention (UNC), 513
Unix-oriented file, 395
unlimited serialization, 554
unlock() method, 417–418
unreferenced object, 124
Unsigned right shift operator, 30
UnsupportedOperationException class, 322–

324, 326, 329, 331–332, 365, 368, 389
upcasting, 105–109
update() method, 533
update section, 41–42
UPDATE statement, 647
updateUI() method, 469
upper bound, 201, 203–204, 206, 224
URI class, 609, 615–620, 661
URI object, 616, 618–620
URI (uniform resource identifier), 669, 751, 835
URL class, 609–612, 794
URL command, 611
URL object, 610, 612, 798
URLConnection class, 609–612, 626, 661, 794

URLConnection object, 612
URLDecoder class, 612–614
URLEncoder class, 612–614
URLs (Uniform Resource Locators), 609–620

URI class, 615–620
URL and URLConnection classes, 609–612
URLEncoder and URLDecoder classes, 612–

614
USB driver, 848–849
UseCompass class, 222
UseEmployee class, 186–187
User Datagram Protocol (UDP), 585
user-defined types, 18
User Interfaces (UIs), delegates, 467–468
uses-permission element, 845–846
UTF (Unicode Transformation Format), 566
UTFDataFormatException class, 553
utility APIs, 401–434

concurrency utilities, 401–426
Atomic class variables, 419
concurrent collections, 413–415
executors, 401–410
Fork/Join framework, 420–426
locks package, 416–418
synchronizers, 410–413
ThreadLocalRandom class, 420

Objects class, 426–430
random method, 430–434

utility classes, 68, 388–391

 V
valid documents, 673–683

DTD, 674–678
XML Schema language, 679–683

validate() method, 439
Validation API, 704
value() method, 193
value1, statement1, 40
valueOf() method, 328–329, 395
values() method, 219, 367
varargs and generics, 211–212
varargs methods/constructors, 69
VARCHAR-based column, 641
variables, 19–20, 740–741
Vehicle class, 85, 87, 110
versionCode attribute, 844, 864
versionName attribute, 844, 864
View class, 861
view() method, 265–266

 INDEX

897

Viewer class, 267
ViewGroup class, 861
ViewPNG class, 266
visible lifetime, 839
vocabularies, 663–664, 669
void clear() method, 323, 365, 392
void close() method, 526, 531, 538, 540, 717,

721
void deleteOnExit() method, 522
void endElement() method, 721
void flush() method, 538
void method, 20
void sync() method, 529
void writeEndDocument() method, 721
void writeStartDocument() method, 721

 W
wait() method, 264, 298–301
WC (word-counting application), 399
WeakHashMap class, 255, 378–379
WeakReference class, 254–255
WeakReference object, 250, 254
web services, 751–830

authentication and customized lightweight
HTTP server, 820–822

description of, 751–757
RESTful web services, 756–757
SOAP-based web services, 753–756

Java language and, 758–764
lightweight HTTP server, 761–764
web service annotations, 759–760
web service APIs, 759
web service tools, 760–761

JAX-WS handler, SOAP messages, 815–819
providers and dispatch clients, 825–828
RESTful, 780–798

and attachments, 822–825
Google Charts web service, 795–798
library web service, 781–795

SAAJ API, 799–815
overview of, 801–805
Roman numerals and, 805–815
SOAP messages, 799–801

SOAP-based, 764–779
Image Cutout web service, 776–779
temperature-conversion web service,

764–776
Web Services Description Language (WSDL),

683

while statement, 42–43
while(true) loop, 46
widgets, 857, 861–862
wildcards, need for, 204–205
WindowAdapter class, 443
windowClosing() method, 459, 466
WindowConstants interface, 466
WindowListener object, 466
Windows command, 152, 239, 565
word-counting application (WC), 399
work stealing, 421
wrapper classes, primitive type, 240–249

Boolean class, 240–242
Character class, 242–243
Float and Double classes, 243–247
Integer, Long, Short, and Byte classes, 247–

