
This is a reproduction of a library book that was digitized
by Google as part of an ongoing effort to preserve the
information in books and make it universally accessible.

https://books.google.com

https://books.google.com/books?id=HwkuAAAAIAAJ

AL

CES

RY

QA

76.5

W5

UC-NRLF

B 3 773 742

UNIVERSITY OFCA

E
T
H
E

L
I
F
O
R
N
I
A

·
HEREB

LIGHT

S -1868-

1
THE LIBRARY

OF

THE UNIVERSITY

OF CALIFORNIA

DAVIS

THE PREPARATION OF

PROGRAMS

FOR AN ELECTRONIC

DIGITAL COMPUTER

BBF CEGEF
၁ဝ. ဝ

Ag
e
n
e
r
a
l

v
i
e
w

o
f
t
h
e

E
D
S
A
C

.T
h
e

r
a
c
k
s

i
n
t
h
e

f
r
o
n
t

r
o
w

c
o
n
t
a
i
n

(f
r
o
m

l
e
f
t

t
o

r
i
g
h
t

):p
a
r
t

o
f

t
h
e

s
t
o
r
e

(t
w
o

r
a
c
k
s

),p
u
l
s
e

g
e
n
e
r
a
t
o
r

,a
n
d

i
n
p
u
t

-o
u
t
p
u
t

u
n
i
t
s

.B
e
h
i
n
d

a
r
e

t
h
r
e
e

r
a
c
k
s

c
o
n
t
a
i
n
i
n
g

t
h
e

c
o
n
t
r
o
l

, a
n
d

,i
n
t
h
e

r
e
a
r

,t
h
e

r
e
m
a
i
n
d
e
r

o
f
t
h
e

s
t
o
r
e

(t
w
o

r
a
c
k
s

)a
n
d

t
h
e

a
r
i
t
h
m
e
t
i
c
a
l

u
n
i
t

(t
h
r
e
e

r
a
c
k
s

).O
n

t
h
e

e
x
t
r
e
m
e

r
i
g
h
t

o
f
t
h
e

p
h
o
t
o
g
r
a
p
h

m
a
y

b
e
s
e
e
n

t
h
e

t
a
p
e
r
e
a
d
e
r

f
o
r

t
h
e

i
n
p
u
t

t
a
p
e

,a
n
d

t
h
e

t
e
l
e
p
r
i
n
t
e
r

o
n
w
h
i
c
h

r
e
s
u
l
t
s

a
r
e

p
r
i
n
t
e
d

.

T
h
e

l
i
b
r
a
r
y

o
f
t
a
p
e
s

o
n

w
h
i
c
h

s
u
b
r
o
u
t
i
n
e
s

a
r
e

p
u
n
c
h
e
d

i
s
c
o
n
t
a
i
n
e
d

i
n
t
h
e

s
t
e
e
l

c
a
b
i
n
e
t

s
h
o
w
n

o
n

t
h
e

l
e
f
t

.T
h
e

o
p
e
r
a
t
o
r

i
s
p
u
n
c
h
i
n
g

ap
r
o
g
r
a
m

t
a
p
e

o
n
k
e
y
b
o
a
r
d

p
e
r
f
o
r
a
t
o
r

.S
h
e

c
a
n

c
o
p
y

m
e
c
h
a
n
i
c
a
l
l
y

t
a
p
e
s

t
a
k
e
n

f
r
o
m

t
h
e

l
i
b
r
a
r
y

o
n

t
o
t
h
e

t
a
p
e

s
h
e

i
s
p
r
e
p
a
r
i
n
g

b
y

p
l
a
c
i
n
g

t
h
e
m

i
n
t
h
e

t
a
p
e
r
e
a
d
e
r

s
h
o
w
n

i
n
t
h
e

c
e
n
t
e
r

o
f
t
h
e

p
h
o
t
o
g
r
a
p
h

.

THE PREPARATION OF

PROGRAMS

FOR AN ELECTRONIC

DIGITAL COMPUTER

With special reference to

the EDSAC

and the use of a

library of subroutines

by

MAURICE V. WILKES

Director of the Mathematical Laboratory of the

University of Cambridge

DAVID J. WHEELER

and

STANLEY GILL

1951

ADDISON - WESLEY PRESS , INC .

CAMBRIDGE 42 , MASS .

LIBRARY

UNIVERSITY OF CALIFORNIA

DAVIS

Copyright 1951

ADDISON - WESLEY PRESS , INC .

Printed in ihe United States of America

ALL RIGHTS RESERVED. THIS BOOK, OR PARTS THERE-

OF, MAY NOT BE REPRODUCED IN ANY FORM WITHOUT

WRITTEN PERMISSION OF THE PUBLISHERS.

TABLE OF CONTENTS

PART I

CHAPTER 1. THE DESIGN OF PROGRAMS FOR ELECTRONIC

COMPUTING MACHINES .

1-1 Introduction

1-2 Types of automatic computing machines

1-3 Description of the EDSAC • •

1-4 The EDSAC order code •
•

1-5 Notes on the order code •

1-6 The use of conditional orders • • • •

1-7 Modification of orders by the program .

1-8 Multiaddress codes • • •

1-9 Binary -decimal conversion . •

1-10 Checking facilities • •

CHAPTER 2. INPUT OF ORDERS

2-1 Initial orders

•

•
•

2-2 Pseudo-orders •

2-3 Examples • • • •
•

2-4 Control combinations • •
•

• •

2-5 Starting the program • • •

2-6 Use of code letters • • • • • •

2-7 Constants • • ...

2-8 Notation •

• • •

CHAPTER 3. SUBROUTINES AND PARAMETERS .

...

3-1 Open subroutines

3-2 Closed subroutines

3-3 Preset parameters •

3-4 Program parameters

• • •

•

1

1

2
• • •

3
• •

5
•

6
• •

7
•

8
• •

11
•

12
•

14
•

15
•

15
•

17
•

17
•

17
•

18
•

19

20
•

20
• •

22

22

22
•

•

23

23

CHAPTER 4. LIBRARY SUBROUTINES AND THEIR USE IN

CONSTRUCTING PROGRAMS 25

25
•

25
• •

• •
26

• •

27
•

• • 27

27
•

32
• • • •

•

34

4-1 Library catalog •

4-2 Input and output subroutines

4-3 Division subroutines • • •

4-4 Trigonometrical and other functions • • • •

4-5 Quadrature

4-6 Assembly subroutines •

4-7 Integration of differential equations

4-8 Processes. Interpretive subroutines •

CHAPTER 5. PITFALLS 38
•

....

5-1 Proofreading of programs. Points to be checked

5-2 Location of mistakes in a program

5-3 Counting operations

• • •

•

CHAPTER 6. USE OF THE EDSAC AND ITS ASSOCIATED

EQUIPMENT .

6-1 Tape punching and editing facilities .

6-2 Storage of library subroutines

6-3 EDSAC organization • • ..

• •

• • 38•

39
•

41
•

42
•

42
• •

43
•

43

6-4 EDSAC controls
• • • 43•

CHAPTER 7. EXAMPLES • • 45

7-1 Example 1. Calculation of e - sinx. • 45
•

•

7-2 Example 2. Calculation of n by evaluation of definite integral 48

7-3 Alternative method for Example 2 51•
• •

7-4 Example 2, with extra print orders for checking 53•
•

7-5 Application of checking subroutine C11 to Example 2

7-6 Example of integration of an ordinary differential equation

7-7 Evaluation of a definite integral .

54
• • • •

56•
•

61
•

7-8 Program to facilitate the solution of algebraic equations 66
• •

PART II SPECIFICATIONS OF LIBRARY SUBROUTINES 72
• •

A. Subroutines to carry out floating point arithmetic

B. Subroutines to carry out arithmetical operations on complex

73
•

•

numbers • • 78• • • • •

C. Checking subroutines •
• •

79
•

D. Division subroutines •
•

82

E. Exponential subroutines

F. General routines relating to functions

G. Subroutines for integration of ordinary differential equations .

•
• 83

• • • • 84

86

J. Subroutines for calculating special functions • • • •
• 88

K. Subroutines for the summation of power series 88
• • •

R. Input subroutines •

L. Subroutines for evaluating logarithms

M. Miscellaneous subroutines

P. Print subroutines

Q. Quadrature subroutines .

S. Subroutines for evaluation of fractional powers

U. Subroutines for counting operations

91

• • • • •
91

•
•

•

.. • 92• • •

95

96
• • • • • ..

98• •

T. Subroutines for calculating trigonometrical functions

•

V1 . Multiplication of vector by symmetric matrix .

V2 . Addition and subtraction of n dimensional vectors

•

99

101
• • •

102

103

PART III PROGRAMS OF SELECTED LIBRARY SUBROUTINES 104

APPENDIX A Keyboard perforator code, etc. 158

APPENDIX B The initial orders 159

APPENDIX C Control combinations 161•

APPENDIX D Interpretive subroutines: example of packing of orders . 162

APPENDIX E Methods of counting in a simple cycle 164
•

INDEX

PREFACE

The methods of preparing programs for the EDSAC described in this book

were developed with a view to reducing to a minimum the amount of labor re-

quired, and hence of making it feasible to use the machine for problems which

require only a few hours of computing time as well as for those which require

many hours . This necessitated the establishment of a library of subroutines

and the development of systematic methods for constructing programs with

their aid. The methods are described in terms of the code of orders used in

the EDSAC, but for the main part they may readily be translated into other

order codes . It is hoped, therefore, that those who have charge of similar

machines , or who are faced with the task of putting a new machine into opera-

tion, will find some of the ideas and methods presented here of assistance . It

is hoped also that the book will be of use to those who wish to know something

about the form in which problems are presented to an automatic digital calcu-

lating machine and who wish to assess the possibilities of the application of

such machines to their own subjects .

Many workers in the Mathematical Laboratory have contributed to the de-

velopment of the methods described in this book. We would mention especially

the following: J. M. Bennett (to whom the material described in Appendix D is

due) , R. A. Brooker, E. N. Mutch, B. Noble, J. P. Stanley, and B. H. Worsley.

To this list we would add the name of Professor D. R. Hartree, F.R.S. who has

also very kindly contributed a foreword to this book. The following also assisted

in the formation of the library of subroutines : K. N. Dodd, L. A. G. Dresel ,

A. E. Glennie , E. E. C. McKee, and C. M. Munford. We are especially grate-

ful to Mr. Mutch for his assistance with the editorial work, in particular for

undertaking the heavy task of preparing Parts II and III for the press .

We are deeply conscious of the debt we owe to our colleagues engaged on

other projects, especially to those who were instructors of a course attended

by one of us at the Moore School of Electrical Engineering, University of Penn-

sylvania , in 1946 , and to Dr. J. von Neumann and Dr. H. H. Goldstine of the

Institute for Advanced Study, Princeton, whose privately circulated reports we

have been privileged to see.

We would also like to express our gratitude to Dr. Z. Kopal for the help

he has freely given in proofreading and in seeing the book through the press .

We are most grateful to the publishers and their staff for the care that they

have taken and for the rapidity with which they have done their work.

Cambridge, England

March, 1951

M. V. W.

D. J. W.

S. G.

FOREWORD

by Professor D. R. Hartree , Ph.D. , F.R.S.

To the potential user of an automatic digital calculating machine, the suc-

cessful design and construction of the machine itself is only a first step, though

certainly an essential one. In order that the machine should in practice be use-

ful to him in the calculations he may desire to carry out with its aid, the pro-

vision of an adequate organization for using the machine is as important as the

machine itself .

One form of such an organization is based on a library of subroutines for

carrying out standard processes, and facilities for using it. Provision of such

a library has two important effects . First, it relieves the user of the machine

of the greater part of the work of programming calculations in detail ; a library

subroutine can be incorporated as a unit in his program, without it being neces-

sary for him to work through the sequence of operations by which the calculation

carried out by the subroutine is effected; and it is quite possible for eighty per-

cent of a complete program to be carried out by the use of such library subrou-

tines . And secondly, in making up a program, use of library subroutines which

have been thoroughly checked limits the possibilities of mistakes in program-

ming, and correspondingly reduces the expenditure of time, both of the machine

and of the programmer, in diagnosing and correcting mistakes. In order that

such a library of subroutines should be practically useful , it seems desirable,

if not indeed necessary, that the subroutines should be drawn up in a form which

provides a certain amount of flexibility in their use, so that slight variations

canbe made in them in order to suit the contexts in which they may be used in

particular applications .

The process of building up such a library of subroutines, and testing its

value by practical use, appears to have proceeded further at the Mathematical

Laboratory of the University of Cambridge than elsewhere , and in this book

the authors , who together have been primarily concerned in this development,

give an account of the present state of this aspect of the study of means of using

an automatic calculating machine effectively. It is the result of a considerable

amount of exploratory work on such matters as ways in which to specify operat-

ing instructions to the machine, and to draw up subroutines, so as to give the

required flexibility, ways in which to enter and leave subroutines, and different

types of subroutines.

The results of this work do not provide a unique system, nor are they to be

regarded as forming a perfect one; they depend on the order code and other

features of the functional design of a machine which were decided already two

years ago, before some of the developments in programming had been envisaged.

But that it is a practical and useful system has been tested by experience; it

divests programming of the appearance of being something of a magic art,

closed except to a few specialists, and makes it an activity simple enough to be

undertaken by the potential user who has not the opportunity to give his whole

time to the subject.

The subject is one which is still developing, but the authors are, I think , to

be commended for drawing up this account of the present stage of their contri-

bution to it, both in general ideas and in details, and so making this work avail-

able to others working in this same field.

Cavendish Laboratory

Cambridge, England

January, 1951

D. R. Hartree

PART I

CHAPTER 1

THE DESIGN OF PROGRAMS

FOR ELECTRONIC COMPUTING MACHINES

1-1 Introduction .

A digital computing machine can perform only the basic operations of

arithmetic , namely, addition, subtraction, multiplication, and division. In

order to be able to solve a mathematical problem such as the integration of

a differential equation it is first necessary to express the problem as a se-

quence of such operations . This may call merely for some expenditure of

labor or it may involve considerable mathematical manipulation; for example,

where derivatives or integrals are involved it may be necessary to replace

the continuous variables by variables which change in discrete steps.

If the computation were to be performed by a human computer it would

be possible to communicate the problem to him in a series of instructions or

orders , each specifying an elementary arithmetical operation. It is conven-

ient to use the same nomenclature when speaking of a machine but here the

" instructions, " or "orders," are groups of symbols punched on a paper tape

or prepared in some other form which can be fed into a machine. A sequence

of orders for performing some particular calculation is called the program.

It must contain everything necessary to cause the machine to perform the re-

quired calculations and every contingency must be foreseen. A human com-

puter is capable of reasonable extension of his instructions when faced with

a situation which has not been fully envisaged in advance, and he will have

past experience to guide him. This is not the case with a machine.

Since an automatic computing machine can perform only a very limited

number of basic operations , the simplest mathematical calculation requires

an extended sequence of orders. The labor of drawing up a program for a par-

ticular problem is often reduced if short, ready - made programs for perform-

ing the more common computing operations are available . These short pro-

grams are usually called subroutines, and they may be incorporated as they

stand in the program, thus reducing the amount of work which has to be done

ab initio. If it is intended that an electronic computing machine shall be used

on a wide variety of problems it is worth-while to spend much effort on the

establishment of an extensive library of such subroutines , together with a work-

able system whereby selected subroutines may be combined to form a program.

This book contains a detailed description of the library of subroutines

used in the Mathematical Laboratory of the University of Cambridge in con-

junction with the EDSAC (Electronic Delay Storage Automatic Calculator) and

of the way in which programs can be constructed with its aid. There will be

some discussion of the best way to construct subroutines for numerical quad-

rature , the integration of differential equations, and other processes, but the

more theoretical problems that arise in numerical analysis are outside the

scope of this book. Some of these, for instance those concerned with the con-

vergence of iterative processes and with the accumulation of rounding - off

1

2 ELECTRONIC DIGITAL COMPUTER

errors, are of great importance and interest and are likely to arise in acute

form when planning the large-scale computing operations which an electronic

machine makes possible. The present book, however, is concerned with the

steps which must be taken to make the machine perform the numerical proc-

esses necessary to solve a problem when once it has been decided what those

processes are.

There are naturally many ways, all similar in principle but differing in

detail , in which subroutines may be used to construct programs, and no attempt

will be made here to discuss all the possible alternative methods. It is hoped,

however , that the account given of those at present being used with the EDSAC

will be of general interest. The ideas and techniques described are applicable,

with suitable adaptation, to other electronic calculating machines designed on

the same general principles .

1-2 Types of automatic computing machines.

In large automatic computing machines which depend for their action on

electromechanical devices the orders are usually punched in coded form on

paper tape, one group of holes corresponding to each order . These holes are

read by a sensing device and cause the machine to perform the operation

called for; the tape is then advanced so that the next group of holes is under

the reading head and the next order is similarly executed. In addition to a

sensing mechanism for the main program tape, several other sensing mechan-

isms are usually provided. These can be used to read endless loops of tape

which contain orders for performing parts of the program which have to be

repeated a number of times. Control of the machine is passed from one tape

to another as required. Machines which work in this manner are the Automatic

Sequence Controlled Calculator at Harvard University, relay calculators built

by the Bell Telephone Laboratories, the Aiken relay computer at Dahlgren, Md. ,

and the IBM Selective Sequence Electronic Calculator.

Such a system, while admirable for controlling a relay machine, would

not be fast enough for a machine in which the computation is performed by elec-

tronic means and in which it is desired to realize the very high speed which

this makes possible. The ENIAC , which was the first purely electronic ma-

chine to be built, therefore used a system in which the various steps of the

program were initiated by "program pulses" passed from one unit of the ma-

chine to another . For example, to cause a number standing in one register or

"accumulator" to be added to the number standing in another accumulator ,

both accumulators needed to be stimulated by a program pulse, one to trans-

mit and one to receive. When the operation was finished both accumulators

emitted a pulse, and one of these (it did not matter which, since they both

occurred at the same time) was used to stimulate the next action. Putting a

problem on the machine consisted, therefore, of making a large number of

connections by means of plugs and sockets and setting a number of switches.

The main objection to this system is that it takes some time to change over

from one problem to another. In all later machines , proposed or completed,

the orders are expressed in a coded form and placed in advance in a quick-

access store , or memory, from which they are subsequently taken and executed

one by one . The orders are usually passed into the machine by means of a

DESIGN OF PROGRAMS 3

punched tape, or some similar medium, but this is used simply as an inter-

mediary in the process of transferring the program to the store, and does

not control the computing action of the machine directly.

A store , or memory, is needed in automatic computing machines for

the purpose of holding numbers, and in the EDSAC the same store is used to

hold the orders; this is made possible by the device of expressing the orders

in a numerical code. Several machines working on the same principles as the

EDSAC are now in operation in the United States and in England. These prin-

ciples derive from a report drafted by J. von Neumann in 1946 in connection

with a new machine (the EDVAC) then projected by the Moore School of Elec-

trical Engineering (University of Pennsylvania) where the ENIAC had been

built. It is found that machines designed along the lines laid down in this re-

port are much smaller and simpler than the ENIAC and at the same time more

powerful. The methods by which programs are prepared for all these machines

are, as might be expected, similar , although the details vary according to the

different order codes used. Anyone familiar with the use of one machine will

have no difficulty in adapting himself to another . All machines so far com-

pleted use the binary system for internal calculations but this is not an essen-

tial feature and several machines under construction use the decimal system.

Even if the binary scale is used inside the machine, it is only rarely that the

programmer needs to take notice of this fact, since input and output can be

performed in the scale of ten, the necessary conversion being done by the

machine itself as part of the program.

1-3 Description of the EDSAC .

In order to be able to construct programs, some knowledge of the main

units of the machine and their interconnection is required, although it is not

necessary to understand the precise mode of functioning of the various elec-

tronic circuits . There are, from the point of view of the programmer , four

main parts to the machine: the store, or memory, the arithmetical unit, the

input, and the output mechanisms. There is also the control unit which emits

the electrical signals that control the action of the other units. Fig. 1 shows

the connections between the various units. The store of the EDSAC, which is

of the ultrasonic variety, was designed to have capacity for 1024 numbers of

17 binary digits each, although so far only half this capacity has been available.

Negative numbers are represented inside the machine by their true comple-

ments and the most significant digit of any number is treated in the arithmeti-

cal unit as a sign digit. The sign digit is a zero if the number is positive and

a one if it is negative. The 512 numbers are held in 512 “ storage locations"

numbered serially from 0 to 511 for reference purposes. The reference num-

ber of the storage location holding a number x is sometimes called the address

of x. A special feature of the EDSAC is the possibility of combining any two

consecutive storage locations (provided that the first has an even serial num-

ber) into a single long storage location capable of holding a number with 35

binary digits , one of which is a sign digit. Such a number is called a" long

number " to distinguish it from a " short number" of 17 binary digits. It is

possible to accommodate 35 digits in a long storage location, and not 34 only,

since in the ultrasonic store of the EDSAC the digits of successive numbers

are stored end to end and one digital position between each is left unused;

4 ELECTRONIC DIGITAL COMPUTER

STORE

CONTROL

ARITHMETICAL

UNIT

ACCUMULATOR

INPUT

OUTPUT

Fig. 1 Schematic diagram of the EDSAC

when two storage locations

are combined this position

can be used to contain an

extra digit (sometimes

called the " sandwich”

digit) . It may be noted

that a long number con-

tains the equivalent of

about ten decimals and a

short number the equiva-

lent of about five decimals.

The arithmetical unit

may best be described as

being an electronic ver-

sion of an ordinary desk-

type calculating machine.

In it the operations of

addition, subtraction, and

multiplication may be per-

formed; there is no divider

in the EDSAC and the

means used for perform-

ing division will be de-

scribed later . The arith-

metical unit contains an

accumulator register , in

which the results of addi-

tions, subtractions , and

multiplications appear

and in which a series of

such results may be accumulated. There is another register which is used

to hold the multiplier during the process of multiplication. The multiplier is

so constructed that numbers are treated as though they lie in the range

-1≤x<1 , that is, the binary point is assumed to come immediately to the

right of the sign digit. The programmer should, therefore , rearrange the

formulas before drawing up the program, so that all the quantities which

need to be handled inside the machine are within the range -1<x<1 . This

may always be done if suitable positive or negative powers of two are intro-

duced as multiplying constants; in the program these constants are repre-

sented by shift orders. An alternative procedure, although not one to be

generally recommended, is for the programmer to adopt some other conven-

tion as to the position of the binary point and to program a shift after each

multiplication; for example, if the binary point is assumed to be between the

second and third digits to the right of the sign digit, each multiplication must

be followed by a shift of 2 places to the left.

Five -hole punched tape , read by a photoelectric tape reader, is used

for input to the EDSAC . All the orders and numbers required for the solution

of a problem are punched on a single tape, which may, however , be divided

into two or more pieces for insertion in the tape reader one after the other.

Library subroutines are stored on separate short lengths of tape and copied

DESIGN OF PROGRAMS 5

mechanically on to the program tape. The output mechanism is a teleprinter .

Further information about the engineering of the EDSAC will be found in the

papers listed on page 21 .

1-4 The EDSAC order code.

The action of the machine proceeds in two stages; in stage I an order

passes from the store into the control unit; in stage II the order is executed.

The machine then proceeds automatically to repeat stage I, in general taking

the order from the storage location following that containing the order just

executed. An exception to this rule will be discussed in Section 1-6 . Each

order calls for one simple operation to be performed; for example, it may

cause some number to be extracted from the store and added to whatever

happens to be in the accumulator , the sum being left in the accumulator , or

it may cause the contents of the accumulator to be transferred to the store .

Some orders, for example left or right shift orders, do not involve the use of

the store at all.

There are in the EDSAC code eighteen orders from which the program-

mer can build up his program. They are written in the form of a letter indicat-

ing the function of the order , and a number (the address) specifying the location

(if any) in the store concerned. The address is followed by the code letter F if

it refers to a short storage location, and by the code letter D if it refers to a

long storage location. The full order code for the EDSAC is as follows :

Order Code

Where the code letter terminating an order is not shown it may be either F

or D.

An

Sn

Hn

Vn

Nn

Tn

Un

Cn

*RD

Add the number in storage location n into the accumulator .

Subtract the number in storage location n from the

accumulator .

Copy the number in storage location n into the multiplier

register .

Multiply the number in storage location n by the number

in the multiplier register and add the product into the

accumulator .

Multiply the number in storage location n by the number

in the multiplier register and subtract the product from

the accumulator .

Transfer the contents of the accumulator to storage loca-

tion n and clear the accumulator .

Transfer the contents of the accumulator to storage loca-

tion n and do not clear the accumulator .

Collate the number in storage location n with the number

in the multiplier register and add the result into the

accumulator; that is, add a " 1 " into the accumulator

in digital positions where both numbers have a " 1" ,

and add a ' 0 ' in other digital positions .

Shift the number in the accumulator one place to the

right; that is , multiply it by 2-1 .

6 ELECTRONIC DIGITAL COMPUTER

**R 2P- 2 F Shift the number in the accumulator p places to the right;

that is, multiply it by 2-P (2≤p≤12) .

RF Shift the number in the accumulator 15 places to the right;

that is, multiply it by 2-15

*L F Shift the number in the accumulator one place to the left;

that is, multiply by 2.

**L 2P- 2 F Shift the number in the accumulator p places to the left;

LF

EnF

GnF

In

On

Fn

*x

*Y

*Z

that is, multiply by 2P (2<p≤12) .

Shift the number in the accumulator 13 places to the left;

that is, multiply by 213 .

If the number in the accumulator is greater than or equal

to zero, execute next the order which stands in storage

location n; otherwise proceed serially.

If the number in the accumulator is less than zero, execute

next the order which stands in storage location n; other-

wise proceed serially .

Read the next row of holes on the input tape and place the

resulting integer, multiplied by 2-16, in storage location n.

Print the character now set up on the teleprinter and set

up on the teleprinter the character represented by the

five most significant digits in storage location n.

Place the five digits which represent the character now

set up on the teleprinter in the five most significant

places in storage location n, clearing the remainder of

this location.

Ineffective; machine proceeds to next order .

Round-off the number in the accumulator to 34 binary

digits; that is, add 2-35 into the accumulator .

Stop the machine .

* The addresses in these orders need not be zero.

** The addresses in these orders may be k . 2P- 2 where k is odd, pro-

vided that the addresses do not exceed 2047.

1-5 Notes on the order code.

As a simple example of the use of this code, suppose that it is required

to evaluate the expression x+y+xy, taking x and y to be the contents of the

short storage locations 50 and 51 , and to place the result in the long storage

location 52. A program for doing this is as follows (it is assumed that the

accumulator is clear at the beginning) :

A 50 F

A 51 F

H 50 F

V 51 F

T52 D

The accumulator has sufficient capacity to hold a number having 71

binary digits, of which one is regarded as a sign digit. As in the store, the

binary point is immediately to the right of the sign digit. When two long num-

bers are multiplied together the resulting 69 digits are all available in the

DESIGN OF PROGRAMS 7

.

accumulator. A U order or a T order will, however, transfer only the 35 most

significant digits (or if the order is terminated by an F, the 17 most significant

digits) to the store, although a T order always clears the whole of the accumu-

lator . If it is desired to retain all the 69 digits which are obtained by multiply-

ing two long numbers together, then the 35 most significant digits must first

be transferred to the store by means of a U order and the contents of the ac-

cumulator shifted 34 places to the left; the 34 least significant digits are then

in a suitable position to be transferred to the store by a T order . Note that it

is necessary to use three left shift orders, since in the EDSAC the number in

the accumulator cannot be shifted more than 13 places to the left by a single

shift order.

If an A order is used to add a number x from the store to the humber y

standing in the accumulator the correct answer will be obtained only if x+y

satisfies the condition -1<x+y<1. If this condition is violated the number

appearing in the accumulator will by x+y-2 if x+y≥1 , and x+y+2 if x+y< -1. In a

similar way, if the effect of any other order is to cause the capacity of the

accumulator to be exceeded, the number which actually appears in the accumu-

lator is that obtained by adding or subtracting a suitable multiple of 2 from

the correct result.

The C order (collation) is useful when it is required to pick out specified

groups of digits from a number. For example, the first four binary digits ,

not including the sign digit, of a given number may be isolated by collating the

given number with the number 01111000000000000000000000000000000 ,

15/16.

that is,

The number placed in the multiplier register by an H order remains

there until it is replaced by another number introduced by another H order .

Thus if a series of numbers are to be multiplied by a constant, one H order

only is necessary to transfer the constant to the multiplier register at the

beginning of the operation.

1-6 The use of conditional orders.

An exception to the rule that the machine executes orders in the sequence

in which they stand in the store occurs when a conditional order (E or G) is

encountered. The action then depends on the sign of the number in the accumu-

lator; if this is negative an E order causes the machine to pass straight on to

the next order , while if it is positive or zero the next order is taken from some

other location in the store. In the latter case control is said to be transferred

to the new storage location. The action of a G order is similar , except that

control is transferred if the number in the accumulator is negative. The fol-

lowing program for finding the absolute value of the number in storage location

123 illustrates the use of a conditional order .

Location

oforder Order Notes

the accumulator is assumed to be clear at

the start

the number in 123 is added into the accumu-

lator

301 A 123 F

302 E 305 F the sign is tested

8 ELECTRONIC DIGITAL COMPUTER

303 T F

304 S F

ifnegative, the number in the accumulator

is changed in sign

305 T F the result is placed in location 0

Conditional orders, however, are much more important than this ex-

amplewould indicate, since they enable the programmer to cause a group of

orderstobe repeated a number of times andto transfer control from one

sectionofthe program to another . Conditional orders thus provide facilities

equivalentto those obtained by the use of endless loops of tape onthe machines

mentioned earlier. The following example shows how the operations called

forby the sequence of orders held in storage locations 100 to 109 maybe re-

peated six times.

...
...

Method. A number in the store is arranged to have the values -5, -4,

0 units after the group of orders has been obeyed once, twice, six

times. Thuswhen this counting number becomes zero, the process has been

performed six times.

Itis assumed that storage location 0 canbe used to hold the counter,

and that storage locations 1 and 2 contain 6-2-15 and 2-15 respectively.

Location

oforder Order Notes

97 S 1 F

98 A 2F

99 T F

100

:

109

110 A F

111 G 98 F

the accumulator is assumed clear at the

start

places new value of counting number in

storage location 0 (initially -5-2-15)

orders to be repeated. It is assumed that

they leave the accumulator empty

test whether the counting number is zero

Inmany cases it is not known in advance how many times the sequence

oforders mustbe repeated. An example occurs in the calculation of a recip-

rocal root a from the iterative formula xn+1 = 1/2 x (3 -ax) . The iteration

is tobe started with a first approximation ☑ and stopped when xn-1 -xn <٤,

where & is a positive quantity given in advance. This may be done by means

ofa sequence of orders which, given the value of x in a certain storage loca-

tion, say m, calculates xn+1 and transfers it to m, where it replaces xn. In

addition, the quantity xn+ 1 -xn - Eis computed and left in the accumulator. If

this quantity is positive or zero, the next order, which is an E order, transfers

control back to the beginning of the sequence; otherwise control passes straight

on. If storage location m contained x before the sequence of orders was oper-

atedfor the first time, this storage location will now contain a-2 .

1-7 Modification of orders by the program.

1

It has been explained that orders are expressed inside the machine in a

numerical code, and that the numbers which represent them are held in the

same store as other numbers needed in the calculation. If a number which

DESIGN OF PROGRAMS 9

stands for an order is modified, for example by having a constant added to it ,

it then stands for a different order , and if the section of the program contain-

ing it is operated twice , once before and once after the modification, different

operations will be performed. This facility of being able to modify the orders

in the program by performing arithmetical operations on the numbers repre-

senting them is of great importance , and it is perhaps the feature most charac-

teristic of program design for machines like the EDSAC. The operations re-

quired for this purpose are performed in the arithmetical unit in the same way

as other arithmetical operations.

Some examples of the use which can be made of this facility are given

below. It is first necessary, however , to explain the numerical code by which

orders are represented inside the EDSAC. The order X n.F (where X stands

for any letter in the order code) is represented by the number 2 x+ 2-1.5 n,

where the value of x for the various orders is given in the table below. The

order X n D is represented by 2-4 + 2-15 n+2-16.

X X

A -4

C -2

E 3

F -15

G -5

H -11

I 8

L -7

N -10

0 9

R 4

S 12

T 5

U 7

V -1

X -6

Y 6

Z 13

Thus A 50 F would be represented by the number 2-4 (-4) +2-15.50; this

may be converted into the number representing A 51 F by adding 2-15 to it .

It is often convenient to drop the distinction between orders and the

numbers representing them, and to speak, for example, of " the order con-

tained in storage location n, " and of orders being modified by having constants

added to them.

A sequence of orders designed to be repeated a number of times may

contain a group of orders which modify other orders in the same sequence .

Each time the sequence is operated it will then cause a different set of calcu-

lations to be performed. In this way it is possible to use repetitive cycles to

perform calculations which do not at first sight appear to lend themselves to

such treatment. The advantage of doing this is that programs can often be

constructed with many fewer orders than would otherwise be necessary, and

therefore require less space in the store . As an example, suppose that the

10 ELECTRONIC DIGITAL COMPUTER

...sum of the contents of storage locations 100, 101 , 149 is to be added to the

contents of storage location 5 .

Method. The contents of storage location 100 are added to those of

storage location 5 by means of a group of orders containing the order A 100 F.

The address specified in this particular order is then increased by one, and

the group of orders repeated. Thus the contents of storage locations 100, 101 ,

... are added in succession to the contents of storage location 5. It is neces-

sary to terminate this process, and a counter is used as in the previous ex-

ample.

It is assumed that storage location 0 can be used to hold the counter ,

and that storage locations 1 and 2 contain 50-2-15 and 2-15 respectively.

Location

of order Order

200 S 1 F

201 A 2 F

202 T F

203 A 100 F

204 A 5 F

205 T 5 F

206 A 203 F

207 A 2 F

208 T 203 F

209 A F

210 G 201 F

Notes

set counter (initially -49.2-15)

the address in this order is increased by one

each time the cycle is repeated

increase by one the address specified in

order 203

test for end of process

This program may be shortened by using the variable order for count-

ing. It then appears as below. Storage location 1 contains the number equiva-

lent to the order A 150 F and storage location 2 contains 2-15 .

Location

oforder Order

200 T F

201 A 5 F

202 A 100 F

203 T 5 F

204 A 202 F

205 A 2 F

206 U 202 F

207 S 1 F

208 G 200 F

Notes

clears accumulator

add appropriate number to the contents of

storage location 5

increase the address specified in order

202 by one

test if the order contained in location 202

has become A 150 F; if not, repeat the

process.

This example contains nine orders. If it were written out in full, that

is, if a repetitive cycle were not used, 52 orders would be necessary. A more

complete discussion of methods of counting will be found in Appendix F.

Occasionally, where there are very few repetitions, it is better to write

out the orders in full. This reduces the machine time taken by the process,

since no time is consumed in modifying orders or in counting the number of

repetitions , and this fact may be important if the whole process has to be

DESIGN OF PROGRAMS 11

performed a large number of times. Moreover , if the accumulator is not re-

quired for counting and for modifying orders, the program can often be further

shortened by making use of the facility of accumulating sums and products.

The total number of orders may even be fewer than if a cycle is used.

1-8 Multiaddress codes .

In the EDSAC order code each order has reference to, at the most, one

location in the store; it is thus described as a single-address code. Other

machines have multiaddress codes in which each order may refer to several

locations in the store . For example, one order in such a code might be

Arst add the number in storage location r to the num-

ber in storage location s and transfer the re-

sult to storage location t.

This is an example of a three -address code . One order in such a code takes

up more space in the store than an order in a single-address code (in the

EDSAC it would require a long storage location instead of a short one) but it

causes a more complicated set of operations to be carried out. Thus the

single order Arst has the same effect as the group of orders Ar , As , Tt

in the EDSAC order code, and requires one long storage location instead of

three short ones. However, use of a three-address code does not always

enable a similar saving to be made; for example, to add the four numbers in

storage locations r , s , p, and t together and to place the result in storage loca-

tion q the following three orders are required:

Arsq

Aqpq

Aqtq.

In the EDSAC order code the following group would be required:

Ar

As

Ap

At

Tq

In this case the orders in the single-address code actually take less space

than those in the three-address code, the reason being that when using the

single -address code the programmer can take advantage of the fact that sums

can be accumulated in the accumulator . On the whole it is doubtful whether

more than a slight saving in the storage capacity required to hold the orders

can be obtained by using a three-address code. Its use does, however , enable

the speed of the machine to be increased slightly , since the number of orders

which have to be extracted from the store is reduced. On the other hand, the

complexity of the control section of the machine is increased,

From the point of view of the programmer there is very little to choose

between the convenience of using single- and three -address codes; in particu-

lar , counting operations can be performed and orders modified in a three-

address code by methods exactly analogous to those described in this chapter

for use with a single-address code . The decision as to whether a machine

12 ELECTRONIC DIGITAL COMPUTER

should have a single-address or a three -address code should rest rather with

the designer than with the prospective mathematical user .

In most machines the orders are executed, as in the EDSAC, in the

serial order in which they stand in the store , except when transfer of control

is brought about by the action of a transfer order . An alternative system is

to include in each order a specification of the location from which the next

order is to be taken. This leads to a four -address code in which three of the

addresses are used as in a three -address code and the fourth contains the

address of the next order to be executed. This has advantages in the case of

a machine which uses ultrasonic tanks (mercury memory) or a magnetic drum

for its main store . With either of these stores numbers are available only at

certain times in a fixed cycle. If a number or order is to be extracted from a

random location there will therefore be a delay, equal on the average to half

the circulation time in the case of the ultrasonic store and to half the rotation

time in the case of the magnetic drum. If, however, the programmer has con-

trol over the location from which the next order is to be obtained, he can re-

duce this delay by placing the orders and numbers as far as possible in loca-

tions chosen so that they become available at the moment they are required.

He is assisted in doing this if he is provided with a number of special storage

registers which have an access time short compared with that of the main store ;

for example, a machine using an ultrasonic store may have a number of short

mercury tanks , each accommodating a single number in addition to the long

tanks of the main store , each of which holds 16 or 32 numbers . This procedure

is sometimes called optimum programming and the first machine to be specially

designed with a view to its adoption was the ACE (Automatic Computing Engine) ,

of which a pilot model is now working at the National Physical Laboratory at

Teddington, Middlesex, England. Optimum programming makes the work of

the programmer more complicated, because it introduces considerations con-

cerned with the timing of operations in the machine and thus confuses the es-

sentially arithmetical nature of programming as stressed in this book. How-

ever , a compromise can be reached if it is possible for the library subroutines

to be constructed in accordance with the principles of optimum programming

and for the programmer to construct the other parts of the program in the

ordinary way. In this way a high proportion of the gain in speed made possible

by the use of optimum programming can be obtained without complicating the

task of the programmer unduly. It should be especially noted that the provi-

sion of a four -address code of the kind described here and its use in conjunc-

tion with optimum programming technique are devices for mitigating the funda-

mental disadvantages of a delay - type store, and are of no assistance if a store

of the electrostatic variety is used.

1-9 Binary -decimal conversion.

It has already been mentioned that conversion of numbers to and from

the binary system is performed by the machine. Full details of how this is

done may be found by examining the input and output subroutines in Part III

of this book ; a general explanation of the principles used will be given in the

present section.

The paper tape used for input to the machine is prepared by means of

a keyboard perforator . There are five positions across the tape in which

holes may or may not be punched and one row of holes may therefore be said

DESIGN OF PROGRAMS 13

to represent a five -digit binary number . The keyboard perforator has 32 keys ,

labeled with combinations of letters , figures, and other symbols, as in the

case of an ordinary teleprinter keyboard. Each key causes one row of holes

to be punched on the tape according to the code given in Appendix A. The

corresponding five-digit binary numbers are also given in this Appendix.* It

will be seen that the figures from 0 to 9 are represented by their binary equiva-

lents . For example, 5 is represented by 00101, 6 by 00110, etc.

Suppose that it is required to put the number 0.21973 into the machine.

The successive digits of this number are punched in order on the input tape.

When the tape is read by the machine acting under the control of a succession

of I orders in the program, the binary equivalents of the following numbers

will be transferred to the store in succession:

2 × 2
-16

1 × 2-16

9 × 2-16

7 × 2-16

3 × 2-16

•

The program contains orders which cause the first of these numbers to be

multiplied by 104, the second by 103, the third by 102 , the fourth by 10, the

last by 1 , and the results to be added together . This calculation is carried

out in the binary scale so that the binary equivalent of 21973.2-16 is now to

be found in the store. A further multiplication by 10-5 216 forms the re-

quired number in its binary form. It will be seen that the decisive step in

the conversion of the number to the binary scale takes place in the keyboard

perforator , which converts the individual decimal digits of the number to

their binary form.

In drawing up the program for this conversion it is necessary to avoid

the use of numbers that lie outside the range -1<x<1 . For example, it is not

possible to multiply by 10 directly; instead, it is necessary to multiply by

10/16 and to shift the result four places to the left.

Conversion of binary numbers to their decimal form during output is

done in an analogous manner. The teleprinter accepts a five-digit binary num-

ber (actually the five most significant digits in the storage location specified

in the output order) and prints the corresponding character . Here again the

code is so chosen that the binary numbers from 0 to 9 are printed as the cor-

responding decimal figures; for example, 00101 is printed as 5 , 00110 as 6 , etc.

The program must therefore cause the successive decimal digits of the given

number to be calculated in their binary form; final conversion to decimal form

can then take place in the teleprinter .

The principle of the method used to obtain successive decimal digits is

to multiply the number (which is assumed to be positive and less than unity)

repeatedly by ten and to remove the integral part each time. If the number is

expressed as a decimal fraction this method clearly isolates the successive

digits, beginning with the most significant. The same is true if the number is

*A hole in the tape represents the binary digit 1, except in the case of

the most significant digit, where a " 1 " is represented by the absence of a

hole . This is done in order to avoid having to represent the number 0 by

blank tape .

14 ELECTRONIC DIGITAL COMPUTER

expressed as a binary fraction (the multiplication being by ten in its binary

form, that is, by the binary number 1010), except that the digits are then ob-

tained in the form of the corresponding binary numbers. When this method

is programmed for the EDSAC it is necessary, in order to avoid using num-

bers outside the range -1≤x<1 , to multiply by 10/16 instead of by 10 and to

take the four digits which come immediately after the binary point. The re-

mainder is shifted four places to the left before a further multiplication is

performed.

1-10 Checking facilities.

The EDSAC was designed with the understanding that the programmer

would incorporate in his program such mathematical checks as he might con-

sider necessary, or arrange for them to be carried out afterwards. No special

checking devices are therefore provided inside the machine. It is , however ,

desirable that there should be some means available whereby the programmer

can verify that a number computed and held in the store of the machine has

been correctly transferred to the teleprinter . For this reason there is an

order (the F order) which enables the number transferred to the teleprinter

by the last output order to be read back into the store . By making use of this

order it is possible to arrange that an indicating symbol, for example a ques-

tion mark, shall be printed if the number has been incorrectly transferred to

the teleprinter . Examples of how this is done will be found in the output sub-

routines given in detail in Part III of this book. It is of course possible that

even though the correct number has been transferred to the teleprinter a

wrong character will be printed. The design of the Creed teleprinters used

in conjunction with the EDSAC is such, however , that the possibility of an

error occurring beyond the point at which the check is made is remote.

CHAPTER 2

INPUT OF ORDERS

2-1 Initial orders.

This chapter is concerned with the process by which orders are read

from the tape and placed in the store of the EDSAC. The only way in which

a symbol punched on the tape can be read is by the operation of an I order .

To enable a program tape to be read, therefore, means are provided whereby

a short group of orders, known as the " initial orders " or sometimes as the

"initial input routine," can be placed in the store independently of the input

mechanism . These orders are wired in binary form on a set of stepping

switches (uniselectors) , and are automatically transferred to the store (and

called into action) when the starting button is pressed. The initial orders are

needed only while the program tape is being read, and the space they occupy

in the store may be used again for other purposes during the course of the

calculation.

An order is punched exactly as it is written, the address being in decimal

form. The initial orders must therefore be such as to convert the address to

binary form, to assemble the complete order , and to place it in the correct

storage location. It is important to distinguish between the coded form in

which orders are punched on the tape and that in which they appear in the store ,

and to realize that the relation between these two forms is determined solely

by the initial orders. By making the two forms more similar (for example, by

punching the address in the scale of 8 or 16) it would be possible to simplify

the initial orders. There would, however, be no advantage in doing this and it

would mean that more work would be left to the programmer, who would have

to carry out tedious conversions when constructing the program. It is highly

desirable that the machine itself should carry out as much of this work as pos-

sible; the chance of error is then reduced and the programmer is left free to

concentrate his attention on the more essential aspects of the program.

The choice of the initial orders, and thus of the form in which orders

are punched, is therefore a matter for careful consideration, since upon it de-

pends the ease with which all programs are constructed. Once the choice has

been made, a library formed, and several large jobs begun, a change in the

form of writing and punching orders would entail a big reorganization. The

form used with the EDSAC was changed in September 1949 , after only a few

simple programs had been run; now, however , any substantial change would

be practically out of the question, even if it were desired (see reference 10) .

The form in which orders referring to specific storage locations are

punched has already been described. First, there is a letter indicating the

function of the order, then the address in its decimal form, and finally a code

letter which is either F or D according as the address refers to a short or a

long location. It should be noted that in the address zeros are not punched in

front of the first significant digit, for example A 50 F is punched, not A 0050 F;

if the order referred to the number in storage location 0 it would be punched

A F.

15

16 ELECTRONIC DIGITAL COMPUTER

The action of the initial orders can now be described. When an order

such as A 50 For A Fis being transferred from the tape to the store, the

first character to be read is the function letter , and the corresponding binary

number is placed by the initial orders in a suitable location for temporary

storage . The next character may be either a digit of the address or a code

letter F or D. These can be distinguished by the fact that F and D correspond

to binary numbers which are greater than ten. The character just read is

therefore tested by having 10-1/2 subtracted from it; if the result is negative

the character must represent a digit of the address, otherwise it represents

a code letter . As the successive digits are read the address is built up pro-

gressively in binary form. When the code letter is encountered the address

and the number representing the function letter are added together . If the

code letter is F the result represents the complete order and is transferred

to the store as it stands. If the code letter is D, 2-16 is added to the result

before it is transferred to the store .

In addition to the code letters F and D so far referred to, there are

thirteen other code letters which may be used to terminate an order. The ob-

ject of these code letters is to facilitate the use of subroutines in ways which

will be described later . Each causes the contents of a certain storage location

to be added to the order before it is transferred to the store . The complete

list of code letters is as follows:

Location whose content

is added to the order

Code

letter

F 41

θ 42

D 43

Number added

zero

variable

2-16

Φ 44

H 45

N 46

M 47

Δ 48

L 49 variable

X 50

G 51

A 52

B 53

C 54

V 55

,

Storage location 41 contains zero, so that the code letter F leaves the order

unchanged. Storage location 43 contains 2-16 so that code letter D causes 2-16

to be added to the order . These two code letters thus have the effect described

earlier .

All the above code letters indicate the end of an order , and cause it to be

placed in its correct location in the store . The code letter causes 2-16 to

be added to the order (in this it resembles D) but must be followed by another

code letter to indicate the end of the order . It is thus possible by using to

cause both 2-16 and some other number to be added to the order before it is

put away in the store .

INPUT OF ORDERS 17

2-2 Pseudo -orders .

A converse of the fact that orders are represented in the machine by

numbers is that numbers may be represented outside the machine by " pseudo-

orders , " that is, tape entries which are punched in the same form as orders

but which are merely intended to be used as constants and are never to be

obeyed as orders . For example, the pseudo-order Pn Fis equivalent to the

number n.2-15 since P corresponds to zero (see Appendix A) ; Pn D is equiv-

alent to (n+1/2) . 2-15 , and X F (where X stands for any letter) is equivalent to

x.n- 4 , where x is the numerical equivalent of X. This is often a convenient

way of putting constants into the machine . It should also be noted that genuine

orders which are obeyed at one point in a program may also be used as con-

stants in other parts of the program.

,

When each order has been built up by the initial orders it is transferred

to its correct location in the store . The particular order in the initial input

routine which causes this transfer to take place will be referred to in what

follows as " the transfer order ." The address specified in the transfer order

is increased by unity each time an order is placed in the store , so that succes-

sive orders are placed in successive storage locations .

2-3 Examples .

The following examples show orders and pseudo-orders as they are

punched and in the binary form in which they are held in the store .

Punched

on tape Held in store

Function

letter Address

Long/short

digit

A 6 F =

A 6 D =

T D
=

P6F
=

P F =

1.1 100000000001100

1.1 100000000001101

0.0 1 0 1000000000001

0.0 00000000000 1100

0.0 000000000000000

If storage location 45 contains the number 80,

T6 H = 0.0 1 0 1000010101100

If it is desired to modify an order by means of a code letter other than D and

at the same time to make the order refer to a long storage location this can

be done by punching immediately before the code letter . Thus

Τ 6πΗ = 0.0 1 0 1000010101101

2-4 Control combinations .

Among the orders on the tape are punched groups of symbols called

"control combinations. " These are distinguished from orders by the initial

input routine; they are not placed permanently in the store but direct the man-

ner in which the input process is carried out. For example, the control com-

bination Tm K, where m is an integer punched in decimal form like the address

of an order , causes the address in the transfer order to be replaced by m, so

18 ELECTRONIC DIGITAL COMPUTER

that the next order is placed in storage location m regardless of where the

previous order was placed. Succeeding orders go into storage locations m+1 ,

m+2, etc. For example, suppose that it is required to place the pseudo-orders

P 5 F and P 10 F in storage locations 45 and 46, and then to place a sequence

of orders in storage locations 100, 101 , etc. The following will then be punched

on the tape in front of the orders :

T 45 K

P 5 F

P 10 F

T 100 K

The control combinations in most common use are given below. A fur-

ther list of control combinations is given in Appendix C. The initial orders

themselves, together with notes on their operation, are given in Appendix B.

TmK

GK

TZ

EmKPF

E 25 KTmH

this causes the next order on the tape to be placed in

storage location m

this causes the address in the transfer order to be

copied into 42, which corresponds to the code

letter 0

this causes the address held in 42 (m, say) to replace

that in the transfer order, so that the next order is

sent to storage location m.

this stops the reading of orders, and causes control

to be transferred to storage location m with the

accumulator cleared

this causes the next order on the tape to be placed in

storage location m+h, whereh 2-15 is the number

in 45. H and 45 may be replaced by any other code

letter and the associated storage location.

2-5 Starting the program.

The first few inches of a program tape are always left blank and the

tape is inserted into the EDSAC tape reader with the reading head somewhere

on the blank portion. It is not necessary to set the first row of holes under

the reading head because the initial orders are designed to have the property

of ignoring blank tape, in the sense that they do not erase anything of impor-

tance from the store when it is read. It is, however, necessary to punch a

control combination at the end of the blank tape and immediately in front of

the orders . The usual control combination is PKTmK, and in this case

orders go into the store starting at storage location m. If the control combina-

tion PF is used orders will go into 45 , 46, etc .; P Z will cause them to go

into 44, 45, etc. The action of the initial orders when reading blank tape is

described in detail in Appendix B.

The control combination EaKPFis punched at the end of the orders

to cause control to be transferred to a , which is supposed to contain the first

order of the program. The initial orders may be called in again, if required,

to read further orders from the tape by transferring control to storage loca-

tion 25. The accumulator need not be empty, but the first combination to be

INPUT OF ORDERS 19

read from the tape should be a control combination which will replace the

transfer order , for example Tn K. If it is intended to use the initial orders

again in this way care must be taken to see that they are not written over by

numbers during the course of the program. If the initial orders have been

written over they may be replaced (after the machine has stopped) by press-

ing the starting button again; the contents of other parts of the store will be

left undisturbed .

2-6 Use of code letters .

The code letter @ has a special use in connection with subroutines . In

any subroutine it will be found that the addresses specified in some of the

orders are those of other orders or pseudo-orders in the same subroutine ,

and therefore depend on the location in the store of the subroutine as a whole.

In order to illustrate this, a subroutine for replacing the number in storage

location 0 by its modulus is given below. It is shown with its first order

placed in storage location m and it will be seen that the address specified in

the second order depends on m.

m S F

m+1 Gm+3 F

m+2 T F

m+3 T 1 F

Subroutines punched in this way would not be suitable for forming into a library ,

since each could be used in one place in the store only . This difficulty is over-

come by punching the subroutine in the following form:

G

S

K

F

G 30

T F

T 1 F

The control combination G K at the head of this subroutine causes the address

specified in the transfer order , m say, to be recorded in storage location 42 .

The orders of the subroutine are then placed in the store in order, the first

going into storage location m. When the second order is taken in, the code

letter e which terminates it causes the number m in storage location 42 to be

added to its address . The order then refers to the correct location within the

subroutine . It should be clearly understood that the modification of an address

brought about by the action of a code letter takes place at the time that the

order is being transferred from the tape to the store, and not at the time that

it is executed.

The use of the system described in the last paragraph enables library

subroutines to be stored in the form of short lengths of punched tape which

can be copied mechanically on to a program tape. A description of the equip-

ment used for this purpose is given in Chapter 6.

The main purpose of the code letters , other than 0 , is to make it pos-

sible for parameters to be incorporated in subroutines during input. This

matter will be taken up more fully in section 3-3 , but a simple example will

be given here. The following subroutine is designed to replace the number in

20 ELECTRONIC DIGITAL COMPUTER

storage location h by its modulus, where 2-15 h is the number in storage loca-

tion 45. Were it not too trivial to warrant such treatment, this subroutine

might be contained in the library.

T Z

S H

G30

T H

T F

If this subroutine were in the library and if a programmer wished to use it

for replacing the number in storage location 150 by its modulus, he would

copy it mechanically from the library tape on to his program tape, with the

following punched immediately in front:

KG

T 45 K

P 150 F

Note that the subroutine starts with the control combination T Z , which re-

stores the address of the transfer order to the value it had before the pseudo-

order P 150 F was placed in 45 .

2-7 Constants.

When the initial orders have finished their work the following constants

are left in the store:

storage location 2

storage location 3

P1 F

U2 F

These constants are used by most library subroutines and it is important that

they should be left undisturbed during the program.

2-8 Notation.

The following abbreviations will be used in this book.

n

nD

C(n)

C(nD)

C(Acc.)

C(R)

nH

short storage location having serial number n (the alterna-

tives nF or S(n) may sometimes be necessary to avoid

confusion)

long storage location formed by combining short storage

locations n and n+1 , n being even (the alternative n ' was

used in earlier literature)

content of storage location n

content of storage location nD (the alternative C(n') was

used in earlier literature)

content of the accumulator

content of the multiplier register

storage location (n+h) where h.2-15 is the number in 45

during input of the part of the program concerned; alterna-

tively long storage location (n+h)D if (h+ 0.5) -2-15 is in

45 during input

INPUT OF ORDERS 21

ηπΗ

C(nH)

C(ηπΗ)

long storage location (n+h)D where h 2-15 is the number

in 45 during input of the part of the program concerned

content of nH

content of ηπΗ

(In the last four cases, H and 45 may be replaced by any

other code letter and its associated storage location)

REFERENCES

The following is a list of publications about the EDSAC :

1. Wilkes, M.V. , The design of a practical high-speed computing ma-

chine, The EDSAC. Proc. Roy. Soc. A 195, 274 (1948)

2. Wilkes, M.V. and Renwick, W., An ultrasonic memory unit for the

EDSAC. Electronic Engineering 20, 208 (1948)

3. Wilkes, M.V., Progress in high-speed calculating machine design.

Nature 164, 341 (1949)

4. Wilkes, M.V. , Electronic calculating machine development in Cam-

bridge. Nature 164, 557 (1949)

5. Wilkes , M.V. , Programme design for a high-speed automatic calcu-

lating machine. J. Sci. Instr . 26, 217 (1949)

6. Wilkes , M.V. and Renwick, W. , The EDSAC, an electronic calculating

machine . J. Sci. Instr . 26, 385 (1949)

7. Bennett, J.M. , High-speed digital calculating machines . Distribution

of Electricity 22, 251 and 276 (1950)

8. Wilkes , M.V. , and Renwick, W. , The EDSAC (Electronic Delay Stor-

age Automatic Calculator) . M.T.A.C. 4, 61 (1950)

9. Wilkes, M.V. , The use of the EDSAC for mathematical computation.

Appl. Sci . Res . B1, 429 (1950)

10. Wheeler , D.J. , Programme organization and initial orders for the

EDSAC . Proc. Roy. Soc. A 202 , 573 (1950)

11. Gill, S. , A process for the step-by-step integration of differential

equations in an automatic digital computing machine. Proc . Camb. Phil . Soc .

47, 96 (1951)

12. Wilkes, M.V., Automatic computing. Nature 166, 942 (1950)

13. Gill , S. , The diagnosis of mistakes in programmes on the EDSAC.

Proc . Roy. Soc . A (in press)

A list of references of a more general nature will be found in

Hartree , D.R. , Calculating instruments and machines . University of

Illinois Press, 1949, and Cambridge University Press, 1950

CHAPTER 3

SUBROUTINES AND PARAMETERS

3-1 Open subroutines.

The simplest form of subroutine consists of a sequence of orders which

can be incorporated as it stands into a program . When the last order of the

subroutine has been executed the machine proceeds to execute the order in

the program which immediately follows. This type of subroutine is called an

"open" subroutine.

3-2 Closed subroutines .

A " closed " subroutine is one which is called into use by a special group

of orders incorporated in the master routine or main program. It is designed

so that when its task is finished it returns control to the master routine at a

point immediately following that from which it was called in. The subroutine

itself may be placed anywhere in the store. There are various methods of

arranging the operation of entering a closed subroutine and returning to the

master routine after the operation of the subroutine has been completed. The

method chosen for use with the EDSAC is given below; n is the address of the

first order of the subroutine.

Number of

storage

location Order

Explanation

(Accumulator contains zero at this point)

m AmF adds number representing Am F into the

accumulator (this is negative, since A

corresponds to -4/16)

m+1 GnF transfers control to n, since number in

the accumulator is negative

The orders in the subroutine are as follows :

G K control combination; puts the value of n

in42

n A 3 F adds U2F to contents of accumulator

(Am F) forming Em+2 F (link order)

since A = -4/16, U=7/16, whence

A + U=3/16 =E

n+1

n+2

...

n+p+1

n+p+2

Tp+2 0

Z F

plants link order in (n+p+2) (code letter

O causes C(42), i.e. n, to be added to

address during input)

operational orders of the subroutine, p

in number . These leave the accumula-

tor empty

becomes E m+2 F (link order) as result

of order in (n+1)

Any order may be punched on the tape for the last order of the subroutine,

since it is overwritten by the link order . Often Z For PF is used and this

22

SUBROUTINES AND PARAMETERS 23

has the advantage that if by reason of an error the link order is not planted in

the correct position the machine will stop and by the place of its stopping give

some indication of what is wrong . Orders which are intended to be changed

during the program are usually written in brackets .

3-3 Preset parameters.

It is desirable to be able to make library subroutines of as wide a utility

as possible in order that the total bulk of the library may be kept small. This

may be done by including in a subroutine one or more parameters which may

be given different values on different occasions. For example, D4 (see Part II)

is a division subroutine which divides the contents of a certain storage location

hD by the contents of the accumulator , where h is a parameter which may be

set in advance. Parameters of this kind are called preset parameters and it

is arranged that they are set to their correct values during input by making

use of the facilities described in Chapter 2 under the heading Code Letters.

In the case of the division subroutine mentioned, the following combinations

must be punched on the tape in front of the subroutine :

GK

T 45 K

PhD

The subroutine itself is headed by the control combination T Z instead of the usual

GK. The effect is that the number corresponding to PhD (i.e. , h.2-15 + 2-16)

goes into storage location 45 and is therefore added to the address specified in

any order in the subroutine which is terminated with the code letter H. In this

way the numerical value of the constant h can be incorporated in the subroutine

during input. When a subroutine has a number of parameters they are punched

in order after the control combination GKT 45 K; they then go into storage

locations 45, 46, 47, etc., and are added to the addresses specified in orders

terminated by the code letters H, N, M, etc , respectively .

3-4 Program parameters.

The values of preset parameters are incorporated in a subroutine during

the process of input and are therefore fixed for the whole of a program. If it

is desired to include in a subroutine a parameter which can be given different

numerical values at different points in the same program, then a different

method must be used. Such a parameter is called a program parameter and

is normally placed immediately after the orders which call in the subroutine.

An example is to be found in subroutine P 1 which prints the positive number

in OD to n places of decimals. This subroutine , assumed to have its first

order in p, is called in by the following group of orders (the accumulator con-

taining zero at this point) :

m AmF

m+1 GpF

m+2 PnF

adds number corresponding to Am F into

the accumulator

transfers control to p (that is, to the be-

ginning of the subroutine) , since the num-

ber in the accumulator is negative

program parameter specifying n

program parameter specifying n

24 ELECTRONIC DIGITAL COMPUTER

The subroutine is so constructed that an order A m+2 F is formed and planted

in a suitable position within the subroutine. When this order is obeyed it ex-

tracts the program parameter from the master routine and enables it to be

used by the subroutine. The link order formed is E m+3 F , instead of E m+2 F

as described in Section 3-2, since it must return control to the location which

follows immediately after that containing the program parameter. The actual

orders used in P1 are as follows :

G K

0 A 18 0

1 U 17 0

2 S 20 0

3 T 50

4 H 1.9 0

5 (P F)

:

16

17 (E F)

18 U 3 F

19 J F

20 M 1 F

control combination; puts p in 42 during

input. Subsequent orders can therefore

be numbered relative to the next order

as zero

adds U 3 F to C(Acc) (which is Am Fas

in all closed subroutines on entry) form-

ing E m+3 0, the required link order

plants link order in 170 (i.e. , in p+17) and

leaves E m+3 F in the accumulator

subtracts M 1 F from C(Acc) forming

S m+2 F (since E = 3/16, M = -9/16,

whence E - M = 12/16 = S) .

plants S m+2 F in 50

first operational order of subroutine

becomes Sm+2 Fas result of order in 30

other operational orders of subroutine

becomes link order Em+3 Fas result of

order in 10

pseudo -orders forming constants required

in the operation of the subroutine .

CHAPTER 4

LIBRARY SUBROUTINES AND THEIR USE IN CONSTRUCTING PROGRAMS

4-1 Library catalog .

The library catalog used in the Laboratory is drawn up in two sections .

One gives a concise specification of the purpose of each subroutine together

with sufficient information to enable a programmer to make use of it; this in-

cludes information about the operating time and storage space occupied. The

second section gives the orders of each subroutine in full. The catalog is con-

tained in loose leaf books so that new sheets can be inserted as new subrou-

tines are added to the library. A condensed version of the catalog is given in

Parts II and III of this report. Part II consists of specifications of all sub-

routines now in the library except for some which are obsolete. Most of these

specifications are given in full but an abbreviated version only is given in the

case of some subroutines which can be regarded as variants of others that

are specified completely. Part III contains full program sheets for about half

the total number of subroutines in the library and includes all those which are

thought to contain points of special interest.

Although much labor can be saved by making use of the library in its

present form, it is still in many respects incomplete, and new subroutines

are continually being added. In particular , it is hoped that subroutines for

performing the following calculations will shortly be included: multilength

arithmetic , calculation of hyperbolic functions, solution of algebraic equations,

etc.

It will be found in a number of cases that there are two or more sub-

routines which perform very similar operations. Usually they differ in time

of operation and in storage space occupied. Normally the one with the short-

est operating time would be chosen for any particular application, but if the

program occupies nearly all the store, then storage space may become the

major consideration. Time of operation is of great importance only if the

subroutine is called in many times during the program, thus consuming a

large proportion of the total time.

Subroutines may also differ in numerical accuracy and in the number of

parameters which may be varied to suit particular applications . If a subrou-

tine has many parameters it is often useful to have a separate subroutine to

deal with any case that commonly arises, since a subroutine with fewer param-

eters is shorter and simpler to use .

4-2 Input and output subroutines .

All input subroutines read numbers punched on the tape in the scale of

ten, convert them to the scale of two, and place them in the store. Some sub-

routines read a single number only on each occasion they are called in, while

others read a series of numbers and place them in consecutive locations in

the store. The subroutines may be further classified into those which read

decimal fractions from the tape and those which read integers; in the latter

case, when an integer n is read from the tape the number n.2-16 or n-2-34 is

put into the store according as short or long numbers are being used. The

25

26 ELECTRONIC DIGITAL COMPUTER

conversion of decimal fractions is slightly simpler if the least significant

digit is read first and subroutines R5 and R7 are designed in this way. The

number tape can, however , be punched in the ordinary way with the most sig-

nificant digit first and reversed during the process of copying onto the final

tape.

Many subroutines contain numbers as well as orders. Short numbers

are best put in as pseudo-orders but long numbers may involve the use of an

input subroutine . In some cases , library subroutine R2 is included in such a

way that it is overwritten when the numbers have been taken in. Since , how-

ever , several subroutines in a program may need long numbers it is now com-

mon practice to draw up subroutines on the assumption that R9 has first been

put into the store. R9 is a modified form of R2 which allows the input of long

integers during input of orders. It is always placed in locations 56 to 70 in-

clusive .

When a subroutine contains only one or two long constants, an alterna-

tive to the use of an input subroutine is to put the constants in as two short

numbers . A difficulty arises, however, because there is an unused digit be-

tween each two short numbers (the " sandwich digit ") . The method can only

be used, therefore, to put in a number which has a zero in the 17th position

after the binary point. This is not a serious limitation, since either the num-

ber itself or its complement is of this form unless it is an odd multiple of

2-17 . The long storage location intended to receive the constant must first

be cleared (to make sure that the sandwich digit is zero) , and the two short

numbers planted one after the other . This method of putting in long numbers

is not often used now but examples will be found in A1 and P7.

The output subroutines convert numbers in the store to the scale of ten

and cause them to be printed. Again they may be divided into those which deal

with decimal fractions and those which deal with integers (some of the latter

suppress nonsignificant zeros). Some output subroutines print the numbers

in a special layout; in other cases the output subroutine prints a single number

only and it is left to the programmer to arrange his own layout. Most of the

later output subroutines make use of the F order to verify that the digits have

been correctly printed. If this check fails then some special indication is

given, usually an extra line-feed.

By the use of suitable scale factors the input and output subroutines can

be made to handle numbers having the binary point in positions other than

those mentioned above .

4-3 Division subroutines .

The order code of the EDSAC does not include an order for division,

which must therefore be carried out by means of a division subroutine, sev-

eral of which are available in the library. One of these , D6, uses an

iterative formula and is arranged to give the greatest possible accuracy .

Others use a repetitive cycle to divide directly and contain fewer orders than

D6 . Errors can build up in this process, however, and these subroutines are

not as accurate as D6, although the result is usually reliable to about as many

figures as exist in the dividend.

LIBRARY SUBROUTINES 27

4-4 Trigonometrical and other functions .

When values of a trigonometrical or similar function are required for

arbitrary values of the argument it is usually better to use a subroutine which

calculates them from first principles rather than to place a table in the store

and to interpolate from it. In many cases it is quickest and simplest to use a

power series. In the earlier subroutines Taylor series were used, but later

subroutines use series based on Tchebycheff polynomials since in this way

the same accuracy can be obtained with fewer terms. An example of this will

be found in T7.

Sometimes repetitive methods based on very simple formulas and need-

ing very few orders are available; they are, however, usually rather slow.

Examples are to be found in subroutines E2 and S1 . In the latter case the re-

quired answer is built up digit by digit .

When a series of sines or cosines is required with equal increments of

the argument, subroutines T5 or T6, which are based on a recurrence formula ,

may be useful . This situation occurs when a differential equation involving a

sine or cosine of the independent variable is being solved.

For most trigonometrical subroutines the angle corresponding to the

argument must be in the first quadrant. One routine (T4), however, can be

used for arguments of any magnitude.

An example is given in Section 7-1 of a program built up from the sub-

routines already discussed. The program causes a series of numbers x (< 1)

punched on the tape to be read and the quantities e -sin x to be computed and

printed.

4-5 Quadrature.

Q1 , Q2, and Q3 are subroutines for computing definite integrals . An

auxiliary subroutine for calculating values of the function to be integrated

must be constructed; this is called in as required by the integration subroutine .

Q2 and 3 are based on Gauss' 5-point and 6-point integration formulas and

one of these is ordinarily the best subroutine to use. The usual objection to

Gauss' formulas, namely that the function has to be computed for awkward

values of the argument, is of no account when using an automatic machine (an

illustration of the different considerations which apply when selecting methods

for automatic as compared with hand computing) . However , in some cases,

for example if the function to be integrated is obtained by integrating a differ-

ential equation, a formula which uses equally spaced ordinates may be more

suitable. In these cases Q1 , which is based on Simpson's rule, may be used.

A simple example of the use of such a subroutine will be found in Sec-

tion 7-2 , which gives a program for the calculation of from the formula

1

1

4ㅠ
= (1 + x2)-1 dx.π

4-6 Assembly subroutines .

The example given in Section 7-1 illustrates two alternative methods of

assembling a program. In each of these the programmer has to decide where

the master routine and each subroutine are to go in the store and to insert

28 ELECTRONIC DIGITAL COMPUTER

the correct addresses in the orders in the master routine which call in the

subroutines. The object of an assembly subroutine is to relieve the program-

mer of these and other mechanical tasks.

4-61 Principle of operation of assembly subroutine M1. Any complete

program contains one or more of the following components:

1. Sequences of numbers

2. A master routine

3. Closed subroutines of two kinds :

(a) those made specially for the program

(b) those taken from the library.

Whenthe subroutine M1 is used, the numbers in each sequence are numbered

0, 1, 2, .., and are distinguished in the master routine and in the first group

of subroutines by code letters (H, N, M, ...) punched after each address, one

code letter being used for each number sequence. The closed subroutines are

numbered 1, 2, 3, etc., and are called inby orders A m₁ 0 , G16; A m2 0,

G2$; etc., where m1, m2 , etc. are the addresses of the storage locations in

the master routine from which the subroutines are called in.

M1 is first punched on the tape and is followed by two parameters PrF

and Ts K; r - 2-15 goes into 44 and its meaning will appear later . The compo-

nents of the program are then punched in the above order , each being preceded

by a control combination; the last component is followed by a control combina-

tionwhich starts the program. The components eventually go into the store

head-to-tail in the order inwhich they are punched. Suppose that the first num-

bers ofthe various number sequences (H, N, M, ...) go into locations n1 , n2 , ... ,

etc., that the first order of the master routine goes into m, and that the first

orders of the closed subroutines go into S1 , S2 , S3 , etc.

M1 is called in by the control combination punched at the head of each

component. It causes a record to be made of the location into which the first

order or pseudo-order of the component is about to go, in the following form:

1. When the number sequences go into the store, pseudo-orders P n₁ F ,

Pn2 F , etc., go into 45, 46, etc.

2. When the master routine goes into the store, the order Em F goes

into r.

3. When the closed subroutines go into the store, orders Gs1 F, G S2 F ,

etc. , go into (r+1), (r+2), etc.

M1 then returns control to the initial orders, and the orders or pseudo-orders

which follow on the tape are read in the usual manner .

The control combination E 25 KEP F is punched at the end of the tape.

This sends control to r, where there is an E order which sends control to the

beginning of the program. When the pth subroutine is called in, control passes

to (r+p) , where there is a Gorder which sends it to the beginning of the correct

subroutine . Orders in the master routine and in the subroutines which refer to

the various number sequences (distinguished by different code letters) have

their addresses corrected in the usual way by the addition of C(45), C(46), etc.

Normally, M1 causes the first order or pseudo-order of each component

to be placed in an even location. This means that here and there short storage

locations will be left unused. If this is considered undesirable, M1 may be

LIBRARY SUBROUTINES 29

called in in such a way that the first order or pseudo-order of the next com-

ponent goes into the next available location, whether it be odd or even.

4-62 Directions for use of M1 . The method of use of M1 is best ex-

plained by giving a schedule for the punching of the tape . Two number se-

quences and two subroutines are shown, but others may be added.

Notation: a location of first order of M1

r location of reference order for master routine

s location of first order or pseudo-order to be placed in

the store

Tape

PKTaK

Notes

Assembly subroutine M1

PrF

TSK

space

copied from library tape

parameters

PZGK

EaKTF

number sequence (H)

space

PZGK

Ea KTF

number sequence (N)

space

PZGK

T(a+10)К Т ф

Ea KIF

Master routine

space

PZGK

Ea KPF

subroutine no 1

space

PZGK

EaKPF

subroutine no 2

E 25 K

EPF

Notes:

calls in M1 . which places Pn₁ F in 45

calls in M1 , which places Pn2 F in 46

sets M1 ready to place a reference

order in r

calls in M1 , which places Gs1 F in r+1

calls in M1 , which places Gs2 Fin r+2

]
sends control to master routine via r

1. If the combination E aKTD is punched in front of the first number

sequence instead of Ea KTF, Pn₁ D will be placed in 45 instead of Pn1 F

and similarly for the other number sequences.

30 ELECTRONIC DIGITAL COMPUTER

2. If it is desired to place a component of the program in the next avail-

able storage location regardless of whether it is odd or even, M1 should be

called in by E (a+1) K, instead of E a K.

3. If storage space is short, M1 may be placed where it will be over-

written by the last subroutine of the program.

4. Where spaces are shown on the tape at least two blank rows must be

left. If desired, the spaces may be omitted altogether, in which case the com-

bination P Z should also be omitted.

5. If it is desired to leave a gap in front of any component, the combina-

tion Gn K should be punched instead of the GK immediately before E a K; n

storage locations will be left unused.

6. If there are no number sequences, the control combination

GK T(a+10) KT & should follow directly after the parameter TsK.

7. M1 makes the address of the transfer order equal to C(42) (increased

by 1 if necessary) ; that is, it has a similar effect to TZ . Since it leaves the

address of the transfer order equal to C(42) it need not be followed by G K.

8. If the first number sequence is to go into the store immediately after

M1 the parameter TsKshould be T a+ 16 К.

9. The above proforma shows the normal way in which it is intended

that M1 should be used. Various other possibilities will suggest themselves;

for example, several E orders may be stored as reference orders in addition

to the one used for the master routine. It is to be noted that if M1 is called

in by the control combination E a KXq F, where X is any letter , the refer-

ence order manufactured and placed in the store will be (X+G) q F.

As an example, the program for the computation of

1

+ x2)-1 dx

given in Section 7-2 is given in Section 7-3 in a revised form making use of M1 .

4-63 Principle of operation of assembly subroutine M2. This subroutine

handles the input of subroutines in a similar manner to M1, but does not apply

to number sequences. It requires fewer control combinations preceding sub-

routines than does M1 . M2 slightly modifies the initial orders and enables use

to be made of the code letter S. Control combinations terminated by S operate

as follows :

Case (1) . Control combinations with zero address. First the address

specified in the transfer order (order 22) is copied into 42; this is the same

effect as that of the control combination GK. Next, a reference order is

stored, having the same address as that specified in the transfer order , and

the same function letter as the control combination. Thus the control combina-

tion X S, when the transfer is TnF, will put Pn F in 42 and store the refer-

ence order X n F.

Case (2) . Control combinations with address 1. The address specified

in the transfer order, if even, is left unchanged, and if odd, is increased by 1 .

Thereafter the effect is the same as in case (1) .

Reference orders are always stored by M2 immediately after itself.

Thus if M2 commences in m, the reference orders are placed in (m+16) ,

LIBRARY SUBROUTINES 31

,(m+17)و...و etc. The parameter P (m+16) F is automatically placed in 44 when

M2 is fed in, so that the code letter & will refer to the reference orders . For

example, G 2 will switch control to the third reference order.

For a normal closed subroutine the reference order will be a G order ,

switching control to the start of the subroutine . For the master routine an E

order may be used to direct control to the beginning of the program. In spe-

cial cases other letters may be useful.

M2 must be so placed in the store that room is left for the reference

orders which follow it. The first fourteen orders of M2 may be written over

by the last subroutine on the tape; the last two orders must remain undisturbed

until the tape is read, otherwise the code letter will not be read correctly.

The reference orders must remain throughout the program .

Orders punched immediately after M2 will be placed in 45 onwards.

4-64 Directions for use of M2. The following example shows how a

tape could be arranged for a simple program consisting of two closed sub-

routines and a master routine.

Tape

PKTAK

subroutine M2

blank tape

PZTSKEST 45 K

parameters for master

routine

TZ

master routine

blank tape

PZ

G1ST 45 K

parameters for first

subroutine

first subroutine

blank tape

PZGS

second subroutine

blank tape

PZ

Ε 25 ΚΕΦPF

Notes:

1. m₁

]

]

Notes

places M2 in store, commencing at a, and

puts P (a+16) F in 44

places parameters in 45 onwards

places master routine in s, sets C(42) to

Ps Fand stores Es Fin

places parameters in 45 onwards, and sub-

routine in next even location following

master routine . Places Gorder in 14

places subroutine in next location, odd or

even. Places G order in 2

switches control to 6, and thence to the

beginning of the master routine .

calls in first subroutine
Am10

G1

m2 A m2 0
calls in second subroutine

G2

32 ELECTRONIC DIGITAL COMPUTER

2. Blank tape means at least two rows. If desired it may be omitted, in

which case the following PZ should also be omitted.