249
Number class, 249

write() method, 174, 533, 544–545, 550–551,
568–569

writeEmptyElement() method, 721
writeEndElement() method, 721–722
writeExternal() method, 562
writeObject() method, 555, 561, 563
Writer class, and Reader class, 568
writers

classes of, 565–579
FileWriter and FileReader, 570–579
OutputStreamWriter and

InputStreamReader, 568–570
overview of, 566–568
Writer and Reader, 568

event-based, creating documents with, 723–
727

stream-based, creating documents with,
721–723

writeStartElement() method, 721–723
writeStr() method, 542–543
writeTo() method, 829
WSDL file, 760, 772, 828
WSDL (Web Services Description Language),

683

 X
XML declaration, 665–666
XML (Extensible Markup Language)

documents, 663–750
character references and CDATA sections,

668–669

 INDEX

898

comments and processing instructions,
672–673

elements and attributes, 666–667
namespaces, 669–672

XML (Extensible Markup Language) (Cont.)
parsing

with DOM, 700–712
with SAX, 683–700
with StAX, 712–727

rules for, 673
Schema language, 679–683
selecting nodes of with XPath language,

727–741
advanced, 736–741
and DOM, 731–735
primer on, 727–730

transforming with XSLT, 742–748
valid, 673–683

DTD, 674–678
XML Schema language, 679–683

XML declaration, 665–666
XML file, 468, 737, 752, 846–847, 861, 863
XML parsers, 673–674
XML processing pipelines, 714
XMLEvent interface, 717
XMLEventReader interface, 717
XMLEventWriter interface, 723
XMLInputFactory class, 714
xmlns attribute, 669, 682
XMLOutputFactory class, 720
XMLReader-implementing class, 684

XMLReader interface, 683–684
XMLReader object, 684
XMLReaderFactory class, 683–684
XMLStreamConstants interface, 715
XMLStreamReader interface, 715
XMLStreamWriter interface, 721
XPath class, 737
XPath language

advanced, 736–741
extension functions and function

resolvers, 737–740
namespace contexts, 736–737
variables and variable resolvers, 740–741

and DOM, 731–735
primer on, 727–730
selecting XML document nodes with, 727–

741
XPath object, 735, 741
XPathExpression interface, 735
XPathFunction interface, 738
XPathFunctionResolver interface, 739
XPathVariableResolver interface, 741
XSLT (Extensible Stylesheet Language

Transformation), 742–748
xValue() method, 249

 Y, Z
yield() method, 291

Beginning Java 7

Jeff Friesen

Beginning Java 7

Copyright © 2011 by Jeff Friesen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3909-3

ISBN-13 (electronic): 978-1-4302-3910-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Tom Welsh
Technical Reviewer: Chád Darby
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Linda Seifert
Compositor: Bytheway Publishing Services
Indexer: BMI Indexing & Proofreading Services
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, LLC., 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

iv

Contents

 About the Author.. xiv

 About the Technical Reviewer .. xv

 Acknowledgments ... xvi

 Preface.. xvii

 Chapter 1: Getting Started with Java..1
What Is Java? ..1

Java Is a Language... 1
Java Is a Platform... 3

Installing and Working with JDK 7...4
Installing JDK 7... 4
Working with JDK 7 .. 5

Installing and Working with NetBeans 7..7
Installing NetBeans 7.. 8
Working with NetBeans 7 ... 9

Java Language Fundamentals...12
Comments .. 12
Identifiers ... 16
Types .. 16
Variables... 19
Expressions .. 20
Statements ... 36

Summary ...49

 CONTENTS

v

 Chapter 2: Discovering Classes and Objects ..51
Declaring Classes and Creating Objects..52

Declaring Classes ... 52
Creating Objects with the new Operator and a Constructor ... 52
Specifying Constructor Parameters and Local Variables.. 53
Creating Arrays with the new Operator .. 57

Encapsulating State and Behaviors ...59
Representing State via Fields... 60
Representing Behaviors via Methods ... 65
Hiding Information .. 74

Initializing Classes and Objects ...78

Inheriting State and Behaviors ..84
Extending Classes .. 85
The Ultimate Superclass... 91
Composition.. 100
The Trouble with Implementation Inheritance.. 100

Changing Form ..104
Upcasting and Late Binding.. 105
Abstract Classes and Abstract Methods... 109
Downcasting and Runtime Type Identification ... 111
Covariant Return Types .. 113

Formalizing Class Interfaces ...115
Declaring Interfaces ... 115
Implementing Interfaces... 117
Extending Interfaces... 120
Why Use Interfaces?... 122

Collecting Garbage...124
Summary ...129

 CONTENTS

vi

 Chapter 3: Exploring Advanced Language Features ...131
Nested Types ...131

Static Member Classes... 131
Nonstatic Member Classes... 135
Anonymous Classes.. 138
Local Classes.. 140
Interfaces Within Classes ... 143

Packages ...144
What Are Packages?... 144
The Package Statement ... 145
The Import Statement... 146
Searching for Packages and Types .. 147
Playing with Packages ... 148
Packages and JAR Files ... 153

Static Imports ..153

Exceptions ...155
What Are Exceptions?... 155
Representing Exceptions in Source Code... 155
Throwing Exceptions .. 161
Handling Exceptions ... 163
Performing Cleanup.. 170

Assertions..175
Declaring Assertions... 176
Using Assertions... 177
Avoiding Assertions .. 183
Enabling and Disabling Assertions ... 183

Annotations..184
Discovering Annotations... 185

 CONTENTS

vii

Declaring Annotation Types and Annotating Source Code ... 188
Processing Annotations .. 192

Generics...194
Collections and the Need for Type Safety... 195
Generic Types... 197
Generic Methods... 206
Arrays and Generics ... 208
Varargs and Generics ... 211

Enums..212
The Trouble with Traditional Enumerated Types .. 213
The Enum Alternative ... 214
The Enum Class .. 218

Summary ...222

 Chapter 4: Touring Language APIs ...227
Math and StrictMath ..227

Package ...235
Primitive Type Wrapper Class..240

Boolean... 240
Character .. 242
Float and Double... 243
Integer, Long, Short, and Byte.. 247
Number... 249

Reference ..249
Basic Terminology .. 250
Reference and ReferenceQueue... 251
SoftReference... 252
WeakReference .. 254
PhantomReference ... 255

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

 CONTENTS

viii

Reflection...257
String ...272

StringBuffer and StringBuilder ..276
System...279

Threading...282
Runnable and Thread ... 282
Thread Synchronization.. 291

BigDecimal...306
BigInteger ..312

Summary ...317

 Chapter 5: Collecting Objects..319
The Collections Framework ...319

Architecture Overview .. 319
Iterable and Collection.. 322
List.. 329
Set .. 335
SortedSet.. 344
NavigableSet .. 351
Queue ... 355
Deque ... 359
Map... 364
SortedMap .. 380
NavigableMap... 383
Utilities.. 388

Legacy Collections APIs...391
Creating Your Own Collections ..395
Summary ...400

 CONTENTS

ix

 Chapter 6: Touring Additional Utility APIs ..401
Concurrency Utilities..401

Executors.. 401
Synchronizers... 410
Concurrent Collections ... 413
Locks .. 416
Atomic Variables... 419
Additional Concurrency Utilities ... 419

Objects...426

Random ...430
Summary ...434

 Chapter 7: Creating and Enriching Graphical User Interfaces435
Abstract Window Toolkit..435

Toolkits ... 436
Components, Containers, Layout Managers, and Events ... 436
Images.. 456
Data Transfer.. 461

Swing...463
An Extended Architecture ... 464
Sampling Swing Components... 470

Java 2D..477
GraphicsEnvironment, GraphicsDevice, and GraphicsConfiguration .. 477
Graphics2D ... 481
Shapes.. 493
Buffered Images ... 498

Summary ...509

 CONTENTS

x

 Chapter 8: Interacting with Filesystems...511
File ...511
RandomAccessFile ..525

Streams ...536
Stream Classes Overview... 537
OutputStream and InputStream.. 539
FileOutputStream and FileInputStream .. 542
FilterOutputStream and FilterInputStream ... 545
BufferedOutputStream and BufferedInputStream .. 551
DataOutputStream and DataInputStream... 552
Object Serialization and Deserialization ... 554
PrintStream .. 566

Writers and Readers ..567
Writer and Reader Classes Overview ... 568
Writer and Reader... 570
OutputStreamWriter and InputStreamReader... 570
FileWriter and FileReader ... 572

Summary ...583

 Chapter 9: Interacting with Networks and Databases..585
Interacting with Networks ...585

Communicating via Sockets ... 585
Communicating via URLs.. 609
Authentication .. 620
Cookie Management... 626