3. When preparing a subroutine (or master routine) with no preset pa-

rameters for use with M2, the GS (or E S) may be included at the head, in

place of G K.

4. Initial orders 27 and 28 are altered by M2.

4-7 Integration of differential equations .

There are in the library four subroutines for integrating ordinary dif-

ferential equations (not necessarily linear) by step-by- step processes. G3

and G4 enable second-order differential equations with the first derivative ab-

sent to be integrated; they are based on conventional methods using difference

formulas in which use is made in each interval of values of the function calcu-

lated in previous intervals. They have the disadvantage that special methods

are needed for starting the integration.

G1 and G2 are subroutines for integrating sets of simultaneous first-

order differential equations using a modified Runge -Kutta method (ref. 12)

which is described below. This method has the advantage that a special start-

ing procedure is not necessary and, since any differential equation or set of

differential equations can be reduced to a system of first-order equations, it

is of wide utility . In cases where both are applicable it is, however, somewhat

slower than the method used in G3 and G4 .

4-71 Library subroutines G1 and G2 . The modified Runge Kutta process .

This process handles a set of simultaneous first-order ordinary differential

equations, in which each derivative is expressed explicitly in terms of the

variables

У₁ = f₁ (У , У2 ,
......

y2 = f2 (y1 , У2 ,

Уп),

yn),

yn = fn(y1 , y2 , yn) .

Any equation or set of equations must be expressed in this form before the

process can be applied. For example,

y" = -w2y

may be written yi = wy2 ,

y2 = -wy1 ,

where y₁ = y and y2 = y' /w.

The case in which the functions f involve the independent variable can

be treated by the method described in Section 4-72.

The subroutine G1 or G2 carries out one step of the integration each

time it is called in. In doing so, it makes use of an auxiliary subroutine which

evaluates the functions f1 f . The auxiliary subroutine must be provided

for the individual problem. It is called into play four times during each step.

...

The auxiliary subroutine is asked to provide the quantities hy ' multiplied

by a suitable scale factor 2m, where h is the length of the interval, and m is

chosen to be as high as possible without exceeding capacity .

LIBRARY SUBROUTINES 33

Apart from the 2n storage locations used to store y and 2mhy' , further

n locations are used as working positions by the integration subroutine (to

hold the quantities 2hq, see Section 4-73) . The numbers left standing in these

locations after the end of a step are 3 × 2 times the rounding -off errors of

the quantities y; they are taken into account during the following step, and

serve to prevent the rapid accumulation of rounding -off errors. As a result,

the effective numerical accuracy is m digits more than the capacity of the

storage locations. At the beginning of a range these working positions must

be cleared, otherwise the integration routine will add spurious "corrections "

to the variables. Apart from planting the initial values of the variables, this

is the only preparation required before starting an integration.

The truncation error in one step is of order h5 . Ordinarily it is about

10-2h5 , so that maximum accuracy is obtained with h = 2-7 or 2-8 for long

numbers , and h = 2-3 or 2-4 for short numbers. If the functions are very

sensitive to variations in y, or if the number of equations is very large, small-

er steps will probably be necessary .

4-72 The independent variable. If the independent variable occurs in

the functions f, it may be obtained by integrating the equation x' = 1. x is

treated as an additional dependent variable, for which the auxiliary subroutine

has to provide the quantity 2mhx ' = 2th. In point of fact the latter may be

planted at the beginning of the integration and left there, so that the auxiliary

subroutine is relieved of the task. If the independent variable does not appear

in any of the f's but is merely wanted for indication purposes, it is quicker to

use a simple counter in the master routine .

When x is generated by integrating x ' = 1 , the values which it assumes

during the four applications of the auxiliary subroutine within one step are

xo , (x + h) , (x + h) , and (x +h) respectively, where x is the beginning of the

step. This has two implications. First, if time is of great importance , x may

be generated by using a binary switch in the auxiliary subroutine, so that his

added every other time the subroutine is used; x may then be used in calculat-

ing the f's , but does not require the introduction of an additional " dependent "

variable . Second, if the f's involve a function of x which is tabulated at equal

intervals, it will only be necessary to employ the tabulated values, or values

interpolated at simple fractions of the tabular interval .

In the case of G1 , if either of the suggestions in the preceding paragraph

is carried out, G1 should be placed in the upper half of the store to obtain maxi-

mum accuracy (the ideal position is 386 onwards) . This is because one of the

orders forms part of a constant which thus depends slightly on the location of

the routine. In normal use the effect is quite negligible, but it does mean that

the last value of x in each step may differ from (x +h) by at most 2-33

=

If h cannot be expressed exactly in binary form, there is a numerical

advantage in generating x by integrating x ' 1. Owing to the high digital ac-

curacy afforded by the 'bridging " values of 2mq which are carried over from

one step to the next, the accumulation of rounding -off errors in x occurs much

less rapidly than it would if x were obtained by the repeated addition of h.

4-73 Definition of the process. The process is defined by the equations

below. yio is the value of the ith variable at the beginning of a step; yi4 is

its value at the end of the step. While the 2mkip's for one value of p are being

34 ELECTRONIC DIGITAL COMPUTER

calculatedby the auxiliary routine, the corresponding Vip and 2hqip (i = 1 ...n)

are stored. The quantities rip are only used in the formation of the corre-

sponding yip and dip and do not need to be carried over to the following value

of p. Each r is rounded off to the same number of places as y.

,

Yi4 and qi4 become yio and qio for the following step. The scale factor

2m employed in storing k and q is left out for simplicity.

kio = hfi (yoo , У10 ,)

ril = (1/2)kio
-

wqio

Vil = Vio + Fil

qil = qio + 3ril - (1/2)kio

kil = hfi (yol , У11 ,)1,

ri2 = (1 - 1/2)(kil - qil)

yi2 = yil + ri2

qi2 = qil + 3ri2 - (1 - 1/2)kil

i = 1n

ki2 = hfi (yo2 , У12 ,)

riz = (1 + 1/2)(k12 - 912)

Уіз = Уіг + ri3

qiz = qi2 + 3riz - (1 + 1/2)ki2

kiz = hfi (y03 , У13 ,)

ri4 = 1/6(ki3 - 2q13)

Уі4 = Уіз + Fi4

qi4 = qiz + 3ri4 - (1/2)ki3

The coefficient w appearing in the expression for ril is not critical. The

best value is actually 1 , but G1 and G2 use the value 1/2, as it simplifies

the program.

An example of the use of these subroutines is given in Section 7-6.

4-8 Processes. Interpretive subroutines .

There are in the library a number of subroutines which, when called in,

execute series of operations according to sets of parameters in the store.

The codes by which these parameters are interpreted are determined by the

design of the routines themselves, and are arranged to simplify the coding of

such operations as the handling of complex numbers and numbers in floating

point form (see below) .

These subroutines are usually called in by the method used for the closed

type, the parameters following the orders which call in the routine. The rou-

tines do, however , form a distinct class, and have been labelled " interpretive."

Such a routine is defined as one which executes an operation defined by each

parameter according to a code which is independent of the position of the pa-

rameter in the series. Usually the series is of indefinite length, being termi-

nated by a special parameter.

LIBRARY SUBROUTINES 35

Each parameter may be regarded as an "order," and thus the use of

interpretive routines effectively extends the order code of the machine by in-

creasing the complexity of the operations which may be performed in response

to a single " order.” The resulting gain in expediency of programming is

offset by an increase in the time required by the machine to carry out the cal-

culation, due to the higher percentage of orders concerned purely with organiz-

ing the operations .

4-81 Operations on complex numbers. Subroutines B1 and B2 are inter-

pretive subroutines which enable operations to be performed on complex num-

bers whose real and imaginary parts are stored in consecutive long storage

locations . The orders which define operations on complex numbers are placed

in the master routine directly after the orders used to call in the subroutine .

By the use of these subroutines the processes of addition, subtraction, trans-

fer , and shifting may be carried out on complex numbers. Subroutine B2 will

also carry out complex multiplication. The order code used is the normal

order code of the EDSAC with certain small exceptions described fully in

Part II .

Further subroutines dealing with complex numbers are described in the

next paragraph.

4-82 Floating point subroutines . One difficulty which arises in pro-

gramming complicated problems is the control of the magnitudes of the num-

bers involved. With the binary point at the extreme left-hand end of the ac-

cumulator , repeated addition may cause the accumulator to overflow at the

left-hand end and repeated multiplication may cause loss of significant figures

at the right-hand end. To prevent this , it is necessary to place the number in

a suitable digital position within the arithmetical unit. In complicated programs

this may be difficult or impossible to estimate in advance. Subroutines have

therefore been prepared that will automatically adjust the scale factors associ-

ated with particular numbers or groups of numbers.

These subroutines carry out arithmetical operations with real or com-

plex numbers expressed in the " floating decimal" form a 10 , where a is

restricted to lie between two limits such as 1 and 10. In this form it is pos-

sible to represent numbers having a wide range of values fairly accurately

over the entire range. The digits representing the exponent and those repre-

senting the numerical part together form the digits of one long number (or two

long numbers if a is complex) .

The main library subroutines dealing with numbers in floating decimal

form consist of the following three groups .

A1 - A4

A3 and A4 are two versions of a subroutine to carry out special arith-

metical operations (described in detail in the specification of A3 in Part II) on

real numbers expressed in the following standard floating decimal form:

X = X 10P ,

where X is a seven decimal -digit number and p is an integer such that

4> X≥0.4,

512 > p≥ -512 .

36 ELECTRONIC DIGITAL COMPUTER

The two parts of the number X are packed into a single long storage location,

ten digits being allocated to the signed exponent, p, and the remaining 24 to

the numerical part, X. That is, in the store, X is represented by the number

2-12 X + 2-9.p.

The subroutines unpack each number when it is required and place the

numerical part and the exponent in separate long storage locations or " regis-

ters" ready for the special arithmetical operations to be performed. Similarly,

answers are packed up and stored if they are not to be used again immediately.

The special Read and Print subroutines A1 and A2 provide these packing facili-

ties for the input and output of data to be used by A3 and A4. In A1 , p is further

restricted to the range 256>p>0.

A5 -A8

A5 and A8 are similar to A3 and A4 but operate on complex numbers ex-

pressed in the following standard floating decimal form:

Z = Zo ·10P = (X + Y) -10P ,

where X and Y are seven decimal-digit numbers and p is an integer such

that

4> Vx + Yo≥0.4,
2

2048 > p > -2048

Two long storage locations are used to hold one such complex number, the

first 28 digits of each representing X and Yo , and the remaining total of 12

beingused for the exponent, p. That is, in the store, the number Z is repre-

sented by 2-2.XoXo in rD and 2-2.Yo in (r+2)D, each rounded off to 28 binary

places . The last 6 digits of each of these storage locations contain the most

and least significant halves respectively of the 12-digit integer p, the left-

hand digit of which is treated as a sign digit.

A6 and A7 are special Read and Print routines for the input and output

of complex data to be used by A5 and A8. In A6, p is further restricted to

the range 2048>p≥0.

A9 - A11

All is an interpretive subroutine which performs the arithmetical opera-

tions of addition, subtraction, multiplication, and transfer on real numbers ex-

pressed in floating decimal form, in accordance with a code of program param-

eters detailed in the specification in Part II. Each number is expressed in the

forma-10º and is represented in the store by the long or short number a - 2- +

p-2-6 .

11

A9 and A10 provide for the input and output of data to be used by A11 .

One other subroutine , K8, also uses floating point arithmetic for special

operations on power series . These are described in Part II .

Floating point subroutines help to preserve accuracy by retaining a fixed

number of significant figures in the most advantageous position within the ma-

chine. They can, however, do nothing to prevent the inherent loss of accuracy

which results from the subtraction of two nearly equal quantities . For example,

in the subtraction

3.214567 × 105 - 3.214032 × 105 = 0.000535 × 105,
,

the difference is afterwards converted to standard form (that is, 0.535000 × 10²),

LIBRARY SUBROUTINES 37

before use in another calculation. The last three figures in this case are

meaningless and the accumulation of such nonsignificant figures may still

present a problem for the programmer .

A1 - A8 were developed for the problem of locating zeros of arbitrary

real or complex functions by the "root squaring" method (see Section 7-8) .

A9 - All are intended for more general use.

4-83 Packing of orders used with interpretive subroutines. It often

happens that the "orders " used in connection with an interpretive subroutine

are few in number and refer only to a limited number of addresses. This is

especially so with vector operations, where a single address can be used to

specify a complete vector or matrix, but it is by no means restricted to such

cases.

In such an event space may sometimes be saved by packing two or more

orders into a single storage location . The associated interpretive subroutine

must then also incorporate unpacking facilities . A special input subroutine

must also be provided unless the orders used are translated into the form

normally accepted by the initial orders - a laborious process if many orders

are involved.

No subroutines using this principle have yet been included in the library

but a short account of one problem to which these methods have been applied

will be found in Appendix D.

CHAPTER 5

PITFALLS

Even a first-class computer will sometimes make a mistake (although

he will not allow it to go undetected for long) . In the same way a programmer

will sometimes make a mistake in the master routine, in a subroutine , or in

the make-up of the tape. Some mistakes may cause the answer to be in error .

Others may cause the machine to obey a wrong sequence of orders, or to try

to obey some constant order or pseudo-order not intended for such use. In

the latter case the machine will stop on a meaningless order, or perhaps go

into a closed loop. The machine may print a number of symbols or it may

print nothing at all.

Experience has shown that such mistakes are much more difficult to

avoid than might be expected. It is, in fact, rare for a program to work cor-

rectly the first time it is tried, and often several attempts must be made be-

fore all errors are eliminated. Since much machine time can be lost in this

way a major preoccupation of the EDSAC group at the present time is the

development of techniques for avoiding errors, detecting them before the tape

is put on the machine, and locating any which remain undetected with a mini-

mum expenditure of machine time.

Library subroutines are all checked on the machine before being put into

the library and are presumably free from error . This in itself would be a suf-

ficient reason for having a library, quite apart from any other considerations .

When subroutines are specially made for a particular program it is good prac-

tice to test them beforehand by means of short programs constructed for the

purpose .

It is easier to avoid and detect errors if the program is drawn up in an

orderly and logical manner . For example, if six quantities x1 , x2 , Хз , У1 , У2 ,

y3 occur, they should be placed in consecutive storage locations and not scat-

tered about the store. Similarly, orders and pseudo-orders used for counting

purposes should be arranged on some plan and not placed at random in the

store . When drawing up a complicated program the programmer should not

hesitate to copy it out in a more logical layout whenever necessary. The paral-

lel case of hand computation will suggest itself; good computers usually pay

great attention to the arrangement of their work sheets .

It is of great assistance , both to the programmer and to a person check-

ing the program, to provide notes describing the actions of the orders, as is

done for all library subroutines (see Part III) . The notation for entry points,

etc. , given at the beginning of part III, is also designed to help in understanding

programs.

5-1 Proofreading of programs. Points to be checked.

Some idea of the types of mistake which can occur is given by the follow-

ing list of points that should be checked before a program is punched. Many

of these are of a purely clerical nature, and could be checked by a person with-

out great mathematical ability . Others may require an understanding of the

particular calculation.

38

PITFALLS 39

1. No two subroutines may occupy the same storage locations , unless

one is only used temporarily before the other is inserted.

2. All conditions contained in the specification of each library subrou-

tine used must be met. For example, if it is necessary that the subroutine

start in an even location, this point should be checked, and it should be made

certain that all parameters have been correctly specified.

3. When calling in a closed subroutine , (a) the accumulator must first

be cleared, (b) the A and Gorders must specify the correct addresses .

4. Where necessary, addresses must be corrected after renumbering.

5. Counting operations should give the correct number of repetitions ,

and control must be transferred to the correct point when repeating a cycle .

6. The program should be prepared so as to leave a location for any

order which is to be planted by the program itself. This is usually done by

writing a dummy order such as (ZF) or (P F) .

7. Control must be directed to the correct place to start the program.

8. No item of information in the store should be overwritten until it is

no longer required. In particular , no wanted information should be left in a

location that is used as a working position by a subroutine .

9. The contents of the multiplier register must not be assumed to be

unaltered by a subroutine .

5-2 Location of mistakes in a program.

It might be thought that a good way of finding errors in a program would

be to make the machine proceed order by order under the control of the

"Single E.P." button (see Section 6-4), and to study the numbers in the ma-

chine by watching the monitors attached to the arithmetical unit and store.

This , however , usually turns out to be a very slow and inefficient process,

especially as the numbers are displayed in binary form. Methods have there-

fore been developed which permit the machine to proceed unhindered by the

operator , whilst printing on the teleprinter a permanent record that can be

studied at leisure , and that will assist in understanding the nature of the mis-

take.

One such method is to wait until the machine has stopped (or to stop it

deliberately) and then, without clearing the whole store , to insert (by pressing

the starter button again) a small program which will print, in suitable form,

the contents of part of the store. This has come to be known as the " post-

mortem " method. Tapes are kept available near the EDSAC for printing the

function letters , or address parts, of orders in consecutive storage locations .

Programmers may also prepare their own post-mortem tapes .

This method yields only a static picture of the store as it was when the

calculation stopped. Other methods have been derived to provide information

about the whole course of the calculation. These necessarily involve modify-

ing the program to cause the extra printing, and therefore a new tape must be

prepared and presented to the machine. This , however , is no hardship, since

the machine will read an average tape in about a minute, and the preparation

need not take more than a few minutes of the programmer's time.

5-21 Method using extra output orders . One simple and very useful plan

is to place an output order at the beginning of the master routine and in front

of each subroutine so that the completion of the various stages of the program

40 ELECTRONIC DIGITAL COMPUTER

will be recorded by the printing of suitably chosen symbols. If by reason of a

programmer's blunder the machine stops in the middle of the program, the

symbols printed will enable the error to be localized. Letter and figure shifts

must also be inserted if letters are required for indication purposes while the

ordinary printing of numbers called for by the program takes place correctly.

As an example the program given in Section 7-2 is repeated in Section

7-4 with the extra print orders incorporated.

When the program has been made to work correctly, the extra printing

may be eliminated by omitting the extra orders from the tape. If an assembly

subroutine (or the second method of assembling a program described in Sec-

tion 7-1) is used, no renumbering is necessary. Note that two extra orders

must then be placed in front of any subroutine which is required to have its

first order in an even location .

It is a good plan to include extra printing of the kind described here in

all new programs when they are first drawn up rather than to wait until the

program has been tried and found to fail.

5-22 Subroutines for checking programs. Methods like the foregoing

are too limited to deal with many of the questions that arise. In such cases

a considerable modification of, or addition to, the original program is neces-

sary . It has been found possible to construct subroutines which incorporate

all these modifications and additions, and which are sufficiently general to be

applied to any program. These form category C of the library and fall into

two classifications, those that check the sequence of operations and those that

check the numbers operated upon.

For their operation, these methods depend largely on the technique used

in interpretive subroutines (see Section 4-8), namely, the repeated selection

of " parameters" from another part of the store. In this case, however , the

"parameters " are simply the orders of the original program, and they are

selected and carried out in exactly the same manner and sequence as if they

were being obeyed directly. The purpose here is not to enable new operations

to be initiated by each order, but to make it possible (by suitably designing

the checking routine) to interpose the printing of extra information for check-

ing purposes . Another technique employed is the planting in the original pro-

gram of an E order (or ' 'blocking order ") which switches control to the check-

ing routine .

For a full discussion of checking routines see ref. 13 .

5-23 Subroutines that check the sequence of orders carried out. Certain

checking subroutines print the function letters of orders as they are obeyed,

this being the most convenient way of checking the sequence of operations

Subroutine C11 is the simplest; it checks through the whole program without

a break. Letters are printed in a line across the page until a transfer of con-

trol occurs, when a new line is started. An example of the use of C11 is given

in Section 7-5 .

C7, C9 , and C12 are rather more elaborate versions of C11 , and provide

for the suppression of checking or printing during irrelevant parts of the pro-

gram to save time.

5-24 Subroutines that provide numerical checks. Some mistakes in pro-

grams cause the numbers operated upon to be in error , without immediately

PITFALLS 41

affecting the sequence in which the orders are obeyed. It cannot therefore be

assumed that if a program apparently operates correctly it is giving correct

results , and careful numerical checks must always be applied. Moreover , the

diagnosis of such mistakes can be as difficult as that of mistakes which affect

the order sequence.

A numerical fault may be due to a mistake in a single order or in a con-

stant, or to a more fundamental mistake, such as a wrong choice of scale fac-

tors that causes a number in the machine to exceed unity . Some knowledge

can be gained by printing several intermediate results, and it is usually ad-

visable to include such extra printing in the first draft of any program.

If this is insufficient, subroutines C1 , C8, and C10 can be used, in con-

junction with the program, to cause the printing at frequent intervals of num-

bers involved in the calculation.

5-3 Counting operations .

Even the simplest of programs usually contains cycles of orders which

have to be repeated a certain number of times. The methods commonly em-

ployed to ensure that the correct number of repetitions is carried out are ex-

plained in Appendix E.

Some programs involve rather complicated counting operations, and it

is easy to make an error in these . As a means of simplifying the preparation

of such programs a number of counting subroutines, U1 to U5 , have been in-

corporated in the library . The use of the closed counting subroutines U1 and

U4 undoubtedly enables the layout to be improved but at the expense of making

the program rather longer than it otherwise would have been. The open rou-

tines U2 , U3 , and U5 will probably be of more general utility and their use

should enable many errors of counting to be avoided.

CHAPTER 6

USE OF THE EDSAC AND ITS ASSOCIATED EQUIPMENT

6-1 Tape punching and editing facilities.

This section will deal with the preparation of a punched tape from a

program sheet which has been prepared in the manner described in the pre-

vious sections. So far no attempt has been made to set up in the Mathemati-

cal Laboratory an elaborate organization for punching tapes. Most of the

punching is done by the users themselves, although some assistance is avail-

able when necessary. The problems dealt with so far have not required a

great deal of input, although in one or two cases several hundred numbers

have had to be read for one run.

The main pieces of equipment provided for the preparation and editing

of tapes are described below.

6-11 Keyboard perforator . Use is made of standard 5-hole teleprinter

keyboard perforators modified so as to conform to the special EDSAC code.

Several are available for use.

6-12 Tape Duplicator. This name is given to a device used (a) to pre-

pare a corrected copy of a tape and (b) to build up a complete program tape

from number sequences, the master routine , and subroutines which have

been punched separately. It incorporates a keyboard perforator which has

been fitted with five solenoids (one for each hole) in addition to the usual keys.

The solenoids are linked to a tape reader and the operator may prepare a new

tape partly by operating the keys in the ordinary way and partly by copying

data from a separate piece of tape placed in the tape reader . When copying

he can make the duplicator run continuously or in single steps . If he wishes

he can also make the tape reader advance the original tape without copying

it onto the program tape. If a switch marked "Ignore 11111" is closed any

row of the original tape in which all five holes are punched will be passed

over and omitted from the copy. This enables a row of five holes to be used

as an erase sign when punching. If another switch marked " Ignore 00000" is

closed the tape reader will automatically pass over blank tape . A further

facility is a key which causes blank tape to be fed automatically from the

punch.

Two duplicators are available and a standard tape reperforator for pro-

ducing straight copies of a tape is also provided. Two tape readers and a

changeover switch are provided with each duplicator for use when building up

a complicated tape from short pieces.

6-13 Tape comparator . This device enables two tapes which are sup-

posed to be identical to be checked one against the other . They are placed in

separate tape readers and when a switch is depressed are advanced automati-

cally as long as the symbols punched on them are identical . When a discrep-

ancy is encountered the tape readers stop. Switches are provided for advanc-

ing either tape independently in single steps and for ignoring blank tape. Two

comparators are available .

42

USE OF THE EDSAC 43

It is normal practice to punch the various number sequences , master

routine , and subroutines which go to make up a program tape separately and

to combine them later . Each part is punched twice and the two are checked

by means of a comparator to make sure they agree. In this way errors of

punching can be detected. Of the various errors which occur when preparing

a problem for the EDSAC errors in punching are the least excusable.

6-2 Storage of library subroutines.

Subroutines in the library are punched on colored tape so that they can

easily be distinguished from program tapes , which should be white . Several

copies of each subroutine are provided and when not in use each copy is rolled

in a small cardboard box. The boxes are filed in serial order in a steel cabi-

net. The master copy of each subroutine is kept under lock and key and is

used only when all existing copies of the subroutine are damaged. The master

tape is then used to prepare further copies by means of a duplicator . All

copies must be checked against the master , by means of a comparator, before

being put into the library for general use.

6-3 EDSAC organization.

The following brief note on the organization of the machine room may be

of interest. When a program tape is ready to be put on the machine the pro-

grammer writes out a ticket saying what he expects the machine to print and

giving any other information which the operator may need. He then hangs the

tape with its ticket from a clip running on a horizontal wire. The various

tapes hanging from the wire form a queue and the machine operator puts them

through the EDSAC in order, subject to any overriding instructions about pri-

ority. If the machine prints what is expected, the output sheet is placed in a

rack ready for collection by the programmer. If the machine stops unexpected-

ly the operator notes on the ticket the place at which it has stopped (that is ,

the number in the sequence control register) and then proceeds to the next

tape in the queue.

A number of test tapes are available by means of which the operator can

make regular checks on the operation of the machine. Should one of these

tapes reveal an error the maintenance staff is called upon to rectify the fault.

6-4 EDSAC controls .

The EDSAC requires no preliminary 'setting up" for a particular pro-

gram. The procedure when a program tape is to be run is as follows .

1. The tape is inserted in the tape reader .

2. The " clear store" button is pressed to clear out any information

previously in the store .

3. The start button is pressed and causes the initial orders to be placed

in the store . Under control of these orders the tape is then read and the pro-

gram carried out according to the orders on the tape.

The purpose of the " clear store" button is to ensure that the machine is

always in the same condition when a program is started, and should therefore

always react in the same way to the same tape. If, during a program, the

44 ELECTRONIC DIGITAL COMPUTER

machine is suspected of being faulty, the program can be repeated and if con-

sistent results are not obtained the fault is known to lie with the machine and

not with the program. Other push button controls provided for occasional use

are

Stop

Reset

Single E.P.

- stops the machine in exactly the same way as a Z

order.

-

used to restart the machine after a " stop " operation

or a Z order .

may be used after a " stop " operation or a Z order .

Every operation of this control causes the machine

to execute one single order .

CHAPTER 7

EXAMPLES

Sections 7-1 to 7-5 describe how some relatively simple calculations

might be programmed for solution on the EDSAC, making use of library sub-

routines . Sections 7-6 to 7-8 are examples of actual problems prepared for

the EDSAC . In all the program sheets the notation used is that described at

the beginning of Part III .

7-1 Example 1. Calculation of e - sin x (see Section 4-4) .

This process causes a series of positive numbers x (<1) to be read

from the tape and the quantities e- sinx to be calculated and printed to nine

decimal places. Four values of x have been chosen: 0.1234, 0.986, 0.74281079,

and 0.84314763 . Each of these will be read in turn and the corresponding

value of the function printed before the next value of x is read. After printing

the fourth value of the function the machine will stop. Five library subrou-

tines and a master routine specially constructed for this problem are used

and positioned in the store as follows :

Location of

Subroutines , etc. first order

Number of storage

locations occupied

R9 56 15

T7 (sine, rapid)
72* 36

E4 (exponential , fast)
108* 36

R3 (input one signed

decimal fraction)
144* 41

P11 (print signed deci-

mals in preset layout)
185 55

Master routine 240

*First order must be in an even location.

7-11 Make-up of tape .

R9

PF

R9 begins with PKT 56 K so that it is

automatically placed in locations 56 to 70.

Extra pseudo-order put in to bring first

order of T7 into an even storage location.

space P Z

T7

space P Z

E4

space P Z

R3

space P Z

45

46 ELECTRONIC DIGITAL COMPUTER

GK

T 45 K

A 258 D (H parameter)

P 20 F (N parameter)

P 470 (Mparameter)

P3104 F (A parameter)

P11

Places in 42 the address specified in the

current transfer order .

Sets transfer order so that parameters

following go into 45 to 48 .

4 columns

3 spaces between columns

digit layout: 4 digits ,

space , 5 digits

parameters

used by P11

P11 begins with T Z , so that the address

stored in 42 is replaced in the transfer

order . P11 is therefore placed in 185

to 239 .

space P Z

Master routine

space P K

E 240 KPF

1234+

986 +

742 81079 +

843 14763 +

1

When this control combination is read,

control is switched to 240 , which con-

tains the first order of the master rou-

tine .

values of x. These are not placed in the

store during input of orders but are read

one by one under the control of R3 when

that subroutine is called in by the mas-

ter routine .

the master routine is drawn up so as to

stop the machine if the number read

from the tape is negative , and this stops

the program.

7-12 Master routine .

Start G K

17-0 A θ

1 G 144 F

R3 2 A D

3 E 50

calls in R3 , which reads x from the tape

and places it in OD .

x to accumulator .

stops process if x is negative .
4 Z F

3- 5 R D 1

6 T 4 D 2x to 4D ready for T7 .

7 A 70 1

8 G72 F calls in T7, places 2
sin x in 4D .

T7 9 S 4 D

10 L D -sin x to OD.

11 T D

12 H D
-sin x to multiplier register ready for E4.

EXAMPLES 47

13 Α 13 0

14 G 108 F

E4-15

16 G 185 F

P11-17 E θ

Α 15 0

]

calls in E4, forms e- sin x and places it

in OD .

calls in P11, prints e- sin x.

transfers control to 00 as accumulator

is clear .

places decimal round-off number required

by P11 (i.e. , 5.10-10) in 258D .

E 69 K

T 258 D

7-13 Notes .

9 π

1. "Space" indicates that a few rows of blanks (there must be more than

one) are left on the tape. The object is to enable the subroutines to be identi-

fied easily when checking the tape or making corrections (see Chapter 2) . The

control combination PZ which follows each space sets the initial orders back

into the condition they were in before the space. If spaces are not required on

the tape these control combinations should be omitted.

2. The machine can be stopped by pressing the stop button when reading

the blank tape following the main program and can be restarted by pressing

the reset button. This does not affect the content of the store. In certain cir-

cumstances it is convenient to divide the tape into two parts , an order tape,

going as far as the main program and ending with a length of blank tape, and a

number tape, beginning with PKE 240 KPF, followed by the numbers. The

machine would then be stopped on blank tape after the master routine had been

read, the number tape would be inserted in the tape reader with blank tape un-

der the reading head, and the machine would be restarted by pressing the re-

set button. In this way a great many number tapes could be used with one order

tape.

3. This program consists of a total of 202 orders, but only the 18 orders

of the master routine have to be drawn up especially for this calculation.

7-14 Alternative method of making up a tape. In the above method of

making up a program tape the subroutines automatically follow one another in-

to the store head-to-tail. An alternative method is to place each subroutine

into a definite place in the store by means of a control combination of the form

TmK. If this method is used, the make-up of the tape is as follows :

R9

space

PKT 72 K

T7

space

PKT 108 K

E4

space

(If spaces are not required the P K's

may be omitted.)

48 ELECTRONIC DIGITAL COMPUTER

PKT 144 K

R3

space

PKT185 Κ

G K

T 45 K

A 258 D

P 20 F

P 470

P3104 F

P11

space

PKT 240 K

Master routine

space

PKE 240 KPF

1234 +

986 +

742 81079 +

843 14763 +

1
-

This method of making up a tape puts the subroutines into the same lo-

cations as the previously described method. A few spare locations can, how-

ever, be left between the subroutines if desired. This reduces the possibility

of error arising because of a miscalculation of the locations required by a

subroutine and enables corrections involving a slight increase of length to be

made to a subroutine without renumbering. Such corrections often must be

made to subroutines which have been specially constructed for the program.

Another method of making up a tape for a complete program is exempli-

fied in Section 7-3 .

1

7-2 Example 2. Calculation of by evaluation of definite integral.

1

The formula chosen is ㅠ = (1 + x2)-¹ dx. In order that all numbers

concerned in the calculation shall be less than unity this must first be written

in the form

π

=

10

1/2

3/16

(15/16)(0.25 + x2) dx.

Evaluation of the integral is carried out by subroutine Q2, which re-

quires an auxiliary subroutine to calculate the integrand. This must be so

designed that it evaluates the integrand for the value of x given by C (OD) and

places it in OD; it is called into use by Q2 as required. The auxiliary subrou-

tine is given in full in Section 7-23. It requires a division subroutine, and the

one chosen is D6.

EXAMPLES 49

The program requires two other subroutines, R9, which is used by Q2,

and P1 , which is used to print the result, which consists of one ten-digit num-

ber.

7-21 Make-up of tape.

R9

space

PKT 72 K

Master routine

space

PKT 96 K

Auxiliary subroutine

space

PKT 112 K

GKT 45 K

P92D (H parameter)

G 96 F (N parameter)

Q2

space

PKT 164 K

P1

space

PKT 185 K

D6

E72KPF

R9 begins with PKT 56 K, so that it is

automatically placed in locations 56-70.

Sets transfer order so that master routine

goes into store starting at 72.

Auxiliary goes into store starting at 96 .

Q2 goes into store starting at 112 .

Sets transfer order so that following para-

meters, required by Q2, go into 45 and

46.

Q2 begins with TZ, so that transfer order

is reset after planting of parameters.

P1 goes into store starting at 164.

D6 goes into store starting at 185 .

When this control combination is read con-

trol is transferred to the order in 72,

that is, to the beginning of the master

routine .

7-22 Master routine.

G

Start 0 0 15 0

K

figures

1 0 13 0 carriage return

2 0 14 0 line feed

3 Τ 20πθ
Sets limits of integration: 0 to 20πθ,

4 A 19 0

5 Τ 22πθ

]

1/2 to 22 πθ. (Note: started with accumu-

lator clear .)

(see note 5)

50 ELECTRONIC DIGITAL COMPUTER

calls in Q2, which places integral in OD.

calls in P1 , which prints integral.

parameter for P1 .

extra output order to print last figure.

carriage return

line feed

6 A 60

7 G 112 F

Q28 A 80

9 G164 F

10 || P 10 F

P1-11 Ο 15 0

12 Z F

13 0 F

14 Δ F

15 π F figures

16 K 2048 F 15-2-4

17 R F 4-2-4

18 E F 3-2-4

19 I F 8.2-4

20 (P F)

set by 3
21 (P F)

22 (P F)

set by 5
23 (P F)

7-23 Auxiliary subroutine

G K

0 A 3 F

1 Τ 15 0 plant link

2 H D

3 V D] x2
4 A 17 M

5 Y F

6 T D 0.25 + x2 to OD

7 Η 16 Μ

8 V D

9 Y F

10 T 4 D

11 A 18 M

12 T D

13 Α 13 0

14 G 185 F]

15/16- (0.25 + x²) to 4D

3/16 to OD

calls in D6, which places integrand in

OD.

D6-15 (Z F) link

Notes:

1. If spaces are not required the P K's may be omitted.

2. The mechanism of the teleprinter output system is such that an O

order sets up on the printer the character next to be printed and at the same

time prints the character set up by the previous O order . Thus, at the end of

a program an extra O order must be supplied in order to print the final charac-

ter . Some print subroutines do this automatically by printing one or more

spaces after each number . P1 , used in this program, does not, and an extra

O order is therefore supplied in the master routine .

3. "Carriage return" must precede 'line feed," since it takes longer

than the time required for other teleprinter operations.

EXAMPLES 51

4. The master routine must start at an even location, since locations

200 and 210 are combined to form one long storage location.

7-3 Alternative method for Example 2.

The example given in Section 7-2 will now be repeated in a revised form

making use of assembly subroutine M1 . The components of the program are

H sequence,

Master routine,

Auxiliary subroutine,

Library subroutines R9, Q2, P1 , and D6.

R9, however, is not dealt with by M1 but is automatically placed in its usual

position (locations 56-70) . The H sequence consists of a number of pseudo-

orders which, in Section 7-2, were included at the end of the master routine.

Storage space is allocated as follows :

R9

unused

reference order for master routine

56-70

71-75

76

77 do. auxiliary

78 do. Q2

79 do. P1

80 do. D6

82-97 M1

98- H sequence

7-31 Make up of tape.

R9

see

Section

4-62

space

PKT 82 K

M1

P 76 F

T 98 K

R9 begins with PKT 56 K, so that it is

placed in locations 56-70 .

First order of M1 goes into 82.

Reference order of master

routine goes into 76.

First order of H sequence

goes into 98.

parameters

used by M1

space

PZGK

E 82 KTF

H sequence

space

PZGK

T 92 Κ Τ

E 82KIF

Calls in M1 , which places P 98 F in 45 .

Placed with first order in 98.

Sets M1 ready to deal with master routine.

Calls in M1 , which places reference order

in 76 .

52 ELECTRONIC DIGITAL COMPUTER

Master routine

space

PZGK

E 82 KPF

Auxiliary

space

PZGK

E 82 KPF

T 45 K

P72D

G1

Q2

space

PZGK

E 82 KPF

P1

space

PZGK

E 82 KPF

D6

E 25 K

EPF

]

7

7-32 H sequence.

H

Calls in M1 , which places reference order

in77.

Calls in M1 , which places reference order

in78.

Plants parameters required by Q2 .

Calls in M1 , which places reference order

in79.

Calls in M1 , which places reference order

in80.

Sends control to the first order of the

master routine .

K 2048 F

line feed

carriage return

15-2-4

THE
4-2-4

3-2-4

8-2-4

figure shift

7-33 Master routine.

G K

Start-0 0 6 H figures

1 1 Η

2 0 H

carriage return

line feed

EXAMPLES 53

3 T 72 D

4 A 5 H

5 T 74 D

Sets limits of integration: 0 to 72D,

1/2 to 74D.

6 A 60

calls in Q2.
7 G 2 φ

Q28 A 80

9 G 3φ

10 P 10 F

calls in P1 .

parameter for P1 .

P1-11 Ο 6 H extra output order to print last figure.

12 Z F

7-34 Auxiliary subroutine

G K

0 A 3 F

1 T 15 0

2 H D

3 V D

4 A 3 H

5 Y F

6 T D

7 H 2 H

8 V D

9 Y F

10 T 4D

11 A 4 H

12 T D 3/16 to OD

13 A 13 0

14 G 4Φ]

plant link

x² to accumulator

4-2-4 + x2

0.25 + x2 to OD

15-2-4

15/16- (0.25 + x²) to 4D

Calls in D6, which places the integrand

in OD .