Interacting with Databases..628
Java DB .. 629
JDBC... 636

Summary ...660

 CONTENTS

xi

 Chapter 10: Parsing, Creating, and Transforming XML Documents663
What Is XML?...663

XML Declaration ... 665
Elements and Attributes ... 666
Character References and CDATA Sections ... 668
Namespaces... 669
Comments and Processing Instructions ... 672
Well-Formed Documents .. 673
Valid Documents... 673

Parsing XML Documents with SAX ..683
Exploring the SAX API ... 683
Demonstrating the SAX API .. 690
Creating a Custom Entity Resolver ... 697

Parsing and Creating XML Documents with DOM..700
A Tree of Nodes .. 701
Exploring the DOM API.. 703

Parsing and Creating XML Documents with StAX..712
Parsing XML Documents .. 714
Creating XML Documents ... 720

Selecting XML Document Nodes with XPath ...727
XPath Language Primer .. 727
XPath and DOM... 731
Advanced XPath.. 736

Transforming XML Documents with XSLT ...742
Exploring the XSLT API ... 742
Demonstrating the XSLT API... 745

Summary ...750

 CONTENTS

xii

 Chapter 11: Working with Web Services ..751
What Are Web Services? ...751

SOAP-Based Web Services... 753
RESTful Web Services .. 756

Java and Web Services..758
Web Service APIs.. 759
Web Service Annotations.. 759
Web Service Tools .. 760
Lightweight HTTP Server .. 761

Working with SOAP-Based Web Services..764
Creating and Accessing a Temperature-Conversion Web Service ... 764
Accessing the Image Cutout Web Service .. 776

Working with RESTful Web Services ...780
Creating and Accessing a Library Web Service.. 781
Accessing Google’s Charts Web Service .. 795

Advanced Web Service Topics...798
Working with SAAJ ... 799
Logging SOAP Messages with a JAX-WS Handler.. 815
Authentication and a Customized Lightweight HTTP Server .. 820
RESTful Web Services and Attachments .. 822
Providers and Dispatch Clients... 825

Summary ...830

 Chapter 12: Java 7 Meets Android ...831
Exploring Android and Android App Architectures...831

Android Architecture... 832
App Architecture... 836

Installing the Android SDK and an Android Platform ...850
Accessing System Requirements ... 850

 CONTENTS

xiii

Installing the Android SDK.. 851
Installing an Android Platform .. 852

Creating and Starting an AVD ..856
Creating an AVD.. 856
Starting the AVD ... 858

Creating, Installing, and Running an App ..861
Introducing Java7MeetsAndroid... 861
Creating Java7MeetsAndroid ... 866
Installing and Running Java7MeetsAndroid ... 868

Summary ...871

xiv

About the Author

 Jeff Friesen is a freelance tutor and software developer with an emphasis on Java (and now Android).
Besides writing this book, Jeff has authored Apress’s Learn Java for Android Development (ISBN13: 978-
1-4302-3156-1), has coauthored Apress’s Android Recipes (ISBN13: 978-1-4302-3413-5) with Dave Smith,
and has written numerous articles on Java and other technologies for Java.net (www.java.net), JavaWorld
(www.javaworld.com), InformIT (www.informit.com), and DevSource (www.devsource.com). Jeff can be
contacted via his TutorTutor website at tutortutor.ca.

http://www.java.net
http://www.javaworld.com
http://www.informit.com
http://www.devsource.com

xv

About the Technical Reviewer

 Chád Darby is an author, instructor, and speaker in the Java development world. As a recognized
authority on Java applications and architectures, he has presented technical sessions at software
development conferences worldwide. In his 15 years as a professional software architect, he’s had the
opportunity to work for Blue Cross/Blue Shield, Merck, Boeing, Northrop Grumman, and various IT
companies.

Chád is a contributing author to several Java books, including Professional Java E-Commerce (Wrox
Press), Beginning Java Networking (Wrox Press), and XML and Web Services Unleashed (Sams
Publishing). He is also the author of numerous magazine articles for the Java Developer’s Journal (Sys-
Con Publishing).

Chád has Java certifications from Sun Microsystems and IBM. He holds a B.S. in Computer Science from
Carnegie Mellon University. In his free time, Chád enjoys running half-marathons..

xvi

Acknowledgments

Beginning Java 7 wouldn’t have been possible without the wonderful folks at Apress. I thank Steve Anglin
for giving me the opportunity to write this book, Corbin Collins for guiding me through the various
aspects of the book-writing process, Tom Welsh for helping me with the development of my chapters
and appendixes, and Chad Darby for his diligence in catching various flaws. I couldn’t ask for better
editors and a better technical reviewer. Thanks guys.

xvii

Introduction

Java 7 is Oracle’s latest release of the popular Java language and platform. Beginning Java 7 guides you
through this language and a huge assortment of platform APIs via its 12 chapters and 4 appendixes.

 Note Java was created by Sun Microsystems, which was later bought out by Oracle.

Chapter 1 (Getting Started with Java) introduces you to Java and begins to cover the Java language by
focusing on fundamental concepts such as comments, identifiers, variables, expressions, and
statements.

Chapter 2 (Discovering Classes and Objects) continues to explore this language by presenting all of its
features for working with classes and objects. You learn about features related to class declaration and
object creation, encapsulation, information hiding, inheritance, polymorphism, interfaces, and garbage
collection.

Chapter 3 (Exploring Advanced Language Features) focuses on the more advanced language features
related to nested classes, packages, static imports, exceptions, assertions, annotations, generics, and
enums. Subsequent chapters introduce you to the few features not covered in Chapters 1 through 3.

Chapter 4 (Touring Language APIs) largely moves away from covering language features (although it
does introduce class literals and strictfp) while focusing on language-oriented APIs. You learn about
Math, StrictMath, Package, Primitive Type Wrapper Classes, Reference, Reflection, String, StringBuffer
and StringBuilder, Threading, BigDecimal, and BigInteger in this chapter.

Chapter 5 (Collecting Objects) begins to explore Java’s utility APIs by focusing largely on the Collections
Framework. However, it also discusses legacy collection-oriented APIs and how to create your own
collections.

Chapter 6 (Touring Additional Utility APIs) continues to focus on utility APIs by presenting the
concurrency utilities along with the Objects and Random classes.

Chapter 7 (Creating and Enriching Graphical User Interfaces) moves you away from the command-line
user interfaces that appear in previous chapters and toward graphical user interfaces. You first learn
about the Abstract Window Toolkit foundation and then explore the Java Foundation Classes in terms of
Swing and Java 2D. (Appendix C introduces you to Accessibility and Drag and Drop.)

Chapter 8 (Interacting with Filesystems) explores filesystem-oriented I/O in terms of the File,
RandomAccessFile, stream, and writer/reader classes. (New I/O is covered in Appendix C.)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ia
bo

ro
di

n@
gm

ai
l.c

om

 INTRODUCTION

xviii

Chapter 9 (Interacting with Networks and Databases) introduces you to Java’s network APIs (e.g.,
sockets). It also introduces you to the JDBC API for interacting with databases.

Chapter 10 (Parsing, Creating, and Transforming XML Documents) dives into Java’s XML support by first
presenting an introduction to XML (including DTDs and schemas). It next explores the SAX, DOM, StAX,
XPath, and XSLT APIs; and even briefly touches on the Validation API. While exploring XPath, you
encounter namespace contexts, extension functions and function resolvers, and variables and variable
resolvers.

Chapter 11 (Working with Web Services) introduces you to Java’s support for SOAP-based and RESTful
web services. Besides providing you with the basics of these web service categories, Chapter 11 presents
some advanced topics, such as working with the SAAJ API to communicate with a SOAP-based web
service without having to rely on JAX-WS. You’ll appreciate having learned about XML in Chapter 10
before diving into this chapter.

Chapter 12 (Java 7 Meets Android) helps you put to use some of the knowledge you’ve gathered in
previous chapters by showing you how to use Java to write an Android app’s source code. This chapter
introduces you to Android, discusses its architecture, shows you how to install necessary tools, and
develops a simple app.

As well as creating these twelve chapters, I’ve created four appendices:

Appendix A (Solutions to Exercises) presents the solutions to the programming exercises that appear
near the end of Chapters 1 through 12.

Appendix B (Scripting API and Dynamically Typed Language Support) introduces you to Java’s Scripting
API along with the support for dynamically typed languages that’s new in Java 7.