D6-15 Z F link

7-4 Example 2, with extra print orders for checking .

The example of Section 7-2 is given below in a modified form in which

extra print orders are included as described in Section 5-21 . The letters

printed by the orders preceding the various subroutines are as follows : A for

the auxiliary, Q for Q2, P for P1 , and D for D6. These letters are stored in

locations numbered, for convenience, with respect to the code letter M. In

addition, an order which operates the letter -shift of the teleprinter is included

in front of Q2 (the subroutine operated first) , and an order which puts it back

on to figures is included in front of P1 .

This example will print the following :

QADADADADADP3141592653

7-41 Make-up of tape.

R9

T 47 K

P 228 F (M parameter)

space

54 ELECTRONIC DIGITAL COMPUTER

PKT 72 K

Master routine

space

PKT 96 K

OM

Auxiliary subroutine

space

PKT 114 K

Print A. This order goes into 96.

Auxiliary starts at 97.

04M

01M]
GKT 45 K

P 90 D (H parameter)

G 96 F (N parameter)]

Letter shift

Print

extra print orders in 114

and 115.

Parameters for Q2.

Q2 Q2 starts at 116.

space

PKT 168 K

02M Print P

05M Figure shift

extra print orders in 168

and 169.

P1 P1 starts at 170.

space

PKT 191 K

03 M

D6

Print D. This order goes into 191 .

D6 starts at 192 .

space

PKT 228 K

OM AF Denotes auxiliary
Code letters to be

1 QF Denotes Q2

2 PF Denotes P1
printed by the extra

print orders.
3 DF Denotes D6

4 K 2048 F Letter shift

5 πF Figure shift

E 72KPF Transfers control to the master routine

7-5 Application of checking subroutine C11 to Example 2.

C11 calls for a small alteration to the original tape of Section 7-21 . It

is merely necessary to remove the control combination at the end of the tape

and replace it by C11 . The point of entry into the master routine is now spe-

cified by an E order at the end of the tape, following C11 . In this example it

is necessary to avoid the first order of the master routine because this order

causes a figure shift, and the teleprinter is set by C4 to print letters. Hence

the tape is terminated by E 73 F. The end of the tape appears thus:

EXAMPLES 55

...

D6

C11

E 73 F

The first few rows of printing produced by this tape would be as follows .

Printed by teleprinter

0

TATAG

ATTSAUATAHVYTAG

ATHVAYTHVYTATAG

ATSETSE

SE

LE

TALTALE

TALTALERULATE

HSNAYG

UNATHSNAYG

UNATHSNAYG

UNATHSNAYG

UNATHSNAYGSVTE

E

HVAYTASG

Corresponding orders

master routine 1and 2

master routine 3 to 7

Q2 0to 14

Aux. 0 to 14

D6 0to 7

2 and 3

13 and 14

8to14

8to 20

25 to 30

21 to30

21 to 30

21 to 30

21 to 34

Aux. 15

Q2 15 to 22

4to 14

ATHVAYTHVYTATAG Aux. 0to 14

ATSETSTE D6 0to 7

SE 2 and 3

LE 13 and 14

TAL etc. 8 to ...
...

AUATAHVYTAG

7-51 Notes :

1. The carriage return and line feed at the beginning of the master

routine each affect the teleprinter after the corresponding " O " has been

printed. The result of this is that both O's are printed in the same position

on the paper , and the following letters on the next line.

When P1 is reached, the decimal digits which it sends to the teleprinter

will be printed as letters immediately after the "O" indicating the print order

in P1 . They will not, however, be the digits obtained in the original example,

because P1 employs the F order and therefore fails when C11 is used.

2. The exact number of repetitions of the groups of orders 8 to 14 and

21 to 30 of D6 depends on the numbers operated upon. The above example

shows a probable course of the calculation.

56 ELECTRONIC DIGITAL COMPUTER

7-6 Example of integration of an ordinary differential equation .

7-61 Statement of problem. The equation considered is

dyy(1+2y-4x)

x(y-x+N) 'dx

=

where N is a constant. This equation occurs in theoretical astrophysics .

In the vicinity of the origin, a solution for any given value of N has the

asetbehavior y = (Bx)1/N , where B is arbitrary. Solutions are required for

of values of N and, for each value of N, for a set of values of B. Each solu-

tion is to be tabulated at an interval of 0.01 in x until either y>1 or dy/dx< -1 ,

values of y being correct to five decimals.

7-62 Method. The formula for dy/dx is formally indeterminate at x = 0,

so that it is necessary to start the numerical integration from some small

value xo of x, at which the value yo of solution y can be evaluated from a series

expansion. This starting point was taken as x0 = 0.01; the corresponding val-

ues of yo for different values of B were calculated separately and furnished to

the machine as part of the number input. The program is so arranged that the

machine evaluates automatically the whole set of solutions for a given value of

N and different values of yo .

An input subroutine is required to take in the values of xo , N, and the

set of values of yo for which solutions are required. Subroutines for step-by-

step integration of a first-order differential equation and for printing are also

required. The subroutines used are R3, G1 , and P11 . G1 requires an auxili-

ary subroutine for calculating 2mh(dy/dx) , and this auxiliary subroutine has to

be programmed in detail; it involves a division process and for this D7 is

used. Assembly subroutine M1 is used to organize the various subroutines in-

to a complete program.

7-63 Allocation of storage locations. Locations OD, 4D, 6D are used by

D7, P11 , and R3 ; they are also used by G1 , which in addition requires six stor-

age locations for y, x, 2mh(dy/dx) , 2mh, 2mq1 and 2mq2 (q1 and q2 being inter-

mediate quantities calculated in the course of the use of G1) . These have been

taken as 10D, 12D, ... 20D . Storage for N, xo , and a round-off number are

provided at 22D, 24D, and 26D.

...و

7-64 Auxiliary subroutine . This subroutine must put

2hdy =

dx

2mh y(1 + 2y - 4x)
x(y - x + N)

into location 14D. The quantities x and y are in the range (0,1) and, for the

solutions required, N and 2thh are less than 1. However, 4x may exceed unity,

so we must introduce a scaling factor 2-2 and calculate

2mh y(0.25 + 0.5y - x)
x(0.25 (y-x) + 0.25N)

The sequence of operations by which this quantity is evaluated must be

planned with care, to ensure that all intermediate quantities remain within the

capacity of the accumulator. The method adopted is to test whether y(0.25 +

0.5y-x) > x(0.25(y -x) + 0.25N). If this condition is satisfied, the multiplication

EXAMPLES 57

of the numerator by 2mh is done first and is followed by the division. If the

condition is not satisfied, the division is carried out first and the result is

multiplied by 2mh. The reason for this procedure is as follows. If two small

quantities are multiplied and give a product less than 2-34 , this appears as

zero, and subsequent division by a small number will still give a zero result

although the correct result may be much greater than 2-34 Hence in calculat-

ing ab/c, it is advisable to carry out the division first if b/c <1 .

7-65 Master routine. This is straightforward, and stops the integration

when either y≥1 - 2-34 or (dy/dx)<- 1 . The value ofx for which the integra-

tion is stopped is printed in brackets at the end of the table of results.

7-66 Mathematical checks. These are required to verify that the inter-

val is small enough for the step-by-step integration process and that the solu-

tion is stable despite rounding-off errors. These checks are not programmed

but must be carried out by hand outside the machine. Checks used are the

evaluation, at selected points, of (dy/dx) from the differential equation and also

from a central -difference formula. Further, results for one special case ,

namely N = 0.4, x0 = 0.074515 , yo = 0.049793, can be obtained from the tabu-

lated solution of Emden's equation. When this problem was run on the EDSAC,

agreement with these results to the required degree of accuracy was obtained.

7-67 Master routine .

G

0A

K

0

1 G 4Φ

R3-2 A D

3 T 16 D

4 A 40

5 G 4 φ

R3- 6 A D

call in R3 to read 23h

23h to 16D

read round-off constant

and send to 26D

7 T 26 D

8 A 80

9 G 4Φ

R3-10 A
read xo and send to 24D

read

constants

D

11 T 24 D

12 Α 12 0

read N

13 G 4Φ

R3-14 A D

15 R 1 F

16 Y F

1

send-N to 22D
4

17 T 22 D

56-18 A 24 D

reset x to хо
19 T12 D

20 A 5 Φ

21 A H form order 23**

set to

print

evaluate

22 T 23 0 new

one solution

of equation

23 (P F) becomes T q+20 F block*

]
24 A 24 0

25 G 4 φ

read next yo

58 ELECTRONIC DIGITAL COMPUTER

R326 A D
yo to accumulator

27 E 31 0

28 T F

29 0 H stop if yo< 0

30 Z F

27-31 T 10 D set y = yo

32 T 18 D clear 18D

33 T 20 D clear 20D

47-34 T F clear acc .

35 A 10 D

y to OD
36 T D print y

37 A 37 0

call in P11

38 G 5 ф

P11-39 Α 39 0

call in G1

40 G 3Φ

G1-41 A 10 D

42 A 2πΗ

43 G 48 0

44 T F

45 A 14 D

46 A 16 D

47 E 340

43-48 T F

49 A 12 D

50 T D

51 1 Η

52 A 52 0

53 G 5 Φ

[

[

jump to 48 if

y≥1 - 2-34

clear accumulator

return to 34 if

y'≥-1

clear accumulator

xto OD

print (

call in P11

print (x)

P11-54 4 H print)

55 0 6 H line feed

56 E 18 0 return to 18

evaluate

one step of
one solution

integration of equation

*See P11, note 7 (Part II) .

**C(56) = Gq F (if P11 starts in q) , C(OH) = J 20 F. Thus C(56) +

C(OH) = (G + J) q + 20 F = T q + 20 F.

7-68 Auxiliary subroutine. Puts 23h(dy/dx) in 14D where

dy y(0.25 + 0.5y - x)
=

x(0.25 (y -x) + 0.25N)

G K

0 A 3 F

1 T 46 0
plant link

2 A 10 D

3 S 12D

4 R 1 F 1

5 A 22 D
(y-x) + Nto OD

6 Y F

7 T D

EXAMPLES 59

8 H 12 D

9 V D

denominator to 4D

10 Y F

11 T 4D

12 A 10 D

13 R D

14 S 12D

15 A 5 H

11

4+ y - x to OD

16 Y F

17 T D

18 H 10 D

19 V D

numerator to OD
20 Y F

21 U D

22 E 25 0

23 T 14 F

24 S D

22-25 S 4 D

26 E 36 0

27 T 14 F

28 A 28 0

29 G 2 φ]
D7-30 T 4 F

31 H 16 D

32 V D

modulus of numerator to accumulator

subtract denominator*

jump if dy/dx|21

clear accumulator

call in D7 to

form (dy/dx)

clear accumulator

23h(dy/dx) to
dy/dx <1

33 Y F 14D

34 T 14 D

35 E 46 0

26-36 T 14 F

37 Η 16 D

38 V D

39 Y F

40 T D

41 A 41 0

42 G 2Φ

D7-43 T 4 F

44 A D

45 T 14 D

35-46 (Z F) link order

to link

clear accumulator

multiply numerator

by 2 h
3

call in D7 to form

23h(dy/dx)

clear accumulator

23h(dy/dx) to 14D

dy/dx ≥1

*In the range considered, the denominator is always positive .

7-69 H sequence , make-up of program and number tapes . H sequence :

T 2πΖ

2

||P F

3
(See Chapter 2 under the heading sandwich

digit.)
T Z

0J 20. F

1 K F

60 ELECTRONIC DIGITAL COMPUTER

2-34 (See Chapter 2 under the heading

sandwich digit .)

2

||P D

3

T 4 Z

4 L F)

5 R F = 1/4

6Δ F

Make-up of program tape :

PKT 60 K

M1

P 52 F

T 76 K

space

PZGK

E 60 KTF

H sequence

space

PZGK

Т 70 К Тф

E 60 KIF

Master routine

space

PZGK

E 60 KPF

Auxiliary subroutine

space

PZGK

E 60 KPF

D7

space

PZGK

E 60 KPF

GKT 45 K

P 12 D

P4F

P4F

P4F

P2F

P1

G1

line feed

space

PZGK

E 60 KPF

R3

preset parameters for G1

EXAMPLES 61

space

PZGK

E 60 KPF

GKT 45 K

A 26 D

P 25 F

P 45 0

P 1552 F

P11

Make-up of number tape:

PKE 25 K

EPF

preset parameters for P11

08 + 23h

00000000005 +

-

01+

4+

round-off

X0

N

yo first value

yo second value

etc.•

1-

yo last value

stop

numbers

7-7 Evaluation of a definite integral .

7-71 Statement of problem. The following integral , which occurs in the

theory of the ionization of an exponential atmosphere by solar radiation, is to

be tabulated as a function of X and x for X = 90° (-1 °)50° and x = 200(20)280.

The table is to be printed in five columns , each giving values of the integral

for a fixed value of x.

exp -X sinx - sin X cosec²λαλ.
sin λ

2

7-72 Method. The integral is written in the following form, in which

all quantities to be handled in the machine are numerically less than unity :

where

8
-
2
4

.

cosec² Add,

sinX
-

X

1

X

1

sin

2

u =

24 1

sin

The integration is performed by Simpson's rule, using subroutine Q1 . The

following subroutines from the library are also used: E3, P11 , T7, and D7 .

In addition a master routine , and a subroutine for computing the integral need

62 ELECTRONIC DIGITAL COMPUTER

to be constructed specially. The integrand rapidly becomes small as a de-

creases , and the integration is stopped by a conditional operation in the aux-

iliary subroutine , which returns contol to the master routine when u exceeds

a certain quantity (see note 4 to the specification of Q1 in Part II) .

7-73 Constants: N sequence.

ON P 200 F starting value of x - 2-15

1 P 20 F increment of x-2-15

-15

2 (P 200 F) current value of x- 2-

3 (P 900 F) current value of 10X- 2-15

4 P 10 F negative increment of X

5 P 510 F final value of X plus 1

6 P 5 F

7
(P F) column counter

4

8 K F 14.2

9 P 19 F

In addition, two long numbers are taken in by subroutine R5 and placed in 60D

and 62D.

7-74 Master routine .

Start, 30-0

plant current value of X

calls in Q1 , which places integral in OH.

current value of X

strip width

G K

S 6 N

1 T7 N plant column counter

20 2 A 3 N

3 T60

4 A 40

5 G 2

[

6 (P F)

7 P5 F

8 P F

Q1 9 S H

10 T D

11 Α 11 θ

12 G4

P11-13 A7N

14 A 2 F

15 Ε 21 0

16 T7N

15

17 A 2 N

18 A 1 N

19 T2 N

20 E 20

21 A 3 N

22 S 4 N

23 U3N

upper limit of integration

integral to OD

calls in P11 , which prints value of integral .

column count

jump after 5th column

increase x

accumulator empty: jump to 20 .

increase X

24 S 5 N

25 Ε 27 0

26 Z F

test for end

Stop

EXAMPLES 63

25-27 T F

28 A N

29 T2 N

30 E 0

[

7-75 Auxiliary subroutine.

clear accumulator

reset x

G K

0 A 3 F

1 T 51 0 plant link

2 H 62 D

3 V D

(π/180) (29/10) to register

10λ .(π/180) - (29/10) to accumulator

4 L8F
1

5 Y F
(radians) to 4D

6 T 4 D

7A 70 1

8 G5
calls in T7, which places

sin 入 in 4D

T79 A 4D

1

10 T2 H

2
sin A to 2H

11 H 62 D

12 V3N 10Χ.(π/180) -(29/10) to accumulator

13 L8F

14 Y F

1

15 T 4 D x(radians) to 4D

16 A 16 0

17 G5 7
1

calls in T7, which places
sinXin4D

T7 18 A4 D

1

19 T 4 H sinXto 4H

20 A 2 H

2
1
/
2

1

sinX- sin toOD

22 T D

1

sina to 4D

21 S 4 H

23 A 2 H

24 T 4 D

25 A 25 0

26 G6

D727 A N

28 L8F

29 T 4 D

30 H 4 D

31 N D

32 L 16 F

calls in D7, which places

(0.5 sinX - 0.5 sinx)/(0.5 sinx) in OD

x-2-15 to accumulator

x-2-10

-x [(sinx - sinx)/(sinx)]2-10 = -2- u

-u to 6H

14-2-4

33 U6H

34 A 8 N - u in accumulator

35 G520

36 T F clear accumulator

37 H 6 H

38 A 38 0

39 G 3
calls in E3 , which places e

E3 -40 A D

41 R1F

7
8
-
2
4

น

in OD

4

-2-u
inOD

42 T D

64 ELECTRONIC DIGITAL COMPUTER

43 Η 2 Η 1

sin²
44 V 2 Η

45 L1F sin²λ

46 N 2 H sin²x - sin²
1

47 Y F

48 T 4 D sin² to 4D

4
49 A 49 0

50 G6 Φ]
1

calls in D7, which places e- 2tu cosec² inOD

D7- 51 (Z F) link (Em+2 F)

35-52 T F

Notes:

53 A 51 0

54 A 9 N

55 T 56 0

56 (Z F)

4

plants E m+21 F in 56 if 2tu>14

becomes Em+21 F. Returns control to

master routine via link order of Q1 (see

note 1) .

1. When 2tu exceeds 14 the auxiliary subroutine causes control to re-

turn to the master routine via the link order of Q1 . When assembly subrou-

tine M1 is used this is more convenient than returning control directly, since

it avoids the necessity for more than one entry point in the master routine .

2. It will be noted that in the auxiliary subroutine all the intermediate

quantities are placed in separate storage locations. Some of these could be

written over others, but by placing each in a separate location it is much

easier to arrange for them to be printed out should this be desirable when

looking for errors in the program.

7-76 Make-up of tape.

PKT 64 K

R5

T 62 D

07758 06398 +

500000 +

R5 is used to take in two constants and is

afterwards overwritten

Conversion factor (degrees to radians)

29π/1800; goes into 62D.

Round-offnumber 5-10-6; goes into 60D

(these numbers appear backwards on this

tape; see specification of R5, Part II) .

XTZ

M1

P 50 F

T 80 K

space

PZGK

E 64 KTF

EXAMPLES 65

G 16 K

E 64 KTF

N-sequence

space

PZGK

Τ 74 Κ Τф

E 64 KIF

Master routine

space

PZGK

E 64 KPF

Auxiliary subroutine

space

PZGK

E 64 KPF

T 46 K

P1 φ

This causes spaces to be left in the store

for 8 long numbers which can be referred

to by the addresses OH, 2Η, 14H (see

note 5 in Section 4-62) .

....

N parameter for Q1 ; the H parameter has

already been set by the assembly subrou-

tine.

Q1

space

PZGK

E 64 KPF

T 45 K

P4F

E3

space

PZGK

E 64 KPF

T 45 K

A60 D

P 25 F

P46 0

P 1024 F

P11

space

PZGK

E 64 KPF

Parameter for E3 .

Parameters for P11 .

66 ELECTRONIC DIGITAL COMPUTER

T7

space

PZGK

E64 KPF

D7

E 25 K

EPF

This program contains a little over 300 orders and pseudo-orders; of

these only 98 need to be drawn up specially.

7-8 Program to facilitate the solution of algebraic equations .

In Graeffe's method for the solution of the equation

Go
=

ao + a1x + S
as - 1x8-1 + asxs

S

=

0,

t

whose roots are 1 , 2 λs , an equation Gm = 0 having roots λ , λ
t

A is formed (t = 2m where m is an integer) . The program given below is de-

signed to calculate the coefficients of Gm = 0. The subsequent numerical anal-

ysis necessary to find the roots must be performed independently and will pro-

ceed along lines which can only be determined after inspection of the coeffi-

cients of Gm = 0.

The program uses the floating decimal subroutines A1 , A2, and A4 and

involves four tapes .

1. Input program tape . This puts into the store a short program which

causes the coefficients (punched on the following tape) to be read and placed

in 300D, 302D, (300+2s)D . When all the orders on this tape have been read

the machine is stopped by pressing the stop button, blank tape being under the

reading head.

...

2. Coefficient tape. This tape is placed in the tape reader when the in-

put program tape has been read, and the machine is restarted by the reset

button. If desired it may be combined with the input program tape .

...

3. Master tape . This is taken in by pressing the start button again when

the coefficients are in the store . It first causes the coefficients of G₁ = 0to

be computed and placed in (302+2s)D, (304+2s)D, (300+4s+2)d. The coeffi-

cients of G2 = 0 are then computed and placed in the locations formerly occu-

pied by those of Go = 0. This process continues , the two sets of locations be-

ing used alternately until the coefficients of Gm = 0 have been computed. The

machine then stops and two sets of coefficients (those of Gm- 1 = 0andGm = 0)

are available for printing out.

4. Printing-out tape . This is placed in the tape reader when the machine

has stopped and the start button is pressed again . The coefficients of Gm- 1 = 0

and of Gm = 0 are printed out in a single column of 2s+2 numbers .

Notes:

1. The program is drawn up in such a way that it can be adjusted to any

value of s by giving a suitable value to one of the parameters at the head of the

input program tape.

EXAMPLES 67

2. If, after the results have been printed out, it is desired to carry the

root-squaring process further , the master tape , modified by punching PKT

49 KP 2s Fat its head, may be inserted a second time. The coefficients of

G2m- 1 = 0 and G2m = 0 will then be computed and may be printed out by means

of tape 4.

3. If sufficient storage space is available, it is possible to combine

tapes 1 , 3 , and 4 .

7-81 Make-up of input program tape.

P F

T 50 K

G K

T 49 K

P 2s F

T 45 K

P 300 L

P 2 L

A1

L parameter

equivalent to P 300+2s F; H parameter

equivalent to P 2s+2 F; N parameter

7-82 Make-up of coefficient tape .

control combination initiating the program

P K

E 51 K

Z F

a

S

a

s-1

a

s-2

a

s-3

•

•

•

a

1

a

20

7-83 Make-up of master tape. (P2s F is in 49 when this tape is taken

in.)

P K

T 200 K

G K

T 45 K

P 300 F H parameter

P 302 L N parameter

P L M parameter

P 50 F A parameter

Auxiliary

subroutine

T 50 K

68 ELECTRONIC DIGITAL COMPUTER

A4

T 280 K

master

routine

E Z

P F

control combination switching control to first

order of master routine.

7-84 Make-up of printing-out tape. (P2s F is in 49 when this tape is

taken in.)

P

G

K

T50 K

K

50 A 49 F

51 L D

52 T 49 F

these orders are stored temporarily in 50 to

53 and place P 4s F in 49 (L parameter).

returns control to initial orders .

switch combination

53 E 25 F

E 50 K

P F

T 45 K

P 302 L H parameter

P 4 L N parameter

P 1 F M parameter

P 8 F A parameter

P F L parameter

A2

E 1 Z

P F

tape combination initiating printing

program .

Note : P4s F will not be in 49 after this tape has been taken in.

7-85 Master routine .

G K

0 S 16 0

14-1 T 33 F
set count of squarings

2 T 10 D

clear floating decimal accumulator
3 T 9F

4 A 40

switch to auxiliary subroutine

Aux. 6

5 G 200 F

A 266 F

7 T 34 F

8 A 267 F

9 T 266 F

interchange roles of Pu Dand P v D in

locations 660 and 670 of auxiliary sub-

routine .

10 A 34 F

11 T 267 F

12 A 33 F

13 A 2 F

14 G

15 Z

16 P

10

F

6 F

test for s squarings

squaring count

EXAMPLES 69

7-86 Description of the auxiliary subroutine. Giventhe coefficients

(0) (0) a(0), of an equationGo,a(0)
ao ai , a , ... , as

the subroutine computes and places the coefficients a

of the equation G1 , in locations (v+2r)D, r

as follows:*

(1)
an

=

[a] 2
-

j

2 Σ

r=1

'where j = n

=

1

r

inlocations (u+2r)D₁ = 0, 1 ,

Thea1)0, 1, ...s.

(-1) -1 (0) (0)
antran-r

if nos-n

j = s-n if n>s-n.

,
a , ... , as

are defined

(i)

7-87 The auxiliary subroutine. Closed; 80 storage locations; working

positions 30 , 31 , 32. Preset parameters :

G K

T 45 K

45 H P u F

46 N P V F

47 MP 2s F s is the degree of the equation

48 4 P W F address of first order ofA4

T Z

0 A 3 F

1 T 65 0
plants link

2 S 71 0

64-3 A 71 0

4 U 30 F

set n=0 initially

n-2-14 to 30

5 A 66 0

6 U 40 0

7 U 41 0

8U 55 0

9 T 56 0

10 A 30 F

11 Α 67 0

12 T61 0

13 S 30 F

14 S 30 F

15 Α 70 0

16

77-17

Ε 76 0

A 30 F

]18 T 32 F

19 T 20 D

these orders plant P u+2n D in 400, 410 ,

550 , and 560 .

Pv+2n D is formed and planted in 610 .

(s -2n)2-14 to accumulator

jump if nos -n

P2j Fis planted in 32

clear 20D

*See for example Whittaker and Robinson, pp. 106-109, 3rd edition (1940) ,

Blackie. It is more convenient to use the relation (i) in the form

(1)
an

=

(0)2

an + 2 (-1) pj ,

where pj is the jth term of the sequence

Pr
=

antran-r - Pr- 1 , P1
=

an+lan- 1 .

70 ELECTRONIC DIGITAL COMPUTER

20 T 31 F clear 31

21 Ε 47 0 jump to 470

49-22 A 32 F

23 A 68 0 modify counter; r.2-14 to 31

24 T 31 F

25 Α 40 0

26 A 68 0 form and plant P u+2n+2r D

27 T 40 0

28 A 40 0

29 S 68 0 form and plant P u+2n-2r D

30 Τ 40 0

31 S 69 0

32 Ε 78 0

test m, the two-way switch

jump if r is even

33 T 69 0
restore two-way switch

Plants P 740 in 580 if

r is odd.

34 A 2 F

79-35 Α 75 0

36 T 58 0

plants P 73 0 in

580 if r is even .

enter A4

antran-r to floating decimal accumulator

37 A 37 0

38 G Δ

39 E 3 Δ

40 (P F)

41 (P F)

42 E 3 Δ

43 P72 0 -Pr-1

44 P 20 D

45 Ε 13 Δ

46

21-47

P 20 D

A 31 F

pr to 20D

48 S 32 F

49 G 22 0

50 A 68 0

test for r = j

51 T 69 0
reset two-way switch

52 A 520

enter A4

53 G Δ

54 E 3 Δ

55 (P
(0)2

F) forma
n in floating decimal accumulator

56 (P F)

57 E 3 Δ

58 (Ρ 74 0) +2(-1) Jpj
59 P 20 D

60 Ε 13 Δ

61 (P F)
(1)

in (v+2r)D

62 A 30 F

63 S 70 0

64 G 30

65 (E F)

66 P πΗ

67 P πΝ

68 P 2 F

69 (P 2 F)

plant an

test for last coefficient

link

becomes PuD

becomes PvD

two -way switch

EXAMPLES 71

70 P M

71 P 2M

becomes P 2s F

becomes P 2s+2 F

72 V 2040 F = -1 in floating decimal representation

73 P 16 F +2

74 V 2032 F =-2

75 P 73 0

16-76 T F

77 E 17 0

32-78 T 690

79 E 35 0

control switched to these orders if n≤s -n

control switched to these orders if r is even

control being returned to 350 so that P 730

is planted in 580. This corresponds to tak-

ing 2(-1) = +2. When the last product is

formed r = j and 2(-1) is in location 730

if j is even, and 740 if jis odd.

PART II

SPECIFICATIONS OF LIBRARY SUBROUTINES

Category

A

B

Each subroutine is distinguished by a letter denoting its category and a

serial number within that category. The categories are as follows .

Subject

Floating point arithmetic .

Arithmetical operations on complex numbers.

C Checking.

D

E

F

G

J

K

Division.

Exponentials.

General routines relating to functions.

Differential equations.

Special functions.

Power series.

L

M

Logarithms.

Miscellaneous.

P Print and layout.

Q Quadrature.

R Read (i.e. , Input) .

S nth root.

T

U

Trigonometrical functions .

Counting operations.

V Vectors and matrices.

In the specifications on succeeding pages the following information is

given in abbreviated form immediately beneath the title of each subroutine:

1. Type of subroutine, i.e. , whether open, closed, interpretive, or

special .

2. Restriction on address of first order . If the word " even" appears

it denotes that the first order must have an even address; if no note appears

it indicates that the address may be either odd or even.

3. Total number of storage locations occupied by the subroutine.

4. Addresses of any storage locations needed as working space by the

subroutine.

5. Approximate operating time (not possible to state in all cases) .

The gaps in the numbering within each category correspond to subrou-

tines which have become obsolete.

72

SPECIFICATIONS OF SUBROUTINES 73

A. Subroutines to carry out floating point arithmetic.

Al Input of a sequence of s real numbers in floating decimal form

(used with A3 or A4) .

Closed; even; 77 storage locations ; working positions OD, 4D, 6D,

and 10D .

Given a sequence of s numbers (>1) punched in floating decimal form, this

subroutine assembles them in a standard form and places them in nD ,

(n+2)D, (n+4)D (n+2s-2)D......

*

Preset parameters: 45 H
Pn+2s-2 F

46 N P 2s F

Notes: * 1 . For further details see Part I, Section 4-82.

2. A typical number X-10P , where 256>p>0 and 4>|X| ≥0.4 , is

punched as: X, sign, p, F. In X the decimal point is immediately after the

first digit punched. Any number of digits up to ten may be punched for X.

More than ten will exceed the capacity of the accumulator.

3. The numerical part of each number is eventually rounded off

to 24 binary places .

A2 Print sequence of s floating decimal real numbers in a preset

layout (used with A3 or A4) .

Closed; even; 111 storage locations; working positions OD, 4D, 8 .

....

Prints the sequence of s numbers packed in floating decimal form in storage

locations nD, (n+2)D, (n+4)D (n+2s -2)D . Layout: numerical part printed

to d digits preceded by sign and followed, after one space, by the positive*

integral exponent (up to five figures with suppression of nonsignificant zeros) .

Two spaces separate columns of complete numbers. Decimal point in numeri-

cal part is after first digit printed.

Preset parameters : 45 H Pn+2s-2 F

46 N P 2s F

47 MP C F number of columns (≤4)

48 Δ P d F

49 L P x F/D

number of digits

= q -2-16

Notes : 1. Teleprinter must be on figure shift.

*2. A2 prints out positive exponents only. To ensure this provision

is made whereby all exponents may be increased by a preset amount, q, be-

fore printing .

3. No round- off is provided. Any number of figures may be printed.

4. c(d+9) ≤72 .

A3 Special arithmetical operations on real numbers in floating decimal

form,

Closed; even; 126 storage locations; working positions OD, 4D, 6D ,

8D, 10D, 12D; time: part 1 = 85 msecs; part 2 = (64+24q) **msecs .

*

Enables special arithmetical operations to be carried out on real numbers

expressed in standard floating decimal form. A3 is in two parts and has two

entry points p and p+76, where p is the location of the first order. Part 1 is

entered by:

74 ELECTRONIC DIGITAL COMPUTER

m

m+1

AmF

GpF

and executes the arithmetical operation: xy + C(A) to A, where A refers to a

floating decimal "accumulator" in the store and x and y are stored in rD and

SD respectively.

Part 2 is entered by:

m A m F

Gp+76 Fm+1

and assembles C(A) in standard form* which is then placed in tD . r , s , and t

are specified by parameters Pr F/D, Ps F/D, and Pt F/D which may refer

to either long or short floating numbers. These parameters are stored in

preset locations .

Preset parameters: 45 H PaF address of PrF/D

46 N PbF address of PsF/D

47 MPCF
address of Pt F/D

Notes: *1 . See Part I, Section 4-82.

2. No more than two " Part 1 " operations may be carried out in

succession without following a " Part 2 " operation.

**3 . q is the number of significant zeros arising from cancelation in

the sum in the accumulator .

4. See Part III for detailed program.

A4 Special arithmetical operations on real numbers in floating decimal

form. Interpretive version of A3 .

Interpretive; even; 150 storage locations; working positions OD, 4D,

6D, 8D, 10D, 12D; time: part 1 = 100 msecs; part 2 = (80+24q)msecs .

This subroutine consists of A3 preceded by a supplementary subroutine which

enables it to be used with program parameters. Floating point operations

using this subroutine can then be coded as follows :

m

m+1

Am F

GpF calls in A4.

Thereafter , when required, control may be switched to Part 1 (see A3) by

m+2

m+3

m+4

Ep+3 F

PrF/D*

PsF/D*

Control will afterwards be returned to m+5, whence a further Part 1 operation

canbe called in by another triplet of orders similar to those above or , alterna-

tively, a Part 2 operation may be initiated by

m+5

m+6 |
E p+13 F

Pt F/D*

Control will then be returned to m+7.

*Pr F/D, etc., refer to either short or long floating numbers.

SPECIFICATIONS OF SUBROUTINES 75

A5 Special arithmetical operations on complex numbers in floating deci-

mal form.

Closed; even; 206 storage locations; working positions OD, 4D - 18D;

time: Part 1 150 msecs; Part 2 =(90+31q)*= msecs .

Similar to A3 but operates on complex numbers expressed in standard form

(see Part I, Section 4-83) . Part 1 carries out the operation

Z1Z2 + C(A) to A,

where z₁ is stored in rD and (r+2)D and z2 in sD and (s+2)D. Part 2 assembles

C(A) in standard form and transfers it to tD and (t+2)D.

Preset parameters : 45 H PaF address ofPrF

46 N PbF address ofPs F

47 M PcF address of Pt F

Notes : 1. Not more than two Part 1 operations may be carried out without

following with a Part 2 operation.

*2. q is the number of multiplications by 10 which are necessary when

assembling the number to bring the modulus within the standard range.

3. A5 is entered in the same way as A3, Part 2 being entered at p+128.

4. See Part III for detailed program.

A6 Input of a sequence of complex numbers in floating decimal form

(used with A5 or A8) .

Closed; even; 98 storage locations; working positions OD, 4D, 6D ,

14D, 16D, 18D .

Given a sequence of s complex numbers (>1) punched in floating decimal form,

A6 assembles them in standard form* and places them in nD, (n+4)D, (n+8)D,

... (n+4s-4)D.

Preset parameters : 45 H

46 N

Pn+4s-4 F

P 4s F

Notes: *1 . See Part I, Section 4-83.
2

2. A typical number (X + Y)-10 , where 4X + Y≥0.4 and

20472p≥0 , is punched as Xo , sign; Yo , sign; p. In X and Yo the decimal point

is immediately after the first digit punched. Any number of digits up to ten

may be punched for Xo and Yo ; more than ten will exceed the capacity of the

accumulator.

3. Xo and Yo are eventually rounded off to 28 binary places .

A7 Print sequence of s floating decimal complex numbers (used with

A5 or A8) .

Closed; even; 125 storage locations ; working positions OD and 4D .

...

Prints the sequence of s complex numbers packed in floating decimal form in

storage locations nD, (n+4)D, (n+8)D, (n+4s-4)D. Layout: 2 columns of

complete numbers. Each number consists of real part, space, ± imaginary

part , space , positive* exponent.

Preset parameters : 45 H Pn+4s-4 F

46 N P 4s F

address of last number of sequence

s numbers

47

48

MP x F/D

Δ P d F

= q.2-16

number of digits .

76 ELECTRONIC DIGITAL COMPUTER

Notes : 1. Figure shift is called during input.

*2 . As in A2, provision is made for the addition of a preset amount q

to the exponent of each number before printing .

3. No round-off is provided. Any number of digits may be printed.

4. c(d+9) ≤72.

A8 Special arithmetical operations on complex numbers in floating

decimal form. Interpretive version of A5 .

Interpretive; even; 230 storage locations; working positions OD , 4D

to 18D; Time: Part 1 = 165 msecs, Part 2 = 105 + 31q msecs.

This subroutine consists of A5 preceded by a supplementary subroutine which

enables it to be used with program parameters. Floating point operations

using this subroutine can then be coded as follows :

m

m+1

Am F

GpF calls in A8

Thereafter , when required, control may be switched to Part 1 (see A5) by

m+2

m+3

Ep+3 F

PrF/D*

m+4 Ps F/D*

Control will afterwards be returned to m+5 , whence a further Part 1 operation

can be called in by another triplet of orders similar to those above; alterna-

tively , a Part 2 operation may be initiated by

m+5

m+6

E p+13 F

Pt F/D*

*Pr F/D, etc. , may refer to either short or long floating numbers.

A9 Input of a sequence of numbers in floating decimal form during in-

put of orders (used with A11) .

Special ; even; 31 storage locations.

The numbers are punched on a separate data tape in the following form:

character representing exponent; sign; numerical part (the decimal point

being after the first digit) . For example,

512 would be punched as W + 512 or 2 + 512 = 10² (5.12) ,
-.0012 11 11 11

B- 12 = 10-3(1.2).

The first number in the sequence is preceded by ZTX. After the subroutine,

TmDis punched, followed by the data tape which is copied in the reverse

direction. The numbers are then placed in the store in floating decimal form

in storage locations mD, (m-2)D, etc. , so that mD is the location of the num-

ber originally punched last.

Accuracy: the numerical part of each number is represented by 23

binary digits - equivalent to almost 7 decimal digits.

Notes : R9 must be in the store when A9 is read.

A10 Print single floating decimal number (used with A11) .

Closed; even; 63 storage locations; working position, 4D; time =

2 secs per number .

SPECIFICATIONS OF SUBROUTINES 77

Prints the signed exponent followed by the signed numerical part of the num-

ber stored in floating decimal form in OD. Each number is printed as: nega-

tive sign, or space; exponent (2 figures); 2 spaces; negative sign, or space;

integer part (1 figure); space; 6 decimal figures.

part) .

Accuracy: the number is rounded off to 7 figures (including integral

Notes: 1. If the numerical part is exactly 10 it will be printed as # 000000 .

2. The last order on the tape is the digit layout parameter for the

numerical part (as in P11) , and may be altered if required.

3. Normally, before the number is printed, carriage return and line

feed will occur . They may be omitted by entering the routine at its third order .

One space only is printed after each number . Not more than four numbers may

be printed on one line.

A11 Arithmetical operations on real numbers expressed in floating

decimal form.

Interpretive ; even; 128 storage locations; working positions OD* ,

and H and N for floating accumulator; time, see Note 1 .

Operations : All carries out the operations specified individually by

the program parameters according to the following code:

Program

parameter Operation

Am F/D*

Bm F/D*

add to the number in floating decimal accumulator the

number represented by C(m) .

subtract from the number in floating decimal accumulator

the number represented by C(m) .

VmF/D* multiply the number in floating decimal accumulator by

the number represented by C(m) .