Appendix C (Odds and Ends) introduces you to additional APIs and architecture topics: Accessibility,
ByteArrayOutputStream and ByteArrayInputStream, classloaders, Console, Desktop, Drag and Drop,
Dynamic Layout, Extension Mechanism and ServiceLoader, File Partition-Space, File Permissions,
Formatter, Image I/O, Internationalization, Java Native Interface, NetworkInterface and
InterfaceAddress, New I/O (including NIO.2), PipedOutputStream and PipedInputStream, Preferences,
Scanner, Security, Smart Card, Splash Screen, StreamTokenizer, StringTokenizer, SwingWorker, System
Tray, Timer and TimerTask, Tools and the Compiler API, Translucent and Shaped Windows, and XML
Digital Signature.

Appendix D (Applications Gallery) presents a gallery of significant applications that demonstrate various
aspects of Java and gives you an opportunity to have more fun with this technology.

Unfortunately, there are limits to how much knowledge can be crammed into a print book. For this
reason, Appendixes A, B, C, and D are not included in this book’s pages−adding these appendixes would
have exceeded the Print-On-Demand (http://en.wikipedia.org/wiki/Print_on_demand) limit of 1,000
pages cover to cover. Instead, these appendixes are freely distributed as PDF files. Appendixes A and B
are bundled with the book’s associated code file at the Apress website
(http://www.apress.com/9781430239093). Appendixes C and D are bundled with their respective code
files on my TutorTutor website (http://tutortutor.ca/cgi-bin/makepage.cgi?/books/bj7).

Appendixes C and D are “living documents” in that I’ll occasionally add new material to them. When I
first encountered Java, I fell in love with this technology and dreamed about writing a book that explored
the entire language and all standard edition APIs. Perhaps I would be the first person to do so.

There are various obstacles to achieving this goal. For one thing, it’s not easy to organize a vast amount
of content, and Java keeps getting bigger with each new release, so there’s always more to write about.

http://en.wikipedia.org/wiki/Print_on_demand
http://www.apress.com/9781430239093
http://tutortutor.ca/cgi-bin/makepage.cgi?/books/bj7

 INTRODUCTION

xix

Another obstacle is that it’s not possible to adequately cover everything within the limits of a 1,000-page
book. And then there are the time constraints, which make it impossible to complete everything in just a
few months.

Proper organization is essential to creating a book that satisfies both Java beginners and more seasoned
Java developers. Regrettably, lack of proper organization in my former Learn Java for Android
Development book resulted in something that isn’t beginner friendly (this has been pointed out on
numerous occasions). For example, the second chapter mixes coverage of basic features (e.g.,
expressions and statements) with objects and classes, and this approach is too confusing for the novice.
Beginning Java 7’s coverage of the Java language is better organized.

It’s not possible to cover everything within 1,000 pages, which is the upper limit for a Print-On-Demand
book. For this reason, I’ve designed Appendixes C and D to be “living” extensions to the book. They
make it possible for me to complete my coverage of the entire Java 7 Standard Edition. I might even
cover Java 8’s new features in a separate area of Appendix C.

I spent nearly six months writing Beginning Java 7. Given the vast scope of this project, that’s a very
small amount of time. It will take me many more months to complete my tour of Java 7 Standard
Edition; I’ll occasionally post updated Appendixes C and D on my website that take you even deeper into
this technology.

If you’ve previously purchased a copy of Learn Java for Android Development, you’ll probably be
shocked to discover that I’ve plagiarized much of my own content. I did so to speed Beginning Java 7’s
development, which contains much material beyond what appeared in my former book (e.g., Swing and
web services). Beginning Java 7 would have taken many more months to complete if I didn’t leverage its
predecessor. (If I thought that Learn Java for Android Development was crap, and I don’t, I never would
have used it as the basis for this new book.)

Don’t get the idea that Beginning Java 7 is a rehash of Learn Java for Android Development−it’s not. In
those portions of Beginning Java 7 where I’ve stolen heavily from its predecessor, there typically are
numerous changes and additions. For example, I’ve rewritten parts of the exceptions and generics
content that appear in Chapter 3; I did so to introduce new Java 7 features and to provide better
coverage of difficult topics. Also, Chapter 5 introduces navigable sets and navigable maps, which is
something that I couldn’t discuss in Learn Java for Android Development because these features were
introduced in Java 6. (I wrote Learn Java for Android Development to teach the Java language and APIs to
prepare the reader for Android−Android apps are written in Java. However, Android doesn’t support
language features and APIs beyond Java 5.)

Beginning Java 7 goes far beyond Learn Java for Android Development in that it also discusses user
interface APIs (e.g., Abstract Window Toolkit, Swing, and Java 2D) and web services (JAX-WS and
RESTful). As well as new content, you’ll also find many new examples (e.g., a chat server) and new
exercises (e.g., create a networked Blackjack game with a graphical user interface).

At the end of Chapter 10 in Learn Java for Android Development, I rashly promised to write the following
free chapters:

 INTRODUCTION

xx

Chapter 11: Performing I/O Redux

Chapter 12: Parsing and Creating XML Documents

Chapter 13: Accessing Networks

Chapter 14: Accessing Databases

Chapter 15: Working with Security

Chapter 16: Odds and Ends

I originally intended to write these chapters and add them to Learn Java for Android Development.
However, I ran out of time and would probably have also run into the Print-On-Demand limit that I
previously mentioned.

Given beginner-oriented organizational difficulties with Learn Java for Android Development, I decided
to not write these chapters in that book’s context. Instead, I pursued Beginning Java 7 in a new (and
hopefully better organized) attempt to cover all of Java, and to attempt to create a book that broadly
appeals to Java beginners and veterans alike.

Although I won’t write the aforementioned six free chapters as described in Learn Java for Android
Development (I can’t keep the entire promise anyway because I’ve integrated Chapters 12, 13, and 14
into Beginning Java 7 as Chapters 9 and 10), the other three chapters (11, 15, and 16) are merged into
Appendix C, which is free. As time passes, additional chapters will appear in that appendix; and so I will
finally keep my promise, but in a different way.

 Note I don’t discuss code conventions for writing source code in this book. Instead, I’ve adopted my own
conventions, and try to apply them consistently throughout the book. If you’re interested in what Oracle has to say
about Java code conventions, check out the “Code Conventions for the Java Programming Language” document at
http://www.oracle.com/technetwork/java/codeconv-138413.html.

http://www.oracle.com/technetwork/java/codeconv-138413.html

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Getting Started with Java
	What Is Java?
	Installing and Working with JDK 7
	Installing and Working with NetBeans 7
	Java Language Fundamentals
	Summary

	Discovering Classes and Objects
	Declaring Classes and Creating Objects
	Encapsulating State and Behaviors
	Initializing Classes and Objects
	Inheriting State and Behaviors
	Changing Form
	Formalizing Class Interfaces
	Collecting Garbage
	Summary

	Exploring Advanced Language Features
	Nested Types
	Packages
	Static Imports
	Exceptions
	Assertions
	Annotations
	Generics
	Enums
	Summary

	Touring Language APIs
	Math and StrictMath
	Package
	Primitive Type Wrapper Class
	Reference
	Reflection
	String
	StringBuffer and StringBuilder
	System
	Threading
	BigDecimal
	BigInteger
	Summary

	Collecting Objects
	The Collections Framework
	Legacy Collections APIs
	Creating Your Own Collections
	Summary

	Touring Additional Utility APIs
	Concurrency Utilities
	Objects
	Random
	Summary

	Creating and Enriching Graphical User Interfaces
	Abstract Window Toolkit
	Swing
	Java 2D
	Summary

	Interacting with Filesystems
	File
	RandomAccessFile
	Streams
	Writers and Readers
	Summary

	Interacting with Networks and Databases
	Interacting with Networks
	Interacting with Databases
	Summary

	Parsing, Creating, and Transforming XML Documents
	What Is XML?
	Parsing XML Documents with SAX
	Parsing and Creating XML Documents with DOM
	Parsing and Creating XML Documents with StAX
	Selecting XML Document Nodes with XPath
	Transforming XML Documents with XSLT
	Summary

	Working with Web Services
	What Are Web Services?
	Java and Web Services
	Working with SOAP-Based Web Services
	Working with RESTful Web Services
	Advanced Web Service Topics
	Summary

	Java 7 Meets Android
	Exploring Android and Android App Architectures
	Installing the Android SDK and an Android Platform
	Creating and Starting an AVD
	Creating, Installing, and Running an App
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