TmF/D

EmF

*m≤511

transfer the number in floating decimal accumulator to

S(m) , and clear the accumulator.

switch control to m with accumulator clear (previous

parameter need not be T) .

Representation of numbers. Each number is expressed in the form

a - 10P , where a is the numerical part and p the exponent (an integer). In the

store the number is represented by the long or short number a-2-11 + p -2-6 .

The routine uses positions H (long) and N (short) as a "floating decimal accu-

mulator," or "f.d.a.," in which the above numbers would appear as -a -2-11

in H and p-2-14 in N.

Range of values: In the f.d.a. | p|< 16000 approx. and -2048≤a<2048. In

the store -63<p<63 and a ≤10, but when a number is transferred to the store

from the f.d.a. it is always represented in such a way that either 1</ a≤10, or

a = 0 and p = -63.

Capacity of registers. If a T parameter is read, and the number in the

f.d.a. exceeds 1063, the machine will normally come to a dynamic stop. If

this is undesirable, the preset L parameter E 560 may be replaced by any

78 ELECTRONIC DIGITAL COMPUTER

E order transferring control to a suitable point in the store in the event of

exceeded capacity (the accumulator not being empty) .

,If the number in the f.d.a. is less than or equal to 10-63 a T parameter

will place the representation of zero in the store (0.10-63) .

It is possible to exceed the capacity of the numerical part of the f.d.a.

without the number actually represented by the f.d.a. exceeding the range of

possible values. The rules for avoiding this are as follows. After a T param-

eter, a = 0; an A or B parameter may increase | a| by 10, and a V parameter

may multiply a by 10, in the worst cases; hence the sequence of parameters

should be such as to ensure that a can never reach 2048.

Accuracy: when using long numbers, a has between 23 and 27 binary

digits, that is, 7 or 8 decimal digits. When using short numbers, a has be-

tween 5 and 9 binary digits, that is , about 2 decimal digits .

Notes: 1. Times of operation:

Parameter Time in secs

A .066

B .066

T
.050 + m(.015) , where m is the number of deci-

mal shifts necessary to convert the

number to the form required in the

store .

V

E

.050

.012

2. OD may be used as a temporary store only if no A, B, or V param-

eters are used between planting and using; for example,

but not

TD

AD

or

T D

T 12 D

B D
is permissible,

TD

A4D

BD

Preset parameters :

H P S D

N Pt F

MP 103 0

Δ P

L Ε 56 0

location of numerical part of f.d.a.

location of exponent of f.d.a.

set and used by subroutine

B. Subroutines to carry out arithmetical operations on complex numbers .

B1 Complex Operation No. 1 .

Interpretive ; 16 storage locations; working positions hD, (h+2)D;

time = 21 msec per order .

This subroutine is entered in the usual manner and executes the orders follow-

ing the entry, operating on long or short complex numbers. Each order oper-

ates on the complex number C(n) + iC(n+2), where n is the address specified

SPECIFICATIONS OF SUBROUTINES 79

in the order . This subroutine enables operations to be carried out on complex

numbers by the following orders: A, S , T, U, L, R. Multiplication by a real

constant (placed in the multiplier register before the subroutine is entered)

can also be used.

Preset parameter: 45 | H | PhD (h even)

Notes: 1. Shifting, up to 6 places must be effected by a series of single or

double shifts (i.e. , L D or L 1 F) . A shift of 7 places or more may be obtained

by a pair of orders, e.g., L 2-5 F , L(2n- 5 - 2) F.

of2D.

2. Y order is meaningless.

3 . TD , UD must not be used, since they will destroy the contents

4. Exit from the subroutine is made by an E order immediately fol-

lowing a T order . Control is transferred to the address specified in the E

order .

5. Care should be taken that the first time B1 is called in storage

locations hD and (h+2)D are cleared.

B2 Complex Operation No. 2.

Interpretive; even; 54 storage locations; working positions 0 and HD

to (h+10)D; time = approx. 75 msec per order.

Similar to B1 but makes available the following orders: A , S, T, U, V , N, Y ,

and right or left shift of one or two places.

Preset parameters : 45 HPhD (h even)

46 N is also used by subroutine

Notes: 1. There is no H order . The role of "complex multiplier register"

is undertaken by storage locations hD and (h+2)D, which may be filled by the

order T (or U) HD .

2. See also notes 1, 3 , 4, and 5 for subroutine B1 .

3. See Part III for detailed program.

C. Checking subroutines .

C1 Cycle check, examines one storage location.

Special ; even; 44 storage locations; time = about 2.5 secs per

number .

May be applied to a program in order to print C(hD) immediately before obey-

ing the order in n. Numbers are printed in a single column; printing ordered

by the master routine occurs to the right of the previous check number . The

accumulator must be empty before C(n) is obeyed. C(n) must not be altered

by the original program or used in any way other than as an order .

C7 Check function letters , with localized print suppression.

Special ; 61 storage locations; time, see Note 5 .

Performs a given program order by order, and prints the function letters of

those orders which are drawn from certain specified parts of the store ; other

orders are obeyed silently. The store may be divided into four regions, orders

in two of which have their function letters printed.

80 ELECTRONIC DIGITAL COMPUTER

Preset parameters : 45 H PbF

N P (c-a) F

MP (c-b) F

46

47

48 Δ P

or

Δ

θ

49 LP m F

]
See Note 1

print low
See Note 1 .

print high

start at m

Notes : 1. The regions of the store are specified by the parameters a, b, c

as follows :
(i) n<a

(ii) a<n<b

(iii) b≤n<c

(iv) cón

The subroutine will either "print low," i.e. , print function letters of orders

in (i) and (iii), or "print high, " i.e. , print function letters of orders in (ii)

and (iv) .

2. Print routines in the original program must be arranged to lie in

regions from which the function letters are not printed. Characters printed

by such routines will appear as figures.

3. A new line of printing is begun at each transfer of control; a clear

line is left where orders have been obeyed silently unless such orders them-

selves cause printing to appear on this line.

4. C7 only tests the locations of orders at each transfer of control,

so that if control enters a new region during a consecutive sequence, the mode

of operation does not change immediately.

5. Speed of operation is about 5 orders per second when printing func-

tion letters , 30 orders per second when suppressed.

6. C7 must be placed at the end of the orders on the tape. After being

read it will direct control to itself and commence checking at order m.

7. See Part III for detailed program.

C8 Numerical check, with delayed start and printing from a restricted

region of the store.

Special; * even; 41 + 32 storage locations; time = 200 msec per digit.

May be applied to a program in order to print C(Acc) before obeying T orders

specifying addresses less than a certain number . The main program is obeyed

at full speed until it encounters the order in m when checking commences. The

value of m must be chosen so that C (Acc) = 0 before the order in m is obeyed.

A new line of printing is started at each transfer of control. In general C8

should be used with programs in which all printing is done by a subroutine;

printing is suppressed, using a dummy print routine, and part of C8 is written

over the printing subroutine.

Preset parameters : 45 H PhF

46 N PnF

location of print subroutine

location of store to hold part of

C8 (n even)

start address47 M PmF

48 Δ PdF

49 L PsF

number of digits

division of store .

SPECIFICATIONS OF SUBROUTINES 81

Notes : *1 . C8 has two parts, one of which, 41 orders long, is written over an

existing print routine . The location of the first order of the other part (32

orders long) must be even.

2. C8 is to be copied onto the tape after the program to be checked.

T 45 K is punched, followed by the parameters and C8, the orders of which

are then placed in the specified positions. The order directing control to the

main program must be placed immediately after C8.

3. C8 prints C (Acc) only if the address specified in the T order is

less than s.

C9 Check function letters with delayed start and suppression of check

during closed subroutines.

Special; 48 storage locations; time = about 1/4 sec per order printed.

Similar to C11 but has a delayed start and will cease checking during each

closed subroutine . Cannot be applied to a program which contains a subroutine

with more than one program parameter .

C10 Numerical check with delayed start and suppression of check during

closed subroutines .

Special ; even; 37 + 51 storage locations; time = 1/5 sec per digit

printed.

May be applied to a routine in order to print C (Acc) before obeying T orders .

It has a delayed start and will cease checking during each closed subroutine.

It may be used only on programs containing subroutines with at most one pro-

gram parameter . If the program has the order A n F in S(n) for a purpose

other than entry to a closed subroutine , C10 will fail at that point .

Preset parameters: 45 H PhF

46 N PnF

47 M PmF

see Note 1

number of digits to be printed.

address of order at which checking

starts .

Notes : 1. Part of the subroutine, 51 orders long, is placed in locations h to

(h+50) and may be written over a print routine in the master routine in which

case printing from the master routine will be suppressed.

2. A new line of printing is started at each transfer of control .

3. A line feed occurs when a closed subroutine is encountered.

4. The address m of the order at which checking starts must be

chosen as described in Note 2 of C5 .

5. The first number printed by C10 is the numerical representation

of the order at which checking starts .

6. C10 must be placed at the end of the tape and followed by EpKPF,

directing control to the master routine.

7. AT order immediately following a closed subroutine with no pro-

gram parameters will not cause C(Acc) to be printed.

8. See Part III for detailed program.

C11 Check function letters .

Special ; 32 storage locations ; time = about 1/5 sec per order.

Obeys a given program order by order and prints the function letter of each

order . Cannot in general be used on a routine where printing occurs.

82 ELECTRONIC DIGITAL COMPUTER

Notes: 1. A new line of printing is begun at each transfer of control.

2. If used on a print routine employing an F order C11 will behave

as though the F order always reads from the teleprinter the symbol F. If

the original program calls for a figure shift, the following printing will appear

as figures . Otherwise symbols printed by the original program will appear as

letters following the "O" which indicates the print order .

3. C11 should be placed at the end of the orders on the tape, (the final

EmKPFbeing deleted) and followed by Em F. C11 will then begin to obey

the original program at the order in location m.

C12 Check function letters with dummy print routine and delayed start.

Special ; 40* storage locations.

The original program operates at full speed until the order h is obeyed for

the nth time. Checking then commences, and function letters are printed.

h must be so chosen that the accumulator is always empty before C(h) is

obeyed and C(h) is not altered by the original program or taken into the arith-

metical unit before checking starts . There is a dummy print routine at the

head of C12 which returns control to the master routine without printing.

Notes: 1. C12 must not be fed into the machine before C(h) .

2. Figure shift must not be called for by the original program, ex-

cept in a print routine which is overwritten by C12. Print routines calling for

figure shift during input must not be placed after C12 on the tape .

as

3. The dummy print routine destroys C(0) . When checking, it appears

ATE

E

*4. If the original print routine had a normal program parameter, in-

sert A 2 F in front of GKT45 K. The whole routine now occupies 41 positions ,

and the dummy print routine appears when checking as AATE

E

For two or more program parameters, insert A 2 F the corresponding number

of times.

5. The program is started in the usual way by EmKPF.

Preset parameters : 45 H PhF position at which checking starts

46 N PnF delay

D. Division subroutines .

D3 Division, small.

Closed; 20 storage locations; time = (22 m + 105) msecs, where

2-m- 1< \C(4D) | ≤2-m .

Forms C(OD)/C(4D) and places the result in OD. Slower than D7 but occupies

less space .

Repetitive process :

an+1 = -ancn + an

2

Cn+1 = -cn

ao = dividend

co + 1 = divisor

stop when cn = 0 .

SPECIFICATIONS OF SUBROUTINES 83

D4 Division, small, positive divisor.

Open; 11 storage locations , working position OD; time = (22m+108)

msecs , where 2-m- 1≤ |C (Acc) ≤2 -m .

Forms C(hD)/C(Acc.) , where 1>C(Acc)>0 , and places result in hD. A special

case ofD3 .

Preset parameter : 45 | H | PhD

Notes : 1. The number of significant figures in the quotient is one less than

the smaller of the numbers of significant figures in C (hD) , C(Acc) .

2. The left-hand half of the accumulator is clear at the end of the

process, but the right-hand half is not. 0<C(Acc)<2-34 .

3. See Part III for detailed program.

D6 Division, accurate, fast .

Closed; 36 storage locations; working positions 6D and 8D; time =

(10m+120)msecs , where 2 - m- 1 <|C(4D)| < 2 -m.

Forms C(OD)/C(4D) where C(4D) ≠ 0 and ≠ -1 , and places result in OD.

Accuracy: maximum error + K-2-35 ±2-34 , where K = quotient.

Note: See Part III for detailed program.

D7 Division, rapid.

Closed; 26 storage locations; time = (12m+105) msecs, where

2 -m- 1≤|C(4D)| < 2-m .

Forms C(0D)/C(4D) and places the result in OD . Uses same repetitive proc-

ess as D3 .

Notes: 1. The right-hand side of the accumulator is not cleared at the end

of the operation, i.e. , 0≤C(Acc)<2-34 .

2. At the end of the process -2-34 ≥C(4D) > -2-17 .

E. Exponential subroutines .

E2 Exponential , slow .

Closed; 19 storage locations ; working positions OD and 6D; time

930 msecs.

Forms exp [C(4D)] - 1 and places the result in 4D . -1≤C (4D)< . 693 .

Accuracy: probable error = 2-33 •

Note : See Part III for detailed program.

E3 Exponential , large range.

Closed ; even; 56 storage locations; working position 4; time =

(244+19p) msecs.

Forms exp (2py) , where y = C (R)≤0 and p≥1 . Places result in OD.

Preset parameter : 45 | H | PpF

=

Accuracy : the greatest error occurs when exp (2py) is nearly equal to

unity; the error is then less than (2P- 1 + 1).2-34 . The error diminishes rapidly

as exp (2py) decreases. For small values of exp (2y) the error is less than 3-2-35

84 ELECTRONIC DIGITAL COMPUTER

E4 Exponential, fast (used with R9) .

Closed; even; 36 storage locations; time = 120 msecs.

Forms exp (x) where x = C(R) and -1≤x≤0. Places result in OD. R9 must be

in the store while E4 is being read.

Accuracy: maximum error is 2-34 +2-35 Σ

Note: See Part III for detailed program.

F. General routines relating to functions.

7

Σχ .
r=0

F1 Interpolation in a table of long numbers.

Closed; even; (68 + 2b) storage locations; working positions OD, 10D ,

12D, (8 + 2b)D; time = (60+24b²) msecs.وهههو

Given in consecutive long storage locations , a table of a function at unit inter-

vals of the argument, with the entry corresponding to zero argument specified

by a program parameter, the subroutine calculates the value of the function

for argument 2 C(4D) and places it in 10D . The number of entries over which

the interpolation is made and their positioning with respect to the argument

may be specified.

Preset parameters: 45 H

]
see Note 1.

Program parameter

are also used by the subroutine

P 2b D

46 NP a F

47 MP2-
n-2

F

48 Δ

49 L

50 X

..

p

p+1 GsF

.p+2 AmD

ApF

] Orders calling in F1

where f(0) = C(mD)

Accuracy: Maximum error is ±2-36b(b+ 1) with probability 2 -b (b+ 1)/2

R.M.S. value of error is 2-35b .

Notes: 1. The interpolation uses b values of the function of which there are

a with arguments less than the integral part of the argument. b≤11 .

a = 0, b = 2, corresponds to linear interpolation.

2. See Part III for detailed program.

F2 Solution of f(x) = 0, or inverse interpolation (second order process).

Closed; 58 storage locations; working positions 4D, (h+4)D, (h+6)D ,

(h+8)D.

Places a solution of f(x) = 0 in hD . f(x) mustbe defined by an auxiliary subrou-

tine. Two trial values, x₁ and x2 , must be placed in hD and (h+2)D before F2

is called in. They must be such that f(x1) and f(x2) have opposite signs . The

solution will lie between x1 and x2 .

Preset parameters : 45 H PhD

46

47

N PnF

Mis also used by the subroutine.

SPECIFICATIONS OF SUBROUTINES 85

Notes: 1. The auxiliary subroutine must be of the normal closed type com-

mencing at n. It should place f [C(hD)] in OD, leaving C(hD) unaltered.

2. If f(x1) and f(x2) have the same sign, F2 will place x2 in hD and

the accumulator will contain 2-35 .

(h+8)D .

3. 4D may be used by the auxiliary subroutine , but not (h+2)D to

4. For inverse interpolation F1 can be used by the auxiliary.

5. If x is not required to an accuracy better than ±2m- 33 , where m≤10,

order 52 of F2 may be replaced by R 2 F. This will save time, but the R.H.

half of the accumulator may not be empty on exit.

6. See Part III for detailed program.

F3 Differencing and checking subroutine No. 1 .

Closed; 26 storage locations + 12 for numbers; working position 4D;

time = 36 msecs .

This subroutine calculates the first , second, third, and fourth differences of

successive values of a function and checks that the magnitude of the fourth

difference does not exceed a specified quantity . The current values of the

function and the first 4 backward differences are held in mD, (m+2)D, (m+4)D,

(m+6)D; each time the subroutine is called in C(OD) is taken as the new cur-

rent value of the function and the differences are all advanced one step . If the

fourth differences exceed C(m+10)D in magnitude a " ? " is printed.

Preset parameter : 45 | H | PmD

or PmF

Notes: 1. The subroutine may be used to handle short numbers by punching

Pm Finstead of Pm D for the preset parameter . Differences of successive

values of the function, the current value of which is placed in OD, will then be

computed and placed in (m+2) , (m+4) , etc.; a " ? " will be printed if the fourth

differences exceed C(m+ 10) in magnitude .

2. See Part III for detailed program.

F4 Differencing and checking subroutine No. 2 .

Closed; 32 storage locations + 16 for numbers; working position 4D;

time 42 units .

Similar to F3 but calculates the first, second, third, fourth, fifth, and sixth

differences of successive values of a function and checks that the magnitude

of the sixth difference does not exceed a specified quantity.

Preset parameter: 45 H PmD address of current value of function .

F5 The minimization of a positive function of n variables using a digital

process .

=

Closed; 44 storage locations ; working space, OD , OM, 2M; time

approx . 500n+50n- t msecs , where t = time for auxiliary subroutine .

Given...و a set of n variables in storage locations aD, (a+ 2)D , (a+4)D, (a+2n-2)D

the subroutine will continually adjust these variables, by the method described

below, to seek a minimum of a positive function f of these variables . At each

stage f is calculated and placed in OD by an auxiliary closed subroutine whose

first order is in 04.

86 ELECTRONIC DIGITAL COMPUTER

Method: 1. The first variable is successively decreased by an amount h until

the calculated values of f begin to increase.

2. The smallest value of f is chosen and the process 1 repeated for

each of the other variables in turn.

ment.

3. The processes 1 and 2 are repeated, using -h instead of h.

4. The processes 1 , 2, and 3 are repeated, using -(-h)/8 as decre-

5. When the decrement h/8m becomes less than 2-34 , the process

terminates.

Accuracy: depends on the function and the starting value. For "well-

conditioned " functions the subroutine will find a value such that if any one of

the variables is adjusted by 2-34 the value of f will not decrease.

•

Note: 1. For maximum accuracy, h should be chosen so that the final decre-

ment is -2-34 , that is, h should be of the form 2-1-3p The library tape uses

h = 2-4 , specified by -h = V F, as the last order of the subroutine. If an ap-

proximate solution is known and used as starting values, h should preferably

be of the order of the initial errors.

Preset parameters: 45 H Pa+2n-2 D

46 N P 2n F

last variable

number of variables

47 MP S D working space

48 Δ P t F location of first order of

auxiliary subroutine

G. Subroutines for integration of ordinary differential equations

G1 Simultaneous first-order differential equations by modified Runge-

Kutta process; single step, long numbers

Closed; even; 66 storage locations; working positions OD, 4D, and

6D; time 0.21n seconds per step + time of auxiliary.

Each time this subroutine is called in it will advance the values of the variables

by one step. It requires an auxiliary closed subroutine to calculate the first

derivatives y' of all the variables from given values of the variables y. For

detailed description of the process, see Part I, Sections 4-71 , 4-72, and 4-73 .

Preset parameters : 45 H P a D

N P2n F

MPb-a F (if a<b)

46

47

48 Δ

49 L

50 X

or V(2048 - a+b)F (if a>b)

Pc-b F (if b<c)

or V(2048 - b+c)F (if b>c)

P2m- 2 F

PdF

Accuracy: the truncation error in one step is of the order h5 . For a

small set of well-behaved equations its magnitude is roughly 10-2h5; for large

sets or difficult equations it may be greater . Rounding - off errors accumulate

at a rate corresponding to the keeping of (34+m) binary digits.

SPECIFICATIONS OF SUBROUTINES 87

Notes: 1. The variables y are stored in n consecutive long storage locations ,

the last of which is aD .

2. The auxiliary subroutine is of the normal closed type and com-

mences at d; it should place the quantities 2 hy' in n consecutive long storage

locations, the last of which is bD .

3. A further n long storage locations, the last of which is cD, are

required by G1 to hold the quantities 2mq. At the beginning of a range these

must be cleared.

4. If the independent variable is required it may be obtained by in-

cluding an extra variable with the corresponding value of 2mhy' = 2mh . The

latter quantity may be set once and for all at the beginning of the range; it

will not be disturbed.

5. m should be chosen so that the largest 2thhy' is just within the

capacity of the accumulator .

6. G1 uses OD , 4D , and 6D, but these may also be used by the auxil-

iary subroutine.

7. See Part III for detailed program.

G2 Simultaneous first-order differential equations by Runge-Kutta

process ; single step, short numbers

Closed; even; 68 storage locations; working positions 0, 1 , 4; time =

0.21n seconds per step + time of auxiliary .

Similar to G1 , but works with short numbers.

]
Preset parameters: 45 H P a F

note difference from G1
46 N P n F

47 MPb-a F

orV 2048-a+b F

48 Δ Pc-b F

or

49 L

V 2048 -b+c F

P 2m-2 F

50 X PdF

Accuracy: The truncation error in one step is of the order h5. For a

small set of well-behaved equations its magnitude is roughly 10-2h5; for large

sets or difficult equations it may be greater . Rounding-off errors accumulate

at a rate corresponding to the keeping of (16+m) binary digits .

G3 Integration of y" = f(x,y) by fifth-order process .

Closed; 45 storage locations ; working positions OD, 4D, 10D .

Each time this subroutine is called in it advances the integration by one step.

A separate subroutine is needed to calculate f(x,y) .

Preset parameters : 45 H PnD (n must be even)

46 N PmF

Accuracy: truncation error =

IV

(yo
-

Уп hh²/240 over range yo to yn .

Notes: 1. Apart from this subroutine, 11 long storage locations must be pro-

vided, beginning with nD .

88 ELECTRONIC DIGITAL COMPUTER

2. An ordinary closed subroutine , starting in m must calculate

f [C(n+10)D, C(n+18)D] and place it in (n+20)D.

3. The initial values must be placed in the following long storage

locations at the beginning of the integration:

У1
2H

бу1/2
H

10H X1 12H

16H 1/12 = 0.083 .

4H

h(integration step)

19 11

У1
6H

14H

бу1/2

h2

4. After using the subroutine, corresponding values of x and y will

be found in (n+10)D and (n+18)D respectively (i.e., in 10H and 18H) .

5. Storage locations OD, 4D, 10D are used. The auxiliary subroutine

can use OD and 4D but not 10D .

6. The time taken depends on the number of iterations necessary .

It equals p(52 + auxiliary time) + 15 msecs, where p is the number of itera-

tions , usually about 3 .

7. See Part III for detailed program.

G4 Integration of y " = F (x,y) by sixth -order process

Closed; 47 storage locations.

Similar to G3 but uses a sixth-order process .

У2 = У1 + бу2 + (y + d2y1/12)h²

2

y2 = f(x2 ,y2 - h² d² y1/240)

J. Subroutines for calculating special functions

J1 Calculation of Legendre polynomials

Closed; even; 36+2q storage locations; working positions OD,

(4+2q)D, (6+2q)D; time = 52(q-1) msecs .

Calculates Po (2x) , P₁ (2x) , Pq(2x) , where x = C(6D) and places them in

4D, 6D (4+2q)D respectively each time the subroutine is called in.....

-≤x≤ , q≤10 .

Preset parameters : 45 H P2q D

46

47

N

the subroutine calculates Po ,

P1, ... Pq.

M is also used by the subroutine.

Accuracy: maximum error 2-34 [r + (4x) -2] approx.

rms value of error is 25-35(2x) -2 approx.

Note: See Part III for detailed program.

K. Subroutines for the summation of power series

K1 Summation of a power series

Closed; 17 storage locations; time = (27+18n) msecs.

Calculates Fn(x) = ax + a₁xn- 1 +

C(m+2r)D and places Fn(x) in OD .

.....

+ an where x is C(R) and a₁ =

SPECIFICATIONS OF SUBROUTINES 89

Preset parameters : 45 H

46 N

P 2n F

Am+2n D (m must be even)

Accuracy: round- off error'≤2-35 [(1 - | x |)/(1 - | x|)]

Note : See Part III for detailed program .

K2 Summation of a complex power series .

Closed; 30 storage locations ; time = (57+48n) msecs .

Calculates Fn(z)
=

r=0
Arzn-r = X + iY where z = C(8D) + iC(10D) and

Ar = C(m+4r)D + iC(m+4r+2)D , r = 0, 1 , 2, ... , n. Places X in 4D and Y in 6D .

Preset parameters: 45 H P 4n F

46 N PmH (m must be even) .

K3 Summation of a power series of even terms .

Closed; 27 storage locations; working position 6 ; time = (27+20r)

msecs .

Calculates F(x) = C(nD) + C [(n- 2)D] ..x² +C [(n-2r+2)D] .x2 (r- 1) where

x = C (4D) , and places F(x) in OD .

Program parameters :

Accuracy:

Notes:.]
See K4 .

K4 Summation of a power series .

Closed; 22 storage locations ; working position 6; time = (15+20r)

msecs .

Calculates F(x) = C(nD) + C [(n-2)D] •x +

and places F(x) in OD .

...

p F

C[(n- 2r+2)D] -xr- 1 where x = C(4D) ,

p A

p+1 G S F]
Orders calling in K4

Program parameters :
p+2 A n D

p+3 P 2r F

Accuracy : maximum error is ±2 -35 (1 - x)/(1-|x |)

Notes: 1. C(4D) remains unchanged.

2. Since C(R) = C(4D) at the end of the subroutine x.F(x) may be

formed in the accumulator by using the order VD in the master routine after

the subroutine .

3. See Part III for detailed program.

K5 Division of a polynomial by a linear factor giving the quotient poly-

nomial and the remainder (complex numbers).

Closed; 37 storage locations; working positions 4D, 6D; time

65+57n msecs .

n

Let P(w)
=

r=0

Arwn-r and P(z) = 2 Zrzn- 1- r +
Z-W r=0

Zn

Z-W

...

=

Given A An this

subroutine calculates Zo Zn by means of the recurrence relation Zr+ 1=

Zrw + Ar+ 1 , where Zo = A. The real and imaginary parts of w are stored

...

90 ELECTRONIC DIGITAL COMPUTER

in 8D and 10D respectively and the real and imaginary parts of Ar are stored

in (4r+m)D and (4r+m+2)D respectively. The real and imaginary parts of Zr

are stored in (q+4r)D and (q+4r+2)D. In addition, the real and imaginary parts

of Zn are stored in 4D and 6D respectively .

Note : If desired the coefficients Zr may be written over the coefficients Ar ;

that is, q may equal m.

Preset parameters : 45 H P 4n F

46 N P mH

47 MPq-m F

K7 Shift of origin of a polynomial (real numbers) .

Closed; 29 storage locations; working positions OD , 4D; time =

11(n+1)2 msecs.

Given the coefficients of the polynomial arxn-r, the subroutine replaces

these by the coefficients of the polynomial

r

n

brxn-r = ar [x+C(R)] n- r ,
r

using Horner's method. ar is stored in (h+2r)D.

Note : The contents of the register are unaffected by the operation of the

subroutine.

Parameters: A h D

2 punched
punched at the end of the subroutine by the user .

P2n F

K8 Shift of origin of a polynomial (numbers expressed in floating deci-

mal form) .

Closed; 34 storage locations; working positions 4D, OD* , OH* , ON*;

time = n2/8 secs .

n-r

Given the coefficients of the polynomial arx the subroutine replaces

these by the coefficients of the polynomial

n

r=0

Σbrxn-r

,

n

=

ar (x+ a) -r ,

using Horner's method. All numbers are expressed in floating decimal form

as used in All . ar is stored in location (h+2r)D and a is stored in location 6D .

Notes: 1. All is used as an auxiliary subroutine .

*2. Working positions OD, OH, and ON are those used by A11 .

3. The floating decimal accumulator must be cleared before using

K8 it will be left clear .

4. Since K8 uses the same M and A parameters as A11 , it may follow

A11 on the input tape without these parameters being replaced.

Parameters : A
D

P 2n F]
punched at the end of the subroutine by the user.

Preset parameters : M and A parameters as for A11

SPECIFICATIONS OF SUBROUTINES 91

L. Subroutines for evaluating logarithms.

L1 Logarithm to base 2. Large range.

Closed; 38 storage locations; working positions 4D and 8; time =

(13m+776) msecs where m = integral part of logarithm.

Calculates (1/32)log2 [C(6D)] and places result in OD .

Accuracy: 34 binary places, but not rounded off.

Notes: 1. If C(6D)<2-32 , accumulator capacity is exceeded.
2. -2-34 is left in 4D.

3. See Part III for detailed program.

L2 Logarithm to base 2, small range.

Closed; 31 storage locations; working position 4D; time = 950 msecs.

Calculates log2 [2-C(6D)) , where 1/4≤C (6D)<1 , and places result in OD .

Accuracy: maximum error = ±2-34

M. Miscellaneous subroutines.

M1 Assembly subroutine No. 1 .

Special; 16 storage locations .

Facilitates the assembly of a master routine , number sequences , and closed

subroutines to form a complete program. See Part I, Sections 4-61 and 4-62 .

Note: See Part III for detailed program.

M2 Assembly subroutine No. 2.

Special; 16 storage locations .

Facilitates the assembly of a master routine and closed subroutines to form

a complete program. Does not apply to number sequences . See Part I, Sec-

tions 4-63 and 4-64 .

Note: See Part III for detailed program.

M3 Print heading .

Closed; 10 storage locations (temporarily); working position 0.

Copies information directly from the tape to the teleprinter and may thus be

used to print a heading at the top of a sheet.

Notes : 1. M3 is placed at the front of the program tape unless R9 is used,

in which case M3 follows R9 . No control combinations need precede M3 .

2. M3 is immediately followed by the heading, which may include

3. The heading is followed by blank tape, and the succeeding orders

should be prefaced by a control combination of the form PKTnK.

line feed, carriage return, etc., according to the teleprinter code.

92 ELECTRONIC DIGITAL COMPUTER.

P. Print subroutines.

P1 Print a single positive number (without layout or round-off).

Closed; 21 storage locations ; time = (171n+10) msecs.

Prints the positive number in OD to n places of decimals, leaving R- 10n in OD,

where R is the remainder .

p

Program parameter : p+ 1
+1
p+2

ApF

Gs F

PnF

orders calling in P1

Notes: 1. Teleprinter must be on figure shift .

2. Layout must be separately controlled.

3. Round-off is not included.

P6 Print short positive integer .

Closed; 32 storage locations; working positions 1 , 4, and 5; time

about 900 msecs .

Prints 216.C(0) with suppression of nonsignificant zeros but without layout.

P7 Print positive integer up to 10 digits .

Closed; even; 35 storage locations; working position 4D; time =

approx. 1.8 sec .

Prints 234.C(OD) with zero suppression but without layout .

Notes: 1. Teleprinter must be on figure shift.

2. Layout must be separately controlled.

3. C(OD) must be positive and less than 1010.2-34

4. If the number to be printed is less than 109, the left-hand zeros

are replaced by spaces. In any case, 10 positions on the paper are used.

5. See Part III for detailed program.

P8 Print table of positive integers in a special layout .

Closed; even; 62 storage locations; working position 4.

=

Prints n = 234.C(OD) in a special layout. 0<n<1010 . Layout: first number in

each row printed to full 10 decimal digits; of the remaining numbers, only the

least significant d decimal digits are printed. c numbers in each row, one

space between columns . 5 lines in each block.

P10 Print a short positive integer , with conversion check, error indi-

cation, and optional suppression of nonsignificant zeros.

Closed; 70 storage locations; working positions 0, 1 , 4, 5 , and 6;

time = approx. 1.8 sec .

Prints C(4) as a short integer . Failure of F -check is indicated by " ?" after

incorrect digit . Failure of binary -decimal conversion check is indicated by

" ??" after incorrect number .

Program parameter : PF

orI F

for no zero suppression

for zero suppression

SPECIFICATIONS OF SUBROUTINES 93

P11 Print signed decimals in a preset layout (with digit check).

Closed; 52+s storage locations; working position 4; time = about

180 msecs per symbol.

Prints C(OD) rounded-off, preceded by negative sign if negative. Layout:

n columns with s spaces between columns; preset digit layout (see note 8);

blocks of 5 lines with one space between blocks.

Preset parameters: 45 H round- off order

46 N P5n F

47 MP (44+s) 0

48 Δ P X F

Notes: 1. Figure shift takes place during input of orders.

2. Negative numbers are preceded by -, positive numbers by a space .

3. Maximum width of layout = 70 symbols.

4. If the F order shows an error , a line feed occurs and the next

digit printed may be in error .

*5 . s can be 1 , 2, 3 , or 4.

6. Last order on library tape is P 5 F , giving number of lines in

block. This may be altered if required, but the second preset parameter will

then be n (block length) .

7. If the subroutine starts in q, a new block will be started if (q+20)

is cleared before the next number is printed.

8. The digit layout is determined by the fourth preset parameter

P x F , where x may be obtained as follows. Imagine the printed characters ,

including digits and spaces (only single spaces are permissible) laid out in

the form below, starting with the most significant digit at the left-hand end.

Then add together the numbers below the spaces, and the number above the

last digit ; the sum is x.

8 4

6

2

1

For example: (i) to print 10 digit numbers with spaces after the 3rd, 6th,

and 9th digits, x = 6144 + 384 + 24 + 4 = 6556; (ii) to print 8 digit numbers

with spaces after the 4th and 5th digits, x = 3072 + 768 + 32 = 3872 .

9. See Part III for detailed program.

P12 Print signed integers in a standard layout (with digit check).

Closed; 57 storage locations; working position 4; time = about

300 msecs per symbol.

Prints 234.C(OD) preceded by negative sign if negative. Layout: 5 columns,

5 lines per block; numbers in subcolumns of 4, 3 and 3 digits with one space

between numbers .

94 ELECTRONIC DIGITAL COMPUTER

P13 Print single decimal (without layout or round-off) with digit check

and variable digit layout.

Closed; 30 storage locations; time = (9+30n) msecs.

Prints the positive number in OD to n places of decimals, leaving R-10 in OD ,

where R is the remainder. The digit spacing and n are determined by a pro-

gram parameter P x F , where x is calculated as in P11 .

Program parameter : p+ 1

p+2

p ApF

GsF

PxF

orders calling inP13

Notes: 1. Teleprinter must be on figure shift.

2. Round-off is not included.

3. Failure of F check causes # to be printed.

P14 Print signed decimal with round- off and digit check. Layout con-

trolled by program.

Closed; 46 storage locations.

Prints the decimal number in C(OD), rounded-off. Digit spacing, number of

digits printed and layout are determined by a program parameter .

Preset parameter: 45 H AmD round-off order

p ApF

Program parameter :

p+1 GsF

p+2

orders calling in P13

PxF

or K 4096+x F Layout constant: see note 2.

Notes: 1. Figure shift is called during the input of orders.

2. The number of digits and their spacing is determined by the pro-

gram parameter , which is calculated as in subroutine P11 . Carriage return

and line feed will occur before the number is printed if K 4096 F is added to

this layout constant. Each number is followed by a space .

3. If the F order shows an error a line feed will occur and the next

digit printed may be in error .

4. Negative numbers are preceded by a negative sign, positive num-

bers by a space .

5. See Part III for detailed program.

P15 Print positive number held in register (without digit check or

layout).

Closed; 24 storage locations ; working positions OD, 4.

This subroutine will print the number held in the register to n decimals. Nega-

tive numbers are printed as complements. If P15 is entered at the first order

a new line of printing is commenced. If it is entered at the third order the

number is printed on the same line .

Accuracy: no round-off is incorporated.

Notes: 1. The F-check is not used.

2. Each number is followed by one space.

Parameters : PnFis punched at the end of the subroutine .

SPECIFICATIONS OF SUBROUTINES 95

Q. Quadrature subroutines .

Q1 Evaluation of definite integral, using Simpson's rule.

Closed; 46 storage locations ; working positions OD and 4; time =

36+n(36+T) msecs, where n = (b-a+h)/h = number of ordinates ,

T = time for auxiliary subroutine .

Places 33/ f(x)dxf(x)dx in pD , where pD is specified by a preset parameter and a, b,

and h (the interval of integration) are given by program parameters. f(x) is

computed by an auxiliary closed subroutine placed with its first order in q

and designed to put f(x) in OD where x = C(OD) .

Preset parameters: 45 H

46

PpD

NGqF

p Ap F

p+1 G S F]
orders calling inQ1

Program parameters : p+2
P 215a F

p+3
P 215h F

p+4 P 215b F

Accuracy: rounding-off error is n-2-35 in the worst case.

Notes: 1. -1<a<b<1 . h must be positive and such that (b-a)/h is an even

integer .

2. The program parameters are shown above as pseudo-orders .

They are really the values of a, b, and h expressed as short numbers.

3. Q1 uses OD and 4 but these positions may also be used by the

auxiliary subroutine.

4. If desired, the integration may be made to terminate when f(x)

becomes less than a specified quantity by including a suitable test and con-

ditional order in the auxiliary subroutine.

Places

5. See Part III for detailed program.

Q2 Evaluation of a definite integral , using Gauss' 5 -point formula.

Closed; even; 52 storage locations; working position (p+4)D;

time = 206 msecs + 5(auxiliary time) .

af(x)dx in OD where = C(pD) and (b -a) = C [(p+2)D] and f(x) is com-

puted by an auxiliary closed subroutine placed with its first order in n and

designed to put f(x) in OD where x = C(OD) .

Preset parameters: 45 H PpD

46 N GnF

Accuracy: rounding -off error is 2-35 [1 + 5(b -a)] in the worst case .

Notes: 1. Remainder term of the formula used is 4.10-13 . (b-a) 11f (10) (x ')

where a≤x≤b .

2. Atthe end of the process[1/(b -a) f(x)dx is left in (p+4)D.

3. R9 must be in the store when Q2 is read.

a

96 ELECTRONIC DIGITAL COMPUTER

Q3 Quadrature, using Gauss' 6-point formula.

Places I=

Closed; even; 48 storage locations; working position (m+4)D;

time = 240 msecs + 6 times the time of the auxiliary subroutine.
cath

Jaan f(x)dx in OD , where a = C(mD) and h = C[(m+2)D] , and f(x) is
Ja-h

computed by an auxiliary closed subroutine whose first order is in n and

which places f [C(OD)] in OD .

Accuracy: truncation error of the formula used is

10-15 x 12 (0) . (2h) 13 = 0.7× 10-7112 (0)•

(12)!
(2h)13 .

Rounding -off error in worst case is 2-35 [1 + 10h + 10h (max f ' (x))] .

(a+h) 20≥(a-h)

Notes : 1. R9 must be in the store when Q3 is read.

2. I/2h, that is the mean value, is placed in (m+4)D.

3. See Part III for detailed program.

Preset parameters : 45 H PmD location of parameters and working

space

46 N PnF location of auxiliary subroutine

R. Input subroutines .

R1 Input of a sequence of signed long decimal fractions .

Closed; 55 storage locations; working positions 0, 1 , 4, 5, and 6.

Given a sequence of numbers punched as decimals followed by sign, this sub-

routine places these numbers in pD, (p+ 2)D, (p+4)D and returns control

to the master routine when F appears on tape.

Preset parameters : 45 H

46 N

m

Program parameter : m+1

m+2

]

....

positions are used by subroutine

AmF

GsF

TpD

]
orders calling in R1 .

Notes : 1. Decimal point is immediately before first digit punched.

2. Any number of digits up to 10 may be punched; more will exceed

the capacity of the accumulator .

3. Blank or erased tape is treated as F.

4. See Part III for detailed program.

R2 Input of positive integer during input of orders

Special; 15 storage locations (temporarily);

Reads the input tape and converts the decimal integers thereon to binary form

multiplied by 2-34 and places these in sequence in storage locations mD,

(m+2)D, (m+4)D, etc.

Parameter : TmDmust follow the subroutine .

SPECIFICATIONS OF SUBROUTINES 97

Notes: 1. After the subroutine TmDis punched, followed by the integers,

each terminated by F with the exception of the last one which is terminated

by πΤΖ .

2. After the integers have been read, πT Z returns control to the

initial orders and subsequent orders read from the tape will be written over

R2.

3. See Part III for detailed program.

R3 Input of one signed long decimal fraction .

Closed; even; 41 storage locations ; working positions 4D and 6D.

Reads one fraction punched in decimal form followed by sign, and places it

in OD.

R4 Input of one signed integer.

Closed; 22 storage locations ; working positions 4, 5, and 6 .

Reads one integer y punched in decimal form followed by sign, and places

y.2-34 in OD .

Notes : 1. y < 2-34

2. R4 is applicable to either long or short numbers; in the latter

case y- 2 willbe left in 0 provided that -216<y< 216 .
-16

R5 Input of a sequence of signed long decimal fractions during input

of orders.

Special; even; 32 storage locations (temporarily) ; working position OD .

The numbers are punched on a separate tape as sign followed by decimals , the

first number being preceded by Z TX. After the subroutine, TmD is punched,

followed by the sequence of numbers, which is copied in the reverse direction.

The numbers are then placed in mD, (m-2)D, etc. , so that mD is the location

of the number originally punched last.

Parameter: TmDmust follow the subroutine.

Notes: 1. Any number of digits may be punched.

2. After the decimals have been read control is returned to the initial

orders and subsequent orders read from the tape will be written over R5.

R7 Input of a sequence of signed long decimal fractions during program .

Closed; even; 37 storage locations; working position OD.

The numbers are punched on a separate tape as sign followed by decimals,

each group being preceded by X. This tape is then copied on the main tape

in the reverse direction. Each time the subroutine is used, it will read the

numbers from the tape until X is reached. Control is then referred back to

the main program, the numbers on the tape having been placed in storage lo-

cations mD, (m-2)D, etc. , where mD is the storage location of the number

originally punched last in that group.

p

Program parameter : p+ 1

p+2

ApF

Gs F

TmD

orders calling in R1

98 ELECTRONIC DIGITAL COMPUTER

Notes : 1. Any number of digits may be punched.

2. In a decimal fraction the last significant digits of which are zero,

these zeros may be omitted.

3. See Part III for detailed program.

R9 Input of positive integers during input of orders . Standard form

for regular use.

Special : 15 storage locations .

The actual orders of this subroutine are identical with those of R2 , but R9 is

intended always to be placed in locations 56 to 70 inclusive, and to remain

there throughout the input of a whole program, being used any number of

times . Each time it is used it will read a sequence of positive decimal in-

tegers and place them in consecutive long storage locations.

Notes: 1. The subroutine tape commences with PKT 56 K, so that it may

be copied immediately at the head of a tape. It does not have E 13 Z at the

end, so that it is not automatically obeyed after being read.

2. R9 is called in by the control combination E 69 KTmD. This is

followed by the integers each terminated by F except the last, which is termi-

nated by to return control to the initial orders. After this must be punched

a control combination to restore the transfer order, e.g. , TZ . The integers

will be placed in mD, (m+2)D, (m+4)D, etc.

ing.

3. Negative integers may be read if 235 is added to each before punch-

S. Subroutines for evaluation of fractional powers.

S1 Square root, slow.

Closed; 22 storage locations; working positions 4, 5 , and 8; time

825 msecs .

Forms VC(6D) and places result in OD .

Accuracy: 2-34 . Last digit is always 1 .

=

Notes : 1. If C(6D) ≤- 2-32 , accumulator capacity is exceeded. If -2-32<C(6D)

<0 final C(OD) = -(1-2-34) .

2. C(6D) is left unchanged. C(4D) becomes -2-34 .

S2 Square root, fast .

Closed; 22 storage locations; working position OD; time = approx.

(36n+180) msecs , where (21/4)-n-1 ≤C(4D)< (2 1/4)- .

Forms VC(4D) where C(4D)>0 and places result in 4D.

Accuracy : Number of significant figures in result is two less than num-

ber of significant figures in argument.

Notes : 1. If C(4D) = 0, subroutine continues to cycle indefinitely.

2. See Part III for detailed program.

SPECIFICATIONS OF SUBROUTINES 99

S3 Cube root .

Closed; 25 storage locations ; working positions 4, 5 , 8, and 9; time =

approx. 1 sec .

Forms cube root of C(6D) and places result in OD . C(6D) may be positive or

negative and is left unchanged at the end.

Note: See Part III for detailed program.

S4 Reciprocal square root .

Closed; 22 storage locations ; time = approx. (36n+180) msecs,

where (2.25)-n-1≤C(4D)< (2.25)-n .

Forms C(OD)/V/C(4D) and places the result in OD. C(4D) must be >0.

Accuracy

Notes]
SeeS2

T. Subroutines for calculating trigonometrical functions .

T1 Cosine, rapid .

Closed; even; 44 storage locations; working position OD; time =

82 msecs.

Forms 0.5 cos [2 -C(4D)] where | 2 -C(4D)| ≤π/2, and places result in 4D .

Accuracy: maximum error = 2-33

T3 General cosine (used with R9).

•

Closed; even; 59 storage locations; working position OD; time

105 msecs.

=

Forms 0.5 cos [2m.C(4D)) and places result in 4D. R9 must be placed in the

store before T3 is read.

Preset parameter : 45 | H | P 2m-3 F (or PD for m = 2)

Accuracy: maximum error has modulus < 2-35+m

Notes: 1. Applies to angles of any magnitude .

2. See Part III for detailed program.

T4 Inverse cosine.

Closed; even; 33 storage locations; working positions OD and 6D;

time = approx. 900 msecs.

Forms 0.5 arc cos [2.C(4D)] if 0≤C(4D) ≤0.5 , or 0.5 arc cos [2 C(4D)|]

if -0.5≤C (4D) ≤0, and places result in OD . Oarc cos [2.C (4D)] ≤ π/2.

Accuracy: maximum error has modulus less than 2-18 .

Note: See Part III for detailed program.

T5 0.5 cos x and 0.5 sin x at equal intervals of x. Version 1 .

Open; even; 20 storage locations; time = 36 msecs.

100 ELECTRONIC DIGITAL COMPUTER

Calculates 0.5 cos x and 0.5 sin xat equal intervals dx of x by use of the re-

currence relation .

0.5 cos (x + dx) = (0.5 cos x)cos dx - (0.5 sin x) sin dx,

0.5 sin (x + 8x) = (0.5 sin x)cos dx + (0.5 cos x)sin dx,

using long numbers.

Current value of 0.5 cos x in location 2D of subroutine . Current value of

0.5 sin x in location 4D of subroutine.

Cos ox and sin dx must be provided in mD, (m+2)D, respectively. T5 is fed

into machine with 0.5 cos x = 1/2 , 0.5 sin x = 0. Each entry advances x by dx.

Preset parameter: 45 | H| Pm D

Notes: 1. Initial values may be reset by entering at order 6 .

2. Other starting values may be set by direct planting. It is possible

to change the scale factor by planting a cos x, a sin x.

3. See Part III for detailed program .

T6 0.5 cos x and 0.5 sin x at equal intervals of x. Version 2 .

Open; even; 24 storage locations ; time = 36 msecs .

Similar to T5 , but with different starting condition: the first entry sets

0.5 cos x = 1/2, 0.5 sin x = 0 , and each subsequent entry advances the value

of x by dx.

Preset parameter: 45 | H| Pm D

T7 Sine, rapid (used with R9) .

Closed; even; 36 storage locations; working position OD; time =

81 msecs.

Forms 0.5 sin [2.C(4D)] where 2.C(4D) <π/2 and places result in 4D. R9

must be in the store when T7 is read.

Accuracy: maximum error is ±2-33 .

Note: See Part III for detailed program.

T8 Inverse sine .

Closed; even; 37 storage locations; working positions 6D and 8D;

time = approx. 1 sec .

-1

Forms 0.5 sin [2.C(4D) where 1/2≤C(4D)≤1/2 and places result in OD.

Accuracy: probable error is 2-19 for the range -15/32≤C(4D)≤15/32 .

T9 Tangent, rapid (used with R9) .

Closed; even; 46 storage locations; working position OD; time =

155 msecs .

Forms tan C(4D) where -π/4<C(4D)<π/4 and places result in 4D . R9 must

be in the store while T9 is being read.

Accuracy: maximum error is 2-33

SPECIFICATIONS OF SUBROUTINES 101

U. Subroutines for counting operations .

U1 Counting subroutine No. 1 .

Closed; 33 storage locations ; working position 4; time = 45 msecs

per cycle + time for secondary subroutine.

Controls a secondary subroutine called in by a group of orders of the follow-

ing form

p ApF

p+1 GmF

p+2 Aq F

The secondary subroutine is executed (t-s+r)/r times with q = s , s+r , s+ 2r ,

...و t before control is returned to the master routine. (t-s+r)/r should be an

integer . r , s, t, and mare specified by program parameters .

U2 Counting subroutine No. 2 .

Open; 17 storage locations + 2 for each pair of parameters ; time

30 msecs (average) .

=

This subroutine is incorporated in a program followed by pairs of parameters

as follows : Ea1 F , Pq1 F ; E a2 F , P q2 F , etc. , (any number of pairs) . Con-

trol is transferred at the end of the subroutine to a1 if qq₁ and to a2 if q1<

qg2 , etc. , where it is supposed that the subroutine has just been operated

for the qth time .

U3 Counting subroutine No. 3 .

Open; 17 storage Locations + 2 for each pair of parameters ; time

30 msecs (average) .

=

This subroutine is incorporated in a program followed by pairs of parameters

as follows : Ea1 F , Pq1F ; E a2 F, Pq2 F , etc. , (any number of pairs) . The

first q₁ times the subroutine is operated, control is transferred to a1 , the

next q2 times to a2 , etc.

Program parameters : Ea1 F

Pq1 F
punched after the subroutine

E a2 F

Pq2 F etc.

Notes : 1. A pair of parameters Z F, P 1 F will cause the machine to stop.

2. See Part III for detailed program.

U4 Counting subroutine No. 4 .

Closed; 28 storage locations; time = 45 msecs per cycle + time for

secondary subroutine .

Controls a secondary subroutine called in by a group of orders of the follow-

ing form:

p ApF

p+1 GcF

p+2 *A q F

102 ELECTRONIC DIGITAL COMPUTER

The secondary subroutine is executed n times with q = s , s+ r , s+2r ,

s+(n-1)r before control is returned to the master routine.

وهههو

m AmF

m+1 GeF

m+2 PrF

m+3 *As F

m+4 AnF

*A may be replaced by any other

function letter according to the

requirements of the secondary

subroutine.

m+5 GcF

Note : See Part III for detailed program.

U5 Counting subroutine No. 5 .

Open; 21 storage locations + parameters; time = 33 msecs (average) .

Similar to U3 but when control has been transferred qr times to ar , the sub-

routine is automatically reset and control is then transferred q₁ times to a1 ,

and the whole cycle is repeated.

Program parameters : Ea1 F

Pq1 F

E a2 F

Pq2 F

Ear F

Pqr F

Ε 80

Notes : 1. If E 70 is punched after the parameters instead of E 80, the cycle

will be repeated starting at the second exit, i.e. , control will be transferred

q2 times to a2 , q3 times to a3 , etc.

2. If the following orders are punched instead of E 80 the cycle will

be repeated starting at the rth exit :

m Am+2 F

m+1

m+2 F

E7 0

P 2r

3. The subroutine may be made to repeat starting at any point in the

cycle by means of orders in the master routine which place suitable quantities

in 190 and 20 0 .

V1 Multiplication of vector by symmetric matrix .

Closed; even; 47 storage locations; working positions OD, 4, 5, 6,

and 7; time = (36n+18)n msecs.

Given a symmetric n-by-n matrix of which only 0.5 n(n+1) elements are stored

starting in mD, and given an n-vector stored in cD, (c+2)D , (c+2n-2)D, this

routine will form their product and place it in sD, (s+2)D, ... (s+2n-2)D .

...و

...و

SPECIFICATIONS OF SUBROUTINES 103

Preset parameters : 45 H P 2n F

46 N HcD

47 MVmD

48 Δ TSD

C(CD) = first element of vector .

C(MD) = first element of matrix.

C(aD) = first element of product.

49 LY F

included at head of library tape.
50 X P24 0

Notes : 1. The matrix elements must be placed in the store in the following

order: 0

12

345
•

2. If it is desired to change the values of c, m, s in the course of the

program, this can be done by changes in the following psuedo -orders (a) HcD

in (p+26) , (b) VmD in (p+27) , and (c) TSD in (p+28), where p is the address

of the first order of the subroutine .

3. If it is desired to incorporate a left-shift in the multiplication, this

can be done by replacing the round-off order Y F , which is taken in in the form

of a parameter, at the head of the tape.

4. See Part III for detailed program.

V2 Addition and subtraction of n dimensional vectors .

Closed; 25 storage locations; working position 1; time = (13+17.5n)

msecs .

Adds (or subtracts) the vector with components in the n long storage locations

ending in bD , to (from) the vector with components in the n long storage loca

tions ending in aD , putting the components of the result into the n long storage

locations ending in cD .

Preset parameter : 45 | HP 2n F

Program parameters:

For addition

p+2 A a D

p+3 Pb-a F

p+4 Oc-b F

Note : See Part III for detailed program.

For subtraction

p+2

p+3

p+4

A a D

K 4096+b -a F

Lc-b F

PART III

PROGRAMS OF SELECTED LIBRARY SUBROUTINES

The following notation is used on all library program sheets .

Entry points : If control may arrive at an order by being

transferred there by an E or Gorder the

location of the latter (relative to the first

order of the subroutine) is shown on the

extreme left, with an arrow pointing to the

address of the order to which control is

Unconditional transfers

of control :

Variable orders :

Pseudo-orders :

Use of J:

Preset parameters :

Control combinations :

transferred, e.g. ,

16-23 T60.

A horizontal line is drawn underneath

every E or Gorder which is intended to

produce a transfer of control each time

it is encountered.

Orders and pseudo-orders which are to be

changed during the course of the calcula-

tion are shown in brackets.

A double vertical line is drawn on the left

of the contents of all storage locations

which are intended never to be obeyed as

orders .

When reading the address part of an order

the initial orders treat the letter Jas a

digit of value 10. Some subroutines there-

fore use J for the address 10, thus saving

one row of holes on the tape.

....C(45) , C(46) when used as preset

parameters are referred to as H param-

eter , N parameter

Any " order" with code letter Kor Z is

a control combination. The more common

ones are described in Part I, Section 2-5 ,

and the less common ones in Appendix C.

104

PROGRAMS OF SELECTED SUBROUTINES 105

A3 Special arithmetical operations on real numbers in floating decimal

form.

See Part I, Section 4-82. In the store, x is represented by the number
-9

2-12 x0 + 2px. In the routine's "floating decimal accumulator" the number
a is represented by 2-2 ao in 10D and 2 pa in 9. In the course of forming

xy , its representation is adjusted by a factor of 10, and its exponent corrected

accordingly . Thus (xy) = 10 xy and xy = x + py + 1. This is done to

prevent overflow in the numerical part of the floating accumulator .

1

Orders Notes

Part 1: R2

modified

order 3 in R2 is altered to S 40 D. Thus

the integers are placed in the store

negatively and become -10-n , n = 0 ... 7

Τ 60πθ

60πθ

62πθ

17 179 869 184 F

1 717 986 918 F

64πθ 171 798 692 F

66πθ 17179 869 F

68πθ 1 717 987 F

70πθ

72πθ

171 799 F

17 180 F

74πθ 1 718 π

Τ 56πΖ

P F

T Z

0 A 3 F

1 T 55 0

2 A H

3 Α 23 0

4 T 80

5 A N

6 A 23 0

(clears sandwich digit between 56 and 57)

plant link order

form and plant order to extract x

form and plant order to extract y

7 T 16 0

8 (A D) extract x from store

9 U D
copy in OD

10 L 256 F
shift to remove exponent

11 U 4D
2-2 xo to 4D

12 R 256 F shift to form 2-12x0
unpack x

13 S D
cancel xo leaving -2 ° px

9

14 R 16 F

15 T F
-2-15 px to 0

16 (A D)

17 U 12 D

18 L 256 F

19 U 6 D

20 R 256 F
unpack y similarly

21 S 12 D

22 R 16 F

106 ELECTRONIC DIGITAL COMPUTER

23 A F

24 S 2 F -2-15 (px+py+ 1) to 8
25 T 8 F

26 H 4 D

27 V 6 D

2-4xoyo to OD
28 Y F

29 T D

30 H D

31 V 56πθ

32 Y F

33 T 4D

34 H 4 D

35 A 9 F

36 A 8 F

37 Ε 45 0

2-210-1xoyo to 4D and R

form 2-15 (pa -Px -Py - 1)

jump if xy is smaller than a (approx.)

38 T F clear accumulator

39 H 10 D 2-2 ao to R

40 A 4 D

41 T 10 D
10- xoyo replaces ao

interchange xy

and a if a is the

42 S 8 F

43 T 9 F ☐Px+By+ 1 replaces pa

smaller

44 S F

37-45 L D

2-15 (px+by +1 -pa) to Acc .

multiply by 2

46 S 59 0

47 E 54 0

48 A 58 0

49 T 50 0]
50

(N D)

51 A 10 D

52 Y F

53 T 10 D

47-54 T F

55 (E F)

jump if smaller component is negligible

form and plant N order referring to

appropriate powerwer of10

multiply C(R) by 10- Pa- Px- Py- 1

form sum and place in 10D

clear accumulator

link order

56 L 1229 F

57 Y 819 F
4/10

58 Ν 76πθ

59 P 16 F

(Storage locations 60πθ to 74πθ contain the constants -10 -n, n = 0 ... 7,

which are read before the orders)

Part 2: T 76 Z

G K
(puts new reference address in 42)

Τ 44πΖ

P F

T Z

0 A 3 F

1 Τ 43 0

(clears sandwich digit between 56 and 57)

plant link order

2 A M

3 Α 13 0 form and plant transfer order

4 Τ 39 0

PROGRAMS OF SELECTED SUBROUTINES
107

5 S 47 0

22- 6 A 47 0

count number of

adjustments
7 T 1 F

8 H 10 D

9 V 10 D jump to 23

10 S 44πθ if a > 0.4

11 E 23 0

12 Η 46 0 10/16 to R

13 T F clear accumulator

14 V 10 D

multiply a
15 L 4 F

by 10

Adjust representation of a

by multiplying a by 10 and

decreasing pa by 1. This

cycle is repeated until either

|ao| > 0.4 or 10 adjustments

have been made (to provide

for a = 0)

16 T 10 D

17 A 9F

correct pa
18 S 2 F

accordingly
19 T 9F

20 A 1 F

count number of

21 S 46 0

adjustments
22 G 60

11-23 T F clear accumulator

24 A 9F

25 S 48 0
jump if

26 G 28 0
Pa<511

27 Z F stop if pa≥511

26- 28 A 49 0

29 E 31 0]jump
if pa≥-511

If pa≥511 , stop the

machine. If pa< -511 ,

replace pa by -511

30 T F clear acc . if pa< -511

29 -31 S 48 0

32 T 9F

33 A 10 D

34 R 256 F

35 Y F

36 R16 F

37 A 9F

38 L 16 F form 2-9 p +2-12 ao

Pack a and place

in store

39 (T D)

40 T 10 D

41 S 48 θ

clear floating accumulator
42 T 9F

43 (E F) link

44 M 81 D

1/100 (rounded down)
45 P 327 D

46 J F 10/16

47 π F 11/16

48 P 511 F

49 P 1022 F

108 ELECTRONIC DIGITAL COMPUTER

A5 Special arithmetical operations on complex numbers in floating

decimal form .

See Part I, Section 4-82. In the store, z1 is represented by 2-2 (x1)0 in rD

and 2-2 (y 1)0 in (r+2)D, each rounded off to 28 binary places. The last 6 digits

of these locations contain the most and least significant halves respectively

of the 12 -digit integer p, the left-hand digit of which is treated as a sign digit .

In the routine's "complex floating accumulator" the number za is represented

by 2-2 (xa) in 14D, 22 (ya) in 16D, and 2-16 pa in 18F. In the course of form-

ing z1z2 = Z3 , its representation is adjusted by a factor of 10, and its exponent

corrected accordingly. Thus (23)0 = 10-1 (21)0 (22)0 and p3 = p1 + p2 + 1. This

is done to prevent overflow in the numerical part of the "accumulator ."

Part 1: R2

modified

Τ 110πθ

order 3 in R2 is altered to S 40 D. Thus the follow-

ing integers are read negatively and become -10-n,

0 ... 8.n =

110πθ 17 179 869 184 F

112πθ 1 717 986 918 F

114πθ 171 798 692 F

116πθ 17 179 869 F

118πθ 1 717 987 F

120πθ 171 799 F

122πθ 17 180 F

124πθ 1 718 F

126πθ 172π

T Z

0 A 3 F

plant link
1 Τ 104 0

2 A H

3 Α 105 0 add C D

4 U 17 0

5 U 26 0

6 Α 200 θ add P 2 F

form and plant orders

to extract z1

7 U 19 0

8 Τ 28 0

9 A N

10 Α 105 0 add C D

11 U 21 0

12 U 34 0
form and plant orders

13 A 200 0
to extract z2

add P 2 F

14 U 23 0

15 Τ 36 0

16 Η 194πθ prepare to collate numerical parts

17 (C D)

2-2 (x1)0 to 4D
18 T 4 D

19 (C D)
2-2 (y1) 0 to 6D unpack numerical parts

20 T 6D

21 (C D)
2-2 (x2)0 to 10D

22 T 10 D

23 (C D)

2-2 (y2) 0 to 12D
24 T12 D

PROGRAMS OF SELECTED SUBROUTINES 109

25 Η 196πθ

26 (C D)

prepare to collate exponents

most significant half of p1

27 L 16 F

28 (C D) least significant half of p1

29 T 8 D

30 A 8 F

shift to top of Acc. to get

top digit in sign position

unpack p₁

(exponent of z1)
31 L 8 F

32 R 8 F shift to form 216 p1 and

33 T F send to 0

34 (C D)

35 L 16 F

36 (C D)

37 T 8D unpack p2 similarly

38 A 8 D

39 L 8 F

40 R 8 F

41 A F

42 Α 203 0

43 A 8 F

44 H 6 D

45 N 12 D

46 H 4 D

47 V 10 D =

add 2-16 2-16 (p1 +p2 + 1) = 2-16p3 to 8

2-4 [(x1) 0 (×2)0 - (1)0 (2)0]
10.2-4 (x3)0 to 4D

48 Y F

49 T 4 D

50 V 12 D

51 H 6 D

52 V 10 D

53 Y F =

2-4 [(x1) 0(2) 0 + (Х2)0 (1) 0]

10.2-4 (y3)0 to 6D

form numerical

parts of product

54 T 6 D

55 Η 106πθ

56 V 4 D

2-2 (x3)0 to 4D
57 Y F

58 T 4 D

59 V 6 D

60 Y F

61 T 6 D

62 A 8 F

63 S 18 F

64 E 66 0

65 T F

64-66 A 18 F

67 U 19 F

2-2(y3)0 to 6D

form 2-16 pm in Acc.

where pm = max(pa,P3)

2-16 pm to 19

68 S 8 F

69 L 1 F form 2-15 [2(pm -P3) -18]

70 S 108 0

Prepare to align num-

bers for addition . If

one number is negligibly

small compared with the

other , jump to 101 or 96,

by -passing the addition.

71 Ε 101 0 jump if p3pa - 9

72 Α 109 0

form and plant order
73 U 83 0

H [110 + 2(pm-p3)]πθ
74 T 89 0

110 ELECTRONIC DIGITAL COMPUTER

75 A 19 F

76 S 18 F

form 2-15 [2 (pm-pa) 18]
77 L 1 F

78 S 108 0

79 E 96 0 jump if p3≥pa+9

80 Α 109 0

form and plant the order
81 U 85 0

H [110 + 2(pm -Pa)]πθ
82 T 91 0

83 (H D)

84 N 4 D

85 (H D) align and add

86 N 14 D real parts

87 Y F

88 T 14 D

89 (H D)

If Pa>P3 , (za) is multiplied

by 1 and (23) by a negative

power of 10, and vice versa

90 N 6 D

91 (H D) align and add

92 N 16 D imaginary parts

93 Y F

94 T 16 D

95 Ε 101 0

79-96 T F clear accumulator

97 A 4 D

98 T 14 D

99 A 6 D

replace (za)0

by (23)0

P3≥Pa+9

100 T 16 D

71

-101 T F clear accumulator

95

102 A 19 F

replace pa by pm
103 T 18 F

104 (1 F) link

105 D

Τ 106πΖ

(clears sandwich digit between 106 and 107)
P F

T 106 Z

106 L1229 F

107 Y 819 F
4/10

108 P 18 F

109 Η 128πθ

(Storage locations 110πθ to 1260 contain the constants -10 -n, n = 0 ... 8,

which are read before the orders)

Part 2: T 128 Z

G K (puts new reference address in 42)

Τ 62πΖ

P F (clears sandwich digit between 62 and 63)

Τ 64πΖ

P F (clears sandwich digit between 64 and 65)

T Z

PROGRAMS OF SELECTED SUBROUTINES 111

0 A. 3 F

plant link
1 Τ 61 0

2 A M

3 Α 17 0

4 U 56 0 form and plant transfer orders

5 A 72 A

6 T 50 0

7 S 70 0

count number

29- 8 A 70 0

of adjustments
9 T 19 F

10 H 14 D

11 V 14 D

12 H 16 D

13 V 16 D

14 S 62πθ

15 E 30 θ

16 Η 71 0

17 T D

jump to 30 if

(Za) >0.4

10/16 to register

clear accumulator

Adjust representation of

Za by multiplying (za)o

by 10 and decreasing pa

by 1. This cycle is re-

18 V 14 D

19 L 4 F

20 T 14 D multiply (za) o

21 V 16 D by 10

peated until either

(za) >0.4 or 10 ad-

justments have been made

(to provide for (za)0 = 0) .

22 L 4 F

23 T 16 D

24 A 18 F

25 S 75 0
correct pa

26 T 18 F
accordingly

27 A 19 F

count number

28 S 71 0

of adjustments
29 G 80

15-30 T F clear accumulator

31 A 18 F

32 S 73 0 jump if pa<2047

33 G 35 0

34 Z F stop if pa≥2047

33-35 A 74 0

36 E 38 0]

if pa≥2047 stop machine.

If pa<-2047 replace pa

by -2047

jump ifPa≥-2047

37 T F clear Acc. if pa<-2047

36-38 S 73 0

39 T 18 F

40 A 14 D

41 Α 64πθ

42 T 14 D

43 A 16 D
round off (za)o to 28 binary places

44 Α 64πθ

45 T 16 D

46 Η 66πθ

47 C 16 D

48 Η 68πθ

49 C 18 D

assemble (ya) with least significant

half of pa and transfer to store

50 (T D)

112 ELECTRONIC DIGITAL COMPUTER
T
e
m
p
o
r
a
r
y

51 A 18 D

52 R 16 F
shift pa so that its most significant

half is at right-hand end of 18D
53 T 18 D

54 C 18 D

55 H 66πθ

56 C 14 D

57 (T D)

58 T 14 D

59 T 16 D

60 S 73 0

assemble (xa) with most significant

half of pa and transfer to store

clear "complex floating accumulator,"

i.e. , put za = 0.2-2047

61 T 18 F

62 (E F) link order

63 P F dummy order

64 P 16 F

65 P F

66 S 2 F

67 R1024 F
form and plant

C(66πθ)
these orders are obeyed once

68 T 66πθ

69 Τ 68πθ

during input of tape and then

written over

70 E 25 F

E 66 Z final C (66πθ) = -2-28

P D

T 68 Z

68 P 31 D

69 P F

70 π F 11/16

71 J F 10/16

72 P 2 F

73 P1023 D

74 P2047 F

75 P D

76 M 81 D

77 F 327 D
1/100 (rounded down)

A10 Print single floating decimal number (used with A11) .

G K

0 0 55 θ carriage return

enter 1 Ο 56 0 line feed

2 A 3 F

3 T 54 0]
4 S D

5 L 32 F

6 U 4 D

7 R 32 F

8 A D

9 R D

plant link

separate numerical part x (negatively)

and exponent p

accumulator contains 2-7p
10 E 15 0

PROGRAMS OF SELECTED SUBROUTINES 113

11 0 20 print " - "

12 T D

13 S D]
modulus p<0

14 E 16 0

10-15 Ο 57 0

14,17-16 A 60πθ

print space (p≥0)

add -10.2-7+2-25

17 E 16 0

18 S 60 0

divide by 10

(subtract and count)

19 L 2 F

20 T D

21 0 F print tens digit of p

22 0 1 F print units digit of p

23 Ο 57 0

24 O 570
spaces

25 S 4D

accumulator contains 2-4x

26 E 31 0

27 T D

28 S D]
modulus

(x<0)
29 0 20 sign

30 E 320

26-31 Ο 57 0 print space (x≥0)

30-32 A 58πθ

33 G 35 0

34 A 43 0]
33-35 S 59 0

36 T D

37 H 59 0

38 A 620

round off and test for x = 10

arrange to print # if

accumulator is positive

add 10.2-4

-10/16 to register

add digit layout parameter

50,53-39 L D

40 T 4 F

41 0 1 F

42 A D

43 F F

44 S F

digit cycle
45 L 4 F

46 T D

47 N D

48 T D

49 A 4 F

50 E 39 0

51 0 57 0

52 L D

53 G 39 0

54 (π F)

55 0 F

56 Δ F

57 Φ F

Ο 54 Z

P F

P F

digit layout

figure shift or link

carriage return

line feed

space

figure shift, carriage return and

line feed during input of tape

A 1 D

114 ELECTRONIC DIGITAL COMPUTER

59 ||N F

T 58 Z

58 P 268 D |] = (-10+
1

• 10-6) • 2-4
2

T 60 Z

60 P 256 F

= -10.2-7 + 2-25
61 C1536 F

62 S 128 F digit layout constant

A11 Arithmetical operations on real numbers expressed in floating

decimal form.

For representation of numbers see Part II. The number in the floating

decimal accumulator (f.d.a.) is here referred to as y-109, and the operand as

x-10P .

Parameters:

Preset : Η PsD

N Pt F

Preset by subroutine :

MP 103 0

0Δ P

location of

numerical

exponent
part of f.d.a.

L E 560 dynamic stop order

E 69 K

T 9πΜ

9πΜ 171798 69183 F | 1

11πΜ 17179 86918 F 10-1

13πΜ 1717 98692 F 10-2

15πΜ 171 79869 F 10-3

17πΜ 17 17987 F 10-24

19πΜ 1 71799 F 10-5

21πΜ 17180 F 10-6

23πΜ 1718 π 10-7

T Z

0 A 46 0

94 1 A 2 F

2 T 30]
3

(H F) select parameter

4 C 9 M

5 E 20 0

6 R 256 F 10 pl .

7 A M

8 T 19 0

9 C 1 M

10 T 11 0

L

11 (A F)

prepare order 3

entire parameter to accumulator

jump for E or T parameters

]
Form switch order specifying

address depending on parameter

function

form A order specifying

same address as parameter

select operand

12 U 22 0 store top of operand
A , B , and V para-

13
meters : unpack

L 32 F

14 R 32 F]
remove exponent p operand

15 U D numerical part x. 210 to OD

PROGRAMS OF SELECTED SUBROUTINES
115

16 S 22 0

17 R 64 F

18 T 22 0 |]
-2-14

19 (E F)
*

5-20 U 220

p to 220

parameter to 220 and 640

21 Τ 64 0

22 (E F)
**

23 A H

24 G 30 0
if number in f.d.a. is

25 T H

26 A 23 0

positive , change sign

and set order 63 to AH

27 T 63 0

28 S H

29 E 61 0 test if f.d.a. contains zero
11

24-30 A
2 M form (10-y) ・ 2

31 E 49 0

32 Η 11πΜ

39-33 T H

1/10 to register

(10-y) .2-11

34 A 5 M

35 A N adjust exponent

36 T N

cycle to multiply

y by negative

power of 10 if

37 V H

38 A 4 M add 9.2-11
necessary

39 G 33 0

40 E 49 0

50-41 T H

42 S 5 M adjust exponent

43 A N

44 T N

45 A H

46 L 1 F

cycle to multiply

y by positive

power of 10 if

T parameters

only

x 10

47 A H necessary

48 L D

31,40-49 S 4 M sub . 9.2-11

50 E 41 0

51 S 3 M sub . 2-11

52 Y F

53 T H final value of -y- 2-

-11

to OH

54 A N q - 2-14

55 S 6 M

56 P L dynamic stop if q≥63
examine

57 A 7 M

58 E 61 0 jump if q≥-63

exponent

59 T H set y = 0 if=

60 T H q<-63

29,58-61
S 6 M re -form q- 2-14

62 L 64 F q.2-6

63 (S H) add y - 2-11 †

64 (T D) to store ††

116 ELECTRONIC DIGITAL COMPUTER

65 A 28 0

reset 630 †
66 T 63 0

67 S 6 M

set q = -63
68 T N

69 E 91 0

19-70 S D

change signofxif
71 T D

19-72 H D subtrahend to register

73 A N

form 214 (q-p)
74 A 22 0

75 E 840 jump if q≥p

19-76 E 95 0

77 T 64 0 -2-14 (q-p) to 64

78 H H

interchange

larger num-

79 A D ber to f.d.a.

numerical parts
80 T H A and B para-

81 S 22 0 larger exponent meters only

82 T N

83 S 64 0

75-84 S

85 E

86 A 8 M

87 Τ 88 0

88 (V D)

89 A H

101,102-90 Y F

69-91 T H

85-92 Τ 64 0

93 A 30

to ON

2-14 (q -p) to Acc .

3 M ☐jump if smaller number

920 is negligible

divide numerical part

of smaller number by

appropriate power of 10

combine numbers

sum of difference to OH

clear accumulator

prepare to change order 3
94 G 10

76-95 S 22 0

96 A N add exponents

97 T N

98 H D

multiply numerical V parameters only
99 V H

parts
100 L 512 F

101 E 90 0

102 G 90 0

M 0 E 78 0

1 A1023 D

2 P 160 F = 10.2-11

3 P 16 F = 2-11

4 P 144 F = 9.2-11

5 P 2 F = 2-14

6 P 126 F =

7 P 252 F =

63.2-14

126.2-14

8 V 25πΜ

T 128 Z

PROGRAMS OF SELECTED SUBROUTINES 117

* Order 19 switches as follows:

if parameter function is A to 70 0

11 B to 72 0
11 11 "

" " 11 11

V to 76 0

** 220 contains the parameter itself if the function is E or T (in the

latter case the order plays no part in the calculation), otherwise 220 is used

to store -p-2-14.

† Order 63 is always SH unless a T parameter is being obeyed and y

is negative , in which case order 63 becomes A H.

†† 640 holds the parameter itself if the function is E or T (in the former

case 640 is not encountered by control); when dealing with A and B parameters,

640 is used to hold -q-p2-14 . For all parameters (except E) , 640 is used

as a "dump" by order 92 to clear the accumulator .

††† If control reaches order 76 from order 75, C(Acc.) must be < 0 and

control proceeds to 77. If 76 is reached from 19, C(Acc.) must be =0 and

control is switched to 95 .

B2 Complex operation No. 2 .

Performs operations (including multiplication) on complex numbers.

Uses as " multiplier register" H (real part) and 2H (imaginary part) .

P 47 046F

Τ

P

50πΖ

F]

T Z

0 A N

39- 1 T 20]
2 (A F)

3 U 16 0

4 U 26 0

5 A N

6 U 30 0

7 G 40 0

8 T F

9 A 17 0

10 U 26 0

46-11 T 18 0

12 A 4 H

13 H 3πΝ

14 V 6 H

15 H H

16 (V F)

17 H 2 H

18 (N F)

N parameter

These orders do not go into the store but

merely serve to clear 50πθ to ensure

that the " sandwich digit'' is zero when

the constants PD and PF appearing at

the end of the subroutine , are planted there.

forms A n+2 F

plants order to be obeyed in

16 and in 26

increases address of order by 2

clears accumulator

places ineffective order in 18, 26

for operations other than V or N

multiply by 2-34 . " unpacks "

real accumulator

operation on real part

118 ELECTRONIC DIGITAL COMPUTER

19 U 4 H

20 S 4 Η

21 L F

"packs" real accumulator
22 L F

23 L 64 F

24 T 6 H

25 A 8 Η

26 (V F)

27 H 3πΝ

28 V JH

"unpacks" imaginary accumulator

and performs operations

29 H H

30 (V F)

31 U 8 H

32 S 8 Η

33 L F

"packs" imaginary accumulator
34 L F

35 L 64 F

36 T JH

37 A 2 F

38 A 20

39 G 1 0

T-40 A 1 N

test for V

41 E 45 0

42 A 2 N

test for N

43 E 80

44 A 5 N

41-45 S 5 N

46 G 11 0

N 0 P 2 F

1 Q F

2 I F

3 P D

4 P F

5 J F

C7 Check function letters, with localized print suppression .

T Z

0 (Δ F)

1 (P F)

2 Q F

3 A F

4 θ F

5 Δ F

6 π F

7 K3000 F

8 P H

9 P N

10 P M

PROGRAMS OF SELECTED SUBROUTINES 119

33 -11 U 26 0 store address of C.O.

12 S 80

13 E 15 0

14 A 90 test for change of mode

13 15 S JO

16 (Ε 46 Δ)*

Transfer

control

17 E 20 Δ

58 -18 0 40

new line

19 0 50

17 20 U 37 0

clear top of accumulator
21 S 37 0

22 A 30

4523 A 260

24 U 26 0

25 S 26 0

26 (A F) S.O.

27 U 37 0

Enter -28 A

29 S 30

30 (Ο 370) becomes E 340 for suppression

31 Ε 34 0

32 A 20

33 E 11 0

34 U θ

31

35 S θ

Checking

cycle , simi-

lar to that

employed in

C11

36 A 10

37
(K3000 F) C.O.

38 U 10

39 G 41 0

40 A 50

39 41 S 10

42 U θ

43 S θ

44 A 2 F

45 E 23 0

1646 Ο 60 figure shift

47 E 49 Δ

16 -48 0 70 letter shift

47 49 U 37 0

50 S 37 0

51 S 16 0

Change of mode of operation

from printing to suppressed

or vice versa

52 Α 59 0

53 U 16 θ

54 S 16 0

55 S 30 θ

56 Α 60 0

57 U 30 0

58 E 18 θ

120 ELECTRONIC DIGITAL COMPUTER

G

59

60

Z

C 35 0

S 12 0

G

=C 94 00

= S 71 00

K

W2015 Z

E L

= E 28 Z : stops reading of tape and directs

control to order 28 with E L in the accumu-

lator .

* Order 16 takes the following forms :

Print low

Print high

Printing Suppressed

Ε 46 0 G480

G46 0 Ε 480

C10 Numerical check, ignoring closed subroutines; will print C(Acc.)

before obeying T orders .

Note: Code letter H refers to locations in the first part of the subroutine and

0 to locations in the second part .

E 25 K

T H

H 0 A 3 F

1 T F dummy print routine

2 E F

10H 3 0 20

4 E 14 Η

310 5 S 60

6 E 32 0

7 S 2 H

8 T 9 H

9 (π F)

10 E 3 H test sign

11 T πθ

12 S

هدع

]

print +

form A p F/D if order Tp F/D

is encountered

becomes A p F/D

change sign

13 0 H print -

4H -14 T πθ

15 S 33 Η

30H16 A 2 F

17 T 9 H

18 A πθ

19 R 1 F

20 S πθ multiply by 10/16

set digit count in 9 H

Print number

transferred

by T order

21 R D

22 A πθ

23 U θ

24 0 θ

print
25 F θ

26 S 0

27 L 4 F

28 T πθ

PROGRAMS OF SELECTED SUBROUTINES 121

29 A 9 H

30 G16 H] digit count

31 T πθ

32 E 34 0

33 ||P N

clear accumulator

to sequence control

number of digits

16034 A 2 H

35 S 12 0

test for order AnFin

36 G19 0

S(n) , i.e. , S.O. = C.O.
37 S 2 F

38 E 19 0 Test for

39 0 30 line feed entry to

40 A 20 0 closed sub-

41 A 12 θ form A n+2 F routines

42 S 26 0 and obey

43 U 12 0 them

44 U 47 H

45 S 50 form G n+1 F

46 T 50 H

47 (P F)

48 T 22 0

49 A 40 Η

50 (P F)

= C (Acc .) or A n+2 when

subroutine is encountered

sign of C(Acc.) or Gn+1 F when

subroutine is encountered

directly

When an order An Fis encountered in n, the order in (n+2) is placed in the

C.O. position and control is transferred to (n+1) with A 200 in the accumu-

lator . Since there is a Gorder in (n+1) control is transferred to the subrou-

tine and the link which is planted in the subroutine is E 220 (or E 230 if the

subroutine has one program parameter) . When the operation of the subroutine

is finished control is transferred to order 220 (or 230) of C10 and checking

recommenced.

T Z

0 0 (P F)

1 (P F)]
working space

for print cycle

2 Z F

3 Δ F

4 0 F

5 Q 1 F

6 Q F

7 A M

8 T 47 Η

9 A 15 0

10 T M

11 0 40

12 Ο 30

extracts order at which checking

starts and replaces it by order

directing control to C10 (order 210)

carriage return

line feed

13 0 9 H figure shift

14 E 25 F

15 Ε 21 0

P F

E 7 Z

122 ELECTRONIC DIGITAL COMPUTER

The orders 7 to 14 are executed once during input, and then written over by:

T 7 Z

180 7 0 40 carriage return

8 0 30 line feed

9 S 2 H form AnF when control is transferred

360 - -10 U 12 0

11 S 12 0

12 (G 2047 M) = A -1 M, becomes select order (S.O.)

13 U 22 0

14 A 50 Η

15 S 2 H

16 G 34 H test for transfer of control

17 S 60

18 G 70

36H

19 U 50 H

38H

20 S 50 Η

Enter 21 A 47 Η Add "C (Acc .)"

22
(T M)

23 U 47 H

current order (C.O.)

transfer " C(Acc .)"

24 E 26 0

25 S 30

24026 S 47 Η
test C(Acc .) for sign,

-

27 U 50 H
if send 1/2 to 50H

28 S 50 Η

29 A 22 0

examine C.O. and test
30 S 1 Η

for T order
31 E 5 H

6H -32 U 22 0

33 S 22 0

32H34 A 12 0

35 A 2 F

36 G 10 0

C
h
e
c
k
i
n
g

c
y
c
l
e

s
i
m
i
l
a
r

t
o

t
h
a
t

e
m
p
l
o
y
e
d

i
n
C
1
1

.

sequence control

During the course of this subroutine the 17 most significant digits of C(Acc.)

are stored in 47 H and are restored when an order from the original program

is executed.

C11 Check function letters .

G K

0 (P F) sign of C (A)*

1 (P F) C(A) stored

2 θ F

3 Δ F

4 A F

5 Q F

18 6 A 40 form new S.O.

7 Ο 20 transfer control

new line

8 0 30

31 9 U

10 S 11 θ

11 θ ☐plant
plant S.O.

PROGRAMS OF SELECTED SUBROUTINES 123

11 (Z F) select order (S.O.)

12 U 22 0 plant C.O.

Enter-13 Ο 22 0 print function***

14 S 0 subtract AF if C (A)< 0*

15 A 40

16 E 19 0

test for transfer of control**

17 A 50

18 E 60

16-19 U θ

clear top of accumulator
20 S θ

21 A 10 restore C(A)

22 (K3000 F) current order (C.O.)

23 U 1 0 store C (A)

24 E 26 0

25 A 30

24 26 S 10
store sign of C(A)* and clear

top of accumulator
27 U θ

28 S 0

29 Α 11 0

30 A 2 F
advance address specified

in S.O.

31 G 90

E 13 Z

Followed on tape by

| E m F punched by user. Hence control enters at

order 13 , with Em F in accumulator

Notes : C(A) refers to the 17 most significant digits which would be in the

accumulator if the original program were operating directly.

C.O. = current order, the order in the original program which is

being dealt with.

S.O. = select order, the A order which selects the current order from

the original program.

* sign of C(A) is stored in 6 coded thus : AF for negative

PF for positive or zero

** after executing order 140 , the function digits in the accumulator

represent E if and only if a transfer of control is to occur .

*** on entry , order 130 causes a letter shift .

C12 Check function letters , with dummy print routine and delayed

start.

Places " blocking order " in h and commences checking when

blocking order is obeyed for the nth time.

T Z

0 A 3 F

1 T F

2 E F]
dummy print routine

3 (E 60) (1) blocking order (2) counter (3) -2-15

4 Fθ

124 ELECTRONIC DIGITAL COMPUTER

H

5

6

ΙΔ F

(A 30)

7 A 2 F

8 E 28 0

9 T 30

10 (K3000 F)

11 E 1 Η

12 G 1 Η]

(1) A 30 (2) sign of C(Acc.)*

count

(1) letter shift (2) order from H (3) store C(Acc .)

return to 1H

25 13 S 20

14 Ο 40

15 0 50

16 Ο JO

17 A H

18 T JO

19 A 30

20 T H

21 S 46 F temporary , during input

22 T 30

23 E 34 F

E 14 Z

P F

T 16 Z

38 16 U 18 0

17 S 18 0

18 (G2047 H) S.O.

19 U 29 0

20 S 60

21 S 20

22 Ο 29 0

23 G 26 0

24 S 39 0

25 G13 0

23 -26 U 60

27 S 60

checking cycle as in C11
8 -28 A JO

29 (T H) C.O.

30 U JO

31 E 33 θ

32 A 50

3133 S JO

34 U 60

35 S 60

36 A 18 0

37 S 30

38 G 16 0

39 IQ F

* sign of C (Acc .) stored thus : PF = positive or zero

AF = negative

PROGRAMS OF SELECTED SUBROUTINES
125

D4 Division, small; positive divisor .

Repetitive process: an+1 = -ancn + an

Cn+1 = -c

Stop when cn = 0.

T Z

0 S 20

1 A 30]
subtract 1

10 2 T D Cn

3 H D

4 N H

5 A H an+1

6 Y F

7 T H

8 N D

Cn+1

9 Y F

10 G 20 test for cn+1 = 0

ao = dividend

co + 1 = divisor

repetitive cycle

D6 Division, accurate, fast.

C(OD)/C(4D) to OD.

an+1 = anCn+lan + Cn+1

cn+1 = -anb + (b-1), where b is the shifted divisor

i - an- 1/b

cn-0 an and on are negative

2 1/2 + 1; therefore con is negative until process is completed

plant link

a = 2b
-

G K

0 A 3 F

1 Τ 34 0

7 2 S 4 D

3 E 13 0

4 T 4 D

5 S D

make divisor positive and

change sign of quotient

6 T D

7 E 20

14- 8 T 4 D

9 A D

10 L D

11 T D

shift divisor and dividend until

divisor exceeds capacity
12 A 4 D

3- -13 L D

14 E 80

15 R D

16 U 4 D b-1 to 4D

17 L D

18 A 35 0

19 T 6 D ao to 6D

20 E 25 0

126 ELECTRONIC DIGITAL COMPUTER

30 -21 U 8 D cn+1 to 8D

22 N 8 D -Cn+1 an

23 A 6 D
+an

24 T 6 D +an+1 to 6D

20 -25 H 6 D an + 1 to multiplier register

26 S 6 D an

27 N 4 D -(b-1) an

28 A 4 D +(b-1)

29 Y F

30 G 21 0 test

accumulator contains 2-34
31 S D

32

form quotient
V D

33 T D

34 (E F) link

35 || W 1526 D 3-2/2

E2 Exponential (slow).

(ex -1) to 4D, where x = C(4D)

z

Uses a recurrence relation zn- 1
=

Zn +
2n+1 starting with

Z33 = x and ending with zo = (ex-1)

G K

0 A 3 F

1 T 18 0]
plant link

2 Y F

3 L D 2-n to 6D .

16 4 T 6 D

5 H 4 D

6 V 4 D form zZn

7 T D

8 H 6 D

9 V D z /2n

10 R D z2/2n+1

11 A 4 D

12 Y F]Zn + Znz /2n+1

13 T 4 D Zn- 1 to 4D

14 A 6 D shift strobe

15 L D

16 E 40
test strobe for end of cycle

17 T D

18 (E F) link

E4 Exponential, fast . Exp C(R) to OD

G K

E

Τ 18πθ

69 K calls in R9

PROGRAMS OF SELECTED SUBROUTINES 127

18πθ 2 60054 F

20πθ 31 23906 F

22πθ 235 85378 F

24πθ 1430 07273 F

26πθ 7157 73946 F coefficients in power series

28πθ 28633 01149 F

30πθ 85899 33588 F

32πθ 1 71798 69147 F

34πθ 1 71798 69184 π

T Z

0 A 3 F

1 T 14 0
plant link

2 V 18πθ

3 Α 20πθ form a8 + agx

4 T D

5 S 17 0 set power series counter

13 6 Α 16 0

7 T 90

8 V D

9
(A D)

form a1 + a2x + ...

10 T D

11 A 90

12 S 15 θ

13 G 60

14 (E F) link

15 A 34πθ

16 Α 36πθ

17 P 14 F

T 36 Z

F1 Interpolation .

The subroutine places f [2C(4D)] in 10D . The process used is that

described in Milne's Numerical Calculus, p. 72, and known as Neville's

method.

48F (P F) (becomes P 2b πθ) A parameter

49F (P F) (becomes P 2b D) L parameter

50F P 61 0 X parameter

T Z

0 A 45 F

1 U 49 F send P 2b D to 49

2 A 42 F

3 T 48 F send P 2b πθ to 48

4 S 2 F

5 R M

6 L 64 F

7 L 32 F

8 T 45 F send -2 -n to 45

9 A 46 F

128 ELECTRONIC DIGITAL COMPUTER

10 R M

11 L 64 F

12 L 32 F

13 T 46 F send a2- to 46

14 E 25 F

E Z

P F

This sequence of orders calculates the parameters required by the subroutine :

these orders are written over by the orders following:

T Z

9 0 T 20 F

1 V D]
partial sum times 10

2 L 8 F

3 S 40 D subtract new digit

14 4 U D

5 (T F) = Τ 66 Δ

6 I 40 F

7 S 40 F] read next symbol

8 A 39 F

9 E 0 test for F

10 A 2 F

11 E 25 F test for Z

12 A 50 change destination order

Enter-13 T 50

14 E 40

E 13 Z

Τ 66 Δ

664 1 71798 69184 F

64Δ 85899 34592 F

624 57266 23061 F

604 42949 67296 F

584 34359 73837 F

56Δ 28633 11531 F

54Δ 24542 67026 F

52Δ 21474 83648 F

504 19088 74354 F

484 17179 86918 Z

These orders place -1, - 1/2, ... - 1/10 in positions 664, 644, ... , etc. , and

are then written over by what follows

T Z

0 A 3 X

1 U 11 0

2 A 70

3 Τ 60 0

4 H 1X

5 C 4 D]

form A p+ 2 F

form E p+3 F

collate ' integral " part of C(4D)

PROGRAMS OF SELECTED SUBROUTINES 129

6 S 2 X subtract a

7 U 1 F

8 R 32 F

9 R 32 F

form address of first entry

of the table used.

10 L M

11 (A F) = A p+ 2 F

12 T 16 0

13 A 4D

14 S 1 F

15 T 4 D

16 (A F)

17 T 10 D

add first entry used

transfer to 10D

18 A 16πθ

19 E 21 0

58 20 A X

19 21 A 3πΧ

22 Τ 26πθ

23 A 4 D

24 A 1 X

25 T 4 D

26 (A D)

modify argument

add next entry of table required

27 (T D)

28 Α 27 0

29 S 59 0

55 30 A 17 0

31 U 52 0

32 A 6 X

33 U 41 0

34 A 7 X

form orders required in locations

400 , 410 , 490 , 500 , and 520 for

successive linear interpolation.
35 U 40 0

36 U 50 0

37 S 27 0

38 A 8 X

39 T 49 0

40 (A D)

41 (S D)

42 T D

43 H D

44 V 4D

45 L M

46 Y F

linear interpolation
47 T D

48 H D

49 (N D)

50 (A D)

51 Y F

52 (T D)

130 ELECTRONIC DIGITAL COMPUTER

53 A 52 0

54 S 59 0

55 Ε 30 0

count number of interpolations
56 Α 26πθ

57 S 5 X

58 G 20 0

59 T12 D

60 (E F)

clear accumulator

link

X 0 T 8 L

1 P H = -2-n

2 P N = a2- n

Τ 64πΖ

4 ||P 2 F

T 64 Z

3 ||P 2 F

T 66 Z

5 T 6 L

6 U F

7 K4098 F

8 V 66 Δ

E 25 K

Τ 67πΔ

The subroutine is of variable length. The number of reciprocals required

depends on the number of entries used in the interpolation. Their position

is so arranged that those not required are written over by the orders of the

subroutine .

F2 Solution of f(x) = 0, or inverse interpolation (second-order

process) .

Working space is allocated thus :

hD XcC

(h+2)D Xa

(h+4)D Xb

(h+6)D -f(xa) = -fa (say)

(h+8)D -f(xb) or -2- mf(xb) = -Fb (say)

xa and xb are two values of x such that fa and fo have opposite signs . x is a

value obtained by linear inverse interpolation between xa and xb . The auxil-

iary routine places fe in OD. If the sign of fe is opposite to that of fa, then Fb

is replaced by fa and fa by fc , also xo by xa and xa by xo . If the sign of fo is

the same as that of fa, then fa is replaced by fe and xa by xe , and also Fb is

halved. This latter operation prevents x remaining unaltered for many cycles,

as this would cause the process to become a first-order one, or fail to converge

altogether . At the start xa and xe are the given values x1 and x2 , and the fa

position is cleared. This ensures that initially fa and fo are treated as of op-

posite sign, and the first two function-values to be calculated are f(x1) and

f(x2) . The process terminates either when fc = 0 or when xa -x≤2-34

PROGRAMS OF SELECTED SUBROUTINES 131

47F Δ F M parameter

T Z

0 A 3 F

1 T 70]plant link

2 T 6 H clear (h+6)D

56 3 A 30

4 G N]
call in auxiliary subroutine

Aux
- 5 H D

6 N D test whether fo = 0

54 7 (Z F)

8 T 4D

9 V 6 H

10 G 17 0]

11 T 4 D

link

clear accumulator

test relative sign of fa and fo

clear accumulator

12 A 2 H

Xa to xb
13 T 4 H

opposite signs

14 A 6 H

fa toFo
15 T 8 Η

16 E 21 0

10 17 T 4 D clear accumulator

18 A 8 H

same sign

19 R D halve Fb

20 T 8 Η

16- -21 S D

foto fa
22 U 6 Η

23 S 8 H

24 E 29 0

25 T 4 D

26 S D

27 T D

28 S 4D

24 29 A 57 0

form

38 30 T 4 D

fc

fa -fo
in OD by division process

31 Y F similar to that used in D7

32 H 4D

33 N D

34 A D

35 T D

36 N 4 D

37 Y F

38 G 30 0

39 H D

40 A H

plant new xa
41 U 2 H

42 S 4 H

(xa - xb) to OD
43 T D

44 A H

45 V D

new Xc

46 Y F

47 HT

132 ELECTRONIC DIGITAL COMPUTER

48 A D

49 G52 0

50 T D

51 S D test for xa - x≤2-34

49 52 R D

53 Y F

54 E 70

55 T D clear accumulator

56 E 30 repeat

57 ΙΔ M = -1

F3 Differencing and checking subroutine No. 1 .

T Z

0 A 3 F

plant link
1 Τ 24 0

2 A D

3 S H

4 S 2 H form fourth difference

5 S 4 H

6 S 6 H

7 U 8 H

8 A 6 H

9 U 6 H

10 A 4 H

11 U 4 H plant differences and new function value

12 A 2 H

13 U 2 H

14 A H

15 T H

16 A 8 H

17 G 20 0

18 T 4 D

19 S 4 D

test fourth difference

17 20 Α 10 Η

21 Ε 23 0

22 Ο 25 0

21 23 T 4 D

24 (Z F) link

25 ||B F

G1 Simultaneous first-order differential equations by modified

Runge -Kutta process; single step .

T 4πΖ

5 H 682 D

T 6πΖ

7 ||P N

Τ 12πΖ

13 || $ 1405 D

PROGRAMS OF SELECTED SUBROUTINES
133

Τ 14πΖ

15 T H

Τ 16πΖ

17 T 2 H

T Z

0 A 3 F

1 Τ 61 0
plant link

2 A 31 0 set count = A80

3 G 63 0

4 Δ F

= -1/2 = -2/3
T 6 Z

6 P N

T 8 Z

8 M M

9 0 Δ

Aux10 H 40 enter for first stage

11 A 20 0

12

14
(23/1/2

Aux-14 A H enter for second stage

T 16 Z

16 A 2 H

T 18 Z

Aux18 Η 12πθ enter for third stage

19 S 12πθ

20 Τ 1200

21 E 28 0

Aux22 H 4πθ

12 23 T 4 D

enter for fourth stage

clear 4D or accumulator

24 U F

25 S 38 0

26 A 25 0 switch order 38*

27 T 38 0

21 28 S 6πθ

58 29 A 16πθ

30 U 46πθ

31 A 80

32 U 37 0

33 A 90

plant variable orders

34 U55 0

35 Α 24 0

36 T 39 0

37 (Z F)

38 (R1057πθ)
*

39 (Z F)

40 Y F

41 U 6 D

42 V 6 D form r

add 2mhy'

subtract 2mq

cycle dealing with

each variable in

turn

43 R L

44 FY

134 ELECTRONIC DIGITAL COMPUTER

45 U D store r

46 (Z F) add old y

47 (Z F) plant new y

48 A D

49 L D

50 A D

51 L L form new 2mq

52 S 6 D

53 N 4 D

54 Y F

55 (Z F) plant 2mq

56 Α 46πθ

test for last

57 S 14πθ

variable

58 G 29 0

59 A 65 0

60 S 11 0

61 (Z F) link: tests for end of step

62 Α 35 0

3 63 U 65 0

64 G X

65 || (Z F)

to auxiliary subroutine

count

* Order 38 is switched to U 1028 D (equivalent to U 4 D) for stages

1 , 2 , and 3 and back to R 10570 (equivalent to R D) for stage 4. During

stage 4, 4D remains empty.

The register contains - 1/2 during stage 1, -1/1/2 during stage 2, +1/1/2

during stage 3 , and - 2/3 during stage 4. At each stage, the cycle of orders

29 to 58 is performed n times.

G3 Integration of y " = f(x,y) by 5th order process.

Уг = У1 + бу1/2 + (y2 + 1/1282y1)h²
"

y2 = f(x2 ,y2)

"

(1)

(2)

"

First, (1) is used with y in place of y" and dy in place of day . The value

of y2 (= [y2] a, say) obtained is used in (2) to get [y2] a, from which a value of

2.
11

2. 2

d2y = [day]a can be obtained. [2] and [dy"]aare then used in (1) to get a new

value of y2 = [y2] b and so on. The process is continued until two consecutive

values of dry differ by 2-31 or less .

T Z

0 A 3 F

plant link
1 Τ 44 0

G K

0 A 12 Η

1 A JH increase x1 to x2

2 T J H

PROGRAMS OF SELECTED SUBROUTINES
135

31 3 H 16 Η

4 V 8 H

5 A 4 H (y + 1/12 day) to OD

6 Y F

7 T D

8 H D

9 V 14 Η

10 Y F

11 A 2 H

12 U JD

13 A H

14 T 18 H

15 Α 15 0

16 G N]

provisional value of dy1 to 10D

y2 to 18H

call in auxiliary subroutine

Aux 17 A 20 H

18 S 4 H

19 S 6 H

20 U 4D

11

trial value of dy " to 4D

21 S 8 H

22 G 25 0

23 T D

24 S D

22 25 R 4 F

26 Y F

27 E 320

28 T D

29 A 4D

30 T 8 H

test difference in consecutive

values of day "1

2.

repeat cycle with new value of day"
31 E 30

2732 A 4 D

33 U 8 H

34 A 6 H

35 U 6 H

36 A 4 H

37 T 4 H

set new values of operands

38 A JD

39 U 2 H

40 A H

41 T H

42 (Z F) link

J1 Calculation of Legendre polynomials.

Uses a recurrence relation giving 0.5 Pn in terms of 0.5 Pn- 1 and

0.5 P - 2 which are stored in 4H and 6H respectively . (4H and 6H are used

as working space .)

47F P 68 N M parameter

T

9 0

Z

T20 F

1 DV

136 ELECTRONIC DIGITAL COMPUTER

2 L 8 F

3 S 40 D

14 4 U D

5 (T F)

6 I 40 F
This section reads the numbers following

as in the first section of subroutine F1
7 S 40 F

8 A 39 F

9 E 0

10 A 2 F

11 E 25 F

12 A 50

13 T 50

14 E 40

E 13 Z

T M

1 71798 69184 F

1 14532 46123 F

85899 39592 F

68719 47674 F

57266 23061 F

49085 34053 F

42949 67296 F

38177 48708 F

34359 73837 Z

These orders place -1 , -2/3 , -2/4 ,

overwritten.

و..هو -2/10 in M, M-2, etc. , and are then

T Z

0 A 3 F

1 Τ 35 0
plant link

2 Α 38 0

3 U 4 D
plant 0.5 Po (2x) in 4D and 6H

4 T 6 H

5 A 6 D put 0.5 P1(2x) in 4H

6 T 4 H

7 A 39 0

8 T 20 0
form multiplier order

9 A 40 0

set transfer order
37 10 Τ 24 0

11 H 6D

12 A 6 H

13 R D

14 N 4 H

15 Y F

16 T D
by recurrence relation

17 V 4 H
0.5 Pn = 4x(0.5 Pn- 1)

18 L 1 F

form 0.5Pn(2x) from 0.5Pm- 1 and 0.5 P.

- 2/n . [x 0.5 Pn- 1 -0.25 Pn-2]

0.5Pn-2

19 S 6 H

20 (H D)

n-2

PROGRAMS OF SELECTED SUBROUTINES
137

transfer order

set Pn- 1 , Pn-2 in preparation

for the next cycle

21 N D

22 Y F

23 U D

24 (T D)

25 A 4 H

26 T 6 Η

27 A D

28 T 4 H

29 A 20 0

30 S 41 0

31 T 20 0]
32 Α 24 0

33 S 60

34 G 36 0 コ
35 (Z F) link

34 36 A 40

37 E JO コ
38 I F = 1/2

39 H M

40 T 8 D

41 P 2 F

E 25 K

T 1πΜ

modify H order

count and modify transfer order

count and modify transfer order

K1 Summation of power series.

formAmD

multiply partially formed polynomial by x

add in next coefficient

round off

transfer to OD

start to form next value of order 7

T Z

0 A 3 F

1 T 13 0]:
plant link

2 T D clear OD

3 S 14 0

12 4 A 16 0]
5 T 70

6 V D

7 (A D)

8 Y F

9 T D

10 A 70

11 S 15 0]
12 G 40

13 (E F) link

14 P 2 H

15 P N

16 P 2 N

K4 Summation ofpower series.

G K

]
0 A 21 0

1 U 11 0

form A m+2 F

138 ELECTRONIC DIGITAL COMPUTER

2 A 3 F

form E m+4 F

3 U 19 0

4 S 20 0

form S m+3 F

5 T 80

6 H 4D

7 T D clear OD

8 (S F)

18 9 A 21 0

10 U 6 F form A n-2p D

11 (A F)

12 Τ 14 0

13 V D

14 (A F)

15
form polynomial

Y F

16 T D

17 A 6 F

test for completion
18 G 90

19 (E F) link

20 M 1 F

21 P 2 F

G K

0 A 3 F

1 T 29 0

K8 Shift of origin of a polynomial (numbers expressed in floating

decimal form) .

Uses library subroutine A11 , whose first order is in Δ.

plant link

2 S 33 θ

28 3 T 4 F
plant - (P 2s F) ; initially -(P 2n F)

4 A 30 θ

5 T D
place 0.10-60 in OD

6 E 90 jump

25 7 S 4 F

8 A 5 M add P2Fmodify counter

9 U 5 F

10 A 32 0

11 U 18 0
form and plant A h+2t D

12 A 31 0

form and plant Th+2t D
13 T 220

14 A 14 0

call in A11

15 G Δ

16 A D

17 V 6 D
Xn+1 = Xnx+ar+1

18 (A D)

19 T D

20 E 21 0
]

parameters inter-

preted by A11

A1121 A D

22 (T D)
copyXr+1

PROGRAMS OF SELECTED SUBROUTINES
139

23 A 5 F

24 A 4 F test for end of each synthetic division

25 G 70

26 A 4 F

27 A 5 M add P 2 F test for end of last division

28 G 30

29 (E F)

30 F F

link

0.10-60

31 0 F (T - A)

32 A h D

33 P 2n F]
punchedby user

L1 Logarithm to base 2, large range.

1

32 [log2 C(6D) to OD

Fractional part of logarithm is formed digit by digit, using a shift-

ing (negative) strobe.

G K

0 A 3 F

1 T 33 0]
plant link

2 E 11 0

3 I F = 1/2

4 P1024 F = 1/32

5 P 512 F = 1/64

14 6 A 30

7 L D

8 T 6 D

9 A D

10 S 40

2 11 T D

integral part of logarithm: shift to left,

counting in OD

stop when C(6D) ≥1/2

12 S 30

13 A 6 D

14 G 60

15 T 8 F

16 S 50

32 17 T 4 D ☐ plant strobe

18 H 6 D

19 V 6 D

]

clear accumulator

square C(6D) and

test whether

20 S 30

≥1/2 or < 1/2
21 E 34 0

22 A 30

23 L D

24 Y F shift left

Digit cycle for

fractional part

of logarithm

25 T 6 D

<1/2
26 A 4D

enter digit
27 A D

in logarithm
28 DT

140 ELECTRONIC DIGITAL COMPUTER

37 29 A 4 D

shift strobe

30 R D

31 Y F test for

32 G170 last digit

33 (E F) link

2134 A 30

35 Y F

≥1/2
36 T 6 D

37 E 29 0

M1 Assembly subroutine No. 1 .

For details see Part I, Section 4-6 .

G K

0 H 2 F P1 F to multiplier register

1 T F store TF , IF or PF

2 A 42 F

3 C 42 F increase C(42) by 1 if odd

4 U 42 F

5 A 8 F add TF

6 U 22 F revised transfer order

7 A 15 0

8 A F]
9 H 8 F

10 (T 45 F)

form reference order*

restore multiplier register contents

plant reference order

11 Α 10 0

12 A 2 F advance location of reference order

13 T 10 0

14 E 34 F return to initial orders

15 ||N F

T 44 K

*C(Acc.) upon entry: T, I, or P. Corresponding reference order :

P, E, or G.

M2 Assembly subroutine No. 2.

G K

Enter on-0

reading S 1

T F

For details see Part I, Section 4-6.

address (0 or 1) to 0

H F

2 C 22 F adjust address of transfer order

3 A 22 F if necessary

4 U 22 F

5 S 8 F

6 U 42 F

7 A 40 F

set C(42)

add function letter to form reference order

8 (Τ 160) plant reference order

9 A 2 F

10 A 80 advance location of reference order

11 T 80

PROGRAMS OF SELECTED SUBROUTINES 141

12 H 8 F

13 Ε 34 Γ

Enter on-14

readingπ15

A 43 F

E 8 F]

restore C(R)

return to initial orders

these orders perform the role of the

original orders in 27 and 28

T 27 K

27F Ε 14 0

28F E 0

these orders replace orders 27 and 28 so

that switches to 140 and S to 0

T 44 K

44F P 16 0

P7 Print positive integer up to 10 digits .

Prints C(OD) 234 with suppression of nonsignificant zeros but with-

out layout.

G K

0 A 3 F

plant link
1 T 26 0

2 Η 28πθ

3 N D

4 Y F multiply by 234/1010 and add 2-34

5 L D

6 T 4D

7 S 27 0

8 T
-1/32 to 0

F

9 H 80 set multiplier

10 S 80 set digit count

25 11 T 1 F digit count

12 V 4D multiply

13 A F

test for first

14 G 31 0

15
nonzero digit*

S F

16 L D shift

17 U F

18
print

0
digit cycle

F

19 F F

check and remove
20 S F

21 L 4 F shift

34 22 T 4D

23 A 1 F

24 A 27 0 count digits

25 G 11 0

26
() link

Τ 28πΖ

P F
**

T 27 Z

27 P1024 F

28 P 610 D

29 0524 D
= -233/1010

30 F

142 ELECTRONIC DIGITAL COMPUTER

14 31 Ο 30 0

32 S F

33 L 8 F

space

add 1/32

shift

34 E 22 0]
suppress zero

* C(0) = - 1/32 until first nonzero digit is printed, when C(0) becomes

positive , thus preventing the suppression of later zeros.

** These symbols appear on the tape and serve merely to clear 28D,

thus ensuring that the sandwich digit between 28 and 29 is zero, before further

orders are read.

P11 Print signed decimals in preset layout .

plant link

T Z

0 A 3 F

1 T M

2 Α 20 Θ

test for end of line

3 G 11 0

4 Ο 1 M carriage return

5 0 2 M line feed

6 S 2 F

7 E JO

8 0 2M

9 A 7 M line and column count

7 10 S 19 0

3 11 A 7 M

12 Τ 20 0

13 A D

14 E 21 0 test sign

15 T D

change sign
16 S D

17 0 0 print

18 E 22 0

19 P N

20 P F

14 21 0 5 M space

18 -22 P H round-off

23 T D

24 A 6 M

25 H 4M

G K

41

44-(0) 26
T 4 F

(1) 27 V D

set multiplier, digit count

multiply by 10/16

(2) 28 U F

(3) 29 0
print

F

(4) 30 F F

check and remove

(5) 31 S F

(6) 32 G 90

(7) 33 S 3 M

(8) 34 G JO test for correct print

(6)-(9) 35 0 2 M

(8)-(10) 36 A 3 M

PROGRAMS OF SELECTED SUBROUTINES 143

37 L 4 F shift

38 T D

39 A 4 F

40 L D

41 E 0

42 0 5 M
digit count

43 L D

44 G 0

45 0 5 M

46 0 5 M spacing

47 Ο 5 M

Ο 40 Κ figure shift performed during input

π F oforders

T 22 K

T M

M 0 link

1 0 F carriage return

2 Δ F line feed

3 Q F 1/16

4 J F 10/16

5 Φ F space

6 P Δ digit layout constant

7 P 5 F block constant

Ο 40 Κ

P14 Print signed decimal with round-off and digit check.

figure shift during input
π F

T Z

0 Α 45 0

1 U 40

2 A 22 0

3 T 39 0

4 (A F)

5 E 80

6 Ο 40 0

7 Ο 41 0

5 8 T 40

form A n+2 F

form link

= A n+2 For layout count

carriage return

line feed

layout count in 40

9 A D

10 E 15 0 test sign of C(0D)

11 T D

12 S D] reverse sign

13 Ο θ print -

14 E 16 0

10 15 Ο 42 0 print space

14 16 P H round- off order

17 T D

18 Η 44 0

19 A 40

144 ELECTRONIC DIGITAL COMPUTER

35
20 T 40

38

21 V D multiply by 10/16

22 U 1 F

23 0 1 F

24 F F

25 S F

26 G 29 0

print digit and check

27 S 43 0

28 G 30 0

26 29 Ο 41 0

28 -30 Α 43 0

31 L 4 F

32 T D

33 A 40

34 L D

35 E 20 0

layout count
36 Ο 42 0

37 L D

38 G 20 0

39 (E F) link

40 θ F carriage return

41 Δ F line feed

42 Φ F space

43 Q F

44 J F

45 P 2 F

Q1 Quadrature, using Simpson's rule .

Forms and places in pD the sum:

hfo + 4f1 + 2f2 + 4f3 +
...
+

where fo = f(a) , fr = f(a+rh), ... fn = f(b)...

bم

~

a

+414fn-1-1 + fn1] = 3 (x)dx

T Z

0 Α 41 0

1 U 80 plant A m+ 2 F

2 A 2 F

3 U 11 0 plant A m+3 F

4 A 3 F

5 U 40 0 plant link

6 S 42 0

7 T 36 0

8 (P F)

plant S m+4 F

becomes A m+2 F; later xr = a + rh

9 U 80

10 T F]
set xo = a

11 (P F) becomes A m+3 F; later h

12 T 11 θ plant h

13 T H clear pD

PROGRAMS OF SELECTED SUBROUTINES 145

14 Τ 43 0 clear43

39 15 T 4 F clear accumulator

for first and

16 Α 21 0

* last ordinates

17 T 23 0 set " shift" order

37 18 T 4 F clear accumulator

19 A 19 0

20 P N

Aux 21 Η 11 0 극

call in auxiliary sub-

routine to compute f(x)

multiply ordinate by h
22 V D

23 (P F) "shift" order*

24 Y F

25 A H

add to partial sum
26 T H

27 Α 45 0

28 S 43 0

29 U 43 0 set " shift " order*

30 Α 44 0

31 T 23 0

32 A 80

33 A 11 6 add h to a + rh

34 U 80

35 U F

36 (P F) becomes Sm+4 F

37 G 18 0 jump when r≤n- 1

38 S 11

39 G15 0 jump when r = n

40 (P F) link

41 P 2 F

42 M 1 F

43 P F) F-PD

44 L D

45 P D

* Order 23 is L 1 F for odd numbered ordinates, and L D for even

ordinates , except the first and last, for which it is H 110 (no effect) .

Q3 Quadrature using Gauss' six-point formula

Computes f(x)dx by the approximation

rath

a-h

3

i=1
2h , di [f(a+b₁h) + f(a-b₁h)] ,

where di and bi are constants. This is equivalent to fitting a curve of the

eleventh degree.

a = C(mD), h = C[(m+2)D]

T Z

0 A 3 F

1 T 30 0]
plant link

2 T 4 H clear 4H

146 ELECTRONIC DIGITAL COMPUTER

3 S 31 0

24 4 A 32 0

5 U 16 0
plant orders

6 Α 33 0

22 7 T JO

8 A H +a

9 H 2 H

10 (V F) a ± bich

11 Y F

12 T D gives x

13 Α 13 0

14 G N コcalculate f(x)

Aux- 15 H D

16 (V F) di.f(x)

17 Y F

18 A 4 H
3

19 T 4 H

20 A Je

21 A 340

forms ∑ d₁ [f(a+b₁h) + f(a-b₁h)]
i=1

test ifVor N in Je

22 G 70

23 S 35 0

24 G 40

25 H 4 H

26 V 2 H

27 L D

28 Y F

29 T D

30 (E F) link order

31 P 6 F

32 V 42πθ

33 M 6 F

34 0 F

35 I 46πθ

E 69 K

Τ 36πθ

36πθ 14716 66184 F d1

38πθ 30989 18315 F d2

40πθ 40193 50093 F d3

42πθ 1 60197 04270 F b1

44πθ 1 13594 90762 F b2

46πθ 40994 46400 π b3

T 48 Z

R1 Input of a sequence of signed, long, decimal fractions.

G K

T 45 K

45F P 32 0 H parameter

46F P 47 0 N parameter

T Z

PROGRAMS OF SELECTED SUBROUTINES
147

0 A 3 N

1 U 40

2 A 4 N

3 T 9 H

4 (A F)

35- 5 T H

6 T D

극
plant A m+2 F

plant link

(i) A m+2 F (ii) digit count

plant transfer order

clear OD and 4D

7 T 4D

8 A 5 N

9 T 13 0]
reset switch

10 H 2 N set multiplier

11 S 6 N

24 12 T 40

13 (I F)

14 A F

15 S 6 N

16 E 4 H]
17 T 6 F

18 V 4D

19 L 8 F

set digit count**

digit count

or TF when switched*

test symbol for

+, - , or F

clear accumulator

multiply previous digits

shift

digit cycle

20 A D add new digit

21 T 4D

46 22 A 40

23 A 7 N count digits

24 G 12 0

25 H 4D

26 N N

27 R 128 F

28 R 128 F multiply by 234/1010

29 V 1 N

30 L D

31 Y F

Η 32 (T F) transfer to store

1 33 A H

change transfer order

2 34 A 3 N

3 35 E 50

16-4 36 S 6 N

5 37 E 42 0 test for
-

6 38 A 7 N

+, - and F

7 39 E 44 0 test for +

8 40 T 6 F F: clear accumulator

9 41 (E F) link

37 42 S 4 D

43 T 4 D]
negative:
change sign

39 44 A 2 N + and

set switch to TF

45 T 13 0

46 E 22 0

N 47 P 610 D

1 48 Z1523 D

2 49 T F = 10/32

148 ELECTRONIC DIGITAL COMPUTER

3 50 P 2 F

4 51 U 1 F

5 52 I F

6 53 P 5 D

7 54 P D

* Order 13 is I F during input of punched digits, T F for dummy

zeros which make up remainder of 10 digits .

** Digit count is actually set to 11 because + or sign is counted

as a digit .

R2 Positive integer input during input of orders.

G K

9 0 T 20 F

1 V D

2 L 8 F

3 A 40 D add new digit

14 4 U D

5 (T F)

10. (partial sum)*

New partial sum to OD** and to

final destination of number

6 I 40 F

read next symbol
7 A 40 F

8 S 39 F subtract 11.2-16

9 G θ test for F

10 S 2 F subtract 2.2-16

11 G 23 F test for π (if return

to initial orders)

12 A 50

Enter 13 T 50] change destination of integer

14 E 40

Followed on tape by:

digit cycle

number cycle

E 13 Z on subroutine tape

Tm D punched by user

Hence control enters subroutine at order No. 13 , with TmD in the accumulator.

* The multiplier register contains 10/32 throughout input of orders

and operation of this subroutine .

** When obeyed for the first time in each number cycle, this order

clears OD .

R7 Input of a sequence of signed long decimal fractions during

program.

For details of punching see specification in Part II .

コ

G K

0 A 60

forms A n+2 F

1 U 40

2 A 70

3 Τ 31 0 plants link

PROGRAMS OF SELECTED SUBROUTINES
149

4 (A F)

5 E 18 0

6 P 2 F

7 U 1 F

T 8πΖ

C 819 F

places -1/10 in 8πθ
T 8 Z

L1229 F

T J πΖ

D 409 D
places -8/10 in 10πθ

T JZ

S 1638 D

T12 Z

33 12 V J πθ multiply by -8/10

36 13 L D

14 Y F

15 (T D)
transfer to store

16 Α 15 0

17 S 60 decrease transfer order by 2

5 18 Τ 15 0

19 E 22 0

29-20 N 8πθ multiply by 1/10

21 Y F

19 22 T D

23 H D

24 I F read digit
digit cycle

25 A F

26 R16 F shift to most significant

27 T D position

28 A F

29 E 20 0 test for + or
-

30 A 21 0

31 (E F)
test for x: also link

31 S 25 0

33 E 12 0 test for +

34 T F

35 NJ πθ multiply by 8/10

36 E 13 0

S2 Square root, fast VC(4D) to 4D.

Repetitive
an + 1 = an - 0.5 ancn

a = C(4D) an-/C(4D)

process

Cn+1 = ch(0.25cm -0.75) Co
= C(4D) - 1 Cn

0-

G K

0 A 3 F

1 T 20 0]plant link

2 A 4 D

3 S 90 form co

4 60A

150 ELECTRONIC DIGITAL COMPUTER

19 5 U D

6 H D
Cn to R

7 R 1 F

8 S 21 0 (0.25 cm - 0.75) to OD

9 T D

10 N 4D

11 R D

12 A 4 D an+1 to 4D

13 Y F

14 T 4D

15 V D

16 T D

17

form cn+1
V D

18 Y F

19 G 50 test for Cn + 1 = 0

20 (E F) link

21 s F = 3/4

repetitive cycle

S3 Cube root of C(6D) to OD .

Root is formed digit by digit, using a shifting (negative) strobe.

G K

0 A 3 F

1 T 20 0]plant link

2 T D set first trial (i.e. , zero)

3 S 240

19 4 T 4 D

[

set strobe

5 H D

6 V D

7 Y F

form (trial)3 - C(6D)
8 T 8 D

9 V 8D

10 S 6 D

11 E 21 0

12 T 8 D

13 S 4 D

increase trial

23 14 A D

15 T D

16 A 4 D

17 R D

shift strobe

18 Y F

19 G 40

20 (E F) link

1121 T 8D

22 A 4 D decrease trial

23 G 14 0

24 I F = 1/2

PROGRAMS OF SELECTED SUBROUTINES 151

T3 General cosine (used with R9) .

0.5 cos [2mC(4D)] to 4D. The argument is formed modulo 2 by

multiplication by 2/π , and a suitable left shift to cast off the integral part.

This yields 0/ㅠ where 0 = 2m C(4D) modulo 2π, and 01≤π. A power series

is then used to form 0.5 sin 2x, where x = 0.5 (0) - π/2).

46F Ρ 42πθ N parameter

E 69 K

T N

N 0
11,453,246,123 F

2

4

6

8

2,290,649,225 F

218,157,069 F

12,119,837 F

440,721 F

10 11,144 F

12
13,493,037,705 F

14
10,937,044,409 π

T Z

0 A 3 F

1 T 41 0 plant link

2 H 4 D

3 V 14 N multiply by 2/π

4
(L H) multiply by 2m- 1

5 E 86

6 T D

7 S D]
take modulus

5 8 S 58 0 - 1/2

9 T D

10 H D

11 N 12 N multiply by π/4

12 L D

13 T 4 D

14 H 4 D

15 V 4 D

x² to OD
16 Y F

17 T D

18 H D

19 N JN

a11
20 A 8 N

- a13 x2

21 T D

22 N D

23 A 6 N
ag - a11x² +

2

24 T D

25 N D

26 A 4 N a7 - a9x² +
2

27 T D

28 N D

29 A 2 N
a5

-

a7x² +

30 DT

152 ELECTRONIC DIGITAL COMPUTER

31 N D

32 A N
az - a5xa5x2 +

33 T D

34 N D

-a3x² + a5x4
-

35 T D

36 H D

37 V 4 D -a3x³ + a5x5

38 Y F

39 A 4D x - a 3x3 + a5x5 ...

40 T 4D

41 (E F)

T 58 Z

58 || I F = 1/2

T4 Inverse cosine .

0.5 arc cos 2 C(4D) to OD where 0≤C(4D)≤1/2. Proceeds by finding

successively the sign of 0.5 cos 2C(4D) formed from 0.5 cos 2n-1C(4D) by

xn = 4x -1-1/2. The required result is built up digit by digit, using a nega-

tive strobe.

G K

0 A 3 F

1 T 28 0 plant link

2 T D

3 Α 32 0

20 4 T 6D strobe in 6D

5 H 4 D

6 V 4 D

2

7 L 1 F form xn
=

4x -1 - 1/2

8 S 29 0

9 Y F

10 E 16 0 test sign of xn

11 T 4D

12 S D

13 A 6 D

14 T D 7form
form partial sum

15 S 4 D

10 16 T 4 D

17 A 6D

shift strobe

18 R D

19 Y F

20 G 40 う test for end of cycle

21 H D

22 Ν 30πθ multiply by π/4

23 Y F

24 E 27 0

25 T 4 D take modulus

26 S 4 D

24 27 T D

28 (E F)

PROGRAMS OF SELECTED SUBROUTINES 153

29 || I

Τ

F = 1/2

30πΖ

31 ID 888 F

T 30 Z
places - π/4 in 300

30 O 699 D

T 32 Z

32 ||K4096 F =-1

T5 0.5 cos x and 0.5 sin x at equal intervals of x. Version 1 .

T Z

0 E 90

1 || I F = 1/2

T 2πΖ

2πθ |||(1 F) 0.5 cos x

T 4πΖ

4πθ (Ρ F) 0.5 sin x

T 6 Z

Reset- 6 A 10

7 T 2πθ reset to x = 0

8 E 19 θ

0 9 H 4πθ

10 N 2 H

11 H 2πθ

new value of 0.5 cos x
12 V H

13 Y F

14 T 2πθ

15 V 2 H

16 H 4πθ

17 V H new value of 0.5 sin x

18 Y F

8 19 T 4πθ

T7 Sine, rapid (used with R9) .

1/2 sin [2 C(4D)] to 4D

G K

E 69 K

Τ

calls in R9

26πθ

26πθ 11 453 246 086 F

28πθ 2 290 648 539 F

30πθ 218 152 390 F coefficients of power series

32πθ 12 105 378 F

34πθ 419 996 π

T Z

0 A 3 F

1 T 25 0 link

2 H 4D

3 V 4 D

4 Y
form [C(4D)]2

F

5 DT

154 ELECTRONIC DIGITAL COMPUTER

6 H D

7 Ν 34πθ

8 A 32πθ

9 T D

10 N D

11 A 30πθ

12 T D

13 N D

14 Α 28πθ

15 T D summation of power series

16 N D

17 A 26πθ

18 T D

19 N D

20 T D

21 H D

22 V 4D

23 A 4D

24 T 4 D

25 (E F) link

T36 Z

U3 Counting subroutine No. 3 (open) .

G K

0 A 16 0

1 S 18 0

2 E 60]
test and jump if q

=

gr

3 T F

4 A 16 0

5 E 12 0

2 6 A 10

7 A 15 0

8 T 10

9 A 14 0
modify C(1) and C(14)

10 A 15 0

11 T 14 0

5 12 A 2 F

13 T 16 0
replace q- 1 by q

14 E 17 0

15 P 2 F

16 (P F) q

U4 Counting subroutine No. 4 (closed) .

G K

0 A 2 F

1 A 2 F

2 U 220 A m+2 F to 22 0

3 A 2F

PROGRAMS OF SELECTED SUBROUTINES 155

4 U 120 A m+3 F to 12 0

5 A 2 F

6 U 14 0 Am+4 F to 14 0

7 A 28 0

8 U 19 0 Gm+5 F to 19 0

9 S 28 0

10 A 3 F

11 T 27 0 Em+6 F to 27 0

12 (P F) becomes A m+3 F

13 T 20 0 *As F to 20 θ

14 (P F) becomes A m+4 F

15 T 14 0

16 S 14 0

26 17 T 14 0

18 A 18 θ

19 (P F) becomes Gm+5 F

20
(P F) becomes A s+xr F

21 A 20 0

22
(P F) becomes A m+2 F

23 T 20 0

24 A 14 θ

25 A 2 F

26 G17 0

27 (P F) becomes E m+6 F (link)

28 ||V 1 F

*

may be replaced by any other function letter .

V1 Multiplication of vector by contracted symmetric matrix.

49F Y F L parameter

50F P 24 0 X parameter

T Z

0 A 3 F

1 T 20 X]
plant link

2 T 7 F clear 7

46 3 U 6 F set C (6) , C (7) and

4 A 7 F initial values of

5 U 7 F C(4) , C(5) for next

6 T 4 D scalar product

7 A 6 F

8 A 4X

9 T 17 X

10 T D

set transfer order

clear OD

39 11 A 2πΧ

12 A 4D

13 Τ 14πθ

14 (H F)

15 (V F)]
16 P L

form single product

round-off or shift

156 ELECTRONIC DIGITAL COMPUTER

17 A D

18 T D]
add to partial sum

19 A 4 F

20 S 6 F

to 6X if diagonal
21 G 6 X

22 A 6 F

23 E 7 X]

not yet reached

on or after diagonal

X 24 V 2046 H = P 2(n- 1) F

1 25 P H = P 2n F

2 26 P N =Hc D

3 27 P M = VmD

4 28 P Δ = TSD

single

product

5 29 P 2 F cycle

21-6 30 Τ 14 0 clear accumulator scalar

23-7 31 A 5 X

8 32 A 4 D

9 33 T 4 D

10 34 A 4 F

11 35 S X

12 36 E 16 X

13 37 A 1 X

advance C(5)

advance C(4) and

test for end of

scalar product

product

cycle

14 38 T 4 F

15 39 E 11 θ

36-16 40 A D

17 41 (T F)
plant scalar product

18 42 A 6 F

19 43 S X

20 44 (E F) link

advance C (6)

and test for

45 A 1 X end of process

46 E 30

Note : When forming the pth scalar product, C(6) = P 2(p- 1) F and C (7) =

Pp(p - 1) F. When forming the qth term of the pth element, C(4) = P 2(q-1) F

and C(5) is the address of the matrix element relative to m. If

qp, C (5) = P[p(p- 1) + 2(q- 1)] F ,

q>p, C(5) = P[q(q- 1) + 2(p-1)] F.

V2 Addition and subtraction of n dimensional vectors .

T Z

0 Α 23 0

1 U 11 0

2 A 2 F

3 U 13 0

4 A 2 F

5 U 15 0

6 Α 10 0

7 T 22 0 plant link

8 S 24 0

PROGRAMS OF SELECTED SUBROUTINES 157

21 9 Α 23 0

10 U 1 F

11 (P F) Am+2 F

12 U17 0

plant arithmetic orders
13

(P F) A m+3 F

14 U 18 0

15 (P F) Am+4 F

16 Τ 19 0

17 (P F)

18 (P F)

19 (P F)]
arithmetic operation

20 A 1 F

21 G 90
test for end of operation

22
(P F)

link

23 P 2 F

24 P H

158 ELECTRONIC DIGITAL COMPUTER

APPENDIX A Keyboard perforator code, etc.

Perforator

character

Teleprinter

character

Code as punched

ontape

Binary Decimal

equivalent equivalent

P 0 P 0 00000 0

Q 1 Q 1 00001 1

W 2 W 2 00010 2

E 3 E 3 00011 3

R 4 R 4 00100 4

T 5 T 5 00101 5

Y 6 Y 6 00110 6

U 7 U 7 00111 7

8 I 8 01000 8

0 9 0 9 01001 9

J Bell J 01010 10

π
Figures 01011 11

S

1 "

S 01100 12

Z § Z + 01101 13

K (K (01110 14

Erase Letters 01111 15

Blank tape (no effect) 10000 -16 16

F F $
10001 -15 17

θ Carriage return
10010 -14 18

D D
;

10011 -13 19

Φ Space 10100 -12 20

H + H £ • 10101 -11 21

N N 10110 -10 22
,

M
1

M 10111 -9 23

Δ Line feed 11000 -8 24

L % L)
11001 -7 25

X X / 11010 -6 26

G G # 11011 -5 27

A : A
- 11100 -4 28

B
C
V

? B ? 11101 -3 29

(
C : 11110 -2 30

) V = 11111 -1 31

Notes : 1. Positive and negative decimal equivalents are given for the last

sixteen codes above . The negative equivalent applies when the symbol occurs

as the five most significant digits of an order . The extreme left-hand digit

is then a " 1 " and, for numerical purposes, acts as a sign digit, thus indicat-

ing a negative number .

2. It will be seen that the secondary characters on keyboard perfora-

tor and teleprinter do not agree in every case. It is intended that they should

all eventually be brought into line .

159

Notes

These orders cause control to be transferred

to 20. They are not used after the start, but

their locations are used as working space.

These are constants which are intended to be

left here unaltered in any program.

APPENDIX B The initial orders

Location Order

0 (T F)

1
(E 20 F)

2 P1 F

3 U2 F]

12- 4 A 39 F

5 R4 F

6 V F

7 L8F

28

8 T F

38

9 I 1 F

10 A 1 F

11

12

S 39 F

G4 F

S 7 F

A 35 F

T20 F

Input of address. This group of orders is en-

tered at 8 with the accumulator empty , so

that 0 is cleared. The next digit on the tape

is taken in and tested to see if it is less than

eleven; if so it is doubled and added to ten

times the content of 0, the sum being sent

back to 0. The next digit is read, tested, etc. ,

and this is continued until the whole address

has been formed; the next digit read, x, is

greater than ten and so corresponds to a

code letter .

These test to see if x is greater than sixteen.

If it is, the order A(24+x)F is formed and

planted in 20. If x is sixteen or less a switch

order E(16+x)F is formed and planted in 20.

This adds the address , which is always positive,

into the accumulator .

13 L D

14 S 39 F

15 E 17 F

16

15-17

18

19 A F

20
(H 8 F) This order places 10/32 in the multiplier regis-

ter during the start and is later replaced by a

manufactured one which either adds to the

accumulator the number determined by x, or

switches control to an address determined by x.

21 A 40 F This adds in the function digits of the order so

the accumulator now contains the order from

the tape plus the number selected by x.

22 (T 43 F) This (the transfer order) transfers the assembled

order to its final place in the store.

23 A 22 F

24 A 2 F

These orders increase the address specified in

the transfer order by unity .

31-25 T22 F

26 E 34 F

20- 27 A 43 F

28 E 8 F]

Transfers control to 34.

Control is switched to these orders by 20 when

has been read from the tape. They add 2-16

to the address (which is in the accumulator)

160 ELECTRONIC DIGITAL COMPUTER

20 29

20 30

31

20-32

33

A 42 F

A 40 F

E 25 F

A 22 F

T 42 F

I 40 D

A 40 D

R 16 F

T 40 D

and transfer control to 8. The address now

refers to a long storage location.

This adds the address in 42 to the accumulator .

This adds the function digits of the order to the

accumulator. The result is that the number in

the accumulator is positive if the order has

function digits represented by T or E , while

it is negative in the case of G.

If the accumulator is positive, the order in the

accumulator replaces the order in 22; if nega-

tive the accumulator contains the address spe-

cified in order 22 which is then put in 42 (the

storage location corresponding to 0) .

These take in the function digits, shift them to

their correct place and transfer them to 40.

The order in 35 is also used as a constant.

26-34

35

36

37

38 E 8F

39 P5 D A constant used in the input of the address. It

equals 11.2-16

40 (P D) Aconstant used during the start. It equals 2-16 .

When the starting button is pressed, the initial orders are placed in storage

locations 0-40 and control transferred to 0. The first orders to be executed

are the following :

clears accumulator0 T F

1 E 20 F transfers control to 20

20 H 8 F places 10/32 in multiplier register

21 A 40 F adds 2-16 to accumulator

22 T 43 F transfers 2-16 to 43 (the storage location

corresponding to D) .

23 A 22 F

24 A 2 F

25 T22 F]
increase order 22 to T 44 F

The initial input is now ready to take in orders; the first part of the input tape

is blank so that the first code letter is a space which corresponds to 16; con-

trol is therefore switched from 20 to 32, and the contents of 22 are transferred

to 42. This action will continue, the spaces being treated alternately as func-

tion digits and code letters. The first symbols encountered will be P and F.

There are two possibilities , either

(1) the last space has been treated as a function digit in which case the

psuedo-order " space F " = 1000000000000... is transferred to 44, or

(2) the last space was treated as a code letter , in which case PF is

transferred to 44 .

In both cases the following orders will be put in sequence starting at 45, un-

less a control combination comes first.

161

APPENDIX C Control combinations

The operation and use of the more important control combinations are

described in Part I, Chapter 2. Details will now be given of some less com-

mon control combinations which are sometimes used and which may be en-

countered in certain library subroutines.

It may be noted that the operation of code letter Z is always equivalent

to that of K and combined.

Throughout this appendix storage location 42 is assumed to contain

PnF, placed there by the preceding GK.

1. (a) EZPF

(b) EmZPF

2. (a) EZ followedby

(b) Em Z any positive*

(c) EmKorder

3. TmZ

4. (a) Tm πΚ

(b) TmπΖ

5.

Transfers control to the first order of the last

subroutine to be read, leaving the accumulator

clear , i.e. , control is transferred to n.

Transfers control to the mth order of the last

subroutine to be read, leaving the accumulator

clear , i.e. , control is transferred to (m+n) .

These control combinations transfer control to

(a) the first order of the last subroutine, (b)

the mth order of the last subroutine , (c) the

order in storage location m. The accumulator

in all three cases is not left clear but contains

the positive order which follows the control

combination.

Replaces the transfer order by T (m+n) F, i.e. ,

causes the orders following on the tape to be

placed in storage locations (m+n) , (m+n+1), etc.

Replaces the transfer order by (a) Tm D, (b)

T (m+n) D, i.e., the next order, or pseudo-

order, to be read from the tape is placed in

the most significant half (the odd-numbered

half) of the long storage location m, or (m+n) ,

the least significant half, including the sand-

wich digit (see Part I, Section 4-2) being cleared.

If the control combination is followed by P F ,

the whole long storage location is cleared.

E 25 K followed

by any

positive* order by the positive order following the E 25 Κ.

Transfers control to order 25 of the initial orders,

which causes the transfer order to be replaced

6. T 22 K Causes the transfer order to be replaced by the

next order on the tape regardless of whether

this is positive or negative . The address spe-

fied in this order is immediately increased by

unity. For example, T 22 K, Tm F will cause

the orders following to be placed in storage lo-

cations (m+1), (m+2) , etc.

162 ELECTRONIC DIGITAL COMPUTER

7. (a) am K

(b) amZ

where a

is a func-

tion letter

and a m F≥0

(c) 040 ΚαF

8. GmK

9. GZ

Causes the transfer order to be replaced by

(a) a m F, (b) a (m+n) F. If the accumulator

is not cleared by this order further operation

of the initial orders will not be possible unless

the transfer order is restored by a suitable

control combination.

This is a particular case of 7(a) and causes the

character a to be printed during input without

occupying any storage space . TmK must

follow on the tape where the following order

is to be placed in m.

Places a reference address in 42 equal to m

plus the current address specified in the trans-

fer order .

Adds the current address specified in the trans-

fer order to C(42) .

The above list explains the means whereby most simple operations can

be carried out during the input of orders. More elaborate operations may be

carried out by temporarily interrupting the action of the initial orders and

transferring control to a suitable sequence of orders which have been placed

in the store. The last of these orders should return control to order 25 of

the initial orders . Care must be taken to ensure that none of the initial orders

is disturbed and that the content of the multiplier register is restored if neces-

sary .

*

By "any positive order" is meant any order or pseudo -order whose

numerical representation in the machine is positive . In general this means

that the function letter on the tape must be positive, but there may be excep-

tions . For example, if the H parameter is P (n+1) F, then a pseudo -order

punched as V 2047 H will appear in the machine as Pn F.

APPENDIX D Interpretive subroutines : example of packing of orders

Consider the evaluation of the sum of the squares of the residuals of a

set of nonlinear algebraic equations, that is, the evaluation of
m

2

Σfi (Xixm)² ,
i=0

where fi (xi xm) = 0 is a typical equation, fi being a function of its arguments

which can be evaluated by a finite number of additions , subtractions and multi-

plications only .

If there is no uniformity in the algebraic forms of the function fi , direct

programming of their evaluation takes a large number of orders . However , if

the number of variables is not too large , a considerable saving can be effected

in the space occupied by orders by using a special " order" code , of which

each " order" specifies a sequence of machine orders, and by packing two

such " orders " into a single storage location. This also simplifies the task

163

of the programmer , for , since each special "order " specifies a sequence of

operations , these do not have to be programmed individually. An interpretive

subroutine is required to interpret " orders " expressed and packed in this

form.

A possible code of special "orders" is given in the table . Six “ orders"

suffice to carry out the operations required in the process of calculating the

residuals and summing their squares. One further " order" is required to

return control to the main program. Thus the " orders" can be specified by

three binary digits.

Moreover , for the operation of the code, three storage locations are

used. These storage locations, numbered from an arbitrary zero, are indi-

cated by [0] , [1] , [2] . [0] is used as a multiplier register, [1] to accumulate

the sum of the squares of the residuals, and [2] as a working position used in

the evaluation of each function value f₁ in turn. The interpretation of these

numbers in terms of long or short storage locations in the machine is carried

out by the interpretive subroutine .

Thus, if provision is to be made for reference to not more than 29 other

locations [n] for variables, constarts, and intermediate quantities that must

be stored in the course of the calculation, five digits will be required to spe-

cify the " address" of the number to be operated on. This brings the total

number of digits necessary to specify an order to 3 + 5 = 8.

This leads to the possibility of packing two " orders " into one short

storage location. Thus, the two " orders"

p 8

t 17

i.e. , 00001000

10110001

would appear in one short storage location as

t

Normal position of binary point

8 17

00000100010110001

p

Unpacking is performed by suitable collating and shifting orders, and

packing by a small subroutine which can subsequently be written over , since

it is only required during input. In the above example the packing subroutine

used takes 38 orders, and the unpacking part of the interpretive subroutine

19 orders only .

As an example of programming using these special " orders" suppose

the evaluation of

(x+y-2) + (xy- 1)2

is required. If x is stored in location 4 (related to an arbitrary zero), y in

location 5, 2 (suitably scaled down) in location 6, and 1 in location 7, the

"coding" would appear as

w4

w 5

e 6

r

p 4

q 5

(cont'd.)

w0

e7

r

y

This program will thus occupy only 5 short storage locations.

164 ELECTRONIC DIGITAL COMPUTER

The disadvantage of using such subroutines is the time involved. Here,

the factor over direct coding is about 7, depending on the proportion of the

different "orders " used. However, against this it might be pointed out that

with a particular set of eight equations the over -all space saving was 70 short

storage locations in 200.

A further possibility which arises is the packing of the interpretive sec-

tion of the subroutine itself so that the same unpacking procedure applies to

the routine being interpreted and to the routine doing the interpretation. If

this is done, however, the time factor increases considerably (by about 40:1

in one program investigated) and it would appear, at least until faster high-

speed stores become available , that such a procedure is of restricted utility .

Binary Code

equivalent letter

0
p

"Order" code

Symbolic

description

C [n]→[0]

Verbal description

This is the first "order" in the

formation of a sequence of con-

tinued products and puts C(n) in

the storage location used as a

multiplier register .

This executes multiplication and

stores the product ready as multi-

plier for the next multiplication.

Accumulation of sums and differ-

ences .

Accumulation of squares of resid-

uals . The interpretive subroutine

must put C[1] = 0 at beginning of

operation.

1
q C[n] C [0]→[0]

2 W C[n] + C [2]→[2]

3 e -C [n] + C [2]→[2]]

4 r C [2] 2 + C [1]→[1]

0→[2]

5 t C[0]→n Transfer . Many intermediate

products may be repeated and

should be stored for re-use ,

6
y Switch " order"

7 u Blank

Return to machine order beyond

this " order ," i.e., return control

from interpretive subroutine.

APPENDIX E Methods of counting in a simple cycle

In programming, one of the most common problems is the coding of a

simple cycle of orders in such a way that it is performed a certain number

of times , n say, before the machine proceeds to the next part of the problem.

In the absence of any special considerations, this is best done as follows .

Assume that PnF, or n.2-15, is stored in a, that the cycle begins at the

order stored in c , and that b is used for the counting operation.

165

(c-1) SaF

C TbF

c+1 required orders

cycle
•

accumulator clear

AbF

A2F•

GcF•

As the cycle is entered for the first time, -n . 2-15 is sent to b; thereafter it

is increased by 2-15 each time the cycle is performed. On encountering the

order Gc F, C(Acc.) is negative each time until the end of the nth repetition,

when it is zero.

Two advantages of this method should be noted. First, it is self-resetting,

that is, it may be used several times in succession, without anything having to

be restored. Second, when control finally leaves the cycle to obey the order

following Gc F, the accumulator is empty (as it is usually required to be).

This method will not necessarily be the best if, for example, the accumulator

is not required to be empty afterwards or if resetting is not required. There

are many other possibilities. The counting may be done in steps of any size,

positively or negatively, and the orders may be rearranged to suit special cases.

When using a novel method, care must be taken to see that exactly the right

number of repetitions will be obtained.

One common variation occurs when one or more orders within the cycle

have to be changed each time the cycle is performed. To take a simple exam-

ple , suppose that the long number in each location from 100 D to 298 D inclu-

sive is to be increased by x. The orders to be changed have to be increased

by P 2 F each time, so it is convenient to count in steps of P2 F. Assume as

before that P 200 F is stored in a, that the cycle begins at c, and that b is used

for counting. In addition, the following constants are required:

Address

d

e

f

gD

Constant

A 300D

0 F

P2 F

X

Then the previous example could be modified thus :

c-1

C

S a F

UbF

subtract P 200 F

c+1

c+2

c+3

Ad F

U(c+6) F

A e F

add A 300 D

add O F

c+4 T(c+7) F

c+5 AgD addx

cycle

m = 100, 102,

c+6 (Z F) becomes AmD

c+7 (Z F) becomes TmD

c+8 AbF

c+9 AfF add P 2 F

c+10 G C F

...و
298

166 ELECTRONIC DIGITAL COMPUTER

The variable orders are formed from the count-number by orders (c+1) to

(c+4) . Note that since the variable orders and the count number always change

by the same amount, their differences are constant. The variable orders may

thus be formed in succession from the count-number by adding the differences,

without clearing the accumulator .

The cycle may be shortened by one order by using one of the variable

orders itself as the counter . f is now used to store A 298 D instead of P2F ,

and b is no longer required.

c-1 S a F subtract P 200 F

C Ad F add A 300 D

c+1 U (c+5) F

c+2 A e F addO F

c+3 T (c+6) F

c+4 A gD addx cycle

c+5 (Z F) becomes AmD

c+6 (Z F) becomes TmD

c+7 A (c+5) F

c+8 Sf F subtract A 298 D

c+9 G C F

Here, the order Am D itself is used as the counter . When it has reached

A 298 D , C(Acc.) is no longer negative after obeying the order in (c+8) , so

the cycle is no longer repeated. It will be seen that the process is self-reset-

ting . Examples of such cycles will be found in library subroutines E4 (orders

6 to 13), G1 (29 to 58), and K1 (4 to 12) .

Counting operations are not restricted to addition and subtraction; it is

sometimes convenient to count by shifting. In subroutine E2, for example,

the number 2-34 is first placed in 6D. This number consists of a single digit

at the right-hand end and this digit , or " strobe," is moved one place to the

left at each repetition of the cycle. When it reaches the sign position it appears

negative and repetition ceases. In L1 , S3 , and T4, a negative strobe moving to

the right is used. The end of the process is detected by rounding off. When

the strobe reaches -2-35, the rounding-off brings it to zero and the sign digit

changes . In all these examples, the shifting method is adopted because the

strobe is also used in the calculation .

A more elaborate form of counting by shifting is employed in print sub-

routines P11 (orders 39 to 44) and P14 (orders 33 to 38) to count the charac-

ters printed in a number . A single counting operation controls not only the

total number of decimal digits printed, but also the layout of subcolumns.

Briefly, a certain psuedo-order is shifted one place to the left each time a

character is printed, the sign digit is examined, and appropriate action taken.

By suitably arranging the O's and 1's in the pseudo-order a great variety of

results may be obtained, thus in this instance , a pair of 1's terminates a sub-

column and a single 1 terminates the number .

Use of "tags"

It is sometimes possible to do away with the need for counting by arrang-

ing that the numbers operated upon give an indication when the last repetition

is reached. If this can be done, it often reduces the number of orders required

in the cycle, and increases the speed of working.

167

For example, if an operation is being carried out on a series of positive

numbers, a negative number can easily be detected and if inserted deliberately

will cause repetition to cease. Such numbers, with distinctive properties used

to control the program, are called "tags." Further examples are the numbers

0 and -1.0 can be distinguished because when squared negatively it gives a

non-negative result, and -1 because its square and its complement appear nega-

tive to the machine. Tags can be used in a great variety of ways, apart from

the control of a simple cycle. Thus numbers at one end of a permitted range

can be detected by adding a constant and testing the sign, and then the result

of the discrimination may be used to operate a multiway switch (see below) .

Multiway switches

It is often convenient to pursue any one of a number of routes after a

certain point in a program. These routes are usually defined by a discrimi-

nating number used to fabricate an E or Gorder . This order then transfers

control to any of a number of E or Gorders placed consecutively in the store,

which in turn switch control to the desired address.

Thus, if a number a . 2-15 is in the accumulator at a certain point and

it is desired to switch control to one of a set of storage locations x1 , X2 , X3 ,

... , xn thereby, it is possible to proceed as follows :

S θ

s+1

S+2

A (b- 1) θ

]
F)

T (s+2) 0

(Z

adds a to Eb
0 forming Eb+a 0 , which is

placed in storage location (s+2) 0 .

•

(b-1) 0

b

Ebe

E X1 0

b+1 E Χ2 0

•

4

Accumulator register , 4

Accuracy, 25

ACE, 12

Aiken relay computer, 2

Algebraic equations, 66

Arithmetical unit, 3-4

INDEX

Automatic Sequence Controlled Calculator , 2

Assembly subroutines, 27-32, 51, 91, 140-

141

Auxiliary subroutines, 56

Binary-decimal conversion, 12-14

Binary point, 4, 6-7, 14

Blank tape, 18, 42, 47, 50, 160

Bell Telephone Laboratories, 2

Checking, 14, 26

Checking of programs, 38-39

Checking subroutines , 40-41 , 54-55, 79-82,

118-124

Closed subroutines, 22

Code letters, 5, 15-16, 18

Collation, 7

Complex numbers, operations on, 35, 78-79,

89, 117-118

Conditional orders, 7-8

Constants, 20

Control combinations , 17-18, 104, 161

Controls of the EDSAC, 43-44

Counting, 8, 164-167

Counting subroutines, 41 , 101-102, 154-155

Cube root, 99, 150

Dahlgren, 2

Decimal -binary conversion, 12-14

Differential equations, 32-34, 56-61 , 86-88,

132-135

Division subroutines, 26, 82-83 , 125-126

Double-length arithmetic, 7

EDVAC, 3

ENIAC, 2-3

Entry points , 104

Erasing, 42

Examples , 45-71

Exponential subroutines, 83-84, 126-127

Floating decimal subroutines, 35-37, 66, 73-

78, 105-117

Four -address code, 11-12

Gauss' formula, 27, 95-96, 145

Harvard University, 2

IBM Selective Sequence Electronic Calcula-

tor, 2

Initial input routine, 15-18, 159-160

Initial orders, 15-18, 159-160

Input, 3-4, 12

Input of orders, 15

Input subroutines, 25-26, 96-98, 146-149

Interpolation, 84-85, 127-132

Interpretive subroutines, 34-37, 162-164

Inverse interpolation, 84-85, 130-132

Iterative formula, 8

Keyboard perforator , 12-13, 42, 158

Legendre polynomials, 88, 135-137

Library, 15 , 18, 20, 25, 43

Library catalog, 25, 72

Library categories, 72

Library subroutines, 25-37, 43

Link order , 22-24

Location of errors in punching, 43

Location of mistakes in a program, 39-41 ,

53, 64

Logarithms , 91 , 139-140

Long storage location, 3

Manipulation of a polynomial, 89-90, 138-

139

Master routine, 27

Mathematical checks, 57

Matrices , 102-103, 155-157

Mistakes in programming, 38-41

Modification of orders, 8-9

Moore School of Electrical Engineering, 3

Multiaddress codes, 11-12

Multiplier register , 4, 7

Multiway switches, 167

National Physical Laboratory, 12

von Neumann, 3

Notation, 20-21, 104

Number tape, 47

Numerical equivalents of orders, 9

Open subroutines, 22

Optimum programming, 12

Order code, 5-6

Order tape, 47

Organization of the EDSAC, 43

Output, 3, 5

Output subroutines, 25-26, 50, 92-94, 141-

144

Packing of orders, 37, 162-164

INDEX

Paper tape, 12-13

Parameters, preset, 23, 104

Parameters , program, 23

Photoelectric tape -reader, 4, 43

Polynomials , 89-90, 138-139

Preset parameters, 23, 104

Print heading, 91

Print subroutines , 92-94, 141-144

Program parameters , 23

Pseudo-orders, 17, 104

Punched tape, 4, 158

Punching of orders, 15

Quadrature , 27, 48, 61, 95-96, 144-146

Reciprocal square root, 99

References , 21

Repetitive cycle, 8-11

Runge -Kutta process, 32-33, 86-87, 132-134

Sandwich digit, 4

Scale factors , 26

Selective Sequence Electronic Calculator

(IBM) , 2

Short storage location, 3

Sign digit, 3

Simpson's rule, 27, 61 , 95, 144-145

Single -address code, 11-12

Speed, 25

Square root, 98, 149-150

Stage I, 5

Stage II, 5

Starting, 18, 43-44

Storage location, 3

Storage of library subroutines, 43

Store, 3

Subroutines , 1

Subroutines , closed, 22

Subroutines , interpretive, 34-37, 162-164

Subroutines, open, 22

Subroutines relating to functions, 84-86, 127-

132

Summation of power series, 88-89, 137-138

Tape comparator , 42

Tape duplicator , 42

Tape punching and editing, 42-43

Teleprinter , 5 , 13-14, 50, 158

Three-address code, 11-12

Transfer order , 17

Trigonometrical subroutines, 27, 99-100, 151-

154

Tchebycheff polynomials, 27

University of Pennsylvania, 3

THIS BOOK IS DUE ON THE LAST DATE

STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK

ON THE DATE DUE. THE PENALTY WILL INCREASE TO

50 CENTS ON THE FOURTH DAY AND TO $1.00 ON THE

SEVENTH DAY OVERDUE.

MAR26 '57

25Feb581ND

MAY 3 1 1962

+1968

Book Slip-20m-7,'56 (C76984) 458

143006

Wilkes, M.V.

Call Number:

QA76.5

W5
Preparation of pro-

grams for an electronic

digital computer

Wilkes

PHYSICAL

SCIENCES

LIBRARY

QA76.5

W5

U
N
I
V
E
R
S
I
T
Y

O
F

C
A
L
I
F
O
R
N
I
A-

D
A
V
I
S

3
1
1
7
5

0
1
2
6
1

6
2
5
9

P
S
L

LIBRARY

UNIVERSITY OF CALIFORNIA

DAVIS

143006

P

	Front Cover
	1

